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ABSTRACT: The flying ice cube effect is a molecular dynamics
simulation artifact in which the use of velocity rescaling
thermostats sometimes causes violation of the equipartition
theorem, affecting both structural and dynamic properties. The
reason for this artifact and the conditions under which it occurs
have not been fully understood. Since the flying ice cube effect
was first demonstrated, a new velocity rescaling algorithm (the
CSVR thermostat) has been developed and become popular
without its effects on the equipartition theorem being truly
known. Meanwhile, the use of simple velocity rescaling and
Berendsen (weak coupling) thermostat algorithms has not
abated but has actually continued to grow. Here, we have
calculated the partitioning of the kinetic energy between translational, rotational, and vibrational modes in simulations of
diatomic molecules to explicitly determine whether the equipartition theorem is violated under different thermostats and while
rescaling velocities to different kinetic energy distributions. We have found that the underlying cause of the flying ice cube effect
is a violation of balance leading to systematic redistributions of kinetic energy under simple velocity rescaling and the Berendsen
thermostat. When velocities are instead rescaled to the canonical ensemble’s kinetic energy distribution, as is done with the
CSVR thermostat, the equipartition theorem is not violated, and we show that the CSVR thermostat satisfies detailed balance.
The critical necessity for molecular dynamics practitioners to abandon the use of popular yet incorrect velocity rescaling
algorithms is underscored with an example demonstrating that the main result of a highly cited study is entirely due to artifacts
resulting from the study’s use of the Berendsen thermostat.

1. INTRODUCTION

By integrating the classical Newtonian equations of motion,
molecular dynamics (MD) simulations naturally sample the
microcanonical (NVE) ensemble due to conservation laws.1,2

For comparison with experiment, it is often desirable to sample
constant-temperature ensembles such as the canonical (NVT)
or isothermal−isobaric (NPT) ensembles. In analogy with
experiment, these ensembles could be generated by sampling a
subspace of a much larger microcanonical system that serves as a
heat bath, but such an approach is usually too computationally
expensive to implement in practice. Instead, various thermo-
statting algorithms are typically applied to change the
Hamiltonian dynamics in a manner such that the intended
ensemble is sampled. Many such algorithms have been
proposed, and some of the more well-known choices include
the following:
• Simple velocity rescaling, pioneered by Woodcock3 for

thermal equilibration, rescales the velocities of all particles at the
end of each time step (it can also be conducted with a less
frequent time rescaling period) by a factor λ to achieve a target

i n s t a n t a n e o u s t emp e r a t u r e : ( )K

K

1/2
targetλ = w i t h

K N k Ttarget
1
2 DOF B target= , where NDOF is the number of degrees

of freedom in the system.
• The Gaussian thermostat supplements Newton’s second

law with a force intended to keep the kinetic energy constant:4−6

ṗi = −∇Ui − αpi, where α is a Lagrange multiplier determined
using Gauss’ principle of least constraint to be α = (∑i=1

N Fi·pi/
mi)/(∑i=1

N pi
2/mi).

• Langevin dynamics supplements Newton’s second law with
terms describing Brownian motion:7 ṗi =−∇Ui− γpi + η, where
γ represents a frictional dissipative force and η(t,T,γ,mi) is a
stochastic term representing random collisions.
• The Berendsen thermostat (going forward, we will refer to

this as the weak coupling (WC) thermostat) takes the Langevin
equation, removes the stochastic term, and modifies the
frictional dissipative force to yield similar temperature time
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dependence as with the stochastic term present:8

( )Up p 1i i i
K

K
targetγ̇ = −∇ − − , where K N k Ttarget

1
2 DOF B target= .

In practice, this is implemented as a smoother version of the
simple velocity rescaling technique in which the velocities of all
particles are rescaled at the end of each time step by a factor λ

with
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ( )1 1t K

K

1/2

T

targetλ = + −
τ
Δ , where τT represents a time

damping constant; if it is set equal to the time step, the algorithm
recovers simple velocity rescaling, and as the time damping
constant approaches infinity, the algorithm recovers conven-
tional microcanonical dynamics.
• The canonical sampling through velocity rescaling (CSVR)

thermostat is a velocity rescaling algorithm in which the
velocities of all particles are rescaled at the end of each time step
by a factor λ designed such that the kinetic energy exhibits the
distribution of the canonical ensemble.9,10 To this end,

( )K

K

1/2
targetλ = , where Ktarget is stochastically drawn from the

probability density function P(Ktarget) ∝ Ktarget
NDOF/2−1e−βKtarget. This

algorithm can be adjusted to yield a smoother evolution in a
similar manner as the weak coupling thermostat smoothes
simple velocity rescaling.9

