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Because education should be the accumulation of understanding, not just an accumulation
of facts, I have tried to write a textbook that emphasizes the fundamental concepts of
electromagnetics, wave propagation, network analysis, and design principles as applied
to modern microwave engineering. Although I have avoided the handbook approach, in
which a large amount of information is presented with little or no explanation or context, a
considerable amount of material in this book is related to the design of specific microwaye
circuits and components, for both practical and motivational value. I have tried to present
the analysis and logic behind these designs so that the reader can see and understand the
process of applying fundamental concepts to arrive at useful results. The engineer who has
a firm grasp of the basic concepts and principles of microwave engineering, and has seen
how these can be applied toward a specific design objective, is the engineer who is most
likely to be rewarded with a creative and productive career.

Modern microwave engineering involves predominantly distributed circuit analysis and
design, in contrast to the waveguide and field theory orientation of earlier generations. The
majority of microwave engineers today design planar components and integrated circuits
without direct recourse to electromagnetic analysis. Microwave computer-aided design
(CAD) software and network analyzers are the essential tools of today's microwave engineer,
and microwave engineering education must respond to this shift in emphasis to network
analysis, planar circuits and components, and active circuit design. Microwave engineering
will always involve electromagnetics (many of the more sophisticated microwave CAD
packages implement rigorous field theory solutions), and students will still benefit from
an exposure to subjects such as waveguide modes and coupling through apertures, but the
change in emphasis to microwave circuit analysis and design is clear.

Microwave and RF technology is more pervasive than ever. This is especially true in the
commercial sector, where modern applications include cellular telephony, personal coillmu-
nications systems, wireless local area data networks, millimeter wave collision avoidance
vehicle radars, direct broadcast satellites for radio and television, global positioning sys-
tems, radio frequency identification tagging, ultra wideband radio and radar systems, and
microwave remote sensing systems for the environment. Defense systems continue to rely
heavily on microwave technology for passive and active sensing, communications, and
weapons control systems. This state of affairs suggests that there will be no shortage of
challenging problems in RF and microwave engineering in the foreseeable future, and a
clear need for engineers having both an understanding of the fundamentals of microwave
engineering as well as the creativity to apply this knowledge to problems of practical interest.
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The success of the first two editions of Microwave Engineeringhasbeen gratifying. For

this edition we solicited detailed feedback from teachers and readers for their thoughts about

what topics should be deleted and added. There was almost no agreement on specific material

to remove (it seemed that almost every topic in the book was being used by someone). There

was, however, fairly uniform agreement in favor of more material on active circuit design

and related topics. To this end we have increased the number of chapters from12 to 13 and

have added new material on noise, nonlinear effects, RF MEMs, diode and transistor device

characteristics". fJan$istorpqwef-aniplifiers, FET mixers, transistor oscillators, oscillator
phase nois'b, and frequency:rhultipliers. Sectioni on intermodulation products, dynamic

range, mixers, antennas, and receiver design.have been completely rewritten. Numerous

new or revised exqhplbs andproblems" have been added, with several of these related to
praclical design probierns:jnvolving planarcir0uits and components. Another new feature

of this edition is- a list of Answers to Selected Problems at the end of the book. Topics

that have been cut for this edition include the uniqueness theorem, Fabry-Perot resonato$,

electronic warfare, and some examples related to waveguides.
This text is written for a two-semester course in microwave engineering, for seniors

or first-year graduate students. If students have a good background in undergraduate elec-

tromagnetics, the material in Chapters I and 2 can be reviewed fairly quickly. Students

with less background should study this material in more detail. Chapters 3-13 can then be

followed in sequence, but it is likely that the instructor will want to choose between a field

theory emphasis (Chapters 3-9, I3), or more of a circuit design emphasis (Chapters 4-8,

10-12). Alternatively, it is possible to focus exclusively on microwave circuit design by

selectively covering Chapters 2,4-8, and 10-13, avoiding the material on electromagnetic

analysis.
Two important items that should be included in a successful course on microwave engi-

neering are the use of computer-aided design (CAD) simulation software and a microwave

laboratory experience. Providing students with access to CAD software allows them to

verify results of the design-oriented problems in the text, giving immediate feedback that

builds confidence and makes the effort more rewarding. Because the drudgery of repetitive

calculation is eliminated, students can easily try alternative approaches and explore prob-

lems in more detail. The effect of line losses, for example, is explored in several examples
and problems-this would be effectively impossible without the use of modem CAD tools.

In addition, classroom exposure to CAD tools provides useful experience upon graduation.

Most of the commercially available microwave CAD tools are very expensive, but several
manufacturers provide academic discounts or free o'student versions" of their products.

Ansoft Corporation, for example, has a student version of their popular SERENADE pack-

age available for free download at their Web site (www.ansoft.com).

A hands-on microwave instructional laboratory is expensive to equip but provides the

best way for students to develop an intuition and physical feeling for microwave phenom-

ena. A laboratory with the first semester of the course might cover the measurement of

microwave power, frequency, standing wave ratio, impedance, and S-parameters, as well as

the characterization of basic microwave components such as tuners, couplers, resonators,
loads, circulators, and filters. Important practical knowledge about connectors, waveguides,

and microwave test equipment will be acquired in this way. Alternatively, a more advanced
laboratory session can consider topics such as noise figure, intermodulation distortion, and

mixing. Naturally, the type of experiments that can be offered is heavily dependent on the
test equipment that is available.

With this edition we are able to make available several resources for students and in-

structors on the Wiley Web site. A sample instructional laboratory manual, along with

SERENADE circuit files for many of the problems and examples in the text, can be
found at www.wiley.com/college/pozar. An on-line solution manual for all problems in the
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text is available to qualified instructors, who may apply for access through the Web site
www.wiley.com/college/pozar and going to the Instructor's Companion Site.
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Electromagnetic Theory

We begin our study of microwave engineering with a brief overview of the history and
major applications of microwave technology, followed by a review of the fundamental topics in
electromagnetic theory that we will need throughout the book. The interested reader will find
further discussion ofthese topics in references [1]*t91.

1 . 1 INTRODUCTION TO MICROWAVE ENGINEERING

The term microwaves refers to alternating current signals with frequencies between 300
MHz (3 x 108 Hz) and 300 GHz (3 x 101r), with a corresponding electrical wavelength
between), - clf :1mand),: lmm,respectively.Signalswithwavelengthsontheorder
of millimeters are called millimeter waues. Figure 1.1 shows the location of the microwave
frequency band in the electromagnetic spectrum. Because of the high frequencies (and short
wavelengths), standard circuit theory generally cannot be used directly to solve microwave
network problems. In a sense, standard circuit theory is an approximation or special use of the
broader theory of electromagnetics as described by Maxwell's equations. This is due to the
fact that, in general, the lumped circuit element approximations of circuit theory are not valid
at microwave frequencies. Microwave components are often distributed elements, where the
phase of a voltage or current changes significantly over the physical extent of the device,
because the device dimensions are on the order of the microwave wavelength. At much
lower frequencies, the wavelength is large enough that there is insignificant phase variation
across the dimensions of a componenl. The other extreme of frequency can be identified
as optical engineering, in which the wavelength is much shorter than the dimensions of the
component. In this case Maxwell's equations can be simplified to the geometrical optics
regime, and optical systems can be designed with the theory of geometrical optics. Such
techniques are sometimes applicable to millimeter wave systems, where they are referred
to as quasioptical.

In microwave engineering, then, one must often begin with Maxwell's equations and
their solutions. It is in the nature of these equations that mathematical complexity arises,
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FIGURE 1.1 The electromagnetic spectrum.

Approximate Band Designations

Medium frequency
High frequency (HF)

300 kHz to 3 MHz
3 MHz to 30 MHz

Very high frequency (VHF) 30 MHz to 300 MHz
Ultra high frequency (UHF) 300 MHz to 3 GHz

1-2GHz
24GHz
4-8GHz
8-72GHz
72-18 GHz
18-26GHz
2640GHz
4040GHz
50-75 GHz
60-90 GHz
75-110 GHz
90-140 GHz

L band
S band
C band
X band
Ku band
Kband
Ka band
U band
V band
E band
W band
F band

since Maxwell's equations involve vector differential or integral operations on vector field
quantities, and these fields are functions ofspatial coordinates. One ofthe goals ofthis book,
however, is to try to reduce the complexity of a field theory solution to a result that can be
expressed in terms of simpler circuit theory. A field theory solution generally provides a
complete description of the electromagnetic field at every point in space, which is usually
much more information than we really need for most practical purposes. We are typically
more interested in terminal quantities such as power, impedance, voltage, and current, which
can often be expressed in terms of circuit theory concepts. It is this complexity that adds to
the challenge, as well as the rewards, of microwave engineering.

Applications of Microwave Engineering

Just as the high frequencies and short wavelengths of microwave energy make for difficulties
in analysis and design of microwave components and systems, these same factors provide

unique opportunities for the application of microwave systems. This is because of the
following considerations :

. Antenna gain is proportional to the electrical size of the antenna. At higher frequen-
cies, more antenna gain is therefore possible for a given physical antenna size, which
has important consequences for implementing miniaturized microwave systems.

. More bandwidth (information-carrying capacity) can be realized at higher frequen-
cies. A I7o bandwidth at 600 MHz is 6 MHz (the bandwidth of a sinsle television
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channel), and at 60 GHz a l%o bandwidth is 600 MHz (100 television channels).
Bandwidth is critically important because available frequency bands in the electro-
magnetic spectrum are being rapidly depleted.
Microwave signals travel by line of sight and zlre not bent by the ionosphere as are
lower frequency signals. Satellite and terresffial communication links with very high
capacities are thus possible, with frequency reuse at minimally distant locations.
The effective reflection area (radar cross section) of a radar target is usually propor-
tional to the target's electrical size. This fact, coupled with the frequency character-
istics of antenna gain, generally makes microwave frequencies preferred for radar
systems.
Various molecular, atomic, and nuclear resonances occur at microwave frequencies,
creating a variety ofunique applications in the areas ofbasic science, remote sensing,
medical diagnostics and treatment, and heating methods.

The majority of applications of today's microwave technology are to communications
systems, radar systems, environmental remote sensing, and medical systems. As the fre-
quency allocations listed in Figure 1.1 show, RF and microwave communications systems
are pervasive, especially today when wireless connectivity promises to provide voice and
data access to "everyone, anywhere, at any time,"

Probably the most ubiquitous use of microwave technology is in cellular telephone
systems, which were first proposed in the 1970s. By 1997 there were more than 200 million
cellular subscribers worldwide, and the number of subscribers and the capabilities of this
service continue to grow. Satellite systems have been developed to provide cellular (voice),
video, and data connections worldwide. Large satellite telephony systems, such as kidium
and Globalstar, unfortunately suffered from both technical drawbacks and weak business
models, and have failed with losses of several billion dollars each. But smaller satellite
systems, such as the Global Positioning Satellite (GPS) system and the Direct Broadcast
Satellite (DBS) system, have been extremely successful. Wireless Local Area Networks
(WLANs) provide high-speed networking between computers over short distances, and
the demand for this capability is growing very fast. The newest wireless communications
technology is Ultra Wide Band (UWB) radio, where the broadcast signal occupies a very
wide frequency band but with a very low power level to avoid interference with other
systems.

Radar systems find application in military, commercial, and scientific systems. Radar
is used for detecting and locating air, ground, and seagoing targets, as well as for missile
guidance and fire control. In the commercial sector, radar technology is used for air traffic
control, motion detectors (door openers and security alarms), vehicle collision avoidance,
and distance measurement. Scientific applications of radar include weather prediction, re-
mote sensing of the atmosphere, the oceans, and the ground, and medical diagnostics and
therapy. Microwave radiometry which is the passive sensing of microwave energy emitted
from an object, is used for remote sensing of the atmosphere and the earth, as well as
medical diagnostics and imaging for security applications.

A Short History of Microwave Engineering

The field of microwave engineering is often considered a fairly mature discipline because
the fundamental concepts of electromagnetics were developed over 100 years ago, and
probably because radar, being the first major application of microwave technology, was
intensively developed as far back as World War II. But even though microwave engineering
had its beginnings in the last century, significant developments in high-frequency solid-
state devices, microwave integrated circuits, and the ever-widening applications of modern
microsystems have kept the field active and vibrant.
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The foundations of modern electromagnetic theory were formulated in 1873 by James
Clerk Maxwell [1], who hypothesized, solely from mathematical considerations, electro-
magnetic wave propagation and the notion that light was a fonn of'.electromagnetic energy.
Maxwell's formulation was cast in its modern form by Oliver Heaviside, during the pe-

riod from 1885 to 1887. Heaviside was a reclusive genius whose efforts removed many

of the mathematical complexities of Maxwell's theory, introduced vector notation, and
provided a foundation for practical applications of guided waves and transmission lines.

Heinrich Hertz, a German professor of physics and a gifted experimentalist who also un-

derstood the theory published by Maxwell, carried out a set of experiments during the
period 1887-1891 that completely validated Maxwell's theory of electromagnetic waves.
Figure 1.2 shows a photograph of the original equipment used by Hertz in his experiments.

FIGURE 1.2 Original apparatus used by Hertz for his electromagnetics experiments. (1) 50 MHz

transmitter spark gap and loaded dipole antenna. (2) Parullel wire grid for polariza-

tion experiments. (3) Vacuum apparatus for cathode ray experiments. (4) Hot-wire

galvanometer. (5) Reiss or Knochenhauer spirals. (6) Rolled-paper galvanometer.
(7) Metai sphere probe. (8) Reiss spark micrometer. (9) Coaxial transmission line.
(10-12) Equipment to demonstrate dielectric polarization effects. (13) Mercury in-

duction coil intemrpter. ( 14) Meidinger cell. ( 15) Vacuum bell jar. ( 16) High-voltage

induction coil. (17) Bunsen cells. (18) Large-uea conductor for charge storage.
(19) Circularloopreceiving antenna. (20) Eight-sidedreceiverdetector. (21) Rotating

mirror and mercury interrupter. (22) Square loop receiving antenna. (23) Equipment

for refraction and dielectric constant measurement. (24) Two square loop receiving

antennas. (25) Square loop receiving antenna. (26) Transmitter dipole. (27) High'

voltage induction coil. (28) Coaxial line. (29) High-voltage discharger. (30) Cylin-

drical parabolic reflector/receiver. (31) Cylindrical parabolic reflector/transmitter.
(32) Circular loop receiving antenna. (33) Planar reflector. (34,35) Battery of accu-

mulators. Photographed on October I,1913 at the Bavarian Academy of Science,

Munich, Germany, with Hertz's assistant, Julius Amman.

Photograph and identification courtesy of J. H. Bryant, University of Michigan.
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It is interesting to observe that this is an instance of a discovery occuning after a prediction
has been made on theoretical grounds-a characteristic of many of the major discoveries
throughout the history of science. All of the practical applications of electromagnetic the-
ory, including radio, television, and radar, owe their existence to the theoretical work of
Maxwell.

Because of the lack of reliable microwave sources and other components, the rapid
growth of radio technology in the early 1900s occurred primarily in the high frequency
(HF) to very high frequency ryflF) range. It was not until the 1940s and the advent of
radar development during Wodd War II that microwave theory and technology received
substantial interest. In the United States, the Radiation Laboratory was established at the
Massachusetts Institute of Technology (MIT) to develop radar theory and practice. A num-
ber of top scientists, including N. Marcuvitz, I. L Rabi, J. S. Schwinger, H. A. Bethe, E. M.
Purcell, C. G. Montgomery and R. H. Dicke, among others, were gathered for what turned
out to be a very intensive period of development in the microwave field. Their work in-
cluded the theoretical and experimental treatment of waveguide components, microwave
antennas, small aperture coupling theory and the beginnings of microwave network the-
ory. Many of these researchers were physicists who went back to physics research after
the war (many later received Nobel Prizes), but their microwave work is summarized in
the classic 28-volume Radiation Laboratory Series of books that still finds application
today.

Communications systems using microwave technology began to be developed soon
after the birth of radar, benefitting from much of the work that was originally done for
radar systems. The advantages offered by microwave systems, including wide bandwidths
and line-of-sight propagation, have proved to be critical for both tenestrial and satellite
communications systems and have thus provided an impetus for the continuing development
of low-cost miniaturized microwave components. We refer the interested reader to the
special Centennial Issue of the IEEE Transactions on Microwave Theory and Techniques

[2] for fur*rer historical perspectives on the field of miuowave engineering.

MAXWELUS EQUATIONS

Electric and magnetic phenomena at the macroscopic level are described by Maxwell's
equations, as published by Maxwell in 1873 [1]. This work summarizedthe state of electro-
magnetic science at that time and hypothesized from theoretical considerations the existence
of the electrical displacement current, which led to the discovery by Hertz and Marconi of
electromagnetic wave propagation. Maxwell's work was based on a large body of empir-
ical and theoretical knowledge developed by Gauss, Ampere, Faraday, and others. A first
course in electromagnetics usually follows this historical (or deductive) approach, and it is
assumed that the reader has had such a course as a prerequisite to the present material. Sev-
eral books are available, t31-t91, that provide a good treatment of electromagnetic theory
at the undergraduate or graduate level.

This chapter will outline the fundamental concepts of electromagnetic theory that we
will require for the rest of the book. Maxwell's equations will be presented, and boundary
conditions and the effect of dielectric and magnetic materials will be discussed. Wave
phenomena are of essential importance in microwave engineering, so much of the chapter
is spent on plane wave topics. Plane waves are the simplest form of electromagnetic waves
and so serve to illustrate a number of basic properties associated with wave propagation.
Although it is assumed that the reader has studied plane waves before, the present material
should help to reinforce many of the basic principles in the reader's mind and perhaps to
introduce some concepts that the reader has not seen previously. This material will also
serve as a useful reference for later chapters.
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With an awareness of the historical perspective, it is usually advantageous from a
pedagogical point of view to present electromagnetic theory from the "inductive," or ax-
iomatic, approachbybeginning withMaxwell's equations. The general form of time-varying
Maxwell equations, then, can be written in o'point," or differential, form as

-aR
V x 8 :  : *  - M ,

d t

- a D
Y  x 7 1 -  _  + J ,

o t

Y  . D :  p ,

V . 8 : 0 .

(1.1a)

(1 .1b)

(1 .1c)

(1 .1d)

(r.2a)
(r.2b)

The MKS system of units is used throughout this book. The script quantities represent
time-varying vector fields and are real functions of spatial coordinates x ,y ,7, and the time
variable r. These quantities are defined as follows:

I is the electric field intensity, in V/m.

fl is the magnetic field intensity, in A/m.

D is the electric flux density, in CouVm2.

B is the magnetic flux density, in Wb/ml.

.Ft is the (fictitious) magnetic current density, inY/m2.

i is the electric current density, in A,/m2.

p is the electric charge density, in CouUm3.

The sources of the electromagnetic field are the currents Ji4 and J, and the electric
charge density p. The magnetic cunent Ji4 is a fictitious source in the sense that it is only
a mathematical convenience: the real source of a magnetic current is always a loop of
electric current or some similar type of magnetic dipole, as opposed to the flow of an actual
magnetic charge (magnetic monopole charges are not known to exist). The magnetic cuffent
is included here for completeness, as we will have occasion to use it in Chapter 4 when
dealing with apertures. Since electric current is really the flow of charge, it can be said that
the electric charge density p is the ultimate source of the electromagnetic field.

In free-space, the following simple relations hold between the electric and magnetic
field intensities and flux densities:

B: po'11,

D :  e o E ,

whereprs :4r x 10-7Henry/misthepermeabil ityoffree-space,andes:8.854 x 10-12
fandlm is the permittivity of free-space. We will see in the next section how media other
than free-space affect these constitutive relations.

Equations (1.1a)-(1.1d) are linear but are not independent of each other. For instance,
consider the divergence of (1.1a). Since the divergence of the curl of any vector is zero

[vector identity (B.12), from Appendix B], we have

_ a
V . V  x  €  : O :  _ r ( V  .  B \  - V  . M .

Since there is no free magnetic charge, Y ../Vl:0. which leads to Y .B:0, or (1.1d).
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The continuity equation can be similarly derived by taking the divergence of (1.1b), giving

v . i  + # : 0 , (1.3)

where (1.1c) was used. This equation states that charge is conserved, or that current is
continuous, since V . ./ represents the outflow of current at a point, and 3p I 0t represents
the charge buildup with time at the same point. It is this result that led Maxwell to the
conclusion that the displacement culrent density AD lAt was necessary in (1.1b), which can
be seen by taking the divergence of this equation.

The foregoing differential equations can be converted to integral form through the use
of various vectorintegral theorems. Thus, applying the divergence theorem (B.15) to (1.1c)
and (1.ld) yields

P d u : 9 ,f ,u ot: I,
f _

f s B ' d s  
:  o .

(1.4)

(1 .5 )

where Q in (1.4) represents the total charge contained in the closed volume V (enclosed by
a closed surface S). Applying Stokes' theorem (B.16) to (1.la) gives

l,s ou - l,u ou,

f n or:* I ,D as+ 13 ou:* I ,D ds+r,

f,e .af : -!, (1 .6)

which, without the M term, is the usual form of Faraday's law and forms the basis for
Kirchhoff's voltage law. In (1.6), C represents a closed contour around the surface S, as
shown in Figure 1.3. Ampere's law can be derived by applying Stokes' theorem to (1.1b):

(r.7)

where T : Is 3.di is the total electric current flow through the surface S. Equations
(1.4)-(1.7) constitute the integral forms of Maxwell's equations.

The foregoing equations are valid for arbitrary time dependence, but most of our work
will be involved with fields having a sinusoidal, or harmonic, time dependence, with steady-
state conditions assumed. In this case phasor notation is very convenient, and so all field
quantities will be assumed to be complex vectors with an implied er'' lime dependence
and written with roman (rather than script) letters. Thus, a sinusoidal electric field in the i
direction of the form

€(x, y, z, t) - ft A(x, y, a) cos(att * Q), (1 .8 )

where A is the (real) amplitude, a-l is the radian frequency, and @ is the phase reference of

FIGURE 1.3 The closed contour C and surface S associated with Faraday's law.
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the wave at t : 0, has the phasor form

E(*, y, z) : * A(x, !, z)eiQ . (1.e)

We will assume cosine-based phasors in this book, so the conversion from phasor quantities
torealtime-varyingquantitiesisaccomplishedbymultiplyingthephasorby ei't andtaking
the real part:

E@,y ,z , t )  -  Re [E (x ,  ! , 2 )e i ' t 1 ,  ( 1 .10 )

as substitutinC (1.9) into (1.10) to obtain (1.8) demonstrates. When working in phasor
notation, it is customary to suppress the common ei'' factor on all terms.

When dealing with power and energy, we will often be interested in the time average of
a quadratic quantity. This can be found very easily for time harmonic fields. For example,
the average of the square of the magnitude of an elecffic field given by

t : iEt cos(a;r * dr) * iE2 cos(@t * Q) -f2Ez coskot -t Q),

which has the phasor form

E * iErrio, -f gEzeitu l2EzeiQ,,

can be calculated as

t r T
t F t z : 1 1  F . E d t
l v l a v  

-  
-  |
1 J 0

ln! coszlat * dr) * Ez, cosz(at + Q) -l E] coszQot + Q)l dt

+  E3+ a i ) : l tEP: ) .u .u .

Y x E : - j a B - M ,
y x E : i r . o D + i ,

Y  . D :  p ,

V . B  : 0 .

! [ '
T J o

t ,  "
, \ n i

( 1 . 1  1 )

(r.12)

(r.14a)

(1.14b)

(1.14c)

(1.14d)

(1 .13)

Then the root-mean-square (rms) value is lElr*, : lEllJ2.
Assuming an ei't dme dependence, the time derivatives in (1.1a)*( 1.ld) can be replaced

by jo. Maxwell's equations in phasor form then become

The Fourier transform can be used to convert a solution to Maxwell's equations for an
arbitrary frequency o to a solution for arbitrary time dependence.

The electric and magnetic current sources, i and ltt , in ( I . 14t are volume curent den-
sities with units A"h2 and V/m2, respectively. In many cases, however, the actual currents
will be in the form of a current sheet, a line current, or an infinitesimal dipole current. These
special types of current distributions can always be written as volume current densities
through the use of delta functions. Figure 1.4 shows examples of this procedure for electric
and maenetic currents.
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M(x, y, z)Vkrt

@

x x

i1x, y, z) = ilo@) 60 -y.) 6(7- 7) Nmz u(x, y, z) = iVAl60 -y,) 6(z - z") Y lrrt

(a)

I/A-m
+

v

VIY-m
----r>

\xo, yo, zo)

1 . 3

\xo yo, zo)

i@, y, z) = 1lt6(x - x) 6(y - y") 6(z - z) Nm2 a@, y, z) = iw61x - x.) 6Q - y) 6(z - z") Y /r*

FIGURE 1.4

(d)

Arbitrary volume, surface, and line currents. (a) Arbitrary electric and magnetic
volume current densities. (b) Arbitrary electric and magnetic surface current densities
in the e - 4s plane. (c) Arbitrary electric and magnetic line currents. (d) Inflnitesimal
electric and magnetic dipoles parallel to the "x-aris.

FIELDS IN MEDIA AND BOUNDARY CONDITIONS

In the preceding section it was assumed that the electric and magnetic fields were in free-
space, with no material bodies present. In practice, material bodies are often present; this
complicates the analysis but also allows the useful application of material properties to
microwave components. When electromagnetic fields exist in material media, the field
vectors are related to each other by the constitutive relations.

For a dielectric material, an applied electric field E causes the polarization of the
atoms or molecules of the material to create electric dipole moments that augment the
total displacement flux, D. ttris additional polarization vector is called P". the electric

J"(x, y) Nm

i@, y, z)=.r,(x, y) 6(z - z) Nm2

M"(x, y)Ylm

U(x, y, z) = U,(x, y) 6(z - z,) \t/ lm2
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polarization, where

where

D :  e o E  *  P e . (1 .1s)

In a linear medium, the electric polarization is linearly related to the applied electric
field as

P r :  € o X " E '

where 7,, which may be complex, is called the electric susceptibility. Then,

D: eoE I  P" -  eo(1 * x")E :  eE,

€ : e t - j e " - e g ( l * X p )

(1 .16)

(r.r7)

(1 .18)

is the complex permittivity of the medium. The imaginary part of € accounts for loss in the
medium (heat) due to damping of the vibrating dipole moments. (Free-space, having a real
e , is lossless.) Due to energy conservation, as we will see in Section 1.6, the imaginary pan
of e must be negative (e " positive). The loss of a dielectric material may also be considered
as an equivalent conductor loss. In a material with conductivity o, a conduction current
density will exist:

j : o E , (1.1e)

which is Ohm's law from an electromagnetic field point of view. Maxwell's curl equation
for 11 in (1.14b) then becomes

V x

(1.20)

where it is seen that loss due to dielectric damping (ae") is indistinguishable from conduc-
tivity loss (o). The term @e" + 6 can then be considered as the total effective conductivity.
A related quantity of interest is the loss tangent, defined as

I t : j a D * J
: iaeE + oE
- jae'E * (ate" + dE

: ico(e'- ie" - rZ)U.

coe" + o
l a n d :  

a r ,  
, (r.21)

which is seen to be the ratio of the real to the imaginary part of the total displacement
current. Microwave materials are usually characterized by specifying the real permittivity,
et : €r€0, and the loss tangent at a certain frequency. These constants are listed in Appendix
G for several types of materials. It is useful to note that, after a problem has been solved
assuming a lossless dielectric, loss can easily be introduced by replacing the real e with a
complex € : €t - jett : et(\ - j tan 6): eoe,(l - j tan 6).

In the preceding discussion it was assumed that P " was a vector in the same direction
as F. Such materials are called isoffopic materials, but not all materials have this property.
Some materials are anisoffopic and are characterized by a more complicated relation be-
tween P" and E, or D and E. ttre most general linear relation between these vectors takes
the form of a tensor of rank two (a dyad), which can be written in matrix form as

It is thus seen that a given vector component of E gives rise, in general, to three components
of D. Crystal structures and ionized gases are examples of anisotropic dielectrics. For a

lT,l:17:7:ilT,1:^l{,1 ('�22)
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linear isotropic material, the matrix of (1.22) would reduce to a diagonal matrix with

elements e .
An analogous situation occurs for magnetic materials. An applied magnetic field may

align magnetic dipole moments in a magnetic material to produce a magnetic polarization
(or magnetization) P. . Then,

B : & o ( H + p ^ ) .

For a linear magnetic material, P. is linearly related to H as

P ^ :  X ^ 8 ,

where X. is a complex magnetic susceptibility. From (1.23) and (1.24),

B : p + o ( l + x ; E : p E ,

where p : Lto(I + x^) : l.t' - j l.t" is the permeability of the medium. Again, the imagi-
nary part of X^ or pc accounts for loss due to damping forces; there is no magnetic conduc-
tivity, since there is no real magnetic current. As in the electric case, magnetic materials
may be anisotropic, in which case a tensor permeability can be written as

An important example of anisotropic magnetic materials in microwave engineering is the
class of ferrimagnetic materials known as ferrites; these materials and their applications
will be discussed further in Chapter 9.

If linear media are assumed (e , p not depending on E or E), then Maxwell's equations
can be written in phasor form as

Y x E : - j a p e i l - f t l ,
y x f r : i a t e E - t . 1 ,

Y . D : p ,
V . B  -  0 .

The constitutive relations are

D : e E ,

B :  p . E ,

where e and trr. may be complex and may be tensors. Note that relations like (1.28a) and
(1.28b) generally cannot be written in time domain form, even for linear media, because of
the possible phase shift between D and E, or E and tl .tne phasor representation accounts
for this phase shift by the complex form of e and trr.

Maxwell's equations (1.27a)-(L.27d) in differential form require known boundary val-
ues for a complete and unique solution. A general method used throughout this book is
to solve the source-free Maxwell's equations in a certain region to obtain solutions with
unknown coefficients, and then apply boundary conditions to solve for these coefficients.
A number of specific cases of boundary conditions arise, as discussed below.

