Lecture 11: INEPT, HSQC

Simultaneous spin echo

 $\hat{\rho}(a) = \frac{1}{2}\mathcal{I}_t + \frac{1}{2}\kappa_1\mathcal{I}_z + \frac{1}{2}\kappa_2\mathcal{I}_z$

$$\hat{\rho}(\mathbf{b}) = \frac{1}{2} \mathscr{I}_t - \frac{1}{2} \kappa_1 \mathscr{I}_y + \frac{1}{2} \kappa_2 \mathscr{I}_z$$

 $\hat{\rho}(\mathbf{e}) = \frac{1}{2}\mathcal{I}_t + \frac{1}{2}\kappa_1 \cos\frac{\pi J}{2J}\mathcal{I}_y - \frac{1}{2}\kappa_1 \sin\frac{\pi J}{2J}(2\mathcal{I}_x\mathcal{I}_z) - \frac{1}{2}\kappa_2\mathcal{I}_z$

 $\hat{\rho}(\mathbf{e}) = \frac{1}{2} \mathscr{I}_t - \frac{1}{2} \kappa_1 \left(2 \mathscr{I}_x \mathscr{S}_z \right) - \frac{1}{2} \kappa_2 \mathscr{S}_z$

$$\hat{\rho}(f) = \frac{1}{2}\mathscr{I}_t + \frac{1}{2}\kappa_1\left(2\mathscr{I}_z\mathscr{I}_z\right) - \frac{1}{2}\kappa_2\mathscr{I}_z$$

 $\hat{\rho}(g) = \frac{1}{2} \mathscr{I}_t - \frac{1}{2} \kappa_1 \left(2 \mathscr{I}_z \mathscr{S}_y \right) + \frac{1}{2} \kappa_2 \mathscr{S}_y$

 $\hat{\rho}(g) = \frac{1}{2} \mathscr{I}_t - \frac{1}{2} \kappa_1 \left(2 \mathscr{I}_z \mathscr{I}_y \right) + \frac{1}{2} \kappa_2 \mathscr{I}_y$

Relaxation with *J*-coupling

• \hat{H}_J : $\mathscr{I}_{1x} \to 2\mathscr{I}_{1y}\mathscr{I}_{2z}$ $\mathscr{I}_{1y} \to -2\mathscr{I}_{1x}\mathscr{I}_{2z}$ \Rightarrow $\mathscr{I}_{1+} = \mathscr{I}_{1x} + i\mathscr{I}_{1y} \to -i2\mathscr{I}_{1+}\mathscr{I}_{2z}$ different R_2

• $\mathscr{I}_{1+} \leftrightarrow 2\mathscr{I}_{1+}\mathscr{I}_{2z} \quad \Rightarrow \quad \overline{R}_2$

• relaxation of \mathscr{I}_{1+} depends on $2\mathscr{I}_{1+}\mathscr{I}_{2z}$ relaxation of $2\mathscr{I}_{1+}\mathscr{I}_{2z}$ depends on \mathscr{I}_{1+} **cross-correlated cross-relaxation** (ingnored here) cf. cross-relaxation of $\Delta \langle M_{1z} \rangle$ and $\Delta \langle M_{2z} \rangle$ (NOE)

$$\langle M_{+} \rangle \propto \frac{\kappa_{1}}{4} \mathrm{e}^{-\overline{R}_{2}t} \left(\mathrm{e}^{\mathrm{i}(\Omega_{2}-\pi J)t} - \mathrm{e}^{\mathrm{i}(\Omega_{2}+\pi J)t} \right)$$
$$+ \frac{\kappa_{2}}{4} \mathrm{e}^{-\overline{R}_{2}t} \left(\mathrm{e}^{\mathrm{i}(\Omega_{2}-\pi J)t} + \mathrm{e}^{\mathrm{i}(\Omega_{2}+\pi J)t} \right)$$

$$\Re\{Y(\omega)\} = \frac{N\gamma_{1}\gamma_{2}\hbar^{2}B_{0}}{16k_{B}T} \left(\frac{\overline{R}_{2}}{\overline{R}_{2}^{2} + (\omega - \Omega_{2} + \pi J)^{2}} - \frac{\overline{R}_{2}}{\overline{R}_{2}^{2} + (\omega - \Omega_{2} - \pi J)^{2}}\right) + \frac{N\gamma_{2}\gamma_{2}\hbar^{2}B_{0}}{16k_{B}T} \left(\frac{\overline{R}_{2}}{\overline{R}_{2}^{2} + (\omega - \Omega_{2} + \pi J)^{2}} + \frac{\overline{R}_{2}}{\overline{R}_{2}^{2} + (\omega - \Omega_{2} - \pi J)^{2}}\right)$$

