

II. Climate Change (CC)

Earth System process	Control variable	Threshold avoided or influenced by slow variable	Planetary Boundary (zone of uncertainty)	State of knowledge*
Climate change	Atmospheric CO ₂ concentration, ppm; Energy imbalance at Earth's surface, W m ⁻²	Loss of polar ice sheets. Regional climate disruptions. Loss of glacial freshwater supplies. Weakening of carbon sinks.	Atmospheric CO ₂ concentration: 350 ppm (350-550 ppm) Energy imbalance:+1 W m ⁻² (+1.0-+1.5 W m ⁻²)	1. Ample scientific evidence. 2. Multiple sub-system thresholds. 3. Debate on position of boundary.

Boundary: Atmospheric CO₂ concentration no higher than 350 ppm

Pre-industrial level: 280 ppm

Current level (2020) : 413 ppm

Diagnosis: Boundary exceeded

History of Climate Change Research

CC - history

1824 – Joseph Fourier - greenhouse effect in the atmosphere

1861 – John Tyndall - water vapour and other gases are GHG

1896 – Svante Arhenius – hypothesis on enhancement of GH effect due to increase of CO₂ in the atmosphere as a consequence of fosil fuels combustion

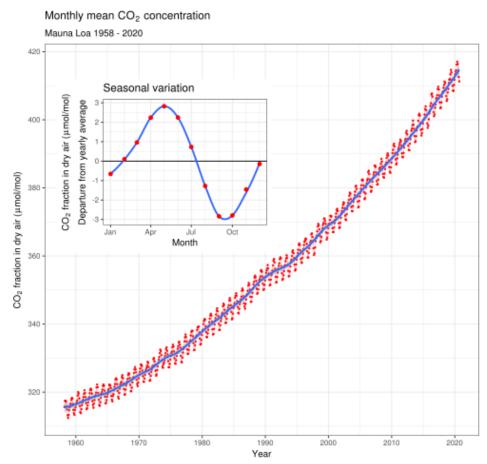
 the prognosis on increase of the temperature by several °C when GHG concentration doubles is still valid

CC - history

1824 – Joseph Fourier - greenhouse effect in the atmosphere

1861 – John Tyndall - water vapour and other gases are GHG

1896 – Svante Arhenius – hypothesis on enhancement of GH effect due to increase of CO₂ in the atmosphere as a consequence of fosil fuels combustion


 the prognosis on increase of the temperature by several °C when GHG concentration doubles is still valid

1957 – oceanographer Roger Revelle and chemist Hans Suess shown that oceans can not absorb entire CO₂ produced by people

"Human beings are now carrying out a large scale geophysical experiment.,

1950 – Charles David Keeling continuous measurements taken at the Mauna Loa Observatory since 1950 (till now)

Data : Dr. Pieter Tans, NOAA/ESRL (www.esrl.nosa.gov/gmd/ccgg/hends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/). Accessed 2020-10-31

CC... and politics

1972 – *UNCHE*, *Stockholm*. becomes one of the global priorities

1990 – 1st IPCC report – "temperature increase by 0.3-0.6 °C is caused also by the human activities"

1992 – Earth summit – UN Framework Convention on CC

2005 – Kyoto Protocol

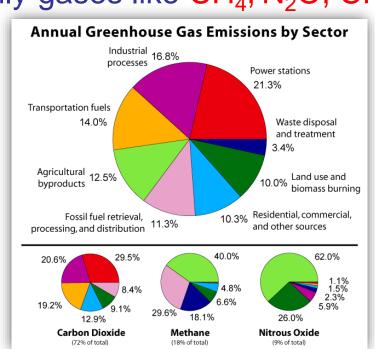
2013 - 5th IPCC report "Scientists are 95% certain that humans are the "dominant cause" of global warming since the 1950s"

2016, 4.11. – Paris Treaty came into force

2022 - 6th IPCC report (synthesis)

Greenhouse Effect an global Climate Change

- Greenhouse effect (GE) natural atmospheric effect essential for life on the Earth
- GE dampens temperature fluctuation between day and night and thus provides favorable conditions for life

