C9940: 3-Dimensional Transmission Electron Microscopy

Lecture 4: Methods for determination of 3D volumes from 2D experimental data

Content

- principles
- electron tomography
- single particle analysis
- common lines
- random conical tilt

Revision

- 2D projections of an 3D object (handedness)
- high noise level (low sensitivity)
- convolution with microscope point spread functions

Revision

- 2D projections of an 3D object (handedness)
- high noise level (low sensitivity)

Revision

- 2D projections of an 3D object (handedness)
- high noise level (low sensitivity)
wh bes est it xa
- convolution with microscope point spread functions

Revision

- 2D projections of an 3D object
- high noise level (low sensitivity)

- convolution with microscope point spread functions

$\mathrm{n}=1$
$\mathrm{n}=2$
$\mathrm{n}=8$
$\mathrm{n}=16$
n=64
$n=256$

Revision

- 2D projections of an 3D object
- high noise level (low sensitivity)
- convolution with microscope point spread functions

3D reconstruction

1. Different orientations
sparse sampling
2. Known orientations $+$ missing
3. Many particles
4. CTF parameters

Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

Your sample isn't guaranteed to adopt different orientations, in which case you many need to explicitly tilt the microscope stage.

3D reconstruction

Two general ways for 3D reconstruction:

- Real space
- Fourier space

3D reconstruction

Real space reconstruction

We are going to reconstruct a 2D object from 1D projections. The principle is the similar to, but simpler than, reconstructing a 3D object from 2D projections.

3D reconstruction

Real space reconstruction

3D reconstruction

Real space reconstruction

3D reconstruction

- reconstruction is the inversion of projection

3D reconstruction

- reconstruction is the inversion of projection

3D reconstruction

- reconstruction is the inversion of projection

3D reconstruction

- reconstruction is the inversion of projection

3D reconstruction

Original

Reconstructed

The reconstruction does not agree well with the projections
Potential solution: Simultaneous Iterative Reconstruction Technique

3D reconstruction

- simultaneous iterative reconstruction technique

Compute re-projections of your model.
Compare the re-projections to your experimental data.
There will be differences.
Weight the differences by a fudge factor, λ.
Adjust the model by the difference weighted by Repeat

3D reconstruction

- simultaneous iterative reconstruction technique

Experimental projection

Model

Here, the differences (which will be down-weighted by λ) are the ripples in the background.

If we didn't down-weight by λ, we would overcompensate, and would amplify noise.

Projection theorem Central section theorem

A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction.

The disadvantage is that you have To resample your central sections from polar coordinates to Cartesian space, i.e. interpolate. There are new methods to better Interpolate in Fourier space.

3D reconstruction

Converting from polar to Cartesian coordinates

A simple weighting scheme is to divide the weight by the radius:
r * weighting, or "r-weighted backprojection"

If you know the orientation angles for each image, you can compute a back-projection.

Adapted from Pawel Penczek

1. Different orientations
2. Known orientations
3. Many particles
4. CTF parameters

Two translational: Δx

Three orientational (Euler angles):
phi (about z axis)
theta about y)
psi about new z)

These are determined in 2D.
These are determined in 3D.

http://www.wadsworth.org

If you know the orientation angles for each image, you can compute a back-projection.

Adapted from Pawel Penczek

Tomography

Computer Tomography

Electron Tomography

Tomography

We know orientations...
We have different view...

Tomography

Baker et al. (1999) Microbiol. Mol. Biol. Rev. 63: 862
We are destroying the sample as we image it

Tomography

Accumulated beam damage If number of views is limited \rightarrow image distorsions

Tomography

Accumulated beam damage
If number of views is limited \rightarrow image distorsions

If we have many identical molecules and if we can determine their orientations, we can use one exposure per molecule and use the images in the reconstruction
\rightarrow single particle analysis

Single particle analysis

Unlike the tomography data, we do not know how the orientations between individual images are related
\rightarrow reference based alignment
You will record the direction of projection (the Euler angles), such that if you encounter an experimental image that resembles a reference projection, you will assign that reference projection's Euler angles to the experimental image.

Step 1: Generation of projections of the reference.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.
Assumption: reference is similar enough to the sample that it can be used to determine orientation.

