
Influence of cut-off truncation and artificial periodicity of electrostatic
interactions in molecular simulations of solvated ions:
A continuum electrostatics study

Michael Bergdorf, Christine Peter, and Philippe H. Hünenbergera)
Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
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A new algorithm relying on finite integration is presented that solves the equations of continuum
electrostatics for truncated !and possibly reaction-field corrected" solute–solvent and solvent–
solvent interactions under either nonperiodic or periodic boundary conditions. After testing and
validation by comparison with existing methods, the algorithm is applied to investigate the effect of
cut-off truncation and artificial periodicity in explicit-solvent simulations of ionic solvation and
ion–ion interactions. Both cut-off truncation and artificial periodicity significantly alter the
polarization around a spherical ion and thus, its solvation free energy. The nature and magnitude of
the two perturbations are analyzed in details, and correction terms are proposed for both effects.
Cut-off truncation is also shown to induce strong alterations in the potential of mean force for
ion–ion interaction. These observations help to rationalize artifacts previously observed in explicit–
solvent simulations, namely spurious features in the radial distribution functions close to the cut-off
distance and alterations in the relative stabilities of contact, solvent-separated and free ion
pairs. © 2003 American Institute of Physics.
#DOI: 10.1063/1.1614202$

I. INTRODUCTION

Computer simulation with an explicit representation of
the solvent molecules has become a standard tool for inves-
tigating the structure, dynamics, and function of !bio-"mol-
ecules in solution.1–6 However, due to important computa-
tional costs, the system sizes that are accessible to
such simulations remain truly microscopic (typically
!1000 nm3). As a direct consequence, the longest-range
("5 nm) component of intermolecular interactions, which is
generally dominated by electrostatics, cannot be computed in
an exact manner. Unfortunately, because electrostatic inter-
actions are of large magnitude, many simulated observables
turn out to be highly sensitive to the treatment of these in-
teractions and, due to their long range, to the boundary con-
ditions used in the simulation !system size and shape, finite
versus periodic system". For this reason, the approximate
representation of long-range electrostatic interactions in
explicit-solvent !bio-"molecular simulations is probably
nowadays one of the principal bottlenecks in the accuracy of
these methods. Uncontrolled approximations can give rise to
important artifacts !so-called finite-size effects", which may
strongly impair the reliability of many current simulations.
There is thus considerable effort in the scientific community
towards the goal of improving the representation of electro-
statics in computer simulations.

The vast majority of explicit-solvent !bio-"molecular
simulations are carried out under periodic boundary
conditions6,7 !PBC". In this case, the solute !bio-"molecule is

placed into a computational box !space-filling shape, e.g.,
rectangular", and the empty volume is filled by solvent mol-
ecules. The system considered in the simulation consists of
the central box surrounded by an infinite array of periodic
copies of itself, which has the advantage of removing any
surface distortion associated with a solvent-vacuum bound-
ary. There are essentially three methods to handle electro-
static interactions in simulations under PBC: !i" Straight
truncation of the Coulomb interactions at a convenient cut-
off distance;6,7 !ii" smooth truncation of the Coulomb inter-
actions, e.g., by means of a switching or shifting function8–13
or by including a reaction-field correction;14–19 !iii" use of
lattice-sum methods !Ewald,20 P3M,21 or PME22,23 methods".
Cut-off truncation reduces the computational costs and the
effect of artificial periodicity in simulations. However,
straight truncation !ST" represents a very severe approxima-
tion, leading to heating as well as important artifacts in simu-
lated properties of liquids,16,24,25 solvated ions,26–35 ion
pairs,9,36–44 and biomolecules.45–48 Smooth-truncation meth-
ods may be applied to reduce the heating caused by the ap-
plication of a cut-off, but nevertheless retain !and sometimes
amplify" a number of the undesirable effects of abrupt
truncation.9,10,27,28,41,48–51 Furthermore, these methods are
generally ad hoc and lack any physical basis. An exception is
the inclusion of a Barker–Watts reaction-field correction14–16
!RF" to the cut-off truncation. This correction scheme ap-
proximately accounts for the mean effect of the medium be-
yond the cut-off sphere of each particle by assuming that this
medium behaves as a homogeneous dielectric continuum of
permittivity equal to that of the solvent. Due to the form of
the added reaction-field term, the correction effectively acts
as a !physically based" switching function in the limit of
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high solvent permittivities. Finally, lattice-sum !LS"
methods20–23,52–54 rely on Fourier series to describe the long-
range component of electrostatic interactions, i.e., they as-
sume that these interactions are exactly periodic within the
infinite system. Although LS and RF methods rely on more
or less reasonable approximations for dealing with the long-
range component of electrostatic interactions, an approxi-
mate treatment is certainly preferable to the plain omission
of this long-range component, as done in the ST scheme.
Nevertheless, some dependence of simulated observables on
the cut-off distance or system size has also been evidenced
for the LS,19,55–59 and RF27,28,60 methods. It is therefore of
importance to carefully investigate and compare the proper-
ties of the three most common electrostatic schemes !ST, RF,
and LS".

A general strategy to analyze finite-size effects and im-
prove electrostatic schemes for explicit-solvent simulations
relies on the use of continuum electrostatics.26–28,51,52,56–64 In
the continuum-electrostatics approach, the solute is treated as
a low-dielectric cavity encompassing the solute atomic point
charges, and embedded in a dielectric continuum of permit-
tivity equal to that of the solvent. In the classical implemen-
tation of the method,65–68 the electrostatic potential in the
system is computed by numerically solving the Poisson !or
Poisson–Boltzmann, in the presence of implicit counter-
ions" equation, giving access to the electrostatic solvation
free energy of the solute. Although there is no choice of
boundary conditions that adequately mimics an infinitely di-
lute solution in explicit-solvent simulations, this is not the
case in continuum-electrostatics calculations. There, the
boundary conditions to solve the Poisson equation are speci-
fied in the form of the potential at the surface of the compu-
tational box. For a reasonably large solute–wall distance,
this potential is well approximated by the solvent-screened
Coulomb potential of the solute charges.57 In this way, con-
tinuum electrostatics can be used to estimate, for a given
solute configuration, the electrostatic solvation free energy
corresponding to exact !nontruncated" Coulomb interactions
!CB" under nonperiodic boundary conditions !NPBC", a
good model for the ideal situation of a solute at infinite di-
lution. This suggests that artifacts linked with the use of
approximate electrostatic interactions and periodic boundary
conditions in explicit-solvent simulations could be investi-
gated using continuum electrostatics, provided that the
method is generalized to these modified interactions and
boundary conditions. Such generalizations have recently
been developed26–28,51,52,57–64 for nearly all types of relevant
electrostatic interaction schemes !CB/LS, ST, or RF" and
boundary conditions !NPBC or PBC", as summarized in
Table I. By comparing, for a given solute configuration, the
outcome of a continuum-electrostatics calculation based on
modified interactions and boundary conditions with that of
another calculation based on CB interactions under NPBC, it
is possible to estimate the perturbation %%Gsolv of the sol-
vation free energy. The corresponding perturbation %Edirect
in the direct electrostatic interaction energy between solute
atomic charges is straightforward to calculate. The sum
%%Gel of the two contributions represents the perturbation
of the electrostatic free energy of the system due to the use of

approximate electrostatics and boundary conditions in the
simulation. This procedure is illustrated schematically in Fig.
1 for the specific case of an explicit-solvent simulation em-
ploying ST or RF electrostatics under PBC. The quantity
%%Gel !possibly evaluated for multiple solute configura-
tions" gives the required information to investigate the nature

TABLE I. Generalizations of the continuum-electrostatics approach to
modified electrostatic interactions and boundary conditions. The methods
have been classified using the codes 3D !problem solved in three dimen-
sions", 1D !problem reduced to a one-dimensional equation by symmetry",
analytical !analytical solution available", Poisson !based on solving the Pois-
son equation", FFT !based on the use of fast Fourier transforms", or direct
!based on solving field equations analogous to Eqs. !1" and !6" in real-
space".

Electrostatics NPBC PBC

CB/LSa 3D-Poisson !Ref. 95"b 3D-Poisson !Ref. 57"
3D-FFT !Refs. 51, 63, and 64"

!spherical ionc" 1D-Analytical !Ref. 86" 1D-Analytical !Ref. 57"
SC,RFd 3D-Directe 3D-Directe

3D-FFT !Refs. 51 and 60"
!spherical ionc" 1D-Direct !Refs. 26–28" -

aInteractions follow from the Coulomb !CB" potential under NPBC or the
Ewald lattice-sum !LS" potential under PBC.
bFirst calculation on a biomolecule using a finite-difference algorithm !many
alternatives have been proposed, including, e.g., finite-element, boundary-
element and inducible-multipole algorithms".
cSolutions developed for the special case of a single spherical ion.
dInteractions follow from the Coulomb potential truncated at a given cut-off
distance, without !ST" or with !RF" the inclusion of a reaction-field correc-
tion.
eDeveloped in the present article.

FIG. 1. Schematic illustration of the procedure used to assess, based on
continuum electrostatics, artifacts linked with approximate electrostatics and
boundary conditions in explicit-solvent simulations. Ideally, an explicit-
solvent simulation aiming to describe a solute molecule !symbolized by a
black sphere" at infinite dilution should be based on a quasi-macroscopic
system under NPBC together with exact CB interactions !top left drawing".
Due to computational limitations this is not feasible in practice, and one may
simulate instead a system under PBC with ST !or RF" electrostatic interac-
tions !top right drawing". The corresponding perturbation can be evaluated
by considering the implicit-solvent analogs of the two cases. Using con-
tinuum electrostatics !for a given solute configuration", the solvation free
energies and the direct interactions between solute charges can be computed
both under CB/NPBC !bottom left drawing; based on a good approximation
for the electrostatic potential at the surface of the computational volume"
and under ST/PBC or RF/PBC !bottom right drawing". The free-energy
difference %%Gel represents the perturbation of the electrostatic free energy
induced by the use approximate electrostatics and boundary conditions, and
is a key quantity for the analysis of finite-size effects in the explicit-solvent
simulation.
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and magnitude of the corresponding artifacts in explicit-
solvent simulations.