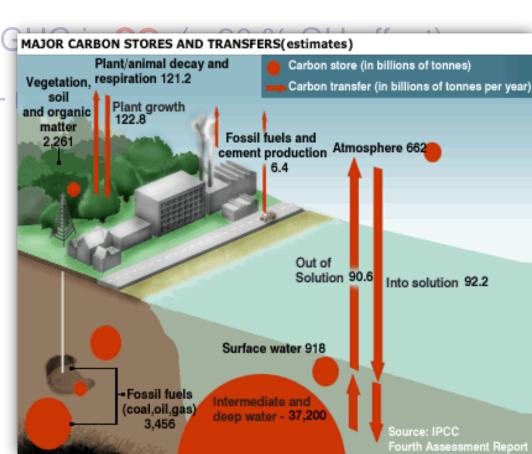


Greenhouse Gasses (GH) in the atmosphere

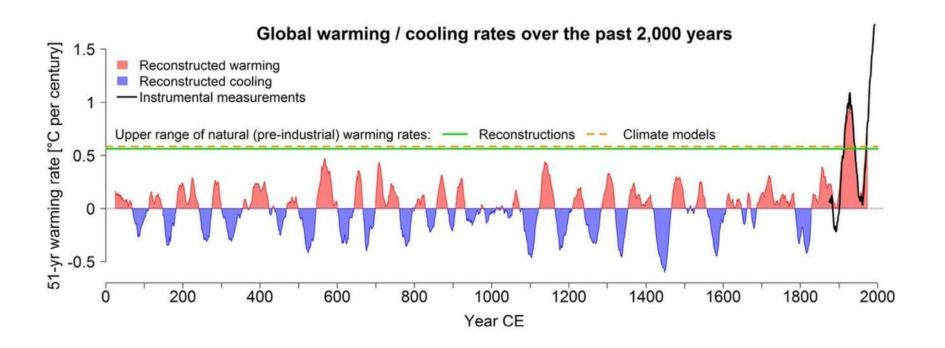
- the most important GHG is water vapour H₂O(g) that creates some 2/3 of greenhouse effect
- however H₂O(g) concentration in the atmosphere is not significantly influenced by human activities
- second most important GHG is CO₂ (~ 20 % GH effect)
- last 13 % of GH effect mainly gases like CH₄, N₂O, CFC

	Water	Carbon Dioxide	Methane	Nitrous Oxide
	3	000		••••
Atmospheric Concentration	0.01–4%*	385 ppm	1797 ppb	322 ppb
Rate of Increase	n/a	1.5 ppm/yr	7.0 ppb/yr	0.8 ppb/yr
Atmospheric Lifetime	Very short 1–5 days	Variable 5–200 yr	12 yr	120 yr
Global Warming Potential (GWP)	n/a†	1	21	310

^{*}The amount of water vapor in the air varies according to temperature and density of air (usually ~1–3% of troposphere)
† Water vapor levels vary strongly according to region, so rates of change and warming potential cannot be assessed