Fields at a General Material Interface

Consider a plane interface between two media, as shown in Figure 1.5. Maxwell's equations
in integral form can be used to deduce conditions involving the normal and tangential fields

(r.23)

(r.24)

(r.2s)

l?;):ln n i')1T,1:*'li,l ..26)

(1.27a)

(1.27b)

(1.27c)

(7.27d)

(1.28a)

(1.28b)
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Medium2: e2, p.2
E,,
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Dn2 j"
1:t4>
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f  n ds:  f ,odu.
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FIGURE 1.5 Fields, currents, and surface charge at a general interface between two media.

at this interface. The time-harmonic version of ( 1 .4), where S is the closed "pillbox"-shaped

surface shown in Figure 1.6, can be written as

Y,'

(r.29)

In the limit as h --> 0, the contribution of Dtun through the sidewalls goes to zero, so (7.29)
reduces to

A.SD2, - LSDI.: ASP,,

Dzn  -  Dh :  P r ,
where p, is the surface charge density on the interface. In vector form, we can write

f r ' ( D z - D ) : p , .

A similar argument for B leads to the result that

h  '  B z :  f r '  B r ,

since there is no free magnetic charge.
For the tangential components of the electric field we use the phasor form of (1.6),

(1.30)

( 1 . 3  1 )

(1.32)

(1 .33)

in connection with the closed contour C shown in Figure 1.7. In the limit as h -+ 0, the
surface integral of ,B valishes (since S : h A,l vanishes). The contribution from the surface
rntegrat of iil,howevet, may be nonzero if a magnetic surface current density M, exists on
the surface. The Dirac delta function can then be used to write

Iil : Il[,6(h), (1.34)

where ft is a coordinate measured normal from the interface. Equation (1.33) then gives

L l E l - L , l E 6 2 - - L I M , ,

E t r - E t z - - M , , (1.35)

Medium 2

Medium t 
lo,

FIGURE 1.6 Closed surface S for equation (1.29).
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r-;;* Mediuml

FIGURE 1.7 Closed contour C for Equation (1.33).

which can be generalized in vector form as

( E z - E i x f i : t u | , .

A similar argument for the magnetic field leads to

h  x  (H2  -  H t ) :  J , ,

where ,I-, is an electric surface current density that may exist at the interface. Equations
(1.31), (1.32), (1.36), and (1.37) arethemostgeneral expressions fortheboundary conditions
at an arbitrary interface of materials and/or surface currents.

Fields at a Dielectric Interface

At an interface between two lossless dielectric materials, no charge or surface current
densities will ordinarily exist. Equations (1.31), (I.32), (1.36), and (1.37) then reduce to

(1.36)

(r.37)

(1.38a)

(1.38b)

( 1.38c)
(1.38d)

(1.39a)

(1.3eb)

(1.39c)

(1.3ed)

In words, these equations state that the normal components of D and B are continuous
across the interface, and the tangential components of E and 11 are continuous across the
interface. Because Maxwell's equations are not all linearly independent, the six boundary
conditions contained in the above equations are not all linearly independent. Thus, the
enforcement of (1.38c) and (1.38d) for the four tangential field components, for example,
will automatically force the satisfaction of the equations for the continuity of the normal
components.

Fields at the Interface with a Perfect Conductor (Electric Wall)

Many problems in microwave engineering involve boundaries with good conductors (e.g.,

metals),whichcanoftenbeassumedaslossless(o -+ oo). Inthiscaseofaperfectconductor,
all field components must be zero inside the conducting region. This result can be seen by
considering a conductor with finite conductivity (o < oo) and noting that the skin depth
(the depth to which most of the microwave powerpenetrates) goes to zero as d -+ oo. (Such

an analysis will be performed in Section 1.7.) If we also assume here that M, : 0. which
would be the case if the perfect conductor filled all the space on one side of the boundary,
then (1.31), (1.32), (1.36), and (1.37) reduce to the following:

f i . . D 1  -  f i , D 2 ,

f r .  B r :  f r .  B z ,
f i x E 1 - f i . x E 2 ,

h x E l - k x I 7 z .

h . D = p , ,

f i . 8 = 0 ,

f i x E : O ,

h x E : j , ,
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where p, and "/" are the electric surface charge density and current density, respectively,
on the interface, and fi is the normal unit vector pointing out of the perfect conductor. Such
a boundary is also known as an electric wall,because the tangential components of E are
"shorted out," as seen from (1.39c), and must vanish at the surface ofthe conductor.

The Magnetic Wall Boundary Condition

Dual to the preceding boundary condition isthe magnetic wallbotndary condition, where the
tangential components of F1 must vanish. Such a boundary does not really exist in practice,
but may be approximated by a comrgated surface, or in certain planar transmission line
problems. In addition, the idealization that ft x E = 0 at an interface is often a convenient
simplification, as we will see in later chapters. We will also see that the magnetic wall
boundary condition is analogous to the relations between the voltage and current at the
end of an open-circuited transmission line, while the electric wall boundary condition is
analogous to the voltage and current at the end of a short-circuited transmission line. The
magnetic wall condition, then, provides a degree of completeness in our formulation of
boundary conditions and is a useful approximation in several cases ofpractical interest.

The fields at a magnetic wall satisfy the following conditions:

f i . D : 0

f i .  E  : 0 ,

f f x E : - M , ,

h x E : 0 ,

where li is the normal unit vector pointing out of the magnetic wall region.

V x E - - j r p H ,

Y x I l - j a t e E ,

(1.40a)

(1.40b)

(1.40c)

(1.40d)

1 . 4

The Radiation Condition

When dealing with problems that have one or more infinite boundaries, such as plane waves
in an infinite medium, or infinitely long transmission lines, a condition on the fields at
infinity must be enforced. This boundary condition is known asthe radiation condition, and
is essentially a statement ofenergy conservation. It states that, at an infinite distance from a
source, the fields must either be vanishingly small (i.e., zero) or propagating in an outward
direction. This result can easily be seen by allowing the infinite medium to contain a small
loss factor (as any physical medium would have). Incoming waves (from infinity) of finite
amplitude would then require an infinite source at infinity, and so are disallowed.

THE WAVE EQUANON AND BASIC PLANE WAVE SOLUTIONS

The Helmholtz Equation

In a source-free, linear, isotropic, homogeneous region, Maxwell's curl equations in phasor
form are

(1.41a)

(1.4lb)

and constitute two equations for the two unknowns, E and l/. As such, they can be solved
for either E or E. Thus, taking the curl of (1.41a) and using (1.41b) gives

V x V x E : -jatl.tY x E : olp,eE,
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which is an equation for E. This result can be simplified through the use of vector identity
(B.14), V x V x A: V(V.,4) -VzA,whichisvalidfortherectangularcomponents of
an arbitrary vector A. Then,

v z E + a 2 p . e E : 0 , (r.42)

since V . E : 0 in a source-free region. Equation ( 1 .42) is the wave equation, or Helmholtz
equation, for E. An identical equation for 11 can be derived in the same manner:

v2 E + a2 prcE :0. (1.43)

A constant k : oJW is defined and called the wavenumber, or propagation constant, of

the medium; its units are 1/m.
As a way of introducing wave behavior, we will next study the solutions to the above

wave equations in their simplest forms, first for a lossless medium and then for a lossy
(conducting) medium.

Plane Waves in a Lossless Medium

In a lossless medium, e and trt, are real numbers, so k is real. A basic plane wave solution
to the above wave equations can be found by considering an electric field with only an i
component and uniform (no variation) in the x and y directions. Then, 0lDx : 3l}y : O,
and the Helmholtz equation of (1.42) reduces to

Y : * k 2 E , - 0 .
d7..

dz d /at  -constant \
u r : i l :  

d r \  k  )

(L44)

The two independent solutions to this equation are easily seen, by substitution, to be of the
form

E*(z) : g+ r-ikz I E- eir" , (1.4s)

where E+ and E- are arbitrary amplitude constants.
The above solution is for the time harmonic case at frequency ar. In the time domain,

this result is written as

t"(2, t) = E+ cos(at - kz) * E- cos(at * kz), (r.46)

where we have assumed that E+ and E- are real constants. Consider the first term in (1.46\.

This term represents a wave traveling in the *z direction, since, to maintain a fixed point
on the wave (at - kz: constant), one must move in the *z direction as time increases.
Similarly, the second term in (1.46) represents a wave traveling in the negative z direction;
hence the notation E+ and E- for these wave amplitudes. The velocity of the wave in this
sense is calledthe phase velocity, because it is the velocity at which a fixed phase point on
the wave travels, and it is given by

(1.47)

In free-space, we have up: llJltoeo: c -2.998 x 108 m/sec, which is the speed of
light.

The wavelength, ,1", is defined as the distance between two successive maxima
(or minima, or any other reference points) on the wave, at a fixed instant of time.

a l
: - : -

k J w
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Thus,

A complete specification of the plane wave electromagnetic field must include the
magnetic field. In general, whenever E or H is known, the other field vector can be readily
found by using one of Maxwell's curl equations. Thus, applying (I.4la) to the electric field
of(1.45) gives 11, - 11. = 0, and

fat - kz) - lat - k(z * ]')l : 2n,

. 2, 2nuo up
" -  

k  @  
-  

f  
'

Hr: !SE+e-ikz - g-rik1,

,,:(;)': (#;s)':,,0
The wave impedance is

n: qolJ-e, :  
#= 

307'8 o.

where 4 : @ltlk : J pre is the wave impedance for the plane wave, deflned as the ratio
of the E and fl fields. For plane waves, this impedance is also the intrinsic impedance of
the medium. In free-space we have q0 : Ji;R :377 9. Note that the E and 11 vectors
are orthogonal to each other and orthogonal to the direction of propagation (*2); this is a
characteristic of transverse electromagnetic (TEM) waves.

EXAMPLE 1.1 BASIC PLANE WAYE PARAMETERS

A plane wave propagating in a lossless dielectric medium has an electric field given
as t, - Eo cos(I.51 x 1010r - 61.62). Determine the wavelength, phase velocity,
and wave impedance for this wave, and the dielectric constant of the medium.

Solution
By comparison with (1.46) we identify ar : 1.5 I x 1010 radlsec and k : 61.6 m-l.
Using (1.48) then gives the wavelength as

2n 2r' :  
T :  6 r . 6 : o ' l o 2 m '

The phase velocity can be found from (1.47):

a  1 .51  x  1010
,o : 

7 
: 

T 
: 2.45 x 108 m./sec.

This is slower than the speed of light by a factor of 1.225 . The dielectric constant
of the medium can be found as

(1.48)

(1.49)

(1.50a)

(1.sOb)

I

Plane Waves in a General Lossy Medium

Now consider the effect of a lossy medium. If the medium is conductive, with a conductivity
o, Maxwell's curl equations can be written, fuom (7.47a) and (1.20) as

V x E * - j a L t H ,

V x E : j a e E * o E .
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The resulting wave equation for E then becomes

v z E + r ' w r ( t - 1 ! - ) n : 0 , (1 .s1)

where we see a similarify with (1.42), the wave equation for E in the lossless case. The

difference is that the wavenumber k2 : o2l.te of (1.42) is replaced by a2 p'efl - j(o /ae)j
in (1.51). We then define a complex propagation constant for the medium as

y : a + iB : jot,/1terl | - i ;
(r.s2)

If we again assume an electric field with only an i component and uniform in x and y, the
wave equation of (1.51) reduces to

ozEr .) ̂
; ; - Y " E , : o '

which has solutions

Er(z) : E+ e-Yz * E- eYz .

The positive traveling wave then has a propagation factor of the form

e-/z :  , -az"- iFz,

which in the time domain is of the form

(1 .53)

(1.s4)

e-oz cos(ai - frz).

We see that this represents a wave traveling in the *z direction with a phase velocity
up = @/f , a wavelength )" :2n / f , and an exponential damping factor. The rate of decay
with distance is given by the attenuation constant, o. The negative traveling wave term of
(1.54) is similarly damped along the -z axis. If the loss is removed, o : 0, and we have
y :  j k  a n d c :  O ,  B : k .

As discussed in Section 1.3, loss can also be treated through the use of a com-
plex permittivity. From (1.52) and (1.20) with o : 0 but e : et - je" complex, we have
that

y -- jo{G -- jk: irJpe'g' - i tut''' t\,

where tan 6 : e" /e'is the loss tangent of the material.
Next, the associated magnetic field can be calculated as

H, :  i  
+  : - iY rp+e-vz -  E-evz) .' @p dz (DI-L

Hr - !18+e -Yz -E -e l z ) .

As with the lossless case, a wave impedance can be defined to relate the electric and magnetic
fields:

jart

(1.ss)

(1.56)

(r.s7)

Then (1.56) can be rewritten as

(1.s8)
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Note that 4 is, in general, complex and reduces to the lossless case of 4 = J[/Z when y :
j k :  j aJ@.

Plane Waves in a Good Conductor

Many problems of practical interest involve loss or attenuation due to good (but not per-
fect) conductors. A good conductor is a special case of the preceding analysis, where the
conducfive cuffent is much greater than the displacement current, which means o >> (De.

Most metals can be categorized as good conductors. In terms of a complex e , rather fhan
conductivity,thisconditionisequivalenttoe" >> e'.Thepropagationconstantof(1.52)can
then be adequately approximated by ignoring the displacement current term, to give

y :d+  j f r -  jaJG. lT : (1*  n , l?Y (1 .5e)
\ J @ €  \  z

The skin depth, or characteristic depth ofpenetration, is defined as

(1.60)

Then the amplitude of the fields in the conducfor decay by an amount 1le or 36.8Vo, after
traveling a distance of one skin depth, since e-oz : s-d6' : e-r . At microwave frequencies,
for a good conductor, this distance is very small. The practical importance of this result is
that only a thin plating of a good conductor (e.g., silver or gold) is necessary for low-loss
microwave components.

EXAMPLE 1.2 SKIN DEPTH AT MICROWAYE FREQUENCIES

Compute the skin depth of aluminum, copper, gold, and silver at a frequency of
10GHz.

Solution
The conductivities for these metals are listed in Appendix F. Equation (1.60) gives
the skin depths as

^  1  T '
 

 

-  _  -  t _" ' -  
o * r , l  , * o

^ - 1 2  - 1 1  -" ' - V @ a p d  , , 1  n . f t o o -

:5 .03  *  tO-3 . [
t o

For aluminum:

For copper:

For gold:

For silver:

6 , : 5 . 0 3 x 1 0 - 3

6 " : 5 . 0 3 x 1 0 - 3

d, :5.03 x 10-3

3"  :5 .03  x  l0 -3

tT
V a.8to x toz

IT
V 5.gt :  x  toz

: 8.14 x 10-7 m.

: 6.60 x 10-7 m.

:7  .86  x  10-7  m.

: 6.40 x 10-7 m.

z

,w n(I}lo)(4n

I

4398 ,.' 10t

I

en3 " 10:-
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TABLE 1.1 Summary of Results for Plane Wave Propagation in Yarious Media

Type of Medium

Quantity

Lossless
(e"  :  o  :o)

General

Lossy

Good Conductor

e" >) €' or o )) ae'

Complex propagation

constant

Phase constant

(wavenumber)

Attenuation constant

Impedance

Skin depth

Wavelength

Phase velocity

y : jaJue

f l : k : a J W

a : 0

q: JPrc : atP'/k
d r : o o

L : 2 r / f
uP : a;/f

Y :  JAJG
- f  o

:  j a J p . e ' , 1 1 -  j  ,y a( '

f r :rm(y)

y : ( r+nJapaB

p:rm(y) :  Jawn

a:Re( l r ) :Jawn
q:( t+ j )Ja i t ro

6,: JT@1to
x :2 r  l f l
uP : o/fl

a : Re()z)

q :  jo l . t / y

6" :  l /a

X : 2 n  / F
up : o/fl

These results show that most of the current flow in a good conductor occurs
in an extremely thin region near the surface of the conductor. I

The wave impedance inside a good conductor can be obtained from (1.57) and (1.59).

The result is

t@u
n - "  - ( 1 + i ) :  (1+ i )+

oos
( 1 . 6 1 )

(r.62)

(1.63)

1 . 5

Notice that the phase angle of this impedance is 45o, a characteristic of good conductors.
The phase angle of the impedance for a lossless material is 0o, and the phase angle of the
impedance of an arbitrary lossy medium is somewhere between 0' and 45'.

Table 1.1 summarizes the results for plane wave propagation in lossless and lossy
homogeneous media.

GENERAL PLANE WAVE SOLUTIONS

Some specific features of plane waves were discussed in Section 1.4. Here we will look
at plane waves again, from a more general point of view, and solve the wave equation by
the method of separation of variables. This technique will find application in succeeding
chapters. We will also discuss circularly polarized plane waves, which will be important
for the discussion of ferrites in Chapter 9.

In free space, the Helmholtz equation for E can be written as

v 2 E  +  k i E  : Y  * *  * *  * n f , E  : 0 .-  ox '  oy '  oz"

and this vector wave equation holds for each rectangular component of E:

* * * * * * k f r r ; = 0 .dx'  dy '  oz '

where the index i = x , y , or z. This equation will now be solved by the method of separation
of variables, a standard technique forreating such partial differential equations. The method
begins by assuming that the solution to (1.63) for, say, E,, can be written as a product of
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three functions for each of the three coordinates:

E,(x, y, z) : f (x) sO) h(z).

Substituting this form into (1.63) and dividing by f gh gives

(r.64)

* 4 : o ' (1.6s)

where the double primes denote the second derivative. Now the key step in the argument
is to recognize that each of the terms in (1.65) must be equal to a constant, since they are
independent of each other. That is , f 

" 
/f is only a function of x, and the remaining terms in

(1.65)donotdependonr,so f"If mustbeaconstant,andsimilarlyfortheothertermsin
(1.65). Thus, we define three separation constants, kr, k, and ft., such that

f "  P "  h "'  + "  + -
. f s h

f ,, lf : -4; g,, lg : -ktr; h,, I h : -Q;
d 2 . f  . r -  ^  d 2 s  . )  ^  d 2 h  . ) .or 
A* + kiJ' : O: 

dy, 
+ k;B : O: 

dr, 
+ k;h = O.

Combining (1.65) and (1.66) shows that

(1.66)

(1.68)

(r.6e)

(1.70)

(1.71)

(r.72)

(r.73)

11+ *?,+ 4 :4. (r.67)

The partial differential equation of (1.63) has now been reduced to three separate
ordinary differential equations in (1.66). Solutions to these equations are of the form
,*ik,x , e*ikvv , allf, s+ik,z, respectively. As we have seen in the previous section, the terms
with + signs result in waves traveling in the negative x , y, or z direction, while the terms
with - signs result in waves traveling in the positive direction. Both solutions are possible
and are valid; the amount to which these various terms are excited is dependent on the
source of the fields. For our present discussion, we will select a plane wave traveling in the
positive direction for each coordinate, and write the complete solution for E" as

E*(x, Y' z) : 4s-i&'x+ktr+k'z),

where A is an arbitrary amplitude constant. Now define a wavenumber vector I as

E : k,i + kri + k72: ksfr.

Then from (I.67) lkl : ko, and so fi is a unit vector in the direction of propagation. Also
define a position vector as

then (1.68) can be written as

f : x i * y 9 + 2 2 ;

E*(x, y, z) : Ae-iE'?

Solutions to (1.63) for E, and E, are, of course, similar in form to E" of (1.71), but with
different amplitude constants :

E r ( x , ! , 2 ) :  Ps - i k ' r ,

Er(x, y, z) : gg-iF'r .

The .r, y, and z dependences of the three componenrs of E in (t.Zt)-(1.73) must be the
same (same kr, ky, k), because the divergence condition that

Y . E : *  * ?  * ! ! '  : s'dx dy 0z
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must also be applied in order to satisfy Maxwell's equations, which implies that E,, Ey,
and E, must each have the same variation in x, y, and z. (Note that the solutions in the
preceding section automatically satisfied the divergence condition, since E, was the only
component of E, and E, did not vary with x.) This condition also imposes a constraint on
the amplitudes A, B, and C, since if

we have

Eo: Art + Bi + C2,

E : Eoe-j['r ,

V . E :  y . ( E s e - i r t ) :  E o  . Y e - i | ' r  :  -  j t r . E g e - l r ' t  : 0 ,

where vector identity (B.7) was used. Thus, we must have

k . E o - 0 , (r.74)

which means thatthe electric field amplitude vector Es mustbe perpendicularto the direction
of propagation, [. This condition is a general result for plane waves and implies that only
two of the three amplitude constants, A, B, and C, can be chosen independently.

The magnetic field can be found from Maxwell's equation,

V x E * - j a l . t o H , (1.7s)

to give

H _ E - - - : - V x ( E s e - t K r ;
@ko

- I  -  r -- --:- Eo x I s-Jr'r
ako
- i  -  -  . i -

E0  x  ( - i k )e - rK ' '
@&o

kg ^ ; -;tr.,
:  - t t  X  f - g€  "  - '

at&o

t -
=  - ; L . i

:  - t t  X  E g e  t " '

4o

1 _
: * h x E ,

4o

where vector identity (B.9) was used in obtaining the second line. This result shows that the
magnetic field intensity vector H lies in a plane normal to [. the direction of propagation,
and that .E is perpendicular to E. See Figure I .8 for an illustration of these vector relations.
The quantity qo : J pi@ : 37'l {2 in (1.76) is the intrinsic impedance of free-space.

The time-domain expression for the electric field can be found as

E@,y ,z , t )  -  Re{E( l ,  y ,z )e i ' ' l

:  Re{Eoe-i i< ' t  r ior l
: Eo cos(i' 'F - r,.t),

assuming that the amplitude constants A, B, and C contained in Es are real. If these
constants a.re not real, their phases should be included inside the cosine term of (1.77). It

I"  V x
trt lt0

(1.76)

(1.77)
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FIGURE 1.8 Orientation of the E, H, and k : kofi. vectors for a general plane wave.

is easy to show that the wavelength and phase velocity for this solution are the same as
obtained in Section 1.4.

EXAMPLE 1.3 CURRENT SIIEETS AS SOURCES OF PLANE WAVES

An infinite sheet of surface current can be considered as a source for plane waves.
If an electric surface current density i, : Joft exists on ihe z - 0 plane in free-
space, find the resulting fields by assuming plane waves on either side of the current
sheet and enforcing boundary conditions.

Solution
Since the source does not vary with x or y, the fields will not vary with.r or y but
will propagate away from the source in the *z direction. The boundary conditions
to be satisfied at z :0 are

f r  x  (E2 -  E r )  :  2  x  (Ez -  E r )  :  0 .

ft x (fr2 - fi ) : 2 x (Ez - E t) : Joft,

where E 1, E 1 are the fields for z < O, and E 2, H 2 are the fields for z > 0. To satisfy
the second condition, 11 must have a ! component. Then for E to be orthogonal
to 11 and 2, E must have an i component. Thus the fields will have the following
form:

forz < 0,  Er :  f tAnoeih ' ,

fr 1 - *it Asikoz ,

for z > 0, E2: rtBnos-ikoz,

E2:  i 'Be- lh ' ,

where A and B are arbitrary amplitude constants. The first boundary condition,
that E, is continuous at z - O,yields A : B, while the boundary condition for FI
yields the equation

- B  -  A :  J o .

Solving for A, B gives

which completes the solution.

A :  B  :  - Jo /2 ,

I
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Circularly Polarized Plane Waves

The plane waves discussed above all had their electric field vector pointing in a fixed

direction and so are called linearly polaized waves. In general, the polarization of a plane

wave refers to the orientation of the electric field vector, which may be in a fixed direction
or may change with time.

Consider the superposition of an i linearly polarized wave with amplitude Er and a 9
linearly polarized wave with amplitude Ez,both traveling in the positive 2 direction. The
total electric field can be written as

E : ( E r i + E z i ) e - i k z (r.78)

A number of possibilities now arise. If h + 0 and Ez: 0, we have a plane wave linearly
polarized in the i direction. Similarly, if E1 : O and Ez f O,we have a plane wave linearly
polarized in the ! direction. If Er and E2 areboth real and nonzero, we have a plane wave
linearly polarized at the angle

Q : tan-l
Ez
E1

For example, if Er - Ez: Eo, we have

E : E o ( f t + g ) r - i k , ,

which represents an electric field vector at a 45'angle from the x-axis.
Now consider the case in which E1 : j E2 = Eo, where Es is real, so that

E: Eo(rt - ig)e-i*"'.

The time domain form of this field is

(r.7e)

(1.80)Ek,t) :  Eolr t  cos(art  -koz) * j  cos(cor -koz- r l2)\ .

This expression shows that the electric field vector changes with time or, equivalently, with
distance along the z-axis. To see this, pick a fixed position, say z : 0. Equation (1.80) then
reduces to

t(0, t) : Eo{i cos (0t + I sin arr}, ( 1 . 8 1 )

so as al/ increases from zero, the electric field vector rotates counterclockwise from the
x-axis. The resulting angle from the x-axis of the electric field vector at time t, at z : O, is
then

Q : ran-t (2Y+) : '''
\cos (1)r/

which shows that the polarization rotates at the uniform angular velocity ar. Since the fingers
of the right hand point in the direction of rotation when the thumb points in the direction
of propagation, this type of wave is referred to as a right hand circularly polarized (RHCP)

wave. Similarly, a field of the form

E : Eo(i * jit)s-ik z (1.82)

constitutes a left hand circularly polarized (LHCP) wave, where the electric field vector
rotates in the opposite direction. See Figure 1.9 for a sketch of the polarization vectors for
RHCP and LHCP plane waves.
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FIGURE 1.9

(a) (b)

Electric field polarization for (a) RHCP and (b) LHCP plane waves.

1 . 6

The magnetic field associated with a circularly polarized wave may be found from
Maxwell's equations, or by using the wave impedance applied to each component of
the electric field. For example, applying (1.76) to the electric field of a RHCP wave as
given in (1.79) yields

E o -  ^ .  - i t ^ z  i E o . ^
E  : 2 2  x  ( i  -  j g ) r - i * o , : 1 9 ( y  I  J x t e  , - . -  -  - ( x  -  j g l t - i t o r .

4o 4o r7o

which is also seen to represent a vector rotating in the RHCP sense.

ENERGY AND POWER

In general, a source of electromagnetic energy sets up fields that store electric and magnetic
energy and carry power that may be transmitted or dissipated as loss. In the sinusoidal
steady-state case, the time-average stored electric energy in a volume V is given by,

(1 .83)

which in the case of simple lossless isotropic, homogeneous, linear media, where < is a real
scalar constant, reduces to

w " : ) x "  Lu  D*du ,

w " : 1  [  E . E . a r .
+  J v

Similarly, the time-average magnetic energy stored in the volume V is

w ^ : ! p ,  I  E . B . o r ,' ' '  
4  Jv

(1.84)

(1.8s)

which becomes

w ^ - E  ' 8 "  d u , (1.86)

for a real, constant, scalar 9,.
We can now derive Poynting's theorem, which leads to energy conservation for elec-

ffomagnetic fields aad sources. If we have an electric source current, ,I-", and a conduction
current oE, as defined in (1.19), then the total electric current density is i: i, + oE.

TT
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Then multiplying (1.27a)by tl", and multiplying the conjugate of (1.27b) by E, yields

,{.. (v x E) - -jrpl*l '  - fr* . M,,

E . 1 v  x  E \ :  E . i "  -  j r r * l E l 2  =  E . i :  + o l E 1 2  -  j a t e * l E l z ,

wherc fuL, is the magnetic source current. Using these two results in vector identity (B.8)

gives

v (E x '.t 
1'-"fi:7;"rr,:''-"-iulr, - @ j: + n* rrr,y

Now integrate over a volume V and use the divergence theorem:

f _ _ f _ _
I  V . ( E x H * ) d u : Q  E x H * . d s

Jv  Js

=  - o  [  @ 1 2 a u +  i a  I  G * l E l 2  -  p l T f \ a u  -  [  o .  i i +  n . .  M , t d u .  ( 1 . 8 7 )
J v  J v  J v

where S is a closed surface enclosing the volume V, as shown in Figure 1.10. Allowing
e : et - j e" and p, : LL' - jpt" to be complex to allow for loss, and rewriting (1.87) gives

I  r  -  I  
I E , o . . d s + 1 [ E ( a ,- i  

l r @ ' J : + H " ' M ' ) d u : i 5 ,  z J v

+i l,<,"Ef + p"tTf)du + iZ t;*'Et'- e'tEt2)du. (1 .88)

This result is known as Poynting's theorem, after the physicist J. H. Poynting (1852-1914),

and is basically a power balance equation. Thus, the integral on the left-hand side represents
the complex power, Pr, delivered by the sources ,/, and M,, inside S:

P,: -t Irru I! + E. .tfr,)du. (1.8e)

The first integral on the right-hand side of ( 1 .88) represents complex power flow out of the
closed surface S. If we define a quantity called the Poynting vector, S. as

S : E x r t * , (1.e0)

then this power can be expressed as

(1.e1)

The surface S in (1.91) must be a closed surface in order for this interpretation to be valid.
The real parts of P, and P, in (1.89) and (1.91) represent time-average powers.

A volume V, enclosed by the closed surface S, containing fields E,
sources i", M,.

P " : : A u " E * . d s : ) f , t  o t

FIGURE 1.10 Il, andcurrent
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The second and third integrals in (1.88) are real quantities representing the time-average
power dissipated in the volume V due to conductivity, dielectric, and magnetic losses. If
we define this power as Pl we have that

, , :7 L1Ef au +i 
l , t r ' lEl |  

+ t t" l f r l \du. (r.e2)

which is sometimes referred to as Joule's law. The last integral in (1.88) can be seen to be
related to the stored electric and magnetic energies, as deflned in (1.84) and (1.86).

With the above definitions, Poynting's theorem can be rewritten as

P, : Po * Pt *2jo(W^ - W"). (1.e3)

In words, this complex power balance equation states that the power delivered by the
sources (P") is equal to the sum of the power transmitted through the surface (P,), the
power lost to heat in the volume (Pr), and 2a times the net reactive energy stored in
the volume.

Power Absorbed by a Good Conductor

To calculate attenuation and loss due to an imperfect conductor, one must find the power
dissipated in the conductor. We will show that this can be done using only the fields at the
surface of the conductor, which is a very helpful simplification when calculating attenuation.

Consider the geometry of Figure 1.11, which shows the interface between a lossless
medium and a good conductor. We assume that a field is incident from z < 0 and that
the field penetrates into the conducting region z > 0. The real average power entering the
conductor volume defined by the cross-sectional surface Ss at the interface and the surface
S is given from (1.91) as

Puu : E x  E* . f rds, (1.94)

where fi is a unit normal vector pointing into the closed surface So * S, and E, H are
the fields at this surface. The contribution to the integral in (1.94) from the surface S can
be made zerc by proper selection of this surface. For example, if the fleld is a normally
incident plane wave, the Poynting vector S : E x 11* will be in the 2 direction, and so

FIGURE 1.11 An interface between a lossless medium and a sood conductor with a closed surface

j*" 1..,

n

So * S for computing the power dissipated in the conductor.