Since they ignore the discrete nature of the solvent,
continuum-electrostatics models have some limitations, in-
cluding an important sensitivity to empirical model param-
eters !atomic charges, atomic radii, solute permittivity, exact
definition of the solute–solvent boundary", the neglect of
nonlinear effects !electrostriction, dielectric saturation", and
the neglect of the detailed solvent structure around the solute
!structure of the first solvation shells, specific hydrogen
bonds". Furthermore, the electrostatic contribution to the sol-
vation free energy should be complemented by a nonpolar
contribution, typically assumed to be proportional to the
solvent-exposed surface area. However, since the present
method relies on the comparison of two closely related
continuum-electrostatics calculations involving the same pa-
rameters and solute configuration !Fig. 1, bottom drawings",
it is likely that errors in the short-range description of solva-
tion cancel out to a large extent. The difference will depend
almost exclusively on long-range effects, for which con-
tinuum electrostatics can be expected to be accurate. Thus,
electrostatic free energy differences from continuum electro-
statics should be almost quantitatively transposable to inter-
pret finite-size artifacts in explicit-solvent simulations.

Inspection of Table I reveals one missing entry. There is
currently no general continuum-electrostatics method to deal
with truncated electrostatic interactions !ST or RF" under
NPBC, although a method exists in the special case of a
single spherical ion26–28 #one-dimensional !1D"-Direct
method$. The goal of the present article is to describe and
apply a general method based on field equations and a finite-
integration algorithm #three-dimensional !3D"-Direct
method$. In addition to dealing with the NPBC case, this
new method is also applicable to systems under PBC. How-
ever, it scales rather unfavorably with the system size !as
Ng
6 , where Ng is the number of grid points along each Car-

tesian direction", and can only be used for small systems.
Therefore, its application is restricted here to the investiga-
tion of the consequences of cut-off truncation and artificial
periodicity of electrostatic interactions in molecular simula-
tions of ionic solvation and ion–ion interaction. These sys-
tems are very important benchmark systems for evaluating
the accuracy of electrostatic interactions in molecular simu-
lations because !i" they offer the simplest context to investi-
gate electrostatic finite-size effects, and !ii" despite the ap-
parent simplicity of the problem, the accurate determination
of ionic solvation free energies9,19,26–35,55,57,69–79 and ion–ion
potentials of mean force9,36–44,57,80–84 has turned out to be a
surprisingly difficult problem.

In the present article, the algorithm is described in de-
tails and the influence of various parameters controlling its
behavior is investigated. The accuracy of the algorithm is
further tested by comparing solvation free energies computed
for a single spherical ion to values estimated through the
1D-Direct26–28 !NPBC" or 3D-FFT51,60 !PBC" methods. Fi-
nally, the present 3D-Direct method is applied to investigate
the effect of cut-off truncation and artificial periodicity in
computer simulations of ionic solvation and ion–ion interac-
tions.

II. THEORY
A. Continuum electrostatics

In the continuum-electrostatics approach, a solute–
solvent system is modeled !for a given solute configuration"
as a set of solute atomic partial charges embedded in a po-
larizable medium of heterogeneous dielectric permittivity.
Application of the laws of electrostatics within such a system
leads to the following expression24,25,51,64,85 for the electric
field E!r"

E!r"$V!r"#!!!
R3
d3r!T! !r%r!"P!r!", !1"

where V!r" is the vacuum field !electric field generated by
the solute atomic partial charges in the absence of polariz-
able medium", P!r" the polarization !dipole moment density",
and T! (r) the dipole–dipole interaction tensor characterizing
the solvent–solvent interactions within the system.

In the application of Eq. !1", it will be assumed that both
solute–solute and solute–solvent electrostatic interactions
are described by truncated Coulomb interactions with a
Barker–Watts reaction-field correction.14–16 In the Barker–
Watts scheme, the potential generated at r by a unit charge at
the origin is given by

&BW!r "$
1

4'(o
H!R%r "" r%1#

)r2

2R3 %
)#2
2R # , !2"

where H(r) is the Heaviside function #H(r)$1 if r"0,
H(r)$0 otherwise$, (o the permittivity of vacuum, and R is
the cut-off distance. The parameter ) !with 0*)*1) deter-
mined by the relative dielectric permittivity (! of the me-
dium surrounding the cut-off sphere of each particle through

)$
2!(!%1 "

2(!#1 . !3"

The function &BW in Eq. !2" accounts both for the direct
Coulombic potential generated by the charge (r%1 term" and
for the polarization by the neighboring charges of the me-
dium outside its cut-off sphere (r2 term". In the present
work, the discussion of the general form of the Barker–Watts
interaction function !BW" will essentially focus on the cases
)$0 ((!$1), corresponding to straight truncation of the
Coulomb interactions without reaction-field correction !ST",
and )$1 ((!→+), corresponding to truncated Coulomb in-
teractions with a reaction-field correction corresponding to a
conducting medium !RF".

When Eq. !2" is applied to the solvent–solvent interac-
tions under nonperiodic boundary conditions !NPBC", the
dipole–dipole interaction tensor reads

T! NPBC!r"$
1

4'(o
H!RSS%r "

&, ! ," r%1#
)r2

2RSS
3 %

)#2
2RSS #

$
1

4'(o
H!RSS%r "" 3r! r%r21!

r5 #
)1!
RSS
3 # , !4"
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where RSS is the solvent–solvent cut-off distance and the
notation a!b has been introduced for the tensor with ele-
ments -. given by a-b. . Under periodic boundary condi-
tions !PBC", and provided that RSS is smaller than half the
smallest dimension of the computational box !which will be
assumed from here on", the dipole–dipole interaction tensor
reads

T! PBC!r"$
1

4'(o
H!RSS% r̄ "" 3 r̄! r̄% r̄21!

r̄5 #
)1!
RSS
3 # , !5"

where r̄ is the minimum-image vector corresponding to r.
Using the approximation of linear response, the reaction

of the polarizable medium is linear in the local electric
field,24,25,51,64,85 i.e.,

P!r"$(o#(!r"%1$E!r", !6"

where ((r) the relative dielectric permittivity of the medium,
which may be heterogeneous in space. Typically, one distin-
guishes between solute and solvent regions, characterized by
distinct homogeneous permittivity values.

The dipole–dipole interaction tensor T! (r) defined by
Eqs. !4" or !5" is singular at the origin. However, the singu-
larity is integrable when applying Eq. !1". More precisely,
defining /(r;0) as the sphere of radius 0 and surface 1(r;0)
centered at r, one may write

!!!
R3
d3r!T! !r%r!"P!r!"

$I!r"# lim
0→0

!!!
R3'/(r;0)

d3r!T! !r%r!"P!r!". !7"

The first term can be evaluated as

I!r"$ lim
0→0

!!!
/(r;0)

d3r!T! !r%r!"P!r!"

$
1

4'(o $ lim0→0
!!!

/(0;0)
d3s, ! ,s%1%P!r"

$%
1

4'(o $ lim0→0
0%2!!

1(0;0)
d22s%2s! s%P!r"

$%
1
2(o

$ !
0

'
d3 sin 3 cos2 3%P!r"$%

1
3(o

P!r".

!8"

The second equality follows from inserting Eqs. !4" or !5",
defining s$r!%r, and noting that as 0 tends towards zero:
!i" The Heaviside function evaluates to one for any finite
RSS ; !ii" the contribution proportional to the unit tensor van-
ishes; !iii" P(r!) may be approximated by P!r" and factor-
ized from the integral. The third equality follows from ap-
plying the gradient theorem and inserting ,s%1$%s%3s.
The fourth equality follows from observing that, due to sym-
metry, the off-diagonal elements of the tensor vanish upon
integration, and that the diagonal elements are all equal. The
fifth equality follows from evaluating one of these diagonal
elements !integrand s%2sz

2$cos2 3) in spherical coordinates.

Combining Eqs. !1", !6", !7", and !8", the equation to be
solved for the electrostatic field E!r" reads

E!r"$V!r"% 1
3 #(!r"%1$E!r"

#(o lim
0→0

!!!
R3'/(r;0)

d3r!T! !r%r!"

&#(!r!"%1$E!r!", !9"

with T! (r) given by Eqs. !4" or !5". If this equation can be
solved for E!r", the free energy of interaction between the
solute atomic point charges and the polarizable medium is
given by

%G$%
1
2!!!R3d3rV!r"•P!r". !10"

In the special case of a nonpolarizable solute, this quantity
represents the solvation free energy of the solute.

B. Discretization

To transform the solving of Eq. !9" into a computation-
ally tractable problem, three approximations are made. First,
the infinite integration domain is reduced to a finite region of
space. More precisely, two types of computational domains
are considered: !i"A spherical volume of radius S surrounded
by vacuum under NPBC, or !ii" a cubic unit cell of edge L
under PBC. In both cases, the restriction to a finite compu-
tational domain is expected to have limited consequences
when S(RSS under NPBC or L(2RSS under PBC !because
the truncation of solvent–solvent interactions largely reduces
dipole–dipole correlations at large distances", provided that
the vacuum field is only active over a small region within
this domain !which will be the case due to truncation of the
solute–solvent interactions". Second, the solute is assumed to
be nonpolarizable and the solvent to be represented by a
medium of homogeneous permittivity. Thus, the computa-
tional domain comprises two subdomains characterized by
different homogeneous dielectric permittivity values: A !pos-
sibly discontinous" solute subdomain of relative permittivity
one, and a solvent subdomain of relative permittivity (s .
Third, the problem is discretized by paving the computa-
tional domain using N grid cells, leading to piecewise-
constant representations Vi and Ei !with i$1,...,N) of the
vacuum and electric fields.

