

Prof. Chandrashekhara Venkata Raman

Discovered the "Raman Effect" – a light scattering effect in 1928, won the Noble Prize in 1930 for Physics

- Ramam spectroscopy is the measurement of the wavelength and intensity of inelastically scattered light from molecules
- The Raman scattered light occurs at wavelengths that are shifted from incident light by the energies of molecular vibrations
- It is govern by the polarizability of electron cloud around the molecule

Chandrasekhar Venkata Raman (1888-1970)

Principle of Raman Spectroscopy

Raman spectra are acquired by irradiating a sample with a powerful laser source of visible or near-infrared monochromatic radiation. During irradiation, the spectrum of the scattered radiation is measured at some angle with a suitable spectrometer. At the very most, the intensities of Raman lines are very small of the intensity of the source; as a consequence, their detection and measurement are somewhat difficult.

Q

Vibrational modes that are more polarizable are more Ramanactive:

- N₂ (symetric stretch): cause no change in dipole moment –
 IR-inactive, but cause a change of the bond length (change the polarizability of the bond) Raman-active.
- CO₂ (asymetric stretch): cause a change in dipole moment (IR-active), polarizability change by bond lengthering is canceled by asymmetric strecth (Raman-inactive).

• Some bonds may be both IR and Raman active/inactive.

Raman Spectroscopy: Classical Treatment

Number of peaks related to degrees of freedom

DoF = 3N - 6 (bent) or 3N - 5 (linear) for N atoms

Energy related to harmonic oscillator

٠

$$\sigma \text{ or } \Delta \sigma = \frac{c}{2\pi} \sqrt{\frac{k(m_1 + m_2)}{m_1 m_2}}$$

Selection rules related to symmetry

Rule of thumb: symmetric=Raman active, asymmetric=IR active

Raman + IR: 3657 cm ⁻¹
0
Raman + IR: 3756 cm ⁻¹

laser	UV 325 nm	VIS 532 nm	IR 785 nm
Excitation efficiency	high	medium	low
Fluorescenc e	high	medium	low
Heat absorption	low	medium	high