• The Nose−́Hoover thermostat extends the classical
Lagrangian to include the additional coordinate s and its time-

derivative:11,12 s U Qs k T L slni
N

m

p2
1 2

1
2

2
B target

i

i

2

= ∑ − + ̇ −= ,

where Q is the effective “mass” associated with s and L is set
by the number of degrees of freedom. A single Nose−́Hoover
thermostat may be used, or chains of thermostats may be
implemented to improve ergodicity and to take into account
additional conservation laws.13

There exist numerous additional thermostats (e.g., the
Andersen thermostat14), and small changes can be made to
the listed thermostats, such as implementing the originally
global Nose−́Hoover thermostat in a local “massive”manner by
pairing a separate Nose−́Hoover thermostat to each degree of
freedom.15 The reader is referred to a noncomprehensive list of
reviews and textbooks for additional information.1,16−18

Simple velocity rescaling and the Gaussian thermostat aim to
sample the isokinetic ensemble (NVK). However, they are often
presented as equivalent to the canonical ensemble with respect
to position-dependent equilibrium properties with justification
for this based on the argument that the configurational part of
the isokinetic ensemble’s partition function is exactly equal to
that of the canonical ensemble.5,19−22 Meanwhile, the weak
coupling thermostat does not correspond to a known ensemble
but is rather supposed to sample a configurational phase space
intermediate to the canonical and microcanonical ensem-
bles.8,23,24

In the 1990s, it was found that the simple velocity rescaling
and weak coupling thermostat algorithms introduce an
artifact:25,26 the “flying ice cube effect”, as coined by Harvey et
al.,26 describes a violation of the equipartition theorem observed
when using these algorithms in which kinetic energy drains from
high-frequency modes such as bond stretching into low-
frequency modes such as center of mass (COM) translation.
This was shown to affect systems’ structural, thermodynamic,
and dynamic properties.26 As it can be proven that the
equipartition theorem holds in the canonical, microcanonical,
and isokinetic ensembles (see Supporting Information),27−31 a
simulation exhibiting the flying ice cube effect is not ergodically

sampling any of these ensembles in configurational or
momentum phase space.
Nonetheless, simple velocity rescaling and the weak coupling

thermostat continue to be commonly used17,32 with Cooke and
Schmidler32 stating, “By far the most commonly used algorithm
for constant temperature MD of biomolecules is the Berendsen
heat bath, due to its ease of implementation and availability in
standard software packages.” Use of the weak coupling
thermostat can be approximated by tracking citations of its
canonical reference,8 which have continued to grow over time
(Figure 1).

Some technical aspects of the flying ice cube effect are as of yet
still unclear. Since Harvey et al.,26 there has been continued
discussion about whether the flying ice cube effect may occur
with other thermostats.33,34 The CSVR thermostat rescales
velocities to yield the canonical ensemble’s distribution of
kinetic energies similar to how simple velocity scaling yields the
isokinetic ensemble’s distribution of kinetic energies and the
weak coupling thermostat yields a kinetic energy distribution
intermediate to the two ensembles. If all velocity rescaling
algorithms always lead to the flying ice cube effect, then it may be
suspected that the same flying ice cube artifact occurs when
using the CSVR thermostat,35 which would be worrisome
because the CSVR thermostat has been quickly adopted into
widespread use (Figure 1). In addition, because the Gaussian
thermostat has been shown to be similar to simple velocity
rescaling,36 it may be suspected that the Gaussian thermostat
exhibits the artifact as well. Given the widespread use of these
algorithms in MD simulations, more understanding is
warranted, and we will show that neither the CSVR thermostat
nor the Gaussian thermostat bring about the flying ice cube
effect.
In the present work, we refer to the “flying ice cube effect” as

the term was originally used to describe the violation of the
equipartition theorem as caused by velocity rescaling
procedures.26 Multiple manifestations of this effect are possible,
such as the accumulation of kinetic energy into translational or
vibrational degrees of freedom (as we will demonstrate) or the
development of temperature gradients,37,38 all of which we refer
to as the flying ice cube effect. Meanwhile, other MD simulation

Figure 1.Citations of Berendsen et al.8 and Bussi et al.9 over time. Data
provided by Web of Science, extracted on May 4, 2018.
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methods that fail to conserve energy in the microcanonical
ensemble can also bring about equipartition theorem violations,
including approximate treatment of long-range electrostatic
interactions, certain multiple time step algorithms, constraining
molecular geometries with too loose of a tolerance, not updating
neighbor lists frequently enough, and using too large of a time
step.33,39,40 In some cases, these issues are also referred to as
flying ice cube effects, but these are not related to the artifact
with which we are concerned.41−43

In this work, we have revisited the simple model system of
united-atom diatomic ethane molecules that Harvey et al.26 first
used to illustrate the flying ice cube effect. By explicitly
calculating the partitioning of kinetic energies between trans-
lational, rotational, and vibrational degrees of freedom, we are
able to determine which thermostats and conditions lead to the
violation of equipartition as well as the manner and degree to
which they do so. We go on to rationalize these findings by
illustrating how simple velocity rescaling violates balance while
the CSVR thermostat satisfies detailed balance. We end by
illustrating some severe errors that are directly caused by these
subtleties related to thermostatting.