 ω

anti-phase vs. in phase coherences

Phase cycling

 $\phi = +90^{\circ}, \quad y: \quad \hat{\rho}(g) = \frac{1}{2}\mathscr{I}_t - \frac{1}{2}\kappa_1\left(2\mathscr{I}_z\mathscr{I}_y\right) + \frac{1}{2}\kappa_2\mathscr{I}_y$ $\phi = -90^{\circ}, \quad -y: \quad \hat{\rho}(g) = \frac{1}{2}\mathscr{I}_t + \frac{1}{2}\kappa_1\left(2\mathscr{I}_z\mathscr{I}_y\right) + \frac{1}{2}\kappa_2\mathscr{I}_y$ difference: $\hat{\rho}(g) = -\kappa_1\left(2\mathscr{I}_z\mathscr{I}_y\right)$

Phase cycling

$$\Re\{Y(\omega)\} = \frac{\mathcal{N}\gamma_1\gamma_2\hbar^2 B_0}{16k_{\mathsf{B}}T} \left(\frac{\overline{R}_2}{\overline{R}_2^2 + (\omega - \Omega_2 + \pi J)^2} - \frac{\overline{R}_2}{\overline{R}_2^2 + (\omega - \Omega_2 - \pi J)^2}\right)$$

INEPT with phase cycle:

INEPT vs. direct excitation

INEPT vs. direct excitation

INEPT (phase cycled): $\Re\{Y(\omega)\} =$

$$\frac{\mathcal{N}\gamma_1\gamma_2\hbar^2 B_0}{16k_{\mathsf{B}}T} \left(\frac{\overline{R}_2}{\overline{R}_2^2 + (\omega - \Omega_2 + \pi J)^2} - \frac{\overline{R}_2}{\overline{R}_2^2 + (\omega - \Omega_2 - \pi J)^2} \right)$$

Direct excitation: $\Re\{Y(\omega)\} =$

 $\frac{\mathcal{N}\gamma_2\gamma_2\hbar^2{}^{B_0}}{16k_{\mathsf{B}}T}\left(\frac{\overline{R}_2}{\overline{R}_2^2+(\omega-\Omega_2+\pi J)^2}+\frac{\overline{R}_2}{\overline{R}_2^2+(\omega-\Omega_2-\pi J)^2}\right)$

 $\gamma_1/\gamma_2 pprox \mathbf{4}$ for ^{13}C $\gamma_1/\gamma_2 pprox \mathbf{10}$ for ^{15}N

Insensitive Nuclei Enhanced by Polarization Transfer

INEPT vs. direct excitation:

 ω

HSQC Spectroscopy (Heteronuclear Single-Quantum Coherence)

Using results of already analyzed building blocks (echoes) Ignoring components of $\hat{\rho}$ that cannot produce signal

HSQC Spectroscopy

Measured quantity: M_{1+} (M_{2+} does not pass the frequency filters)

Only $\mathscr{I}_x \widehat{M}_{1+}$ and $\mathscr{I}_y \widehat{M}_{1+}$ have non-zero traces: $\operatorname{Tr} \left\{ \mathscr{I}_x (\mathscr{I}_{1x} + i\mathscr{I}_{1y}) \right\} = 1 \\
\operatorname{Tr} \left\{ \mathscr{I}_y (\mathscr{I}_{1x} + i\mathscr{I}_{1y}) \right\} = i$

Directly measurable: \mathscr{I}_x , \mathscr{I}_y (in-phase single-quantum of nucleus 1) Evolve to measurable due to J coupling:

