Analysis of

Stano Pekár

1) R Environment

Exploratory Data Analysis

Regression models
2) The first example Systematic components
3) Stochastic components Analyses of continual measurements
4) Analyses of continual measurements II Analyses of counts
5) Analyses of counts II Analyses of proportions

Liepature

Stacticalandysis

- very fast due to use of computers
- chose statistical models that approach data characters

This course

- focuses on regression models in a broad sense
- only on linear models
- with only one response variable (univariate methods)
- with independent observations

Response variable

- (dependent) is the variable whose variation we aim to understand, the variable that we measure, it goes on ordinate
- continuous measurement, count, proportion (y)

Explanatory variable

- (independent) is the variable that we manipulate (select levels), interested to what extent is variation in response associated with variation in explanatory variables, displayed on abscissa
- numeric: continuous or discrete measurements (\boldsymbol{x}) .. covariate - categorical .. a factor $(\boldsymbol{A}, \boldsymbol{B})$ with two or more levels $\left(A_{1}, A_{2}, . . B_{1}\right.$, $\left.B_{2}, ..\right)$ Statistical

Stano Pekár

- software packages that include GLM

stele

G.sas

spss

- environment for the manipulation of objects
- data manipulation, calculation and graphical display
- a high-level programming language
- combination of S (developed at AT\&T Bell Laboratories and forms the basis of the S-PLUS systems) and Scheme languages
- initially written by Gentleman \& Ihaka (1996), nowadays with many contributors (R Development Core Team)
- includes about 30 standard packages
- available 2000 additional packages
- user-unfriendly (limited pull-down menus)
- based on commands
- pull-down menus only for basic commands

WTiy Re

Pros

- freeware
- one of the largest statistical systems
- open environment with more dynamic development than other systems
- whereas Statistica or SAS will give copious output, R will provide minimal output
- makes you think about the analysis

Cons

- no warranty
- user-unfriendly
- software available from www.r-project.com
-data from
-https://www.press.muni.cz/edicni-rady-munipress/moderni-analyza-biologickych-dat-1

Basicoperations

+ - * / > <
$==$ equal
! = not equal
<= less than or equal
${ }^{\wedge}$ power
- logical values T .. TRUE, F .. FALSE

Functions

- trigonometric sin, cos, tan, asin, acos, atan
- logarithmic: log, log2, log10
- sqrt, exp, abs, sum, prod
-seq, c, which, length, cbind, xbind, matrix
- names are case sensitive
- " " is not allowed to use
- vectors: numeric, character, logical
- arguments (in parentheses): use their names or without at specified order
- centring: to subtract mean
- scaling: to divide by SD

```
> mean (y)
[1] 6
> var(y)
[1] 11
> y2 <- scale(y); y2
```

```
attr(,"scaled:center")
[1] 6
attr(,"scaled:scale")
[1] 3.316625
> mean(y2)
[1] 0
> var(y2)
    [,1]
[1,] 1
```


Datafames

Created in R:

- use data. frame, rep, factor, levels, relevel
- export: write.table

Imported:

- from Excel via clipboard dat <- read.delim("clipboard")
- data matrix:
- number of columns = number of variables
- first row contains names of variables (names without blank spaces)
- each row corresponds to an observation (trial, etc.)
- factors levels can be names or coded as numbers
- all columns must have the same number of rows
- missing data are assigned as NA
- is.na
- \$
attach (dat)
names (dat)

soil	field	distance	amount
moist	pasture	12	0.22
moist	pasture	22	0.11
moist	pasture	43	0.29
moist	pasture	23	0.33
moist	rape	32	0.19
moist	rape	67	0.39
moist	rape	54	0.18
moist	rape	NA	0.29
dry	pasture	11	1.16
dry	pasture	33	1.03
dry	pasture	45	1.11
dry	pasture	NA	1.33
dry	rape	55	1.02
dry	rape	41	1.23
dry	rape	14	1.05
dry	rape	27	1.12

```
> size <- rep(c("small","medium","large"), c(4,3,4)); size
[1] "small" "small" "small" "small" "medium" "medium" "medium"
[8] "large" "large" "large" "large"
> dat <- data.frame(x, y, size); dat
\begin{tabular}{rrrr} 
& x & Y & size \\
1 & 1.0 & 1 & small \\
2 & 1.1 & 2 & small \\
3 & 1.2 & 3 & small
\end{tabular}
```

```
> is.factor(size)
[1] FALSE
> size <- factor(size)
```

> levels(size)
[1] "large" "medium" "small"
> size1 <- relevel (size, ref="medium") ; levels(size1)
[1] "medium" "large" "small"

Exploratory

- a visual (tabular or graphical) analysis of the data

Important to

- check errors
- get an idea of the result
- suggest a model
- check assumptions for use of desired methods
- set hypotheses
- look for unexpected trends
- use expected values and variation

Expected value

- $\mathrm{E}(y), \mu$: theoretical long-term average of a variable
- one of a few characteristics of a distribution
- for discrete distributions $\mathrm{E}(y)$ might not be a possible value
- estimate of $\mathrm{E}(y)$ is mean ... mean
- a robust estimate for asymmetric distributions is median: ... median
- another robust estimate is trimmed mean: mean where α *n observations are removed from each tail ... mean (\mathbf{y}, trim=)

Example
Find mean, median, and mean trimmed by 10\% of the amount variable.

```
mean (amount)
[1] 0.690625
    median(amount)
[1] 0.705
> mean(amount, trim=0.1)
[1] 0.6864286
```


Variance

- $\operatorname{Var}(y), \sigma^{2}$: a theoretical measure of the variability
- minimum and maximum ... range, min, max
- quantiles ($0,25,50,75,100 \%$) ... quantile
- estimate of $\operatorname{Var}(y)$ is $s^{2} . .$. var
- standard deviation (s) ... sd
- standard error of the mean ...

$$
S E M=\frac{s}{\sqrt{n}}
$$

Example

Find variance, standard deviation, range and standard error of the mean for amount.

```
> var(amount)
[1] 0.2162996
> sd(amount)
[1] 0.4650802
> sem <- sd(amount) /sqrt(length(amount)) ; sem
[1] 0.1162700
```


Conitidence Intervals

- of a parameter (mean): if large number of samples is taken from a population then $\alpha \%$ of intervals will contain mean
- based on quantiles of the t distribution qt
- lower CI_{95}

$$
\bar{y}-t_{0.975, v} \times S E M
$$

$$
v=n-1
$$

- upper CI_{95}

$$
\bar{y}+t_{0.975, v} \times S E M
$$

- for asymmetric distributions CI_{95} is estimated on transformed values \rightarrow asymmetric intervals

Example

Find 95% confidence intervals of mean for amount.

[^0]- basic summaries (min, max, $\mathrm{Q}_{25}, \mathrm{Q}_{75}$, median, mean) for all variables.. summary
- summary table for data with explanatory variable(s) .. tapply
- to count frequencies .. table

Example
Make a table of means for SOIL and FIELD, and table of SEM for FIELD.

```
> tapply(X=amount, INDEX=list(soil,field), FUN=mean)
dry 1.1575 1.1050
moist 0.2375 0.2625
> tapply(amount, soil, function(x) sd(x)/(sqrt(length(x))))
    dry moist
0.03776986 0.03223795
```


- see demo (graphics) or demo (image)
- graphs
- basic: plot
- advanced: xyplot (library lattice)
- to get all graphic parameters: ?par
- to split window to subplots: par (mfrow)
- to add legend .. legend
- graph window size: x11

```
plot
```

Argument type=
las=
xlab,ylab=
cex. lab=
xlim, ylim=
cex.axis=
log=
main= main. cex=

