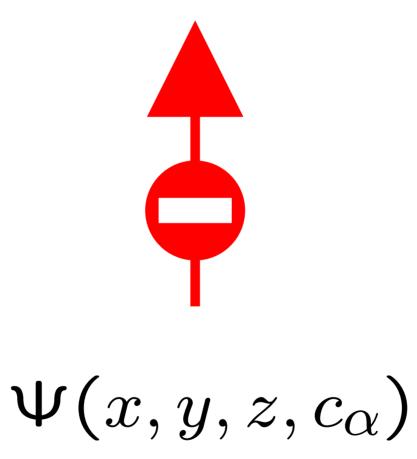
Lecture 6: Ensemble of non-interacting spins

1 particle:



28 particles:



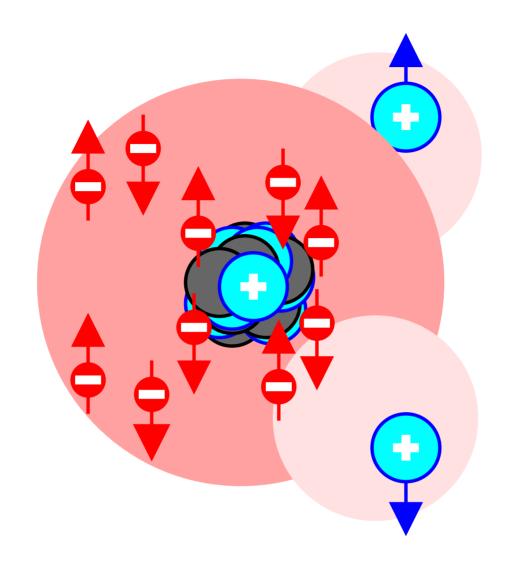
 $\Psi(x(O), x(H1), x(H2), x(e1), x(e2), \dots$

1 000 000 000 000 000 000 000 000 000 particles:

Ψ???

 $\Psi(x, y, z, c_{\alpha})$

$$\Psi = \sqrt{\frac{1}{h^3}} \cdot e^{\frac{i}{\hbar}p_x x} \cdot e^{\frac{i}{\hbar}p_y y} \cdot e^{\frac{i}{\hbar}p_z z} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$



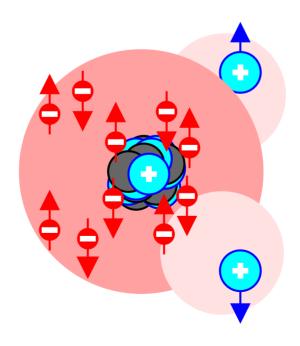
$$\Psi =$$

$$\phi(x(O), x(H1), x(e1), ...) \cdot \psi(c_{\alpha,1}, c_{\alpha,2})$$
?

• electron motions: $> 10^{16} \, \mathrm{s}^{-1}$

 \bullet molecular rotations: $10^8\,\text{s}^{-1}$ (20 kDa protein) to $10^{12}\,\text{s}^{-1}$ (water)

ullet magnetic moment precession: $\sim 10^9\, s^{-1}$

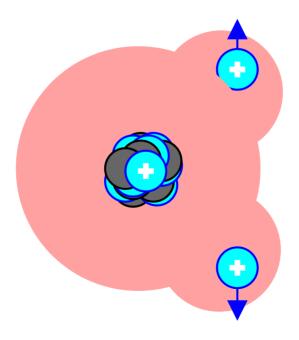


• electron motions: $> 10^{16} \, \text{s}^{-1}$

• molecular rotations: $10^8 \, \mathrm{s}^{-1}$ (20 kDa protein) to $10^{12} \, \mathrm{s}^{-1}$ (water)

• magnetic moment precession: $\sim 10^9 \, \mathrm{s}^{-1}$ at $B_0 = 24 \, \mathrm{T}$

electrons as "blurred cloud of a given shape":