2. SIMULATION DETAILS
Diatomic ethane molecule simulations were conducted with the
open-source LAMMPS code.44 LAMMPS input scripts are
available in the Supporting Information.45

Except where stated otherwise, the simulations consisted of
cubic simulation boxes with periodic boundary conditions
(PBC) set up by placing the ethane molecules on a simple cubic
lattice, equilibrated with a Langevin thermostat for at least 50 ns,
switched to the target thermostat for at least a further 50 ns of
equilibration, and finally ran with the target thermostat for at
least 50 ns of production. We verified that all simulations were
conducted for sufficient time periods for the energies to
equilibrate and be well sampled. For the simulations in which
the COM linear momentum was fixed to zero (stated in the
figure captions), the system’s linear momentum was zeroed
every time step followed by a rescaling of velocities to maintain
the same total kinetic energy as before the zeroing had occurred
to prevent energy leakage. The equations of motion were
integrated with a standard Velocity Verlet algorithm using half-
step velocity calculations. The time step used was 0.5 fs, which
was found to give adequate energy conservation in the
microcanonical ensemble.
Thermostat parameters were as follows except where stated

otherwise. Simple velocity rescaling was done every time step.
The Nose−́Hoover chain consisted of three thermostats. The
weak coupling, Nose−́Hoover, and CSVR thermostats were
used with time damping constants (τT) of 100 fs, and the Nose−́
Hoover thermostat used effective thermostat masses of Q1 =
NDOFkBTτT

2 and Qi>1 = kBTτT
2 .13 When doing simulations in the

microcanonical ensemble, the total energy was set such that a
simulation temperature equal to the canonical ensemble
simulations’ target temperature was achieved. The target
simulation temperature was set to 350 K, well above the critical
temperature of ethane.46

Kinetic energies of each diatomic molecule were partitioned
into translational, rotational, and vibrational kinetic energies, as
shown in the Supporting Information. In all figures that plot
kinetic energies, the error bars shown represent ±1 standard
error of the mean. This was calculated by dividing the data from
the production timesteps into 20 consecutive blocks, averaging
the data for each block and computing the standard error over

the 20 data values.1 Error bars are not shown when they would
be smaller than the symbols or the line widths.
Bonded parameters for the united-atom ethanemolecule were

taken from Harvey et al.26 (harmonic bond potential U(r) = k(r
− r0)

2 with r0 = 1.54 Å and k = 240 kcal mol−1 Å−2), and
nonbonded parameters were taken fromMartin and Siepmann46

(Lennard-Jones potential with ϵ = 0.195 kcal mol−1, σ = 3.75 Å,
truncated and shifted at 14 Å, and no charges).
Details on the simulations of benzene in MOF-5 can be found

in the Supporting Information.

3. RESULTS AND DISCUSSION
3.1. Examining Equipartition under Different Thermo-

stats. It is instructive to reconsider the simple case previously
examined by Harvey et al.,26 that of a single ethane molecule
moving in one-dimensional space along its bond axis. In the
microcanonical ensemble under perfect energy conservation, the
translational kinetic energy will remain constant at its set initial
energy, and the vibrational kinetic energy will oscillate. In the
canonical ensemble, equipartition states that the translational
and vibrational degree of freedom should each have an average
kinetic energy of k T1

2 B . As expected, the Langevin thermostat

satisfies the equipartition theorem (see Figure 2). In agreement

with the work of Harvey et al.,26 we find that simple velocity
rescaling and the weak coupling thermostat bring about a
violation of equipartition in the kinetic degrees of freedom with
all kinetic energy flowing to translational motion, in the plainest
illustration of the flying ice cube effect. We find that the CSVR
thermostat correctly partitions the energies.
We next consider the more complex case of a large number of

ethane molecules interacting in three dimensions with
anharmonic Lennard-Jones potentials. Each diatomic ethane
molecule now has three translational modes, two rotational

Figure 2. Partitioning of the kinetic energies obtained from one-
dimensional MD simulations of a single ethane molecule using various
thermostats. Both atoms were given a starting velocity of 100 m s−1

along the same direction as the bond vector. For the thermostats shown,
the same energy partitionings were observed regardless of initial bond
length and initial COM momentum. The microcanonical, Nose−́
Hoover thermostat, and Gaussian thermostat results are not shown
here because we found that the energy partitionings are dependent on
the initial conditions, indicative of these thermostats’ well-known lacks
of ergodicity that are more manifest for small systems.1,5,13,17,36,47−49
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modes, and one vibrational mode, so the equipartition theorem
states that these modes’ kinetic energies should be equal to

k T3
2 B , k T2

2 B , and k T1
2 B , respectively, with a correction of

k T N/3
2 B molecs to the translational kinetic energy in cases where

the COM momentum is constrained. In Figure 3, we show that
the Langevin, Nose−́Hoover, CSVR, and Gaussian thermostats
all exhibit correctly equipartitioned energies as does the
microcanonical ensemble. As in the case of the single ethane
molecule in one dimension, the simple velocity rescaling and
weak coupling thermostat algorithms lead to a violation of
equipartition with translational and rotational modes having too
much kinetic energy and vibrational modes having too little.
3.2. Equivalence of Simple Velocity Rescaling and the

