

PROTEIN ENGINEERING

7. Rational and semi-rational design

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno

Outline

- Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Outline

Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Protein engineering

- altering protein structure to improve its properties
- □ three main approaches
 - directed evolution
 - rational design
 - semi-rational design

Protein engineering approaches

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

IMPROVED ENZYME

DIRECTED EVOLUTION

1. not applied

2. Random mutagenesis Library of mutated genes (>10,000 clones) 3. Transformation 4. Protein expression 5. not applied 6. Screening and selection - stability - selectivity - affinity - activity

Constructed mutant enzyme

7. Biochemical testing

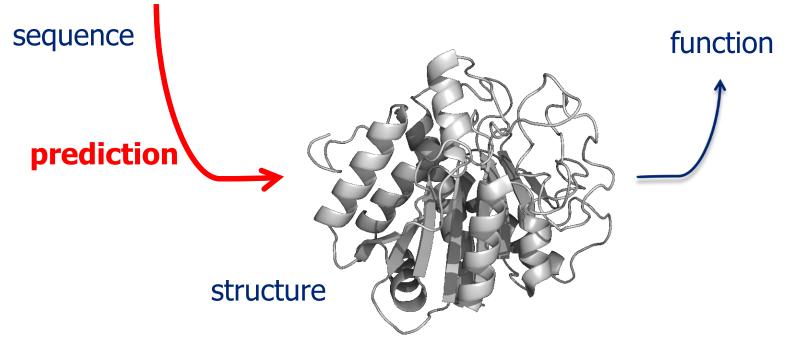
Selected mutant enzymes

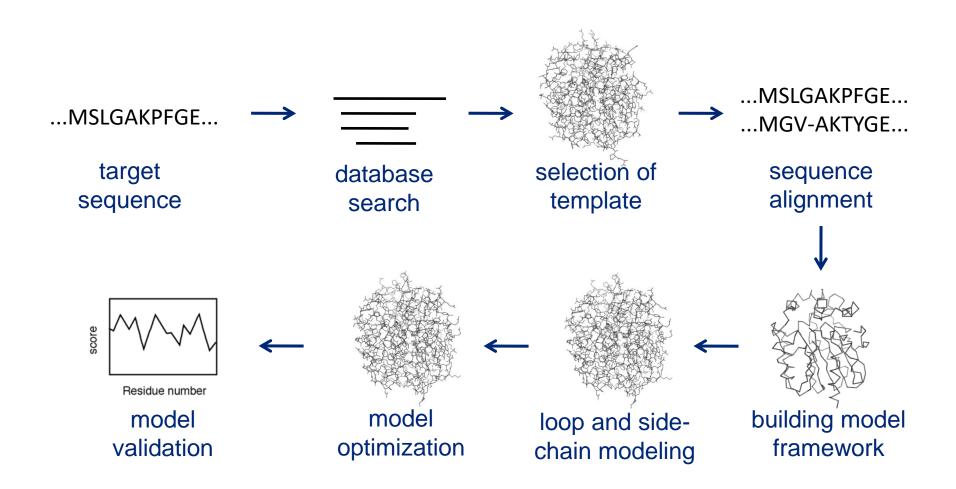
	Rational design	Directed evolution	Semi-rational design
high-throughput screening/selection	not essential	essential	advantageous but not essential
structural and/or functional information	both essential	neither essential	either is sufficient
sequence space exploration	low	high, random	moderate, targeted
probability to obtain synergistic mutations	moderate		high

Structure information

worldwide Protein Data Bank (wwPDB)

- http://www.wwpdb.org/
- central repository of ~180,000 experimental macromolecular structures (April 2021)
- **RCSB PDB**
 - https://www.rcsb.org/
- D PDBe
 - https://www.ebi.ac.uk/pdbe/
- D PDBj
 - https://pdbj.org/





3D structure is determined by the sequence

MSLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNPTSSYLWRNI MPHCAGLGRLIACDLIGMGDSDKLDPSGPERYAYAEHRDYLDALWEA LDLGDRVVLVVHDWGSALGFDWARRHRERVQGIAYMEAIAMPIEWA DFPEQDRDLFQAFRSQAGEELVLQD

Homology modelling

Homology modelling - tools

D MODELLER

- http://salilab.org/modeller/
- **SWISS-MODEL**
 - http://swissmodel.expasy.org/
- Robetta
 - http://robetta.bakerlab.org/
- □ I-TASSER
 - https://zhanglab.ccmb.med.umich.edu/I-TASSER/

□ Protein engineering approaches

Semi-rational design

- identification of hot-spots
- evaluation of hot-spots
- selection of substitutions
- design of library
- mutagenesis and screening
- Rational design
 - molecular modeling

Semi-rational design

- combine advantages of rational and random approaches
- \Box selection of promising target sites (hot-spots) \rightarrow mutagenesis

→ creation of small "smart" libraries

- □ based on knowledge of protein structure and function
- □ ☺ high-throughput screening usually not needed
- Increased chance of obtaining variants with desired properties
- Sertain knowledge of protein structure-function
 relationships is still required, Subtraction

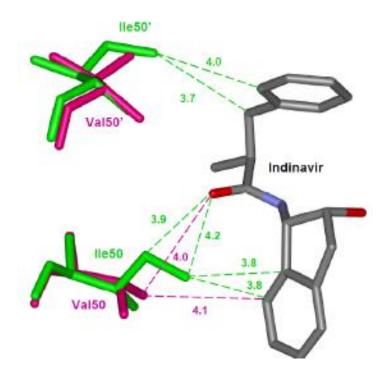
□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Identification of hot-spots

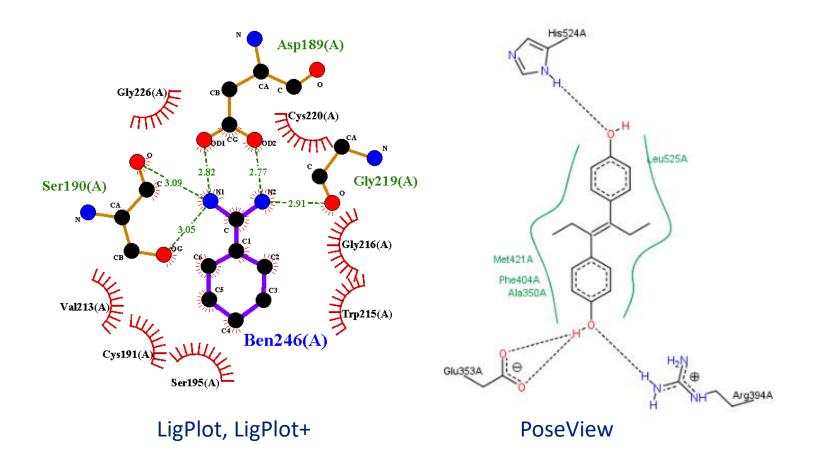
- □ hot-spots for engineering catalytic properties
- hot-spots for engineering thermostability

Hot-spots for engineering catalytic properties


- □ residues mediating substrate binding, transition-state
 stabilization or product release → mutations can improve or
 disrupt binding, catalysis or ligand transport
 - residues involved in protein-ligand interactions
 - residues located in binding pockets
 - residues located in access tunnels

→ these residues also include catalytic or other essential residues which generally should not be mutated!