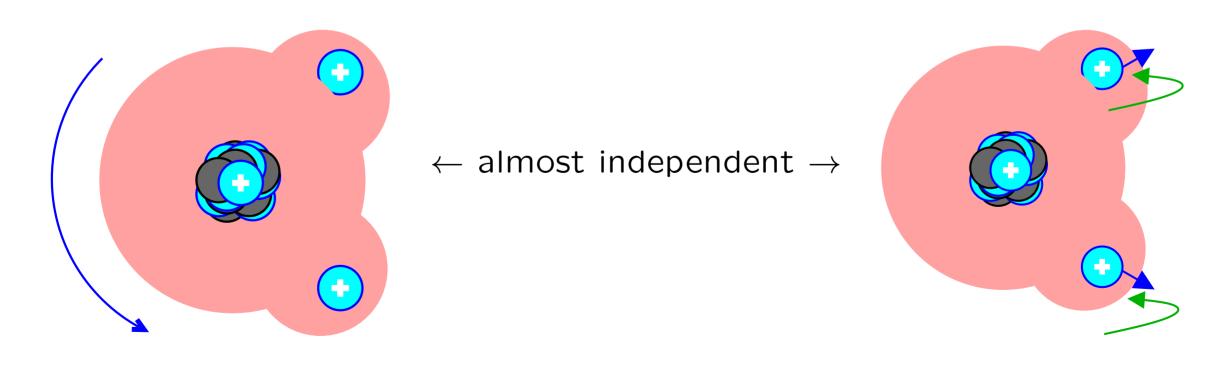


• electron motions: $10^{16} \, \text{s}^{-1}$

• molecular rotations: $10^8 \, \mathrm{s}^{-1}$ (20 kDa protein) to $10^{12} \, \mathrm{s}^{-1}$ (water)

• magnetic moment precession: $\sim 10^9 \, \mathrm{s}^{-1}$ at $B_0 = 24 \, \mathrm{T}$

 $molecular\ motions \ \leftarrow almost\ independent \rightarrow \ magnetic\ moment\ precession$



$$\Psi = \phi(x_1, x_2, x_3, \ldots) \cdot \psi(c_1, c_2, c_3, \ldots)$$

$$\psi(c_1, c_2, c_3, \ldots) = \psi_1(c_1) \cdot \psi_2(c_2) \cdot \psi_3(c_3) \ldots ?$$

Is it possible to separate ψ of individual magnetic moments? Yes, if interactions of magnetic moments

- depend only on external fields
 - ⇒ interactions change energy eigenvalues, not eigenfunctions

 the external fields are homogeneous (same in the whole sample) not true in MRI.

Then,
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ form basis for all ψ 's

 \Rightarrow operators are represented by 2 \times 2 matrices.

Pure state:

Expected value $\langle A \rangle$ of a quantity A for single nucleus:

$$\langle A \rangle = \operatorname{Tr} \left\{ \begin{pmatrix} c_{\alpha} c_{\alpha}^* & c_{\alpha} c_{\beta}^* \\ c_{\beta} c_{\alpha}^* & c_{\beta} c_{\beta}^* \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \right\}$$

Mixed state:

Expected value $\langle A \rangle$ for multiple nuclei with the same basis:

$$\langle A \rangle = \operatorname{Tr} \left\{ \begin{pmatrix} c_{\alpha,1} c_{\alpha,1}^* & c_{\alpha,1} c_{\beta,1}^* \\ c_{\beta,1} c_{\alpha,1}^* & c_{\beta,1} c_{\beta,1}^* \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} c_{\alpha,2} c_{\alpha,2}^* & c_{\alpha,2} c_{\beta,2}^* \\ c_{\beta,2} c_{\alpha,2}^* & c_{\beta,2} c_{\beta,2}^* \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} + \cdots \right.$$

$$= \operatorname{Tr} \left\{ \begin{pmatrix} \begin{pmatrix} c_{\alpha,1} c_{\alpha,1}^* & c_{\alpha,1} c_{\beta,1}^* \\ c_{\beta,1} c_{\alpha,1}^* & c_{\beta,1} c_{\beta,1}^* \end{pmatrix} + \begin{pmatrix} c_{\alpha,2} c_{\alpha,2}^* & c_{\alpha,2} c_{\beta,2}^* \\ c_{\beta,2} c_{\alpha,2}^* & c_{\beta,2} c_{\beta,2}^* \end{pmatrix} + \cdots \right) \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \right\}$$

$$= \operatorname{NTr} \left\{ \underbrace{\begin{pmatrix} \overline{c_{\alpha} c_{\alpha}^*} & \overline{c_{\alpha} c_{\beta}^*} \\ \overline{c_{\beta} c_{\alpha}^*} & \overline{c_{\beta} c_{\beta}^*} \end{pmatrix}}_{\widehat{\rho}} \underbrace{\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}}_{\widehat{A}} \right\} = \operatorname{NTr} \left\{ \widehat{\rho} \widehat{A} \right\}.$$