Within these approximations, Eq. !9" becomes

Ei-$Vi-%
(s%1
3 2 iEi-

#(o!(s%1 "4
j$1

N

v j!1%5 i j"2 j4
.$1

3

T-.!ri%rj"E j. ,

!11"
where the - and . indexes enumerate Cartesian components,
ri and v i are the center coordinate and volume of grid cell i ,
the exterior function 2 i evaluates to one if ri is within the
solvent subdomain and zero otherwise, and the matrix ele-
ments of the dipole–dipole interaction tensor #Eqs. !4" or
!5"$ take the form
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TNPBC,-.!r"

$
1

4'(o
H!RSS%r "" 3r-r.%5-.r2

r5 #
)5-.

RSS
3 # !12"

or

TPBC,-.!r"

$
1

4'(o
H!RSS% r̄ "" 3 r̄-r̄.%5-.r̄2

r̄5 #
)5-.

RSS
3 # . !13"

Defining the 3N&3N-dimensional matrix A! as

Ai- j.$" 1#
(s%1
3 2 i# 5 i j5-.

%(o!(s%1 "v j!1%5 i j"2 jT-.!ri%rj", !14"

Eq. !11" can be rewritten in matrix notation

A!E$V. !15"

Because the size of the matrix A! is generally very large,
it cannot be stored in memory and direct methods cannot be
used to solve Eq. !15". Therefore, an under-relaxed Jacobi
method is applied here to obtain successive approximate so-
lutions for the discretized electric field. Given the approxi-
mate solution E(k) at iteration k , the grid E(k#1) at the next
iteration is computed as

E(k#1)$E(k)%6D! %1!A!E(k)%V", !16"

where D! is the diagonal matrix defined by the diagonal ele-
ments of A! , and 6 !with 0!6*1) is a relaxation parameter.
A reasonable initial guess for E(0) is provided by the vacuum
field scaled by the solvent permittivity, i.e.,

E(0)$(s
%1V. !17"

It is easily seen that a self-consistent solution of Eq. !16"
must satisfy Eq. !15". In order to assess the convergence of
the numerical solution upon iterating, the residual !with units
of an electric field"

7 (k)$" 4 i$1
N v i2 i&!A!E(k)%V" i&2

4 i$1
N v i2 i

# 1/2, !18"

is introduced as a measure of accuracy.
After solving Eq. !15" for the discretized electric field,

the solvation free energy can be evaluated as #Eq. !10"; non-
polarizable solute$

%Gsolv$% 1
2 (o!(s%1 "4

i$1

N

v i2 iVi•Ei , !19"

where Eq. !6" was used. Note that the solvation free energy
solely depends on the electric field within the solvent subdo-
main. Furthermore, due to the form of Eq. !14", the field Ei
corresponding to a point i in the solvent subdomain does not
depend on the field Ej at any point j within the solute sub-
domain. For this reason, increased computational efficiency
can be achieved by omitting all grid points of the solute
subdomain from the definition of the matrix A! and the deter-
mination of the solution of Eq. !15".

C. Application to solvated spherical ions

For a system consisting of a single spherical ion of ra-
dius RI and charge qI centered in the computational domain,
the vacuum field corresponding to ion–solvent interactions
described by the Barker–Watts scheme #Eq. !2"$ is given by

V!r"$
qI
4'(o

H!R IS%r "" rr3 %
)r
R IS
3 # , !20"

where R IS is the ion–solvent cut-off distance. This equation
is valid under both NPBC and PBC, provided that R IS is
smaller than half the smallest dimension of the computa-
tional box !which will be assumed from here on".

Because the ion is generally small compared to the size
of the computational domain, while the variations of the
electric field within the solvent are typically largest close to
its surface, the accuracy of the results will depend crucially
on the detailed representation of the ionic surface. For this
reason, two levels of grid resolution are used. First, a coarse
grid of spacing % is generated, that covers the entire compu-
tational domain !leading to grid-cell volumes v i$%3). Sec-
ond, all cells of the coarse grid with their center closer than
()/2)% from the surface of the ion are further discretized,
i.e., they are replaced by a set of finer grid cells of edge 5
$n%1% where n is a positive integer !leading to grid-cell
volumes v i$53). Any grid-cell center of the finer grid that is
closer than RI from the ion center is discarded from the
calculation !solute point". In this representation, the vacuum
potential at any grid point i is evaluated in practice as

Vi$
qI
4'(o

I!R IS%ri"" rir i3 %
)ri
R IS
3 # , !21"

where I(R IS%ri) represents the fraction of the grid cell lo-
cated within the ion–solvent cut-off sphere.64

After solving Eq. !15" for the discretized electric field,
the radial polarization p(r) around the ion #Eq. !6"$ can be
computed in the form of a histogram. To avoid artifacts
linked with the use of two different grid spacings, this cal-
culation is based on a uniform grid of N! points obtained by
partitioning all cells of the coarse grid into finer grid cells of
edge 5 sharing a common value of the electic field. Under
NPBC, the radial polarization is then computed as

pNPBC!rn"$(o!(s%1 "H!rn%RI"

&
4 i$1
N! 2 iw!ri ;rn ,%r "ri

%1ri•Ei
4 i$1
N! 2 iw!ri ;rn ,%r "

, !22"

where

rn$!n# 1
2"%r , n$0,1,.. . ,nmax , !23"

%r being the histogram width, and

w!r;rn ,%r "$' 1 if rn% 1
2 %r*r!rn# 1

2 %r

0 otherwise.
!24"

Under PBC, the periodic copies of the central box must be
taken into account and Eq. !22" is modified to
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pPBC!rn"$(o!(s%1 "H!rn%RI"

&
4 l"Z34 i$1

N! 2 iw!ri ,l ;rn ,%r "ri ,l
%1ri ,l•Ei

4 l"Z34 i$1
N! 2 iw!ri ,l ;rn ,%r "

,

!25"
with ri ,l$ri#Ll. In practice, the sum over l is restricted to
vectors with integer components in the range #%lmax ;lmax$,
ensuring a correct description of the polarization up to r
$(lmax#1/2)L . These polarization histograms can be com-
pared to the ideal !CB/NPBC" Born polarization86

pBorn!r "$
qI
4'

(s%1
(s

r%2. !26"

Combining Eqs. !19" and !21", the ionic solvation free
energy is evaluated !based on the refined grid of N! points"
as

%Gsolv$%
qI
8'

!(s%1 "4
i$1

N!

v i2 iI!R IS%ri"

&" rir i3 %
)ri
R IS
3 # •Ei . !27"

This value can be compared to the ideal !CB/NPBC" Born
electrostatic solvation free energy86

%Gsolv
Born$%

qI
2

8'(o

(s%1
(s

RI
%1. !28"

The application to two !or more" spherical ions is
straightforward and only requires the following minor adap-
tations: !i" The quantity 2 i is zero !point discarded from the
calculation" for all grid cells with centers located inside any
ion, and one otherwise; !ii" the vacuum field V #Eq. !21"$ is
expressed as a sum of contributions arising from each ion;
!iii" the solvation free energy %Gsolv #Eq. !27"$ is expressed
as a sum of contributions arising from each ion; !iv" fine
grids !spacing 5!%) are used to describe the close neigh-
borhood of all ions.

III. COMPUTATIONAL DETAILS

The solution of Eq. !15", restricted to the case of one or
two spherical ions, was implemented in a C program. The
single ion or the two ions are placed on the z axis of the
coordinate system !single ion at z$0; two ions at z$
)d/2, where d is the interionic distance". Taking advantage
of the symmetry of the problem, the storage of the dis-
cretized vacuum and electric fields is only required for one
quadrant (x ,y80) of the computational domain.

After an evaluation of the convergence properties of the
algorithm, a set of computational parameters was selected
and adopted for all subsequent calculations. The correspond-
ing values are as follows !unless otherwise specified". The
spacings corresponding to the coarse and fine grids were set
to %$0.1 nm and 5$0.025 nm, respectively. The relaxation
parameter 6 was set to 0.4. The algorithm was terminated
when the residual 7 (k) was either below 10%3 kJ mol%1
nm%1 e%1 or reached a minimum value. All calculations un-

der NPBC used a sphere of radius S$4.0 nm as computa-
tional domain. To ensure that this domain is large enough to
be representative of an infinite nonperiodic system, a number
of single-ion and two-ion calculations were repeated with S
$5.0 nm. The observed differences in solvation free energy
were in all cases below 0.1 kJmol%1 in magnitude.

The method was first applied to solvated spherical ions.
Ionic solvation free energies #Eq. !27"$ and radial polariza-
tion histograms #Eqs. !22" or !25" with %r$0.025 nm and
lmax$2] were computed for all combinations of the follow-
ing parameters: ionic charge qI$1 e , ionic radii RI
$0.2 nm !about the size of Na#) or 0.4 nm !about the size
of Cl%), cut-off radii R IS$RSS$RC$0.8 or 1.2 nm, solvent
permittivities (s$2 !alkanelike solvent" or 78 !water", )
$0 !ST scheme" or 1 !RF scheme", and NPBC or PBC !with
L$2.6 nm). To validate the method, the results are com-
pared with those of calculations employing other methods
!Table I", namely: !i" 1D-Direct27,28 !NPBC; bin size 0.005
nm, range 4.0 nm" or !ii" 3D-FFT60 !PBC; 180 grid points
along each Cartesian axis".