Analysis of protein-ligand interactions


- requires 3D structure of protein-ligand complex
 - experimental structure (wwPDB)
 - theoretical model (molecular docking)

Analysis of protein-ligand interactions

schematic diagrams of protein-ligand interactions

Analysis of protein-ligand interactions

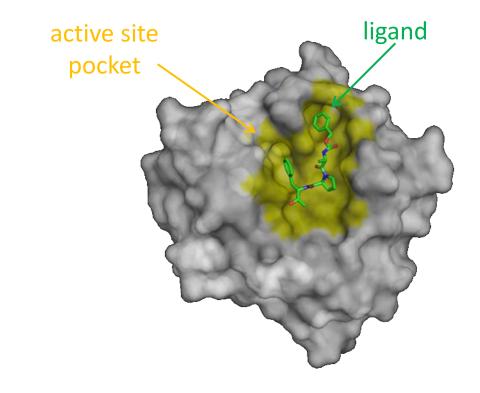
□ inter-atomic contacts between protein and bound ligands

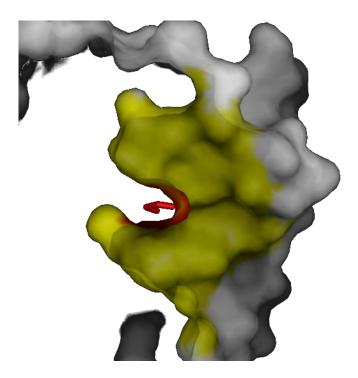
Res	sidue	Dist(Å)	Surf(Å ²)	Number of contacts
ASN	38 A	2.7	22.5	2
ASP	108 A	2.8	35.1	5
ILE	134 A	6.3	0.7	1
PHE	143 A	5.0	6.5	2
PHE	151 A	3.3	26.7	4
PHE	169 A	3.5	6.4	2
VAL	173 A	3.6	23.4	1
LEU	177 A	4.8	8.5	2
ILE	211 A	5.2	3.8	1
LEU	248 A	5.6	10.3	4
HIS	272 A	3.8	33.8	9
PHE	273 A	3.5	2.3	2
BR	901 A	3.8	30.7	2

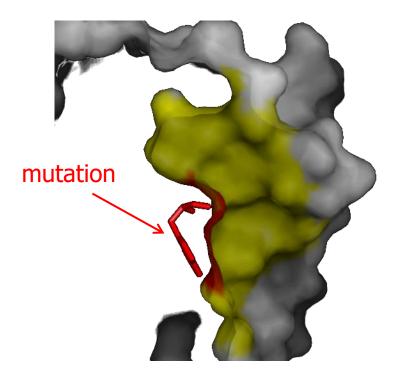
LPC server

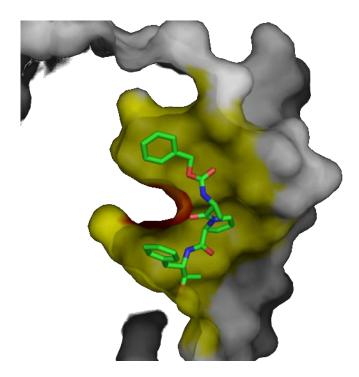
Essential residues

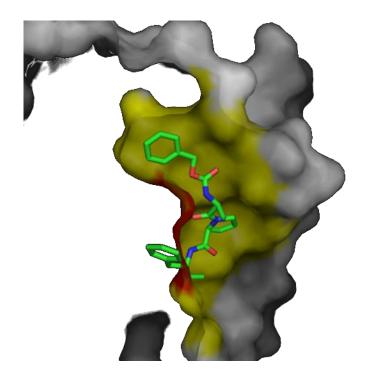
UniProt (Swiss-Prot) - https://www.uniprot.org/

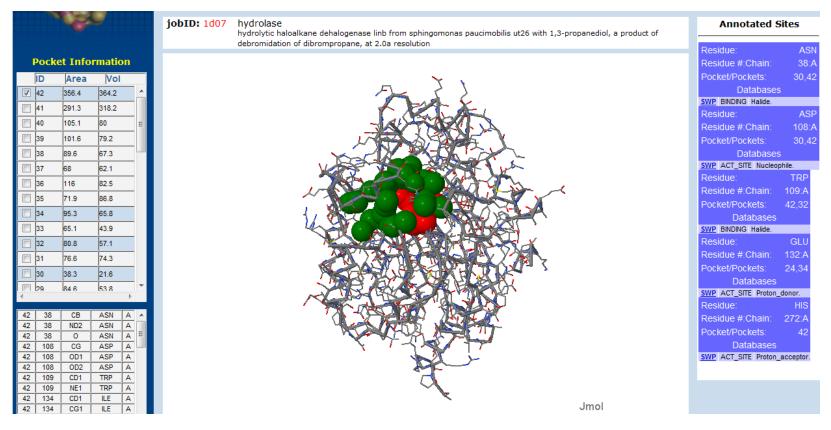

Sites Feature key

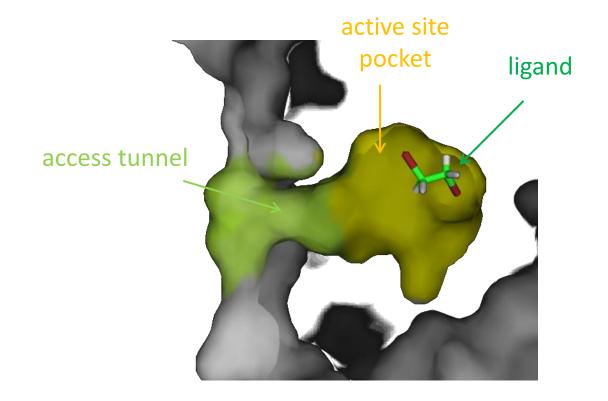

	1 03/00/(3)	
Binding site ¹	38	Halide
Active site ⁱ	108	Nucleophile 🛛 🛛 Publications 🚽
Binding site ¹	109	Halide
Active site ¹	132	Proton donor 🛛 🗣 3 Publications 👻
Active site ¹	272	Proton acceptor 🕜 3 Publications 👻

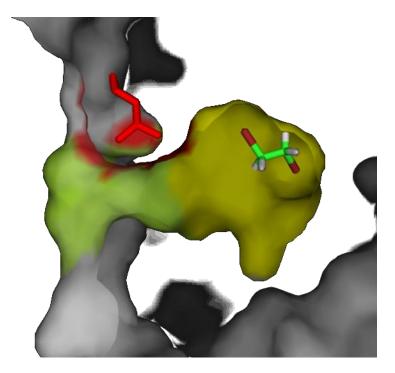

Catalytic Site Atlas - https://www.ebi.ac.uk/thornton-srv/m-csa/

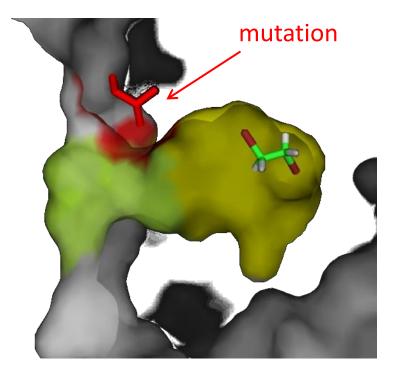

Catalytic Residues Roles

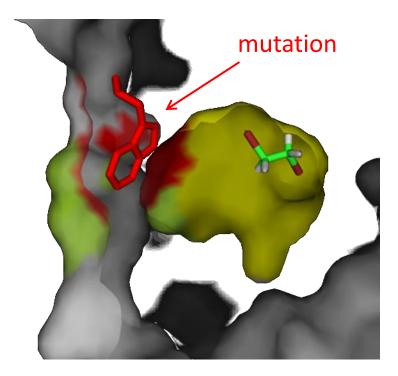

UniProt	PDB*	
His272	His272A	Acts as general acid base to deprotonate water, thus activating water so its lone pair can attack the covalent enzyme intermediate.
Asp108	Asp108A	Acts as nucleophile on the electrophilic carbon atom to form a covalent enzyme intermediate which is hydrolysed to give the product.
Asn38, Trp109	Asn38A, Trp109A	Involved in stabilisation of the halogen, transition-states and product.
Glu132	Glu132A	Acts to modify the pKa of His 272 so that it remains in the correct protonation state for its role in catalysis.