Gaussian Thermostat. Because the thermostatting under
simple velocity rescaling does not take place within the
equations of motion, this ad hoc temperature control algorithm
was initially difficult to investigate theoretically, and its validity
was considered questionable.5,6 The algorithm’s use was justified
on the basis of empirical arguments, such as that simple velocity
rescaling and the Gaussian thermostat give similar static and
dynamic properties for the Lennard-Jones fluid.19 It was
eventually proven that simple velocity rescaling is analytically
equivalent to the Gaussian thermostat within an error of

(timestep) when the velocity rescaling time period is set equal

to the time step,36 which gave support for the legitimacy of using
simple velocity rescaling to sample the isokinetic ensemble.
However, we have shown that the Gaussian thermostat

exhibits correct energy equipartitioning, whereas simple velocity
rescaling does not. We prove in the Supporting Information that
the isokinetic ensemble should satisfy the equipartition theorem.
Thus, it is clear that simple velocity rescaling does not actually
sample the isokinetic ensemble.
The equivalence of simple velocity rescaling and the Gaussian

thermostat under small timesteps leads to the expectation that
the flying ice cube effect will gradually disappear under simple
velocity rescaling as the time step is decreased. We demonstrate
confirmation of this expectation in Figure 4. However, Figure 4
shows that the time step needs to be reduced by over 3 orders of
magnitude from typical simulation timesteps before the flying
ice cube effect is no longer discerned. Of course, such a
decreased time step requires an equivalent 3 orders of
magnitude increase in CPU time; if the time step between
integrations is so small, the forces on the particles should not
need to be recalculated every time step, and thus one could
envision implementing a multiple-time-step algorithm to
mitigate the increase in CPU time. We also note that, under
the weak coupling thermostat, lowering the time step does not
correct the energy partitioning.

3.3. Violation of Balance Causes the Flying Ice Cube
Effect. The mechanism underlying the flying ice cube effect can

Figure 3. Partitioning of the kinetic energies obtained from MD simulations of 50 ethane molecules in a 30 Å cubic simulation box using various
thermostats. In all simulations shown, the COM momentum was fixed to zero.

Figure 4. Partitioning of the kinetic energies obtained fromMD simulations performed under the same conditions as in Figure 3 but changing the time
step, using (left) simple velocity rescaling and (right) the weak coupling thermostat with the time damping constant maintained at 100 fs. Lines are a
guide to the eye.
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be elucidated graphically for the first test case we examined, that
of a single ethane molecule. In Figure 5, we show this system’s
phase space, putting translational kinetic energy on the x-axis
and vibrational kinetic energy on the y-axis.

During microcanonical MD, the system can only explore
phase space on a vertical line between y = 0 and y =Umax because
a constant total energy and translational kinetic energy is
maintained with energy exchanges only allowed between
vibrational kinetic energy and potential energy. Consider a
MD simulation initially on such a vertical line in phase space, AB.
Under simple velocity rescaling, if a rescaling move is conducted
at point B, the system will move to point C; this occurs because
the translational and vibrational energies are both scaled by the
same factor λ2 such that their sum is equal to the target kinetic
energy, moving the system to the intersection of the lines
y x

y

x
B

B
= and the target isokinetic line (y = −x + Ktarget). Because

points B and C have the same configuration with zero potential
energy, MD will now explore line CD.
Let us examine whether we can reach point B by rescaling

from line CD back to a line with the same translational energy of
line AB. With a single rescaling, we would need to rescale from
point E to point F. From point F, MDwill explore phase space on
line AG, where the lengths of lines FG and CE are equal with
both representing the stored potential energy of the system prior
to the rescaling. Obviously, line EF must have a smaller slope
than line BC; accordingly, yG will necessarily be smaller than yB.
Hence, with a single velocity rescaling, point B cannot be
reached. Multiple velocity rescalings from line CD allows us to
reach a point with greater vibrational kinetic energy than point

G. However, all phase space reachable by any number of velocity
rescalings from line CD is bounded by the red dashed line in
Figure 5 (see Supporting Information for derivation).
Continuing to rescale will continue to shrink the volume of
accessible phase space, as rescaling from lines AB to CD to AG
lowers the boundary from the blue to the red to the green dashed
lines; eventually, accessible phase space will be confined only to
the point with all kinetic energy in the translational mode.
Notably, the decrease in accessible phase space becomes

smaller as velocity rescaling occurs closer to the isokinetic line.
In a simulation, this occurs when the time step between velocity
rescalings is reduced. This explains why the flying ice cube effect
is reduced under simple velocity rescaling by decreasing the time
step (Figure 4).