1.7 Plane Wave Reflection from a Media Interface 27

tangential to the top, bottom, front, and back of S, if these walls are made parallel to the

z-axis. If the wave is obliquely incident, these walls can be slanted to obtain the same
result. And, if the conductor is good, the decay of the fields from the interface at z : 0 will
be very rapid, so that the right-hand end of S can be made far enough away from z :0

so that there is negligible contribution to the integral from this part of the surface S. The
time-average power entering the conductor through Se can then be written as

2.  @ x H*)  :  Q x E1.  f I *  :  nE .  H*, (1.e6)

since 11 : fr x E/q, as generalized from (1.76) for conductive media, where 4 is the in-
trinsic wave impedance of the conductor. Equation (1.95) can then be written as

P , u : 1 R .  I  U " f r . ' . . d s '
L  J S o

From vector identity (8.3) we have

'^': t |r,1E12ds'

+ D { * ) :
I

o6,

(1.es)

(r.e7)

(1.e8)where

is called the surface resistivity of the conductor. The magnetic field F/ in (1.97) is tangential
to the conductor surface and needs only to be evaluated at the surface of the conductor;
since .I{ is continuous at z : O, it doesn't matter whether this field is evaluated just outside
the conductor or just inside the conductor. In the next section we will show how (1.97) can
be evaluated in terms of a surface current density flowing on the surface of the conductor,
where the conductor can be assumed to be perfect.

PLANE WAVE REFLECTION FROM A MEDIA INTERFACE

A number of problems to be considered in later chapters involve the behavior of elecffo-
magnetic fields at the interface of a lossy or conducting medium, and so it is beneficial at
this time to study the reflection of a plane wave normally incident from free-space onto the
surface of a conducting half-space. The geometry is shown in Figure 1 .12 where the lossy
half-space z > 0 is characterized by the parameters e , p, and o.

F tfUUllL-
--UIWr
E,

R":Re(4):n" f t r

1 . 7

(plt

2o

FIGURE 1.12 Plane wave reflection from a lossy medium; normal incidence
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GeneralMedium

With no loss of generality, we can assume that the incident plane wave has an electric field
vector oriented along the x-axis and is propagating along the positive z-axis. The incident
fields can then be written, for z < 0, as

where 4s is the wave impedance of free-space, and Eo is an arbitrary amplitude. Also in the
region z < 0, a reflected wave may exist with the form

Ei : rtBos-iknz,

E,  :  91 Esr- ikoz,
4o

E, : i l  gos+iknz,

E, : -9f Eoe+ikrz,
4o

Et : iT Eoe-Y',

A T  F ^
t '  L U  - - "

I : l  1 :  - g  " ,

rl

(1.99a)

(1.99b)

(1.100a)

(1.100b)

(1 .101a)

(1.10lb)

where f is the unknown reflection coefficient of the reflected electric field. Note that in
(1.100), the sign in the exponential terms has been chosen as positive, to represent waves
traveling in the -2 direction of propagation, as derived in (1.46). This is also consistent with
the Poynting vector $ : E, x Ei : -p121E0122/rto, which shows power to be traveling
in the -2 direction for the reflected wave.

As shown in Section 1.4, from equations (1.54) and (1.58), the transmitted fields for
z > 0 in the lossy medium can be written as

where T is the transmission coefftcient of the transmitted elecffic field and 4 is the intrinsic
impedance of the lossy medium in the region z > 0. From (1.57) and (1.52) the intrinsic
impedance is

(1 .102)

and the propagation constant is

y : ot * jB : jaJlteJl - Jol@e. (1 .103)

We now have a boundary value problem where the general form of the fields are known
via (1.99)-(1.101) on either side of the material discontinuity at 1: 0. The two unknown
constants, I and Z, are found by applying two boundary conditions on E, and H, at
z : 0. Since these tangential field components must be continuous at I : Q, we arrive at
the following two equations:

( 1 +  f )  -  7 , (1.104a)

(1.104b)

l@lt
4 :  - ,

r

l - f  T

4 o n
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Solving these equations for the reflection and ffansmission coefficients gives

r y - n of -
4 l n o '

S- : E x E* : (Ei + E,) x (Ei * E,)
1

= i lEolz l-p-ikoz I yrikozl1"-ikoz - yrlkozS+
4o
1

: zlEolz:Q - lf 12 + le2ito, - yxr-zikoz1
4o
I

= 2lEol2 
' 

( l - lf 12 + 2jl sin2kod,
rlo

since f is real. For z > 0, the complex Poynting vector is

s+ : E, x Ei :2E:t!t ,
n

24

(1.105a)

(1.105b)

(1 .108)

(1 .109)

Z : 1 * I - :
n + q o

This is a general solution for reflection and transmission of a normally incident wave at the
interface of a lossy material, where 4 is the impedance of the material. We now consider
tluee special cases of the above result.

Lossless Medium

Ifthe region for z > 0 is alossless dielectric, then o :0, and p, ande are real quantities.
The propagation constant in this case is purely imaginary and can be written as

y : jp: janflte: jkoJ$fi, (1.106)

where ks : @JFo€o is the wavenumber of a plane wave in free-space. The wavelength in
the dielectric is

(1 .107)

the phase velocity is

@ l c
' p Jpe Jp.,e,

(slower than the speed of light in free-space) and the wave impedance of the dielectric is

Jap
, l  -  -  -

v

^ 2 o 2 n L s
t , - : - : - : -' -  

P oJ@ Jp,+'

n
, l  -  : 4 0
V €

In the lossless case, r is real, so both f and Z from (1.105) are real, and E and E are in
phase with each other in both media.

Power conservation for the incident, reflected, and transmitted waves can be demon-
strated by computing the Poynting vectors in the two regions. Thus, for z < 0, the complex
Poynting vector is

(1.1 10a)
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which can be rewritten, using (1.105), as

n : Q + i )

21no(!6- trt2).qo

Now observe thar at z - 0, S- : ,it, so that complex power flow is conserved across the
interface. Now consider the time-average power flow in the two regions. For z < 0, the
time-average power flow through a 1-m2 cross section is

p - :  ] n .1s - .  2 ) : l t r o t r l t r  -  l r l 2 ) .
2 - ' 2 ' 4 0

and for z > 0, the time-average power flow through a 1-m2 cross section is

e+ : lnets 
* . 2) : f,lna, 

!o- trl2) : p-

A -

S+ :2160;z--J1- :
\n + n0)'

t r o 1 2 l f  1 2S r : E , x E i :

y  :  q  + jF  :  e  + i>^ l9Y:  ( t  +  j ) :
\ z o s

Similarly, the intrinsic impedance of the conductor simplifies to

: ( l + j ) +
o 0 t

so real power flow is conserved.
We now note a subtle point. When computing the complex Poynting vector for z < 0 in

(1.110a), we used the total E and FI fields. If we compute separately the Poynting vectors
for the incident and reflected waves, we obtain

S i :  E i  x  E i ^ l E o l 2
4o

(1 .1  10b)

(1 .1  1  1a)

(1 .1  1  1b)

(I.1I2a)

(1.112b)

( 1 . 1 1 3 )

(1 .1  14)

and we see that & + S, I S- of (1.110a). The missing cross-product terms account for
stored reactive energy in the standing wave in the z < 0 region. Thus, the decomposition of a
Poynting vector into incident and reflected components is not, in general, meaningful. Some
books define a time-average Poynting-voctor as (1/2)Re1E x fi*1, and in this case such a
definition applied to the individual incident and reflected components will give the correct
result, since P; : (Ll2)PtelEolzlrlo, arrd P, : -(112)l00l2lf 12lrto, so 4 + P, : P-. But
even this definition will fail to provide meaningful results when the medium for z < 0 is
lossy.

Good Conductor

Ifthe region for z > 0 is a good (but not perfect) conductor, the propagation constant can
be written as discussed in Section 1.4:

Now the impedance is complex, with a phase angle of 45", so E and E will be 45" out of
phase ,and f  andZw i l l becomp lex . I n (1 .113 )and (1 .114 ) ,3 , : 1 l a  i s thesk indep th ,as
defined in (1.60).

For z < 0, the complex Poynting vector can be evaluated at z : O to give

S-17 :  0)  :  ZlEo? !(1 -  l r12 + r  -  r*) .
no

@p

2o

( l .1  15a)
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For z > 0, the complex Poynting vector is

S+  :  E ,  x  E i  : 2 lEo lz lT l z1- e
n*

So at the interface at 7 : Q, S- : S+, and complex power is conserved.
Observe that if we were to compute the separate incident and reflected Poynting vectors

forz < 0 as

and using (1.105) for Z and I gives

j+  :21sr f  - j ! -e-h,  :21t0( !g-  l f  12 + |  - r * )e-2q2.
14 * 4ol '  no

r p ^ L
&  :  E r  x  n i  : 2 ' " u '  ,'  n o

r F o l 2 l f  l 2S ,  :  E ,  x  E i :  - r t " " ; ;  '  .

r- : jners - . z) : )tta' 
!<t- trt2),

r+ : jnets* .2):)lnarlo - Ft\e-u,

: )opot',rf I:e-h, dz : !!#

(1. l  1sb)

(1.1 16a)

(1.1 16b)

( I .1 I7a)

(1.1 17b)

we do not obtain Sr +S,: S- of (1.115a), even for z:0. It is possible, however, to
consider real power flow in terms of the individual traveling wave components. Thus, the
time-average power flows through a l-mz cross section are

which shows power balanc e at z - 0. In addition , Pi : lEsl2 /24s, and P, : -lE0l2 lilz I
24s so that Pi * P, - P- , showing that the real power flow for z < O can be decomposed
into incident and reflected wave components.

Notice that S+, the power density in the lossy conductor, decays exponentially accord-
ing to the e-h' attenuation factor. This means that power is being dissipated in the lossy
material as the wave propagates into the medium in the *z direction. The power, and also
the fields, decay to a negligibly small value within a few skin depths of the material, which
for a reasonably good conductor is an exffemely small distance at microwave frequencies.

The electric volume current density flowing in the conducting region is given as

i t :  oEt :  r toEoTe-Y 'Nmz, ( 1 . 1 1 8 )

and so the average power dissipated in (or transmitted into) a I m2 cross-sectional volume
of the conductor can be calculated from the conductor loss term of (1.92) (Joule's law) as

P t :
-vz) . (io EsTs-Yz)* d7 dy dx1 I, u,. r; au:; I,'=, f ,'_o f* rrror,

(1.1  19)

Since 1/4 :o6,1(l *,t): @l2a)(1-f),therealpowerenteringtheconductorthrough
al-mz cross section (as givenby (1/2)Re(S+ . 2) atz: 0) canbeexpressedusing (l.1l5b)
as P' : lEylzlTl2(o l4cv), which is in agreement with (1.119).
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Perfect Conductor

Now assume that the region z > 0 contains a perfect conductor. The above results can be
specialized to this case by allowing o -+ oo. Then, from (1.113) cv -> oo; from (1.114)

n --> 0; from (1.60) 6, -+ 0; and from (1.105a,b) T --> O, and f -+ -1. The fields for

z > 0 thus decay infinitely fast, and are identically zero in the perfect conductor. The
perfect conductor can be thought of as "shorting out" the incident electric field. For z < 0,
from (1.99) and (1.100), the total E and H fields are, since f : *1,

Observe thatatz:0, E:0 and H :|QlttdEe. The Poynting vectorforz < 0is

E : Ei * E, : iEsle-ikoz _ gih) - **2j Eo sin koz,

t )
E : E i * E , : g ' E61"-itoz a "inozl : i a Eo cos koz.

no 4o

4
S- : E x E* : 2i.J-pr12 sin koz cos k6z,

no

(r.I20a)

(1.120b)

(r.r21)

(r.r22)

(r.r23)

(r.r24)

(1.rzs)

which has a zero real part and thus indicates that no real power is delivered to the perfect

conductor.
The volume current density of (1.118) for the lossy conductor reduces ro an infinitely

thin sheet of surface current in the limit of infinite conductivitv:

J r : f r x H : - 2 x :  12  Eo N^ .
no

The Surface lmpedance Concept

In many problems, particularly those in which the effect of attenuation or conductor loss
is needed, the presence of an imperfect conductor must be taken into account. The surface
impedance concept allows us to do this in a very convenient way. We will develop this
method from the theory presented in the previous sections.

Consider a good conductor in the region z > 0. As we have seen, a plane wave normally
incident on this conductor is mostly reflected, and the power that is transmitted into the
conductor is dissipated as heat within a very short distance from the surface. There are three
ways to compute this power.

First, we can use Joule's law, as in (1.119). For a I m2 area of conductor surface, the
power ffansmitted thrcugh this surface and dissipated as heat is given by (1.119). Using
(1.105b) for T, (l.lI4) for 4, and the fact that a : l/6,, gives the following result:

o lT lz  _  o6 ,4 ln l2  _
a |rl + ryol2 

-

(.i","o, oo.) l.:o

8R"
,,

rloo6143

where we have assumed a <1 40, which is true for a good conductor. Then the power of
( 1.1 19) can be written as

where

,' - 2lEof R' 
.

tt'�v

R, : Re('): *"(H) : 1

od"

is the surface resistance of the metal.
Another way to find the power loss is to compute the power flow into the conductor

using the Poynting vector, since all power entering the conductor at z - 0 is dissipated. As

@11'

2o
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in (1.115b), we have

| - 2lEol2Re(ry)r , :  iRe{S+.2)1.:o: f f i ,
which for large conductivity becomes, since rl 11 no, 

'l

(1.126)

which agrees with (1.124).
A thfud method uses an effective surface current density and the surface impedance,

without the need for the fields inside the conductor. From ( I . 1 I 8), the volume current density
in the conductor is

j t : ioT Eoe-/' Nm2,

so the total current flow per unit width in the x direction is

=  f *  -  f *  f toTEs  ̂ ,J , :  I  J , d z : i o T E s  |  , - ' " d z : - A l m ,
J o J o Y

and taking the limit of oT /y for large o gives

(r.r27)

o T _  d 6 ,  2 t l  _  o 3 , 2 ( l - t j ) _ 2 .
y ( l  *  . r)  (n * no) (1 * j )  oE",?o \o '

i, - izJo g*'
no

lf the conductivity were infinite, then f : - 1 and a true surface current density

i , : f t .  x  E l r=o :  -2  x  (E i  +  E , ) l r=o : ;go11t  -  f ) :  i2Jo  61^
4o 4o

would flow, which is identical to the total current in (1.128).
Now replace the exponentially decaying volume crurent of (1.127) with a

volume current extending a distance of one skin depth. Thus, let

j , : l * /6 ' f o r 0 < z < 6 ,
for z > 6,,

so that the total cuffent flow is the same. Then use Joule's law to find the power lost:

(1.130)

where /, denotes a surface integral over the conductor surface, in this case chosen as I m2.
The result of (1.130) agrees with ourprevious results for P'in (1.126) and (1.124), and
shows that the power loss can be accurately and simply calculated as

P':* L LSo,d,:!: f, i ,r '^,: 'u#,

,' : + I,t i ,t2 ds : + 1,1n,12 ds, ( 1 . 1 3 1 )

in terms of the surface resistance R" and the surface current Jr, or tangential magnetic
field I?1. It is important torealize that the surface current can be found from i, : fi x E,
as if the metal were a perfect conductor. This method is very general, applying to fields
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other than plane waves, and to conductors of arbitrary shape, as long as bends or corners
have radii on the order of a skin depth or larger. The method is also quite accurate, as the
only approximation in the above was that 4 K rlo, which is a good approximation. As an
example, copper at I GHz has l4l : 0.012 9, which is indeed much less than 4s :377 9.

EXAMPLE 1.4 PLANE WAYE REFLECTION FROM A CONDUCTOR

Consider a plane wave normally incident on a half-space of copper. If f : 1 GHz,
compute the propagation constant, impedance, and skin depth for the conductor.
Also compute the reflection and transmission coefficients.

Solution
For copper, o : 5.813 x 107 S/m, so from (1.60) the skin depth is

:2.088 x 10-o m,

and the propagation constant is, from (1.1 13),

: (4.789 + j4;789) x 10' m-'

The intrinsic impedance is, from (1.114),

: (8.239 + j8.239) x 10-3 Q,

which is quite small relative to the impedance of free-space (qo :3-17 S2). The
reflection coefficient is then

f -
n - q o :1t179.99"
n + n o

(practically that of an ideal short circuit), and the transmission coefficient is

T _
2tt

:6 .181 ,  t } -s  45 ' .
n + q o

1 . 8 OBLIOUE INCIDENCE AT A DIELECTRIC INTERFACE

We continue our discussion of plane waves by considering the problem of a plane wave
obliquely incident on a plane interface between two lossless dielectric regions, as shown in
Figure 1.13. There are two canonical cases of this problem: the electric field is either in the
xz plane (parallel polarization), or normal to the xz plane (perpendicular polarization). An
arbitrary incident plane wave, of course, may have a polarization that is neither of these,
but it can be expressed as a linear combination of these two individual cases.

The general method of solution is similar to the problem of normal incidence: we will
write expressions for the incident, reflected, and transmitted fields in each region and match
boundary conditions to find the unknown amplitude coefficients and angles.

1 + j
0s

n - 7 * j'  
06"

d

" j

t

t

T
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FIGI]RE 1.13 Geometry for a plane wave obliquely incident at the interface between two dielectric
regions.

Parallel Polarization

In this case, the electric field vector lies in the xz plane, and the incident fields can be written
AS

Ei : Eo(i cos d; - 2 sin g;)e-ikt(xsin0;*zcose;),

ti^
E,  :  2 ge- ikr(x s indi fzcos9') ,

(1.r32a)

(1.132b)

(1.133a)

(1.133b)

(1.13sb)

Qt

where k1 :atfion, and 41 : Jp,gE are the wavenumber and wave impedance of
region 1. The reflected and transmitted fields can be written as

E, : Eof(ft cosg, * 2sin2,)s-ih@ sine'-zcos4),

_ F^ I -

FI,  -  ---:-  i  s- I  ktk sin e'-zcoso'),

4 t

Et : EoT(i cosg, - 2sin0)s-ik'( '  sine,+zcosa), 
0.134a)

E, : 
E! 

1,"-ikz\xsingr+zcos0t). (1.134b)
\ z

In the above, f and Z are the reflection and transmission coef0cients, and k2, ry2 are the
wavenumber and wave impedance of region 2, defined as

kz:  aJt toez,  4z:  J  t to /e2.

At this point, we have f , 7,0r, and 0, as unknowns.
We can obtain two complex equations for these unknowns by enforcing the continuity

of E, and Hr,the tangential field components, at the interface at z :0. We then obtain

cos1i s-ihx sin0; 
1 p cos 0, s-ih'sinq, - 7 cos 0, e-ikzxsine' , (1.135a)

|  
" - ikr t " in l i  -  l " - i t , r . in  e,  -  T 

, - ik2xsin} ,  .
q t \ \ z

Both sides of (1.135a) and ( 1.135b) are functions of the coordinate x. lf E, arrd H, are to
be continuous at the interface z : 0 for all x, then this x variation must be the same on both
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sides of the equations, leading to the following condition:

ftr sin 0i : frt sin 0, : kz sin 0t,

which results in the well-known Snell's laws of reflection and refraction:

o i  : 0 r ,

k1 sin 0; : kz sin 0t.

The above argument ensures that the phase terms in (1.135) vary with x at the same rate on
both sides of the interface, and so is often calledthe phase matching condition.

Using (1.136) in (1.135) allows us to solve for the reflection and transmission coeffi-
cients as

f -
ry2 cos fl - q1 cos 0i (r.r37a)

(1.137b)

rj 2 cos 0t * rlr cos g; '

Observe that for normal incidence, we have 0i : 0, : 0, :0, so then

y _ 4 2 - n t  a n d  T :  
2 4 ,  

,
4 z * n t  4 2 t 4 1

in agreement with the results of Section 1.7.
For this polarization, a special angle of incidence, 06, called the Brewster angle, ex-

ists where f : 0. This occurs when the numerator of (1.137a) goes to zerc (0; :06);

rl2 cos 0t : Dt cos 06, which can be reduced using

cos 0r :

to give

2n' cos 0,

\2 cos 0t * qt cos 0i

1
s in  9 r :  : .- 

Jl + €1/e2

E i  :  Eo j  e -  i k1( r  s inQlzcos9; ) ,

E ^

E' : 2et cosgi * 2 sin g)s-lkt(:sine;f3cos0;),
n1

E, : Eol 9 e-jftr(r sin0'-zcos0'),

F^ I'

H,: 
"-1!I-1i 

cos d, * 2 sin2r)s-ik1(xsine'-zcosa'),
n l

(1.136a)

(1.136b)

(1 .138)

(1.139a)

(1 .139b)

(1.140a)

(1.140b)

Perpendicular Polarization
In this case, the electric field vector is perpendicular to the xzplane. The incident field can
be written as

where /c1 : co J pd and q t : J[s I € 1 are the wavenumber and wave impedance for region
1, as before. The reflected and transmitted fields can be expressed as

- sinz 0,
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Et : EOT je-jk2(x sin 9'+zcosat) 
,

F ^ T
H, : 

"-1!'-1-i 
cos 9, * 2 sin 0t)e-ik26sin9t+zcosor),

4z

with k2 : at 4/ trt oez artd ,l z : J lt greAerngthe wavenumber and wave impedance in region
2.

Equating the tangential field components E, and H, at z : 0 gives

, - l k t xs i n? i  *  l e - j k t xs i ne ,  :  l g - l k zxs i n | ,  , (r . I42a)

i "o,3 g,s-ikrt"inl, + I cosAre- ikzxsing, - 
-T 

cos /,re-ikzxsinL,. 0,142b)

(1 .141a)

(1 .141b)

(r.l43a)

(1.143b)

rlt 4 z

By the same phase matching argument that was used in the parallel case, we obtain Snell's
laws

kr sin & : kr sin 0, : kz sin 0t

identical to (1.136).
Using (1.136) in (1.142) allows us to solve for the reflection and transmission coeffi-

cients as

f - {2 cos 0i - tl1 cos 01

4 t

Again, for the normally incident case, these results reduce to those of Section 1.7.
For this polarization no Brewster angle exists where f : 0, as we can see by examining

the numerator of (1.143a),

{2 cos 0 i  :  \1cos01,

aad using Snell's law to give

tzr(n} - n?) - (k?rrt', - klqzr)sin2 oi.

But this leads to a contradiction, since the term in parentheses on the right-hand side
is identically zero for dielectric media. Thus, no Brewster angle exists for perpendicular
polarization, for dielectric media.

EXAMPLE 1.5 OBLIQUE REFLECTION FROM A DIELECTRIC INTERFACE

Plot the reflection coefficients for parallel and perpendicular polarized plane waves
incident from free-space onto a dielectric region with e, = 2.55, versus incidence
angle.

Solution
The wave impedances are

?12 cos 0i i qr cos 0r'

2r12 cos 0i
' :  

n 2 c o s e , + n t c o s o ,
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tfl

1 .0

0.8

0.6

Incidence angle d;

FIGIIRE 1.14 Reflection coefficient magnitude for parallel and perpendicular polarizations of a

plane wave obliquely incident on a dielectric half-space.

We then evaluate (1.137a) and (1.143a) versus incidence angle; the results are
shown in Figure 1.14. I

Total Reflection and Surface Waves

Snell's law of (1.136b) can be rewritten as

(1.r44)

Now consider the case (for either parallel or perpendicular polarization), where €1 2 e2.
As 0; increases, the refraction angle fi will increase, but at a faster rate than 0; increases.
The incidence angle gi for which & :90 is called the critical angle, d., thus

sin9, - (1.14s)

At this angle and beyond, the incident wave will be totally reflected, as the transmitted wave
is not propagating into region 2. Let us look at this situation more closely, for the case of
0i > 0, with parallel polarization.

When 0i > 0, (L 144) shows that sin 0, > l, so that cos Q - .,n:R e, must be
imaginary, and the angle 0y loses its physical significance. At this point, it is better to

sin g, - 
,[a rine,.
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replace the expressions for the transmitted fields in rcgion2 with the following:

(l.l46a)

(1.146b)
n 2

The form of these fields is derived from ( 1 . 134) after notin gthat - j k2 sin gr is still imaginary
forsin 8 > l,but- jk2 cos 0yisreal,sowecanreplacesin Qby B/k2,andcos Irby ja/k2.
Substituting (1.146b) into the Helmholtz wave equation for I/ gives

-fz + a2 + kl :9. (r.r47)

Matching E, and H, of (1.146) with the ft and ! components of the incident and reflected
fields of (1.132) and (1.133) at e : 0 gives

n,: n,r(fft - frz)"-tBxe-dz,
E,:  

EoT 
is- i fxr -az.

cos 0; e-ik"siooi *

t  
" ' ikr ts ine,  -

4 r

I cos 0,s-lk'*sine' - r 
ffe-io'

ra 'r
|  

" - j k rxs ino ,  :  
t  

g - i1 ,  ,
rh rlz

(1.148a)

(1.148b)

To obtain phase matching at the z : 0 boundary, we must have

ftr sin 9; : kt sin 0, : F,

which leads again to Snell's law for reflection, 0i = 0r, and to B : kr sin 0;. Then a is
determined from (1.147) as

o : J fl, - k3.: uitf sin2 e, - k3,
t '  .  I

(1.149)

which is seen to be a positive real number, since sinz 01 > e2f e1. The reflection and trans-
mission coefficients can be obtained from (1.148) as

f -
(ja/k)nz - tl1 cos 0i

(1.150a)

(1.lsob)

(jq/k)nz * 4r cos 0; '

Since f is of the form (a - jb)/(a + jb),its magnitude is unity, indicating that all incident
power is reflected.

The transmitted fields of ( 1 . 1 46) show propagation in the x direction, along the interface,
but exponential decay in the z direction. Such a field is known as a surface wave,* since it
is tightly bound to the interface. A surface wave is an example of a nonuniform plane wave,
so called because it has an amplitude variation in the z direction, apart from the propagation
factor in the x direction.

* Some authors argue that the term "surface wave" should not be used for a field of this type, since it exists only
when plane wave fields exist in the z < 0 region, and so prefer to call it a "surface wave-like" field, or a'Torced
surface wave."

2q2 cos 0i
' : 

(jo/k;n2l n, "os o,



40 Chapter 1: Electromagnetic Theory

Finally, it is of interest to calculate the complex Poynting vector for the surface wave
fields of (1.146):

1 . 9

(1 .1s1 )

This shows that no real power flow occurs in the z direction. The real power flow in the
.r direction is that of the surface wave field, and decays exponentially with distance into
region 2. So even though no real power is transmitted into region 2, a nonzero field does
exist there, in order to satisfy the boundary conditions at the interface.

SOME USEFUL THEOREMS

Finally, we discuss several theorems in electromagnetics that we will find useful for later
discussions.

The Reciprocity Theorem

Reciprocity is a general concept that occurs in many areas of physics and engineering,
and the reader may already be familiar with the reciprocity theorem of circuit theory. Here
we will derive the Lorentz reciprocity theorem for electromagnetic fields in two different
forms. This theorem will be used later in the book to obtain general properties of network
matrices representing microwave circuits and to evaluate the coupling of waveguides from
current probes and loops, and the coupling of waveguides through apertures. There are a
number of other important uses of this powerful concept.

Consider the two separate sets of source s, i t, Iulr and I2, M2,whichgenerate the fields
Et, Et, and Ez, F12, respectively, in the volume V enclosed by the closed surface S, as
shown in Figure 1.15. Maxwell's equations are satisfied individually for these two sets of
sources and fields, so we can write

s,: E, x Ei :ry k#. r*)u^,

V x E l  - - j a p H t - M 1 ,

V  x  E 1  -  j a e E t *  i t ,

Y x E2:  - j to1tH2- I i I2 .

Y  x  E 2 :  i a e E 2 a  1 2 .

(1.152a)

(1.152b)

(1.153a)

(1.1s3b)

Now consider lhe the quantity V .(Er x Ez - Ez x A), which can be expanded using

fu l  E , ' !  v
Ez, Hz

FIGURE 1.15 Geometry for the Lorentz reciprocity theorem.
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vector identity (B.8) to give

V  . ( E r  x  E z  -  E 2  x  f r ; :  i r .  E z  -  i z .  E t  *  M z .  H r  -  [ , 1 r .  F I z .  ( 1 . 1 5 4 )

Integrating over the volume V, and applying the divergence theorem (B.15), gives

f _
:  

J r r r y  
J r  *  E t .  J z l  H t .  M 2  -  H 2 .  M ) d u

Equation (1.155) represents a general form of the reciprocity theorem, but in practice a
number of special situations often occur leading to some simplification. We will consider
three cases.

(1.1ss)

Senclosesnosources.  ThenJt  -  i r :  M1:  M2:0,andthef ie ldsEy,  f ryandE2.  E2
are source-free fields. In this case, the right-hand side of (1.155) vanishes with
the result that

f - - f

JvV 
.  (Et x Hz - Ez x Hr) du :  

f r(Et 
x Hz- E2 x H1).  ds

{ ,  
ur '  Ez.  d .s  :  

f ,  
u ,  x  81.  ds.

f _ _ f

J u @ r '  
J z  -  H t '  M ) d u  :  

J r @ r '  
J  t  -  H z '  M t ) d u .

(1 .156)

This result will be used in Chapter 4, when demonstrating the symmetry of the impedance
maffix for a reciprocal microwave network.

S bounds a perfect conductor For example, ,S may be the inner surface of a closed,
perfectly conducting cavity. Then the surface integral of (1.155) vanishes, since E1 x Fr .

fi : (fr x E). E z by vector identity B.3), and fi x E1 is zero on the surface of a perfect
conductor (similarly for E21. The result is

(1.rs7)

This result is analogous to the reciprocity theorem of circuit theory. In words, this result
states that the system response E1 or E2 is not changed when the source and observation
points are interchanged. That is, E2 (caused by i) at Jr is the same as E1 (caused by ir)
at 12.