- binding and active sites of enzymes are often associated
 with structural pockets and cavities
 - most amino acid residues located in these pockets may come into contact with the ligands during the catalytic cycle
 - → one can accurately predict which residues may interact with the ligand even without precise knowledge of ligand orientation in the active site
- requires 3D structure of protein
- software for detection of pockets
 - CASTp, fPocket, MetaPocket, Caver Analyst...




detailed characterization of all pockets in the structure



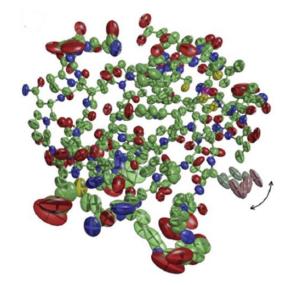
CASTp

- buried binding or active sites are connected with bulk
 solvent by access tunnels
 - adjusted to permit transport of specific molecules
 - mutations can speed-up or hinder transport of molecules as well as allow transport of other molecules
- requires 3D structure of protein
- software for detection of tunnels
 - Caver, Mole, HOLE, PoreWalker

Detection and detailed characteristics of access tunnels

CAVER Analyst 2.0

Hot-spots for engineering thermostability

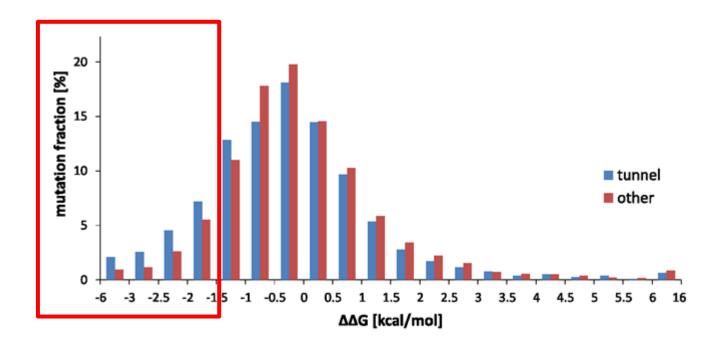

- □ highly flexible residues introduction of rigidifying mutations
- residues located in access tunnels
- residues predicted by systematic *in silico* saturation mutagenesis

 \rightarrow these residues may also include catalytic or other essential residues which generally should not be mutated!

Identification of highly flexible residues

- prediction based on crystallographic B-factors
 - reflect the degree of thermal motion, and thus the flexibility of individual residues

- □ requires 3D structure of protein
 - experimental structure determined by X-ray crystallography (wwPDB)


Identification of highly flexible residues

□ average B-factor of each residue in the target protein

Title: CRYSTAL STRUCTURE OF NIDOGEN/LAMININ COMPLEX						
(Ine	(The highest 20 averaged B values are shown only.)					
Chain	identif	ier of chain no. 1	: A			
Resid	ue Name	Residue seq. no.	B value	Rank		
ARG	A	931	48.46	1		
GLU	A	930	46.87	2		
SER	A	151	46.50	3		
ALA	A	149	45.90	4		
ILE	A	150	45.69	5		
GLU	A	981	45.63	6		
ASN	А	932	44.67	7		
GLY	A	979	44.39	8		
PHE	A	89	44.32	9		
LYS	A	152	43.64	10		
GLY	A	980	43.33	11		
HIS	A	978	42.84	12		
LEU	Α	148	42.76	13	-	
•					►	

B-FITTER

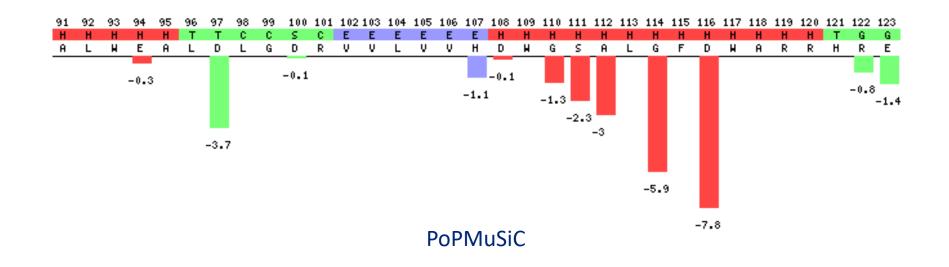
saturation mutagenesis in tunnel residues has 2× better
 chance to significantly improve stability than mutagenesis in
 other protein regions (based on computational predictions)

Analysis of access tunnels

Detection of tunnels in proteins and analysis of ligand transport

			and the second se				
tnew	jot						
s iedu					- 0	Jub information	JOB CONTROL
14	bottleneck radius (Å)	length [A]	ourvature	throughout	11	Job ID: topsvv	Submit new job
1	1.5	10.8	12	0.73	19 A 18	Title: Untitled Structure: 4440	Job ID
2	1.3	16.1	12	0.60	9.8		Q. Find job
					_	Download PyMOL session	Tunnel profile
						Download results in single zip	Tunnel (D
						View CAVER configuration	1 1 25
		20	~			View CAVER log	
	6						
						Visualization settings	S Summer S Summer S
						Visualization settings	
	- 6	N A		\		Tunnel visualization style:	Point #2 of famel 1
		N.		2			Point 22 of fame 1 Region 21 Region 21
				>		Tunnel visualization style: Spheres Line	Patie #2 of turnel 1 Unright 8 d Unright 8 d Coolinetex (5 d. 0.7, 8 d)
						Tonnel visualization style: Spheres Line Structure visualization style	Paint 82 of farmel 1 Length: 0.5 Reduct 82 of farmel 1 Reduct 82 of farmel 1 Length: 0.5 Reduct 82 of farmel 1 Reduct 82 of farmel 1 R
	100		No.			Tunnel visualization style: Spheres Line Structure visualization style: Wilatiana Cantoon	Patie #2 of turnel 1 Unright 8 d Unright 8 d Coolinetex (5 d. 0.7, 8 d)
	5		Pil of			Tonnel visualization style: Spheres Line Structure visualization style	Image: Contract of the contract on the contract on the contract on the contract on the
	e de la compañía de la		Pie of			Tunnel visualization style: Spheres Line Structure visualization style: Wilatiana Cantoon	Image: Second
	5					Tonnel visualization style: Spheres Line Structure visualization style: Westerne Cartoon Sticle 77ace	Paint 82 of faunal 1 Languh 0.5 Coordinates (0.6.0.7, 9.3) La E E E E E E E E E E E E E E E E Limitethe [A] I Visualize point limitig residues Beladed point #18 of Lumel 1
	Se Contraction		100			Tunnel visualization style: Spheres Line Structure visualization style: Westerne Cantoon Stride 7rade Balla & stides Badbone	Image: Second
	C S					Tonnel visualization style: Spheres Line Structure visualization style: Westame Cantoon Sticks 7racs Balls 4.505 Badbone Balls	Point #2 of turnel 1 Under the second secon
	C S					Tunnel visualization style: Spheres Line Structure visualization style: Westerne Cantoon Stride 7rade Balla & stides Badbone	Image: Contraction of the second of the s
	C S					Tonnel visualization style: Spheres Line Structure visualization style: Westame Cantoon Sticks 7racs Balls 4.505 Badbone Balls	Paint #2 of turnel 1 Largett 82 of turnel 1 Details for turnel 1 Ortains for turnel 1
	So So					Tonnel visualization style: Spheres Line Structure visualization style: Westame Canton Stick 7race Balls & sides Badbone Ealls Show starting point	Point 82 of famal 1 India 52 Id State 52 of famal 1 Id State 52 of famal 5 Id State 5
	So Contraction					Tennel viscalization style: Bohees Line Structure viscalization style: Une Westerne Canton Stide Trace Bails & stide Bails Show starting point Zoom to selection Clear selection Clear selection	Paint #2 of turnel 1 Largett 82 of turnel 1 Details for turnel 1 Ortains for turnel 1
	So So					Tennel visualization style: Spress Line Birusture visualization style:	Point 82 of famel 1 Langh 0.5 Region 2 Langh 0.5 Langh 0.5
	Sold Sold Sold Sold Sold Sold Sold Sold					Tennel viscalization style: Bohees Line Structure viscalization style: Une Westerne Canton Stide Trace Bails & stide Bails Show starting point Zoom to selection Clear selection Clear selection	Point 82 of turned 1 Langth 63 13 28 29 13 20 <t< td=""></t<>

CAVER Web


Systematic in silico saturation mutagenesis

- computational tools for the prediction of effect of amino acid substitutions on protein stability
 - each residue in the protein structure is replaced by all other
 possible amino acids and the change in folding free energy (ΔΔG)
 upon mutation is estimated
 - positions with a high proportion of stabilizing mutations and/or
 low proportion of destabilizing mutations are good candidates for
 randomization by experimental saturation mutagenesis
- usually requires 3D structure of protein
 - experimental structure (wwPDB)
 - theoretical model (homology modeling)