Values

Style: "n" (empty), "p" (scatter), "1" (lines),
"b" (both), "h" (vertical)
Style of axes values: 0 (parallel), 1 (horizontal)
2 (perpendicular), 3 (vertical)
Text of axes labels: "..."
Size of axes labels: 1 , . .
Range of axes: c (min, max)
Size of axes values: $1, \ldots$
Logarithmic scale of \mathbf{x}, \mathbf{y} or $\mathbf{x y}$
Text of title: "..."
Size of title: 1, . .

points

Argument Values

pch=
cex=
col=
font=

Type of symbols: $0, \ldots, 18$, "letters" Size of symbols: 1 , . . .
Colour: 1, 2, 3, , 5, 6, 7, 8
Font type: 1, 2, 3, 4

Distribution plots

- to study distribution of a numeric (response) variable
- histogram .. hist
- stem-and-leaf plot .. stem
- q-q plots to compare distribution of two variables
- compare a single variable with normal: qqnorm
- compare distributions of two variables: qqplot
- to add diagonal line: qqline

Example
Make q-q plot of data from normal distribution.

```
y1 <- rnorm(n=10, mean=0, sd=1)
y2 <- rnorm(20,0,1)
y3 <- rnorm(50,0,1)
y4 <- rnorm(100,0,1)
qqnorm(y1); qqline(y1)
qqnorm(y2) ; qqline(y2)
qqnorm(y3); qqline(y3)
qqnorm(y4); qqline(y4)
```


Deviations from normal distribution

C
Normal Q-Q Plot

D
Normal Q-Q Plot

Scatter plots

- for data with continuous explanatory variables
- to produce plots with points: plot

Example
Make scatterplot of distance on amount without and with different points for two levels of SOIL.

Box plots

- when there are categorical explanatory variables
- argument notch for boxes with Cl_{95} for median

Example
Make boxplot of amount for SOIL without and with notches.

Panel plots

- for data with both categorical and continuous explanatory variables
- xyplot from library lattice

Example
Make panel scatterplot regression plot of distance against amount for SOIL.

Interaction plot

- for data with two categorical explanatory variables
- to plot means of two factors (A, B) connected by lines
.. interaction.plot
Example
Make interaction plot of SOIL and FIELD for amount.

Bar plot

- when data are counts or proportions
- data are arranged in a matrix or table
- barplot: beside, legend

Example
Make barplot of SOIL and FIELD for amount.

Paired plots

- when data include several continuous explanatory variables - pairs produces matrix of all possible plots

3-dimensional plots

- when data include 2 continuous explanatory variables
- wireframe (lattice) produces 3-dimensional plot

Elegant plots

- use ggplot2 package
- ggplot

Example

Make violinplot of SOIL and amount and dotplot of SOIL and amount.

Graphs with functions

- final plot of estimated models use visreg package
- lines connects points specified by coordinates
- abline produces line specified by intercept and slope

lines

Argument Values
$\mathbf{x}, \mathbf{y}=\quad$ Coordinates: $\mathbf{c}(\ldots, .$.
lty=
col=
lwd=
Line type: 1 , . . . , 6
Colour: 1, 2, 3, 4, 5, 6, 7, 8 Width: 1, . .

Example

Make lineplots for the following models: inverse
exponential
power

$$
y=\frac{1}{x}
$$

$$
y=e^{x}
$$

logarithmic
$y=\log (x)$
logistic

squareroot
$y=x^{3}$
quadratic
inverse squareroot

$$
y=0.6-0.1 x+0.006 x^{2}
$$

$$
y=\frac{1}{\sqrt{x}}
$$

Statistical

Beyression moidel

- includes systematic and stochastic components

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}
$$

- assumptions of the stochastic component:

$$
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \quad \operatorname{cor}\left(\varepsilon_{i}, \varepsilon_{i^{\prime}}\right)=0, i \neq i^{\prime}
$$

$=$ variance is equal $=$ homoscedastic model

To find real model we need to estimate its parameters: $\alpha, \beta, \sigma^{2}$
as a, b, s^{2} so that we get

$$
\hat{y}\left(x_{0}\right)=a+b x_{0}
$$

General linear Moded

- extension of the systematic component

Simple regression

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}
$$

$$
y_{i j}=\alpha+\beta A_{j}+\varepsilon_{i j}
$$

$$
\mid B=0
$$

$$
\beta=0
$$

$$
y_{i}=\alpha+\varepsilon_{i}
$$

$$
y_{i}=\alpha+\varepsilon_{i}
$$

Linear model (LM) has a general form

$$
y=\underbrace{\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+. .+\beta_{k} x_{k}}_{\text {linear predictor }}+\varepsilon
$$

x can include: $u^{2}, u^{1 / 2}, \log (u), \exp (u), \sin (u)$, factors
= model is linear in parameters when it includes only linear combinations of parameters

Some nonlinear relationships can be linearised

- log-transformation of both sides:

$$
y=e^{a+b x_{i}}+e^{\varepsilon} \rightarrow \log (y)=a+b x+\varepsilon
$$

$$
z=\log (y) \rightarrow z=a+b x+\varepsilon
$$

- e^{ε} has lognormal distribution while ε has normal distribution
- y has heterogenous variance z has homogenous variance
- e^{ε} is multiplicative while ε is additive
- curved relationship becomes linear

Other nonlinear relationships can not be linearised

$$
y=\alpha\left(1-\beta e^{-\lambda x}\right)
$$

use Nonlinear regression

Ceneraliseillinear Moded

- extension of the stochastic component
- we model transformed expected value of y

$$
f(\mu)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+. .+\beta_{k} x_{k}
$$

$y \sim$ distribution
$f(\mu)$.. link function

For example,

$$
\mu=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+. .+\beta_{k} x_{k}
$$

$$
y \sim N\left(\mu, \sigma^{2}\right)
$$

$$
\varepsilon=y-\mu \sim N\left(0, \sigma^{2}\right)
$$

GLM has 3 components:

- link function
- linear predictor
- distribution family
- Gaussian (normal), Gamma, Inverse Gaussian, Poisson, Quasipoisson, Binomial, Quasibinomial, Quasi
- measure of fit is deviance not sum of squares
- null deviance = SST
- residual deviance $=$ SSE
- ANODEV table = ANOVA table

Rozdělení	Jméno linku	Link funkce	Rozptyl
Gaussovo (normální)	identity	1	μ
Gama	inverse	$\frac{1}{\mu}$	μ^{2}
Inverzní Gaussovo		$\frac{1}{\mu^{2}}$	μ^{3}
Poissonovo	\log	$\log (\mu)$	μ
Quasipoissonovo	\log	$\log (\mu)$	$\varphi \mu$
Binomické	$\log \frac{\mu}{1-\mu}$	$\frac{\mu(1-\mu)}{n}$	
Quasibinomické	logit	$\log \frac{\mu}{1-\mu}$	$\frac{\varphi \mu(1-\mu)}{n}$
Quasi	libovolné v rámci pŕípustných funkcí	libovolná v rámci př́pustných funkcí	odpovídající

- a useful simplification of the reality
- should include important aspects for which it is being made and ignore aspects that we are not interested in
- Principle of parsimony: Simpler model is better if it explains study phenomenon as good as complicated model.
G. E. P. Box: „All models are wrong. But some of them are useful."