S is a sphere at infinity. In this case, the flelds evaluated on S are very far from the sources
and so can be considered locally as plane waves. Then the impedance relation rE : k x E I q
applies to (1.155) to give

( E y  x  E 2 -  E z  x  E ) .  f i  -  ( f t  x  E ) .  E z  -  @  x  E ) .  E r

l _  _  l _  _- - H y H 2 - : H 2 ' H 1 : Q .
q t l

so that the result of (1.157) is again obtained. This result can also be obtained for the case
of a closed surface S where the surface impedance boundary condition applies.
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lmage Theory

In many problems a curent source is located in the vicinity of a conducting ground plane.

Image theory permits the removal of the ground plane by placing a virtual image source
on the other side of the ground plane. The reader should be familiar with this concept from
electrostatics, so we will prove the result for an infinite current sheet next to an infinite
ground plane and then summarize the other possible cases.

Consider the surface current density i, : Jroi parallel to a ground plane, as shown
in Figure 1.16a. Because the current source is of infinite extent and is uniform in the
.r, y directions, it will excite plane waves traveling outward from it. The negatively trav-
eling wave will reflect from the ground plane at z :0, and then travel in the positive
direction. Thus, there will be a standing wave field in the region 0 < z < d and a posi-
tively traveling wave for z > d. The forms of the fields in these two regions can thus be
written as

Et r : \1 r i *oz-e- lkoz1,

_ A
11s - ----(sJKoz +e-JKoz),' n o

E! : $s-lkoz,

-  ! r - t^ ' ,
4o

f o r 0 <  z < d ,

f o r 0 <  z < d ,

f o r z > d ,

f o r z > d ,

(1.158a)

(1.1s8b)

(1.159a)

(1.1s9b)H;

where 4s is the wave impedance of free-space. Note that the standing wave fields of (1.158)
have been constructed to satisfy the boundary condition that E, : 0 at z : 0. The remaining
boundary conditions to satisfy are the continuity of E at z : d ,and the discontinuity in the 11

|.- 
soot."

f*=r"0,

I

f/Imase

l-r"
I r+ l

(b)

FIGURE 1.16 Illustration of image theory as applied to an electric current source next to a ground
plane. (a) An electric surface cunent density parallel to a ground plane. (b) The
ground plane of (a) replaced with image current at z : -d.

V
i,.
l

I
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field at z : d d.ue to the current sheet. From (1.36), since M, : Q,

while from (1.37) we have

E',:  Ef L:o'

j , :2 " i(H; - H'r)1,=0.

Using (1.158) and (1.159) then gives

2j A sin kod : Be-ikod

and Jro:  - !  , - ikod -2A cos kgd,
4o 4o

which can be solved for A and B:

^ _ 
-Jro4o 

._irsal l : - e
2 -

B : - j Jrorle sinked.

So the total fields are

Es, : -j Jrs4oe-ikodsinkoz, for0 < z < d,

H t ,  :  J ro " - i hdcosksT ,  f o r0<  z<d ,

Ef , :  - jJ ,s4osinkode- ihz '  forz> d,

Hf, : - j J,o sin ksds- ikoz' f o r z > d .

Now considerthe application of image theory to this problem. As shown inFigure 1.16b,
the ground plane is removed and an image source of -./" is placed at z : *d. By superpo-
sition, the total fields for z > 0 can be found by combining the fields from the two sources
individually. These fields can be derived by a procedure similar to that above, with the
following results:

Fields due to source at z: d:

t 

-JLo\o 
"_ito{,_il for z > d

u r :  
I
,-J':4o 

rit"a-al for z < d,

| 

-!'o 
r-io"t'-o> for z > d

' ' :  
|  ! ! r io '< '-ot  forz<d..I  z "

Fields due to source at z : -d:

(1.160a)

(1.160b)

(1.161a)

( r .161b)

(I . l62a)

(1.r62b)

(1.163a)

(1. l63b)

(1.164a)
f 

J'o'40 
'-ir'oe+at

t': 
I 

r,lyorit"u+a.,

":{?;:^'::,,

f o r z > - d

for z < -d,

f o r z >  - d

for z < -d,
(1.164b)
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Original
Geometry

4 ^
A '

Image
Equivalent

4*
(a)

(b)

(c)

/ ^

<<-l->->

t l l
t2l

t3l
t4l
t5l
t6l

FIGURE 1.17

(d)

Electric and magnetic curent images. (a) An electric current parallel to a ground
plane. (b) An electric current normal to a ground plane. (c) A magnetic current
parallel to a ground plane. (d) A magnetic current normal to a ground plane.

The reader can verify that the solution is identical to that of (1.161) for 0 < z < d, and to
(1.162)for z > d, thus verifying the validity of the image theory solution. Note that image
theory only gives the correct fields to the right of the conducting plane. Figure 1.17 shows
more general image theory results for electric and magnetic dipoles.
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PROBLEMS

L.1 Assume that an infinite sheet of electric surface current density j , : Jot A/m is placed on the
z :0p lanebetweenf ree-spaceforz<0,andad ie lec t r i cw i the :€r€0 fore>0,asshownbe low.
Find the resulting E and fr fields in the two regions. HINT: Assume plane wave solutions prop-
agating away from the current sheet, and match boundary conditions to find the amplitudes, as in
Example 1.3.

Let E : Ep0 * Eo6 I E,2bean electric field vector in cylindrical coordinates. Demonstrate that it
is incorrect to interpret the expression V2E in cylindrical coordinates as py2 E, + 6v2 Eo + Zvz Ez
byeva lua t ingboths idesof thevec tor ident i t yVxVxE:v(v .E) -v2Efor theg ivene lec t r i c
field.

Consider a permanent magnet with a steady magnetic field I? - Hog ,and a parallel plate capacitor
with an elechic field E : Eoi, arranged as shown in the figure below. Calculate the Poynting vector
at a point between both the magnet poles and the capacitor plates. This nonzero result seems to imply
real power flow in the z direction, but clearly there is no wave propagation or power delivered from
the sources. How do you explain this apparent paradox?

1.4 A plane wave traveling along the z-axis in a dielectric medium with e, - 2.55 has an electric field
given by ty = Eocos(at - kz). The frequency is2.4GH4 and Ee - 30 V/m. (a) Find the amplitude

1.2

1.3

___t-
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and direction of the magnetic field. (b) Find the phase velocity and wavelength. (c) Find the phase

shift between the positions Zt : 0.5 mand zz: 1.7 m.

1.5 Show that a linearly polarized plane wave ofthe form E : EoG *2j)s-iroz can be represented as
the sum of an RHCP and an LHCP wave.

1.6 Compute the Poynting vector for the general plane wave field of (1.76).

1.7 A plane wave is normally incident on a dielectric slab of permittivity e, and thickness d, where
d : Lo/@Je, ), and ,1,6 is the free-space wavelength of the incident wave, as shown below. If

free-space exists on both sides of the slab, find the reflection coefficient of the wave reflected from
the front of the slab.

1rUU'-'--
-ilff

1.8 Consider an RHCP plane wave normally incident from free-space (z < 0) onto a half-space (z > 0)

consisting of a good conductor. Let the incident electric field be of the form

Ei :  EoG -  j j ' \ , - ioo ' ,

and find the electric and magnetic flelds in the region z > 0. Compute the Poynting vectors for z < 0

and z > 0, and show that complex power is conserved. What is the polarization of the reflected

wave?

1..9 Consider a plane wave propagating in a lossy dielectric medium for z < 0, with a perfectly conducting
plate at z :0. Assume that the lossy medium is characterized by e : (5 - i2)eo, k: Ito, and that

the frequency of the plane wave is 1.0 GHz, and let the amplitude of the incident electric field be 4

Ylm at z: 0. Find the reflected electric field for z < 0, and plot the magnitude of the total electric

f i e l d f o r - 0 . 5 < z < 0 .

1.10 A plane wave at I GHz is normally incident on a thin copper sheet of thickness r. (a) Compute the

transmission losses, in dB, of the wave at the air-copper and the copper-air interfaces. (b) If the sheet

is to be used as a shield to reduce the level of the transmitted wave by 150 dB, what is the minimum

sheet thickness?

1.11  Aun i fo rmlossymediumwi the , :3 .0 , tan  6 :0 .1 ,  andp, -  p r .6  f i l l s thereg ionbetweenz:0and

z : 20 cm, with a ground plane at z : 20 cm, as shown below. An incident plane wave with an electric

fleld,

Ei :3199"-vz Ylm,

is present at 7 : Q and propagates in the *z direction. The frequency is / : 3.9 611r.

T

llllL*

€6
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Compute P;, the power density of the incident wave, and P", the power density of the reflected
W a V € , a t Z : 0 .
Compute the input power density, Pin, at 7: 0, from the total fields at z : 0. Does
Pin: Pi - P,?

l = 2 0 c m  z

1.12 Redo Problem 1.1, but with an electric surface current density of i, : Joie-if'Nm, where B < ke.

l.l3 A parallel polarized plane wave is obliquely incident from free-space onto a magnetic material with
permittivity es and permeability 1tslt,. Find the reflection and transmission coefficients. Does a
Brewster angle exist for this case, where the reflection coefficient vanishes for a particular angle of
incidence?

1.14 Repeat Problem 1. 1 3 for the perpendicularly polarized case.

1.15 An anisotropic material has a tensor permittivity [e] as given below. At a certain point in the material,
the electic field is known to be E :2* * 39 + qZ. What is D at this point?

l.L6 Consider the gyrotropic permittivity tensor shown below:

The D and E telds are related as

(a)

(b)

Show that the transformations

E+

E*

allow the relation between ,E and

; 1  - 2 j  0 - 1
l< l :  eo l  2 j  3  o I

L O  O  4 J

f "  j rc ol
[ e ] : < e l - 7 r  e r  0 1 .

L  0  0  1 l

lT,l--.l:')
D+

D-

E ' *  j E y ,

E,  +  jEy ,

: D , - j D y ,

- D ,  l j D y ,

D to be written as

ID* l  fE*  I
l D -  l : t 6 ' l l s -  I ,
L o , )  L r , J



Transmission Line Theory

In many ways transmission line theory bridges the gap between field analysis and basic
circuit theory and so is of significant importance in microwave network analysis. As we will
see, the phenomenon of wave propagation on transmission lines can be approached from an
extension of circuit theory or from a specialization of Maxwell's equations; we shall present
both viewpoints and show how this wave propagationis described by equations very similar to
those used in Chapter 1 for plane wave propagation.

2.1 THE LUMPED-ELEMENT CIRCUIT MODEL
FOR A TRANSMISSION LINE
The key difference between circuit theory and transmission line theory is electrical size.
Circuit analysis assumes that the physical dimensions of a network are much smaller than
the electrical wavelength, while transmission lines may be a considerable fraction of a wave-
length, or many wavelengths, in size. Thus a transmission line is a distributed-parameter
network, where voltages and currents can vary in magnitude and phase over its length.

As shown in Figure 2.1a, a transmission line is often schematically represented as a
two-wire line, since transmission lines (for TEM wave propagation) always have at least
two conductors. The piece of line of infinitesimal length Az of Figure 2.7acan be modeled
as a lumped-element circuit, as shown in Figure 2. 1b, where R, L, G , C are per unit length
quantities defined as follows:

R : series resistance per unit length, for both conductors, in O/m.

I : series inductance per unit length, for both conductors, in IVm.

G : shunt conductance per unit length, in S/m.

C : shunt capacitance per unit length, in F/m.

The series inductance L represents the total self-inductance ofthe two conductors, and
the shunt capacitance C is due to the close proximity of the two conductors. The series

49
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i(2, t)
-:>

+
v \z : t )

+
z

(a)

i(2, t)
..--....>

i(z +Lz, t)
+

A,z

(b)

FIGURE 2.1 Voltage and current definitions and equivalent circuit for an incremental length of
transmission 1ine. (a) Voltage and current definitions. (b) Lumped-element equivalent
circuit.

resistance R represents the resistance due to the finite conductivity ofthe conductors, and
the shunt conductance G is due to dielectric loss in the material between the conductors.
R and G, therefore, represent loss. A finite length of transmission line can be viewed as a
cascade of sections of the form shown in Figure 2.1b.

From the circuit of Figure 2.1b, Kirchhoff's voltage law can be applied to give

u(2, t) - RL,zi(2, t\ - LLzai(:: 
t) - uk * Ae, r) : 0.

and Kirchhoff's current 1aw leads to 

dt

i (2.  t )  -  GLzu(z* Az, r)  - ,  oru'( '  tu io ' '  "  -  i (z iAz. r)  = e.

Dividing (2.1a) and (2.1b) by Az and taking the limit as Az + 0 gives the
differential equations :

'+::-Ri(z'D-1ry'

ry: - -G,(z,D-ru't;; ').

ry:-(R+ jaL)r(z),

T:*(c+ 
joc)v(z) ,

These equations are the time-domain form of the transmission line, or telegrapher, equations.
For the sinusoidal steady-state condition, with cosine-based phasors, (2.2) simplify to

(2.ra)

(2.rb)

following

(2.2a)

(2.2b)

(2.3a)

(2.3b)

Note the similarity in the form of (2.3) and Maxwell's curl equations of (1.41a) and
(1.41b).
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Wave Propagation on a Transmission Line

The two equations of (2.3) can be solved simultaneously to give wave equations for 7(z)
and I(z\:

where

a2vk)  ) . . .-77- -Y"V(z) :O '

dz t (z )  )  - .-rl - Y" I(z) : O'

y : a + j B : @

(2.4a)

(2.4b)

(2.s)

(2.6a)

(2.6b)

(2.e)

(2.10)

is the complex propagation constant, which is a function of frequency. Traveling wave
solutions to (2.4) can be found as

V(z) : Vje-rz I Vo eYz,

I(z): I{e-rz t Io eyz,

where the e*vz ternt represents wave propagation in the *z direction, and the eYz Iefin
represents wave propagation in the -z direction. Applying (2.3a) to the voltage of (2.6a)
gives the current on the line:

I (d  :  =  . , ,  =  l v : r - r r  -v ;evz1 .
R  *  . i a L '  

"

Comparison with (2.6b) shows that a characteristic impedance, Zs, c&t be defined as

z o =
R -l jaL

(2.7)

to relate the voltage and current on the line as

\ : 7 n - - v ;  .
I ; E

Then (2.6b) can be rewritten in the following form:

vJ v^- ,,,I(z): t"-,' 
- 

t",'. 
(2.8)

Converting back to the time domain, the voltage waveform can be expressed as

u(2, t) : lVjl cos(t'tt - frz + 4+1r-az
+ lV;l cos(arr -t f z -f Q-)e",,

where @* is the phase angle of the complex voltage V,*. Using arguments similar to those
in Section I.4,we find that the wavelength on the line is

) t

p '

a)

e

R -l jaL

and the phase velocity is

u p : - Lf. (2.rr)
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The Lossless Line

The above solution was for a general transmission line, including loss effects, and it was
seen that the propagation constant and characteristic impedance were complex. In many
practical cases, however, the loss of the line is very small and so can be neglected, resulting
in a simplification of the above results. Setting R : G : 0 in (2.5) gives the propagation
consmnt as

T : u * i B : j o x / L C ,
^ t;=
P : @ { L L ,

a  : 0 .

which is now a real number. The general solutions for voltage and current on
transmission line can then be written as

(2.12a)

(2.rzb)

As expected for the lossless case, the attenuation constant a is zero. The characteristic
impedance of (2.7) reduces to

I ( z ) :

(2.r3)

a lossless

(2.14a)

(2.r4b)

The wavelength is

ailrc'
(2.rs)

and the phase velocity is

(2.16)

FIELD ANALYSIS OF TRANSMISSION LINES

In this section we will rederive the time-harmonic form of the telegrapher's equations, start-
ing with Maxwell's equations. We will begin by deriving the ffansmission line parameters
(R, L , G , C) in terms of the electric and magnetic fields of the transmission line and then
derive the telegrapher equations using these parameters for the specific case of a coaxial
line.

Transmission Line Parameters

Consider a I m section of a uniform transmission line with fields E and H , as shown in
Figure 2.2, wherc S is the cross-sectional surface area of the line. Let the voltage between
the conductorsbe Voeti?z and the current be loe+i?z. The time-average stored magnetic
energy for this 1 m section of line can be written, from (1.86), as

vj 
"-ia, -vo "ifr.

Zo Zo

2n
1 - - -

p

@ l
' P J L C

**: t I,

2n

2.2

H . E * d s ,
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- E
- - - -  n

FIGURE 2.2 Field lines on an arbitrarv TEM transmission line.

and circuit theory gives W* - LV)2/4, in terms of the current on the line. We can thus
identify the self-inductance per unit length as

(2.r7)

Similarly, the time-average stored electric energy per unit length can be found from (1.84)
AS

e f -*" :  i  J,  E .E. ds.

and circuit theory gives W" : ClVolz/4, resulting in the following expression for the ca-
pacitance per unit length:

L : 
t:{# I, 

u E* ds wm'

c :#  I r u .u .dsF tm.

R : 
# Ir,*r,u 

' E. dt Q/m'

(2.18)

From (1.130), the power loss per unit length due to the finite conductivity of the metallic
conductors is

p " : \  [  H . H * d ( .' z Jc,+c,

(assuming 11 is tangential to S), and circuit theory gives P" : Rllolz 12, so the series
resistance R per unit length of line is

(2.re)

In (2.19), & - 1/o6" is the surface resistance of the conductors, and Cr * Cz represent
integration paths over the conductor boundaries. From (1.92), the time-average power dis-
sipated per unit length in a lossy dielectric is

a)€" f -
P a :  

Z  J ,  
E . E "  d s ,

where 6" is the imaginary part of the complex dielecffic constant e - et - jett : et(l -
j tan 6). Circuit theory gives Pa : GlV,lz 12, so the shunt conductance per unit length can
be written as

G -
f _

JrU 
. U. ds S/m. (2.20)
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FIGURE 2.3 Geometry of a coaxial line with surface resistance R, on the and outer
conductors.

EXAMPLE 2.1 TRANSMISSION LINE PARAMETERS OF A COAXIAL LINE

The fields of a traveling TEM wave inside the coaxial line shown in Figure 2.3 can
be expressed as

6 _ Vo/ 
"_r,

p lnb  /a

fr _ Io6 
"-rr.

2np

where y is the propagation constant of the line. The conductors are assumed to have
a surface resistivity R", and the material filling the space between the conductors
is assumed to have a complex permittivity e : €t - je" and a permeability pc :

1t"slt r.Deteffnine the transmission line parameters.

Solution
From (2.17)-(2.20) and the above flelds the parameters of the coaxial line can be
calculated as

u f z n T b l t t
r  -  r  I  I  - p d p d 6 : * t n b f a W m ,

Qflz Jo=a Jo:o Pt' 2tt

c : -:-- ['" fu \paoa6: !-rm." -  
( ln b/d2 Jo:o Jo:o Pt '  lnbla-"" '

R :  -4L |  [^  \ "oo*  [ ' "  .L^uool :  y  ( !+  ] )  om.
(Zn)z lJa:s a2 Ja=o b' ' 

| 2r \a b /

mner

a)e"
G :  

11nu1ay
_r r r r " , , ^ .

ln b/aI,:1,':")oaoao I

Table 2.I summarizes the parameters for coaxialo two-wire, and parallel plate lines.
As we will see in the next chapter, the propagation constant, characteristic impedance, and
attenuation of most transmission lines are derived directly from a field theory solution; the
approach here of first finding the equivalent circuit parameters (L , C , R, G) is useful only
for relatively simple lines. Nevertheless, it provides a helpful intuitive concept, and relates
a transmission line to its equivalent circuit model.
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TABLE 2.1 T[ansmission Line Parameters for Some Common Lines
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The Telegrapher Equations Derived from Field Analysis
of a Goaxial Line

We now show that the telegrapher equations of (2.3), derived using circuit theory can also be
obtained from Maxwell's equations. We will consider the specific geometry of the coaxial
line of Figure 2.3. Although we will treat TEM wave propagation more generally in the next
chapter, the present discussion should provide some insight into the relationship ofcircuit
and field quantities.

A TEM wave on the coaxial line of Figure 2.3 will be characterizedby Ez : H, - 0;
furthermore, due to azimuthal symmetry, the fields will have no @-variation, and so 3/3@ :
0. The fields inside the coaxial line will satisfy Maxwell's curl equations,

V x E - - j r o p . E ,

Y x I T - j a e E ,

where e : €t - je" may be complex to allow for a lossy dielectric filling. Conductor loss
will be ignored here. A rigorous field analysis of conductor loss can be carried out, but at this
point would tend to obscure our purpose; the interested reader is referred to references [1]
or l2l.

Expanding (2.21a) and (2.21b) then gives the following vector equations:

Since the 2 components of these two equations must vanish, it is seen that E6 and ,F14 must
have the forms

^ q E a  .  , q E o  .  ^ l  a-e 
a; 

*  0 u; 
+ 2- 

*@Ea'1 
:  -  ja l t (pHr-r QH6),

3H^ ^3H^ I  a-ei * 0i + 2- 
*(oHD 

: iate(PEp-r QEd.

nr:  #,
u r : * .

(2.2ra)

(2.2rb)

(2.22a)

(2.22b)

(2.23a)

(2.23b)
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To satisfy the boundary condition that E4: 0 at p : e, b, we must have E4 - 0 every-
where, due to the form of Ea in (2.23a). Then from the p component of (2.22a), it is seen
thar Hr: 0. With these results, (2.22) can be reduced to

oEo
0z

oHo
oz

From the form of Ha in (2.23b) and (2.24a), E, must be of the form

h(z\
E _ ____-

p

Using (2.23b) and (2.25) in (2.24) gives

Eh(z)_; : _ japts(z),

osQ)
; 

: _ jotehtz).

Now the voltage between the two conductors can be evaluated as

v(z): 
lou=, 

roro, z)dp : rru 
Ioo:"L 

:111462,

I(z) : 
Ir- 

ou" z)a dQ :2ns(d'

: -jatp,H6,

- -jcoeEp.

(2.24a)

(2.24b)

(2.2s)

(2.26a)

(2.26b)

(2.27a)

(2.27b)

(2.28a)

(2.28b)

and the total current on the inner conductor tt p : a canbe evaluated using (2.23b) as

Then /r(z) and g(z) can be eliminated from (2.26)by using (2.27) to give

1Vk )  . ap . \nb /o  . ,  ,- - - ; - : - J  ^  t \ z ) -
oz zlf

0 l ( z l  .  . ,  , , , 2 n V ( z )
a ,  

: - J ( D r c  - l ' )  
l n b l o .

Finally, using the results for L, G, and C for a coaxial line as derived above, we obtain the
telegrapher equations as

u# : - jailr(z),

ry:-(G+ jac)v(z)

(excluding R, the series resistance, since the conductors were assumed to have perfect
conductivity). A similar analysis can be carried out for other simple transmission lines.
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Propagation Constant, lmpedance, and Power Flow
for the Lossless Goaxial Line

Equations (2.24a) and (2.24b) for E o and H6 can be simultaneously solved to yield a wave
equation for Eo @r H6):

32Eo )
UT 

* <o'p,€Eo : Q, (2.29)

from which it is seen that the propagation constant is y'- -@2Lte, which, for lossless
media, reduces to

F: aJtt'e : uJLC, (2.30)

where the last result is from (2.12). Observe that this propagation constant is of the same
form as that for plane waves in a lossless dielectric medium. This is a general result for
TEM transmission lines.

The wave impedance is defined as Z, - E p I Hq, which can be calculated from(2.24a)
assuming an e-ifz dependence to give

Ep @P'z * : f r : T = t / t t l < : n ' (2.3r)

This wave impedance is then seen to be identical to the intrinsic impedance of the medium,

4, and again is a general result for TEM transmission lines.
The characteristic impedance of the coaxial line is defined as

Vo  Eo lnb la  4 lnb la
" 

Io 2nH5 2r

lnb/a

zJf

2.3

where the forms for E, and H4 from Example 2.1 have been used. The characteristic
impedance is geometry dependent and will be different for other transmission line config-
urations.

Finally, the power flow (in the z direction) on the coaxial line may be computed from
the Poynting vector as

t r t f 2 r T b V ^ Mp : ;  I  Ex E. .as:  )  I  I  ;=# i f  _pdpdQ: )v" t : .  (2 .33)'2  
Js  2  JO :o  Jp :o 'Znp ' l nb /a '  2

a result that is in clear agreement with circuit theory. This shows that the flow of power in a
transmission line takes place entirely via the electric and magnetic fields between the two
conductors; power is not transmitted through the conductors themselves. As we will see
later, for the case of finite conductivity, power may enter the conductors, but this power is
then lost as heat and is not delivered to the load.

THE TERMINATED LOSSLESS TRANSMISSION LINE

Figure 2.4 shows a lossless transmission line terminated in an arbitrary load impedance 27.
This problem will illustrate wave reflection on transmission lines, a fundamental property
of distributed systems.

Assume that an incident wave of the form Vfe-i?z is generated from a source at
z < 0. We have seen that the ratio of voltage to current for such a traveling wave is
Zs, the characteristic impedance. But when the line is terminated in an arbitrary load
Zt # Zo,theratioof voltagetocurrentattheloadmustbe Zy. Thus, areflectedwavemust
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l o

FIGURE 2.4 A transmission line terminated in a load impedance 27.

be excited with the appropriate amplitude to satisfy this condition. The total voltage on the
line can then be written as in (2.I4a), as a sum of incident and reflected waves:

v (z ) :v le - j f ' *v ;e i?z .

Similarly, the total current on the line is described by (2.14b):

(2.34a)

(2.34b)

(2.3s)

(2.36a)

(2.36b)

I (z \ :v i  , - io ,  -vo  , i \ r .
Zo Zs

The total voltage and current at the load are related by the load impedance, so at z : 0 we
must have

v(0) v! + v
7 - -  ' - _ _ ! _ _ _ _ _ _ _ L 7 ^
" - 

t(o) 
- 

vo+ -v; 'u'

Solving for Vf gives

Z ,  - Z tv; : fi *fivJ'
The amplitude of the reflected voltage wave normalized to the amplitude of the incident
voltage wave is defined as the voltage reflection coefficient, f :

V^- Zr - Zo
rr _ __g_'  -  

V o *  
-  

Z t * Z o '

The total voltage and current waves on the line can then be written as

V(z) : Vj le-iflz +rei?'f,

t/+
I ( i l :  

h l r - tu '  
- f  stqz1.

From these equations it is seen that the voltage and current on the line consist ofa superpo-
sition of an incident and reflected wave; such waves are called standing waves. Only when
f : 0 is there no reflected wave. To obtain f : 0, the load impedance ZL mustbe equal to
the characteristic impedance Zs of the transmission line, as seen from (2.35). Such a load
is then said to be matched to the line, since there is no reflection of the incident wave.

Now consider the time-average power flow along the line at the point z:

r- :  jn" lv(r)t(r) . ] : iW""lL -r*r-zioz yvrzi tz -  l r l2l ,
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where (2.36) has been used. The middle two terms in the brackets are of the form A - A* :
?jlm(A) and so are purely imaginary. This simplifies the result to

(2.37)

which shows that the average power flow is constant at any point on the line, and that the
total power delivered to the load (P-) is equal to the incident power (lV,+12 l2Zs), nrnus
the reflected power (l V,l2 | f P pzd. If f : 0, maximum power is delivered to the load,
while no power is delivered for lf | : 1. The above discussion assumes that the generator
is matched, so that there is no rereflection of the reflected wave from z < 0.

When the load is mismatched, not all of the available power from the generator is
delivered to the load. This "loss" is called return loss (RL), and is defined (in dB) as

RL: -20log l f  I  dB, (2.38)

so that a matched load (f : 0) has a return loss of oo dB (no reflected power), whereas a
total reflection (lfl : 1) has a return loss of 0 dB (all incident power is reflected).

If the load is matched to the line, f : 0 and the magnitude of the voltage on the line
is ly(z)l :lvjl, which is a constant. Such a line is sometimes said to be "flat." When
the load is mismatched, however, the presence of a reflected wave leads to standing waves
where the magnitude of the voltage on the line is not constant. Thus, from (2.36a),

l v (z ) l :  l y ,+ l l1+  ls2 iFz l :  l y ,+ l l1  * te -z ia t t
:  lYJ l l l  + l rV i@-zBq l ,

where X. - -z is the positive distance measured from the load at z : 0, and 0 is the phase
of the reflection coefficient (f : lf ;eje;. This result shows that the voltage magnitude
oscillates with position z along the line. The maximum value occurs when the phase term
ei@-z?t) : 1, and is given by

vmax :  ly,+l(1+ l f  l ) .

The minimum value occurs when the phase term ei(e-zpt) : -1, and is given by

y-io: lvj l( I  * l f  l ) .

As lf I increases, the ratio of V'or, to V*in increases, so a measure of the mismatch of a line,
called the standing wave rotio (SWR), can be defined as

SWR: 
v'* :
V-io

This quantity is also known as ihe voltage standing wave ratio, and is sometimes identified
as VSWR. From (2.41) it is seen that SWR is a real number such that 1 < SWR < oo,
where SWR : 1 implies a matched load.

From (2.39), it is seen that the distance between two successive voltage maxima (or
minima) is l:2n/2f : n)'/2n : ),/2, while the distance between a maximum and a
minimum is L : v 12B : )'/4, where .l is the wavelength on the transmission line.

The reflection coefficient of (2.35) was defined as the ratio of the reflected to the
incident voltage wave amplitudes at the load (t: 0), but this quantity can be generalized
to any point I onthe line as follows. From (2.34a), with z : -l,the ratio of the reflected
component to the incident component is

,^,-:ry(r - rrl'),

1 + l f l
1 - F l

(2.3e)

(2.40a)

(2.40b)

(2.4r)

r(t):Y# -�r(o)e-2itt, (2.42)
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where f(0) is the reflection coefficient at z:0, as given by (2.35). This form is useful
when transforming the effect of a load mismatch down the line.

We have seen that the real power flow on the line is a constant but that the voltage
amplitude, at least for a mismatched line, is oscillatory with position on the line. The per-

ceptive reader may therefore have concluded that the impedance seen looking into the line
must vary with position, and this is indeed the case. At a distance l,: -z from the load,
the input impedance seen looking toward the load is

v(-t\
7 . - -'" r(-()

V: lei?( + f ,-ifltf -
V"+ lei\( - f e-i\I 'o 

:
| + lr- ' i1t -
I - le-zi\( 

"u' (2.43)

(2.45a)

(2.4sb)

where (2.36ub) have been used for V (z) and 1(z). A more usable form may be obtained by
using (2.35) for f in (2.43):

(zL * Ziei?t + (zr - zds-ift
Z i o :  Z o

* Z s

- Z o

(ZL + Zieilr - (Zr - Zs)e-iflt

Zr cos fll -l jZo sin Fl
Zs cos pl + jZL sin p(.