The method was then used to investigate the effect of
periodicity on ionic solvation free energies in systems with
truncated electrostatic interactions !ST or RF". To this end,
ionic solvation free energies were computed under PBC us-
ing the above combination of parameters, for cubic box
edges L ranging from 1.6 nm (RC$0.8 nm) or 2.4 nm (RC
$1.2 nm) to 8.0 nm. The effect on periodicity can be quan-
tified by the relative periodicity-induced perturbation of the
ionic solvation free energy 9(L), defined as

9!L "$
%%Gsolv!L "

%Gsolv
NPBC

with

%%Gsolv!L "$%Gsolv
PBC!L "%%Gsolv

NPBC . !29"

Finally, the effect of cut-off truncation !ST or RF" and
periodicity on the electrostatic solvation contribution
%Gsolv(d) to the potential of mean force for the interaction
between two ions at distance d !under PBC, ions aligned
along an axis of the cubic unit cell" was evaluated for the
special case of charges qI$)qJ$1 e , radii RI$RJ
$0.4 nm, cut-off radii R IS$RSS$RC$1.2 nm and for a cu-
bic unit-cell of edge L$6 nm !PBC". For validation, the re-
sults under PBC were compared with those of calculations
employing the 3D-FFT60 method !180 grid points along each
Cartesian axis". The corresponding overall electrostatic con-
tribution %Gel(d) to the potential of mean force was also
evaluated as

%Gel!d "$%Gsolv!d "#qIqJ&BW! d̃ ", !30"

where d̃$d !NPBC" or d̃$min:d;L%d; !PBC", and &BW is
given by Eq. !2" with )$0 !ST" or )$1 !RF". These pro-
files can be compared with the expected long-range behavior
of the electrostatic potential of mean force for a Coulombic
interaction between the ions, namely
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%Gel
lr!d "$%Gsolv

ion !qI ,RI"#%Gsolv
ion !qJ ,RJ"

#
qIqJ
4'(o(s

,d%1 !31"

where %Gsolv
ion (q ,R) is the solvation free energy of an isolated

ion of radius R and charge q under NPBC when applying the
specific electrostatic scheme.

IV. RESULTS
A. Convergence properties

The convergence properties of the under-relaxed Jacobi
algorithm #Eq. !16"$ used to solve Eq. !15" are illustrated in
Fig. 2 for a spherical ion of charge qI$1 e and radius RI
$0.4 nm in a solvent of permittivity (s$78, based on the
RF scheme with a single cut-off radius RC$1.2 nm and us-
ing three choices of the relaxation parameter 6. Results for
the ST scheme are qualitatively very similar !data not
shown". Within few iterations, the residual 7 (k) decreases
from about 20 to values below 3 kJmol%1 nm%1 e%1 #Fig.
2!a"$. Convergence to zero residual only occurs when the
solvent permittivity (s is smaller than about 10 !data not
shown". This limited convergence is probably related to the
presence of a strong discontinuity in the system permittivity
at the ion–solvent boundary in the case of high solvent per-
mittivities. For (s values larger than about 10, the residual
reaches a minimum after a certain number of iterations !typi-
cally about 15–20 for 6$0.4) and slowly rises again after-
wards. When this situation occurred, the algorithm was ter-
minated at the minimum value 7 of the residual. However,

convergence of 7 (k) towards 7 is associated with the simul-
taneous convergence of %Gsolv

(k) to a well-defined value
%Gsolv #Fig. 2!b" and Table II$. Because the values of both
the minimum residual and the associated converged solva-
tion free energy are essentially independent of the conver-
gence parameter 6, it appears that the method is nevertheless
able to produce accurate results for high (s values. This is
also supported by the observation that for (s$2, values of
%Gsolv

(k) when 7 (k)$3 kJmol%1 nm%1 e%1 typically differ
from the corresponding converged values (7 (k)
!10%3 kJ mol%1 nm%1 e%1) by less than 1% !data not
shown".

Although the convergence parameter 6 does not influ-
ence the final values of 7 and %Gsolv , it has a strong impact
on the convergence rate. For (s$78, 6$0.2 leads to slow
convergence, 6$0.6 to slow convergence and oscillatory
evolution of %Gsolv

(k) , while the algorithm fails to converge
for 6$0.8 !data not shown". In practice, it was found that
6$0.4 is the optimal choice in this case, and is also adequate
for (s$2 !although a somewhat larger values may slightly
accelerate convergence". This value was adopted for all sub-
sequent calculations.

The rates of convergence to the minimum 7 of 7 (k) ap-
pear to be very similar under NPBC or PBC, and for the RF
and ST !data not shown" schemes. The final values of the
residual, however, are somewhat lower under NPBC com-
pared to PBC !Table II".

B. Single spherical ion

The radial polarization p(r) around around a spherical
ion #Eqs. !22" and !25"$ of charge qI$1 e and radius RI
$0.4 nm in a solvent of permittivity (s$78 is displayed in
Fig. 3 for different choices of boundary conditions and treat-
ments of the electrostatic interactions based on a single cut-
off RC$1.2 nm. The polarization corresponding to the Born
model86 #CB/NPBC; Eq. !26"$ or to the lattice-sum case !LS/
PBC; computed using the 3D-FFT method64", and the polar-
ization computed from the 1D-Direct method27,28 !ST,RF/
NPBC" are also displayed for comparison. For both the ST
and RF schemes under NPBC, the agreement between the
results of the 1D-Direct and of the present 3D-Direct meth-
ods is excellent over the whole range of distances. The only
noticeable difference is the more progressive transition of
p(r) around RC in the 3D-Direct calculation for the ST
scheme, which is due to a significantly lower resolution and
to the smoothing of the vacuum field at the ion–solvent cut-
off distance #function I in Eq. !21"$. These curves, however,
differ significantly from the Born polarization, corresponding
to the ideal situation of a spherical ion solvated by a non-
periodic Coulombic continuum of infinite extent.

For the ST case, the polarization curve is discontinuous
at the ion–solvent cut-off distance R IS . The polarization be-
low R IS is consistently larger than predicted by the Born
model, whereas the polarization above is smaller, although
always positive. Underpolarization of the solvent above R IS
is easily understood since the solvent beyond this distance
does not feel directly the electrostatic field of the ion. How-
ever, the solvent in this region reacts indirectly to the ionic

FIG. 2. Convergence properties of the under-relaxed Jacobi algorithm #Eq.
!16"$ used to solve Eq. !15". The residual 7 (k) #Eq. !18"$ is displayed as a
function of the number of iterations k !a", and the solvation free energy
%Gsolv

(k) at iteration k #Eq. !27"$ as a function of the corresponding residual
7 (k) !b". The system consists of a single spherical ion of charge qI$1 e and
radius RI$0.4 nm in a solvent of permittivity (s$78, and is either non-
periodic !NPBC; spherical domain of radius S$4.0 nm) or periodic !PBC;
cubic unit cell of edge L$2.6 nm). Electrostatic interactions correspond to
the RF scheme, with cut-off radii R IS$RSS$RC$1.2 nm. Three choices of
the Jacobi relaxation parameter 6 are compared #for NPBC, only the curve
corresponding to 6$0.4 is displayed in !a"$.
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field through interactions with the polarized solvent within
the cut-off sphere of the ion, leading to the observed residual
polarization. Inside the cut-off sphere of the ion, the solvent
is overpolarized because each solvent volume element only
interacts with a fraction of the highly polarized solvent
within the cut-off sphere of the ion. This partial interaction
results in a bias of the solvent polarization towards the ion.

For the RF case, the polarization curve is continuous at
R IS , although its derivative is not. The polarization is con-
sistently smaller than the corresponding Born curve over the
whole range of distance, both below and above R IS . The
difference between the curves is largest at distances close to
R IS , and becomes progressively smaller at either short or
long distances from the ion. It has been shown that in the
limit of high solvent permittivities, the Barker–Watts poten-

tial represents !for the solvent–solvent interactions" the cut-
off-truncated polynomial of second order !terms in r%1 to
r2) that leads to the best agreement between Born and effec-
tive polarizations.27,28 A number of additional results related
to this comparison are derived in Appendix A, namely that !i"
the RF/NPBC polarization converges to the Born polariza-
tion in the limit R IS ,RSS→+; !ii" in the limit of small dis-
tances !compared to RC), the RF/NPBC polarization con-
verges towards the Born polarization; !iii" in the limit of
large distances !compared to RC), the RF/NPBC polarization
becomes proportional to r%2, just as the Born polarization.

For both the ST and RF schemes, the polarization curves
corresponding to PBC are systematically lower !in the range
RI to L) compared to the polarization under NPBC. The
reason for this is that under PBC, the solvent in the reference

TABLE II. Solvation free energy %G solv of a single spherical ion #Eq. !27"$ computed using the 3D-Direct
method !present article". The system consists of a single ion of charge qI$1 e and radius RI in a solvent of
permittivity (s , and is either nonperiodic !NPBC; spherical domain of radius S$4 nm) or periodic !PBC; cubic
unit cell of edge L$2.6 nm). Electrostatic interactions correspond to either the ST or RF schemes, with cut-off
radii R IS$RSS$RC . For the RF scheme, the reaction-field contribution to the solvation free energy
#)-dependent term in Eq. !27"$ is reported between parentheses. The converged value 7 of the residual is also
indicated. The solvation free energies %Gsolv

corr corrected by the inclusion of a self-energy term #Eq. !B3"$ are also
given. For comparison, the corresponding Born solvation free energies #Eq. !28"$ are %342.9 (($78, RI
$0.2 nm), %171.4 (($78, RI$0.4 nm), %173.7 (($2, RI$0.2 nm), and %86.8 (($2, RI$0.4 nm)
kJ mol%1.