Nodeling Drocedilue

Bottom -up or forward selection

- building up a model by adding available variables

Top-down or backward selection

- reducing maximal (saturated) model

1. Fit maximal model- all main effects and interactions
2. Remove insignificant interactions and main effects
3. Group together similar factor levels
4. Check diagnostic plots
5. Alter model if necessary
6. Achieve minimal adequate model

- contains only terms in which all parameters are significantly different
- to assess model quality and assumptions
- study of both systematic and stochastic components
- we can never prove that model is adequate

Residuals

should not

- make trends when plotted against explanatory or response variables
- be heteroscedastic
- have unusual distribution
- be interdependent

Checking assumptions

- informal using plots - plot produces 6 plots
- formal using tests
- raw (LM) or deviance (GLM) residuals against fitted values
- curved pattern suggests lack of polynomial term

Normality

- q-q plot of standardised (LM) standardised deviance (GLM) residuals
- data from other than normal distribution can not have normally distributed residuals
- when the pattern is "J" or " S " shaped change link function or transform the variable

Variange homogeneity

- plot of standardised (LM) standardised deviance (GLM) residuals against fitted/predicted values
- when variance increases with the mean use Poisson or gamma distribution or log transformation

Influence

- plot of Cook's distance for each observation shows the influence of individual observations on the model fit
- values of influential observations are close to 1 and higher
- residuals versus leverage
- omit influential observations or transform the explanatory variables (using log, power, reciprocal)

Independence

- dependence on continual explanatory variable
- using standardised (LM) or Pearson residues (GLM)
- serial dependence if explanatory variable is time or space

The

Background

Nutritional quality of the diet affects growth of organisms in various ways. To find optimal diet for cockroaches the following experiments was performed.

Design

Effect of five diet types (control, lipid1, lipid2, protein1, protein2) was tested on body weight [g] of cockroaches. For each diet type there were 17 observations.

Biological hypothesis

Is nutritional quality of the diet affecting size of organisms?
Statistical hypotheses
H0: Weight is similar among diet groups.
HA: Weight is significantly different among diet groups.
Prediction:
Protein-enriched diet should lead to highest weight.
Variables
DIET: control, lipid1, lipid2, protein1, protein2
weight

EDA:

Model:

$$
\text { weight }_{i j}=D I E T_{j}+\varepsilon_{i j}
$$

kde $\varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro jednotlivá měření.

Analysis:

```
    m1 <- lm(weight~diet)
    anova (m1)
Analysis of Variance Table
Response: weight
    Df Sum Sq Mean Sq F value Pr (>F)
diet 4 58.484 14.621 116.55 < 2.2e-16 ***
Residuals 80 10.036 0.125
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
```


BDDDDATSDIS

- compare individual differences between factor levels
- comparisons are valid only if a factor is significant

Options:

- Apriori contrasts (before analysis)
- Posteriori simplification (after analysis)
- Multiple comparisons (after analysis)
- apriori contrasts are preferred to avoid excess of significant results

Gontrasts

For a model

$$
y_{i j}=A_{j}+\varepsilon_{i j}
$$

a contrast will be

$$
K=\sum_{j=1}^{J} w_{j} A_{j}
$$

where A_{j}.. mean value of a level, w_{j}.. contrast coefficient
Creating contrasts

- levels lumped together get the same sign
- levels contrasted get opposite sign
- levels excluded get 0
.. so that sum of each contrast

Contrasts are arranged in a matrix

- only $k-1$ (k.. number of levels) contrasts are orthogonal, i.e. each level (combination) is compared only once
... products of any two contrasts $=0$
- specified by function contrasts prior to analysis

Pre-specified contrasts:

- Treatment (default in R) - compare specific level with the reference level
- Helmert - compare specific level with the average of previous levels
- Sum - compare specific level with the grand mean
- Textbook - compare each level with 0

$>$ summary (m1)

Call:

lm(formula = weight ~ diet)

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-0.66471	-0.18294	-0.05294	0.16706	0.91706

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	0.9547	0.0859	11.114	$<2 \mathrm{e}-16$	$* * *$
dietlipid1	0.7282	0.1215	5.994	$5.59 \mathrm{e}-08$	$* * *$
dietlipid2	0.6682	0.1215	5.501	$4.41 \mathrm{e}-07$	$* * *$
dietprotein1	2.1382	0.1215	17.601	$<2 e-16 * * *$	
dietprotein2	2.0100	0.1215	16.545	$<2 e-16$	$* * *$

Signif. codes: $0{ }^{\text {r***' }} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3542 on 80 degrees of freedom
Multiple R-Squared: 0.8535,
Adjusted R-squared: 0.8462
F-statistic: 116.6 on 4 and 80 DF, p-value: $<2.2 \mathrm{e}-16$

```
\(>\) contrasts (diet) <- cbind(c(1,-1/4,-1/4,-1/4,-1/4),c(0,-1/2,-1/2,1/2,1/2),
\(+c(0,0,0,1 / 2,-1 / 2), c(0,-1 / 2,1 / 2,0,0))\)
> contrasts (diet)
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
ctrl & 1.00 & 0.0 & 0.0 & 0.0 \\
lipid1 & -0.25 & -0.5 & 0.0 & -0.5 \\
lipid2 & -0.25 & -0.5 & 0.0 & 0.5 \\
protein1 & -0.25 & 0.5 & 0.5 & 0.0 \\
protein2 & -0.25 & 0.5 & -0.5 & 0.0
\end{tabular}
```


summary (lm (weight~diet))

Coefficients:				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	2.06365	0.03842	53.718	$<2 e-16$
diet1	-1.10894	0.07683	-14.433	$<2 e-16$
diet2	1.37588	0.08590	16.017	$<2 e-16$
diet3	0.12824	0.12148	1.056	0.294
diet4	-0.06000	0.12148	-0.494	0.623

> contrasts (diet) <- 'contr.helmert' summary (lm (weight~diet))

| Coefficients: | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | |
| (Intercept) | 2.06365 | 0.03842 | 53.718 | $<2 e-16 * * *$ |
| diet1 | 0.36412 | 0.06074 | 5.994 | $5.59 e-08 * * *$ |
| diet2 | 0.10137 | 0.03507 | 2.891 | $0.00495 * *$ |
| diet3 | 0.41819 | 0.02480 | 16.864 | $<2 e-16 * * *$ |
| diet 4 | 0.22526 | 0.01921 | 11.727 | $<2 e-16 * * *$ |

> contrasts (diet) <- 'contr.sum'
 > summary(lm(weight~diet))

Coefficients:					
	Estimate	Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	2.06365	0.03842	53.718	$<2 e-16$	***
diet1	-1.10894	0.07683	-14.433	$<2 e-16$	***
diet2	-0.38071	0.07683	-4.955	$3.96 \mathrm{e}-06$	**
diet3	-0.44071	0.07683	-5.736	1.66e-07	**
diet 4	1.02929	0.07683	13.396	< 2e-16	***

Simplification

- levels of a factor are compared using Wald statistics from ouput
- similar factor levels are the grouped together
- test each grouping by anova
- compare the final model with the first one

```
    levels(diet1)[4:5] <- "prot"
    levels(diet1)
[1] "ctrl" "lipid1" "lipid2" "prot"
> contrasts(diet1) <- 'contr.treatment'
> m2 <- lm(weight~ diet1)
```

```
> anova(m1, m2)
```

> anova(m1, m2)
Analysis of Variance Table
Analysis of Variance Table
Model 1: weight ~ diet
Model 1: weight ~ diet
Model 2: weight ~ diet1
Model 2: weight ~ diet1
Res.Df RSS Df Sum of Sq F Pr (>F)
Res.Df RSS Df Sum of Sq F Pr (>F)
180 10.0357
180 10.0357
2 81 10.1755 -1

```
2 81 10.1755 -1 
```

```
> diet2 <- diet1
```

> diet2 <- diet1
> levels(diet2)[2:3] <- "lipid"
> levels(diet2)[2:3] <- "lipid"
> m3 <- lm(weight~diet2)
> m3 <- lm(weight~diet2)
> anova(m2, m3)
> anova(m2, m3)
Analysis of Variance Table
Analysis of Variance Table
Model 1: weight ~ diet1
Model 1: weight ~ diet1
Model 2: weight ~ diet2
Model 2: weight ~ diet2
Res.Df RSS Df Sum of Sq F Pr(>F)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 81 10.1755
1 81 10.1755
2 82 10.2061 -1 -0.0306 0.2436 0.623

```
2 82 10.2061 -1 -0.0306 0.2436 0.623
```

```
> diet3 <- diet2
> levels(diet3) [2:3] <- "other"
> m4 <- lm(weight~diet3)
> anova(m3, m4)
Analysis of Variance Table
Model 1: weight ~ diet2
Model 2: weight ~ diet3
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 82 10.206
2 83 42.388-1 -32.182 258.56< 2.2e-16 ***
```

```
anova (m3,m1)
Analysis of Variance Table
Model 1: weight ~ diet2
Model 2: weight ~ diet
    Res.Df RSS Df Sum of Sq F Pr (>F)
1
    82 10.206
    80 10.036 2 0.17038 0.6791 0.51
```


