Multiple Bonding in C₂

C₂ – blue color of hot hydrocarbon flames 1802 Wollaston - the first reported emission spectrum of any molecule One of the most abundant molecules in the universe, comets

Bond order = (6 - 2)/2 $2\sigma_g$ and $2\sigma_u^*$ orbitals are both filled = two π -bonds unsupported by an underlying σ -bond and two σ lone pairs

Multiple Bonding in C₂

The variation of **orbital overlap** as a function of **internuclear distance** shows that **maximum overlap** occurs at **shorter** distances for π - and δ -bonds than for σ -bond

 π -bonds (unsupported by an underlying σ -bond) are shorter than σ + π -bonds

Inverted Bond

Isoelectronic molecules C_2 , CN⁺, BN, and CB⁻ - singlet ground state ${}^{1}\Sigma_{g}^{+}$

Valence bond (VB) theory and full configuration interaction (FCI)

Bond order = 3

- $2{\sigma_{\!\scriptscriptstyle u}}^*$ is not antibonding but rather nonbonding

- sp-hybridized carbons, one σ - and two π -bonds, two electrons in the outwardly pointing hybrids

Triplet state ${}^{3}\Sigma_{u}^{+}$, electrons are unpaired 26.4 kcal mol⁻¹ above the singlet GS Flip of the spins of the diradical to a singlet = the energy goes down

These electrons maintain a significant bonding interaction in the ground state

Bond order = 4

C₂ quadruply bonded, 3 internal bonds (1 strong σ + 2 π) and one weak '**inverted**' C–C bond

Quadruple Bonding in C₂

Full-valence CASSCF/6-31G* wave function

weight = 71.0 %

weight = 13.6 %

Significant contribution

Quadruple Bonding in C₂

Bonding between two atoms - a well-defined discrete **minimum** in the potential energy curve (PEC) plotted against the interatomic distance

The multiply bonded diatomic species - generate high spin states by breaking bonding electron pairs, promote electrons from a bonding to the antibonding orbital with single occupation with parallel spins

The number of bonds in the ground state = at which high spin state the purely dissociative PEC is reached

All of the bonding interactions are annihilated at the ${}^9\Sigma_g{}^+$ state

 $^7\Sigma_u^{+}$ state PEC has a minimum

The ground electronic state of C₂ has **four** bonds = $2 \sigma + 2 \pi$

Synthesis of C₂

The two carbon atoms of the C₂ moiety both have carbene character

Nature Chemistry 2021, 13, 89–93

Single-Electron Bonds

Single-electron Lanthanide-Lanthanide bonds inside fullerenes Ln-fullerene interaction = the transfer of metal valence electrons to the carbon cage **Early** lanthanides (La, Ce, Pr, Nd) - complete transfer of 6 valence electrons = $(Ln^{3+})_2 @C_{80}^{6-}$ **Middle** lanthanides - transfer of only 5 electrons, 1 electron remains in the Ln-Ln σ bonding orbital = $(Ln^{2.5+})_2 @C_{80}^{5-}$ - **single-electron Ln-Ln bond** Unstable in the neutral form, stabilized in $Ln_2 @C_{79}N$ **Late** lanthanides (Lu) - transfer of only 4 electrons, 2 electrons remain in the Ln-Ln σ bonding orbital = $(Ln^{2+})_2 @C_{82}^{4-}$ - normal single 2-electron Ln-Ln bond

Black - occupied MOs; red - vacant MOs

Acc. Chem. Res. 2019, 52, 2981–2993

Sigma Hole Interactions

Halogen/chalcogen/pnictogen/tetrel bonding

a noncovalent interaction between
a covalently-bonded atom of Groups
14–17 and a negative site, *e.g.*, a lone
pair of a Lewis base or an anion

σ-hole = a region of **positive** electrostatic potential on the extension of one of the covalent bonds to the atom caused by the anisotropy of the atom's charge distribution

Heavy atoms (Br) without hybridization $4p_z$ occupied by only one electron

Sigma Hole Interactions

Bond strength 13–100 kJ mol⁻¹ H-bond in $(H_2O)_2$ 20 kJ mol⁻¹

Directionality increase Cl < Br < I

Sigma Hole Interactions

10

Isomerism

- The *molecular conformation* specifies a combination of relative atomic positions conferring on the molecule a certain stability