Z r * j Z o t a n p l
Zr+ jZrt^" N

(2.44)

This is an important result giving the input impedance of a length of transmission line with
an arbitrary load impedance. We will refer to this result asthe transmission line impedance
equation; some special cases will be considered next.

Special Cases of Lossless Terminated Lines

A number of special cases of lossless terminated transmission lines will frequently appear
in our work, so it is appropriate to consider the properties of such cases here.

Consider first the transmission line circuit shown in Figure 2.5, where a line is ter-
minated in a short circuit, Zr:0. From (2.35) it is seen that the reflection coefficient
for a short circuit load is f : -1; it then follows from (2.4I) that the standing wave
ratio is infinite. From (2.36) the voltage and current on the line are

V(z) : Vj le-io, - eifzl: -2jV: sin Bz,

I (z) :Elu '*  +ej l ' l :T cos pz,

which shows that V :0 at the load (as expected, for a short circuit), while the current is a
maximum there. From (2.44), or the ratio V(-qlIe$, the input impedance is

Zio:  j  Zs tan B( , (2.45c)

which is seen to be purely imaginary for any length,l, and to take on all values between *j oo
and -7oo. For example, when.(: 0 we have Zin: 0, but for .t : )"/4 wehave Zin : 6

or-) 1,
T I

- t 0

FIGURE 2.5 A transmission line terminated in a short circuit.

v(z), I(z)

Z r = o
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(c)

(a) Voltage, (b) current, and (c) impedance (R1n : 0 or oo) variation along a short-
circuited transmission line.

(open circuit). Equation (2.45c) also shows that the impedance is periodic in I, repeatrng
for multiples of ), /2. The voltage, current, and input reactance for the short-circuited line
are plotted in Figure 2.6.

Next consider the open-circuited line shown in Figure 2.7, wherc Zr : 6. Dividing
the numerator and denominator of (2.35) by ZL atd allowing Z2--> 6 shows that the
reflection coefficient for this case is f : 1, and the standing wave ratio is again infinite.
From (2.36) the voltage and current on the line are

V (z) : Vf le-iq' + ei?'l: 2V: cos Bz,

r(z):4Vtu, -eitz1:-J# sin Bz,

(2.46a)

(2.46b)

v(z), I(z) ^ \ 1 , = 0

VL Zr-- *Zo, F

- t 0

FIGURE 2.7 A transmission line terminated in an ooen circuit.

v(z)
) ; t /+
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which shows that now I : O at the load, as expected for an open circuit, while the voltage
is a maximum, The input impedance is

Zin: - jZs cot Bl., (2.46c)

which is also purely imaginary for any length, l. The voltage, current, and input reactance
of the open-circuited line are plotted in Figure 2.8.

Now consider terminated transmission lines with some special lengths. If t : ),12,
(2.44) shows that

Z i n :  Z L , (2.47)

meaning that a half-wavelength line (or any multiple of X12) does not alter or transform the
load impedance, regardless of the characteristic impedance.

If the line is a quarter-wavelength long or, more generally, I : )"/4 -f il,/2, for n :

l, 2, 3 , . . . , (2.44) shows that the input impedance is given by

Z?
7 . _ v-rn - 

Zt

Such a line is known as a quarter-wave transformer because it has the effect of transforming
the load impedance, in an inverse manner, depending on the characteristic impedance of
the line. We will study this case more thoroughly in Section 2.5.

{ c }

(a) Voltage, (b) cunent, and (c) impedance (R1n

circuited transmission line.

(2.48)

FIGURE 2.8 : 0 or oo) variation along an open-
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(2.49)

(2.s0b)

(2.s1)

qnh
zo

Z , - Z n
T a _
I  -  - r

Z r t Z o

V(z) : VjTe-io', forz > 0.

Equating these voltages at z : 0 gives the transmission coefficient, T , as

T : l + f : 1 *  
Z t - Z o :  2 2 '
Z r *  Z o  Z r *  Z o

zr

FIGURE 2.9 Reflection and transmission at the iunction of two transmission lines with different
characteristic impedances.

Now consider a transmission line of characteristic impedance Zs feedLng a line of
different characteristic impedance, 21, as shown in Figure 2.9.If the load line is infinitely
long, or if it is terminated in its own characteristic impedance, so that there are no reflections
from its end, then the input impedance seen by the feed line is Zy, so that the reflection
coefficient I is

Not all of the incident wave is reflected; some of it is transmitted onto the second line with
a voltage amplitude given by a transmission coefficient, Z.

From (2.36a), the voltage for z < 0 is

V(z):  Vj(e- i? '  +f  ei? ') ,  z < 0, (2.50a)

where V,+ is the amplitude of the incident voltage wave on the feed line. The voltage wave
for z > 0, in the absence of reflections, is outgoing only, and can be written as

The transmission coeffrcient between two points in a circuit is often expressed in dB as the
insertion loss, IL,

IL: -20log lf l dB. (2.s2)

POINT OF INTEREST: Decibels and Nepers

Often the ratio of two power levels, Pr and Pz, in a microwave system is expressed in decibels
(dB) as

to toe a os." P 2

Thus, a power ratio of 2 is equivalent to 3 dB, while a power ratio of 0.1 is equivalent to -10 dB.
Using power ratios in dB makes it easy to calculate power loss or gain through a series of
components, since multiplicative loss or gain factors can be accounted for by adding the loss or
gain in dB for each stage. For example, a signal passing through a 6 dB attenuator followed by
a 23 dB amplifier will have an overall gain of 23 - 6 : I 7 dB .
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Decibelsareusedonlytorepresentpowerratios,butifPr:V?/1r�andP2:V]/n2,then
the resulting power ratio in terms of voltage ratios is

V?R, V, [R,to toe 
n^ 

- 2olog u, il n *

where R1, i?2 are the load resistances and V1 , V2 are the voltages appearing across these loads.

If the load resistances are equal, then this formula simplifies to

v.
20loe 

rdB.
The ratio of voltages across equal load resistances can also be expressed in terms of nepers

(Np) as

The corresponding expression in terms of powers is

since voltage is proportional to the square root of power. Transmission line attenuation is some-

times expressed in nepers. Since I Np corresponds to a power ratio of e2. the conversion between
nepers and decibels is

lNp : l0 \og e2 : 8.686 dB.

Absolute powers can also be expressed in decibel notation if a reference power level is
assumed. If we let Pz : I mW, then the power P1 can be expressed in dBm as

lo los 
Pr 

dBm."  l m W

Thus a power of 1 mW is 0 dBm, while a power of lW is 30 dBm, etc.

THE SMITH CHART

The Smith chart, shown in Figure 2.10, is a graphical aid that is very useful when solving
transmission line problems. Although there are a number of other impedance and reflection
coefficient charts that can be used for such problems [3], the Smith chart is probably the best
known and most widely used. It was developed in 1939 by P. Smith at the Bell Telephone
Laboratories [4]. The reader may feel that, in this day of scientific calculators and powerful
computers, graphical solutions have no place in modern engineering. The Smith chart,
however, is more than just a graphical technique. Besides being an integral part of much
of the current computer-aided design (CAD) software and test equipment for microwave
design, the Smith chart provides an extremely useful way of visualizing transmission line
phenomenon and so is also important for pedagogical reasons. A microwave engineer can
develop intuition about transmission line and impedance-matching problems by learning to
think in terms of the Smith chart.

At first glance the Smith chart may seem intimidating, but the key to its understanding
is to realize that it is essentially a polar plot of the voltage reflection coefficient, f. Let the
reflection coefficient be expressed in magnitude and phase (polar) form as f : ;f ;ejd. Then
themagnitude lf l isplottedasaradius(lf | < 1)fromthecenterof thechart,andtheangle
0(- 180' < d < 180') is measured from the right-hand side of the horizontal diameter. Any

t # *n '

l t n l * o .
2 P z

2.4



2.4 The Smith Chart 65

FIGURE 2.10 The Smith chart.

passively realizable ( | f | < I ) reflection coefficient can then be plotted as a unique point on
the Smith chart.

The real utility of the Smith chart, however, lies in the fact that it can be used to
convert from reflection coefficients to normalized impedances (or admittances), and vice
versa, using the impedance (or admittance) circles printed on the chart. When dealing with
impedances on a Smithchart, normalizedquantities are generallyused, whichwe will denote
by lowercase letters. The normalization constant is usually the characteristic impedance of
the line. Thus, z : Z lZo represents the normalized version of the impedance Z.

If a lossless line of characteristic impedance Zs is terminated with a load impedance
Zy, the reflection coefficient at the load can be written from (2.35) as

:  l l l e ie  , (2.s3)

where zr : ZzlZo is the normalized load impedance. This relation can be solved for zr in
terms of f to give (or, from (2.43) with L : O)

, - z r - l
4 I l

|  + p1" i ,
7 r  :  -

1  -  l l l e i o '
(2.s4)

This complex equation can be reduced to two real equations by writing I and zr in terms



66 Chapter 2: Transmission Line Theory

of their real and imaginary parts. Let f : f, * ,lf;, and zr : rr I jx1. Then,

r r l j x r :
( l + f , ) + j f ,
( 1  -  f , )  - . / f i '

The real and imaginary parts of this equation can be found by multiplying the numerator
and denominator by the complex conjugate of the denominator to give

|  - f? -f?
r L : (2.55a)

(2.ssb)

(2.s7)

( 1  - t , ; z 1 p z '

2fi

Rearranging (2.55) gives

(2.56a)

(2.56b)

which are seen to represent two families of circles in the fr, f; plane. Resistance circles are
defined by (2.56a), and reactance circles are defined by (2.56b). For example, ihe r7 - |
circle has its center at f, :0.5, fr :0, and has a radius of 0.5, and so passes through
the center of the Smith chart. All of the resistance circles of Q.56a) have centers on the
horizontal fi : 0 axis, and pass through the | : 1 point on the right-hand side of the chart.
The centers of all of the reactance circles of (2.56b) lie on the vertical f, : 1 line (off the
chart), and these circles also pass through the f : 1 point. The resistance and reactance
circles are orthogonal.

The Smith chart can also be used to graphically solve the transmission line impedance
equation of (2.44), since this can be written in terms of the generalized reflection coefficient
AS

( r ,  -  r ) 2  *  ( . , -  : ) '  
: ( ; ) '

' L :  
e - f , Y + f 7 '

( r , -#. ) ' * .1  :  ( ; r ) ' ,

I + le-zjPt
Z i " : Z o r * f " - r i p r ,

where f is the reflection coefficient at the load, and I is the (positive) length of transmission
line. We then see that (2.57) is of the same form as (2.54), differing only by the phase angles
of the f terms. Thus, if we have plotted the reflection coefflcient lfleie at the load, the
normalized input impedance seen looking into a length I of ffansmission line terminated
with zr can be found by rotating the point clockwise an amount 2Bl $ubtracting 2BL
from 9) around the center of the chart. The radius stays the same, since the magnitude of f
does not change with position along the line.

To facilitate such rotations, the Smith chart has scales around its periphery calibrated
in electrical wavelengths, toward and away from the "generator" (which just means the
direction away from the load). These scales are relative, so only the difference in wavelengths
between two points on the Smith chart is meaningful. The scales cover a range of 0 to
0.5 wavelengths, which reflects the fact that the Smith chart automatically includes the
periodicity of transmission line phenomenon. Thus, a line of length ), /2 (or any multiple)
requires a rotation of 2Bt :2n around the center of the chart, bringing the point back to
its original position, showing that the input impedance of a load seen through a ),12line is
unchanged.

We will now illustrate the use of the Smith chart for a variety of typical transmission
line problems through examples.
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EXAMPLE 2.2 BASIC SMITH CHART OPERATIONS

A load impedance of 40 * j7O I terminates a 100 S2 transmission line that is
0.3). long. Find the reflection coefficient at the load, the reflection coefficient at
the input to the line, the input impedance, the SWR on the line, and the return loss.

Solution
The normalized load impedance is

, r :  
t J  :0 .4  *  i0 .7 .
L0

which can be plotted on the Smith chart as shown in Figure 2.1 1. Using a compass
and the voltage coefficient scale below the chart, the reflection coefficient magni-
tude at the load can be read as lf | : 0.59. This same compass setting can then be
applied to the standing wave ratio (SWR) scale to read SWR : 3.87, and to the
return loss (in dB) scale to read RL : 4.6 dB. Now draw a radial line through the
load impedance point, and read the angle of the reflection coefficient at the load
from the outer scale ofthe chart as 104'.

We now draw an SWR circle through the load impedance point. Reading the
reference position of the load on the wavelengths-toward-generator (WTG) scale
gives a value of 0.106,1,. Moving down the line 0.3)" toward the generator brings

FIGURE 2.11 Smith chart forBxarnole2.2.
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us to 0.4061 on the WTG scale, which is equivalent to 0.020),. Drawing a radial
Iine at this position gives the normalized input impedance at the intersection with
SWR circle of zin - 0.365 - j0.611. Then the input impedance of the line is

Z in :  Zoz io :36 .5  -  i 61 .1  O .

The reflection coefficient at the input still has a magnitude of lf | : 0.59; the phase
is read from the radial line at the phase scale as 248'. I

The Combined lmpedance-Admittance Smith Ghart

The Smith chart can be used for normalized admittance in the same way that it is used for
normalized impedances, and it can be used to convert between impedance and admittance.
The latter technique is based on the fact that, in normalized form, the input impedance of a
load zr connected to a)"/4line is, from(2.44),

z ;n :  I / z t ,

which has the effect of converting a normalized impedance to a normalized admittance.
Since a complete revolution around the Smith chart corresponds to a length of )'/2,

a ),14 ftansformation is equivalent to rotating the chart by 180'; this is also equivalent to
imaging a given impedance (or admittance) point across the center of the chart to obtain
the corresponding admittance (or impedance) point.

Thus, the same Smith chart can be used forboth impedance and admittance calculations
during the solution of a given problem. At different stages of the solution, then, the chart
may be either an impedance Smith chart or an admittance Smith chart.This procedure can
be made less confusing by using a Smith chart that has a superposition of the scales for a
regular Smith chart and the scales of a Smith chart which has been rotated 180', as shown
in Figure 2.12. Such a chafi is referred to as an impedance and admittance Smith chart and
usually has different-colored scales for impedance and admittance.

EXAMPLE 2.3 SMITH CHART OPERATIONS USING ADMITTANCES

Aloadof Zy : 100 * j50 O terminates a 50 Q line. What are the load admittance
and the input admittance if the line is 0.15), long?

Solution
The normalized load impedance is zt :2 + jl. A standard Smith chart can be
used for this problem by initially considering it as an impedance chart and plotting

zr and the SWR circle. Conversion to admittance can be accomplished with a
)"14 rotation of a1 (easily obtained by drawing a straight line through zr and the
center of the chart to intersect the SWR circle). The chart can now be considered
as an admittance chart, and the input admittance can be found by rotating 0.15),
from y1.

Alternatively, we can use the combined zy chart of Figure2.l2, where conver-
sion between impedance and admittance is accomplished merely by reading the
appropriate scales. Plotting zL on the impedances scales and reading the admit-
tance scales at this same point give yl : 0.40 - jO.zO. The actual load admittance
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FIGURE 2.12 Zy Smith chart with solution for Example 2.3.

is then

y7 : yyys : * :o.oo8o - jo.oo4os." Z s

Then, on the WTG scale, the load adrnittance is seen to have a reference posi-
tion of 0.21q,,. Moving 0.151 past this point brings us to 0.364],. A radial line at
this point on the WTG scale intersects the SWR circle at an admittance of y -

0.61 + j0.66. The actual input admittance is then Y :0.0722 + j0.0132 S. I

The Slotted Line

A slotted line is a transmission line configuration (usually waveguide or coax) that allows
the sampling of the electric f,eld amplitude of a standing wave on a terminated line. With
this device the SWR and the distance of the first voltage minimum from the load can be
measured, and from this data the load impedance can be determined. Note that because the
load impedance is in general a complex number (with two degrees of freedom), two distinct
quantities must be measured with the slotted line to uniquely determine this impedance. A
typical waveguide slotted line is shown in Figure 2.13.

Although the slotted line used to be the principal way of measuring an unknown
impedance at microwave frequencies, it has been largely superseded by the modern vector
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FIGURE 2.13 An X-band wavesuide slotted line.

Courtesy of Agilent Technologies, Santa Rosa, Calif.

network analyzer in terms of accuracy, versatility, and convenience. The slotted line is still
of some use, however, in certain applications such as high-millimeter wave frequencies,
or where it is desired to avoid connector mismatches by connecting the unknown load
directly to the slotted line, thus avoiding the use of imperfect transitions. Another reason
for studying the slotted line is that it provides an unexcelled tool for learning basic concepts
of standing waves and mismatched transmission lines. We will derive expressions for finding
the unknown load impedance from slotted line measurements and also show how the Smith
chart can be used for the same purpose.

Assume that, for a certain terminated line, we have measured the SWR on the line and
l6n, the distance from the load to the first voltage minimum on the line. The load impedance
Zy canthenbe determined as follows. From (2.41) the magnitude of the reflection coefficient
on the line is found from the standins wave ratio as

,F'  swR - I
t l t : -

S W R + 1
(2.s8)

From Section 2.3, we know that a voltage minimum occurs when ei@-zBl) - -1, where
g is the phase angle of the reflection coefficient, | : lllslq. The phase of the reflection
coefficient is then

0 :  n *2f l^", (2.se)

where l,n;n is the distance from the load to the first voltage minimum. Actually, since the
voltage minimums repeat every ),/2,where ), is the wavelength on the line, any multiple of
),/2 can be added to l^il without changing the result in (2.59), because this just amounts
to adding 28il"/2:2nn to 0, which will not change f . Thus, the two quantities SWR
and lnin can be used to find the complex reflection coefficient f at the load. It is then
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straightforward to use (2.43) with I :0 to find the load impedance from f :

_  _  l + f
Zt = ZoTi. (2.60)

The use of the Smith chart in solving this problem is best illustrated by an example.

EXAMPLE 2.4 IMPEDANCE MBASUREMENT WITII A SLOTTED LINE

The following two-step procedure has been carried out with a 50 Q coaxial slotted
line to determine an unknown load impedance:

1. A short circuit is placed at the load plane, resulting in a standing wave on
the line with infinite SWR, and sharply defined voltage minima, as shown in
Figure 2.14a. On the arbitrarily positioned scale on the slotted line, voltage
minima are recorded at

z :0.2 cm.2.2 cm,4.2 cm.

2. The short circuit is removed, and replaced with the unknown load. The standing
wave ratio is measured as SWR : 1.5, and voltage minima, which are not as
sharply defined as those in step 1, are recorded at

z :0.72 cm,2.72 cm,4.72 cm,

as shown in Figure 2.14b. Find the load impedance.

Solution
Knowing that voltage minima repeat every )'/2, we have from the data of step I
above that )' : 4.0 cm. In addition, because the reflection coefficient and input
impedance also repeat every )"/2, we can consider the load terminals to be ef-
fectively located at any of the voltage minima locations listed in step 1. Thus, if
we say the load is at 4.2 cm, then the data from step 2 shows that the next volt-
age minimum away from the load occurs at2.72 cm, giving lr o: 4.2 - 2.72:
1.48 cm: 0.37)".

Short
circuit

tvl

V*

V-in

Hrr+!f{!-t]+J-]lr+!tt
0 1 2 3 4 s

Unknown
Ioad

FIGURE 2.14

ft)

Voltage standing wave patterns for Example 2.4. (a) Standing wave for short-circuit
load. (b) Standing wave for unknown load.
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FIGURE 2.15 Smith chart for Example 2.4.

Applying (2.58)-(2.60) to this data gives

l f l  : 1 ' 5 - 1 : 0 . 2 .
1 . 5 + l

o : f t * f . 1 . . + s \ - 8 6 . 4 ' ,
4.O

| :0.2ej86'a' :0.0126 + j0.1996.

The load impedance is then

z r : 5 o f  = )  : 4 7 . 3  +  j r s t  a .
\ r  -  l  , /

For the Smith chart version of the solution, we begin by drawing the SWR
circle for SWR: 1.5, as shown in Figure 2.15; the unknown normalized load
impedance mustlie onthis circle. Thereference thatwehaveis thattheloadis 0.37i.
away from the first voltage minimum. On the Smith chart, the position of a voltage
minimum corresponds to the minimum impedance point (minimum voltage, maxi-
mum current), which is the horizontal axis (zero reactance) to the left of the origin.
Thus, we begin at the voltage minimum point and move 0.37), toward the load

o \ -

a
a
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(counterclockwise), to the normalized load impedance point, zr: 0.95 + j0.4,
as shown in Figure 2.15. The actual load impedance is then Zr :47.5 + j20 Q,
in close agreement with the above result using the equations.

Note that, in principle, voltage maxima locations could be used as well as volt-
age minima positions, but voltage minima are more sharply defined than voltage
maxima, and so usually result in greater accuracy.

THE QUARTER.WAVE TRANSFORMER

The quarter-wave transformer is a useful and practical circuit for impedance matching
and also provides a simple transmission line circuit that further illustrates the properties of
standing waves on amismatchedline. Although we will study the design andperformance of
quarter-wave matching transformers more extensively in Chapter 5, the main purpose here is
the application of the previously developed transmission line theory to a basic transmission
line circuit. We will first approach the problem from the impedance viewpoint, and then
show how this result can also be interpreted in terms of an infinite set of multiple reflections
on the matching section.

The lmpedance Viewpoint

Figure 2.16 shows a circuit employing a quarter-wave transformer. The load resistance R;,
and the feedline characteristic impedance Zs, dte both real and assumed to be given. These
two components are connected with a lossless piece of transmission line of (unknown)
characteristic impedance 21 andlength)"14.It is desired to match the load to the Zs line,
by using the )"/4 piece of line, and so make f : 0 looking into the ),14 matclnng section.
From (2.44) the input impedance Zily cdrr be found as

Rr t jZr tan BL (2.61)Zi" :  Zr- i ,
* j h t a n B l

To evaluate this for B t : (2r I L)()" / 4) : n / 2, w ecan divide the numerator and denominator
by tan B(. and take the limit as BL -> tt l2to get

z?
7 . _ t"' 

R7

In order for f : 0, we must have Zin : Zo, which yields the characteristic impedance 21
as

zr :  {zoRr, (2.63)

FIGURE 2.16 The quarter-wave matching transformer.

T

2.5

(2.62)
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the geometric mean of the load and source impedances. Then there will be no standing waves
on the feedline (SWR : 1), although there will be standing waves on the ),14 matching
section. Also, the above condition applies only when the length of the matching section is
)' 14, ot an odd multiple (2n * I) of ), /4 long, so that a perfect match may be achieved at
one frequency, but mismatch will occur at other frequencies.

EXAMPLE 2.5 FREQUENCY RESPONSE OF A QUARTER-WAVE
TRANSFORMER

Consider a load resistance Rr : 100 Q, to be matched to a 50 Q line with a quarter-
wave transformer. Find the characteristic impedance of the matching section and
plot the magnitude of the reflection coefficient versus normalized frequency, f lfo,
where /, is the frequency at which the line is )./4 long.

Solution
From (2.63), the necessary characteristic impedance is

2z1 : /soxloo) :70.71e".

The reflection coefficient magnitude is given as

l Z ' " - Z n
t t l : l z ; " + h l '

where the input impedance Zin is a function of frequency as given by (2.44). The
frequency dependence in (2.44) comes from the B.( term, which can be written in
terms of f lf" as

u'- (+)(?) : ff)w):#
where it is seen that B{.: n/2 for / - /,, as expected. For higher frequencies
the line looks electrically longer, and for lower frequencies it looks shorter. The
magnitude of the reflection coefficient is plotted vercus f / fo in Figure 2.17. I

This method of impedance matching is limited to real load impedances, although a
complex load impedance can easily be made real, at a single frequency, by transformation
through an appropriate length of line.

3.0 4.0 ftf "

FIGURE 2.17 Reflection coefficient versus

r l

0.3

1.0
0.0 L

0.0

former of Example 2.5.
normalized frequency for the quarter-wave trans-
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The above analysis shows how useful the impedance concept can be when solving
transmission line problems, and this method is probably the preferred method in practice.
It may aid our understanding of the quarter-wave transformer (and other transmission line
circuits), however, if we now look at it from the viewpoint of multiple reflections.

The Multiple Reflection Viewpoint

Figure 2.18 shows the quarter-wave ffansformer circuit with reflection and transmission
coefficients defined as follows:

f : overall, or total, reflection coefficient of a wave incident on the )"/4-transformer
(same as f in Example 2.5).

f 1 : partial reflection coefficient of a wave incident on a load Zl,ftomthe Zsline.

f2 : partial reflection coefficient of a wave incident on a load Zs, fromthe Zl line.

f3 : partial reflection coefficient of a wave incident on a load Rr, from the Zl line.

Zt : partial transmission coefficient of a wave from the Zs line into the Zl line.

T2 : partral transmission coefficient of a wave from the Zl line into the Zs line.

These coefficients can then be expressed as

Z t - Z o
l r : - .-  

Z t *  Z o '

Z n - 2 ,
f r :  

"  ' : - f t .
-  

Z o l  Z t

R ,  - 2 ,
I - ^ _ " ." -  R r + z r '

I.qffl

ll

-TrT2l3

T{zfrrz

(2.64a)

(2.64b)

(2.64c)

-)t/4-

l r ' l
- - - - - - \ l
I r'l
K - - - - - < l
l-...........- -l

l t '  rr)
k - - - - -< - - ' / l
l - - - - - - l

ll' r,)
l < l
l : l
t l

f, Ja------fz f: r-l

FIGIIRE 2.18 Multiple reflection analysis of the quarter-wave transformer.
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Now think of the quarter-wave transformer of Figure 2.18 in the time domain, and imagine
a wave traveling down the Zg feedline toward the transformer. When the wave first hits
the junction with the 21 line, it sees only an impedance 21 since it has not yet traveled to
the load Rz and can't see that effect. Part of the wave is reflected with a coefficient fr,
and part is transmitted onto the 21 line with a coefficient fi. The transmitted wave then
travels )' /4 to the load, is reflected with a coefficient f3, and travels another ),l4back to the
junction with the Zsline. Part of this wave is transmitted through (to the left) tothe Zoline,
with coefficient 72, and part is reflected back toward the load with coeffrcient f2. Clearly,
this process continues with an infinite number of bouncing waves, and the total reflection
coefficient, f, is the sum of all of these partial reflections. Since each round trip path up and
down the l,/4 transformer section results in a 180' phase shift, the total reflection coefficient
can be expressed as

22t
t l :  

z r + h '

22"
T ^ -  "" -  z , + z n '

f : fr - T1T2l3 * TlTsl2l! - rlrzl?ll + ...
oo

-  f1 -  T1T2l3 f  (-rrrr ; ' .
n:0

TrT" l^
f : f ' '  

I  * f z f :

The numerator of this expression can be simplified using (2.64) to give

rr - r, (r? + r{,)- f1 - n12#. ;ffi1

(2.64d)

(2.64e)

(2.6s)

(2.66)

Since lf3l < 1 and lfzl < 1, the infinite series in (2.65) can be summed using the
geometric series result that

for l.rl < 1,

to give

m 1

\- x,a ^  l - x

f r * f r l z f :  -T1T2 l3

1 * fzfs

- n . _ r ^ -- r l  r J -

( Z t -  Z ) ( R L +  Z ) - ( R L  -  Z ) (  I  Z s )

(Zr-r  Zi(4. , - r  Z)

_ z(zl - zonr)
( z r * 2 0 ( h * z ) '

which is seen to vanish if we choose 21 : JfiFy, as in (2.63). Then f of (2.66) is zero,
and the line is matched. This analysis shows that the matching property of the quarter-wave
transformer comes about by properly selecting the characteristic impedance and length of
the matching section so that the superposition of all the partial reflections add to zero. Under
steady-state conditions, an infinite sum of waves traveling in the same direction with the
same phase velocity can be combined into a single traveling wave. Thus, the infinite set
of waves traveling in the forward and reverse directions on the matching section can be
reduced to two waves, traveling in opposite directions. See Problem 2.26.
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2.6 Generator and Load Mismatches T7
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FIGIIRE 2.19 Transmission line circuit for mismatched load and senerator.

GENERATOR AND LOAD MISMATCHES

In Section 2.3 we treated the terminated (mismatched) transmission line assuming that the
generator was matched, so that no reflections occurred at the generator. In general, however,
both generator and load may present mismatched impedances to the transmission line. We
will sfidy this case, and also see that the condition for maximum power transfer from the
generator to the load may, in some situations, require a standing wave on the line.

Figure 2.19 shows a transmission line circuit with arbitrary generator and load impe-
dances, Z r and 22, whichmay be complex. The transmission line is assumed to be lossless,
with a length I and characteristic impedance Zs. This circuit is general enough to model
most passive and active networks that occur in practice.

Because both the generator and load are mismatched, multiple reflections can occur on
the line, as in the problem of the quarter-wave transformer. The present circuit could thus
be analyzed using an infinite series to represent the multiple bounces, as in Section 2.5,
but we will use the easier and more useful method of impedance transformation. The input
impedance looking into the terminated transmission line from the generator end is, from
(2.43) and (2.44),

z , o : z o | $ f f i : Z o
where I-a is the reflection coefficient of the load:

r  Z t - Z o
"  -  

z ' + z o
The voltage on the line can be written as

v(z):  v j  (e- i / '  +l&jpz),

and we can find Vo+ from the voltage at the generator end of the line, where z = -l:

v(-{ .) :  rr#f 
+: 

v+ (eiP( *rp- i l t1,

Zt -l j Zo tan Bl
Z o *  j Z t t a n  B l '

(2.67)

(2.68)

(2.6e)

(2.70)

so that

t/+ -
' o  - v Zin

t  z ro+ Zs (eifr *l*-ift) '

This can be rewritten, using (2.67), as

. Z n
v i - v ^  "
' o  " Z o l Z s

-  i R !e  " - -

(t - rttr"-ziot1'
(2.7r)
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where f, is the reflection coefficient seen looking into the generator:

f g :

The standing wave ratio on the line is then

Z s - Z o
Z r l Z o

1 +  l f , l
SWR:

1  -  l r z l

The power delivered to the load is

I  =1 ry , . r rR . la l : l t v " t r l  t ' "  l ' * . 1 . "P : : R e { V i n 4 l }  =  
2 '  " "  

l z i ^ l  2  "  
l Z i n *  Z e l  I 4 l  

Q ' 7 4 )

Now let Zin: Rin* jXn and Zr: Rc * 7Xr; then (2.74) can be reduced to

-  I  . - -  , ,  R i n
D  _  t t f  t z' - r , " r l  

@ .