 $2\mathscr{I}_x\mathscr{S}_z$, $2\mathscr{I}_y\mathscr{S}_z$ (anti-phase single-quantum of nucleus 1) Need 90° pulse + J coupling:

 \mathscr{I}_z (90° pulse), \mathscr{I}_z , $2\mathscr{I}_z\mathscr{I}_z$ (populations, longitudinal polarization) \mathscr{I}_x , \mathscr{I}_y , $2\mathscr{I}_z\mathscr{I}_x$, $2\mathscr{I}_z\mathscr{I}_y$ (single-quantum of nucleus 2) $2\mathscr{I}_x\mathscr{I}_x$, $2\mathscr{I}_y\mathscr{I}_y$, $2\mathscr{I}_x\mathscr{I}_y$, $2\mathscr{I}_y\mathscr{I}_x$ (multiple-quantum) Never measurable: \mathscr{I}_t (unit matrix)

HSQC Spectroscopy

BLOCK 1: INEPT

 $\hat{\rho}(a) = \frac{1}{2}\mathscr{I}_t + \frac{1}{2}\kappa_1(\mathscr{I}_z) + \frac{1}{2}\kappa_2\mathscr{I}_z \rightarrow$ $\hat{\rho}(e) = \frac{1}{2}\mathscr{I}_t - \frac{1}{2}\kappa_1(2\mathscr{I}_z\mathscr{I}_y) + \frac{1}{2}\kappa_2\mathscr{I}_y$

HSQC Spectroscopy

BLOCK 2: DECOUPLING ECHO, INCREMENTED t_1

 $\hat{\rho}(e) = \frac{1}{2}\mathscr{I}_{t} - \frac{1}{2}\kappa_{1}\left(2\mathscr{I}_{z}\mathscr{I}_{y}\right) + \frac{1}{2}\kappa_{2}\mathscr{I}_{y} \rightarrow \hat{\rho}(f) = \frac{1}{2}\mathscr{I}_{t} + \frac{1}{2}\kappa_{1}\left(c_{21}2\mathscr{I}_{z}\mathscr{I}_{y} - s_{21}2\mathscr{I}_{z}\mathscr{I}_{x}\right) + \frac{1}{2}\kappa_{2}\left(c_{21}\mathscr{I}_{y} - s_{21}\mathscr{I}_{x}\right)$

BLOCK 3: TWO 90° PULSES, PHASE \times (¹³C or ¹⁵N)

 $\hat{\rho}(f) = \frac{1}{2}\mathscr{I}_{t} + \frac{1}{2}\kappa_{1}\left(c_{21}\mathscr{I}_{z}\mathscr{I}_{y} - s_{21}\mathscr{I}_{z}\mathscr{I}_{x}\right) + \frac{1}{2}\kappa_{2}\left(c_{21}\mathscr{I}_{y} - s_{21}\mathscr{I}_{x}\right)$ $\hat{\rho}(g) = \frac{1}{2}\mathscr{I}_{t} - \frac{1}{2}\kappa_{1}\left(c_{21}\mathscr{I}_{y}\mathscr{I}_{z} - s_{21}\mathscr{I}_{y}\mathscr{I}_{x}\right) + \frac{1}{2}\kappa_{2}\left(c_{21}\mathscr{I}_{z} - s_{21}\mathscr{I}_{x}\right)$

BLOCK 3: TWO 90° PULSES, PHASE \times (¹³C or ¹⁵N)

 $\hat{\rho}(f) = \frac{1}{2}\mathscr{I}_t + \frac{1}{2}\kappa_1 \left(c_{21} \mathscr{I}_z \mathscr{I}_y - s_{21} \mathscr{I}_z \mathscr{I}_x \right) + \frac{1}{2}\kappa_2 \left(c_{21} \mathscr{I}_y - s_{21} \mathscr{I}_x \right)$ $\hat{\rho}(g) = -\frac{1}{2}\kappa_1 c_{21} \mathscr{I}_y \mathscr{I}_z + \text{unmeasurable} \text{ (no more 90° pulses)}$