3.3.1. Monte Carlo Perspective. We can view the
combination of MD and velocity scaling moves as a Monte
Carlo simulation. Hence, our previous example shows that
simple velocity rescaling violates the condition of balance.1,50

In contrast, the CSVR thermostat can explicitly be proven to
sample the desired distribution by considering the condition of
detailed balance. Let us assume that we do a large and random
number of MD steps between velocity rescaling moves. We
define A as the set of all configurations of the system with a total
energy EA. The flow of configurations from set A to set B is given
by

K A B P E p E

E E E E

r p

r p r p r p r p

( ) ( ) ( , )

( ( , ) ) ( , , ) ( ( , ) )

n n

n n n n n n n n
B

r p r p
A 1 1 A

1 1 A 1 1 2 2 2 2

n n n n
1 1 2 2

∑ ∑ ∑ ∑

δ α δ

→ = |

− → − (1)

where r1
n,p1

n is the configuration with position vector r1
n,

momentum vector p1
n, p(r1

n,p1
n|EA) is the probability of finding

the configuration r1
n,p1

n from all configurations with energy EA
during MD, and α(r1

n,p1
n → r2

n,p2
n) is the a priori probability to

velocity rescale from configuration r1
n,p1

n to configuration r2
n,p2

n.
Recognizing that velocity rescaling does not alter positions

K A B P E p E

E E E E

r p

r p r p r p r p

( ) ( ) ( , )

( ( , ) ) ( , , ) ( ( , ) )

n n

n n n n n n n n
B

r p p
A 1 A

1 A 1 2 2

n n n
1 2

∑ ∑ ∑

δ α δ

→ = |

− → −
(2)

Next, recognizing that velocity rescaling can only give one
configuration in momentum space with E(rn,p2

n) = EB from
starting configuration rn,p1

n and that the acceptance probabilities
only involve the kinetic energy

K A B P E p E

E E K E U E U

r p

r p r r

( ) ( ) ( , )

( ( , ) ) ( ( ) ( ))

n n

n n n
B

n

r p
A A

A A

n n
∑ ∑

δ α

→ = |

− = − → −
(3)

where α(K = EA − U(rn) → EB − U(rn)) is the a priori
probability to velocity rescale to the configuration having kinetic
energy K = EB − U(rn) given that we start with a configuration
having kinetic energy K = EA − U(rn). Then, recognizing that
momentum and position are decoupled, i.e., the number of
possible states in momentum space only depends on the total
kinetic energy but does not depend on the details of the potential
energy surface and that each of these possible states in
momentum space are equally likely

Figure 5. Kinetic phase space of a single ethane molecule moving in
one-dimensional space along its bond axis under simple velocity

rescaling. Ktarget = kBTtarget, ( )K m m( ) ,
m v m v

m mtrans
1
2 1 2

2
x x1 1, 2 2,

1 2
= + +

+ and

( )K v v( )m m
m m x xvib

1
2 2, 1,

21 2

1 2
= −+

. Solid lines show a particular path in

phase space between labeled points, referred to in the text. Dotted lines
are guides useful to understanding the velocity rescaling moves. Dashed
lines show the boundaries of phase space accessible by any sequence of
MD and velocity rescalings from lines AB, CD, and AG with the
accessible phase spaces shaded.
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K A B P E E U p E

K E U E U

r r p

r r

( ) ( ) ( ( )) ( , )

( ( ) ( ))

n n n

n
B

n

r
A A A

A

n
∑ ω

α

→ = − |

= − → − (4)

where ω(K) is the number of configurations in momentum

space for a given kinetic energy K (equivalent to the ideal gas

microcanonical partition function). Finally, by making the

substitutions p(rn,pn|EA)=ΩNVEA
−1 and P E( )

e

ZA

E
NVE

NVT

A
A=

Ωβ−

K A B
e
Z

E U

K E U E U

r

r r

( ) ( ( ))

( ( ) ( ))

E

NVT

n

n
B

n

r
A

A

n

A

∑ ω

α

→ = −

= − → −

β−

(5)

The two flows, K(A → B) and K(B → A), are equal if we

impose as condition for the a priori probabilities

K E U E U
K E U E U

e E U
e E U

e E U

e E U

r r
r r

r

r

r

r

( ( ) ( ))
( ( ) ( ))

( ( ))
( ( ))

( ( ))