Systematic in silico saturation mutagenesis

- fast systematic scan of all possible single-point mutations –
 prediction of stability changes upon mutation
- sequence optimality score (the sum of all negative ΔΔGs at a given position) – indicates poorly optimized positions

□ Protein engineering approaches

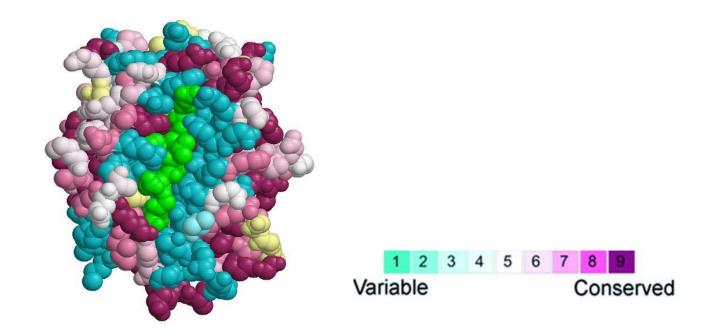
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

 hot-spots identified by computational tools can be further evaluated to prevent replacing indispensable amino acid residues and to prioritize the hot-spots (i.e., order the hotspots based on their suitability for mutagenesis)

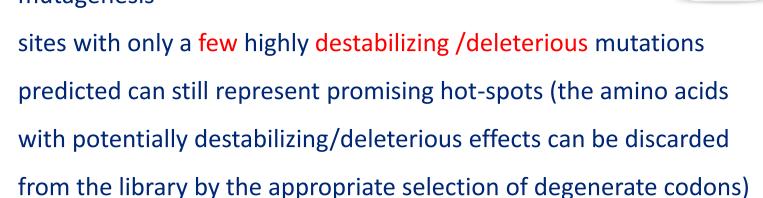
- analysis of evolutionary conservation
- prediction of effects of mutations on protein stability or function

- residues essential for maintaining structural or functional properties of a protein tend to be conserved during evolution
 - conserved residues are generally not recommended as suitable targets for mutagenesis - their replacement often leads to the loss of protein function
 - mutagenesis targeting highly mutable positions provides a significantly higher proportion of viable variants than random mutagenesis
 - targeting moderately or highly variable positions, which are expected to be tolerant to a wide range of substitutions, represents a good approach for producing efficient smart libraries (i.e., libraries with a high proportion of correctly folded and active variants)

residue conservation can be derived from a multiple
 alignment of a set of related proteins (3D structure not required)


1 ITLVVHDWGGMIGMGYAARYPERIK

residue conservation can be derived from a multiple
 alignment of a set of related proteins (3D structure not required)



- evolutionary conservation of individual positions in protein
 - mapped on protein 3D structure

ConSurf

- computational tools for the prediction of effect of amino acid substitutions on protein stability or protein function
 - *in silico* site-saturation mutagenesis of identified hot-spots check if mutations at a given site are likely to be tolerated
 - many highly destabilizing/deleterious mutations predicted for a certain position – given site is not a very good target for mutagenesis

- effects on protein stability usually requires 3D structure
 of protein
 - experimental structure (wwPDB)
 - theoretical model (homology modeling)
- effects on protein function sequence information often sufficient

- prediction of effect of substitutions on protein stability
 - Evaluation of the change of protein free energy upon mutation
 - Evaluation of contributions of individual interactions to total energy
 - Usually requires structural information
- □ software for prediction of effect of mutation on stability
 - Rosetta, FoldX, CUPSAT, ERIS

prediction of effect of substitutions on protein stability

	Amino Aci	d Mutations	
Amino acid	Overall Stability	Torsion	Predicted ∆∆G (kcal/mol)
GLY	Stabilising	Unfavourable	1.48
ALA	Destabilising	Unfavourable	-0.9
VAL	Destabilising	Unfavourable	-2.23
ILE	Destabilising	Unfavourable	-2.12
MET	Stabilising	Unfavourable	1.89
PRO	Stabilising	Unfavourable	1.55
TRP	Stabilising	Favourable	2.73
SER	Stabilising	Unfavourable	1.2
THR	Destabilising	Unfavourable	-0.44
PHE	Stabilising	Favourable	3.64
GLN	Destabilising	Unfavourable	-0.69
LYS	Stabilising	Unfavourable	9.91
TYR	Stabilising	Favourable	0.96
ASN	Stabilising	Favourable	4.14
CYS	Destabilising	Favourable	-6.73
GLU	Stabilising	Unfavourable	4.98
ASP	Stabilising	Favourable	1.31
ARG	Stabilising	Unfavourable	2.94
HIS	Stabilising	Favourable	1.38

CUPSAT

- prediction of effect of substitutions on protein function
 - Evaluation if a mutation would impair protein function
 - Hard to describe by physico-chemical properties > machine learning
 - Usually sequence based calculation
- □ software for prediction of effect of mutation on function
 - PredictSNP, SIFT, MAPP, PhD-SNP...

prediction of effect of substitutions on protein function

lome	Help)												Job ID :			🔍 Find
DB INFORMATIO			_				_	_	_	_	_		_			_	
tie: Example	•		Calculation Calculation	n succe	essitul, s	showing re	sults.										
ESULTS							neutral		deleteri	ous	unkno	wn	XX % ex	pected accu	racy	6	nnotation
Variant	Input Region	Region function	PredictSNP2	CADD		tion tools EATHMM	FunSeq2	GWAVA	dtSNP	GenBank	Cinvar		Regularee	HaploReg	UCSC	Ensembl	PredictSNP1
1613076,A T	UTR3		97 %	79 %	75 %	91 %	76 %	78 %	0	C C C C C C C C C C C C C C C C C C C	0		0		0	0	
:84452863,C T	UTR3		97 %	83 %	89 %	94 %	7	86 %	0		0		0	0	0	0	
45480678,G → A	exonic	synonymous	93 %	87 %	87 %	97 %	93 %	54 %	0		0		0	0	0	0	
:48575659,A→G	intronic		91 %	79 %	62 %	92 %	67 %	80 %	0		0		0		0	0	
:5248388,G - A	upstream		91 %	85 %	66 %	91 %	64 %	86 %	0		0		0	0	0	0	
:35532559,C→A	splicing		89 %	69 %	72 %	69 %	65 %	?							0	0	
21118528,G-C	exonic	nonsynonymous	87 %	80 %	62 %	83 %	61 %	?	0	0	0	0	0	0	0	0	Show
:31202373,C → T	exonic	stopgain	57 %	53 %	54 %	69 %	65 %	68 %							0	0	
6534707,C → T	splicing		58 %	69 %	72 %	69 %	64 %	77 %	0		0	•	0		0	0	
131934564 C T	exonic	stoogain	C0 %.	63.64	E1 94	64.66	77 94	75.66	875	m	8		ett.		6	6	
Filter by category	All	~	Prioritize	by tool :	Predict	SNP2	*	Ge	nome ass	embly : G	RCh37/h	19	>			Send to	PredictSNP1

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

substitutions introduced using degenerate codons

e.g., NNK (N = A/T/G/C; K = T/G)

symbol	base	symbol	base
А	adenosine	М	A C (amino)
С	cytidine	S	G C (strong)
G	guanine	W	A T (weak)
Т	thymidine	В	GTC
U	uridine	D	GAT
R	G A (purine)	Н	A C T
Y	T C (pyrimidine)	V	G C A
К	G T (keto)	N	A G C T (any)

IUPAC Nucleotide Nomenclature Table

- □ all possible substitutions NNK or NNS degenerate codons
 - Over the second s
 - Second redundancy is not completely eliminated (3× Arg, Leu, Ser, 2× Ala, Gly, Pro, Thr and Val)