- The *potential energy (hyper)surface* (PES) characterizes through its minima the various molecular conformations that could be expected for a given assembly of atoms, and defines by means of saddle points the thermodynamic pathways interconnecting them

Isomers = molecular conformations corresponding to distinct minima on the PES, separated by an energy barrier high enough to impede immediate interconversion at room temperature, separable, 100–120 kJ mol⁻¹ or more

Conformers = barrier is lower, not separable under ambient conditions, but could be observed and characterized at lower temperature

The potential energy (hyper)surface (PES)

1972 R. Hoffmann

Bond-stretch *isomers* = distinct, separable and stable at room temperature

Bond-stretch isomerism (BSI) = the unusual phenomenon whereby molecules differ only in the length of one or more bonds

NOT Bond-stretch *isomers*:

Complex Re(*cis*-Cl₂)(NCMe)(NO)-*trans*-(PMe₃)₂

Crystallizes in $P2_1/a$ with 44 molecules in the asymmetric unit

a dense and low-symmetry hydrogen bonding network

the Re–N(NO) and the Re–N(NCMe) distances vary by as much as 0.10 or 0.12 Å, respectively

$\begin{bmatrix} 2.2.2 \end{bmatrix} \text{ propellane}$

S orbital = symmetric combination wrt σ_h , transannular C–C bond A orbital = antibonding, antisymmetric

Interaction (through-bond coupling) between **A** and the high-lying σ^* orbitals of the C–C bonds (2–3, 5–6 and 7–8) results in a stabilization of **A** A crossing between **A** and **S**, **A** becomes the HOMO when the transannular distance is larger than 2.25 Å and gives rise to a diradical form The orbital crossing makes the interconversion between the diradical and the tricyclic form **symmetry forbidden** and should generate isomers = equilibrium conformations separated by an energy barrier

Table I. Selected Bond Lengths (Å) for Mo(O)Cl₂(PMe₂Ph)₃ and Mo(O)Cl₂(PEt₂Ph)₃^a

	$\begin{array}{c} blue \\ Mo(O)Cl_2(PMe_2Ph)_3 \end{array}$	$\begin{array}{c} \text{green} \\ Mo(O)Cl_2(PEt_2Ph)_3 \end{array}$
Mo–O	1.676(7)	1.803(11)
$Mo-Cl(1)^b$	2.551(3)	2.426(6)
$Mo-Cl(2)^{b}$	2.464(3)	2.479(5)
Mo-P(1)	2.500(3)	2.521(5)
Mo-P(2)	2.541(3)	2.582(6)
Mo-P(3)	2.558(3)	2.556(6)

 a Taken from ref 12a. b Cl(1) and Cl(2) are trans and cis to O, respectively.

Chatt, J.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc. (D) 1971, 655-656 Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1972, 686-690

Distribution of Mo=O distances (Å) for monooxo complexes in the oxidation states +4, +5, and +6

Crystallographic disorder difficult to detect, results in the 2.6] incorrect determination of bond lengths and the incorrect formulation of compounds 2.2 -Bond Length Cocrystallization of structurally related 2.0 molecules resulting in the formation of 1.8 single-crystal solid solutions $\mathsf{Mo-L} \left(\mathsf{L} = \mathsf{O}_{\mathsf{x}}\mathsf{Cl}_{1,\mathsf{x}} \right)$ 1.6 0.0 0.2 0.4 0.6 0.8 1.0 PMe₂Ph Composition (x) PMe₂Ph MoO_xCl_{3.x}(PMe₂Ph)₃ CI Me₂PhP Me₂Phi PMe₂Ph PMe₂Ph

Yoon, K.; Parkin, G.; Rheingold, A. L. J. Am. Chem. Soc. 1992,114, 2210

Chromium Dimer Cr₂?

Valence electron configuration:

 $(3d\sigma_g)^2(3d\pi_u)^4(3d\delta_g)^4(4s\sigma_g)^2$ sextuple bond, Cr–Cr distance: 1.6788 Å (2.5 Å in Cr metal) Singlet, observed dissociation energy = 1.44 ± 0.05 eV

The optimal bonding regions are quite different for the 3d and 4s orbitals

1st minimum: $R_e = 1.59$ Å; $D_e = 1.38$ eV 2nd minimum: $R_e = 2.40$ Å; $D_e = 1.14$ eV

Balance between covalent **bonding (d-d) at short** distance and (s-s) bonding and antiferromagnetic coupling of the 3d electrons at long distance

Calculated 2nd minimum of the ground-state energy curve is extremely shallow

Corresponding isomer rather short-lived and difficult to trap and to characterize

M₂X₂ Rings Isomers with or without ligand-ligand bonds $(S^{2-})_2 \rightarrow (S-S)^{2-} \rightarrow (S=S)^0$ Electron transfer from ligands X to metal M: FEC = 8 6 M²⁺ dⁿ⁺¹ M¹⁺ dⁿ⁺² M⁰ dⁿ Metal configuration $(X_2)^{2-x}$ $(X_2)^{4-x}$ (X₂)^{x-} Bridge Μ Х L_2 β Δ_{XX} Experimental data Pd Te $(PEt_3)_2$ 108 0.07 Pt S $(PpyPh_2)_2$ 103 0.96 Pt S 86 1.10 dppe Pt Se $(PPh_3)_2$ 0.70 100 Pt Te 106 0.32 $(PEt_3)_2$ Pt Te $(PPh_3)_2$ 100 0.32 Pt Te 86 0.53 dppe

 β is the LML bond angle

 Δ_{xx} is the difference b/w the X–X distance and the atomic radii sum

 $M_3(dpa)_4X_2$ M = **Co**, Cr, Ni, Cu, Ru, Rh X = halogenide, CN⁻, NCS⁻, BF₄⁻, PF₆⁻

 $Co_3(dpa)_4Cl_2 \bullet CH_2Cl_2$ symmetrical (s) Co3 chain

 $Co_3(dpa)_4Cl_2 \bullet 2CH_2Cl_2$ unsymmetrical (*u*) Co3 chain

Unchanged on cooling

More symmetrical at low temperature

Both the *s* and the *u* isomers are in an S = 1/2 ground state at low temperature

- Cl

Linear triatomic system: M-M-M (z is collinear with the framework axis)

The equivalent atomic orbitals of every type give rise to a set of three molecular orbital (MO) combinations:

(i) a bonding MO, lowest in energy(ii) a nonbonding, antisymmetric, localized on the terminal atoms(iii) an antibonding MO

Four orbital sets for M-M-M bonding: **One** σ **set** - d_z2 orbital combinations bonding - nonbonding - antibonding

Two degenerate π **sets** - combinations of d_{xz} and d_{yz} orbitals

One δ set - combinations of d_{xy} orbitals One δ set (d_x2_{-y}2) accepts the lone pairs of the equatorial dpa ligands

The 3d atomic orbitals are compact in space and the 3d–3d overlap between π and δ orbitals is **weak** except at supershort distances – **localized** on atoms

The **nine metal MOs** belonging to the two π sets and to the remaining δ set are not split in energy Degenerate set $\{2\pi, \delta\}$

 $Co_3(dpa)_4Cl_2$ S = 1/2 ground state

Three-electron, three-center system

18 electrons in the $\{2\pi, \delta\}$ orbital sets do not take part in any metal–metal interaction, *localized* on individual metal atoms The bonding in the M-M-M fragment is exclusively due to the **3** σ **electrons** (2 bonding + 1 nonbonding), which are *delocalized* over the metal framework Three-electron, three-center system 12 electrons, in the $\{2\pi, \delta\}$ singly occupied 10 unpaired electrons = 9 + 1 The **one electron** in the σ **nonbonding** orbital is shared between the **terminal** Cr Unpaired electrons are *spin-coupled* = \rightarrow antiferromagnetic interaction

S = 2 ground state

Cr₃(dpa)₄Cl₂

Structure	S value	Spin Coupling Atomic Spin Populations	Relative Energies	
Symmetric ∆d _{Cr-Cr} = 0	2	↑↑↑↑ — ↓↓↓ — ↑↑↑↑ 3.52 - 3.00 3.52	0.0	
Non-symmetric ∆d _{Cr-Cr} = 0.106	2	↑↑↑↑↓↓↓↑↑↑↑ 3.60 -3.00 3.44	+0.97	
Non-symmetric ∆d _{Cr-Cr} = 0.679	2	↑↑↑↑↓↓↓ ===== ↑↑↑ 3.79 –2.27 2.50	+4.25	AF to bonding
Non-symmetric ∆d _{Cr-Cr} = 0.679	2	^↑↑↑^↑↑↑====↓↓↓ 3.84 2.17 –2.09	+10.12	Short = bonding Long = ferromg
Symmetric ∆d _{Cr-Cr} = 0	5	↑↑↑↑ — ↑↑↑↑ — ↑↑↑↑ 3.50 2.93 3.50	+30.8	
	(S = 5 state is destabilized by 30	0.8 kcal mol ⁻	-1 28

S = 5 state is destabilized by 30.8 kcal mol⁻¹

Со-Со-Со

A ground-state potential energy curve (PES) has only one shallow minimum corresponding to the *s* conformation

Both the shape of this PES and the symmetric position of its minimum are consequences of the three-electron, three-center bond

The crystal forces could influence the molecular geometry or population of a low-energy, high-spin excited state induce a temperature-dependent distortion of the framework

Cr-Cr-Cr

A shallow, symmetric PES governed by σ metal electrons π and δ electrons, though localized on the metal atoms take part in the bonding through their magnetic coupling

Spin State Isomers

30

Spin Crossover (SCO)

A reversible change in the spin state of from low spin (LS) to high spin (HS) affected by the application of external stimuli:

- Temperature
- Pressure
- Photoexcitation
- Magnetic field
- Electric fields

Fe(II) complexes (O_h) - most abundant cases Εf ${}^{1}A_{1g}$ ⁵T_{2g} LS HS ΔE_{HI}^0 $\Delta r_{\rm HL}$ r(Fe-L) r(Fe–N): 1.95-2.00 Å 2.15-2.20 Å

> The Fe-N bond lengths and orbital overlap change upon SCO, and therefore 10Dq is different for the LS and HS states of the sar complex

Spin Crossover (SCO)

Increasing pressure = bond shortening = better orbital overlap = increasing splitting bonding / antibonding levels

Spin Crossover (SCO)

HS molar fraction γ

$$\gamma = \frac{\chi T - (\chi T)_{\rm LS}}{(\chi T)_{\rm HS} - (\chi T)_{\rm LS}}$$

Types of SCO curves - γ_{HS} vs T a = gradual; b = abrupt; c = abrupt with hysteresis; d = two-step; e = incomplete

Spin State Isomers

$$\chi_{\rm M} T(50\% \rm HS) = \frac{\chi_{\rm M}}{2}$$

$$\gamma = \frac{\chi T - (\chi T)_{\rm LS}}{(\chi T)_{\rm HS} - (\chi T)_{\rm LS}}$$

$$\mu_{\rm eff}(50\%{\rm HS}) = \frac{\mu_{\rm eff}({\rm HS}) + \mu_{\rm eff}({\rm LS})}{\sqrt{2}}$$

Spin State Isomers

Relativistic Effects

Einstein's special theory of relativity (1905)

$$m = m_0 / \sqrt{1 - (v/c)^2}$$

space-time; a single continuum (one entity)

 $(2\pi a^2)$

V _{elec}	$z_{tron} = \left(\frac{2\pi e}{nh}\right)Z$	$a_0 = \frac{c_0 n}{m Z e^2 \pi}$	<i>e</i> – elementary charge <i>c</i> = 3·10 ⁸ m/s
	1s electron velocity m/s	relativistic mass	relativistic radius contraction
H (Z = 1)	$v = 2.18 \cdot 10^6$ $v = 0.00727 \cdot c$	<i>m</i> = 1.0000265 m ₀	~ 0 %
Au (Z = 79)	$v = 1.73 \cdot 10^8$ $v = 0.577 \cdot c$	<i>m</i> = 1.23 m ₀	~ 20 %
Fm (Z = 100)	$v = 2.18 \cdot 10^8$ $v = 0.727 \cdot c$	<i>m</i> = 1.46 m ₀	~ 30 %

 $c h^2$

Bohr atomic model (1913)

Relativistic Effects

Direct effects: stabilization (decrease) of *s*- and *p*-orbitals

Indirect effects: destabilization (expanding) of *d*- in *f*-orbitals due to the increased shielding by *s*- and *p*-orbitals

Relativistic Effects

• Very high first ionization energy (Au 9.23 eV, Ag 7.58 eV, Cu 7.73 eV)

Au ¹⁺ /Ag ¹⁺	Au ³⁺ /Ag ³⁺	Au ⁴⁺ Au ⁵⁺
	, 0	

• Au - the highest electron affinity of all metals: simple reduction to auride anion Au⁻ (Cs⁺Au⁻ is known since 1931, it has CsCl structure) – pseudohalogen

• Au₂(g) dissociation energy: 221 kJ/mol

Ag₂(g) 160 Br₂(g) 193 Cl₂(g) 243

• Gold is the most electronegative of all metals

 $Li^{\delta+}-H^{\delta-}$ $Au^{+0,02}-H^{-0,02}$ $H^{\delta+}-Cl^{\delta-}$

Relativistic Atomic Radius and Bond-Length Contractions

2.35 Å

Distance, Å	Ag	Au
In solid state d(M–M)	2.889	2.885
Ionic radius for two-coordinate M ¹⁺	1.33	1.25
Ionic radius for four-coordinate M ¹⁺	1.46	1.37

d(Ag–H) d(Au–H) 1.62 Å 1.52 Å

L-Au⁺ isolobal to H^+ , R^+

Attractive interactions Au¹⁺···Au¹⁺:

d(Au–Au) 3.27 Å

Aurophilicity or aurophilic interaction

Two-coordinate Au 5d¹⁰ closed-shell interactions

Energy comparable to hydrogen-bonding (5–10 kcal/mol)

Distances shorter **2.50–3.50 Å** then the sum of van der Waals radii (3.80 Å) or d(Au-Au) in ccp (2.89 Å)

Correlation effects + relativistic effects ~20 %

metallophilicity or metallophilic interactions $d^{10}-d^{10}$ Au⁺, Ag⁺, Cu⁺, Hg²⁺, Pt⁰, Pd⁰, Tl³⁺, also Ir

sdz2

Aurophilic Interactions

L-Au⁺ isolobal to H⁺, R⁺

 $L = PR_3$, X = CIL = carbene, X = CIL = CN, X = CI $L = PPh_2S$, $X = PPh_3$

 $(R_3P)AuCl + Ag_2O, KOH, H_2E, E(SiMe_3)_2$ (E = O, S, Se, Te)

Bond Energies of Aurophilic Interactions

Compound/model	Au-Au contact mode	Method	Bond energy/kcal mol ⁻¹
(CO)AuCl	Unsupported intermolecular	MP2	10.0
(Et ₃ P)AuCl	Unsupported intermolecular	DFT	9.5
(NHC)AuCl	Unsupported intermolecular	DFT	8.6
$[Au(CN)_2]^-$	Unsupported inter-anionic	EH/MP2	7.2
$[Cl(AuPH_3)_2]^+$	Unsupported inter-cationic	MP2/DFT	19.8
$S(AuPH_3)_2$	Unsupported intermolecular	MP2/DFT	29.8
$[HS(AuPH_3)_2]^+$	Unsupported inter-cationic	MP2/DFT	а
$[(Et_3PAu)_2C \equiv CB_{11}H_{11}]$	Unsupported inter-cationic	NMR	8.8
$(dppe)Au_2[S_2C_2(CN)_2]$	Fully supported intramolecular	UV/vis	15.0
$[(Xantphos)_2Au_2]^{2+}$	Fully supported intramolecular	NMR	11.6

^{*a*} Non-bonding due to Coulomb repulsion; attraction verified upon addition of anionic point charges.

Isolobal Analogs

spz

H+	R+	LAu+
H ₂ O	R ₂ O	(LAu) ₂ O
H ₃ O+	$R_{3}O^{+}$	$(LAu)_{3}O^{+}$
$H_{4}O^{2+}$	R_4O^{2+}	$(LAu)_4O^{2+}$
H ₃ N	R ₃ N	(LAu) ₃ N
H₄N+	R,N+	$(LAu)_4N^+$
$H_{5}N^{2+}$	$R_5 N^{2+}$	$(LAu)_5 N^{2+}$
H₄C	R₄C	(LAu)₄C
H _s C ⁺	$\vec{R_sC^+}$	$(LAu)_{5}C^{+}$
$H_{6}C^{2+}$	$R_{c}C^{2+}$	$(LAu)_{c}C^{2+}$

47

Hydrogen Bond

D-H••••A

D–H bond elongates = weakenedD–H bond dipole increasesDipole-dipole electrostatic energy increasesAttractive interaction increases

Charge transfer from A (lone pair, pi density) to sigma* (antibonding) MO of D–H

D–**H** bond weakened = elongated

D-H vibration decreases = **RED SHIFT** $(10 - 100 \text{ cm}^{-1})$

D–**H** dipole increases = intensity in IR increases

Improper (Blue-Shifting) H-bond

P. Hobza et al.: JPC A 102, 2501 (1998) benzene...H-X $(X = CH_3, CCl_3, C_6H_5)$ P. Hobza, Z. Havlas: Chem. Rev. 100, 4253 (2000)

Charge transfer from electron donor to distant parts of electron acceptor (restructuralization of acceptor electrons)

C–H strenghtening, shortening = **BLUE SHIFT** Rehybridization of C

Indirect mechanism

A two-step mechanism - a charge transfer from the proton acceptor to a remote part of the proton donor, followed by a structural reorganization of the proton donor itself

Improper (Blue-Shifting) H-bond

Dihydrogen Bonds

The dihydrogen bond = an interaction between a transition metal or main-group **hydride** (M-H) and a **protic** hydrogen moiety (H-X)

Intra- and intermolecular **proton-hydride** hydrogen bonds

Play a role in:

- crystal packing
- potential hydrogen-storage materials
- organometallic reaction mechanisms

X-ray crystal structure of *trans*-[PtH(PhHNNC₃H₆)(PPh₃)₂]BF₄

NMR Spectral Criteria of Dihydrogen Bonding

Shifts of the ¹H resonance of HX to lower field by 2–4 ppm
High-field shift of the hydride (M–H) signal by 0.1–0.8 ppm and a 1.5–3-fold decrease of its longitudinal relaxation time (T_{1min})

Rapid exchange on the NMR time scale of free and hydrogen-bonded molecules weighted average between free and dihydrogen bonded hydrides

An enhancement of H–H exchange coupling, J_{H–H} on metal polyhydrides
 1D nuclear Overhauser effect (NOE) spectroscopy or 2D ¹H nuclear Overhauser enhancement spectroscopy (NOESY)

Estimation of H···H distances from spin–lattice T_1 relaxation measurements Short MH···HX contacts cause strong homonuclear dipolar coupling that provides an additional contribution to nuclear dipole–dipole_relaxation

$$r_{H-H} = 5.815 \left(\frac{T_{1\min}}{\nu}\right)^{\frac{1}{6}}$$

IR Spectroscopy Criteria of Dihydrogen Bonding

IR short time scale - detection of separate absorptions for free and dihydrogen-bonded species

The formation of a dihydrogen bond MH···HX = appearance of a new wider and more intense band, v_{XH}^{bonded} , of the proton donor

A band shift: $\Delta v_{XH} = v_{XH}^{bonded} - v_{XH}^{free}$ (red shift up to -450 cm⁻¹)

Elongation of the proton-donating HX bond

Enthalpies of intermolecular hydrogen bonds ΔH_{HB} changes in the IR band positions ($\Delta v_{\chi H}$) and intensities ($\Delta A_{\chi H}$) (in kcal mol⁻¹)

$$\Delta H_{\rm HB} = -18 \Delta \nu_{\rm HX} / (\Delta \nu_{\rm HX} + 720)$$

$$\Delta H_{\rm HB} = -0.30 \Delta \nu_{\rm HX}^{1/2}$$

$$\Delta H_{\rm HB} = -2.9 \Delta A_{\rm HX}^{-1/2} = -2.9 (A_{\rm bonded}^{-1/2} - A_{\rm free}^{-1/2})$$

Enthalpies of Dihydrogen Bonds

Complexes of Boron Tetrahydride with Different Proton Donors

ROH		$_{\rm (cm^{-1})}^{\Delta\nu_{\rm OH}}$	$-\Delta H_{\mathrm{exp}}$ in $\mathrm{CH}_2\mathrm{Cl}_2$ (kcal/mol)	r _{H…H} (Å)
CFH ₂ CH ₂ OH	318	247	4.6	1.63
CF ₃ CH ₂ OH	324	290	5.2	1.55
$(CF_3)_2$ CHOH	362	402	6.5	1.46

 v_{σ} = intermolecular H····H stretching mode

Enthalpies of Dihydrogen Bonds

Correlation between the enthalpy of DHB formation (Δ H°DHB; derived from IR data) and the H···H distance (determined from NMR data on T_{1min}) for complexes of fluorinated alcohols [TFE = CF₃CH₂OH, HFIP = (CF₃)₂CHOH, PFTB = (CF₃)₃COH] in dichloromethane

Crystallographic Structural Data

Neutron diffraction crystal structure of ReH₅(PPh₃)₃·indole