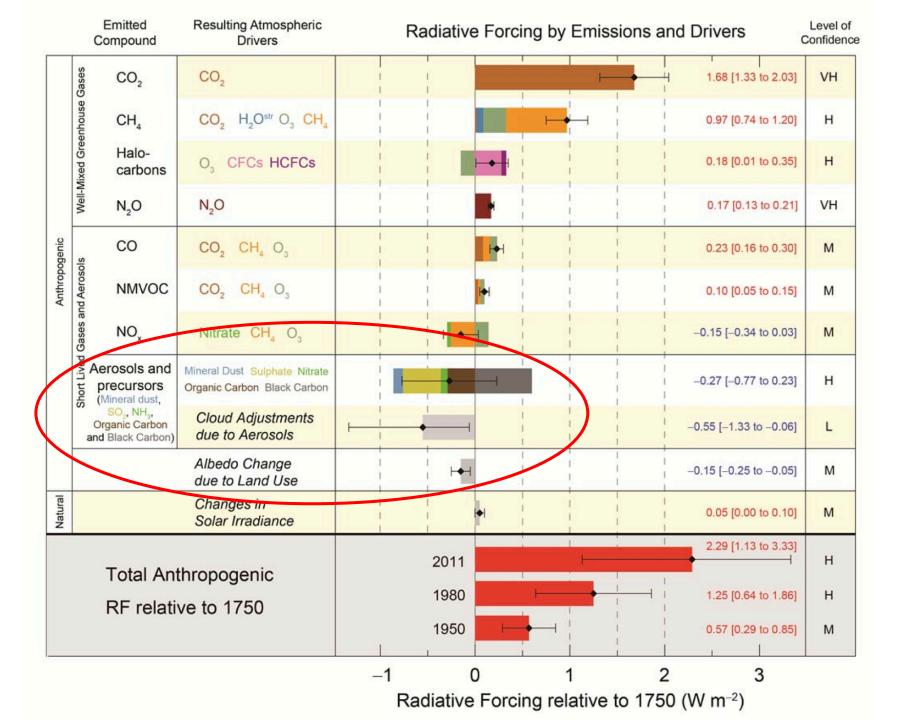


Greenhouse Gasses (GH) in the atmosphere

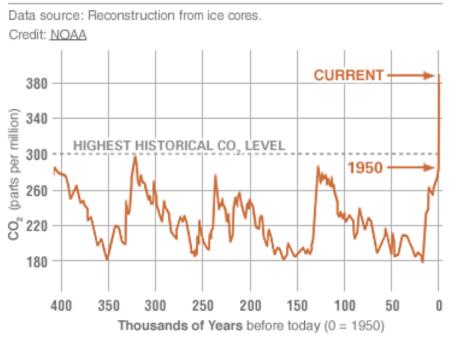

- the most important GHG is water vapour H₂O(g) that creates some 2/3 of greenhouse effect
- however H₂O(g) concentration in the atmosphere is not significantly influenced by human activities
- second most important G
- last 13 % of GH effect -

Problem

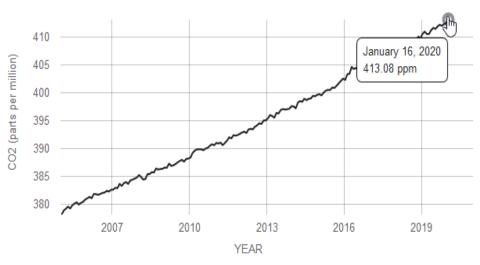
- increase of CO₂ level in the atmosphere due to the antropogenic action - disruption of the balance between release and absorption of CO₂ in the carbon geochemical cycle



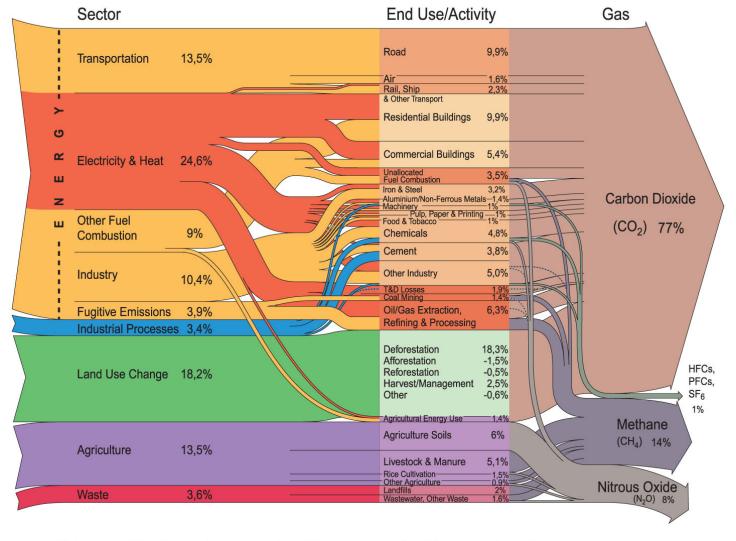
GLACIAL/INTERGLACIAL PERIOD


CC indicators

Increase of CO₂ level

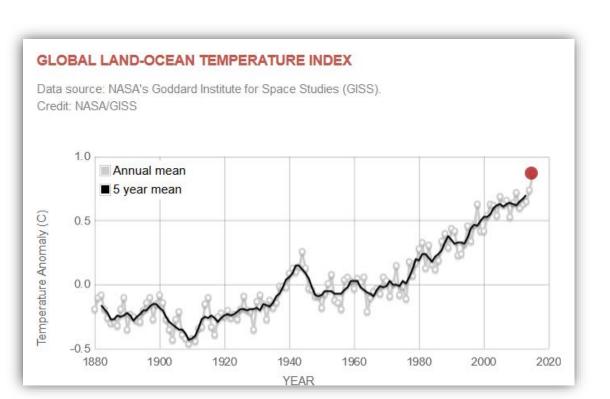

- CO₂ level increased more than >25 % since 1950
- level of other greenhouse gases increases as well
- main source of this increase is fosil fuels combustion

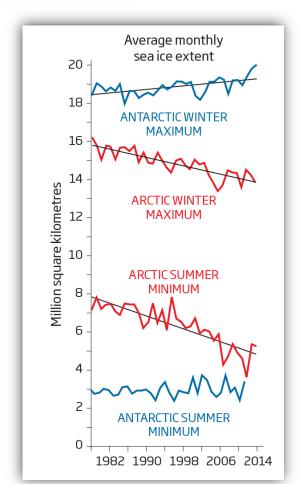
PROXY (INDIRECT) MEASUREMENTS


DIRECT MEASUREMENTS: 2005-PRESENT

Data source: Monthly measurements (average seasonal cycle removed). Credit: NOAA

World Greenhouse gas emissions by sector


All data is for 2000. All calculations are based on CO_2 equivalents, using 100-year global warming potentials from the IPCC (1996), based on a total global estimate of 41 755 MtCO $_2$ equivalent. Land use change includes both emissions and absorptions. Dotted lines represent flows of less than 0.1% percent of total GHG emissions.

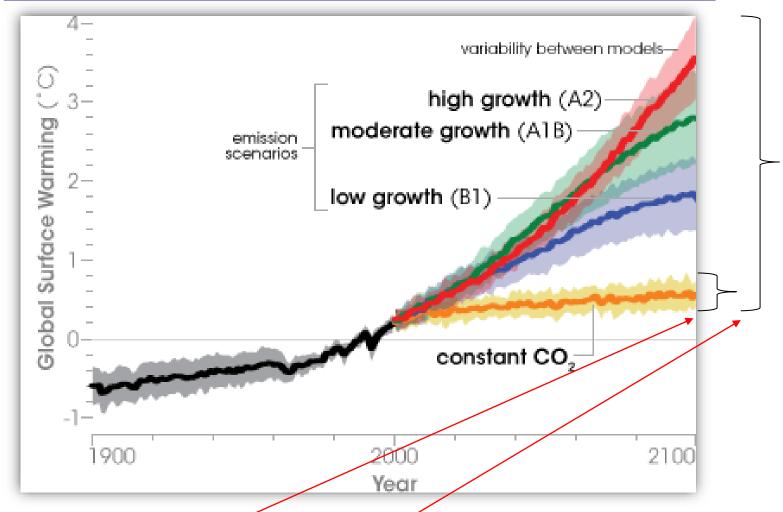

Source: World Resources Institute, Climate Analysis Indicator Tool (CAIT), Navigating the Numbers: Greenhouse Gas Data and International Climate Policy, December 2005; Intergovernmental Panel on Climate Change, 1996 (data for 2000).

Other indicators (variables) of CC

- changes in temperature
- changes in ice cover in Arctic ocean
- changes in ice cover in North and South pole
- sea level rise

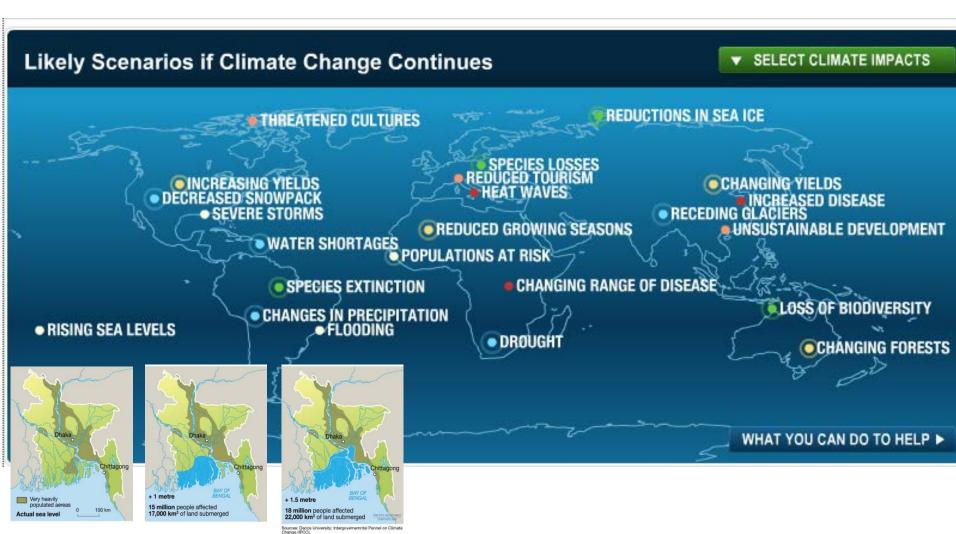
Less ice in the Arctic ocean

- new naval routes from Europe to Asia

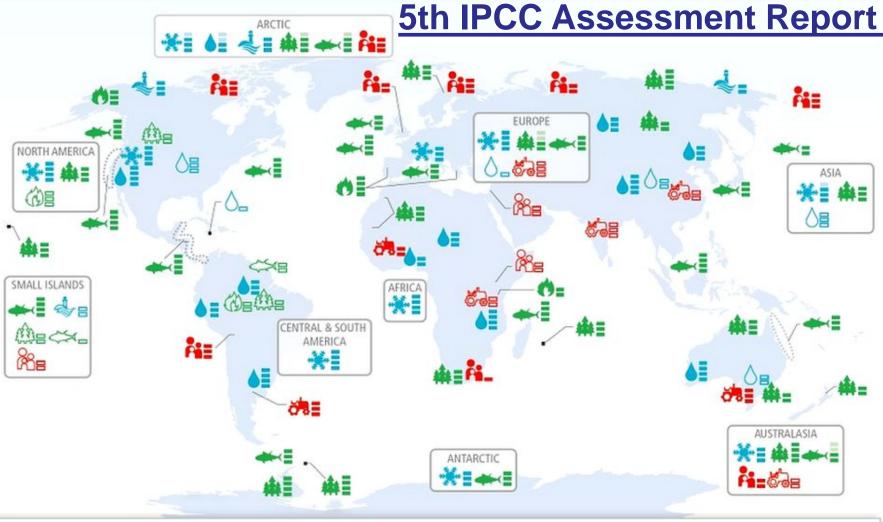


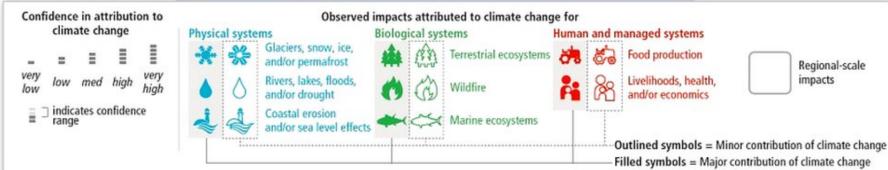
Glacier calving in Arctic ocean

Temperature rise scenarios to 2100


- scientific vs. political uncertainty

CC consequences




Consequences of CC

- regionally specific
- e.g. increasing vs. decreasing yields in some regions

Main consequences of CC - summary

Present trends caused by CC. Very likely >90 %, Likely >60 %

Likelihood that trend occurred in late 20th century	
Very likely	
Very likely	
Likely	
Likely	
Likely in some regions	
Likely in some regions	

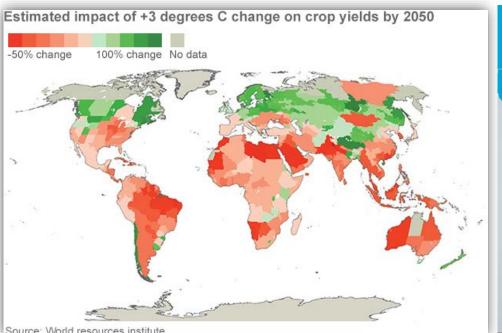
^{*} Excluding tsunamis, which are not due to climate change.

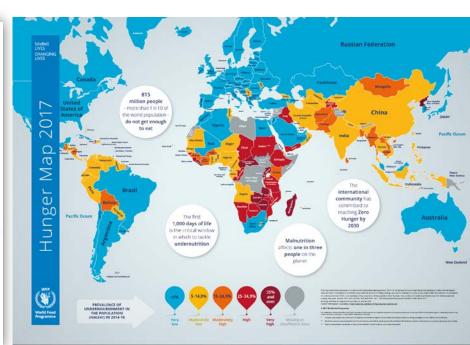
Future trends caused by CC. Virtually certain >99 %, Very likely >90 %, Likely >60 %.

Phenomena	Likelihood of trend
Contraction of snow cover areas, increased thaw in permafrost regions, decrease in sea ice extent	Virtually certain
Increased frequency of hot extremes, heat waves and heavy precipitation	Very likely to occur
Increase in tropical cyclone intensity	Likely to occur
Precipitation increases in high latitudes	Very likely to occur
Precipitation decreases in subtropical land regions	Very likely to occur
Decreased water resources in many semi-arid areas, including western U.S. and Mediterranean basin	High confidence

- Scientific language is very brief and talking in the words of probability

controversy


https://www.youtube.com/watch?v=0Te 5al2APrQ

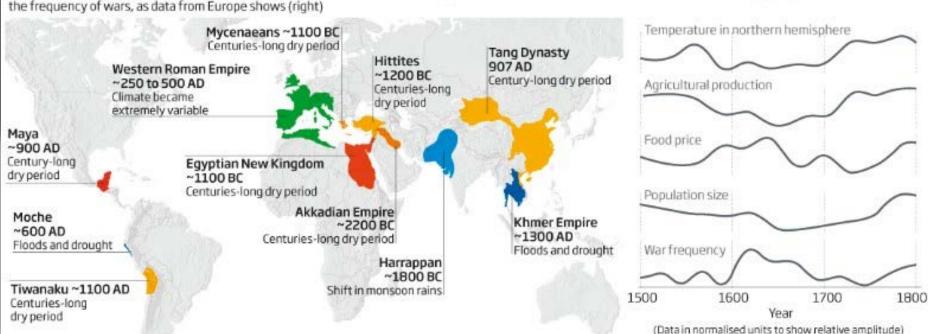


Moral dimension of CC

"...more heat will damage crop growth in many warmer climates, but it means better agricultural production in cold countries. And, CO_2 is a fertiliser — commercial greenhouses pump in extra CO_2 to grow bigger tomatoes. So overall, we can expect agriculture to gain from global warming in the short and medium term..." B. Lomborg

 yes, increasing yields, but mainly in countries with the actual overproduction, while the agrarian countries in developing world (with significant hunger) will experience even drop in the production

Climate change: The great civilisation destroyer?


War and unrest, and the collapse of many mighty empires, often followed changes in local climes. Is this more than a coincidence?

More than coincidence?

© NewScientist

The decline and fall of many civilisations coincided with periods of climate change, and there are also correlations between climate change, population size and the frequency of wars, as data from Europe shows (right)

CHIDOSOMANO SAND

Solutions of CC?

The Nobel Peace Prize 2007

Intergovernmental Panel on Climate Change, Al Gore

Share this: f G > 67

The Nobel Peace Prize 2007

IPCC PANEL ON CLIMATE CHANGE

Intergovernmental Panel on Climate Change (IPCC)

Prize share: 1/2

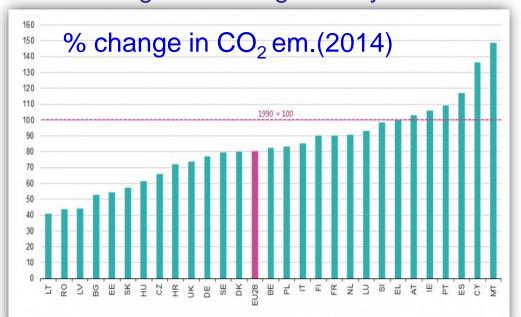
Photo: Ken Opprann Albert Arnold (Al) Gore Jr.

Prize share: 1/2

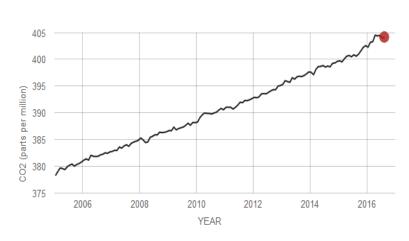
The Nobel Peace Prize 2007 was awarded jointly to Intergovernmental Panel on Climate Change (IPCC) and Albert Arnold (Al) Gore Jr. "for their efforts to build up and disseminate greater knowledge about man-made climate change, and to lay the foundations for the measures that are needed to counteract such change"

Politics on CC

- main aim decrease the GHG emissions, mainly CO₂
- 1992: UN Framework Convention on Climate Change
- 1997: Kyoto protocol (in force from 2005)
- industrial countries should decrease their GHG emissions untill the year 2012 for 4.2 % compared to the year 1990
- different threshold for different countries (e.g. EU 8%)
- however, industrial countries (Annex I countries with Kyoto targets) contributed "only" with 24 % of global CO₂ emission (2010)