BC Interaction (s

RI
#nm$

RC
#nm$

7
#kJ mol%1 nm%1 e%1$

%Gsolv
#kJ mol%1$

%Gsolv
ref

#kJ mol%1$
%Gsolv

corr

#kJ mol%1$

NPBC ST 78 0.2 0.8 1.2 %284.8 %281.7a %370.5
NPBC ST 78 0.2 1.2 1.2 %306.3 %303.4a %363.4
NPBC ST 78 0.4 0.8 0.8 %100.9 %100.1a %186.6
NPBC ST 78 0.4 1.2 0.7 %129.4 %128.8a %186.5
PBC ST 78 0.2 0.8 3.0 %284.1 %280.3b %369.8
PBC ST 78 0.2 1.2 2.9 %301.0 %297.9b %355.0
PBC ST 78 0.4 0.8 2.0 %100.6 %102.4b %186.3
PBC ST 78 0.4 1.2 1.8 %125.3 %125.7b %182.4
NPBC RF 78 0.2 0.8 1.1 %217.0 (37.0) %213.7 (37.1)a %345.6
NPBC RF 78 0.2 1.2 1.1 %259.2 (26.2) %256.3 (26.4)a %344.9
NPBC RF 78 0.4 0.8 0.6 %47.6 (23.7) %46.8 (23.7)a %176.2
NPBC RF 78 0.4 1.2 0.6 %86.4 (22.0) %85.8 (22.2)a %172.1
PBC RF 78 0.2 0.8 2.8 %214.6 (35.8) %211.0 (35.6)b %343.2
PBC RF 78 0.2 1.2 2.9 %253.1 (22.3) %249.5 (22.5)b %338.8
PBC RF 78 0.4 0.8 1.6 %47.5 (22.9) %48.4 (23.0)b %176.1
PBC RF 78 0.4 1.2 1.6 %82.3 (18.7) %82.3 (18.8)b %168.0
NPBC ST 2 0.2 0.8 0.0 %133.4 %135.2a %176.8
NPBC ST 2 0.2 1.2 0.0 %146.7 %148.3a %175.6
NPBC ST 2 0.4 0.8 0.0 %45.6 %46.4a %89.0
NPBC ST 2 0.4 1.2 0.0 %60.3 %60.8a %89.2
PBC ST 2 0.2 0.8 0.0 %133.1 %135.0b %176.5
PBC ST 2 0.2 1.2 0.0 %145.6 %147.6b %174.5
PBC ST 2 0.4 0.8 0.0 %45.6 %46.3b %89.0
PBC ST 2 0.4 1.2 0.0 %59.6 %60.2b %88.5
NPBC RF 2 0.2 0.8 0.0 %99.8 (13.7) %101.0 (13.8)a %164.9
NPBC RF 2 0.2 1.2 0.0 %123.1 (9.8) %124.4 (9.8)a %166.5
NPBC RF 2 0.4 0.8 0.0 %20.4 (9.0) %20.6 (9.1)a %85.5
NPBC RF 2 0.4 1.2 0.0 %39.2 (8.3) %39.5 (8.4)a %82.6
PBC RF 2 0.2 0.8 0.0 %99.5 (13.8) %100.9 (13.8)b %164.6
PBC RF 2 0.2 1.2 0.0 %122.4 (9.5) %124.0 (9.5)b %165.8
PBC RF 2 0.4 0.8 0.0 %20.4 (9.0) %20.7 (9.1)b %85.5
PBC RF 2 0.4 1.2 0.0 %38.9 (8.0) %39.2 (8.1)b %82.3

aSolvation free energies %G solv
ref estimated from the 1D-Direct method !Refs. 27 and 28" are given for compari-

son !ST,RF/NPBC".
bSolvation free energies %G solv

ref estimated from the 3D-FFT method !Ref. 60" are given for comparison
!ST,RF/PBC".
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unit cell is perturbed by its interaction with the solvent in
adjacent unit cells !itself polarized by the periodic copies of
the ion" and, for r"L%R IS , with the periodic copies of the
ion themselves. The consequences of these interactions are a
depolarization of the solvent in the reference unit cell !com-
pared to NPBC", and the occurence of negative polarization
values for the solvent in the neighboring unit cells. At large
distances, p(r) displays an irregular oscillatory behavior
with values close to zero at the location of the nearest neigh-
bor ions !i.e., L , &L , )L , . . . ; data not shown". The depo-
larization of the solvent within the reference unit cell is
slightly more important in the RF case compared to the ST
case, which is probably a consequence of the larger magni-
tude of the residual solvent polarization above R IS observed
in the RF/NPBC case. In both cases, however, the solvent
depolarization within the reference unit cell remains rela-
tively small because, due to the truncation of ion–solvent
interactions at R IS!L/2, dipoles in the reference unit cell do
not interact directly with the periodic copies of the ion. Fi-
nally, the polarization corresponding to the RF/PBC scheme
is seen to agree reasonably well with the LS/PBC curve, the
difference being expectedly largest in the neighborhood of
the cut-off distance. There is, however, an important differ-
ence between the two schemes. When cut-off truncation is
applied, the solvation free energy only depends on the polar-
ization in the range RI to R IS!L/2 #Eqs. !10" and !20"$ and
the effect of periodicity on the ionic solvation free energy is
expected to be relatively small. If this restriction is removed
!e.g., when nontruncated LS interactions are considered", the
effect of artificial periodicity on the ionic solvation free en-

ergy becomes dramatically more important.19,55,57
Ionic solvation free energies %Gsolv computed for

spherical ions with different parameter combinations, elec-
trostatic schemes, and boundary conditions are listed in Table
II. The values %Gsolv

ref computed using the 1D-Direct
method27,28 !ST,RF/NPBC" or the 3D-FFT method60 !ST,RF/
PBC" are also listed for comparison. Note that, while the
former values are certainly very accurate, the latter values
are probably subject to errors of a similar magnitude as the
present method. The agreement between the values com-
puted using different methods is in general very good. The
average and maximal relative differences between the
present 3D-Direct and the reference values are 1.1% and
1.9%, respectively. Not unexpectedly, these relative differ-
ences tend to be somewhat larger for !i" the smaller ionic
radius, !ii" the larger permittivity value, !iii" periodic bound-
ary conditions. The following observations can be made: !i"
the solvation free energies are larger in magnitude for the
smaller ion and the larger permittivity value, in qualitative
agreement with the Born model; !ii" the solvation free ener-
gies are larger in magnitude for the larger cut-off value, a
consequence of including a larger amount of polarized sol-
vent within the cut-off sphere of the ion; !iii" the solvation
free energies are more negative for the ST scheme compared
to the RF scheme, a consequence of the solvent overpolar-
ization within the cut-off sphere of the ion for the ST scheme
!Fig. 3" and of the inclusion of an additional positive term in
the solvation free energy for the RF scheme #)-dependent
term in Eq. !27"; reported in Table II between parentheses$;
!iv" the solvation free energies are larger in magnitude under
NPBC compared to PBC, a consequence of the periodicity-
induced solvent depolarization within the reference unit cell
!Fig. 3"; !v" the periodicity-induced perturbation of the sol-
vation free energy (NPBC→PBC) is larger for the smaller
ion, for the larger cut off, for the higher permittivity value,
and for RF compared to ST. The latter effect is a conse-
quence of the larger periodicity-induced solvent depolariza-
tion within the reference unit cell for the RF scheme !Fig. 3".

The values reported in Table II are strongly cut-off-
dependent and compare poorly with the corresponding Born
solvation free energies of %342.9 and %171.4 kJmol%1
((s$78, qI$1 e , RI$0.2 or 0.4 nm" or %173.7 and
%86.8 kJmol%1 ((s$2, qI$1 e , RI$0.2 or 0.4 nm". As
discussed in Appendix B, these large discrepancies could be
reduced by the inclusion of a charge self-energy term into the
total electrostatic energy of the system. It is also suggested
that such a self-energy term should be systematically in-
cluded in the total electrostatic energy during molecular
simulations relying on effective cut-off-based electrostatic
interaction functions to ensure the obtension of meaningful
energies. In this context, a new definition #Eq. !B4"$ is pro-
posed for the electrostatic interaction energy in simulations
employing the Barker–Watts reaction-field scheme.

The effect of artificial periodicity on the solvation free
energy of a spherical ion computed using cut-off-based !ST
or RF" electrostatics is illustrated in Fig. 4 for an ion of
charge qI$1 e , a solvent of permittivity (s$78, and for
different values of the ionic radius RI and cut-off radius RC .
The relative periodicity-induced perturbation 9(L) of the

FIG. 3. Radial polarization p(r) around a solvated spherical ion #Eqs. !22"
or !25"$. The system consists of a single ion of charge qI$1 e and radius
RI$0.4 nm in a solvent of permittivity (s$78, and is either nonperiodic
!NPBC; spherical domain of radius S$4.0 nm) or periodic !PBC; cubic unit
cell of edge L$2.6 nm). Electrostatic interactions correspond to either the
ST !a" or RF !b" schemes, with cut-off radii R IS$RSS$RC$1.2 nm. In
addition to the results of the 3D-Direct method !present article", the analyti-
cal polarization corresponding to the Born model #CB/NPBC; Eq. !26"$ and
the lattice-sum case #LS/PBC; computed using the 3D-FFT method !Ref.
64"$, and the polarization computed from the 1D-Direct method !Refs. 27
and 28" for the specific interaction scheme !ST,RF/NPBC" are also pre-
sented for comparison. The cut-off distance as well as the
!half-"box edge !PBC only" are indicated by arrows.
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ionic solvation free energy #Eq. !29"$ is displayed as a func-
tion of L/2 in Fig. 4!a". All curves converge to a limiting
value of one when L/2(RC , indicating that the solvation
free energy under PBC indeed converges to its NPBC value
when the computational box becomes large compared to the
cut-off radius. For example, the magnitude of 9(L) for L/2
$4 nm is smaller than 10%4 for all parameter combinations
considered. When L/2 is only moderately larger than RC ,
artificial periodicity causes a depolarization of the solvent
!Fig. 3" and a decrease in the magnitude of the solvation free
energy. As a consequence, 9(L) becomes negative. When
L/2$RC , the solvation free energy is reduced by 2%–9%
compared to its NPBC value for the parameter combinations
considered. In agreement with previous observations !Table
II", the relative periodicity-induced perturbation of the solva-
tion free energy !i" increases in magnitude with increasing
ionic radius; !ii" increases in magnitude with increasing cut-
off radius; !iii" is larger for the RF scheme compared to the
ST scheme.

