Organic synthesis

Kamil Paruch

Masaryk University, Brno

$$-c_{OH}^{O} \longrightarrow -c_{H}^{O} \longrightarrow -c_{H}^{O} \longrightarrow -c_{H}^{O}$$

$$LiAlH_{4} \quad Li^{\oplus} \stackrel{H}{_{OH}} \stackrel{H}{_{OH}} \longrightarrow -c_{H}^{O}$$

• strong, quite unselective reducing agent

J. Org. Chem. 1958, 23, 1483.

$$-c$$
OH
 $-c$
H
 $-c$
H

epoxides: typically, attack of H- on less substituted C

J. Org. Chem. 1989, 54, 2620.

reduction of C=O: attack at less sterically hindered site α,β -unsaturated ketones: predominant 1,2-reduction

reduction of carbonyl compounds with LAH: typically *no* racemization (epimerization)

$$\begin{array}{c|c}
CO_2Et \\
\hline
 & LiAIH_4 \\
\hline
 & Et_2O \\
 & 94\%
\end{array}$$

$$-c$$
OH
 $-c$
H
 $-c$
H
 $-c$
H
 $-c$
H
 $-c$
H

J. Chem. Soc., Perkin Trans. 1 1980, 212.

$$\begin{array}{c} \text{LiAIH}_4\\ \hline \\ \text{Et}_2\text{O}\\ \hline \\ \text{CN}\\ \end{array} \begin{array}{c} \text{LiAIH}_4\\ \hline \\ \text{Et}_2\text{O}\\ \hline \\ \text{95}\% \end{array}$$

J. Org. Chem. 1989, 54, 1548.

note: LiAlH₄ can also act as a base

LiBH₄ Li H−B−H

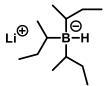
• reduction of esters to alcohols (in the presence of carboxylic acids, amides, nitriles)

Synlett. 2000, 1363.

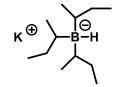
BH₃: sold as BH₃.THF or BH₃.Me₂S

- reduction of *carboxylic acids* in the presence of esters and other functional groups
- hydroboration of alkenes

J. Am. Chem. Soc. 1980, 102, 2117.


- donor of strongly nucleophilic hydride
- reduction of halides, sulfonates, opening of epoxides (attack on less sterically hindered C)

J. Am. Chem. Soc. 1973, 95, 8486.


J. Am. Chem. Soc. 1983, 105, 6736.

$$-c$$
 R
 $-c$ -OH

Selectrides

L-Selectride

K-Selectride

- bulky donors of hydride
- frequently used for diastereoselective reductions (substrate control)

J. Org. Chem. 1988, 53, 4006.

enantioselective reduction

chiral boranes

chiral oxazaborolidines + BH₃

- catalytic amount
- activation of BH₃ by complexation

J. Am. Chem. Soc. 1993, 115, 4419.

$$-c'_{R} \longrightarrow -c_{H}$$

enantioselective reduction

Corey-Bakshi-Shibata reduction (CBS reduction)

$$R^1 \rightarrow R^2$$
 + BH₃.ligand + $R^3 \rightarrow R^3$ HO_NH
 $R^1 \rightarrow R^2$ ligand: THF, Me₂S etc. cat. R^3

$$-c'_{R} \longrightarrow -c_{H}$$

enantioselective reduction

catalytic hydrogenation (of β-ketoesters)

CI
$$O$$
 OEt O RuCI₂[(R)-BINAP] O OH OOET O OET O OET

J. Am. Chem. Soc. 1988, 110, 629.

$$-c_{R}^{0} \longrightarrow -c_{H}^{0}$$

DIBAL: i-Bu2AIH

- formation of stable tetrahedral adduct after first reduction -> another reduction does not proceed
- reduction of esters to aldehydes (low temperature)

reduction of nitriles to imines (which are hydrolyzed to aldehydes during work-up)

J. Am. Chem. Soc. 1993, 115, 3146.

$$-c'_{R} \xrightarrow{\longrightarrow} -c_{-}^{I} - OH$$

$$NaBH_{4} \qquad Na^{\oplus} H^{\ominus}_{-} H^{-}_{-} H^{\ominus}_{-} H^{-}_{-} H^{\ominus}_{-} H^{\ominus}_{-} H^{\ominus}_{-} H^{-}_{-} H^{\ominus}_{-} H^{-}_{-} H^{-}$$

- selective reductant: reduction of aldehydes, ketones and acid chlorides in the presence of other reducible groups
- compatible with alcoholic solvents

(CO₂R, CN, NO₂, epoxides)

 α,β -unsaturated ketones: 1,2-reduction (in combination with lanthanide salts - *Luche reduction*)

J. Am. Chem. Soc. 1978, 100, 2226.

note

Stryker reduction: 1,4-reduction

- complementary to 1,2-reduction of α , β -unsaturated ketones, aldehydes, nitriles, sulfones
- highly chemoselective: isolated C=C, C=O and many protecting groups typically not affected
- [(Ph₃P)CuH]₆ commercially available

Tetrahedron Lett. 1990, 31, 3237.

reductive amination: NaBH₄, NaBH(OAc)₃, NaBH₃CN

• selective reduction of imines and iminium salts; stable under mildly acidic conditions

J. Am. Chem. Soc. 1988, 110, 4329.

Tetrahedron Lett. 1984, 25, 5449.

alkylative amination

- formally analogous to reductive amination -> complex tertiary amines (frequent motifs in medchem)
- but historically difficult to carry out

Roopender Kumar, Nils J. Flodén, William G. Whitehurst & Matthew J. Gaunt *Nature* **2020**, https://doi.org/10.1038/s41586-020-2213-0

R-N=N=N \longrightarrow $R-NH_2$

Staudinger reaction

Tetrahedron Lett. 1983, 24, 763.

"ionic hydrogenation"

- combination of proton donor (CF₃COOH) and hydride donor (Et₃SiH)
- typically selective with ketones, alkenes and lactoles

Sml₂

• reduction of aldehydes and ketones in the presence of carb. acids and esters

$$-c_{R}^{O} \longrightarrow -c_{H}^{O}$$

Clemmensen reduction

• strongly acidic conditions; limited use

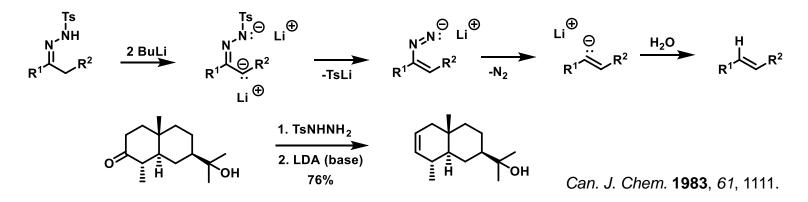
J. Org. Chem. 1969, 34, 1109.

reduction of thioacetals (thioketals), also thiols, thioethers, sulfoxides and sulfones

$$-c_{R}^{O} \longrightarrow -c_{H}^{C+}$$

Kizhner-Wolff reduction

traditional protocol:

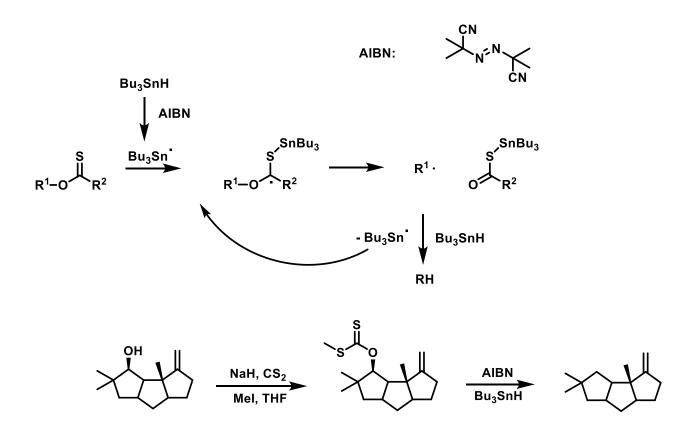

Can. J. Chem. 1979, 57, 1064.

low temperature variant: t-BuOK, DMSO

$$-c$$
 R
 $-c$ -H

Shapiro reaction

• ketones (aldehydes) -> tosylhydrazones -> alkenes



reduction of tosylhydrazones by hydrides

• mild & chemoselective (esters, amides, nitro, nitriles... tolerated) removal of O from carbonyl

Ts NH
$$\oplus$$
 H N \oplus NaBH₃CN \oplus NaBH₃CN

Barton-McCombie deoxygenation

J. Am. Chem. Soc. 1986, 108, 3443.

radical dehalogenation

- radical source: Bu₃SnH
- Br a I more reactive than CI a F
- also useful for removal of NO₂

J. Am. Chem. Soc. 1991, 113, 8980.

J. Org. Chem. 1979, 44, 151.

dehalogenation with Zn/AcOH

• chemoselective reduction of α -haloketones, α,β -unsaturated ketones

J. Org. Chem. 1988, 53, 1100.

J. Org. Chem. 1989, 54, 2781.

catalytic hydrogenation (of alkenes)

- substituted alkenes are typically less reactive
- syn- addition from sterically less hindered site

but: addition of H₂ can be directed using proper polar substituents

heterogenous: typically with Pd/C, Pd(OH)2, Pt, PtO2 etc.

Tetrahedron 1972, 28, 3583.

J. Chem. Soc. 1957, 3107.

homogenous

Wilkinson catalyst: RhCl(PPh₃)₃

- compatible with CO, COOR, CN, NO₂
- stereoselective *cis* hydrogenation

J. Am. Chem. Soc. 1985, 107, 4339.

Reduction

Crabtree's catalyst:

frequently used for directed hydrogenations

Organometallics 1987, 2, 681.

(Pd/C: cis-isomer)

(only the desired diastereomer)

asymmetric catalytic hydrogenation (of olefins)

• complexes of metals with chiral phosphines

$$\begin{array}{c|c} & H_2 \\ \hline & RuBr_2[(R)\text{-BINAP}] \\ \hline & MeOH \\ \hline & 85\% \ ee \\ \end{array}$$

J. Am. Chem. Soc. 1987, 109, 1596.

reduction with diimide

- in situ generation
- selective cis- reduction of C=C
- tolerated: C=O, C=N, NO₂, OBn etc.

J. Am. Chem. Soc. 1985, 107, 256.

J. Org. Chem. 1977, 42, 3987.

alternative generation of diimide: thermal decomposition

Tetrahedron 1976, 32, 2157.

Reduction


Birch reduction

- Na, K, Li in liquid NH₃ -> reduction of aromatic rings
- product is generated from the corresponding radical-anion
 (regioselectivity is given by its stabilization -> depends on substituents)

J. Org. Chem. 1991, 56, 741.

reduction of alkynes

cis: H₂ + Lindlar catalyst (Pd/BaSO₄)

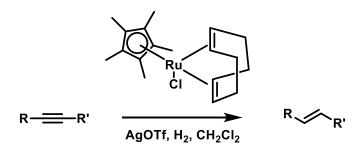
note. used also for chemoselective reduction of COCI to CHO (Rosenmund reduction)

Helv. Chim. Acta 1989, 72, 1400.

Helv. Chim. Acta 1990, 73, 405.

trans: Na in liquid NH₃

$$R^{1} \xrightarrow{e^{\bigodot}} R^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{NH_{3}} R^{1} \xrightarrow{H} R^{2} \xrightarrow{e^{\bigodot}} R^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{NH_{3}} H$$


$$R^{1} \xrightarrow{R^{2}} R^{2} \xrightarrow{NH_{3}} H$$

$$R^{2} \xrightarrow{NH_{3}} R^{2} \xrightarrow{NH_{2}} R^{2} \xrightarrow{NH_{3}} H$$

$$R^{2} \xrightarrow{NH_{3}} R^{2} \xrightarrow{NH$$

trans: modern methods: Pd- or Ru-catalyzed semi-hydrogenation

Angew. Chem. Int. Ed. 2013, 52, 806.

Angew. Chem. Int. Ed. 2013, 52, 355.

- cyclic & acyclic alkynes
- tolerated: OH, OTs, NO₂, SMe, COOH etc.

elimination of H₂O

Burgess reagent

• for sec. & tert. OH

J. Org. Chem. 1973, 38, 26.

Martin sulfurane

• for sec. & tert. OH

$$- \begin{array}{c} F_3C \xrightarrow{Ph} S \xrightarrow{Ph} CF_3 \\ CF_3C \xrightarrow{Ph} O \xrightarrow{CF_3} \\ - & CF_3 \\ CF_3 \\ Ph \end{array}$$

$$F_3C$$
 Ph
 O
 CF_3
 Ph
 CF_3
 Ph
 CF_3

J. Am. Chem. Soc. 1971, 93, 4327.