 $\widehat{
ho}$ is the (probability) density matrix

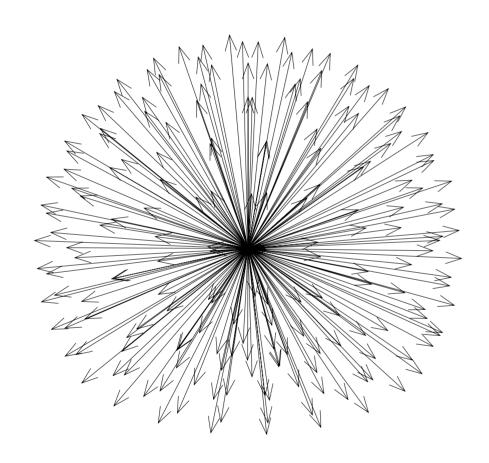
- ullet Two-dimensional basis for ${\mathcal N}$ uncoupled nuclei.
- Statistical approach: macroscopic result mixed state no insight into microscopic states.
- ullet Choice of the basis of ψ is encoded in definition of $\widehat{
 ho}$ (eigenfunctions of \widehat{I}_z)
- The state is described not by a vector, but by a matrix $\hat{\rho}$ is a matrix like matrices representing the operators.

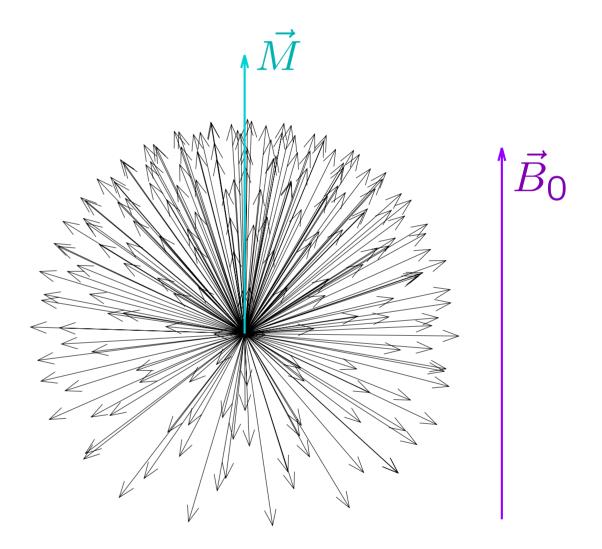
Populations

- ullet Diagonal elements of $\widehat{
 ho}$ or matrices with diagonal elements only.
- ullet describe *longitudinal polarization* of $ec{\mu}$ (distribution along $ec{B}_0$)
- ullet real numbers, $\overline{c_{lpha}c_{lpha}^*}+\overline{c_{eta}c_{eta}^*}=1$
- $\overline{c_{\alpha}c_{\alpha}^{*}}=1/2$: no net polarization along \overrightarrow{B}_{0} equal populations of the α and β states

 It does not indicate that all spins must be either in α or β state!

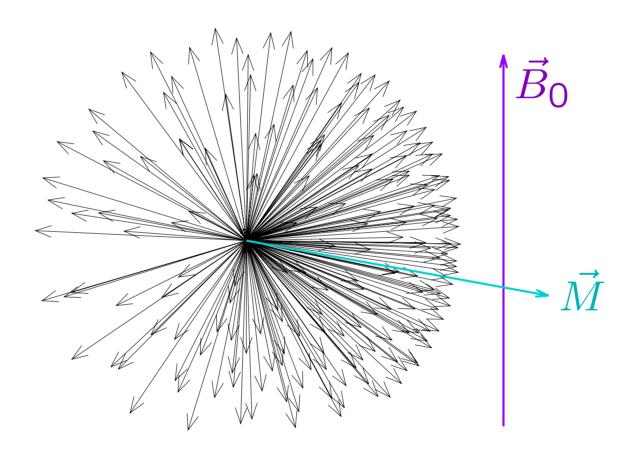
 Any combination of superposition states,
 - $\vec{\mu}$ pointing in all possible directions as long as $M_z=0$
 - Probability of 50 % spins in α state, 50 % spins in β state negligible