( ( ))

n
B

n

B
n n

E
B

n

E n

E U
B

n N

E U n N

r

r

A

A

A
( ( )) /2 1

( ( ))
A

/2 1

B

B
n

n

A

DOF

A DOF

α
α

ω
ω

= − → −
= − → −

=
−
−

=
−
−

β

β

β

β

−

−

− − −

− − −
(6)

in which we used the known expression for the ideal gas
microcanonical partition function.18 Eq 6 is satisfied by the
CSVR thermostat, which rescales velocities to the target kinetic
energy distribution given by the gamma distribution

P K
e K

KK e
e K

N
( )

d ( /2)

K N

N K
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Hence, the CSVR thermostat satisfies detailed balance.
3.3.2. Velocity Rescaling to Other Kinetic Energy Distribu-

tions. We have seen that simple velocity rescaling violates
balance and brings about the flying ice cube effect, whereas the
CSVR thermostat satisfies detailed balance and does not exhibit
the artifact. One key difference between these algorithms is that

Figure 6. (top) Probability density function of kinetic energies following P K( ) e K
N( / 2)

K N

N

DOF/2 1

DOF/2
DOF

=
β Γ −

β− −

− , where β is chosen such that the average kinetic

energy (temperature) is the same for all choices ofNDOF via
N

N0
DOF

DOF,0
β β= ,NDOF,0 = 300, and β0 = (kB × 350 K)−1. (bottom) Partitioning of the kinetic

energies obtained fromMD simulations of 50 ethanemolecules in a 30 Å cubic simulation box using theCSVR thermostat modified such that the target
distribution of kinetic energies was set to those shown in the top part of the figure for the proper NDOF,0 value. (bottom left) Here, the COM
momentum was fixed at 0, and NDOF,0 was set to 297. (bottom right) Here, the COM momentum was not fixed after the Langevin thermostat
equilibration, allowing the COM momentum to drift, and NDOF,0 was set to 300. Lines are a guide to the eye.
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simple velocity rescaling restricts the rescaling factor (λ) to be
less than one when the system’s instantaneous temperature is
greater than the target temperature and greater than one when
the instantaneous temperature is less than the target temper-
ature. It is this restriction that allowed us to show graphically that
simple velocity rescaling moves decrease accessible phase space.
It is instructive to consider the effects of relaxing this restriction
while rescaling velocities to a noncanonical kinetic energy
distribution. This procedure would not render any areas of phase
space inaccessible, but the rescaling would be to a distribution
that is not necessarily invariant under Hamiltonian dynam-
ics.14,50

To change the target kinetic energy distribution, we modified
the CSVR thermostat’s value of NDOF in eq 7 from the actual
number of degrees of freedom (NDOF,0) while simultaneously

adjusting β from its initial value (β0) such that
N

N0
DOF

DOF,0
β β= to

maintain a constant average kinetic energy. The resulting kinetic
energy distributions are shown in the top of Figure 6 and include
distributions that are sharper (NDOF > NDOF,0) and broader
(NDOF < NDOF,0) than the canonical distribution. In the limit of
NDOF → ∞, this method closely approximates simple velocity
rescaling or the weak coupling thermostat depending on the
time damping constant used.
The energy partitionings that resulted from setting these

target kinetic energy distributions are shown for simulations in

the bottom of Figure 6. It can be seen that, with sharper
distributions, the flying ice cube effect is observed with more
kinetic energy partitioned in low-frequency modes and less in
high-frequency modes. Interestingly, the opposite effect is
observed with broader distributions with more kinetic energy
partitioned in high-frequency modes and less in low-frequency
modes.When the COMmomentum is not constrained to zero, a
more drastic effect is observed such that rotational kinetic
energy decreases both with decreasing NDOF as energy flows to
the higher-frequency vibrational modes and with increasing
NDOF as almost all energy flows to the lower-frequency
translational modes. Only at the canonical kinetic energy
distribution (NDOF = 297 and NDOF = 300 for the constrained
and not-constrained COM momentum simulations, respec-
tively) is proper equipartitioning observed.

3.4. Sampling Configurational Degrees of Freedom.
So far, we have exclusively used kinetic degrees of freedom to
show that the simple velocity rescaling and weak coupling
thermostat algorithms cause the violation of equipartition.
These methods are sometimes used only to sample configura-
tional degrees of freedom, justified on the grounds that the
isokinetic ensemble samples the same configurational phase
space as the canonical ensemble.5,19−22 Because we have proven
that the violation of equipartition is incommensurate with
sampling the isokinetic ensemble, it follows that this justification
is invalid. We now wish to show this explicitly. To do so, we will

Figure 7. (top left) RDF of the CH3−CH3 distance obtained from the MD simulations of 50 ethane molecules in a 30 Å cubic simulation box with a
target temperature set to 350 K using various thermostats. These simulations were the same as the ones whose kinetic energy partitionings are shown in
Figure 3. (top right) RDF of the CH3−CH3 distance obtained from MD simulations of 235 ethane molecules in a 30 Å cubic simulation box with a
target temperature set to 256 K using various thermostats. These conditions were chosen such that the simulation would take place under saturated
liquid conditions.46 For both sets of simulations, COMmomentum was fixed to zero throughout. The RDFs of both sets of simulations done using the
Langevin andCSVR thermostats were indistinguishable from the RDF using theNose−́Hoover thermostat within the line width, so they are not shown
for clarity. (bottom) Partitioning of the kinetic energies obtained from the saturated liquid simulations.
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examine the radial distribution function (RDF), which is solely
dependent on configurational degrees of freedom.
In Figure 7 (top left), we show the RDFs of the supercritical

ethane simulations whose kinetic energy partitionings are shown
in Figure 3. The Nose−́Hoover, CSVR, Langevin, and Gaussian
thermostat simulations exhibit identical RDFs, but the simple
velocity rescaling and weak coupling thermostat simulations
show a subtly different RDF. Although the difference is slight, it
is sufficient to demonstrably disprove the claims that simple
velocity rescaling samples the same configurational phase space
as the canonical ensemble and that the weak coupling
thermostat samples a configurational phase space intermediate
between the canonical and microcanonical ensembles.23,24

We next turn to saturated liquid phase ethane simulations for
which we show RDFs under various thermostats in Figure 7 (top
right). The Nose−́Hoover, Langevin, CSVR, and Gaussian
thermostats all give identical results typical of a simple diatomic
liquid.51 The simple velocity rescaling algorithm once again
shows a subtle difference, but the weak coupling thermostat
shows a very different RDF more reminiscent of the solid phase
than the liquid phase,51 and visualization of the weak coupling
thermostat system shows that the ethane molecules have indeed
packed into a volume smaller than available in the simulation
box. Examination of the kinetic energy partitionings in Figure 7
(bottom) shows that most of the kinetic energy is in vibrational
modes, which is unexpected because that is the opposite of the
usual flying ice cube result. The weak coupling thermostat’s
results are heavily dependent on the choice of time damping
constant with the RDF indicating a solid-like phase for time
damping constants from approximately 10 to 150 fs (Figure S4).
This effect of intermediate time damping constants giving larger
deviations than small or large ones has been seen before in
simulations of bulk water, where the effect was attributed to the
intermediate time constant matching a characteristic time scale
on which dynamical correlations are most pronounced.52 It thus
appears that the weak coupling thermostat is susceptible to
resonance artifacts, which we have also observed under simple
velocity rescaling (Figure S1).
3.5. Contemporary Use of the Simple Velocity

Rescaling and Weak Coupling Thermostat Algorithms.
Ours is not the first publication to warn against the use of simple
velocity rescaling and the weak coupling thermostat.26,32,53

Nonetheless, as we have stated, these algorithms continue to be
widely used (Figure 1). As we have just shown, for some systems
the improper velocity rescaling algorithms may not greatly affect
the system properties, and there are a slew of studies in which
these thermostats are tested for specific systems with some
showing artifacts and others showing indistinguishabil-
ity.35,38,52,54−57 However, slight changes to a system could
introduce artifacts in an unpredictable fashion. Rather than
testing for the correctness of simple velocity rescaling or the
weak coupling thermostat in every specific system, we advocate
for the cessation of their use. We find no reason to use simple
velocity rescaling or the weak coupling thermostat instead of the
CSVR thermostat given their similar ease of implementation,
likely similar speeds of equilibration,58 and our study’s finding
that the CSVR thermostat does not lead to the flying ice cube
effect. As a case study on the dangers of continuing to use these
thermostat algorithms, we examine a highly cited study in depth,
the replication of which initially led us to examine the flying ice
cube phenomenon.
In 2007, a flexible force field intended for use withMOF-5 was

parametrized,59 and it was shortly thereafter used to study the

confined transport of guest molecules within the framework.60

The authors were able to replicate the experimental diffusion
coefficient of confined benzene, but they found that this
replicability only held when the metal−organic framework
(MOF) was allowed to be flexible; when the MOF atoms were
held rigid, the benzene diffusion coefficient increased by an
order of magnitude. The conclusions of this manuscript are
often evoked to question the validity of the rigid framework
assumption that is commonly used in many MOF molecular
simulation studies.
The findings continue to be accepted because it is known that

the effect of framework flexibility on guest diffusion is
complex,61 though surprise has been expressed62 because a
rigid lattice more typically leads to a decrease in the diffusion
coefficient for tight fitting molecules.61 In addition, using a
different flexible force field for MOF-5,63 it was found that
flexibility had little effect on the diffusion coefficient, increasing
it by less than a factor of 1.5.64