- □ all possible substitutions NNK or NNS degenerate codons
- introduction of only selected substitutions using

degenerate codons encoding reduced amino acid alphabets

- Observation of the second secon
- \odot decreased library size \rightarrow improved screening efficiency
- NDT balanced set of 12 amino acids (12 codons)

□ all possible substitutions - NNK or NNS degenerate codons

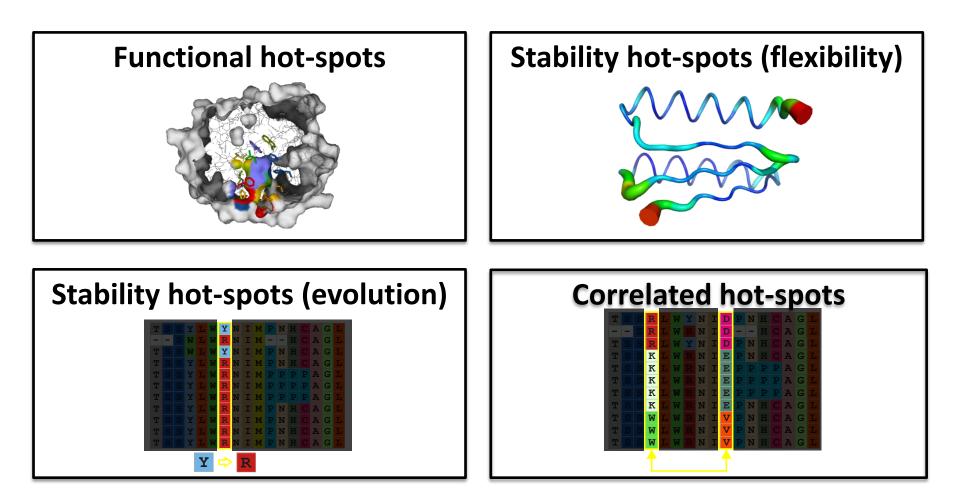
introduction of only selected substitutions using

degenerate codons encoding reduced amino acid alphabets

	. Oversampling T codon degene	r .	coverage as	a function of NNK
No. ^[a]	۱ Codons	NNK Transformants needed	Codons	NDT Transformants needed
1	32	94	12	34
2	1 0 2 8	3 0 6 6	144	430
3	32768	98 163	1 728	5 1 7 5
4	1048576	3141251	20736	62 118
5	33 554 432	100 520 093	248 832	745 433
6	$> 1.0 \times 10^{9}$	$> 3.2 \times 10^{9}$	$> 2.9 \times 10^6$	$> 8.9 \times 10^{6}$
7	$>$ 3.4 \times 10 ¹⁰	$>$ 1.0 \times 10 ¹¹	$> 3.5 \times 10^{7}$	$> 1.1 \times 10^{8}$
8	$> 1.0 \times 10^{12}$	$> 3.3 \times 10^{12}$	$> 4.2 \times 10^{8}$	$> 1.3 \times 10^{9}$
9	$>$ 3.5 \times 10 ¹³	$> 1.0 \times 10^{14}$	$> 5.1 \times 10^{\circ}$	$> 1.5 \times 10^{10}$
10	$> 1.1 \times 10^{15}$	$> 3.4 \times 10^{15}$	$> 6.1 \times 10^{10}$	$> 1.9 \times 10^{11}$
[a] Num	ber of aa positi	ons at one site.		

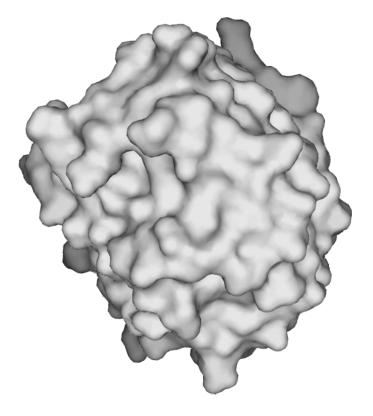
- □ introduction of amino acids exhibiting certain properties
 - VRK 8 hydrophilic amino acids (12 codons)
 - NYC 8 hydrophobic amino acids (8 codons)
 - KST 4 small amino acids (4 codons)
 - ...

- □ introduction of amino acids exhibiting certain properties
- □ introduction of a balanced set of amino acids
 - NDT balanced set of 12 amino acids (12 codons)

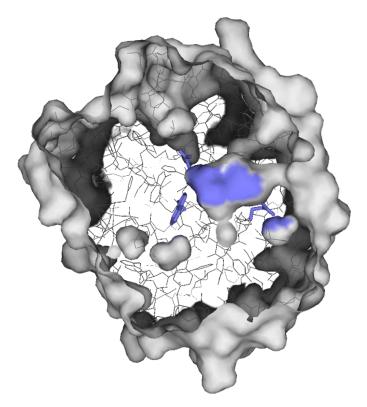

- introduction of amino acids exhibiting certain properties
- introduction of a balanced set of amino acids
- introduction of substitutions existing (at a given site) in known natural proteins
 - likely increasing the proportion of viable variants in the resulting library
 - can be obtained by analysis of multiple sequence alignment

- □ introduction of amino acids exhibiting certain properties
- introduction of a balanced set of amino acids
- introduction of substitutions existing (at a given site) in known natural proteins
- discarding amino acids with potentially destabilizing/ deleterious effects
 - can be obtained by prediction of effects of mutations on protein stability or function

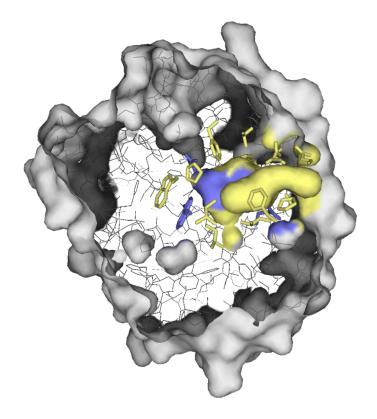
- meta-server combining several tools
 - automatic identification of hot-spots for engineering of enzyme catalytic properties
 - prioritization of hot-spots by their mutability
 - distribution of amino acids at individual positions