Participation in the Kyoto Protocol
Signed and ratified
Signed, ratification pending
Signed, ratification declined
[citation needed]
Non-signatory


Kyoto protocol – result (2012)

- industrial countries (Annex I countries with Kyoto targets) reduced their emissions for 24.2 %! (much more than promissed target 5.2 %)
- however, emission in other countries have risen so fast, that global CO₂ emissions increased by 32 % from 1990 to 2010 ⊗
- extension of the Kyoto Protocol until 2020
- certain countries (the EU and a few other countries) have committed themselves to further reducing CO2 emissions.
- EU e.g. by 20-30% compared to 1990
- Average 18% generally achieved

DIRECT MEASUREMENTS: 2005-PRESENT

Data source: Monthly measurements (average seasonal cycle removed). Credit: NOAA

Paris treaty (2015)

- continuation of the prolonged Kyoto protocol (2020)
- aim: Limit the temperature rise not more than 2 °C compared to pre-industrial era
- came into force April 4th 2016

How to decrease CO₂ emmisions?

- decrease the fossil fuels consumption
 - increase efficiency of the industr. production
 - end the non-effective industr. production
 - save the energy and material

- economic tools to decrease CO₂ International Emission Trading (IET)
- <u>bio-fuels</u>? Probably not...

Atmos. Chem. Phys. Discuss., 7, 11191–11205, 2007 www.atmos-chem-phys-discuss.net/7/11191/2007/

@ Author(s) 2007. This work is licensed under a Creative Commons License.

- Geo-engineering?

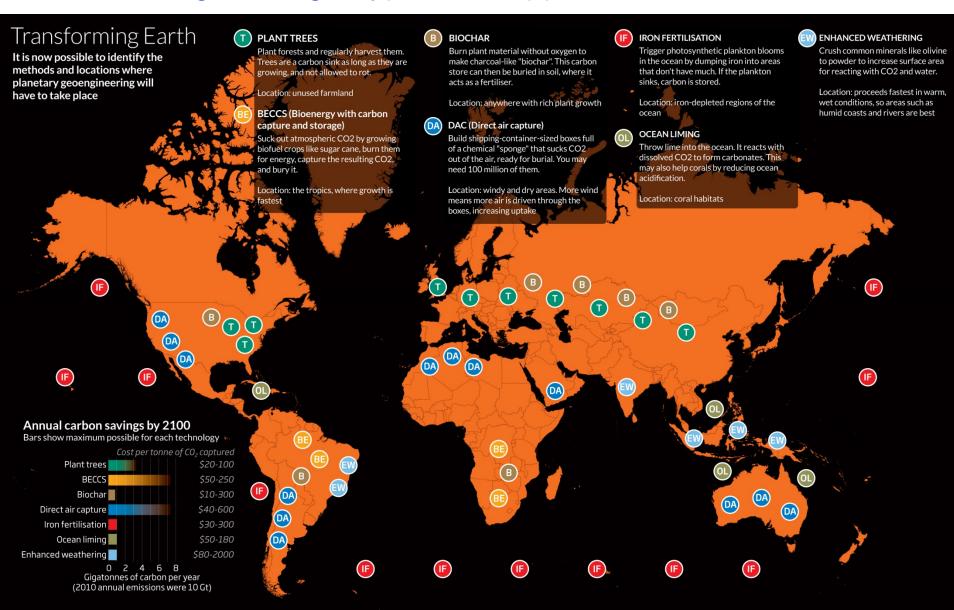
N₂O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

P. J. Crutzen^{1,2,3}, A. R. Mosier⁴, K. A. Smith⁵, and W. Winiwarter^{3,6}

Received: 28 June 2007 – Accepted: 19 July 2007 – Published: 1 August 2007 Correspondence to: P. J. Crutzen (crutzen@mpch-mainz.mpg.de)

¹Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany ²Scripps Institution of Oceanography, University of California, La Jolla, USA

Scripps Institution of Oceanography, University of California, La Jolla, USA
 International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria


⁴Mount Pleasant, SC, USA

⁵School of Geosciences, University of Edinburgh, Edinburgh, UK

⁶Austrian Research Centers – ARC, Vienna, Austria

Geo-egineering – types and opportunities

Greta and Fridays for Future