The different curves in Fig. 4!a" can be adequately rep-
resented by exponential functions. This is shown in Fig. 4!b",
where the quantity log10#%(RC /RI)9(L)$ is displayed as a
function of L/(2RC). The resulting data can be fitted by two
straight lines, corresponding to the ST and RF schemes, with
linear correlation coefficients !over the interval L/(2RC)
$0 to 2.5" of %0.9998 and %0.9985, respectively. Thus,
irrespective of RI and RC , the relative periodicity-induced
perturbation appears to be approximately of the form

9!L "<%
RI

RC
10- L/!2RC" #.. !32"

Based on all available data for =s$78, the constants in Eq.
!32" evaluated to -$%2.203 and .$1.290 for the ST
scheme, and -$%1.468 and .$0.715 for the RF scheme.

This behavior can be contrasted to the case of nontrun-
cated electrostatic interactions. In this case, the solvation free
energy corresponding to CB/NPBC is given by the Born
expression86 #Eq. !28"$. A corresponding analytical
expression57 has been derived for the LS/PBC case, namely

%Gsolv
LS/PBC$%

qI
2

8'(o

(s%1
(s

$ LRI
#>EW

#
4'

3 " RI

L # 2% 16'2

45 " RI

L # 5%L%1, !33"

with >EW<%2.837 297. Thus, it follows from Eq. !29" that:

9!L "$
RI

L $>EW#
4'

3 " RI

L # 2% 16'2

45 " RI

L # 5% . !34"

In this case, the evolution of 9(L) towards zero when L
(RI is in L%1, i.e., much slower than the exponential
distance-dependence observed for cut-off-based schemes
#Eq. !32"$. For example, for an ion of radius RI$0.4 nm,
9(L) evaluates to %0.95 for L/2$0.4 nm, %0.19 for L/2
$3.0 nm, and is above %0.1 for L/2"5.7 nm #compare
with the smaller magnitude and faster relaxation observed
for cut-off-based schemes in Fig. 4!a"$. This shows that the
application of a cut-off in the computation of ionic solvation
free energies by explicit-solvent simulation dramatically re-
duces the system-size dependence of the calculated solvation
free energies compared to lattice-sum methods.19,55,57 More
generally, cut-off truncation !with the possible inclusion of a
reaction-field correction" efficiently reduces the impact of
finite-size effects and artificial periodicity on the energies
and forces in any molecular dynamics simulation. However,
this is at the expense of introducing other !potentially more
harmful" artifacts related with the cut-off truncation itself.

C. Interaction between two spherical ions

The electrostatic solvation free energy profiles
%Gsolv(d) for a pair of monovalent spherical ions !same or
opposite charges, identical radii of 0.4 nm" in a solvent of
permittivity (s$78 are displayed in Fig. 5 as a function of
the interionic distance d for different choices of boundary
conditions and treatments of the electrostatic interactions
based on a single cut-off RC$1.2 nm. The PBC curves cor-
respond to ions aligned along an axis of a cubic unit cell of
edge L$6 nm. The corresponding profiles computed using
the 3D-FFT method60 !ST,RF/PBC" are also displayed for
comparison.

As expected, the curves corresponding to the NPBC case
present a minimum !maximum" at ionic contact for ions of
identical !opposite" charges, and asymptotically converge to
a common value for a given scheme. More precisely, in the
limit of large interionic distances !isolated ions", %Gsolv(d)
converges towards twice the solvation free energy %Gsolv

ion of
a single ion (%Gsolv

ion $%129.4 or %86.4 kJmol%1 for the ST
or RF schemes; see Table II". In the limit d→0 !superim-

FIG. 4. Periodicity-induced perturbation of the solvation free energy of a
spherical ion. The system consists of a single ion of charge qI$1 e and
radius RI in a cubic periodic box of edge L filled by a solvent of permittivity
(s$78. Electrostatic interactions correspond to either the ST or RF
schemes, with cut-off radii R IS$RSS$RC . !a" Relative periodicity-induced
shift 9(L) in the solvation free energy #Eq. !29"$, displayed as a function of
L/2. !b" Logarithm of minus 9(L) amplified by RC /RI , displayed as a
function of L/2RC . The dashed lines corresponding to a least-squares fit
#over the interval L/(2RC)$0–2.5] corresponding to either the RF or the
ST schemes.
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posed ions", %Gsolv(d) converges towards four times %Gsolv
ion

!zero" for ions of identical !opposite" charges.
Under PBC, symmetry and periodicity constraints im-

pose that the profile possesses a stationary point at d$L/2
and is symmetrical with respect to this point. This induces a
difference between the NPBC and PBC curves for d in the
interval #0;L/2$ . Within this range, the perturbation caused
by the introduction of periodicity is attractive !repulsive" for
ions of identical !opposite" charges. However, the magnitude
of the effect is very small. For example, the differences be-
tween the values of %Gsolv(L/2) under NPBC and PBC is
only about 0.45 kJmol%1 in magnitude for all cases consid-
ered. Thus, in contrast to the case of lattice-sum methods,57
artificial periodicity has very little influence on the solvation
free energy profile for pairs of small monovalents ions in a
solvent of high permittivity when cut-off truncation is ap-
plied. Finally, the agreement between the present calcula-
tions employing the 3D-Direct method under PBC and the
3D-FFT method60 is quite good, especially for the ST
scheme. For the RF scheme, the agreement is slightly worse,
probably due to small differences in the application of
boundary smoothing at the ion surface and ion–solvent cut-
off distance.60

The corresponding profiles for the overall electrostatic
contribution %Gel(d) to the potential of mean force #Eq.
!30"$ are displayed in Fig. 6 as a function of the interionic
distance d . At short distances, the curves corresponding to
NPBC and PBC are nearly identical. In the ST case, the
curves present minima !maxima" at contact and at the cut-off
distance for ions of identical !opposite" charges. The pres-
ence of an extremum at the cut-off distance is clearly an

artifact related to the use of truncated electrostatic interac-
tions. These profiles provide an explanation for a number of
observations made in explicit-solvent simulations employing
the ST scheme: !i" The tendency for ion pairs with like
charges to cluster at distances close to the cut-off
distance;9,96 !ii" the tendency for ion pairs of opposite
charges to avoid distances close to the cut-off
distance;9,42,43,96 !iii" the artificially increased38,40,41,57 stabil-
ity of contact ion pairs for ions of like charges;36,37,39,41,87
!iv" the artificially decreased stability of contact pairs for
ions of opposite charges.42,44,80

In the RF case, the profiles nearly present the expected
behavior, namely repulsion !attraction" for ions of like !op-
posite" charges, except for a significant artifact in the neigh-
borhood of the cut-off distance. For ions of like charges, a
spurious minimum occurs just below the cut-off distances,
while for ions of opposite charges, a spurious maximum oc-
curs just above the cut-off distance. Although these artifacts
might affect the populations of contact pairs for ions of like
or opposite charges in simulations of ionic solution,88,89 the
magnitude of these artifacts is limited compared to the ST
scheme, in agreement with previous observations.44,90

At large distances from the ion, and for both the ST and
RF schemes, the NPBC profiles tend to be close to the ex-
pected Coulombic limit #Eq. !31"$. However, the exact agree-
ment is difficult to assess since positive deviations occur,
which are probably related to the limited size of the compu-
tational domain.

V. CONCLUSION

In the present study, continuum electrostatics was used
to investigate the nature and magnitude of the perturbations
induced by cut-off truncation and artificial periodicity in

FIG. 5. Electrostatic solvation free energy profile %G solv(d) for a pair of
monovalent spherical ions. The system consists of two ions of radii RI
$0.4 nm bearing identical !a and c" or opposite !b and d" charges, and
separated by a distance d in a medium of permittivity (s$78. It is either
nonperiodic !NPBC; spherical domain of radius S$4.0 nm) or periodic
!PBC; cubic unit cell of edge L$6 nm; ions aligned with an axis of the unit
cell". Electrostatic interactions correspond to either the ST !a and b" or RF !c
and d" schemes, with cut-off radii R IS$RSS$RC$1.2 nm. In addition to the
results of the 3D-Direct method !present article", the solvation free energies
computed from the 3D-FFT method !Refs. 51 and 60" for the specific inter-
action scheme !ST,RF/PBC" and the same value of L are also presented for
comparison.

FIG. 6. Electrostatic contribution %Gel(d) to the potential of mean force for
a pair of monovalent spherical ions. The system consists of two ions of radii
RI$0.4 nm bearing identical !a and c" or opposite !b and d" charges, and
separated by a distance d in a medium of permittivity (s$78. It is either
nonperiodic !NPBC; spherical domain of radius S$4.0 nm) or periodic
!PBC; cubic unit cell of edge L$6 nm; ions aligned with an axis of the unit
cell". Electrostatic interactions correspond to either the ST !a and b" or RF !c
and d" schemes, with cut-off radii R IS$RSS$RC$1.2 nm. The ideal long-
range limit %Gel

lr(d) is also presented for comparison #Eq. !31"$. It is calcu-
lated using %Gsolv

ion $%129.4 (ST) or %86.4 (RF) kJ mol%1 !Table II".
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explicit-solvent simulations of ions and ion pairs. To this
purpose, a new algorithm relying on finite integration was
developed to solve the equations of continuum electrostatics
based on truncated !and possibly reaction-field corrected"
solute–solvent and solvent–solvent electrostatic interactions,
under either nonperiodic !NPBC" or periodic !PBC" bound-
ary conditions. This algorithm was tested and validated by
comparison with available methods !Table I" whenever pos-
sible.

In the context of the solvation of a single spherical ion,
the main observations can be summarized as follows:

!A" The application of cut-off truncation !under NPBC"
significantly affects the solvent polarization around a
spherical ion !compared to the ideal Born result". With
straight truncation !ST" of the interactions, the solvent
is overpolarized within the cut-off sphere of the ion and
underpolarized outside this sphere. When a reaction-
field !RF" correction is applied, the agreement with the
Born !NPBC" or lattice-sum !PBC" polarization is sig-
nificantly improved, the deviations being largest in the
neighborhood of the cut-off distance.