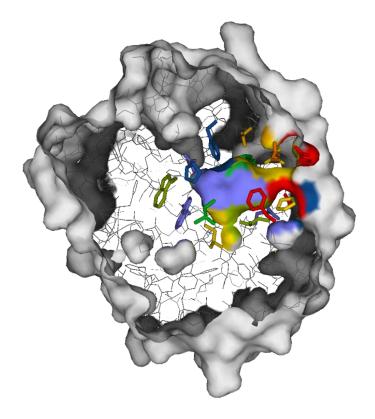


Functional hot spots of 1CV2


Return to Results browser

/iewer															
										Visu	alization set	tings			
										Tunn	els				
											id	length (Å)	bottleneck	radius (Å)	
			57			(starting from	n pocket: 1			
				TRA		6)				۲	1	7.7	1.	.5	
			X							Pock		n(s) relevan	ce (%) volu	ıme (Å ³)	
					T		X			۲	1 A			576	
				+ 500		N'A	7				2 A	A 8:	2	883	Û
						\sim	r				3 A	A 6:	2	275	Ŭ
				1							4 A	A 2	8	753	ũ
											5 A	2	5	183	000
				\sim					10						
									JSmol		6 A		9	119	Ŭ
esidue fe	eatures								JSmol				9		
	eatures ude correlated pos	sitions 🔲 Exclu	de catalytic pockets	Exclude tunnels	s Exc	lude α-helices ar	nd β-sheets	Show all res		Resid	6 A 7 A		9	119	ũ
Exclu			de catalytic pockets le residues with mode		s 📄 Exc	lude α-helices ar	nd β-sheets	Show all res		Resid	6 A 7 A	ed for mutag	9 9 genesis	119	Ŭ
Exclu	ude correlated pos				s Exc	lude α-helices ar in tunnel	nd β-sheets in catalytic pocket	Show all res HotSpot			6 A 7 A dues selecto Zoom resi chain	ed for mutag	9 9 genesis	119 632	y
Exclu	ude correlated pos ude buried residue chain	es 📃 Includ	le residues with mode	rate mutability					idues	•	6 A 7 A dues selecto Zoom resi chain \bigcirc A	ed for mutag	9 9 genesis Desi	119 632 ign library	y ut
Exclu	ude correlated pos ude buried residue chain	es 📃 Includ	le residues with mode	rate mutability					idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y v
Exclu Exclu	ude correlated pos ude buried residue chain A	es Includ	le residues with mode residue	rate mutability				HotSpot		•	6 A 7 A dues select Zoom resi chain © A © A	dues position 146	9 9 genesis Desi residue Gln	119 632 ign library HotSpor	y t
Exclu Exclu	ude correlated pos ude buried residue chain A A	es includ position 146	le residues with mode residue Gln	rate mutability				HotSpot	idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y t
Exclu Exclu	ude correlated pos ude buried residue chain A A A A	es Includ position 146 136	le residues with mode residue Gln Met	rate mutability	non-essential ✓ ✓			HotSpot	idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y t
Exclu Exclu Chain	ude correlated pos ude buried residue chain A A A A A A	es Includ position 146 136 147	le residues with mode residue Gln Met Asp	rate mutability mutable *	non-essential ✓ ✓	in tunnel ✓ × ✓		HotSpot ✓ ✓ ✓	idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y v
Exclu Exclu Chain	ude correlated pos ude buried residue chain A A A A A A A	es includ position 146 136 147 271	le residues with mode residue Gln Met Asp Ala	rate mutability mutable *	non-essential ✓ ✓ ✓ ✓	in tunnel ✓ × ✓		HotSpot ✓ ✓ ✓ ✓ ✓	idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y t
 Exclu Exclu Chain Chain O <	ade correlated pos ude buried residue chain A A A A A A A A A A	es includ position 146 136 147 271 138	le residues with mode residue Gln Met Asp Ala Ile	rate mutability mutable	non-essential ✓ ✓ ✓ ✓ ✓	in tunnel ✓ × ✓		HotSpot ✓ ✓ ✓ ✓ ✓ ✓	idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y t
 Exclu Exclu Chain Chain O O	A A A A A A A A A A A A A A A A	es Includ position 146 136 147 271 138 247	le residues with mode residue Gln Met Ala Ile Ala	rate mutability mutable ▼ √ √ √ √ √ √ √ √ √ √ √ √ √	non-essential	in tunnel		HotSpot ✓ ✓ ✓ ✓ ✓ ✓	idues	0	6 A 7 A dues select Zoom resi chain © A © A	ed for mutaged for mutaged for mutaged for mutaged dues position 146 136	9 9 genesis Desi residue Gin Met	119 632 ign library HotSpo	y


1. protein structure


 residues indispensable for protein function: catalytic and binding residues

3. functional residues: active site pocket and tunnels

4. mutability of individual positions of protein

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Design of library

- decisions to be made after evaluation and prioritization of hot-spots:
 - how many and which positions to target?
 - should the positions be randomized simultaneously or separately?
 - should all or only a reduced set of amino acids be introduced at individual positions?
- \rightarrow dramatic effect on the size of the resulting library

Design of library – HotSpot Wizard

Functional hot spots of 1CV2

Return to Results browser

Ш.

-

n N

Ш.

Ш.

Щ П

Viewer	Visi	alizatio	on setting	S		
	Tun	nels				
		id	leng	th (Å) bottl	eneck radius (Å))
	-	Startin	g from po	cket: 1		
	Poc	1 kets	7	.7	1.5	
		id 1	chain(s) A	relevance (%) 100	volume (Å ³) 576	
		2	А	82	883	E
		3	А	62	275	
		4	А	28	753	
		5	А	25	183	
JSmo		6	А	19	119	
Residue features	56	7	A	19	632	1

	ude correlated p ude buried resid		le catalytic pockets e residues with mode	Exclude tunnels erate mutability	Exc	clude α-helices and	β-sheets	Show all res	idues
	chain	position	residue	mutable 🔻	non-essential	in tunnel	in catalytic pocket	HotSpot	•
Chain	A								
\odot	А	146	Gln	1	✓	✓	1	✓	
۲	А	136	Met	1	✓	×	1	✓	
۲	А	147	Asp	1	✓	✓	1	1	
	А	271	Ala	~	✓	1	1	✓	
	А	138	lle	~	✓	×	1	✓	
	А	247	Ala	~	✓	1	1	✓	
	А	248	Leu	~	✓	1	1	✓	1
	А	249	Thr	~	✓	1	×	1	
	А	253	Met	1	1	X	1	1	

z	loom residu	Jes	Design library					
	chain	position	residue	HotSpot				
۲	А	146	GIn	√				
) 🕥	А	136	Met	✓	m			
) 💿	А	147	Asp	1	m			

Design of library – HotSpot Wizard

L	brary	design								
	Sta	andard	SwiftLib							
	AAs	selection	mode : Am	nino acid fred	uency V Minimal frequency (%): 5	Include wild-ty	pe	Exclude wild-	type	
	V	chain	position	residue	desired amino acids			codon	desired ratio (%)	stop ratio (%)
l	1	А	136	Met	Ala, Lys, Pro, Gln, Arg, Thr	*	VVR	× 🖉	77.8	0.0
l	1	А	146	Gln	Ala, Asp, Glu, Gly, Pro, Gln, Ser	~	BVV	× 🖉	63.0	11.1
	1	А	147	Asp	Ala, Phe, Gly, Leu, Met, Thr, Val	~	DBS	¥ 🌽	61.1	0.0
l										
ľ			Library a	ize : 7315				Codon u	sage : Escherichia	a coli K12 👻
		-						couon u		erate report
			cted covera						Gen	
	Pro	bability o	f full covera	ige: O						
L										

Design of library – HotSpot Wizard

Sta	ndard	SwiftLib											
As	selection	mode : Amir	no acid frec	quency	✓ Minimal free	equency (%) :	5 Include w	rild-t	ype Excl	ude wild-	type		
v	chain	position	residue			desired amind	acids		codo	n	desired ratio (%)	stop ratio (%)	
1	А	136	Met	Ala, Lys, I	Pro, Gln, Arg, Thr			~	VVR	× 🦉	77.8	0.0	
1	А	146	Gln	Ala, Asp,	Glu, Gly, Pro, Gln	, Ser		~	BVV	× 🖉	63.0	11.1	
v	А	147	Asp	Ala, Phe,	Gly, Leu, Met, Th	r, Val		~	DBS	v 🧷	61.1	0.0	
				codon	desired ratio (%)	stop ratio (%)	desired amino acids			encod	led amino acids		
				DBS	100.0	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu: Thr:2 Val:2 Trp:1	1 Me	t 1 Arg:1 Ser:3		Cys:1 Phe:1 Gly:2 lle: Val:2 Trp:1	1 Leu:1 Met:1 Arg	:1 Ser:3
				DBK	100.0	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu: Thr:2 Val:2 Trp:1	1 Me	t1 Arg:1 Ser:3		Cys:1 Phe:1 Gly:2 Ile: Val:2 Trp:1	1 Leu:1 Met:1 Arg	:1 Ser:3
				DBB	100.0	0.0	Ala:3 Cys:2 Phe:2 Gly:3 lle:2 Leu: Thr:3 Val:3 Trp:1	1 Me	t 1 Arg:1 Ser:5		Cys:2 Phe:2 Gly:3 Ile: Val:3 Trp:1	2 Leu:1 Met:1 Arg	:1 Ser:5
				DBN	97.2	2.8	Ala:4 Cys:2 Phe:2 Gly:4 lle:3 Leu: Thr:4 Val:4 Trp:1	2 Me	t 1 Arg:2 Ser:6		Cys:2 Phe:2 Gly:4 Ile: Val:4 Trp:1	3 Leu:2 Met:1 Arg	:2 Ser:6
				DBV	96.3	3.7	Ala:3 Cys:1 Phe:1 Gly:3 lle:2 Leu: Thr:3 Val:3 Trp:1	2 Me	t1 Arg:2 Ser:4		Cys:1 Phe:1 Gly:3 lle: Val:3 Trp:1	2 Leu:2 Met:1 Arg	:2 Ser:4
				DBD	96.3	3.7	Ala:3 Cys:1 Phe:1 Gly:3 lle:2 Leu: Thr:3 Val:3 Trp:1	2 Me	t 1 Arg:2 Ser:4		Cys:1 Phe:1 Gly:3 lle: Val:3 Trp:1	2 Leu:2 Met:1 Arg	:2 Ser:4
				NBS	91.7	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu: Thr:2 Val:2 Trp:1	3 Me	t 1 Arg:3 Ser:3		Cys:1 Phe:1 Gly:2 lle: Thr:2 Val:2 Trp:1	1 Leu:3 Met:1 Pro	:2 Arg:3
				NBK	91.7	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu: Thr:2 Val:2 Trp:1	3 Me	t 1 Arg:3 Ser:3		Cys:1 Phe:1 Gly:2 lle: Thr:2 Val:2 Trp:1	1 Leu:3 Met:1 Pro	:2 Arg:3
				NBB	91.7	0.0	Ala:3 Cys:2 Phe:2 Gly:3 lle:2 Leu: Thr:3 Val:3 Trp:1	4 Me	t1 Arg:4 Ser:5		Cys:2 Phe:2 Gly:3 Ile: Thr:3 Val:3 Trp:1	2 Leu:4 Met:1 Pro	:3 Arg:4
				NBN	89.6	2.1	Ala:4 Cys:2 Phe:2 Gly:4 Ile:3 Leu: Thr:4 Val:4 Tes:4	6 Me	t1 Arg:6 Ser:6	Ala:4	Cys:2 Phe:2 Gly:4 Ile: Thr:4 Vol:4 Tep:4	3 Leu:6 Met:1 Pro	:4 Arg:6
		Library siz	ze: 7315								sage : Escherichia		~
	Expe	ected coverag	je: 0.95								Gen	erate report	
Pro	bability o	of full coverag	1e:0										