(2.72)

(2.73)

(2.7s)

(2.76)

(2.77)

(2.78)

We now assume that the generator impedance, Z ,, is fixed, and consider three cases of load
impedance.

Load Matched to Line

In this case we have Zt : Zo, so fs : 0, and SWR : 1, from (2.68) and (2.73). Then the
input impedance is Zin : 20, and the power delivered to the load is, from (2.75),

Generator Matched to Loaded Line

In this case the load impedance Z1 and/or the transmission line parameters Bl, Zs arc
chosen to make the input impedance 26 : Zg, so thal the generatoris matched to the load
presented by the terminated transmission line. Then the overall reflection coefficient, f , is
zefoi

1 ^ Z n,  :  t lVrl '  tZ* n">, + 4.

Z'- - Z-
f -  " '  ' - 0 .

Zi, I Zs

P : : tv ,P 
4g*Vi l

There may, howeveq be a standing wave on the line since fa may not be zero. The power
delivered to the load is

Now observe that even though the loaded line is matched to the generator, the power
delivered to the load may be less than the power delivered to the load from(2.76), where the
loaded line was not necessarily matched to the generator. Thus, we are led to the question of
what is the optimum load impedance, or equivalently, what is the optimum input impedance,
to achieve maximum power transfer to the load for a given generator impedance.

Conjugate Matching

Assuming thatthe generator series impedance, Zr,isfixed, we may vary the inputimpedance
Ziavntll we achieve the maximumpower delivered to the load. Knowing 26,itis then easy
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to find the corresponding load impedance Zs via an impedance transformation along the
line. To maximize P, we differentiate with respect to the real and imaginary parts of 26.
Using (2.75) gives

:0 - -> +
-2Rin(Rh * Rg) - 0 ,

(2.79a)

( R ; ; n f  R g ) 2 * ( X i n  + X r ) 2 [(Rn + R)z +(Xin * xr7z12

:0 - ->
-2Ri"(Xi"* Xs)

[(Ri" + R8)2 + (Xin * X)'f'

or, Xin(Xin * Xr) : 0.

Solving (2.79a,b) simultaneously for Rin and X6 gives

(2.79b)

A P
aR"

A P
ax"

n? - n?"* (Xin * Xs)2 : o,

1  ^ 1
P  -  _ t v - r _ .

z ' �  " '  4 R 8

Ria :  Rg,  X io :  -Xc ,

Z in :  Z I .

This condition is known as conjugate matching, and results in maximum power transfer to
the load, for a fixed generator impedance. The power delivered is, from (2.75) and (2.80),

(2.80)

(2.8r)

2.7

which is seen to be greater than or equal to the powers of (2.76) or (2.78). This is the
maximum available power from the generator. Also note that the reflection coefficients f7,
fr, and I may be nonzero. Physically, this means that in some cases the power in the
multiple reflections on a mismatched line may add in phase to deliver more power to the
load than would be delivered if the line were flat (no reflections). If the generator impedance
is real (X, : 0), then the last two cases reduce to the same result, which is that maximum
power is delivered to the load when the loaded line is matched to the generator (Ri1 : Rs,
with X6 = Xs : 0).

Finally, note that neither matching for zero reflection (Za : Zd or coniugate matching
(Zin : Zj) necessarily yields a system with the best efficiency. For example, if Zr - Z't *

Zg then both load and generator are matched (no reflections), but only half the power
produced by the generator is delivered to the load (half is lost in Z), for a transmission
effi ciency of 5OVo. This effi ciency can only be improved by making Z r as small as possible.

LOSSY TRANSMISSION LINES

In practice, all transmission lines have loss due to finite conductivity and/or lossy dielectric,
but these losses are usually small. In many practical problems, loss may be neglected, but
at other times the effect of loss may be of interest. Such is the case when dealing with the
attenuation of a transmission line, or the Q of a resonant cavity, for example. In this section
we will study the effects of loss on transmission line behavior and show how the attenuation
constant can be calculated.

The Low-Loss Line

In most practical microwave transmission lines the loss is small-if this were not the case,
the line would be of little practical value. When the loss is small, some approximations
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can be made that simplify the expressions for the general transmission line parameters of
Y : u l  i B a n d Z s '

The general expression for the complex propagation constant is, from (2.5),

y : \/(R * jaL)(G * jc,tC) , (2.82)

which can be rearranged as

ff the line is low-loss we can assume that R << atL and G K aC, which means that both
the conductor loss and dielectric loss are small. Then, RG < <'t2 LC, and (2.83) reduces to

y :  ja lLC (2.84)

If we were to ignore rhe (R/ttL -l GlotC) term, we would obtain the result that y was
purely imaginary (no loss), so we will instead use the first two terms of the Taylor series
expansion for Jl a x - | * x /2+ . . ., to give the first higher order real term for 7:

I  /  R \ /  G \
r  :  

l ( ia t ) ( iac)  \ t  
*  j *  )  ( t  *  

, -  /

_ t  / R  c \  R G: i @ ' / L C l 1 - i | . ; *  
* ) - A *

- t
r - iaatc lr 

-

(#.*)

t(#.#)l

(2.83)

(2.85a)

(2.8sb)

so that

* = : (-,ll . .,lt) : ; (* + G zo),

F - aJLC,

where Zs : JTfe is the characteristic impedance of the line in the absence of loss. Note
from (2.85b) that the propagation constant B is the same as the lossless case of (2.12).By
the same order of approximation, the characteristic impedance Zs can be approximated as
a real quantity:

(2.86)

Equations (2.85)-(2.86) are known as the high-frequency, low-loss approximations for
transmission lines, and are important because they show that the propagation constant and
characteristic impedance for a low-loss line can be closely approximated by considering
the line as lossless.

R -l jroL

G -l joC
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EXAMPLE 2.6 ATTEIIUATION CONSTANT OF TIIE COAXIAL LINE

In Example 2.1 the L, C, R, and G parameters were derived for a lossy coaxial
line. Assuming the loss is small, derive the attenuation constant from (2.85a) and
the results of Example 2.1.

Solution
From (2.85a),

q :

Using the results derived in Example 2.1 gives

:(.,1t,.,
1

q : -
2 lffi(:.;)+,,"nf,

_ /  R  \
:  joJLC 

\ t  
-  i i )

re
: * r l ; + i @ ^ / L C : u * i F .

where 4 : J p/a- is the intrinsic impedance of the dielectric material filling the
coaxial hne. Also, F : ctJLC : @Jll{, and Zo: JL/C- : (q/2n) ln b/a.

T

The above method for the calculation of attenuation requires that the line parameters Z,
C, R, and G beknown. These can oftenbe derivedusing the formulas of (2.17)-(2.20),buta
more direct and versatile procedure is to use the pernrrbation method, to be discussed shortly.

The Distortionless Line

As can be seen from the exact equations (2.82) and (2.83) for the propagation constant of a
lossy line, the phase term B is generally a complicated function offrequency, ar, when loss is
present. In particular, we note that B is generally not exactly a linear function of frequency,
as in (2.85b), unless the line is lossless. If B is not a linear function of frequency (of the form

0 - a a),then the phase velocity u p : a I fl will be different for different frequencies ar. The
implication is that the various frequency components of a wideband signal will travel with
different phase velocities, and so arrive at the receiver end of the transmission line at slightly
different times. This will lead to dispersion, a distortion of the signal, and is generally an
undesirable effect. Granted, as we have argued above, the departure of B from a linear
function may be quite small, but the effect can be significant if the line is very long. This
effect leads to the concept of group velocity, which we will address in detail in Section 3.10.

There is a special case, however, of a lossy line that has a linear phase factor as a
function of frequency. Such a line is called a distortionless line, and is characterized by line
parameters that satisfy the relation

(2.87)

From (2.83)the exactcomplexpropagationconstant, underthe condition specifiedby (2.87),

reduces to

y :  j o J L C

R

L

(2.88)
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which shows that B : ot/ LC is a linear function of frequency. Equation (2.88) also shows
that the attenuation constant, q : RJUL, is not a function of frequency, so that all fre-
quency components will be attenuated by the same amount (actually, R is usually a weak
function of frequency). Thus, the distortionless line is not loss free, but is capable of pass-
ing a pulse or modulation envelope without distortion. To obtain a transmission line with
parameters that satisfy (2.87) often requires that Z be increased by adding series loading
coils spaced periodically along the line.

The above theory for the distortionless line was first developed by Oliver Heaviside
(1850-1925), who solved many problems in transmission line theory and worked Maxwell's
original theory of electromagnetism into the modern version that we are familiar with
today [5].

The Terminated Lossy Line

Figure 2.20 shows alength I of a lossy transmission line terminated in aloadimpedance 27.
Thus, y : a * iB is complex, but we assume the loss is small so that Zs is approximately
real, as in (2.86).

In(2.36), expressions for the voltage and current wave on a lossless line are given. The
analogous expressions for the lossy case are

v(z) :  v j  le-v '  * leYzl ,

I ( z ) : -yz _ y syz l ,

| (t) : I e-2j Pr e-2s( - | e-zYt .

The input impedance Zin at a distance I from the load is then

\r"
(2.89a)

(2.89b)

(2.e0)

(2.9r)

(2.e2)

where f is the reflection coefficient of the load, as given in (2.35), and Vo+ is the incident
voltage amplitude referenced at z : 0. From (2.42), the reflection coefficient at a distance
I from the load is

v( - l \
7 .  -  - 7 ^
z t n -  - .  ^ ,  -  4 u

t \ - r )
Zr I Zo tanh yl

Zo * Zr tanh yt'

We can compute the power delivered to the input of the terminated line at z: -l as

4" : jn" lv1-r1r.6ql:Wlr^' - Ft'r-'"'l

:Wlt*p1t11zlez"t ,

zj^+>

4 0 2

FIGURE 2.20 A lossy transmission line terminated in the impedance 21.

v(z), Itz)
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where (2.89) has been used for V (-t) and I (-0. The power actually delivered to the load is

(2.e4)

The first term in (2.94) accounts for the power loss of the incident wave, while the second
term accounts for the power loss of the reflected wave; note that both terms increase as cy
increases.

The Perturbation Method for Calculating Attenuation

Here we derive a useful and standard technique for finding the attenuation constant of a
low-loss line. The method avoids the use of the transmission line parameters L, C , R, and
G, and instead uses the fields of the lossless line, with the assumption that the fields of
the lossy line are not greatly different from the fields of the lossless line-hence the term,
perturbation.

We have seen that the power flow along a lossy transmission line, in the absence of
reflections, is of the form

P(z) :  Poe-2o', (2.es)
where P, is the power at the z: 0 plane, and cy is the attenuation constant we wish to
determine. Now define the power loss per unit length along the line as

P, : 
-!P 

: 2q Poe-h' : 2aP(d.
oz

where the negative sign on the derivative was chosen so that P7 would be a positive quantity.
From this. the attenuation constant can be determined as

P tk )  P1Q:0 )
q - -

2P(z) 2Po

This equation states that o can be determined from P, the power on the line, and Px, the
power loss per unit length of line. It is important to realize that Ps can be computed from
the fields of the lossless line, and can account for both conductor loss (using 1.131) and
dielectric loss (using 1.92).

EXAMPLE 2.7 USING THE PERTURBATION METHOD TO FIND
THE ATTENUATION CONSTANT

Use the perturbation method to find the attenuation constant of a coaxial line having
a lossy dielectric and lossy conductors.

Solution
From Example 2.1 and (2.32), the fields of the lossless coaxial line are, for
a < P < b ,

r r :  )x" {v lor r . ro l }  : f f r r -  t r t2) .
The difference in these powers corresponds to the power lost in the line:

p .  - D  - r . - l v : ' 2. , o s s  -  ! , n ' ,  -  
z z n  l ( " ' " t  - 1 )  +  l f l ' �  ( l  -  r - ' " t ) ) .

= Vo|  -  iBz
f ,  :  - e  r r - .

p ln b/a

B : 
vo6 

"-iF,.
2npZs

(2.e3)

(2.e6)
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where Zs : (n /2xr)ln b /a is the characteristic impedance of the coaxial line and
V, is the voltage across the line at z - 0. The first step is to find P, the power
flowing on the lossless line:

I r
P , : : R e  l  E x H - . d S : = 2  I  I

z  J s  2 Z o  J o : o J 5 : s 2 n p ? l n b l a  2 Z o '

as expected from basic circuit theory.
The loss per unit length, P4, comos from conductor loss (Pu) and dielectric

loss (Pza). From (1.131), the conductor loss in a I m length of line can be found
AS

P k : I f,ra,rn' : + I:,{ fr* w,ro - a)t2adQ

.I:tHo@: uvl'�uaolaz
R , l v o l z  / 1  .  l \:  
4" - t3  \ ; *  u)

The dielectric loss in a 1 m length of line is, from (I.92),

f,wr o, : T I,':" Ir: f' owot'odpdQ dz:0)e"
P u :  

2
7T 0)€"

tn ulolv"r  '

e : € ' - j e " .where €" is the imaginary part of the complex dielectric constant,
Finally, applying (2.96) gives

a :
Pt" * Pu

2Po

R,

h r"bk

R,  / 1  l \  na€ "Zs
l - r - : r -

4 t r Z s \ a  b /  l n b l a

* i )**,( :

where 4 : J p /e 
' .This result is seen to agree with that of Example 2.6. I

The Wheeler Incremental lnductance Rule

Another useful technique for the practical evaluation of attenuation due to conductor loss
for TEM or quasi-TEM lines is the Wheeler incremental inductance rule [6]. This method
is based on the similarity of the equations for the inductance per unit length and resistance
per unit length of a transmission line, as given by (2.17) and (2.I9), respectively. In other
words, the conductor loss of a line is due to current flow inside the conductor which, as
was shown in Section 1.7, is related to the tangential magnetic field at the surface of the
conductor, and thus to the inductance ofthe line.

From ( 1.13 I ), the power loss into a cross section S of a good (but not perfect) conductor
is

Po : \  [  J,Pd, : & [ t1,t 'dswm2.'  2 J s ' " '  2 l s '

so the power loss per unit length of a uniform transmission line is

(2.e7)

,, : + 1,18,12 dr. wtm, (2.e8)



sinceff ,-2216" 4r:6,12. (The skin depth is 6, : JTf op.o-.) Then Ps fuom (2.98) can
be written in terms of Al as

since R" : JopgE :7/o6,. Then from (2.96) the attenuation due to conductor loss
can be evaluated as

P1 aLL
' 

2P, 2Zo

since P, the total power flow down the line, is Po : lI 12 2012, where Zs is the characteristic
impedance of the line. In (2.102), AI is evaluated as the change in inductance when all
conductor walls are receded by an amount 6"/2.

Equation (2.102) can also be written in terms of the change in characteristic impedance,
since

:  Lup, (2.103)

so that

FLZo
d . :  - .- 2Zo

where A,Zo is the change in characteristic impedance when all conductor walls are receded
by an amount 6r/2.Yet another form of the incremental inductance rule can be obtained by
using the first two terms of a Taylor series expansion for Zs. Thus,

(2.105)

so that

3' dZo
2  d t '

where Zg (6"/2) refers to the characteristic impedance of the line when the walls are receded
by 3, /2, and I refers to a distance into the conductors. Then (2.104) can be written as

fl6' dZo R" dZo
v ^ : - - :

4Zo  d(  2Zon d( . '

l I l z  L L  l I 1 2 a L L
d  

-  - - l -  v r r r r r .
o l.L\o; t
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where the line integral of (2.98) is over the cross-sectional contours of both conductors.
Now, from (2.17), the inductance per unit length of the line is

L _ (2.ee)

which is computed assuming the conductors are lossless. When the conductors have a
small loss, the A fieta in the conductor is no longer zero, andthis field contributes a small
additional "incremental" inductance, A,L,to that of (2.99). As discussed in Chapter 1, the
fields inside the conductor decay exponentially so that the integration into the conductor
dimension can be evaluated as

fp l,taP a',

ot: m I"trt,tz dt., (2.100)

R " t I t 2  L L
D " -  " "  -' t -  

& o d ,
(2.10r)

(2.r02)

(2.104)

l-T L
7 ^ -  I! u - v c -  

J r c

L Z o - ' , ( y ) - Z o :

(2.106)
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where 4 : J psQ isthe intrinsic impedance of the dielectric, and R" is the surface resistiv-
ity of the conductor. Equation (2.106) is one of the most practical forms of the incremental
inductance rule, because the characteristic impedance is known for a wide variety of trans-
mission lines.

EXAMPLE 2.8 USING THE WIIEELER INCREMENTAL INDUCTANCE RULE
TO FIND THE ATTENUATION CONSTANT

Calculate the attenuation due to conductor loss of a coaxial line usins the incre-
mental inductance rule.

Solution
From (2.32) the characteristic impedance of the coaxial line is

Z o :

Then, using the incremental inductance rule of the form in (2.106), the atten-
uation due to conductor loss is

n , b- ] n _
2 n a

R" dZo R, I d ln bla
v - :  

-" ' -  
2zo4 dL 

- 
4nZs I au ryF#hG.:)

which is seen to be in agreement with the result of Example 2.7.The negative sign
on the second differentiation in the above equation is because the derivative for
the inner conductor is in the -p direction (receding wall). I

Regardless ofhow attenuation is calculated, measured attenuation constants for prac-
tical lines are usually higher. The main reason for this discrepancy is the fact that realistic
ffansmission lines have metallic surfaces that are somewhat rough, which increases the loss,
while our theoretical calculations assume perfectly smooth conductors. A quasiempirical
formula that can be used to correct for surface roughness for any transmission line is [7]

tan-l (2.107)

where cv. is the attenuation due to perfect$ smooth conductors, af is the attenuation cor-
rected for surface roughness, A is the rms surface roughness, and 6" is the skin depth ofthe
conductors.
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PROBLEMS

The current on a transmission line is given as i(t): 1.2cos(1.51 x 1010t - 80.3e) A. Determine
(a) the frequency, (b) the wavelength, (c) the phase velocity, and (d) the phasor representation of this
cruTent.

A transmission line has the following per unit length parameters: I : 0.2 p,Wm, C : 300 pF/m,
R : 5 Q/m, and G : 0.01 S/m. Calculate the propagation constant and characteristic impedance of
this line at 500 MHz. Recalculate these quantities in the absence of loss (R : G : 0).

Show that the following l-model of a transmission line also yields the telegrapher equations derived
in Section 2.1.

i(2, t)
----l>

LL,z

2

RL,z
z

i(z+ Lz,t)
----l-

2.4 For the parallel plate line shown below, derive the R, L, G, and C parameters. Assume w )) d.

-

For the parallel plate line of Problem 2.3, deive the telegrapher equations using the field theory
approach.

RG-402U semi-rigid coaxial cable has an inner conductor diameter of 0.91 mm, and a dielectric
diameter (equal to the inner diameter of the outer conductor) of 3.02 mm. Both conductors are copper,
andthe dielectricrnaterialisTeflon. Compute the R, L, G, and C parameters of this line at I GHz, and
use these results to flnd the characteristic impedance and attenuation of the line at I GHz. Compare
your results to the manufacturer's speciflcations of 50 O and 0.43 dB/m, and discuss reasons for the
difference.

Compute and plot the attenuation of the coaxial line of Problem 2.6, in dBlm, over a frequency range
of I MHz to 100 GHz. Use log-log graph paper.

A lossless transmission line of electrical length I : 0.31, is terminated with a complex load impedance
as shownbelow. Findthereflectioncoefficient atthe load. the SWRon theline. thereflectioncoefficient
at the input of the line, and the input impedance to the line.

2.5

2.6

2.7

2.8

zra+> zt=30 -  j20A
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2.9 A lossless transmission line is terminated with a 100 g load. If the SWR on the line is 1.5, find the
two possible values for the characteristic impedance of the line.

2.10 Let 2." be the input impedance of a length of coaxial line when one end is short-circuited, and let
Zo.be the input impedance of the line when one end is open-circuited. Derive an expression for the
characteristic impedance of the cable in terms of 2"" and Zo..

2.ll A 100 Q transmission line has an effective dielectric constant of 1.65. Find the shortest open-circuited
length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance
of 5 nH.

2.12 Aradio transmitter is connected to an antenna having an impedance 80 * j40 f,) with a 50 Q coaxial
cable. If the 50 Q transmitter can deliver 30 W when connected to a 50 Q load. how much power is
delivered to the antenna?

2.13 A 75 O coaxial transmission line has a length of 2.0 cm and is terminated with a load impedance of
37 .5 + j75 Q. If the dielectric constant of the line is 2.56 and the frequency is 3.0 GHz, find the input
impedance to the line, the reflection coefflcient at the load, the reflection coefficient at the input, and
the SWR on the line.

2.14 Calc$Iate SWR, reflection coefficient magnitude, and return loss values to complete the entries in the
following table:

SWR t f l Rr (dB)

1.00
1.01

1.05

1 .10
1.20

1.50

2.00
2.50

0.00

0.01

0.10

30.0

10.0

oo

2.15 The transmission line circuit shown below has V, - 15 V rms, Ze :75 {2, Zo :75 Q, ZL : 60
j40 O, and | :0.7)'. Compute the power delivered to the load using three different techniques:

(a) find f andcompute

P1 - ( t  *  l r l ' ) ;

(b) find Ziaandcompute

(+)';

',: l*.^1'n"12,";,  uoo

,,:lfrl'"<,;
(c) find V1 and compute
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Discuss the rationale for each of these methods. Which of these methods can be used if the line is not
lossless?

2.16 For a purely reactive load impedance of the form 21: jX, show that the reflection coefficient
magnitude lf I is always unity. Assume the characteristic impedance Zs is real.

2.17 Consider the transmission line circuit shown below. Compute the incident power, the reflected power,
and the power transmitted into the infinite 75 O line. Show that power conservation is satisfied.

50cl + ) t l 2+

1 0 v zo= 5o Q 4 =75 dt

Pinc+

Pref {-

#Ptrun,

2.18 A generator is connected to a transmission line as shown below. Find the voltage as a function of z
along the transmission line. Plot the magnitude of this voltage for -l < z < O.

ZL= 80 - j40 Q

2.19 Use the Smith chart to find the following quantities for the transmission line circuit below:

(a) The SWR on the line.
(b) The reflection coefficient at the load.
(c) The load admittance.
(d) The input impedance of the line.
(e) The distance from the load to the fust voltage minimum.
(f) The distance from the load to the flrst voltage maximum.

Z r " *

2.20 Repeat problem 2.I9 for Zr : 40 - j30 f2.

2.21 Repeat problem 2.19 for I : 1.81..

I = 0.4t

Zt= 60 + j50 A
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2.22 Use the Smith chart to find the shortest lengths of a short-circuited 75 Q line to give the following
input impedance:

( a )  Z i " : o .
(b \  Z i " :  a .
(c )  Z i " :  j75  Q.
(d) Zi":  - j50 s2.
(e )  Z i " :  j10  Q.

2.23 Repeat Problem2.22 for an open-circuited length of 75 Q line.

2.24 A slotted-line experiment is performed with the following results: distance between successive minima
:2.1 cm; distance of first voltage minimum from load : 0.9 cm; SWR of load, : 2.5.If Zo : 59 I,
find the load impedance.

2.25 Design a quarter-wave matching transformer to match a 40 Q load to a 75 O line. Plot the SWR for
0.5 < f /f" < 2.0, where /" is the frequency at which &e line is ,1,/4 long.

2.26 Consider the quarter-wave matching transformer circuit shown below. Derive expressions for V+ and
V-, the amplitudes of the forward and reverse traveling waves on the quarter-wave line section, in
terms of V', the incident voltage amplitude.

2.27 Deive Equation (2.7 l) from (2.7 0).

2.28 ln Example 2.7 , the attenuation of a coaxial line due to finite conductivity is

o - :  ^ '  / 1  *  1 ) .' 
24ln b/a \a b /

Show that a. is minimized for conductorradii such that x ln x : I * x, where x : b/a. Solve this
equation for x, and show that the corresponding characteristic impedance for €, : 1 is 77 O.

2.29 Compute and plot the factor by which attenuation is increased due to surface roughness, for rms
roughness ranging from zero to 0.01 mm. Assume copper conductors at 10 GHz.

2.30 A 50 Q transmission line is matched to a 10 V source and feeds aload Zr : 100 O. If the line is 2.3),
long and has an attenuation constant d : 0.5 dB/l, find the powers that are delivered by the source,
lost in the line, and delivered to the load.

2.31 Consider a nonreciprocal transmission line having different propagation constants, fl* and f-,for
propagation in the forward and reverse directions, with corresponding characteristic impedances Zf,
and Zo . (An example of such a line could be a microstrip transmission line on a magnetized ferrite
substrate.) If the line is terminated as shown below, derive expressions for the reflection coefficient
and impedance seen at the input of the line.

A t + -

4n+



Transmission Lines
and Waveguides

One of the early milestones in microwave engineering was the development of waveguide
and other transmission lines for the low-loss tranmission of microwave power. Although Heav-
iside considered the possibility of propagation of electromagnetic waves inside a closed hollow
firbe in 1893, he rejected the idea because he believed that two conductors were necessary for the
transfer of electromagnetic energy [1]. In 1897, Lord Rayleigh (John William Strutt) [2] mathe-
nLatically proved that wave propagation in waveguides was possible, for both circular and rect-
angular cross sections. Rayleigh also noted the infinite set of modes of the TE and TM type that
'*'ere possible and the existence of a cutoff frequency, but no experimental veriflcation was made

a:the time. The waveguide was essentially forgotten until it was rediscovered independently
irr 1936 by two men [3]. After preliminary experiments in 1932, George C. Southworth of the
AT&T Company in New York presented a paper on the waveguide in 1936. At the same meeting,
V/. L. Barrow of MIT presented a paper on the circular waveguide, with experimental confir-
mation of propagation.

Early microwave systems relied on waveguide and coaxial lines for transmission line media.
V/aveguide has the advantage of high power-handling capability and low loss but is bulky and
e:rpensive. Coaxial line has very high bandwidth and is convenient for test applications, but is

a difficult medium in which to fabricate complex microwave components. Planar transmission
lines provide an alternative, in the form of stripline, microstrip, slotline, coplanar waveguide,
a:nd many other types of related geometries. Such transmission lines are compact, low in cost,
a:nd are capable of being easily integrated with active devices such as diodes and transistors to
frrrm microwave integrated circuits. The first planar transmission line may have been a flat-strip
coaxial line, similar to stripline, used in a production power divider network in World War II

[4]. But planar lines did not receive intensive development until the 1950s. Microstrip line was
developed at ITT laboratories [5] and was a competitor of stripline. The first microstrip lines
used a relatively thick dielectric substrate, which accentuated the non-TEM mode behavior and
frequency dispersion of the line. This characteristic made it less desirable than stripline until
the 1960s, when much thinner substrates began to be used. This reduced the frequency depen-
dence of the line, and now microstrip is often the preferred medium for microwave integrated
circuits.

91
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In this chapter we will study the properties of several types of transmission lines and
waveguides that are in common use today. As we know from Chapter 2, a transmission line
is characterized by a propagation constant and a characteristic impedance; if the line is lossy,
attenuation is also of interest. These quantities will be derived by a field theory analysis for the
various lines and waveguides treated here.

We will begin with a general discussion of the different types of wave propagation and
modes that can exist on transmission lines and waveguides. Transmission lines that consist of
two or more conductors may support transverse electromagnetic (TEM) waves, chuacteized
by the lack of longitudinal field components. TEM waves have a uniquely defined voltage,
current, and characteristic impedance. Waveguides, often consisting of a single conductor,
support transverse electric (TE) and/or transverse magnetic (TM) waves, characterized by the
presence of longitudinal magnetic or electric, respectively, fleld components. As we will see
in Chapter 4, a unique definition of characteristic impedance is not possible for such waves,
although definitions can be chosen so that the characteristic impedance concept can be used for
waveguides with meaningful results.

3 .1 GENERAL SOLUTIONS FOR TEM, TE, AND TM WAVES

In this section we will find general solutions to Maxwell's equations for the specific cases
of TEM, TE, and TM wave propagation in cylindrical transmission lines or waveguides.
The geometry of an a$itrmy transmission line or waveguide is shown in Figure 3.1, and is
characteized by conductor boundaries that are parallel to the z-axis. These structures are
assumed to be uniform in the z direction and infinitely long. The conductors will initially
be assumed to be perfectly conducting, but attenuation can be found by the perturbation
method discussed in Chapter 2.

(a) (b)

FIGURE 3.1 (a) General two-conductor transmission line and (b) closed waveguide.
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We assume time-harrnonic fields withaneJ't dependence and wave propagation along
the z-axis. The electric and masnetic fields can then be written as

EQ, y, z) : f?(x, !) * 2er(x, t)le-iPz,

I7(*, y, z) = lh@, y) + zhz@, !)le-iQz

where Z(.r, y) and h(*, y) represent the transverse (i, j) electric and magnetic field com-
ponents, while e, and h, are the longitudinal electric and magnetic field components. In
the above, the wave is propagating in the *z direction; -z propagation can be obtained
by replacing B with -B. Also, if conductor or dielectric loss is present, the propagation
constant will be complex; jB should then be replaced withy : a * jfr.

Assuming that the transmission line or waveguide region is source free, Maxwell's
equations can be written as

Y x E - - j a p . H ,

y x H : i < o e E .