!B" The introduction of artificial periodicity (NPBC
→PBC) when applying cut-off-based electrostatics
leads to a depolarization of the solvent around the ion
in the reference unit cell. This effect is caused by the
indirect !solvent-mediated" perturbation of the solvent
molecules in this reference cell by the periodic copies
of the ion. The depolarization is more significant for
the RF scheme compared to the ST scheme.

!C" The application of cut-off truncation !under NPBC" de-
creases the magnitude of the ionic solvation free en-
ergy of a spherical ion !compared to the ideal Born
result". The magnitude of this effect is highly sensitive
to the electrostatic scheme !ST or RF" and to the choice
of a cut-off radius. However, as discussed in Appendix
B, the problem could be largely !though approxi-
mately" remedied in explicit-solvent simulations by the
systematic inclusion of an appropriate self-energy term
in the total electrostatic energy of the system. Alterna-
tively, an exact correction term to ionic solvation free
energies computed from explicit-solvent simulations
can be obtained by the application of the present
continuum-electrostatics method under NPBC or of its
one-dimensional analog.27,28

!D" The introduction of artificial periodicity (NPBC
→PBC) when applying cut-off-based electrostatics
causes a further decrease in the magnitude of the ionic
solvation free energy. In contrast to lattice-sum
methods,57 where this free-energy shift is important
even for relatively large system sizes !proportional to
L%1, L being the edge length of the cubic unit cell", the
effect decays rapidly with increasing system sizes !pro-
portional to R%1 exp(%cL/R), R being the cut-off dis-
tance" in the case of cut-off-based electrostatics. Here
also, an approximate correction term was derived #Eq.
!34"$ that can be applied to correct ionic solvation free
energies evaluated from explicit-solvent simulations
under PBC.

The relevance of these observations can be appreciated
by recalling the five sources of error related to the computa-
tion of ionic solvation free energies from explicit-solvent
simulations relying on cut-off-based electrostatic interac-
tions: !i" Incorrect polarization of the solvent around the ion
due to truncated !and possibly modified" electrostatic inter-
actions; !ii" Cut-off- and system size-dependent perturbation
of the solvent polarization due to artificial periodic boundary
conditions; !iii" artifacts at the cut-off distance arising from
the finite size of the solvent molecules, and related to the use
of either a molecular or an atomic cut-off; !iv" artificial heat-
ing during molecular-dynamics simulations due to the pos-
sible presence of discontinuities in the atomic forces; !v"
inaccuracy of the ion–solvent and solvent–solvent interac-
tion functions and parameters !force fields".

Only with the understanding of these five sources of er-
ror and the design of appropriate correction schemes will it
be possible to obtain accurate ionic solvation free energies
from explicit-solvent simulations. The discussion !and cor-
rection" of the two first sources of error has been the focus of
the present article. The third problem has been previously
discussed by a number of groups.55,72–75,77,78,91 Due to the
finite size of solvent molecules, the solvent-generated poten-
tial at the ion site !and thus the solvation free energy" may
vary considerably depending on whether cut-off truncation is
applied on an atomic or on a molecular basis !and in the
latter case, on the choice of a molecular center". Although
the debate is not yet completely settled, a number of argu-
ments suggest that molecular truncation !based on the center
of van der Waals interactions for a spherical molecule77" rep-
resents the appropriate method for evaluating the solvent-
generated potential at the ion site,74,77,91 while a !generally
sizeable" correction term must be applied if atomic trunca-
tion !or a lattice-sum method" is employed instead. The
fourth problem, namely the artificial heating of molecules at
distances close to the cut-off radius, may be alleviated by the
use of an effective truncated electrostatic interaction that is
continuously differentiable at the cut-off distance, together
with atomic truncation. For example, the Barker–Watts
reaction-field interaction14–16 causes very limited heating
provided that the permittivity of the solvent considered is
high and that an !unusual" atomic-cut-off implementation is
applied.16 Finally, in regard to the fifth problem, it should be
stressed that the derivation of force-field parameters for ion–
solvent interactions based on experimental ionic solvation
free energies makes little sense before the four other prob-
lems are solved !i.e., methodology-independent ionic solva-
tion free energies can be be obtained from explicit-solvent
simulations".

In the context of the potential of mean force for the
interaction between two spherical ions, the main observa-
tions can be summarized as follows:

!A" The application of cut-off truncation !under NPBC" in-
duces serious artifacts in the overall electrostatic con-
tribution to the potential of mean force for the interac-
tion between two spherical ions. As previously
observed in explicit-solvent simulations, these lead to
spurious features in the radial distribution functions
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close to the cut-off distance9,42,43 and to artifacts in the
relative stability of the contact, solvent-separated and
free ion pairs.36–42,44,57,80,87 These effects are reduced
!although not compleletly eliminated" by the applica-
tion of a reaction-field correction.

!B" The introduction of artificial periodicity (NPBC
→PBC) when applying cut-off-based electrostatics ap-
pears to cause very small changes in the electrostatic
contribution to the !minimum-image" potentials of
mean force for small monovalent ions in a solvent of
high permittivity. A rather weak periodicity-induced
perturbation was also reported in this case for lattice-
sum methods.57 However, the causes of the limited
overall effect are different. In the cut-off case, both the
solvation free energy profile and the direct ion–ion in-
teraction are almost unaffected by periodicity. In the
lattice-sum case, both contributions are largely af-
fected, but the two perturbations nearly cancel each
other.

Explicit-solvent simulations of ion solvation and ion–
ion interactions are currently in progress to confirm the va-
lidity of the above considerations derived from a continuum-
electrostatics analysis, and their compatibility with the
results of simulations employing lattice-sum methods.
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APPENDIX A: POLARIZATION IN THE
BARKER–WATTS REACTION-FIELD SCHEME

As shown in Fig. 3, the polarization corresponding to the
RF scheme under NPBC is very close to the corresponding
Born polarization, the deviation being largest at distances
close to the cut-off radius. Here, we derive a number of
results related to this comparison, in the more general con-
text of the Barker–Watts !BW" interaction function #Eq. !2"$,
namely that !i" the BW/NPBC and CB/NPBC !Born" polar-
izations become identical in the limit R IS ,RSS→+ , irrespec-
tive of the value of ); !ii" when R IS$RSS , the BW/NPBC
polarization converges towards the Born polarization at short
distances from the ion, provided that )$2((s%1)/(2(s
#1); !iii" the BW/NPBC polarization, just as the Born po-
larization, is proportional to r2 at large distances from the
ion, provided that )$((s#2)/((s%1). The latter results ob-
viously remain approximately valid for a solvent of high
permittivity ((s(1) when ) is set to one !RF" or close to
one.

The derivations are based on continuum-electrostatics
results presented in a previous article,27,28 and applied to the
specific case of truncated electrostatic interactions corre-
sponding to the Barker–Watts potential #Eq. !2"$. In this case
the radial polarization around a solvated spherical ion is a
solution of the integral equation

p!r "$g!r "#
(s%1

(s
!
max(RI ,(r%RSS()

r#RSS
K!r ,r!"p!r!"dr!

for r"RI , !A1"

together with p(r)$0 for r*RI . The inhomogeneous term
g(r) is related to the vacuum field generated by the ion

g!r "$
qI
4'

(s%1
(s

H!R IS%r "" r%2%
)r
R IS
3 # , !A2"

and the kernel K(r ,r!) to the form of the solvent–solvent
interactions

K!r ,r!"$%!)#2 "
r4##RSS

2 %!r!"2$2%2r2#RSS
2 #!r!"2$

16r2RSS
3 .

!A3"

First, it is shown that in the limit R IS ,RSS→+ , the po-
larization defined by Eq. !A1" converges to the Born polar-
ization #Eq. !26"$. Due to the form of Eq. !A2",
limRIS→+#g(r)%pBorn(r)$$0. It is thus sufficient to prove
that the integral term in Eq. !A1" vanishes in the limit of an
infinite solvent–solvent cut-off radius. In this limit, the lower
bound of integration can be set to RSS%r . For r! within the
interval RSS%r to RSS#r , K(r ,r!) is positive and possesses
a single maximum at r̃!$(RSS

2 #r2)1/2 with K(r , r̃!)$()
#2)/(4RSS). Assuming that the polarization is positive and
finite over the whole range of distance !with a maximum
value p̃), upper and lower bounds can be given to the inte-
gral in Eq. !A1"

0*!
RSS%r

RSS#r
K!r ,r!"p!r!"dr!

*2r p̃K!r , r̃!"$
)#2
2 p̃

r
RSS

, !A4"

which shows that the integral vanishes for any finite r in the
limit RSS→+ . Thus, the BW/NPBC polarization converges
to the Born polarization in the limit of large cut-off radii,
irrespective of the value of ). This result is in particular valid
for the ST27 ()$0) and RF ()$1) schemes.

As a second result, it is shown that the polarization de-
fined by Eq. !A1" converges to the Born polarization in the
limit of short distances when R IS$RSS , provided that )
$2((s%1)/(2(s#1), i.e., when Eq. !3" is used with (!
$(s !adjusted boundary conditions61". For r*min#RIS ,RSS
%RI$ , the Heaviside function in Eq. !A2" can be omitted and
the lower bound in Eq. !A1" replaced by RSS%r . Thus, one
looks for a solution of

p!r "$
(s%1

(s
$ qI4' " r%2%

)r
R IS
3 #

#!
RSS%r

RSS#r
K!r ,r!"p!r!"dr!% . !A5"

Using the result

!
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3

r
RSS
3 , !A6"
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one shows easily that the function satisfying Eq. !A5" when
R IS$RSS and )$2((s%1)/(2(s#1) is the Born polariza-
tion #Eq. !26"$. Therefore, with this specific value of ), the
BW/NPBC polarization will converge to the Born polariza-
tion at short distances, irrespective of the cut-off values. For
a solvent of high permittivity ((s(1), this result will remain
approximately valid when )$1 !RF".