Multiple comparisons

- post hoc tests
- Bonferroni correction - applied to non-orthogonal contrasts
- Dunn test, Scheffe test, Tukey HSD test
- comparison by means of confidence intervals

> library (multcomp)					
$\begin{aligned} & >m 4<- \text { glht }(\mathrm{m} 1, \text { linfct }=\operatorname{mcp}(\text { diet }=\text { "Tukey")) } \\ & >\text { summary }(\mathrm{m} 4) \end{aligned}$					
Simultaneous Tests for General Linear Hypotheses					
Multiple Comparisons of Means: Tukey Contrasts					
Fit: lm(formula = weight \sim diet)					
Linear Hypotheses:					
	Estimate	Error	t value	$\operatorname{Pr}(>\|t\|)$	
lipid1 - ctrl == 0	0.7282	0.1215	5.994	$<1 \mathrm{e}-05$	
lipid2 - ctrl == 0	0.6682	0.1215	5.501	$<1 \mathrm{e}-05$	
protein1 - ctrl == 0	2.1382	0.1215	17.601	$<1 \mathrm{e}-05$	***
protein2 - ctrl $==0$	2.0100	0.1215	16.545	$<1 \mathrm{e}-05$	***
lipid2 - lipid1 == 0	-0.0600	0.1215	-0.494	0.988	
protein1 - lipid1 == 0	1.4100	0.1215	11.606	$<1 \mathrm{e}-05$	***
protein2 - lipid1 == 0	1.2818	0.1215	10.551	$<1 \mathrm{e}-05$	***
protein1 - lipid2 == 0	1.4700	0.1215	12.100	$<1 \mathrm{e}-05$	***
protein2 - lipid2 == 0	1.3418	0.1215	11.045	$<1 \mathrm{e}-05$	***
protein2 - protein1 == 0	-0.1282	0.1215	-1.056	0.828	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)					

Diagnosis:

We should check as many aspects as possible

- use diagnostic plots
- use formal tests:
- Bartlett test to compare variances
- Shapiro-Wilk test of normality

```
> bartlett.test(weight ~ diet2)
    Bartlett test of homogeneity of variances
data: weight by diet2
Bartlett's K-squared = 24.2178, df = 2, p-value = 5.51e-06
```

```
    shapiro.test(resid(m3))
    Shapiro-Wilk normality test
data: resid(m9)
W = 0.9685, p-value = 0.0356
```


Systimeitc

$$
y_{i}=a+b x_{i}+\varepsilon_{i}
$$

- the same explanatory variable can be taken once as continuous other time as categorical: e.g. two levels of concentration
- continuous variable allows interpolation and extrapolation

Key to methods:

Explanatory variable(s)	Method
Continuous	Regression
Categorical	ANOVA
Continuous and categorical	ANCOVA

Linear predictor can include various terms:

- intercept .. α estimated as a
- linear term .. βx with b as coefficient of linear trend
- quadratic term .. γx^{2} with c as coefficient of quadratic trend
- cubic term .. τx^{3} with t as coefficient of cubic trend
- main effect .. A
- interaction between factors .. $A: B$
- interaction between continuous variables $x_{1}: x_{2}$
- linear interaction .. A: x
- quadratic interaction .. $A: x^{2}$

Regression

- simple regression ... 1 explanatory variable
- multiple regression .. 2 and more explanatory variables

General linear predictor of multiple regression

$$
\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+. .+\beta_{k} x_{k}
$$

α.. intercept
β_{k}.. linear coefficients of x_{k}
x.. may represent polynomic functions $\left(x^{3}\right)$, interactions $\left(x_{1} \cdot x_{2}\right)$

- rule of thumb: less than $n / 3$ parameters in model at any time
- number of combinations of explanatory variables will often exceed the number of data so we can not include all terms

Simplification

- linear predictor with 2 explanatory variables $\left(x_{1}, x_{2}\right)$ should include all main effects, all interactions, and quadratic terms

$$
\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma_{1} x_{1}^{2}+\gamma_{2} x_{2}^{2}+\delta x_{1} x_{2}
$$

with estimates $a, b_{1}, b_{2}, c_{1}, c_{2}, d$

Nested models are:

- 5 parameters $\left(a, b_{1}, b_{2}, c_{1}, c_{2}\right)$, at least c_{1} and c_{2} are significantly different

- 4 parameters $\left(a, b_{1}, b_{2}, c_{1}\right)$, at least c_{1} is significantly different - 3 parameters $\left(a, b_{1}, b_{2}\right)$, at least b_{1} and b_{2} are significantly different

If one explanatory variable $\left(x_{2}\right)$ turns out to be insignificant:

- 3 parameters (a, b, c), at least c is significantly different
- 2 parameters (a, b), at least b is significantly different
- 1 parameter (a) that is significantly different

ANOVA

- 1-way ANOVA .. 1 factor
- 2-way ANOVA .. 2 factors
- k-way ANOVA .. k factors
- k-way ANOVA might be with our without interactions

Given 2 categorical variables A and B each with 2 levels $\left(A_{1}, A_{2}\right.$, and B_{1}, B_{2}) model with treatment contrasts is

$$
\alpha+A_{i}+B_{j}+A: B_{i j}
$$

α.. mean of $A_{1} B_{1}, A_{\mathrm{i}}$ and B_{j}.. main effects, $A: B_{\mathrm{ij}}$.. interaction

- 4 parameters $\left(A_{1} B_{1}, A_{2} B_{1}-A_{1} B_{1}, A_{1} B_{2}-A_{1} B_{1}\right.$ a $\left.A_{2} B_{2}-A_{1} B_{2}\right)$ interaction is significant
- 3 parameters $\left(A_{1} B_{1}, A_{2} B_{1}-A_{1} B_{1}, B_{2}-B_{1}\right)$: only A and B are significant
- 2 parameters ($B_{1}, B_{2}-B_{1}$): only B is significant
- 1 parameter (grand mean): null model

ANCOVA

- combination of regression and ANOVA
- continuous variable $=$ covariate

Given 1 factor $\left(A_{\mathrm{j}}\right)$ and 1 covariate (x) linear predictor is:

$$
\alpha+A_{j}+\beta x+\delta_{j} x
$$

α.. intercept, A_{j}.. effect of factor, β.. slope, δ.. effect of interaction
Given 1 categorical variable A with 2 levels $\left(A_{1}, A_{2}\right)$ and 1 continual x, the linear predictor will be

$$
\alpha+A_{j}+\beta x+\delta_{j} x+\gamma x^{2}+\omega_{j} x^{2}
$$

- 6 parameters -2 intercepts $\left(a_{1}, a_{2}-a_{1}\right), 2$ slopes $\left(b_{1}, b_{2}-b_{1}\right), 3$ quadratic $\left(c_{1}, c_{2}-c_{1}\right)$ - interaction $A: x^{2}$ is significant
- 4 parameters - 2 intercepts $\left(a_{1}, a_{2}-a_{1}\right), 2$ slopes $\left(b_{1}, b_{2}-b_{1}\right)$ interaction $A: x$ is significant, but quadratic terms are not significant

- 4 parameters - 2 intercepts $\left(a_{1}, a_{2}-a_{1}\right), 1$ slope (b), 1 quadratic (c) - interactions $A: x^{2}$ and $A: x$ are not significant, but A and quadratic terms are significant
- 3 parameters - 2 intercepts $\left(a_{1}, a_{2}-a_{1}\right), 1$ slope (b) - only main effects (A and x) are significant
- Further simplification \rightarrow 1-way ANOVA or simple regression


```
response variable ~ explanatory variable(s)
```