Single particle analysis

Unlike the tomography data, we do not know how the orientations between individual images are related \rightarrow reference based alignment

Two translational:
Δx
Δy
Three orientational (Euler angles):
phi) (about z axis) theta about y)
psi about new z)

These are determined in 2D. These are determined in 3D.

http://www.wadsworth.org

Single particle analysis

Projection of the reference at the defined angular step

Single particle analysis

Projection of the reference at the defined angular step

phi=000

$\mathrm{psi}=000$

phi $=000$
thet $\mathrm{a}=000$
psi=000

phi=036

phi $=000$
thet $\mathrm{a}=000$
psi $=000$

phi=000
thet $a=000$ pisi=000

phi=000
thet $\mathrm{a}=000$
DEI $1=000$

phi=000

pisi=000

phi=000
thet $\mathrm{a}=000$ DES $1=000$

phi=000
thet $\mathrm{a}=000$

Single particle analysis

Projection of the reference at the defined angular step

psi $=000$

phi $=000$
thet $a=000$
psi=000

psi $=000$

phi=000
thet $a=000$
psi $=000$

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi $=000$

Single particle analysis

Projection of the reference at the defined angular step

Single particle analysis

Projection of the reference at the defined angular step

Single particle analysis

Projection of the reference at the defined angular step

phi $=000$

$p s i=000$

phi=192
thet a=045
psi=000

PSI $=000$

phi=048

Single particle analysis

Projection of the reference at the defined angular step

phi $=000$

$\mathrm{psi}=000$

phi=192 thet $a=045$
psi=000

phi $=036$
thet $a=030$
$p s i=000$

phi=216
thet $a=045$
psi=000

phi=000 thet $\mathrm{a}=045$
psi $=000$

Single particle analysis

Projection of the reference at the defined angular step

phi=000

$\mathrm{psi}=000$

phi=192
thet a=045 psi $=000$

phi=036
thet $a=030$
psi=000

phi=216
thet $a=045$
$\mathrm{psi}=000$

phi=000
thet $\mathrm{a}=045$
$\mathrm{psi}=000$

phi=016
thet $a=075$
psi=000

ph $i=048$

psi $=000$

phi=115
thet a=075
psi $=000$

phi=072
thet $a=045$ psi $=000$

phi $=000$
thet $a=000$
psi $=000$

Single particle analysis

Projection of the reference at the defined angular step

phi=036
thet a=030
$\mathrm{psi}=000$

phi=216
thet $a=045$
$\mathrm{psi}=000$

phi= 048
thet $a=045$
psi $=000$

phi=115
thet $a=075$
psi $=000$

Single particle analysis

1. Compare the experimental images to all of the reference projections
2. Fing the reference projection with whicch the experimental images match the best
3. Assign the Euler angles of that reference to the experimental image

Single particle analysis

4. Calculate a new reference
5. Project the new reference
6. Repeat from 1

Common lines

Angular Reconstruction

Summary:

- A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative

Frank, J. (2006) 3D Electron Microscopy of Macromolecular Assemblies orientations of all three.

Common lines

Angular Reconstruction

Summary:

a A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction

- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e.., central section) will fix the relative orientations of all three.

Random conical tilt

Random conical tilt

This scenario describes a worst case, when there is exactly one orientation in the 0° image. Since the in-plane angle varies, in the tilted image, we have different views available.

Random conical tilt

Two images are taken: one at 0° and one tilted at an angle of 45°.

> Radermacher, M., Wagenknecht, T., Verschoor, A. \& Frank, J. Three-dimensional reconstruction from a singleexposure, random conical tilt series applied to the 50 S ribosomal subunit of Escherichia coli. J Microsc 146, 11336 (1987).

From Nicolas Boisset

Random conical tilt

phi $=000$	phi=000	phi=000
thet $\mathrm{a}=000$	thet $\mathrm{a}=000$	thet $\mathrm{a}=000$
$p s i=000$	psi $=000$	psi=000
phi=000	phi=000	phi $=000$
thet $\mathrm{a}=000$	thet $\mathrm{a}=000$	thet $\mathrm{a}=000$
$p s i=000$	$\mathrm{psi}=000$	$\mathrm{psi}=000$

Random conical tilt

phi $=000$	phi=048	phi= 072
thet $\mathrm{a}=001$	thet $\mathrm{a}=001$	thet $\mathrm{a}=001$
$p s i=000$	psi=000	psi=000
phi=192	phi=216	phi= 240
thet $\mathrm{a}=001$	thet $\mathrm{a}=001$	thet $\mathrm{a}=001$
$p s i=000$	$p s i=000$	psi $=000$

Random conical tilt

phi=000	phi= 048	phi=072
thet $\mathrm{a}=045$	thet $\mathrm{a}=045$	thet $\mathrm{a}=045$
$p s i=000$	psi=000	psi=000
phi=192	phi=216	phi= 240
thet $a=045$	thet $\mathrm{a}=045$	thet $\mathrm{a}=045$
$p s i=000$	psi $=000$	psi $=000$

Random conical tilt

- we cannot tilt the stage to 90 deg \rightarrow "missing cone"

Representation of the distribution of views, if we display a plane perpendicular to each projection direction

The missing information, in the shape of a cone, elongates features in the direction of the cone's axis.

Random conical tilt

- filling the missing cone

If there are multiple preferred orientations, or if there is symmetry that fills the missing cone, you can cover all orientations.

Distribution of orientations