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Mutagenesis and screening

□ saturation mutagenesis - next lecture ☺

- □ Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening

Rational design

■ molecular modeling → design of mutations

Rational design

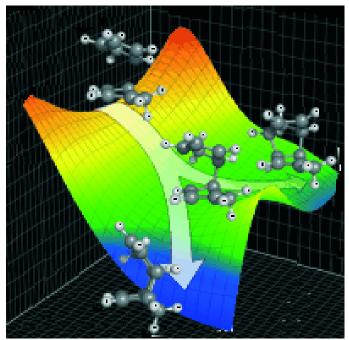
- □ site-specific changes on the target enzyme
- few amino-acid substitutions that are predicted to elicit
 desired improvements of enzyme function
- based on detailed knowledge of protein structure, function and catalytic mechanism
- □ ☺ relatively simple characterization of constructed variants
- Or Second Secon
- □ ⁽³⁾ molecular modeling expertise usually required

- □ Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling → design of mutations

Molecular modeling

 "Theoretical or computational technique that provides insight into the behavior of molecular system."

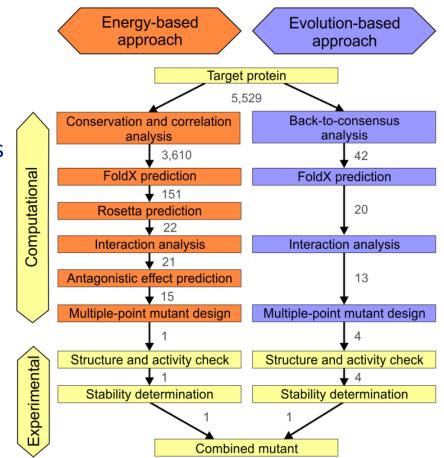
A. R. Leach


Applications

- Protein stabilization
- prediction of protein dynamics
- prediction of protein-ligand interactions
- prediction of reaction barriers and reaction mechanisms

Molecular modeling

- □ relationship between energy and 3D-structure
 - potential energy surface
- basic methods
 - molecular mechanics
 - molecular dynamics
 - quantum chemistry
 - molecular docking


Design of stability

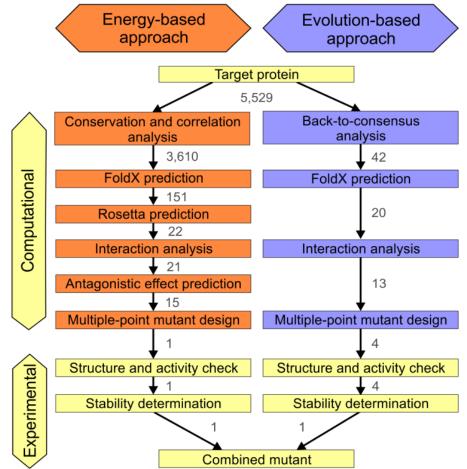
- Enzymes as biocatalysts
 - good activity and selectivity in water solution and standard temperature
 - for many biotechnological applications, high temperature or addition of organic solvents are necessary
 - this conditions can lead to denaturation > importance of stable proteins

Design of stability

Computational method FireProt https://loschmidt.chemi.muni.cz/fireprot/

- prediction of all single-point mutants
 by FoldX, Rosetta, and back-to-consens
- smart filtering based on conservation, correlation, electrostatic interactions, and antagonistic effect
- final prediction of multiple-point mutants for gene synthesis

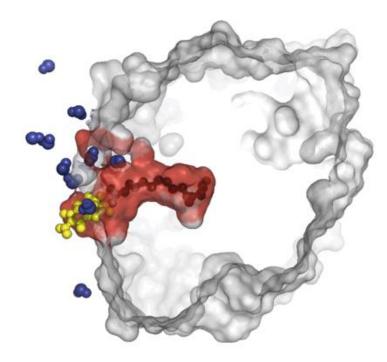
Design of stability


Viewer	Visualization settings	e
202	Structure visualization style:	
	Wreframe Cartoon	
	Sticks Trace	
	Balls & sticks Backbone	
	Balls	
	Hide all visualized residues	
	Save image	
	Reset view	
	Visualization quality:	
	3	8
	FireProt protocol design	j.
	PDB ID: 4e46	1
YUNG	Length: 292	
	Evolution mutant: -3.7 kcal/mol (6 mutation	ns)

Mutations

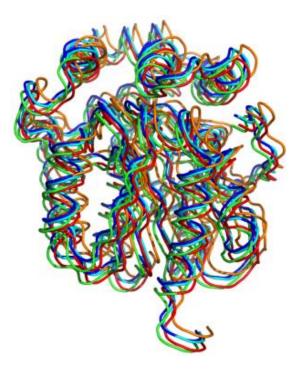
Combined mutant		Energy mutant	Evolution mut	ant Wild-type						
Mutation info					Energy information			Evolution information		
visualize	chain	position	ref alt	not conserved	not correlated	rosetta	mutable by majority	mutable by ratio	foldx	
A E										
۲	A	11	D P	~	1	-1.89	×	×	-1.39	
۲	A	20	E S	1	5		~	~	0.08	
۲	A	33	т і	1	1	-1.94	×	×	-1.31	

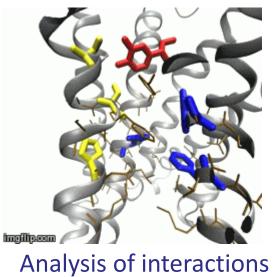
Design of stability – use case

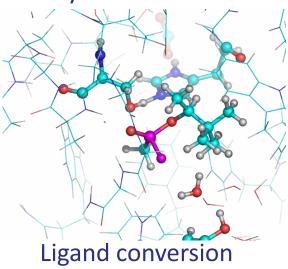

- Stabilization of haloalkane dehalogenase DhaA
 - In silico prediction of 5,500 mutants
 - Experimental testing of 5 mutants
- Output
 - 3 more stable mutants
 - Combined mutant $\Delta T_{\rm m} = 24^{\circ} {\rm C}$