As the reader now anticipates, Amirjalayer et al.60 used the
weak coupling thermostat, which was the default option in the
Tinker simulation package at the time (the default has since
been changed to the CSVR thermostat).65 As we show in Figure
8, the result of Amirjalayer et al.60 was completely an artifact of

the weak coupling thermostat. Using the same force field, no
dependence of the benzene diffusion coefficient on the
framework flexibility is observed when a Nose−́Hoover or
CSVR thermostat is used. Apparently, when the weak coupling
thermostat is thermostated to fewer degrees of freedom during
rigid framework simulations, the flying ice cube effect becomes
more noticeable and kinetic energy is drawn into the
translational modes of the guest benzene molecules, accounting

Figure 8. Self-diffusion coefficient of benzene in MOF-5 at a loading of
10 molecules per unit cell as a function of inverse temperature. Data are
shown for flexible and rigid frameworks and using the weak coupling
and Nose−́Hoover chain thermostats (use of the CSVR thermostat
gives diffusion coefficients that are statistically indistinguishable from
use of the Nose−́Hoover thermostat). With the weak coupling
thermostat, it appears that the framework flexibility has a large effect
on the calculated diffusion coefficient, replicating the main finding of
Amirjalayer et al.60 However, it is seen that this result is a flying ice cube
artifact as no flexibility effect is seen with theNose−́Hoover thermostat.
Error bars represent ±1 standard error of the mean using block
averaging1 and are not shown for the data from Amirjalayer et al.60 or if
they would be smaller than the symbol size.
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for the result observed by Amirjalayer et al.60 We also found that
changing the time damping constant of the weak coupling
thermostat had a large effect on the diffusion coefficient (Figure
S5).
As an aside, it is now known that bulk-like vapor and liquid

phases of benzene exist inMOF-5 below a critical temperature.66

It is actually improper to calculate the diffusion coefficient at a
loading that is within the vapor−liquid phase envelope, e.g., 3−
67 molecules per unit cell at 300 K in this system,66 because
there is not a single homogeneous phase present under these
conditions. Here, we are not attempting to calculate correct
diffusion coefficients of benzene in MOF-5 but rather to
compare results with the prior work of Amirjalayer et al.,60 who
conducted the simulations at a loading of 10 molecules per unit
cell. The importance of framework flexibility on the simulated
diffusion coefficient is expected to be independent of the choice
of loading.
Other errors, varying in severity, are likely present in many of

the thousands of studies that have used simple velocity rescaling
or the weak coupling thermostat. Occasionally, one of these
errors is explicitly pointed out,67,68 but negative replications are
not commonly published,69 so the extent to which these articles
contain data contaminated by the flying ice cube artifact cannot
be estimated.

4. CONCLUDING REMARKS
In this work, we have shown that rescaling velocities to a
noncanonical distribution of kinetic energies, as is done with the
simple velocity rescaling and weak coupling (Berendsen)
thermostat algorithms, causes the flying ice cube effect whereby
the equipartition theorem is violated. Thus, simple velocity
rescaling does not sample the isokinetic ensemble, and the weak
coupling thermostat does not sample a configurational phase
space intermediate between the canonical and microcanonical
ensembles; justifications for their use do not hold. The flying ice
cube effect is brought about by a violation of balance causing
systematic redistributions of kinetic energy; this violation is
lessened as the time step between simple velocity rescalings is
decreased, eventually making simple velocity rescaling equiv-
alent to the Gaussian thermostat. Equipartition violation is
completely avoided when velocities are rescaled to the canonical
distribution of kinetic energies, as is done under the CSVR
thermostat, because detailed balance is obeyed.
We have identified several simulation parameters that affect

the conspicuousness of the flying ice cube effect under simple
velocity rescaling and the weak coupling thermostat, including
the time step, the thermostat’s coupling strength, the frequency
of collisions within the simulation (e.g., with a wall), and the
system size (see Supporting Information for further inves-
tigations of these parameters). However, most of these
parameters cannot be adjusted in a manner that eliminates the
flying ice cube effect without making simulations prohibitively
expensive for relevant systems of contemporary interest.
Another reason not to attempt to tune these simulation
parameters to allow the use of incorrect thermostatting
algorithms is the existence of additional resonance artifacts
that occur when the thermostat coupling strengths are set to
particular values that are difficult to predict a priori.
Finally, we have demonstrated several severe simulation

artifacts that the flying ice cube effect can bring about to the
system’s structural and dynamic properties. These include
incorrect RDFs, phase properties, and diffusion coefficients. We
have highlighted one case in which the flying ice cube effect has

been wholly responsible for the main finding of a highly cited
study. Many more such cases are likely present in the literature.
We strongly advocate for discontinuing use of the simple

velocity rescaling and weak coupling thermostat algorithms in all
MD simulations for both equilibration and production cycles.
The results of past studies that have used these two algorithms
should be treated with caution unless they are shown to be
replicable with a more reliable thermostat. In situations where
velocity rescaling methods are desirable, such as for fast
equilibration of a system,70 the CSVR thermostat should be
used instead.
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