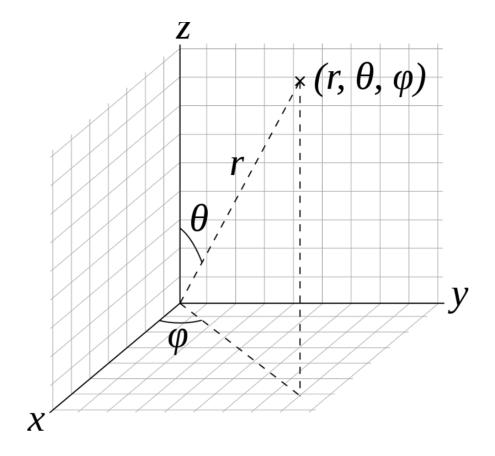




Coherences

- Off-diagonal elements or matrices with diagonal elements only
- Pure state: $c_{\beta}c_{\alpha}^* = |c_{\alpha}||c_{\beta}|e^{-i(\phi_{\alpha}-\phi_{\beta})}$
- Mixed state: $\overline{c_{\beta}c_{\alpha}^{*}}$ is complex number $\overline{|c_{\alpha}||c_{\beta}|}$ · $e^{-i(\phi_{\alpha}-\phi_{\beta})}$ amplitude $\overline{|c_{\alpha}||c_{\beta}|}$, phase given by $e^{-i(\phi_{\alpha}-\phi_{\beta})}$
- $\bullet \ \overline{c_{\beta}c_{\alpha}^{*}} \cdot \overline{c_{\alpha}c_{\beta}^{*}} = 1$
- Describe transverse polarization of $\vec{\mu}$ in the plane $\perp \vec{B}_0$ with magnitude $\overline{|c_{\alpha}||c_{\beta}|}$ and in direction given by the phase.
- Incoherent superposition of states α, β : $e^{-i(\phi_{\alpha} \phi_{\beta})} = 0 \Rightarrow \overline{c_{\beta}c_{\alpha}^*} = 0$
- Coherent superposition of states α, β : $\overline{c_{\beta}c_{\alpha}^{*}} \neq 0$
- Coherent evolution: $\phi_{\alpha,j}$ and $\phi_{\beta,j}$ vary, but with identical frequency ω_0 for all j: $e^{-i(\phi_{\alpha}-\phi_{\beta})}=e^{-i(\phi_{\alpha}(0)-\phi_{\beta}(0))}\cdot e^{i\omega_0 t}$





$$|\vartheta_j,\varphi_j\rangle = \begin{pmatrix} \cos\frac{\vartheta_j}{2}\mathrm{e}^{-\mathrm{i}\frac{\varphi_j}{2}} \\ \sin\frac{\vartheta_j}{2}\mathrm{e}^{+\mathrm{i}\frac{\varphi_j}{2}} \end{pmatrix} = \begin{pmatrix} c_{\alpha,j} \\ c_{\beta,j} \end{pmatrix} = c_{\alpha,j}|\alpha\rangle + c_{\beta,j}|\beta\rangle$$

$$\overline{c_{\beta}c_{\alpha}^{*}} = \cos\frac{\vartheta}{2}\sin\frac{\vartheta}{2}e^{+i\varphi} = \frac{1}{2}\overline{\sin\vartheta}e^{+i\varphi} \qquad 2\sin\alpha\cos\alpha = \sin(2\alpha)$$

Independent distribution of artheta and arphi:

$$\overline{c_{\beta}c_{\alpha}^{*}} = \overline{\cos\frac{\vartheta}{2}\sin\frac{\vartheta}{2}e^{+i\varphi}} = \frac{1}{2}\overline{\sin\vartheta}e^{+i\varphi} = \frac{1}{2}\overline{\sin\vartheta} \cdot \overline{e^{+i\varphi}}$$