With an e-ifz , dependence, the three components of each of the above vector equations
can be reduced to the followins:

-jpE,

OE,
3x

3H,
0y

3E,
3x

0E*_ - :
dy

- j aptHy,

- japtHr,

(3.1a)

(3.1b)

(3.2a)

(3.2b)

(3.3a)

(3.3b)

(3.3c)

G.aa)

(3.4b)

(3.4c)

(3.5a)

(3.sb)

(3.5c)

(3.sd)

W. 
if Ey = -iatpH*,

* jf H" - jaeE,,

The above six equations can be solved for the four transverse field components in terms
of E. and H, (for example, H, can be derived by eliminating E, from (3.3a) and (3.4b)) as
follows:

aH,- j p H , - - - j a e E r .
dx

]Hn 0H,
-;_ :  JOr€Ez.

ox dy

H' :hQ'#-t-#) '
u,:- iQ,#.uW),
".:-d(r**,rW),
",-h?T*"ff)'

where k ! : k 2  -  B z (3.6)

has been defined as the cutoff wavenumber; the reason for this terminology will become
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clear later. As in previous chapters,

k :  aJ W :2n l ) ,  G.7)

is the wavenumber of the material filling the transmission line or waveguide region. If
dielectric loss is present, € can be made complex by using e : €o€r(1 - j tand), where
tan 6 is the loss tangent of the material.

Equations (3.5a-d) are very useful general results that can be applied to a variety of
waveguiding systems. We will now specialize these results to specific wave types.

TEM Waves

Transverse electromagnetic (TEM) waves are characterized by E, : Hz : 0. Observe from
(3.5) that if E, - Hz:0, then the transverse fields are also all zero, unless k2, : g 1p :

P2),inwhich case we have an indeterminate result. Thus, we can return to (3.3)-(3.4) and
apply the condition that Ez - H, :0. Then from (3.3a) and (3.4b), we can eliminate .F1;
to obtain

F'En : a2 p,e Er,

f r :  a l w : k , (3.8)

as noted earlier. (This result can also be obtained from (3.3b) and (3.4a).) The cutoff
wavenumber, k, : JP= 82, is thus zero for TEM waves.

Now the Helmholtz wave equationfor E, is, from (I.42),

/ A 2  6 z  6 z
l _ + _ + _
\3"2 3y2 0zz

(3.e)+ * )  z . : 0 ,

but for e-iF, dependence, (02 f 022)E* : -82E" - -kzE*, so (3.9) reduces to

/ a 2  a 2 \
( *  *  u r ,  ) t '=o '  

(3 '10)

A similar result also applies to Eu, so using the form of E assumed in (3.1a) we can write

v le1x , / ) :0 , ( 3 . 1 1 )

where Vf : A2 l\xz + Az lTyz is the Laplacian operator in the two transverse dimensions.
The result of (3.11) shows that the transverse electric fields, Z(x, y), of a TEM wave

satisfy Laplace's equation. It is easy to show in the same way that the transverse magnetic
fields also satisfy Laplace's equation:

v lh1x, ) ) :0 '  (3 .12)

The transverse fields of a TEM wave are thus the same as the static fields that can exist
between the conductors. In the electrostatic case, we know that the electric field can be
expressed as the gradient of a scalar potential, @(-r, y):

e@'y) :  -V 'o( . r ,  y) , (3. l3)

where Vr : i(3/3x) + y(A/Ay) is the transverse gradient operator in two dimensions. In
order for the relation in (3.13) to be valid, the curl of Z must vanish, and this is indeed the
case here since

Y , x 3 - - j a 1 - t h r 2 : O .
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Using the fact that Y . D : eY, .?: 0 with (3.13) shows that <D(x, y) also satisfies
Laplace's equation,

vlo1x, )) :0, (3,r4)

as expected from elecffostatics. The voltage between two conductors can be found as

V n :  Q t (3.1s)

where @1 and <D2 represent the potential at conductors I and2, respectively. The current
flow on a conductor can be found from Ampere's law as

(3.16)

where C is the cross-sectional contour of the conductor.
TEM waves can exist when two or more conductors are present. Plane waves are

also examples of TEM waves, since there are no field components in the direction of
propagation; in this case the transmission line conductors may be considered to be two
infinitely large plates separated to infinity. The above results show that a closed conductor
(such as a rectangular waveguide) cannot support TEM waves, since the corresponding
static potential in such a region would be zero (or possibly a constant), leading to Z : 0.

The wave impedance of a TEM mode can be found as the ratio of the transverse electric
and magnetic fields:

Zrvv - (3.r7a)

where (3.4a) was used. The other pair of transverse field components, from (3.3a), give

(3.r7b)

Combining the results of (3.17a) and (3.17b) gives a general expression for the transverse
fields as

- e2 : lr', or,

r :  f  E .d I ,

E, @p tl,
H r :  P : ' ' l . : ' '

-8,, EZ r r y r : i : r , l Z : r .

_ l
h ( x . y ) :  -  2  x Z ( x . y ) .

LTEM
(3.1 8)

Note that the wave impedance is the same as that for a plane wave in a lossless medium, as
derived in Chapter 1; the reader should not confuse this impedance with the characteristic
impedance, Zs, of a ffansmission line. The latter relates an incident voltage and current
and is a function of the line geometry as well as the material filling the line, while the
wave impedance relates transverse field components and is dependent only on the material
constants. From (2.32), the characteristic impedance of the TEM line is Zs - V f I, where
V and I are the amplitudes of the incident voltage and current waves.

The procedure for analyzing a TEM line can be summarized as follows:

1. Solve Laplace's equation, (3.14), for O(x, y). The solution will contain several
unknown constants.

2. Find these constants by applying the boundary conditions for the known voltages
on the conductors.

3. Compute E and E from (3.13), (3.1a). Compute fi and l '1 from (3.1S), (3.1b).

4. Compute V from (3.15), 1 from (3.16).
5. Thepropagationconstantisgivenby(3.8),andthecharacteristicimpedanceisgiven

b Y  Z o : V / 1 .
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TE Waves

Transverse electric (TE) waves, (also referred to as I/-waves) are characterized by Ez : O
and Hr l 0. Equations (3.5) then reduce to

In this case, k, + O,and the propagation constant B : JPl is generally a function
of frequency and the geometry of the line or guide. To apply (3.I9), one must first find 11.
from the Helmholtz wave equation,

(# .  #.  $+*)n, :0,

- jp aH,
I a x :  - - m  

^  ,
K; dx

- jp aH,
nv: -:- ;--;- .

' K ; d y

- iau 0H"
D _

Lx - ----;i--;-'

K; oy

- jalt 0H,, r :  t 4  u .

(#. f i+c)n,:0,

ry Er -Ey (Dlt k4

H y H * P P

H- : t++,
R; dy

-  iae 3E"
L I _
I I r ,  -  - - .'  k l  6 x '

- - i f  0E,
r a
K; dx

-  - j paE ,
t ' :  

* ?  a y '

(3.19a)

(3.1eb)

(3.19c)

(3.19d)

(3.22)

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.20)

which, since 11.(-r, !, z) : hr(x, y)a-if z, can be reduced to a two-dimensional wave equa-
tion for ft.:

(3.2r)

since k! : k2 - 92.fhrs equation must be solved subject to the boundary conditions of the
specific guide geometry.

The TE wave impedance can be found as

which is seen to be frequency dependent. TE waves can be supported inside closed conduc-
tors, as well as between two or more conductors.

TM Waves

Transverse magnetic (TM) waves (also referred to as E-waves) are characteizedby E, * O
and Hr: 0. Equations (3.5) then reduce to
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As in the TE case, k, + 0. and the propagation constant B : JF -Q is a function
of frequency and the geometry of the line or guide. E. is found from the Helmholtz wave
equation,

(3.24)

which, since E.(x, !, z) : er1x, ySe-iP', can be reduced to a two-dimensional wave equa-
tion for e":

- 0 , (3.2s)

since tl : k2 - B2. This equation must be solved subject to the boundary conditions of the
specific guide geometry.

The TM wave impedance can be found as

(# .  # .#+r2)n, :o '

(#. #*o:),,

(3.26)

which is frequency dependent. As for TE waves, TM waves can be supported inside closed
conductors, as well as between two or more conductors.

The procedure for analyzing TE and TM waveguides can be summarized as follows:

1. Solve the reduced Helmholtz equation, (3.21) or (3.25), for h, or er. The solution
will contain several unknown constants, and the unknown cutoff wavenumber, ftr.

2. Use (3.19) or (3.23)to find the transverse fields from h, or er.
3. Apply the boundary conditions to the appropriate field components to find the

unknown constants and kr.
4. The propagation constant is given by (3.6), and the wave impedanceby (3.22) or

G20,

Attenuation Due to Dielectric Loss

Attenuation in a transmission line or waveguide can be caused by either dielectric loss or
conductor loss. IfaT is the attenuation constant due to dielectric loss, and cu. is the attenuation
constant due to conductor loss, then the total attenuation constant is a : aa * a".

Attenuation caused by conductor loss can be calculated using the perturbation method
of Section 2.1; this loss depends on the field distribution in the guide and so must be
evaluated separately for each type of ffansmission line or waveguide. But if the line or guide
is completely filled with a homogeneous dielectric, the attenuation due to lossy dielectric
can be calculated from the propagation constanto and this result will apply to any guide or
line with a homogeneous dielectric filling.

Thus, using the complex dielectric constant allows the complex propagation constant
to be written as

y : ud * ifl :

Er -Ey p ftt
L T M :  

H r :  I I -  
:  

, r :  k  
'

: 
J,1 

- a.f Ltsese,(l- j tan 6). (3.27)

In practice, most dielectric materials have a very small loss (tan 6 ( 1), so this expression
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can be simplified by using the first two terms of the Taylor expansion,

J a z a x z - a + for x 11 a.

ThenG.27) reduces to

t(:)

since JQ=F: jB.In these results, k2:azp.oeoe, is the (real) wavenumber in the
absence of loss. Equation (3.28) shows that when the loss is small the phase constant, B, is
unchanged, while the attenuation constant due to dielectric loss is given by

l ; - " -  i k 2 t a n 6
V'". ' ztE _F

kz tan6:  
,p * jP'

k' tan 6
qd : ----=;- Np/m (TE or TM waves).

zb

(3.28)

(3.2e)

(3.30)

3.2

This result applies to any TE or TM wave, as long as the guide is completely filled with the
dielectric. It can also be used for TEM lines, where k, : O, by letting F : k:

fttand
ad : ---;- Np/m (TEM waves).

PARALLEL PLATE WAVEGUIDE

The parallel plate waveguide is probably the simplest type of guide that can support TM
and TE modes; it can also support a TEM mode, since it is formed from two flat plates,
or strips, as shown in Figure 3.2. Although an idealization, this guide is also important for
practical reasons, since its operation is quite similar to that of a variety of other waveguides,
and models the propagation of higher order modes in stripline.

In the geometry of the parallel plate waveguide in Figure 3.2,the strip width 17 is as-
sumed to be much greater than the separation, d, so that fringing fields and any x variation

- k2 + jk2tanS

FIGURE 3.2 Geometry of a parallel plate waveguide.
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can be ignored. A material with permittivity e and permeability p is assumed to fill the

region between the two plates. We will discuss solutions for TEM, TM, and TE waves.

TEM Modes

As discussed in Section 3.1, the TEM mode solution can be obtained by solving Laplace's

equation, (3.I4), for the electrostatic potential O(x, y) between the two plates. Thus,

V r 2 O i x , ) ) : 0 ,  f o r 0 <  x < W ,  0 ' Y = a . (3.31)

If we assume that the bottom plate is at ground (zero) potential and the top plate at a potential

of %, then the boundary conditions for @(.r, y) are

O(x ,0 )  :  Q ,

Q(x, d) - Vo.

(3.32a)

(3.32b)

(3.3s)

Since there is no variation in x, the general solution to (3.31) for O(x' y) is

Q(x, y) - A -f By,

and the constants A. B can be evaluated from the boundary conditions of (3'32) to give the

final solution as

O(r,  y) :Voy/d.

The transverse electric field is, from (3.13),

v^
E(x,Y)  -  -V, (D(x,  Y) :  - i i .

so that the total electric field is

(3.33)

(3.34)

where k : @JG is the propagation constant of the TEM wave, as in (3.8). The magnetic

field, from (3.18), is

E(*, y, z) : E(x,l)e-ikz : -9,Le-ir",

E(", y, z) : !2 x E1x, t, z) : *\"-io',

r/ - * 
Iro=orro, 

- voe-ik',

(3.36)

where 4 : J pfZ isthe intrinsic impedance of the mediumbetween the parallel plates' Note

that E" - H, :0 and that the fields are similar in form to a plane wave in a homogeneous

region.
The voltage of the top plate with respect to the bottom plate can be calculated from

(3.15) and (3.35) as

(3.37)

as expected. The total current on the top plate can be found from Ampere's law or the
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surface current densitv:

P u - r f u
t : l  1 " . 2 a * : l  e y x E l . 2 d x : l  H * d * :

J x:o J x:o J ':o

Thus the characteristic impedance can be found as

w V o  - i t ,

nd
(3.38)

(3.3e)

(3.40)

(3.42)

(3.43)

(3.45)

(3.46)

which is seen to be a constant dependent only on the geometry and material parameters of
the guide. The phase velocity is also a constant:

V n d. 7 _- ,  _  7  _ ; ,

k , : T ,  n : 0 , I , 2 , 3 . . . .

p :, /k, - 4: \ /k2 * @rld)z.

The solution for e,(x, y) is then

er (x ,y) :1 ,  s in f f ,

Er(x , y, zl : An silnll ,- if l '

a 1
" o _  p _  G ,

which is the speed of light in the material medium.
Attenuation due to dielectric loss is given by (3.30). The formula for conductor atten-

uation will be derived in the next subsection, as a special case of TM mode attenuation.

TM Modes

As discussed in Section 3.1, TM waves are characteizedby H, :0 and a nonzero E. field
that satisfies the reduced wave equation of (3.25), with 3/3x : 0:

(#. t ) ,^ . ,y) :0, (3.4r)

wheret| : k2 - B2 is the cutoffwavenumber, and Er(x, y, z) : er(x, !)e-if z .The general
solution to (3.41) is of the form

er(x, Y): A sin k"Y * B cosk"Y,

subject to the boundary conditions that

er(x, Y) : O, at Y - 0, d.

Th i s  imp l i es  t ha t  B  :  0  andk rd  :  nn ,  f o rn :0 ,1 ,2 ,3 . . . ,  o r

(3.44)

Thus the cutoff wavenumber k" is constrained to discrete values as given by (3.44); this
implies that the propagation constant B is given by

thuso

(3.47)
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The ffansverse field components can be found, using (3.23), to be

Observe that for n : O, fl = k : atJ@, and that E, :0. The E, and H, fields are
then constant in y, so that the TMs mode is actually identical to the TEM mode. For n > 1,
however, the situation is different. Each value of n corresponds to a different TM mode,
denoted as the TM, mode, and each mode has its own propagation constant given by (3.45),
and field expressions as given by (3.a8).

From (3.45) it can be seen that B is real only when k > k,.Since /c : @J lr€ is pro-
portional to frequency, the TMn modes (for n > 0) exhibit a cutoffphenomenon, whereby
no propagation will occur until the frequency is such that k > k,. The cutoff frequency of
the TM, mode can then be deduced as

f -
J C  -

2nJ@ 2dJt €
(3.4e)

Thus, the TM mode that propagates at the lowest frequency is the TM1 mode, with a
cutoff frequency of f, : l/Zd.Jlte; the TMz mode has a cutoff frequency equal to twice
this value, and so on. At frequencies below the cutoff frequency of a given mode, the
propagation constant is purely imaginary, corresponding to a rapid exponential decay of the
fields. Such modes are referred to as cutoff, or evarescent, modes. TMn mode propagation
is analogous to a high-pass filter response.

The wave impedance of the TM modes, from (3.26), is a function of frequency:

I (D€ Wr\
H, : #)An cos':::!.-iflz,

kc cl

- iB wr\)
E, : -!LAn cos'l!2"-iflz., k r , . d

E r : H y - 0 .

r y - E y p 0 nL T M :  
I L  

:  
, , :  k

k,

(3.48a)

(3.48b)

(3.48c)

(3.s0)

which we see is pure real for f , f",but pure imaginary for f < f".The phase velocity is
also a function of frequency:

(t)

w D  -  
^ ,' p (3.s 1 )

and is seen to be greater than | / Jlte : co I k, the speed of light in the medium, since fl . k.
The guide wavelength is defined as

(3.s2)

and is the distance between equiphase planes along the z-axis. Note that L, , L :2n /k,
the wavelength of a plane wave in the material. The phase velocity and guide wavelength
are defined only for a propagating mode, for which B is real. One may also define a cutoff
wavelength for the TMn mode as

2n
) " t :  

f l ,

2d
1  - -

n
(3.s3)
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It is instructive to compute the Poynting vector to see how power propagates in the
TM, mode. From (1.91), the time-average power passing a trarsverse cross section of the
parallel plate guide is

o - 1*"/' fo u * E* .zay a* : -\x"[' f E,H] dy dx' " - i  
J x = o J y = o  L  J x : o J y = o

:ry*,o,p |,":o"orrffay:
ffi{,o,r rorn > o

Wg,o"r 
rorn:o

(3.s4)

where (3.48a,b) were used for Ey, H". Thus, P, is positive and nonzero when B is real,
which occurs for / > /". When the mode is below cutoff, B is imaginary and so
P o  : 0 '

The TM (or TE) waveguide mode propagation has an interesting interpretation when
viewed as a pair of bouncing plane waves. For example, consider the dominant TM1 mode,
which has a propagation constant,

Br: Jk, _ Qr/dy,

E, : At sin !2r-i\'2,

E, : 
+ leiwY 

/d-Ftzl - r-i{w /d+frz:l.

and E field,

which can be rewritten as

(3.s5)

(3.s6)

(3.57a)

(3.57b)

This result is in the form of two plane waves traveling obliquely, in the -y, *z and
*y,-fz directions, respectively, as shown in Figure 3.3. By comparison with the phase
factor of (1.132), the angle d that each plane wave makes with the z-axis satisfies the
relations

/ c s t n g  :  - .
d '

kcos9 : flr,

so tha t (n /d )2+P?:k2 ,as in (3 .55) .For />  f , , f l i s rea land less thank l ,so0  issome
angle between 0' and 90o, and the mode can be thought of as two plane waves alternately
bouncing off of the top and bottom plates.

+

FIGURE 3.3 Bouncing plane wave interpretation of the TMl parallel plate waveguide mode.
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The phase velocity of each plane wave along its direction of propagation (0 direction)
is r,tlk : I/Jtte , which is the speed of light in the material filling the guide. But the phase
velocity of the plane waves in the z directionis alfu:1lJl.r,ecos0, which is greater
than the speed of light in the material. (This situation is analogous to ocean waves hitting
a shoreline: the intersection point of the shore and an obliquely incident wave crest moves
faster than the wave crest itself.) The superposition of the two plane wave fields is such
that complete cancellation occurs al y :0 and y : d, to satisfy the boundary condition
that E":0 at these planes. As / decreases to /,, B1 approaches zero so that, by (3.57b),
I approaches 90'. The two plane waves are then bouncing up and down with no motion in
the *z direction, and no real power flow occurs in the z direction.

Attenuation due to dielecffic loss can be found from G.zq. Conductor loss can be
treated using the perturbation method..Thus,

(3.s8)

where P, is the power flow down the guide in the absence of conductor loss, as given by
(3.54). Pa is the power dissipated per unit length in the two lossy conductors and can be
found from (2.97) as

Pa
A - :  - .-  

2 P o '

(3.se)

where R, is the surface resistivity of the conductors. Using (3.54) and (3.59) in (3.58) gives
the attenuation due to conductor loss as

Pt : 2 (+) |.:t i,t2 dx - fft tr.t',

2aeR, zkR, -o, : -pi : 
Br, 

*0,^' forn > o.

n- : 
-J#[A 

cosk"y - B sink"yl s-1fl2.
tuc

As discussed previously, the TEM mode is identical to the TM6 mode for the parallel
plate waveguide, so the above attenuation results for the TM, mode can be used to obtain
the TEM mode attenuation by letting n : O. For this case, the n : 0 result of (3.54) must
be used in (3.58), to obtain

Np/m. (3.61)

TE Modes

TE modes, characterized by Er:0, can also propagate on the parallel plate waveguide.
From(3.27),with 0/0x : O, H, must satisfy the reduced wave equation,

(3.62)

wherelQ:kz - B2isthecutoffwavenumberandHr(x,!,2):hr(x,y)s-i1z.Thegeneral
solution to (3.62) is

hr(x,y)  -  Asink,y f  Bcosk,y. (3.63)

The boundary conditions are that E* : 0 ot y - Q, d; E, is identically zero for TE modes.
From (3.19c), we have

R"
d c : ' - -

nq

(#. c)r,r,,,) :0,

(3.60)

(3.64)
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and applying the boundary conditions shows that A : 0 and

k " : 7 ,  n : 1 , 2 , 3 . . . ,
a

as for the TM case. The final solution for 11. is then

Hr(x, Y) 
- B, cos 

nft-Y 
e-i|z." d

The transverse fields can be computed from (3.19) as

_ J@p ̂  nTy :a_
E, :  ?-Bnsin--+e-rP- ,

k c d

(3.6s)

(3.66)

(3.6'7a)

(3.67b)

(3.67c)

(3.6e)

(3.70)

(3.7r)

:  +Brsrnnr, !  , -  j9 '
d

iB
Hy

Ey

The propagation constant of the TE, mode is thus,

(3.68)

which is the same as the propagation constant of the TM, mode. The cutoff frequency of
the TE" mode is

which is also identical to that of the TM, mode. The wave impedance of the TE, mode is,
from (3.22),

t -  
'

J C  
-  

^
za lt p,€

- E, @p kTt
L r  p  p '
r t y p p

,, =:*"1,: 
f,o:ou x H* . 2dy dx : )""1,^ I,o:or,r; o, n,

: 
ffru,l2n"(p), 

for n > o,

which is seen to be real for propagating modes and imaginary for nonpropagating, or cutoff,
modes. The phase velocity, guide wavelength, and cutoffwavelength are similar to the results
for the TM modes.

The power flow down the guide for a TEn mode can be calculated as

which is zero if the operating frequency is below the cutoff frequency (B imaginary).
Note that if n :0, then E, : H! :0 from (3.67), and thus Po :0, implying that

there is no TE6 mode.
Attenuation can be calculated in the same way as for the TM modes. The attenuation

due to dielectric loss is given by (3.29).It is left as a problem to show that the attenuation
due to conductor loss for TE modes is given by

zk?R, 2k7R,,
A": --:--- - ----l----: Np/m.' (Dppd k|nd

(3.72)
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7  8  9 1 0

FIGURE 3.4 Attenuation due to conductor loss for the TEM, TMr, and TE1 modes of a parallel
plate waveguide.

Figure 3.4 shows the attenuation due to conductor loss for the TEM, TM1, and TE1 modes.
Observe that a" --) oo as cutoff is approached for the TM and TE modes.

Table 3.1 summarizes a number of useful results for TEM, TM, and TE mode propaga-
tion on parallel plate waveguides. Field lines for the TEM, TM1, and TE1 modes are shown
in Figure 3.5.

TABLE 3.1 Summary of Results for Parallel Plate Waveguide

4 5 6

k  = k d
k c T

Quantity TEM Mode TM, Mode TE, Mode

k"
p
L"

1.8

olwe
0

2n /k
a /k :  r /Jw

(k tan 6) /2
R,/nd

0
0
0

(-v"1dys*;a'
(V'/ nd)e-iP'

0
Z1ey1 : 4d/w

aJlt<
nr /d
-

\ / K ' -  K ;

2n / k , : 241n
2n/f
o/p

(k2 tan6)/2F
2kR, / Bad

A, sin(nttY f d)e-lflz
0
0

(- j p /k")A, cos(nry /d)s- iflz

( j ox / k,\A, cos(nr y f d)e- jfl'

0

oJue
nr /d
-

, /K ' -  K ;

21 t /k " :2d /n

2,r /fr
o/p

(k2 tant)/28
24R, /kpnd

0
Bn cos(nrY /d)e-iFz

(j a p. / k") B, sir. (nr y / d)s- i Bz

0
0

(j p /k,)8, sin(nny /d)e-ifrz
4n:  kn/ f l

Ad

ac

Ez

H,

E"

Ey

H"

H,

z Z1y : Br7 /k
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FIGURE 3.5 Field lines for the (a) TEM, (b) TMr , and (c) TEl modes of a parallel plate waveguide.
There is no variation across the width of the wavesuide.

RECTANGULAR WAVEGUIDE

Rectangular waveguides were one of the earliest types of transmission lines used to transport
microwave signals and are still used today for many applications. A large variety of compo-
nents such as couplers, detectors, isolators, attenuators, and slotted lines are commercially
available for various standard waveguide bands from 1 GHz to over 220 GHz Figure 3.6
shows some of the standard rectangular waveguide components that are available. Because
of the recent trend toward miniaturization and integration, a lot of microwave circuitry is
currently fabricated using planar transmission lines, such as microstrip and stripline, rather
than waveguide. There is, however, still a need for waveguides in many applications such
as high-power systems, millimeter wave systems, and in some precision test applications.

The hollow rectangular waveguide can propagate TM and TE modes, but not TEM
waves, since only one conductor is present. We will see that the TM and TE modes of a
rectangular waveguide have cutoff frequencies below which propagation is not possible,
similar to the TM and TE modes of the parallel plate guide.

TE Modes

The geometry of a rectangular waveguide is shown in Fi garc 3 .7 , where it is assumed that the
guide is filled with a material of permittivity e and permeability p. It is standard convention
to have the longest side of the waveguide along the x-axis, so that q > b.

The TE modes are characterizedby fields with Ez:0, while FI. must satisfy the
reduced wave equation of (3.21):

(3.73)

with Hr(x, l, z) : hr(x, y)s-i/z, and l4 : kz - B2 is the cutoff wavenumber. The partial

differential equation of (3.73) can be solved by the method of separation of variables by
lettine

(3.74)

(3.7s)

h,(x, y) : X(x)Y(y),

and substituting into (3.73) to obtain

I  d 2 x  I  d 2 Y  - a

v  d - ,  +  v  a*  *k ; :s '

(#.  #.rr )h,Q'v) :Q,
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FIGURE 3.6 Photograph of Ka-band (WR-28) rectangular waveguide components. Clockwise
from top: a variable attenuator, an E-H (magic) teejunction, a directional coupler,
an adaptor to ridge waveguide, an E-plane swept bend, an adjustable short, and a
sliding matched load.

Courtesy of Agilent Technologies, Santa Rosa, Calif.

Then, by the usual separation of variables argument, each of the terms in (3.75) must be
equal to a constant, so we define separation constants k, and kn, such that

and

- 0 ,

- 0 ,

- y 2

(3.76a)

(3.76b)

(3.77)

d2x
dx ' �  +k;x

d2y

dv ' �  
+  k ;Y

rC+4

FIGURE 3.7 Geometry of a rectangular waveguide.
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The general solution for h, can then be written as

h r(x, y) - (A cos k,x + B sin ft,rx C cos kry * D sin /<ry). (3.78)

To evaluate the constants in (3.78) we must apply the boundary conditions on the
electric field components tangential to the waveguide walls. That is,

e * ( x ,  y )  : 0 ,  a t  y  -  Q ,6 ,

er(x, !) : O, at x : O, a.

(3;79a)

(3.7eb)

(3.82a)

(3.82b)

(3.82c)

(3.82d)

(3.83)

We thus cannot use h. of (3.78) directly, but must first use (3.19c) and (3.19d) to find e,
and e, from hr:

- jap
,, - --tf Or(A cos k*x * B sin ft,xX-C sin kry 1 D cos fty)), (3.80a)

- jav
, r :  J fk , ( -Asi tk*x *  Bcosk"x)(Ccoskry a Dsinkyl ) .  (3.80b)

Then f rom (3.79a)  and (3.80a) ,  we see thal  D:0,  and ky:nn/b for  n:0,1,2. . . .
From (3.79b) and (3.80b)  we have that  B:0 and f t ,  :mn/a for  m:0,1,2. . . .  The
final solution for fI. is then

mTrx  nTy  :a -
Hr(x , y. z) : A^n cos --:-e-rPZ ,

A D
(3 .81)

where A^n is an arbitrary amplitude constant composed of the remaining constants A and
C of (3.78).

The transverse field components of the TE , mode can be found using (3.19) and
(3.81) :

^  Japwf  .  mTx f tT !  _ ;a ,
Lx : -----;- Amn COS - Sln

k : b a b

- j a t p m r ,  m T t x  n n j  _ ; s ,
- - - - - - ; - ; - l t -7SI I1 -CoS. - - : -€ , - "

K : a a b

u, : lW A^n sinY!-! cosnTr! r- i f,

,, : 
# 

o^, "ury siln!! .- iF'.

The propagation constant is

p : r[n' - 4 :,ln' - (T)' - (T)',
which is seen to be real, corresponding to a propagating mode, when

Each mode (combination of m and n) thus has a cutoff frequency f,^, givenby

k > k,: ,l(T), * (T),

(3.84)
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The mode with the lowest cutoff frequency is called the dominant mode; since we have
assumed a ) b, the lowest /" occurs for the TErc (m : 1, n :0) mode:

Thus the TEls mode is the dominant TE mode and, as we will see, the overall dominant
mode of the rectangular waveguide. Observe that the field expressions for E and f7 in 1:.SZ;
arc all zero if both m : n: 0; thus there is no TEss mode.

At a given operating frequency /, only those modes having f, < f will propagate;
modeswith f" > f willleadtoanimaginary B (orreala),meaningthatallfieldcomponents
will decay exponentially away from the source of excitation. Such modes are referred to as
cutoff, or evanescenf, modes. If more than one mode is propagating, the waveguide is said
tobe overmoded.

From(3.22) the wave impedance that relates the transverse electric and magnetic fields
is

1
t _

J C I N

za \/l l.t €

- E* -Ey kq
L T E :  

H r :  I L  
:  

p '

Trx
Hr :  ArccoS- - - '  e - tFz ,

4

-  - japa  ,  TX _ ;s ,
L r : - A t o S l I l' n a

iBa l rx
H, : r'- Arcsin'::.-iaz,

7 t a

E r :  E r :  H y : 0 .

(3.8s)

(3.89a)

(3.89b)

(3.89c)

(3.89d)

(3.86)

where 4 : nlffi is the intrinsic impedance of the material filling the waveguide. Note that
ZTsisreal when B is real (a propagating mode), but is imaginary when B is imaginary (an
evanescent mode).