BLOCK 4: SIMULTANEOUS ECHO

 $\hat{\rho}(g) = -\frac{1}{2}\kappa_1 c_{21} 2 \mathscr{I}_y \mathscr{I}_z + \text{ unmeasurable } \rightarrow \\ \hat{\rho}(h) = \frac{1}{2}\kappa_1 c_{21} \mathscr{I}_x + \text{ unmeasurable}$

BLOCK 3: TWO 90° PULSES, PHASE y (13 C or 15 N)

 $\hat{\rho}(f) = \frac{1}{2}\mathscr{I}_{t} + \frac{1}{2}\kappa_{1}\left(c_{21}\mathscr{I}_{z}\mathscr{I}_{y} - s_{21}\mathscr{I}_{z}\mathscr{I}_{x}\right) + \frac{1}{2}\kappa_{2}\left(c_{21}\mathscr{I}_{y} - s_{21}\mathscr{I}_{x}\right)$ $\hat{\rho}(g) = \frac{1}{2}\mathscr{I}_{t} - \frac{1}{2}\kappa_{1}\left(c_{21}\mathscr{I}_{y}\mathscr{I}_{y} + s_{21}\mathscr{I}_{y}\mathscr{I}_{z}\right) + \frac{1}{2}\kappa_{2}\left(c_{21}\mathscr{I}_{y} + s_{21}\mathscr{I}_{z}\right)$

BLOCK 3: TWO 90° PULSES, PHASE y (13 C or 15 N)

 $\hat{\rho}(f) = \frac{1}{2}\mathscr{I}_t + \frac{1}{2}\kappa_1 \left(s_{21}2\mathscr{I}_z\mathscr{I}_y - s_{21}2\mathscr{I}_z\mathscr{I}_x\right) + \frac{1}{2}\kappa_2 \left(c_{21}\mathscr{I}_y - s_{21}\mathscr{I}_x\right)$ $\hat{\rho}(g) = -\frac{1}{2}\kappa_1 s_{21}2\mathscr{I}_y\mathscr{I}_z + \text{unmeasurable (no more 90° pulses)}$

BLOCK 4: SIMULTANEOUS ECHO

 $\hat{\rho}(g) = -\frac{1}{2}\kappa_1 s_{21} 2 \mathscr{I}_y \mathscr{I}_z + \text{unmeasurable} \rightarrow \hat{\rho}(h) = \frac{1}{2}\kappa_1 s_{21} \mathscr{I}_x + \text{unmeasurable}$

HSQC Spectroscopy – Hypercomplex

HSQC Spectroscopy – Hypercomplex

 $\Omega_1 \omega_2$

$$\Re\{Y(\omega)\} = \frac{N\gamma_1^2 \hbar^2 B_0}{8k_{\mathsf{B}}T} \frac{\overline{R}_{2,2}^2}{\overline{R}_{2,2}^2 + (\omega - \Omega_2)^2} \frac{R_{2,1}^2}{R_{2,1}^2 + (\omega - \Omega_1)^2}$$

$$\Re\{Y(\omega)\} = \frac{N\gamma_1^2 \hbar^2 B_0}{8k_{\mathsf{B}}T} \frac{\overline{R}_{2,2}^2}{\overline{R}_{2,2}^2 + (\omega - \Omega_2)^2} \frac{R_{2,1}^2}{R_{2,1}^2 + (\omega - \Omega_1)^2}$$

HSQC spectrum of a 20 kDa protein

Benefits of HSQC

• High sensitivity for $^{13}{\rm C}$ or $^{15}{\rm N}$ (higher by $(\gamma_1/\gamma_2)^{5/2}$ than by the direct detection

• High resolution

Second dimension and less peaks in spectrum (only $^{13}{\rm C}/^{15}{\rm N}$ -bonded protons and protonated $^{13}{\rm C}/^{15}{\rm N}$ visible)

• Important structural information

 $^{1}\text{H}\text{-}^{13}\text{C}$ and $^{1}\text{H}\text{-}^{15}\text{N}$ correlation

(it tells us which proton is attached to which ^{13}C or ^{15}N).

HOMEWORK:

COSY

Section 11.3