Evolution in \vec{B}_0 : Hamiltonian $\hat{H} = -\gamma B_0 \hat{I}_z = \omega_0 \hat{I}_z$

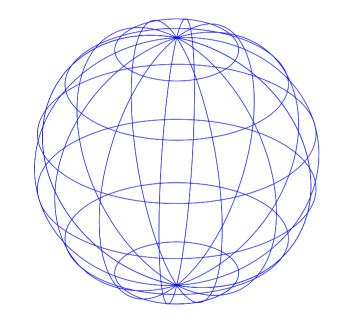
$$c_{\alpha}(t) = c_{\alpha}(t=0)e^{+i\frac{\gamma B_{0}}{2}t} = \cos\frac{\vartheta}{2}e^{-i\frac{\varphi(t=0)}{2}}e^{-i\frac{\omega_{0}}{2}t}$$
 $c_{\beta}(t) = c_{\beta}(t=0)e^{-i\frac{\gamma B_{0}}{2}t} = \sin\frac{\vartheta}{2}e^{+i\frac{\varphi(t=0)}{2}}e^{+i\frac{\omega_{0}}{2}t}$

$$c_{\beta}(t) = c_{\beta}(t=0)e^{-i\frac{\gamma B_0}{2}t} = \sin\frac{v}{2}e^{+i\frac{\varphi(t=0)}{2}}e^{+i\frac{\omega_0}{2}t}$$

$$\overline{c_{\beta}c_{\alpha}^{*}}(t) = \frac{1}{2}\overline{\sin\vartheta} \ \overline{e^{i\varphi(t=0)}} \ e^{i\omega_{0}t}$$

Coherent evolution if $\omega_0 = \gamma B_0$ is the same for all j

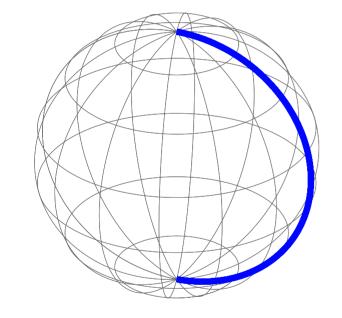
Defined $\varphi(t=0)=0 \Rightarrow \vartheta$ distributed on the whole sphere



$$\overline{e^{i\varphi(t=0)}} = 0 \quad \Rightarrow \quad \overline{\cos \vartheta} = 0 \quad \overline{\sin \vartheta} = 0$$

Incoherent *superposition* of $|\alpha\rangle$ and $|\beta\rangle$

Random distribution of $\varphi(t=0) \Rightarrow \vartheta$ distributed on a meridian



$$\overline{e^{i\varphi(t=0)}} = 1 \quad \Rightarrow \quad \overline{\cos \vartheta} = 0 \quad \overline{\sin \vartheta} = \frac{1}{2}$$

Coherent *superposition* of $|\alpha\rangle$ and $|\beta\rangle$

Basis:

• Any 2×2 matrix can be written as a linear combination of four 2×2 matrices. Such four matrices can be used as a *basis*

Example:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Basis:

A good basis is a set of orthonormal matrices:

$$\operatorname{Tr}\{\widehat{A}_{j}^{\dagger}\widehat{A}_{k}\} = \delta_{jk}$$
 $j,k \in \{1,2,3,4\},$
 $\delta_{ik} = 1 \text{ for } j = k, \ \delta_{ik} = 0 \text{ for } j \neq k.$

 $\delta_{jk} = 1$ for j = k, $\delta_{jk} = 0$ for $j \neq k$,

 $\widehat{A}_{i}^{\dagger}$ is an *adjoint* matrix of \widehat{A}_{i}

(adjoint matrix: matrix obtained from \widehat{A}_i by exchanging rows and columns and replacing all numbers with their complex conjugates.)

E.g., for
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$: calculate $\begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a^*e + c^*g & a^*f + c^*h \\ b^*e + d^*g & b^*f + d^*h \end{pmatrix}$ Trace: $a^*e + c^*g + b^*f + d^*h$

Example:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

The basis is orthonormal, e.g.:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \text{ trace: } 0 + 0 = 0$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \text{ trace: } 0 + 0 = 1$$

Basis sets: Cartesian

$$\sqrt{2}\mathscr{I}_t = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sqrt{2}\mathscr{I}_z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sqrt{2}\mathscr{I}_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad \sqrt{2}\mathscr{I}_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \tag{1}$$

$$\mathscr{I}_t = \frac{1}{2} \, \widehat{1} \qquad \mathscr{I}_x = \frac{1}{\hbar} \, \widehat{I}_x \qquad \mathscr{I}_y = \frac{1}{\hbar} \, \widehat{I}_y \qquad \mathscr{I}_z = \frac{1}{\hbar} \, \widehat{I}_z \qquad (2)$$

Basis sets: Single-element

$$\mathscr{I}_{\alpha} = \mathscr{I}_t + \mathscr{I}_z = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $\mathscr{I}_{\beta} = \mathscr{I}_t - \mathscr{I}_z = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$\mathscr{I}_{+} = \mathscr{I}_{x} + i\mathscr{I}_{y} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \mathscr{I}_{-} = \mathscr{I}_{x} - i\mathscr{I}_{y} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \tag{3}$$

Basis sets: Mixed

$$\sqrt{2}\mathscr{I}_t = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sqrt{2}\mathscr{I}_z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathscr{I}_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \mathscr{I}_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Liouville - von Neumann equation

evolution in time

$$\frac{\mathrm{d}\widehat{\rho}}{\mathrm{d}t} = \frac{\mathrm{i}}{\hbar}(\widehat{\rho}\widehat{H} - \widehat{H}\widehat{\rho}) = \frac{\mathrm{i}}{\hbar}[\widehat{\rho}, \widehat{H}] = -\frac{\mathrm{i}}{\hbar}[\widehat{H}, \widehat{\rho}]$$
 (5)

or in the units of (angular) frequency

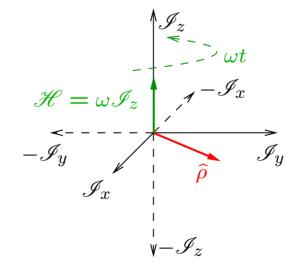
$$\frac{\mathrm{d}\widehat{\rho}}{\mathrm{d}t} = \mathrm{i}(\widehat{\rho}\mathcal{H} - \mathcal{H}\widehat{\rho}) = \mathrm{i}[\widehat{\rho}, \mathcal{H}] = -\mathrm{i}[\mathcal{H}, \widehat{\rho}]. \tag{6}$$

$$\mathscr{H} = \frac{1}{\hbar} \; \widehat{H} \tag{7}$$

If $\widehat{\rho}=c\mathscr{I}_j$, $\mathscr{H}=\omega\mathscr{I}_l$, and $[\mathscr{I}_j,\mathscr{I}_k]=\pm\mathrm{i}\mathscr{I}_l$, then the density matrix evolves as

$$\hat{\rho} = c \mathcal{I}_j \longrightarrow c \mathcal{I}_j \cos(\omega t) \pm c \mathcal{I}_k \sin(\omega t)$$

rotation about \mathscr{I}_l in abstract 3D space defined by the basis $\mathscr{I}_j, \mathscr{I}_k, \mathscr{I}_l.$



General strategy

1. Define $\hat{\rho}$ at t=0

2. Describe evolution of $\hat{\rho}$ using the relevant Hamiltonians usually several steps

3. Calculate the expectation value of the measured quantity (magnetization components in the x,y plane) according to Eq. 1 $\langle M_{+} \rangle = \langle M_{x} + \mathrm{i} M_{y} \rangle = \mathcal{N} \mathrm{Tr} \left\{ \widehat{\rho} \ \widehat{M}_{+} \right\}$

The procedure requires knowledge of

1. relation(s) describing the initial state of the system $(\hat{\rho}(0))$

2. all Hamiltonians (\mathcal{H})

3. the operator representing the measurable quantity (\hat{M}_+)

HOMEWORK:

$$\widehat{\rho}(0) = \mathscr{I}_y$$

$$\mathscr{H} = \omega \mathscr{I}_z$$

$$\omega = \pi \times 10^5 \, \text{rad/s}$$

$$t = 2.5 \times 10^{-5} \, \text{s}$$