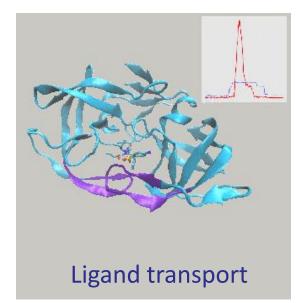
Molecular dynamics

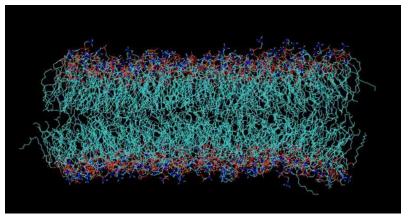
- □ successive configurations of system in time
- provides information on energetics, amplitudes and time


scales of local motions on atomic level


Molecular dynamics


- **u** generates ensemble of structures
 - more precise calculations of free energies



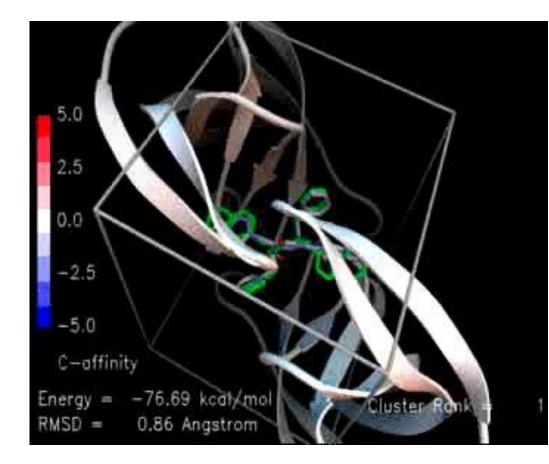


Molecular dynamics

Dynamical behaviour

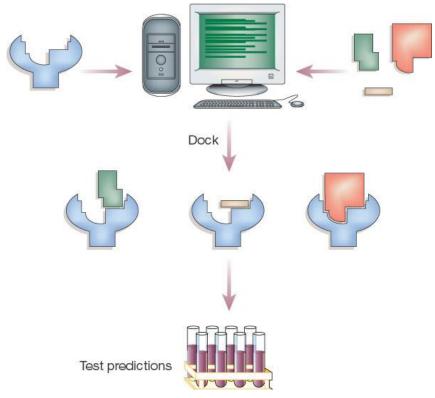
Molecular docking

□ predicts structure of receptor (protein) – ligand complex

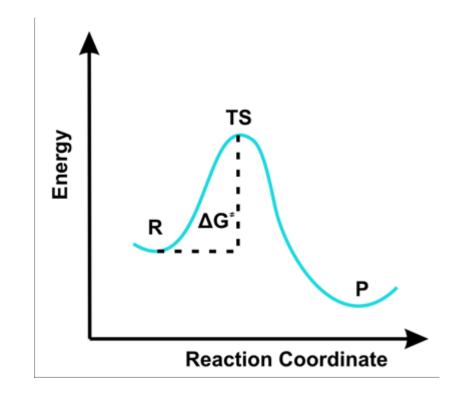


Molecular docking

Two components procedure

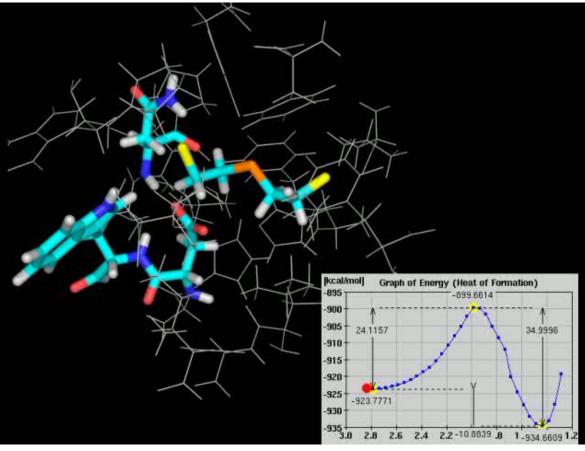

- searching finding the
 conformation of ligand in the
 active site of the enzyme
- scoring evaluation of the binding free energy
- Docking software
 - Autodock, Vina, Gold,
 Medusa, Rosetta Dock...

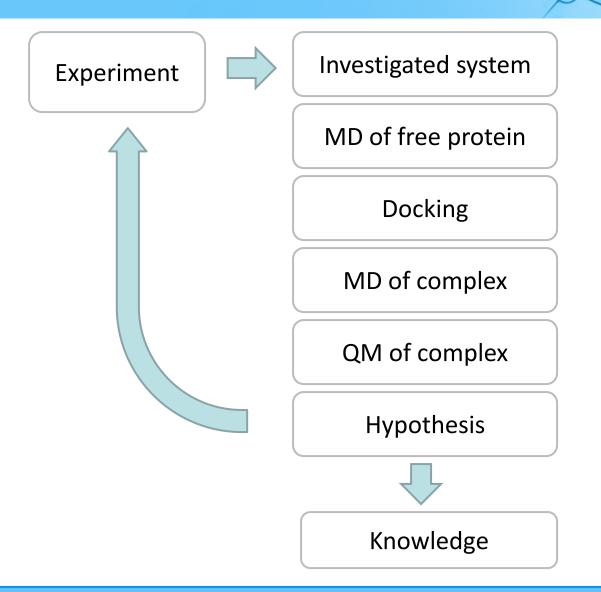
Molecular docking


Virtual screening

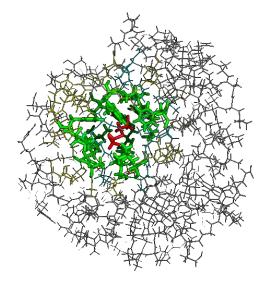
- many compounds against one enzyme
- one compound against many enzymes

Quantum chemistry

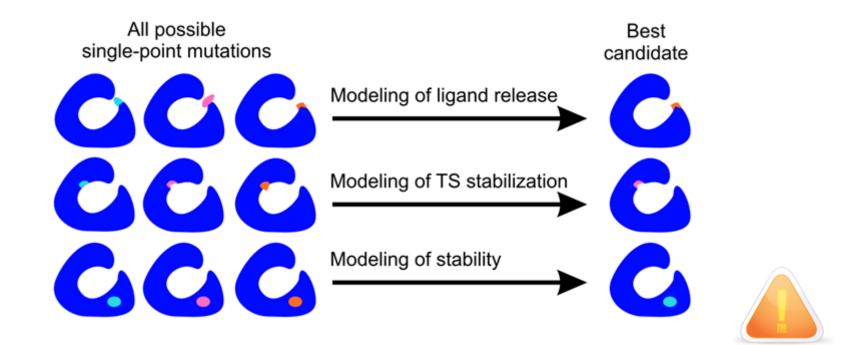

- modeling of reaction
 - reaction barrier



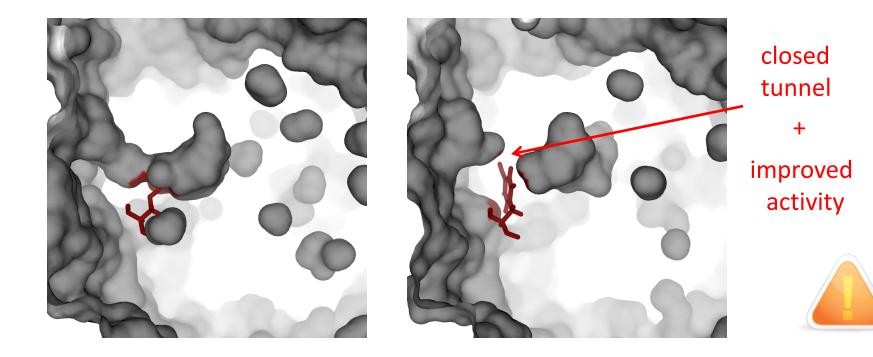
Quantum chemistry


modeling of reaction

TRITON



- identification of functionally important residues
 - decomposition of energies to individual contribution
 - flexible residues functionally important dynamics
 - residues in contact with ligand
- \rightarrow further molecular modeling
- \rightarrow semi-rational design



- design of modified enzymes by in silico screening
 - study of effects of all relevant mutations
 - selection and combination of the best mutations

- effect of mutations at molecular level
 - example: improved activity of tunnel mutant

PROTEIN ENGINEERING

8. Directed evolution

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno