Organic synthesis

Kamil Paruch

Masaryk University, Brno

Enolates: preparation, structure, reactivity

$$R^{1} \xrightarrow{R^{2}} R^{2} \qquad or \qquad R^{1} \xrightarrow{R^{2}} R^{2} \qquad or \qquad$$

- C electrophiles: C-alkylations usually predominate
- O alkylations: very reactive (hard) electrophile (e.g. ROTf); K+ a Na+ enolates

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS

KYSELINA	pK _a	pK _{DMSO}	BÁZE	pK _a (KONJUG.KYSELINY)	pK _{DMSO}
O ₂ NCH ₂ NO ₂	3,6		MeCO ₂ -	4,2	11,6
MeCOCH ₂ NO ₂	5,1				
PhCH ₂ NO ₂		12,2			
MeCH ₂ NO ₂	8,6				
MeCOCH ₂ COMe	9,0				
PhCOCH ₂ COMe	9,6		PhO-	9,9	16,4
CH_3NO_2	10,2	17,2			
MeCOCH ₂ CO ₂ Et	10,7		Et ₃ N	10,7	
MeCOCH(Me)COMe	11,0		Et ₂ NH	11,0	
NCCH ₂ CN	11,2	11,1			
CH ₂ (SO ₂ Et) ₂	12,2	14,4			
CH ₂ (CO ₂ Et) ₂	12,7				
Cyklopentadien	15,0				
PhSCH ₂ COMe		18,7			
PhCH ₂ COMe		19,8	MeO-	15,5	29,0

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS

KYSELINA	pK _a	pK _{DMSO}	BÁZE	pK _a (KONJUG.KYSELINY)	pK _{DMSO}
EtCH(CO ₂ Et) ₂	15,0		HO-	15,7	31,4
PhSCH ₂ CN		20,8			
PhCH ₂ CN		21,9			
$(PhCH_2)_2SO_2$		23,9	EtO-	15,9	29,8
PhCOCH ₃	15,8	24,7	Me ₃ CO-	19,0	32,2
CH ₃ COCH ₃	20,0	26,5			
MeCH ₂ COCH ₂ Me		27,1			
Fluoren	20,5	22,6			
PhSO ₂ CH ₃		29,0			
CH ₃ CN	25	31,3			
Ph ₃ CH	33,0	30,6	NH ₂ -	35,0	41
PhCH ₃		42	MeSOCH ₂ -	35,0	35,1
CH ₄		55	Et ₂ N-	36,0	

acetoacetate synthesis

malonic ester synthesis

selenation of carbonyl compounds

• preparation of α,β -unsaturated carbonyl compounds

oxidation of enolates

J. Am. Chem. Soc. 1974, 96, 5944.

J. Am. Chem. Soc. 1990, 112, 6679.

MoOPh: MoO₅+pyr.+HMPA

(camphorsulfonyl)oxaziridine

$$\begin{array}{cccc}
R & R & \\
\hline
 & 1. \text{ LiNEt}_2 \\
\hline
 & 2. & Ph \\
\hline
 & PhO_2S & O \\
\hline
 & (Davis' oxaziridine)
\end{array}$$

J. Am. Chem. Soc. 1988, 110, 649.

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS KINETIC VS. THERMODYNAMIC ENOLATE

Formation of *kinetic* product $(k_1 > k_2; k_1 >> k_{-1})$ is typically observed under these conditions:

- aprotic solvent;
- strong non-nucleophilic base;
- low temperature;
- short reaction time (equilibrium not established).

Formation of *thermodynamic* product $(k_1 \sim k_{-1})$ is typically observed under these conditions:

- protic solvent (deprotonation-reprotonation);
- weaker bases;
- higher temperature;
- longer reaction time (sufficient for establishing equilibrium).

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS KINETIC VERSUS THERMODYNAMIC PRODUCT

Báze (teplota ve °C)	Podmínky	Poměr A/B
$LiN(i-C_3H_7)_2 (0)$	Kinetické	99:1
KN(SiMe ₃) ₂ (-78)	Kinetické	95:5
Ph ₃ CLi (-78)	Kinetické	90:10
Ph ₃ CK	Kinetické	67:33
Ph ₃ CLi	Termodynamické	10:90
NaH	Termodynamické	26:74
Ph ₃ CK	Termodynamické	38:62

enamines

• "nitrogenous enolates"; some can be isolated

planar geometry

- formation of kinetic isomer
- enamines react well with C-electrophiles

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

Tetrahedron 1958, 3, 314.

silyl enol ethers

$$\begin{array}{ccc}
0 & & & \text{OSiR}_3 \\
R^1 & & & & \\
\end{array}$$

- formation of Si-O bond; irreversible
- silyl enol ethers are relatively stable

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{O} \end{array}$$

J. Org. Chem. 2000, 65, 7602.

Mukaiyama (aldol) reaction

L. A.: TiCl₄, SnCl₄, BF₃.OEt₂

J. Am. Chem. Soc. 1974, 96, 7503.

Sakurai allylation

• quite universal, mild conditions (cf. addition of organometalic reagents)

TMS +
$$\frac{\text{TiCl}_4}{\text{CH}_2\text{Cl}_2}$$
82%

J. Am. Chem. Soc. 1977, 99, 1673.

Org. Lett. 2000, 2, 945.

Saegusa oxidation

recent review: Organic Reactions 98.

very mild conditions

OSiR₃
$$R_2$$
 $Pd(OAc)_2$ R_1 R_2 $Pd(OAc)_2$ R_3

J. Org. Chem. 1978, 43, 1011.

$$R_3SiO Pd(OAc)_2$$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_3SiOAc$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_3SiOAc$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_1 \longrightarrow R_2$
 $R_2 \longrightarrow R_1 \longrightarrow R_2$

J. Org. Chem. 2002, 67, 2735.

Aldol reaction: 2 new stereogenic centers can be created

$$R^1$$
 R^2 + R^3 R^3 or R^4 R^3 R^2 R^3 R^3

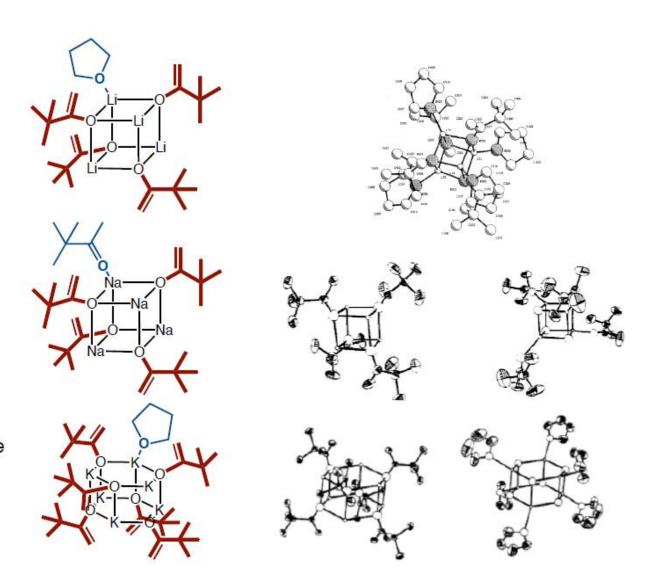
• sterochemistry of products depends on the configuration of the starting enolates

GEOMETRY OF ENOLATES - IRELAND MODEL

GEOMETRY OF ENOLATES - EFFECT OF BASE

BÁZE	R_1 =Et $(Z:E)$	R_1 =cyklohexyl ($Z:E$)
LiN(i-Pr) ₂	30:70	61:39
LiN(SiMe ₃) ₂	70:30	85 : 15
LiN(SiEt ₃) ₂	99:1	96 : 4
LiN(SiMe ₂ Ph) ₂	100:0	100:0

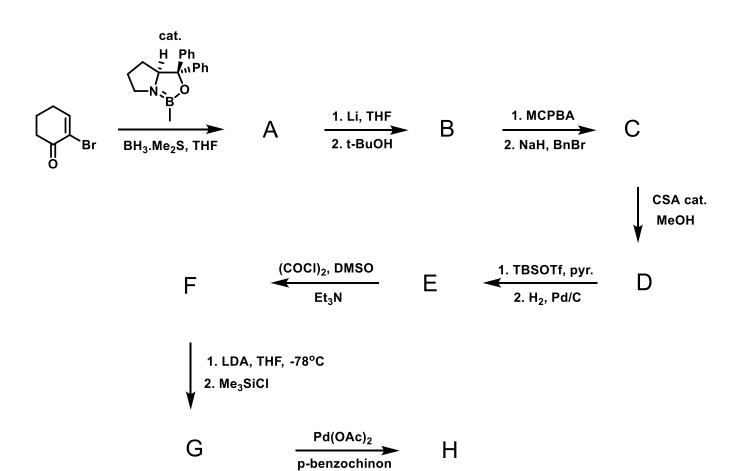
GEOMETRY OF ENOLATES - EFFECT OF SUBSTITUENT


BÁZE (rozpouštědlo)	\mathbb{R}^1	Z/E poměr
LDA (THF)	OMe, Ot-Bu	5:95
LDA (THF)	S <i>t</i> -Bu	5:95
LDA (THF)	Et	23:77
LDA (THF)	<i>i</i> -Pr	100:0
LDA (THF)	<i>t</i> -Bu	60 : 40
LDA (THF)	Ph	100:0
LDA (THF)	NEt ₂	100:0
s-BuLi (THF)	NEt ₂	75:25

enolates often form clusters

Lithium enolate

Sodium enolate


Potassium enolate

J. Am. Chem. Soc. 1986, 108, 462. Helv. Chim. Acta 1981, 64, 2617.

SELECTIVE FORMATION OF E OR Z ENOL BORINATES

 R_2BCI with large alkyls (e.g. cyclohexyl) + small base (Et_3N) -> E enolates R_2BOTf with small alkyls (e.g. n-butyl) + large base (DIPEA) -> Z enolates

SO₃H CSA