- Operators:
- on left side any mathematical operator can be used
- on the right side only few:
+ .. add
- .. delete
: .. interaction
* .. all terms

1 .. intercept
I .. interpreter that translates operators into mathematical meaning
/ .. nested
| .. conditioned

Description

$y \sim 1$
Null model

$f\left(\mu_{i}\right)=\alpha$

Linear model with
1 explanatory variable

$$
f\left(\mu_{i}\right)=\alpha+\beta x_{i}
$$

$\log (y) \sim x-1 \quad$ Linear model with 1 explanatory variable, without intercept $\log \left(\mu_{i}\right)=\beta x_{i}$ and with log-transformed response
$\mathbf{y} \sim \mathbf{x}+I\left(x^{\wedge} 2\right)$ Quadratic model with 1
$\mathbf{y} \sim \operatorname{poly}(\mathbf{x}, 2) \quad$ explanatory variable

$$
f\left(\mu_{i}\right)=\alpha+\beta x_{i}+\gamma x_{i}^{2}
$$

$y \sim x 1+x 2 \quad$ Linear model with 2 explanatory variables

$$
f\left(\mu_{i}\right)=\alpha+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}
$$

Model formula Description

$\mathbf{y} \sim \mathbf{A} * \mathbf{B} * \mathbf{C} \quad$ 3-way ANOVA with $\quad f\left(\mu_{i j k}\right)=\alpha+A_{i}+B_{j}+C_{k}$
$\mathrm{y} \sim \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{A}: \mathrm{B}$ three main effects,
$+\mathrm{A}: \mathrm{C}+\mathrm{B}: \mathrm{C}+\mathrm{A}: \mathrm{B}: \mathrm{C}$ two 2-way interactions and one 3-way interaction
$+A: B_{i j}+A: C_{i k}+B: C_{j k}$
$+A: B: C_{i j k}$
$\mathrm{y} \sim(\mathrm{A}+\mathrm{B}+\mathrm{C})^{\wedge} \mathbf{2}$ 3-way ANOVA with only three 2 -way interactions

$$
\begin{aligned}
& f\left(\mu_{i j k}\right)=\alpha+A_{i}+B_{j}+C_{k} \\
& +A: B_{i j}+A: C_{i k}+B: C_{j k}
\end{aligned}
$$

$\mathrm{y} \sim \mathrm{x}^{\star A}$

$$
f\left(\mu_{i j}\right)=\alpha+A_{j}+\beta x_{i}+\delta_{j} x_{i}
$$

stochastic

Stano Pekár

$y_{i}=a+b x_{i}+\varepsilon_{i}$

- choose distribution if using GLM
- there are many distributions but only some are available for GLM
- decision should be based upon theoretical models or previous experience

Response variable can be

- continuous measurements
- counts
- proportions
- measurements that can be made with infinite precision

Gauss (normal) distribution

- bell-shaped, symmetric around mean
- mean = median = modus
- parameters: μ, σ^{2}
- s^{2} is independent of mean

Lognormal distribution

- positive real values
- asymmetric, skewed to the right
- variance increases with mean at quadratic trend
- after logarithmic transformation variances are similar

Gamma distribution

- positive real values
- asymmetric, skewed to the right
- variance increases with mean at a quadratic trend

Inverse Gaussian distributions

- positive real values
- used to model diffusion processes, dispersion in ecology
- variance increases steeply with mean

- discrete values, made of integers
- asymmetric, skewed to the right
- variance is equal to expected value
- variance increases with mean

Negative binomialal distribution

- discrete values, made of integers
- asymmetric, strongly skewed to the right
- variance is larger than expected value
- variance increases with mean at a parabolic trend

Proporionis

- arise when we counts events (y) from a whole population (n)
- p.. relative frequency $=y / n$
- we study only qualitative character of an event not its quantitative aspect
- p is an estimate of a theoretical value π
- based on logit transformation

Binomial \& Binary distributions

- measurements (y) are integers of n independent trials
- π.. a single parameter showing probability of event occurrence
- $0 \leq \pi \leq 1$
- variance of π is maximal at 0.5

Quasi "distribution"

- is not any distribution
- specifies expected value and the relationship between expected value and variance
- mixture of available settings

Analyses oi

Stano Pekár

Hauscianchormandisidionion

\square response variable is continuous

- measurements of length, width, distance, concentration, pH , etc.
- data are real numbers
- distribution is symmetric $(-\infty,+\infty)$
- parameters: μ, σ^{2} independent of each other

Analytical meftiods

- t-test (t . test) to compare one or two means
- Linear model (lm) to study effect of categorical and continuous variables
- inference is exact, reliable for each n
- GLM (glm) to study effect of categorical and continuous variables
- Gaussian family (default)
- link: identity
- inference is asymptotic, valid only for large n
glm(formula, family=Gaussian)

Simple Regression

Background

The number of grains in ears affects the yield of cereals.

Design

On 20 plots mean number of seeds per oat ear was estimated. Then at harvest the yield [t/ha] for each plot was estimated.

Hypotheses

Is number of seeds related to the yield?
What is the predictive model of this relationship?
Variables
grain
yield

$$
\text { yield }_{i}=\alpha+\beta \operatorname{grain}_{i}+\varepsilon_{i},
$$

kde $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro jednotlivé plochy.

(b)adraic term

- check for curvature by fitting a separate quadratic term for continuous explanatory variables

$$
y=\alpha+\beta x+\gamma x^{2}+\varepsilon
$$

- quadratic model - a simple description of non-monotonous trend - use either poly $(x, 2)$ or $x+I\left(x^{\wedge} 2\right)$

$$
\begin{gathered}
\text { yield }_{i}=\alpha+\text { Bgrain }_{i}+\text { ggraini }_{i}+\varepsilon_{i}, \\
\text { kde } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \text {, nezávisle pro jednotlivé plochy. }
\end{gathered}
$$

```
> m1 <- lm(yield ~ poly(grain,2))
> summary (m1)
Call:
lm(formula = yield ~ poly(grain, 2))
Residuals:
    Min 1Q Median 3Q Max
-0.261562 -0.121112 -0.003686 0.142558 0.281990
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.38205 0.03417 157.520 < 2e-16 ***
poly(grain, 2)1 1.04875 0.15280 6.864 2.75e-06 ***
poly(grain, 2)2 0.15416 0.15280 1.009 0.327
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 0.1528 on 17 degrees of freedom
Multiple R-Squared: 0.739, Adjusted R-squared: 0.7083
F-statistic: 24.06 on 2 and 17 DF, p-value: 1.101e-05
```

> summary (lm(yield ~ grain + I(grain^2)))			
...			
Coefficients:			
	Estimate	Std. Error t value	Pr ($>\|t\|$)
(Intercept)	5.427559	$1.795165 \quad 3.023$	0.00766 **
grain	-0.083870	0.159018 -0.527	0.60472
I(grain^2)	0.003507	0.0034761 .009	0.32718

```
    m2 <- lm(yield ~ grain)
> summary(m2)
Coefficients:
Estimate std. Error t value Pr(>|t|)
(Intercept) 3.63509 0.25694 14.15 3.42e-11 ***
grain
0.07617 0.01110
    6.86 2.03e-06 ***
```



```
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 v ' 1
Residual standard error: 0.1529 on 18 degrees of freedom
Multiple R-Squared: 0.7233, Adjusted R-squared: 0.708
F-statistic: 47.06 on 1 and 18 DF, p-value: 2.033e-06
```


yield $_{i}=$ _grain $_{i}+\varepsilon_{i}$,

kde $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro jednotlivé plochy.

```
> m3 <- update(m2, ~.-1)
> summary (m3)
Coefficients:
    Estimate std. Error t value Pr(>|t|)
grain 0.231855 0.005006 46.32 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 0.518 on 19 degrees of freedom
Multiple R-Squared: 0.9912, Adjusted R-squared: 0.9908
F-statistic: 2146 on 1 and 19 DF, p-value: < 2.2e-16
```


Removing terms

- remove insignificant interactions
- begin with the higher order terms because main effects are marginal to interactions
- intercept is marginal to slope and both are marginal to the quadratic term
- remove insignificant main effects

Criteria

- test (F or χ^{2}) and a given p-value (anova)
- Akaike Information Criterion (AIC):

$\mathrm{AIC}=-2 \log \operatorname{Lik}+2 p$

- the more there are parameters in the model the better fit but worse
explanatory power of the model
- the lower AIC the better model

Whighited Regyeasion

Weighting

- to increase/decrease effect of some measurements
- only positive values are allowed
- instead of least squares weighted least squares are used

Background

Sexual size dimorphism may increases with ambient temperature in spiders.

Design

Males and females of Zodarion spiders were sampled on 13 sites with a different temperature $\left[{ }^{\circ} \mathrm{C}\right]$. Of the average size of males and females a size ratio was calculated for each site. The number of individuals varied between sites (2 to 62 specimens).

Hypotheses

Is there relationship between the ratio and the temperature? What is the model?

Variables temp
number
ratio

ratio $_{i}=\alpha+\beta$ temp $p_{i}+\gamma$ temp $_{i}^{2}+\varepsilon_{i}$,
 kde $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro různé lokality.

```
m1 <- lm(ratio ~ poly(temp,2))
> summary(m1)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) & \\
(Intercept) & 1.114961 & 0.004597 & 242.538 & \(<2 e-16\) & *** \\
poly (temp, 2)1 & 0.069484 & 0.016575 & 4.192 & 0.00185 & ** \\
poly (temp, 2)2 & -0.010728 & 0.016575 & -0.647 & 0.53206 &
\end{tabular}
---
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 0.01657 on 10 degrees of freedom
Multiple R-Squared: 0.6428, Adjusted R-squared: 0.5713
F-statistic: 8.996 on 2 and 10 DF, p-value: 0.005818
```

```
> m2 <- lm(ratio ~ temp)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $1.036897 \quad 0.01866755 .5477 .94 \mathrm{e}-15$ ***
temp 0.0079410 .0018434 .3070 .00124 **

$$
\begin{gathered}
{\text { ratio }_{i}=\alpha+\beta \text { temp }_{i}+\varepsilon_{i}}^{\varepsilon_{i} \sim N\left(0, \frac{\sigma^{2}}{\text { number }}\right), \text { nezávisle pro různé lokality. }} \text {. }
\end{gathered}
$$

```
> m3 <- update(m2, weights=number)
> summary (m3)
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 1.084297 0.015481 70.038 6.24e-16 ***
temp 0.003265 0.001510 2.162 0.0535 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04727 on 11 degrees of freedom
Multiple R-Squared: 0.2982, Adjusted R-squared: 0.2345
F-statistic: 4.675 on 1 and 11 DF, p-value: 0.0535
```


2.way ANOVA

Background

The carcinogenic disease is related to the production of toxins by certain bacteria in the body of patients. Presence of toxins can be used as an indicator of certain carcinogenic disease.

Design

In a clinical study, the amount of a toxin [units/ $\mu \mathrm{l}]$ produced by four bacteria species was measured in patients with two carcinogenic and two non-carcinogenic diseases. For each disease there were 20 patients. In each patient only a single bacterial toxin was measured so there were 5 replications per bacteria species.

Hypotheses

Is the amount of toxin similar for four bacteria species and four diseases?
If not what is the difference?
Which species can be used as an indicator?
Variables
SPECIES:bacterA, bacterB, bacterC, bacterD DIAGNOSIS:carc.rectum, carc.intestine, apendicitis, skin.absces toxin

toxin $_{i j k}=\alpha+$ SPECIES $_{j}+$ DIAGNOSIS $_{k}+$ SPECIES:DIAGNOSIS $_{j k}+\varepsilon_{i j k}$, kde $\varepsilon_{i j k} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro jednotlivé pacienty.

```
m1 <- lm(toxin ~ species*diagnosis)
anova (m1)
Analysis of Variance Table
Response: toxin
\begin{tabular}{rlrrrl} 
Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) & \\
3 & 1.3364 & 0.4455 & 28.0325 & \(1.077 \mathrm{e}-11\) & *** \\
3 & 5.4775 & 1.8258 & 114.8965 & \(<2.2 \mathrm{e}-16\) & *** \\
9 & 1.2704 & 0.1412 & 8.8827 & \(1.528 \mathrm{e}-08\) & *** \\
64 & 1.0170 & 0.0159 & & &
\end{tabular}
```


ANOVA Table

- anova uses Type I Sum of Squares
- sequential assessment of effects according to the given order
- at first main effects are assessed then interactions
- in orthogonal the order is not important
- if data are unortogonal it is more appropriate to use Type III SS

Orthogonality

- independent variables are orthogonal - effects are straightforward
- correlated variables are unorthogonal - effects are complicated
- when there are missing values or unequal number of observations per treatment

$>$ summary (m1)

Coefficients:
(Intercept)
speciesbacterB
speciesbacterC
speciesbacterD
diagnosiscarc.intestine
diagnosiscarc.rectum
diagnosisskin.absces
speciesbacterB:diagnosiscarc.intestine
speciesbacterc:diagnosiscarc.intestine
speciesbacterD:diagnosiscarc.intestine
speciesbacterB:diagnosiscarc.rectum speciesbacterc:diagnosiscarc.rectum speciesbacterD:diagnosiscarc.rectum speciesbacterB:diagnosisskin.absces speciesbacterC:diagnosisskin.absces
speciesbacterD:diagnosisskin.absces

Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

$$
1.15100 \quad 0.05638 \quad 20.417<2 e-16
$$

$$
\begin{array}{llll}
-0.04220 & 0.07973 & -0.529 & 0.598427
\end{array}
$$

$$
\begin{array}{llll}
0.07000 & 0.07973 & 0.878 & 0.383233
\end{array}
$$

$$
\begin{array}{llll}
0.05580 & 0.07973 & 0.700 & 0.486536
\end{array}
$$

$$
\begin{array}{llll}
0.75400 & 0.07973 & 9.457 & 9.07 \mathrm{e}-14
\end{array}
$$

$$
\begin{array}{llll}
0.70040 & 0.07973 & 8.785 & 1.34 \mathrm{e}-12
\end{array}
$$

$$
\begin{array}{llll}
0.01640 & 0.07973 & 0.206 & 0.837678
\end{array}
$$

$$
\begin{array}{llll}
-0.46760 & 0.11275 & -4.147 & 0.000101
\end{array}
$$

$$
0.11275-4.844 \quad 8.42 \mathrm{e}-06
$$

$$
0.11275-0.569 \quad 0.571083
$$

$$
\begin{array}{rrrr}
-0.35700 & 0.11275 & -3.166 & 0.002366 \\
-0.56340 & 0.11275 & -4.997 & 4.78 \mathrm{e}-06 \\
0.06300 & 0.11275 & 0.559 & 0.578282 \\
-0.03580 & 0.11275 & -0.318 & 0.751889 \\
-0.14960 & 0.11275 & -1.327 & 0.189287 \\
-0.16520 & 0.11275 & -1.465 & 0.147771
\end{array}
$$

> tapply(predict(m1), list(species,diagnosis), mean)

apendicitis carc.intestine carc.rectum skin.absces

bacterA	1.1510	1.9050	1.8514	1.1674
bacterB	1.1088	1.3952	1.4522	1.0894
bacterC	1.2210	1.4288	1.3580	1.0878
bacterD	1.2068	1.8966	1.9702	1.0580