As a third result, it is shown that the polarization defined
by Eq. !A1" possesses an r%2 dependence in the limit of
large distances !just as the Born polarization", provided that
)$((s#2)/((s%1). For r8max#RIS ,RSS#RI$ , Eq. !A2"
implies g(r)$0 and the lower bound in Eq. !A1" can be
replaced by r%RSS . Thus, one looks for a solution of

p!r "$
(s%1

(s
!
r%RSS

r#RSS
K!r ,r!"p!r!"dr!. !A7"

Using the result

!
r%RSS

r#RSS
K!r ,r!"!r!"%2dr!$

)#2
3 r%2, !A8"

one shows easily that the function satisfying Eq. !A7" when
)$((s#2)/((s%1) is cr%2, where c is a constant. There-
fore, with this specific value of ), the BW/NPBC polariza-
tion will possess a r%2 dependence in the limit of large dis-
tances. For solvent of high permittivities ((s(1), this result
will remain approximately valid when )$1 !RF" or when )
is given by Eq. !3" with (!$(s !adjusted boundary condi-
tions".

The above observations are illustrated in Fig. 7 for the
case of an ion of radius RI$0.4 nm immersed in a solvent of
permittivity (s$78. In the inset, the polarization p(r) is dis-

played as a function of r%2 for the RF scheme ()$1), using
four different values of the cut-off radius RC . The Born po-
larization is linear in r%2 and corresponds to the diagonal of
the graph. Besides a small artifact close to the cut-off dis-
tance !only visible in the graph for RC$1.2 and 1.6 nm" and
a slight offset !only visible in the graph for RC$1.2), the
curves are nearly indistinguishable from each other and from
the Born polarization. In the main graph, the differences be-
tween p(r) and pBorn(r) are displayed as a function of r%2

for the same values of RC . In the short distance limit !right
side of the graph", convergence towards the Born polariza-
tion is evident although slow. However, the differences are of
rather small magnitude. For example, the relative difference
at the surface of the ion, #pBorn(RI)%p(RI)$/pBorn(RI),
evaluates to 0.91, 0.29, 0.12, or 0.06% for RC$1.2, 1.6, 2.0
or 2.4 nm. In the long distance limit !left side of the graph",
the approximate r%2 evolution of p(r)%pBorn(r) can also be
observed. The maximal error in the polarization occurs ex-
actly at the cut-off distance. Increasing the cut-off distance
rapidly reduces the magnitude of this error, the difference
pBorn(RC)%p(RC) evaluating to %0.021, %0.009, %0.004,
%0.003 e nm%2 for RC$1.2, 1.6, 2.0, or 2.4 nm. These
results indicate that for large-enough cut-off distances, the
RF/NPBC scheme provides an essentially correct representa-
tion of the polarization around a spherical ion, in both the
short- and long-distance ranges.

APPENDIX B: SELF-ENERGY TERM
FOR CUT-OFF-BASED INTERACTION FUNCTIONS

Here it is shown that when an effective cut-off-based
interaction function is used to handle electrostatic interac-
tions in an explicit-solvent simulation, a charge self-energy
term should be included into the total electrostatic energy of
the system to ensure a fast convergence of ionic solvation
free energies towards the Born result in the limit of large
cut-off distances. Generalizing this observation to the case of
more complex molecular systems, a new definition #Eq.
!B4"$ is proposed for the electrostatic interaction energy in
simulations employing the Barker–Watts reaction-field
scheme.

Consider an effective cut-off-based electrostatic interac-
tion function where the potential generated at r by a unit
charge at the origin is given by

&!r "$
1

4'(o
H!R%r "#r%1#&̃!r "$ , !B1"

where R is the cut-off radius, chosen smaller than half the
smallest dimension of the computational box. It is further
assumed that !i" the interaction function vanishes at r$R ,
i.e., &(R)$0, !ii" &̃ is a sum of terms of the form R%l%1rl
with l80, and !iii" the polarization around a spherical ion
converges to the Born polarization #Eq. !26"$ in the limit of
an infinite cut-off distance. For example, as shown in Appen-
dix A, the Barker–Watts interaction function #Eq. !2"$ satis-
fies the three conditions irrespective of the value of ). In
fact, there is some hint that the form of Eq. !B1" and the
second condition automatically imply the third one.60

FIG. 7. Radial polarization p(r) around a solvated spherical ion #Eqs. !22"$
compared to the Born polarization #Eq. !26"$. The system consists of a
single ion of charge qI$1 e and radius RI$0.4 nm in a solvent of permit-
tivity (s$78 under NPBC !spherical domain of radius S$10.0 nm). Elec-
trostatic interactions correspond to the RF scheme, with cut-off radii R IS
$RSS$RC$1.2, 1.6, 2.0, or 2.4 nm. The polarization is computed using the
1D-Direct method !Refs. 27 and 28" for the specific interaction scheme
!RF/NPBC". In the inset, p(r) is displayed as a function of r%2, while the
Born polarization pBorn(r) !not displayed" is a straight line corresponding to
the diagonal of the graph. In the main graph, the difference p(r)
%pBorn(r) is displayed as a function of r%2.
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Under these assumptions and for large-enough cut-off
distances, the polarization within the cut-off sphere of an ion
should be quite close to the Born polarization #see Fig. 3!b"
for the RF scheme$. Using the Born polarization as an ap-
proximation in this case, one may estimate the corresponding
ionic solvation free energy. Combining Eq. !10" with V(r)
$%qI,&(r) and Eq. !26", one obtains the approximate ex-
pression

%Gsolv<
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2
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(s%1
(s

&̃!RI", !B2"

where we used &(R)$0 and inserted Eq. !28". In the RF
case, estimates based on this equation can be compared to
the data in Table II. For example, for (s$78, qI$1 e , RI
$0.2 nm and R IS$RSS$1.2 nm, Eq. !B2" #using Eq. !2"
with )$1] gives an estimate of %258.0 kJmol%1 !includ-
ing 27.8 kJmol%1 for the )-dependent contribution", to be
compared with the numerical value of %259.2 kJmol%1 !in-
cluding 26.2 kJmol%1 for the )-dependent contribution" in
Table II. If &̃ is a sum of terms of the form R%l%1rl with l
80, &̃(RI) can be approximated by &̃(0) in the limit of large
cut-off radii and small ions. In this case, Eq. !B2" shows that
the ionic solvation free energy computed from an explicit-
solvent simulation employing a cut-off-based interaction
function will converge significantly faster towards the Born
result upon increasing the cut-off distance if a self-energy
term of the form

%Gself$
qI
2

8'(o

(s%1
(s

&̃!0 ", !B3"

is included in the electrostatic energy of the system. Note
that %Gself converges towards zero in the limit R→+ . How-
ever, because this term is generally large and converges only
as R%1, its inclusion makes a significant difference even for
relatively large cut-off radii.

Generalizing this observation to more complex molecu-
lar systems suggests that a charge self-energy term should be
included in explicit-solvent molecular dynamics simulations
employing any effective cut-off-based electrostatic interac-
tion function. Intuitively, this term may be interpreted as the
reversible work required to individually charge the atoms
when they are at infinite separation. This work excludes the
!infinite" Coulombic self-energy, but retains the contribution
arising from the non-Coulombic term associated with &̃ in
Eq. !B1".

In the specific case of the Barker–Watts reaction-field
method #Eq. !2"$, a reasonable expression for the total elec-
trostatic energy UBW could be
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where r̄i j is the minimum-image vector corresponding to ri j ,
excl(i) denotes the exclusion list of atom i !the distance
between any two excluded atoms is assumed to be smaller
than R), and

&̃BW!r "$
)r2

2R3 %
)#2
2R , !B5"

with ) defined by Eq. !3". Note that current simulation pro-
grams !e.g., GROMOS92 and GROMACS93" typically restrict the
implementation of the Barker–Watts reaction-field method to
the first term in Eq. !B4". The second term is explicitly in-
cluded here because so-called excluded neighbors !usually
first and second covalent neighbors" should only be excluded
from the summation of the Coulombic (r%1) contribution,
but not of the reaction-field (&̃BW) contribution. The form of
the third term has been chosen for consistency in the context
of small molecules !compared to the cut-off radius and unit-
cell size". For a small molecule !or ion" gathered by period-
icity around its center, r̄ i j can be replaced by ri j in Eq. !B4"
and the Heaviside function involved in &BW can be omitted.
In this case, the reaction-field !non-Coulombic" contribution
contribution to UBW can be written

UBW
rf $

1
8'(o

' )

R3 4i 4
j"i

qiq jr i j
2 #

(s%1
(s

&̃BW!0 "" 4
i
qi# 2) .

!B6"
For a neutral molecule, one has

UBW
rf,dip$%

1
8'(o

)-2

R3 , !B7"

where - is the molecular dipole moment, which matches the
Onsager expression for a dipole in a spherical cavity94 pro-
vided that adjusted boundary conditions #(!$(s in Eq. !3"$
are applied. For a monoatomic ion, one has UBW

rf,ion$%Gself ,
i.e., the self-energy term suggested by Eq. !B3". Note that the
last term in Eq. !B4" only affects the energy of the system,
but does not induce atomic forces. However, it may be es-
sential to include it in free-energy calculations involving al-
terations of the atomic partial charges.

In the specific case of a single ion, the inclusion of such
a self-energy term should substantially reduce the error on
ionic solvation free energies computed from explicit-solvent
simulations with finite cut-off distances. This can be seen
from the corresponding corrected values %Gsolv

corr$%Gsolv
#%Gself reported in Table II. In the RF case, taking the same
example as above ((s$78, qI$1 e , RI$0.2 nm and R IS
$RSS$1.2 nm), %Gsolv

Born evaluates %342.9 kJmol%1, to be
compared with an estimate %Gsolv

corr of %344.9 kJmol%1. The
corresponding estimate for the ST case, %363.4 kJmol%1, is
significantly less accurate. This is probably due to the poorer
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agreement between the polarization within the cut-off sphere
of an ion and the Born polarization in this case #see Fig.
3!a"$.
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