```
> diagnosis1 <- c(rep("carc",40), rep("non",40))
> diagnosis1 <- factor(diagnosis1)
```

```
> m2 <- lm(toxin ~ species*diagnosis1)
> anova(m1, m2)
Analysis of Variance Table
Model 1: toxin ~ species * diagnosis
Model 2: toxin ~ species * diagnosis1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 64 1.0170
2 llllllllll
```



```
species1 <- species
> levels(species1)
[1] "bacterA" "bacterB" "bacterC" "bacterD"
> levels(species1)[2:3] <- "bacterBC"
> m3 <- lm(toxin ~ species1*diagnosis1)
> anova(m2, m3)
Analysis of Variance Table
Model 1: toxin ~ species * diagnosis1
Model 2: toxin ~ species1 * diagnosis1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 72 1.15974
2 74 1.17962 -2 -0.01988 0.6171 0.5423
    levels(species1)
[1] "bacterA" "bacterBC" "bacterD"
> levels(species1)[c(1,3)] <- "bacterAD"
> m4 <- lm(toxin ~ species1*diagnosis1)
> anova(m3, m4)
Analysis of Variance Table
Model 1: toxin ~ species1 * diagnosis1
Model 2: toxin ~ species1 * diagnosis1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 74 1.17962
2 76 1.19845 -2 -0.01883 0.5905 0.5566
```


> anova(m4)

Analysis of Variance Table

Response: toxin
species1
diagnosis1
species1:diagnosis1
Residuals

Df	Sum S	Mean S	F value	$\operatorname{Pr}(>\mathrm{F})$	
1	1.3328	1.3328	84.522	5.690e-14	*
1	5.4267	5.4267	344.139	$<2.2 e-16$	*
1	1.1434	1.1434	72.508	$1.134 \mathrm{e}-12$	***
76	1.1984	0.0158			

Signif. Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary (m4)

Coefficients:
(Intercept)
species1bacterBC
diagnosis1non

Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
1.90580	0.02808	67.872	$<2 e-16$	$* * *$
-0.49725	0.03971	-12.522	$<2 e-16$	$* * *$
-0.76000	0.03971	-19.139	$<2 e-16$	$* * *$
0.47820	0.05616	8.515	$1.13 e-12$	***

> both <- paste(species1, diagnosis1)
$>$ both <- factor (both)
$>\mathrm{m} 5<-\mathrm{lm}($ toxin \sim both - 1)
$>$ summary (m5)

Coefficients:

Estimate	std. Error	t value	Pr $(>\|t\|)$	
1.90580	0.02808	67.87	$<2 e-16 * * *$	
1.14580	0.02808	40.81	$<2 e-16 * * *$	
1.40855	0.02808	50.16	$<2 e-16 * * *$	
1.12675	0.02808	40.13	$<2 e-16 * * *$	

```
confint (m5)
    2.5% 97.5%
bothbacterAD carc 1.849875 1.961725
bothbacterAD non 1.089875 1.201725
bothbacterBC carc 1.352625 1.464475
bothbacterBC non 1.070825 1.182675
```


Background

Rate of population increase is a function of temperature in ectotherms, such as mites. A model of the relationship is essential for the control of mite pests.

Design

In the lab, population increase of two pest mite species was studied at 11 temperatures between 10 and $35^{\circ} \mathrm{C}$. The rate of increase was estimated using formula for exponential population growth. For each temperature a single measurement for each species was available.

Hypotheses
Did temperature affect the rate of increase?
Was the rate similar for both species?
What is the model of the relationship?
Variables
GENUS: genA, genB
temp
rate

rate $_{i j}=\alpha+$ GENUS $_{j}+\beta$ temp $_{i}+\gamma$ temp $_{i}^{2}+$ temp $_{i}^{3}+\delta_{j}$ temp $_{i}+\omega_{j}$ temp $_{i}^{2}+\eta_{j}$ temp $_{i}^{3}+\varepsilon_{i j}$, kde $\varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro jednotlivé populace.

```
m1 <- lm(rate ~ poly(temp,3)*genus)
> anova(m1)
```

Analysis of Variance Table
Response: rate
poly (temp, 3) $30.0659530 .021984210 .06757 .125 \mathrm{e}-12$ ***
genus $10.0000280 .000028 \quad 0.2644 \quad 0.6152$
poly(temp, 3): genus
Residuals

Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
3	0.065953	0.021984	210.0675	$7.125 e-12$	$* * *$
1	0.000028	0.000028	0.2644	0.6152	
3	0.000108	0.000036	0.3454	0.7930	
14	0.001465	0.000105			

> m2 <- lm(rate ~ poly (temp,3) +genus)
$>$ anova (m1, m2)

```
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 14 0.00146516
2 17 0.00157360 -3 -0.00010844 0.3454 0.793
> anova(m2)
Analysis of Variance Table
Response: rate
    Df Sum Sq Mean Sq F value Pr(>F)
poly(temp, 3) 3 0.065953 0.021984 237.5038 4.509e-14 ***
genus 1 0.000028 0.000028 0.2989 0.5917
Residuals 17 0.001574 0.000093
```

```
m3 <- lm(rate ~ temp + I(temp^2) + I(temp^3))
summary (m3)
```


Coefficients:

Residual standard error: 0.009432 on 18 degrees of freedom Multiple R-Squared: 0.9763, Adjusted R-squared: 0.9723 F-statistic: 247.1 on 3 and 18 DF, p-value: $8.234 \mathrm{e}-15$

```
> m4 <- lm(rate ~ temp + I(temp^2))
> summary(m4)
```

. .
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -3.222e-01 $1.734 \mathrm{e}-02-18.591 .20 \mathrm{e}-13$ ***
temp $4.060 \mathrm{e}-02 \quad 1.662 \mathrm{e}-03 \quad 24.42$ 8.20e-16 ***
I(temp^2) $-8.154 \mathrm{e}-04 \quad 3.649 \mathrm{e}-05-22.354 .20 \mathrm{e}-15$ ***

Multiple Regression

Background

Yield of cereals is determined by a number of variables. To predict yield with high accuracy, various effects have to be studied.

Design

On 100 plots, the yield of wheat [t/ha] was estimated together with six other variables: 1. number of overwintering plants, 2 . number of ears $/ \mathrm{m}^{2}, 3$. pH of soil, 4. content of phosphorus [mg/kg], 5. content of potassium [mg/kg], 6. content of magnesium [mg/kg].

Hypotheses

Did any of six variables affect the yield?
If so which ones?
What is the model for prediction of yield?

Variables
winter
ears
$p H$
P
K
$M g$
yield

Collinearity

- When two or more variables show correlation
- PCA can reduce dimensionability of variables - use pCA scores instead

| $>$ pca <- princomp (\sim pH +P, cor=T) | | |
| :--- | ---: | ---: | ---: |
| $>$ summary (pca) | | |
| Importance of components: | Comp.1 | Comp.2 |
| | | |
| Standard deviation | 1.3049566 | 0.5450579 |
| Proportion of Variance | 0.8514559 | 0.1485441 |
| Cumulative Proportion | 0.8514559 | 1.0000000 |

$\mathrm{PpH}<-$ pca\$scores $[, 1]$
yield $_{i}=\alpha+\beta_{1}$ winter $_{i}+\beta_{2}$ ears $_{i}+\beta_{3}$ Pp $_{i}+\beta_{4} K_{i}+\beta_{5} M g_{i}+\varepsilon_{i}$, $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, nezávisle pro různé parcely.

Analysis of Variance Table						
Response: yield						
		Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
winter	1	6.5802	6.5802	30.7489	$3.764 \mathrm{e}-07$	***
ears	1	0.7288	0.7288	3.4059	0.068712	
PpH	1	2.1751	2.1751	10.1643	0.002053	**
K	1	0.8568	0.8568	4.0039	0.048830	*
Mg	1	0.3331	0.3331	1.5568	0.215821	
I (winter^2)	1	0.0765	0.0765	0.3576	0.551530	
I (ears^2)	1	0.2315	0.2315	1.0818	0.301467	
$\mathrm{I}\left(\mathrm{PpH}^{\wedge} 2\right)$	1	5.1354	5.1354	23.9977	5.029e-06	***
$\mathrm{I}\left(\mathrm{K}^{\wedge} 2\right)$	1	0.5878	0.5878	2.7470	0.101404	
$\mathrm{I}\left(\mathrm{Mg}^{\wedge} 2\right)$	1	0.6129	0.6129	2.8643	0.094507	
winter:ears	1	0.1428	0.1428	0.6672	0.416483	
winter: PpH	1	0.1404	0.1404	0.6561	0.420386	
winter:K	1	0.1144	0.1144	0.5344	0.466933	
winter:Mg	1	0.1899	0.1899	0.8874	0.349062	
ears:PpH	1	0.1256	0.1256	0.5871	0.445817	
ears:K	1	0.0176	0.0176	0.0823	0.774937	
ears:Mg	1	0.1679	0.1679	0.7847	0.378402	
$\mathrm{PpH}: \mathrm{K}$	1	0.1648	0.1648	0.7702	0.382831	
$\mathrm{PpH}: \mathrm{Mg}$	1	0.1922	0.1922	0.8982	0.346156	
K:Mg	1	0.1277	0.1277	0.5965	0.442209	
Residuals	79	16.9057	0.2140			

```
    m2 <- step (m1)
> anova (m2)
Analysis of Variance Table
Response: yield
    Df Sum Sq Mean Sq F value Pr (>F)
winter 1 6.5802 6.5802 33.3952 1.018e-07 ***
ears
K
Mg
I (PpH^2)
ears:Mg
K:Mg
Residuals
    92 18.1276
    0.1970
```

$>$ summary (m2, corr=T)

	(Intercept)	winter	ears	K	Mg	$\mathrm{I}\left(\mathrm{PpH}^{\wedge} 2\right)$	ears:Mg
winter	-0.05						
ears	-0.91	-0.02					
K	-0.38	0.00	-0.02				
Mg	-0.99	-0.02	0.91	0.36			
$\mathrm{I}\left(\mathrm{PpH}^{\wedge} 2\right)$	-0.01	0.07	-0.15	0.31	-0.02		
ears:Mg	0.90	0.02	-0.99	0.02	-0.92	0.16	
K:Mg	0.38	-0.02	0.02	-1.00	-0.36	-0.33	-0.03

```
    w1 <- scale(winter); e1 <- scale(ears); pH1 <- scale(pH)
> P1 <- scale(P); K1 <- scale(K) ; Mg1 <- scale(Mg)
> m3 <- lm(yield ~ (w1+e1+pH1+P1+K1+Mg1)^2 + I(w1^2) + I(e1^2) + I(pH1^2) +
+ I(P1^2) + I(K1^2) + I(Mg1^2))
> anova(m3)
Analysis of Variance Table
Response: yield
    Df Sum Sq Mean Sq F value Pr (>F)
w1 1 6.5802 6.5802 32.3949 2.542e-07 ***
e1 1 0.7288 0.7288 3.5882 0.062208 .
pH1 1 2.1735 2.1735 10.7005 0.001646 **
P1 1 0.0964 0.0964 0.4748 0.492988
K1 1 0.9223 0.9223 4.5407 0.036513 *
Mg1 1 0.4403 0.4403 2.1675 0.145310
I(w1^2) 1 0.0232 0.0232 0.1140 0.736647
I(e1^2) 1 0.2189 0.2189 1.0776 0.302707
I(pH1^2) 1 5.2872 5.2872 26.0295 2.629e-06 ***
I(P1^2) 1 0.0390 0.0390 0.1919 0.662635
I(K1^2) 1 0.6269 0.6269 3.0861 0.083213.
I (Mg1^2) 1 0.7946 0.7946 3.9120 0.051770 .
w1:e1 1 0.1109 0.1109 0.5461 0.462318
```

w1:pH1	1	0.0001	0.0001	0.0005	0.981871
w1:P1	1	0.3435	0.3435	1.6911	0.197610
w1:K1	1	0.2448	0.2448	1.2051	0.275966
w1:Mg1	1	0.1437	0.1437	0.7072	0.403144
e1:pH1	1	0.1750	0.1750	0.8616	0.356386
e1:P1	1	0.3084	0.3084	1.5182	0.221900
e1:K1	1	0.0010	0.0010	0.0048	0.945214
e1:Mg1	1	0.0699	0.0699	0.3442	0.559238
pH1:P1	1	0.0076	0.0076	0.0372	0.847532
pH1:K1	1	0.0695	0.0695	0.3421	0.560434
pH1:Mg1	1	0.4321	0.4321	2.1272	0.149055
P1:K1	1	0.6919	0.6919	3.4061	0.069067
P1:Mg1	1	0.0921	0.0921	0.4535	0.502830
K1:Mg1	1	0.3609	0.3609	1.7766	0.186774
Residuals	72	14.6249	0.2031		

```
    m4 <- update(m3, ~.-w1:pH1); anova(m4)
    m5 <- update(m4, ~.-e1:K1); anova(m5)
```

> anova(m26)

Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
w1 $16.58026 .580230 .41233 .001 \mathrm{e}-07$ ***
pH1 11.94871 .94879 .00660 .003436 **
K1 100.87110 .87114 .02620 .047642 *
I(pH1^2) 1 5.6527 $5.652726 .12561 .653 e-06$ ***
Residuals 9520.55470 .2164
-

$$
a+b_{1} \frac{\text { winter }-\bar{y}_{\text {winter }}}{s_{\text {winter }}}+b_{2} \frac{p H-\bar{y}_{p H}}{s_{p H}}+c_{1}\left(\frac{p H-\bar{y}_{p H}}{s_{p H}}\right)^{2}+b_{3} \frac{K-\bar{y}_{K}}{s_{K}}
$$

mean (winter) ; sd(winter)
[1] 275.64
[1] 50.94392
$>$ mean (pH); sd (pH)
[1] 5.852
[1] 0.3812473
$>$ mean (K) ; sd(K)
[1] 106.66
[1] 40.39657
summary (m26, corr=T)
...
Coefficients:

$$
\text { Estimate std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

| (Intercept) | 8.71416 | 0.05917 | 147.278 | $<2 \mathrm{e}-16$ | $* * *$ |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| w1 | 0.28494 | 0.04941 | 5.766 | $1.00 \mathrm{e}-07$ | $* * *$ |
| pH1 | -0.01134 | 0.05490 | -0.206 | 0.8368 | |
| K1 | -0.09666 | 0.04885 | -1.979 | 0.0508 | . |
| I (pH1^2) | -0.18880 | 0.03694 | -5.111 | $1.65 e^{-06}$ | *** |

Signif. Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4652 on 95 degrees of freedom
Multiple R-Squared: 0.4227,
Adjusted R-squared: 0.3984
F-statistic: 17.39 on 4 and 95 DF, p-value: 9.75e-11

Correlation of Coefficients:
(Intercept) w1 pH1 K1
w1 -0.06
$\begin{array}{lll}\mathrm{pH} & 0.25 & -0.28\end{array}$
$\begin{array}{llll}\mathrm{K} 1 & 0.00 & -0.10 & -0.22\end{array}$
$\left.\begin{array}{llll}I(p H 1 \wedge\end{array}\right)-0.62 \quad 0.10-0.40-0.01$

$8.714+0.285 \frac{\text { winter }-275.6}{50.94}-0.011 \frac{p H-5.852}{0.381}-0.189\left(\frac{p H-5.852}{0.381}\right)^{2}-0.097 \frac{K-106.7}{40.39}$.

[^0]: $>$ mean (amount) + sem*c (qt $(p=0.0255, d f=15)$, qt (p=0.975,df=15)) [1] 0.44280130 .9384487