The guide wavelength is defined as the distance between two equal phase planes along
the waveguide, and is equal to

1 -,,s _ : )., (3.87)

which is thus greater than ),, the wavelength of a plane wave in the filling medium. The
phase velocity is

: llJtte, (3.88)

which is greater than I I J@ , the speed of light (plane wave) in the filling material.
In the vast majority of applications the operating frequency and guide dimensions

are chosen so that only the dominant TE16 mode will propagate. Because of the practical
importance of the TEle mode, we will list the field components and derive the attenuation
due to conductor loss for this case.

Specializing (3.81) and (3.82) to the m : 1, n : O case gives the following results for
the TEls mode fields:

2n 2n
p k

@ (t)

p k



110 Chapter 3: Transmission Lines and Waveguides

In addition, for the TEls mode,

k ' : T / a '

B: ,/pr _ (;/"p.

The power flow down the guide for the TEls mode is calculated as

(3.e0)

(3.e1)

(3.e2)

(3.94b)

Note that this result gives nonzero real power only when B is real, corresponding to a
propagating mode.

Attenuation in a rectangular waveguide can occur because of dielectric loss or con-
ductor loss. Dielectric loss can be treated by making e complex and using a Taylor series
approximation, with the general result given in(3.29).

Conductor loss is best treated using the perturbation method. The power lost per unit
length due to finite wall conductivity is, from (1.131),

r*: )n" 1.":o Iru:oE 
x E* .2 d.y dx

- 
1*' I,':o Iru:rErH| 

dv dx

: 
S*"r,lArol2 1,"=o Ir'=osi'z 

T! 6y 4*

:*#&Re(f).

,,: +l,tj,tzd{,

i, : fr , Ely:o : ! x (iH)y=o * tHalr:s)

^j f ra ,  nTx ^ nx
: -z- Ats srn -€,-jl ' + iArscos" 

^ 
s-.i1'

3.93) gives

7 b  f a

R,  /  lJ ,y lzdy + R,  /  [ lv , , l '+  lJ )z ldx
J y=0 J x:0

/  ^ )  
1 3 \R , lA ro12  (u  + i  +  E  +1 .' " ' \  2  2 n ' /

(3.e3)

where R, is the wall surface resistance, and the integration contour C encloses the perimeter
of the guide walls. There are surface currents on all four walls, but from symmetry the
currents on the top and bottom walls are identical, as are the currents on the left and right
side walls. So we can compute the power lost in the walls at -r : 0 and ) : 0 and double
their sum to obtain the total power loss. The surface current on the r : 0 (left) wall is

i r : f i  x  F l l r :o  :  * .  x  2Hzl"=o:  - iHzl r :s :  - i )Arcs- iqz,

while the surface current on the y : 0 (bottom) wall is

(3.94a)

Substiruting (3.94) into (

P1 -

(3.95)
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The attenuation due to conductor loss for the TEls mode is then

TM Modes

The TM modes are characterizedby fields with H, - O, while E. must satisfy the reduced
wave equation of (3.25):

Pa znzR,1b * a/2 * B2a3 12tr21" '-  
2Prc ol ta3bB

: ] ;pbnz +ark21Np7m.
a3bflkn

(#. #.t)",<,,y):0,

E. : 
-fi#B^n 

cos !!! "innT' ,-tu,,

t, : 
-# 

B^, sin y!! "o"nlt ,-tu, ,

H.: ff#B.,sinY!-L cos"I' ,-'u,,

,, : 
-Jff 

8., cosU!-L sinnlY e-iBz

As for the TE modes, the propagation constant is

(3.e6)

(3.101a)

(3.10lb)

(3.101c)

(3.101d)

(3.97)

with Er(x, !, z) : er(x, y)s-i?z and lQ : k2 - B2. Equation (3.91) can be solved by the
separation of variables procedure that was used for the TE modes. The general solution is
then

er(x,y)  -  (Acosk"-r  *  Bsink,x)(Ccoskny f  Dsinf t ry) .  (3.98)

The boundary conditions can be applied directly to e.:

er(x, y) - O, at x : 0, e, (3.99a)

er(x, y) : Q, at y - O, b. (3'99b)

We will see that satisfaction of the above conditions on e. will lead to satisfaction of the
boundary conditions by e, and er.

Applying (3.99a) to (3.98) shows that A : 0 and k, : mr /a, for m : I,2,3....
S im i l a r l y ,app l y i ng (3 .99b ) to (3 .98 )shows tha tC :0andky :n r l b , f o rn :L ,2 ,3 . . . .
The solution for E. then reduces to

Er(x, y, z) : B^n "in 
*o' 

si11nT,l ,- j9' 
, (3.100)

where B*, is an arbitrary amplitude constant.
The transverse field components for the TM-n mode can be computed from (3.23) and

(3.100) as

a _ (3.r02)
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0 8 1 0 1 2 1 4 1 6 1 8
Frequency (GHz)

FIGURE 3.8 Attenuation of various modes in a rectangular brass waveguide with a :2.0 cm.

andis real forpropagating modes, and imaginary forevanescentmodes. The cutofffrequency
for the TM., modes is also the same as that of the TE-, modes, as given in (3.84). The
guide wavelength and phase velocity for TM modes are also the same as those for TE
modes.

Observe that the field expressions for E and H in (3.101) are identically zero ifeither
m or n is zero. Thus there are no TMss, TMor, or TMls modes, and the lowest order TM
mode to propagate (lowest /,) is the TM11 mode, having a cutoff frequency of

(3.103)

which is seen to be larger than f"ro for the cutoff frequency of the TEls mode.
The wave impedance relating the transverse electric and magnetic fields is, from

(3,26),

Z7v (3.104)

Attenuation due to dielectric loss is computed in the same way as for the TE modes,
with the same result. The calculation of attenuation due to conductor loss is left as a
problem; Figure 3.8 shows the attenuation versus frequency for some TE and TM modes in
a rectangular waveguide. Table3.2 summarizes results for TE and TM wave propagation in
rectangular waveguides, and Figure 3.9 shows the field lines for several of the lowest order
TE and TM modes.

EXAMPLE 3.1 CHARACTERISTICS OF A RECTANGT]LAR WAVEGUIDE

Consider a length of Teflon-filled copper K-band rectangular waveguide, having
dimensions a : 1.07 cm and b :0.43 cm. Find the cutofffrequencies of the first
five propagating modes. If the operating frequency is 15 GHz, find the attenuation
due to dielectric and conductor losses.

0.5

a 0.3

d 0.2

0 .1

_ E ,  _ - 8 ,  _ F r t
H y H * k

* (I)'
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TABLE 3.2 Summary of Results for Rectangular Waveguide

Quantity TE , Mode TM.n Mode

k

k"

p

)t"

)'g

u n

Ad

aJ@

J@;/A +@"W
liV--- r

\ / K ' -  K ;

2n
Kc

e
atl

p

k2 tan6

Zrp . :

n J @

J@;/8 + @;Try
-

\ /K ' -  k ;

2n
Kc

2tr

e
(r)

E
k2 tat6

mTx wf v
.A., cos

jo l ln l t  ,  mf ix  i l f r !  _ ia ,- - -= : : -A^1COS-Sln  
b  

e  " "
KtD a

-JApmfi  ,  mnx f r t r j  _,s,---;;-A^, sln - cos j-e 
"-

K?a a

j |mn  mrx  f rTJ  _ , s ,--;;- A-n Sln - COS 
, 

e "'"
K;a a

j |nr  mrx f l f r !  _;s,
, *  A ^ n  S n  

u e " -K;o a

zp

8., sin !!-L sin'I' "-"'

0

-jfrmr ^ mirx wt! _;s,
- - - - t l ^ n C O S - S I f I . ; €  - "

k l a a b

-ff 
u ̂ , si1, ! !-! "6, n!! " - i a'

tff u ̂ , "io!!-! "6s'!! "* i f ,

1#!A,^,"o"Y!-! r nlut "-io,
k;a a

Bnzrr :  i

2p

0

Hz

Ez

E,

Ey

H,

Hy

kn
p

Solution
From Appendix G, for Teflon, €,:2.08 and tan6:0.0004. From (3.84) the
cutoff frequencies are given by

f - trcnn - 
2trJe,

Computing /" for the first few values of m and n gives:

Mode

TE
TE
TE
TE, TM
TE, TM

1
2
0
I
z

0
0
I
I

I

f"(GHz)

9.72
t9.44
24.19
26.07
31.03

(T)'* (T)'
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Thus the TE1s, TE26, TEs1, TE11, and TM11 modes will be the first five modes to
propagate.

At 15 GHz, k :345.1m-l, and the propagation constant for the TE16 mode

p - : 3 4 5 . 1 m - l

From (3.29), the attenuation due to dielectric loss rs

k2 tan6
a d : - 0.119 np/m: 1.03 dB/m.

2p

The surface resistivity of the copper walls is (o : 5.8 x 10/ S/m)

l (DU^o " : y ' i : 0 . 0 3 2 S 2 .

and the attenuation due to conductor loss, from (3.96), is

R"
o, : 

orw--:-:-kn(2bnz 
+ a3k21 :0.050 np/m :0.434 dBlm. 

I

TE,"6 Modes of a Partially Loaded Waveguide

The above results also apply for a rectangular waveguide filled with a homogeneous di-
electric or magnetic material, but in many cases of practical interest (such as impedance
matching or phase-shifting sections) a waveguide is used with only a partial filling. Then an
additional set ofboundary conditions are inffoduced at the material interface, necessitating
a new analysis. To illustrate the technique we will consider tbeTE*o modes of a rectangu-
lar waveguide that is partially loaded with a dielectric slab, as shown in Figure 3.10. The
analysis still follows the basic procedure outlined at the end of Section 3.1.

Since the geometry is uniform in the y direction and n :0, the TE o modes have no
y dependence. Then the wave equation of (3.21) for h, can be written separately for the
dielectric and air regions as

/ a 2  ^ \
| - * ki lh, : o, for o < .r < /, (3.105a)
\ i i x z  " l  -

/ a 2  ^ \
( k; 

)hz 
: O. for / < x r a, (3.105b)

where /<7 and ko are the cutoff wavenumbers for the dielecric and air regions, defined as

0

FIGURE 3.10 Geometry of a

t a ^

partially loaded rectangular waveguide.

("f)'-c)' t  T  t 2

\ ; )
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follows:

f i -

p -

These relations incorporate the fact that the propagation constant, B, must be the same
in both regions to ensure phase matching of the fields along the interface at x : t. The
solutions to (3.105) can be written as

f o r O < x < /

f o r / < x 1 e ,
(3.107)

where the form of the solution for / < x < a was chosen to simplify the evaluation of
boundary conditions atx : a.

Now we need j and 2 field components to apply the boundary conditions at x : 0o t,
and a. Er: 0 for TE modes, and Hn: 0 since 0l0y = 0. En is found from (3.19d) as

(3.106a)

(3.106b)

f o r 0 < r < /

(3.108)

f o r t < x < a .

i utun" 
; '  

" 
l- A sin k7x f B cos kTxl

Kd
€ y :

To satisfy the boundary conditions that E y : 0 at x : 0 and x : a requires that B : D : 0.
Next, we must enforce continuity of tangential fields (Er, Hr) at x : /. Equations (3.107)

and (3.108) then give the following:

_ A C

1ro 
sinnoi : - sinkoh - t)'

A c o s k a t : C c o s k o ( q - t ) .

Since this is a homogeneous set of equations, the determinant must vanish in order to have
a nontrivial solution. Thus,

kotanklt * k6 tanko(a - t) : 0. (3.109)

Using (3.106) allows ko and ka tobe expressed in terms of B, so (3.109) can be solved
numerically for B. There is an infinite number of solutions to (3.109), corresponding to the
propagation constants of the TE s modes.

This technique can be applied to many other waveguide geomeffies involving dielectric
or magnetic inhomogeneities, such as the surface waveguide of Section 3.6 or the ferrite-
loaded waveguide of Section 9.3. In some cases, however, it will be impossible to satisfy
all the necessary boundary conditions with only TE- or TM-type modes, and a hybrid
combination of both types of modes will be required.

POINT OF INTEREST: Waveguide Flanges

There are two commonly used waveguide flanges: the cover flange and the choke flange. As
shown in the figure, two waveguides with cover-type flanges can be bolted together to form
a contacting joint. To avoid reflections and resistive loss at this joint, it is necessary that the
contacting surfaces be smooth, clean, and square, because RF currents must flow across this
discontinuity. In high-power applications voltage breakdown may occur at this joint. Otherwise,
the simplicity of the cover-to-cover connection makes it preferable for general use. The SWR
from such ajoint is typically less than 1.03.

e,4 - 4,

k3 - t4.
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An altemative waveguide connection uses a cover flange against a choke flange, as shown in
the figure. The choke flange is machinedto form an effective radial transmission linein the narrow
gap between the two flanges; this line is approximately,l,r/4 in length between the guide and the
point of contact for the two flanges. Another )', /4 line is formed by a circular axial groove in the
choke flange. So the short circuit at the right-hand end of this groove is transformed to an open
circuit at the contact point ofthe flanges. Any resistance in this contact is in series with an infinite
(or very high) impedance and thus has little effect. Then this high impedance is transformed back
to a short circuit (or very low impedance) at the edges ofthe waveguides, to provide an effective
low-resistance path for current flow across the joint. Since there is a negligible voltage drop
across the ohmic contact between the flanges, voltage breakdown is avoided. Thus, the cover-to-
choke connection can be useful for high-power applications. The SWR for this joint is typically
less than 1.05" but is more frequency dependent than the cover-to-coverjoint.

Cover-to-cover
connection

Cover.to-choke
connectron

3.4

Reference: C. G. Montgomery R. H. Dicke, and E. M. Pvcel| Principles of Microwave Circuits, McGraw-Hill,
New York, 1948.

CIRCULAR WAVEGUIDE

A hollow metal tube of circular cross section also supports TE and TM waveguide modes.
Figure 3. 1 1 shows the cross-section geometry of such a circular waveguide of inner radius a .

FIGURE 3.11 Geometry of a circular waveguide.
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Since a cylindrical geometry is involved, it is appropriate to employ cylindrical coordinates.
As in the rectangular coordinate case, the transverse fields in cylindrical coordinates can be
derived from E or 11. field components, for TM and TE modes, respectively. Paralleling
the development of Section 3.1, the cylindrical components of the transverse fields can be
derived from the longitudinal components as

where kl :kz - frz, and r-i|z propagation has been assumed.
replace B with -B in all expressions.

(3.1 10a)

(3.1 10b)

(3.1 10c)

(3.r 10d)

For e+i?z propagation,

TE Modes

For TE modes, E, : O, and H, is a solution to the wave equation,

v z H r + k z H r : 9 . (3.1 1 1)

If Hr(p , Q, z) : hr(p , Q)s-i?z, (3.1 I 1) can be expressed in cylindrical coordinates as

' , :AQ#.TW)
":-iG#-,,#)
, , :+ f f#- tv)
,,:-iQ,T.r#)

(3.rr2)

Again, a solution can be derived using the method of separation of variables. Thus, we let

h,(P, Q) : R(P)P(Q),

and substifute into (3.112) to obtain

(3 .1  13)

t d 2 R  r  d R  I  d z P  - 1

n ap, * 
o* * 

+ 
o,P af,- 

A'; : u'

pz  d2R ,  p  dR  ,  ^2 t . 2  _  
- l  d2P

E dp ' *  o  oo  +  P-K; :  r  a4 ' '
The left side of this equation depends on p (not d), while the right side depends only on f.
Thus, each side must be equal to a constant, which we will call tl.T\en,

(# . :#. i# + r,!) n,<p d) : o

- r d 2 P  . ,
V a6' 

: ro'

d2P

d y r + k ' r P : g '
or

(3.rr4)

(3.1 ls)

Also,

"d2R dRp2 -,r: + p? + (o,k? - t?r) n : o.
dp' dp

(3.1 16)
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The general solution to (3.1 15) is

P(Q) : A sin k6Q I B cos kaQ. (3.rr7)

Since the solution to h. must be periodic in rp (that is, hr(p,Q): hr(p,Q L2mr)), k6
must be an integer, z. Thus (3.117) becomes

P ( 0 ) : A s i n n Q l B c o s n Q ,

while (3.116) becomes

, ' * + p + + @ z k l - n z ) R : 0 ,
ap' dp

which is recognized as Bessel's differential equation. The solution is

(3.r 18)

(3.1 19)

R(p) : C Jn(k,p) * DY"(k,p), (3.r20)

where "/,(-r) andY"(x) are the Bessel functions of first and second kinds, respectively. Since
Y"(k"p) becomes infinite at p:0, this term is physically unacceptable for the circular
waveguide problem, so that D : 0. The solution for h, can then be written as

h,(p, Q) : (A sinnQ a B cos nQ) J"(k" p), (3.12r)

where the constant C of (3.120) has been absorbed into the constants A and B of (3.121). We
must still determine the cutoffwavenumber fr", which we can do by enforcing the boundary
condition that E1*, : 0 on the waveguide wall. Since Ez :0, we must have that

E4(P, Q) : 0, at P : a.

From (3.1 10b), we find E5 from H, as

E6@, 0, d : #(e sinn| * B cosnL)4(k,p)s-ifz ,
K?

k"^^: +

(3.r23)

where the notation Ji,&"p) refers to the derivative of J, with respect to its argument. For
E4 to vanish &t p : a, we must have

Ji(k,a1 : g. (3.124)

If the roots of J i,@) are defined as p'r^, so that J i,@L) : 0, where p',^ is the mth root ot
Jj,then fr" must have the value

(3.r22)

(3.r2s)

Values of pL* are given in mathematical tables; the first few values are listed in Table 3.3.
TheTEn* modes are thus defined by the cutoffwavenumber, kr,-: p'n-/a, where n

refers to the number of circumferential (d) variations, and m referc to the number of radial

TABLE 3.3 Values of pL for TE Modes of a Circular Waveguide

0
I
2

3.832
1.841
3.054

7.016
5.331
6.706

LO.t74
8.536
9.970

P'"2P,,ZP,,T
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(p) variations. The propagation constant of the TE,. mode is

R -
Pnm -

with a cutoff frequency of

The first TE mode to propagate is the mode with the smallest p',^,whichfrom Table 3.3 is
seen to be the TE11 mode. This mode is then the dominant circular waveguide mode, and
the one most frequently used. Because ffi > I, there is no TEls mode, but there is a TEsl
mode.

The transverse field components are, from (3.110) and (3.121),

, k, P'r^: -r(nm 2rJue 2naJ1t"e'

u, : 
-#f 

(AcosnQ - B sinng) J,(k,p)e-iL,,

E, : # (A sinnQ * B cos nS) Jj{k,de-i\,,
k"

n o : 
-S 

tt sin nQ I B cos nQ) J i(k, p)e- i pz,
K6

,, : 
-rir?' 

(A cos n@ - B sinnQ)Jn(k,p)g-t\z.
t iP

The wave impedance is

z Ep -EO 4k

H o  H p  P '

: A sindJr(k,p)e-i/',
-  iau

: l:* A cosQJr1k,p)e-i?,.
KtP

: i 
?tt A sin e J,,1k, p;s-t fl2,
Kc

- i B
: -+ A sin O J !(k" p )e- 

j Fr.
K.

- i B
: -, :n A cos QJ1(k,p7e-iBz,xiP
- 0 .

(3.126)

(3.r27 )

(3.128a)

(3.128b)

(3.128c)

(3.128d)

(3.rze)

(3.130a)

(3.130b)

(3.130c)

(3.130d)

(3.130e)

(3.1300

In the above solutions there are two remaining arbitrary amplitude constants, A and B.
These constants control the amplitude of the sin n@ and cos n@ terms, which are independent.
That is, because of the azimuthal symmetry of the circular waveguide, both the sinn@ and
cosnQ terms are valid solutions, and can be present in a specific problem to any degree.
The actual amplitudes of these terms will be dependent on the excitation of the waveguide.
From a different viewpoint, the coordinate system can be rotated about the z-axis to obtain
an h, with eithet A: 0 or B : 0.

Now consider the dominant TE11 mode with an excitation such that B : 0. The fields
can be written as

Hz

Ep

Ho

Ez

Ea

Hp
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The power flow down the guide can be computed as

1 fq f2,p , : i n e /  I  E x r T * . 2 p d Q d p
z J D=\J6:0

: 1n. / '  [ '" lu"r; - EaHIlpdQdp
2 Jo:oJa:o '  

"  e  Y  p ,

".pl'e'fxetpl 
[' f- | + cosz 6Jl{k,p) + k.2 sin2 Qt[2t*,ptf p dQ dp:  

4  J p : o J a = o L P '  
t t K c P )  t x c  s r l r  q r t  \ K c  

J

norylAlzRe(fr) 
S' ll4w,o1+ pk?Jl'�(k,ilf dp: 

zt<! J p=o Lp J

raplAl'Re(F) , ,":  ff@\i-t)r?(k,a),

which is seen to be nonzero only when B is real, corresponding to a propagating mode.
(The required integral for this result is given in Appendix C.)

Attenuation due to dielectric loss is given by (3.29). The attenuation due to a lossy
waveguide conductor can be found by computing the power loss per unit length of guide:

p, : * [ '" J,rro oo
' Jo=o

: + ['" fln;" + lH)zladQz Ja=o-

:  'of*" 
f" l ,*t-cos2 4+sin'�4lr l t  k,a)adQ

z ,l6=s lKia' I 
'

_ r l A l z R , a  ( r * A _ \-; 
\t 

* 
otd ) 

t?(r<"a). (3.132)

The attenuation constant is then

Ps n, (r!a2 + 92)
' 2P" rykBa(p'rl, - 1)

R"  / - .  pz  \  _:fu(ft;+4=/*or*

(3.131)

(3. r 33)

TM Modes

For the TM modes of the circular waveguide, we must solve for E, from the wave equation
in cylindrical coordinates :

(3.r34)

where Er(p, Q, z) : er(p, Q)s-ifl2, and fi : k2 - 92. Since this equation is identical to
(3.107), the general solutions are the same. Thus, from (3.121),

(#. i* .  i#+k7)e,:0,

er(p, Q) : (A sinnQ * B cos nQ)J,k, p). (3 .13s)
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TABLE 3.4 Values of po- for TM Modes of a Circular Waveguide

Pn2 Pn3Pnt

0
I
2

2.405
3.832
5 .135

5.520
7.016
8.417

8.654
10.774
r1.620

The difference between the TE solution and the present solution is that the boundary con-
ditions can now be applied direct$ to e. of (3.135), since

E r ( P , 0 ) : 0 ,  d t P : c t .

Thus, we must have

Jn(k"a) : Q,

or  kr :  pn*/a,

where pn* is the nth root of J"(x); that is, Jn(pn^): 0. Values of pn.
mathematical tables; the first few values are listed in Table 3.4.

The propagation constant of the TMr. mode is

The cutoff frequency is

t;-;-----:----- --
\ /  k .  -  \pnm /al .  .

Pn^

(3.136)

(3.r37)
(3.138)

are given in

(3.13e)

(3.140)

(3.141a)

(3.141b)

(3.r41c)

(3. l41d)

k,
f ^ :

t1T ̂ t/ pe zTa tt p,€

Thus, the first TM mode to propagate is the TMot mode, with p$ :2.4O5. Since this is
greater than p\, - 1.841 of the lowest order TE11 mode, the TErr mode is the dominant
mode of the circular waveguide. As with the TE modes, m > l, so there is no TMle mode.

From (3.1 10), the transverse fields can be derived as

n o : !t,+ sin nQ * B cos nQ)Ji(k" p)e-i Fr,
nc

u, : 
-1!! 

(A cos nQ - B sin nQ) J,(k, p)e- i F,,
kiP

n o : $!{A cos nQ - B sin ng)J,(k" p)e-i F,,
K;p

u, : 
-J# 

( A sin nQ * B cos nQ) Ji(k, p)s- i f z

The wave impedance is

_ Eo -Eo qp
z 'TM:  

Hr :  H ,  
:  

T '
(3.142)

Calculation of the attenuation for TM modes is left as a problem. Figure 3.12 shows the
attenuation due to conductor loss versus frequency for various modes of a circular wave-
guide. Observe that the attenuation of the TEsl mode decreases to a very small value with
increasing frequency. This property makes the TEsl mode of interest for low-loss ffansmis-
sion over long distances. Unfortunately, this mode is not the dominant mode of the circular
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1 3 5 7 9 1 1 1 3 1 5
Frequency (GHz)

FIGURE 3.12 Attenuation of various modes in a circular copper waveguide with a : 2.54 cm.

waveguide, so in practice power can be lost from the TEsl mode to lower-order propagating
modes.

Figure 3.13 shows the relative cutofffrequencies of the TE and TM modes, and Table 3.5
summarizes results for wave propagation in circular waveguide. Field lines for some of the
lowest order TE and TM modes are shown in Fisure 3.14.

4By
f-+-Al- EXAMPLE 3.2 CTIARACTERTSTTCS OF A CTRCULAR WAVEGUTDE
\ t Y - 4
tl.--/---/ Find the cutoff frequencies of the first two propagating modes of a Teflon-filled

I circular waveguide with a :0.5 cm. If the interior of rhe guide is gold plated,
calculate the overall loss in dB for a 30 cm length operating at 74 GHz.

Solution
From Figure 3.13, the first two propagating modes of a circular waveguide are
the TE11 and TMsl modes. The cutoff frequencies can be found using (3.127) and
(3.140):

0.07

0.06

0.05

^ 0.04

I 0.03
d

o.02

0.01

0

TE11 :

TMsl :

"  P \ (
T - : -

J L

zTra Jer

{ - Polc
J c  -  -

z7( a ,,,/te r

TEl l

1.841(3 x 108)

2tr(0.00\J2.08

2.405(3 x 108)

2r(O.005)t/2.08

:12.19 GHz,

: 15.92GHz.

TE2r TEot TE3l TE41TE12

f,
Jc(TE1 1)

TMll TM21 TMo2

Cutoff frequencies of the first few TE and TM modes of a circular waveguide,
relative to the cutoff frequency of the dominant TErl mode.

TMor

m _'"r l-  TM", TE",
"utolt f"ot#i f"ot,iti

FIGURE 3.13
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TABLE 3.5 Summary of Results for Circular Waveguide

Quantity TE,- Mode TM,- Mode

L

R

L"

l8

U D

qd

E,

Hz

Ep

Eo

Hp

Ho

Z

aJue

p'r^

a

JF=F"
2n
L

2n
p

7
kz tan6

1 R-y

0

(Asinnf * B cosnQ)J,(k"p)s-i?z

-#!(e"o"nQ - B srnnQ)J,(k"p)e-iBz
K;p

#rosinnQ 
* B eosnQ)Ji(k,p)e-jfz

-4,osinr@ 
* B cosnQ)Jlk"p\e-iflz

k,

- iBn-j{-lAcosnQ - Bsinn|)J,(k"fla )fz
K;p

aJwe

Pn^

a

JF-
2tr
L

2n

e

7
k2 tan6

2p
(Asitn| * B cosnQ)J,(k"p)e-if'

0
-4!Asinn@ 

* B cosn|)Jl\k,p)e-if lz
t , '

-ti!" 
to cos nQ - B sinnQ) J,(k" p)e- i Fz

K;p

f f i rO"o"nf  
-  B s innQ)J, (k ,p)s- i fz

a;rosinnQ I B cosnQ)Jl&,p)e-iflz

t * : 3Zrr:Y
p

So only the TE11 mode is propagating at 14 GHz The wavenumber is

, 2nf Je, 2r(14 x lOe;../ lnr

c  3 x 1 0 8

and the propagation constant of the TE11 mode is

The attenuation due to dielectric loss is calculated from (3.29 as

k2tan6 4229\2,0.0004\
d, i  :  - --- ' - - : - :  # :0.172 np/m: 1.49 dB/m.- 2p 2(208.0)

The conductivity of gold is o : 4.1 x lO7 S/m, so the surface resistance is

*, : ,l#: 0.0367 e.
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Then from (3.133) the attenuation due to conductor loss is

3.5

R r t r - 2 \
uc : --t---i l *i + -l .l :0.O67Znplm : 0.583 dB/m.q k n 1  V  p ( r - r /

The total attenuation is a : da * d, :2.07 dB/m. Then the loss in the 30 cm
length of guide is

attenuation (dB) : o(dB/m)(Z) : (2.07X0.3) :0.62 dB. I

COAXIAL LINE

TEM Modes

Although we have already discussed TEM mode propagation on a coaxial line in Chapter 2,
we will briefly reconsider it here in the context of the general framework that was developed
earlier in this chapter.

The coaxial line geometry is shown in Figure 3.15, where the inner conductor is at a
potential of Vo volts and the outer conductor is at zero volts. From Section 3.1, we know
that the fields can be derived from a scalar potential function, A@, Q), which is a solution
to Laplace's equation (3.14); in cylindrical coordinates Laplace's equation takes the form

I a /  a o ( p , d ) \  r a 2 a @ . 0 )- ^  l P  ^  l *  " - - = # : 0 .  ( 3 . 1 4 3 )
p d p \  d p  /  p .  d Q .

This equation must be solved for <D(p, @) subject to the boundary conditions that

Q(a,Q):  Yo,  Q.144a)

o(b,o) : o. (3.144b)

Using the method of separation of variables, we let <D(p, {) be expressed in product
form as

a@,4) :  R(p)P(Q). (3.14s)

v --0

FIGURE 3.15 Coaxial line seometrv.



Substitution of (3.145) into (3.143) gives

and

The general solution to (3.148) is

The solution for R(p) is then

and so

t c |+ t c ] :  o .

a / d R \
u r \ 'oo  ) :o

R ( p )  : C l n p * D ,

a ( p , Q ) :  C l n p  *  D .
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(3.r47 )

(3.148)

(3.14e)

(3.1s0)

(3 .15  1  )

(3.152a)

(3.1s2b)

(3.146)

By the usual separation of variables argument, the two terms in (3.146) must be equal to
constants. so that

**(,#)*)#:o

**(,#)
I dzP
P d02

- -k?,

-K6,

P (Q) :  AcosnQ {  B  s i t nQ ,

where k4 : ,? must be an integer, since increasing d by a multiple of 2z should not change
the result. Now, because of the fact that the boundary conditions of (3.144) do not vary
withQ,thepotential A@,Q) shouldnotvarywith@.Thus,zrmustbe zero.By (3.149),this
implies that ko must also be zero, so that the equation for R(p) in (3.I47) reduces to

I

Applying the boundary conditions of (3.L44) gives two equations for the constants C and
D:

Q ( a , Q ) :  V o :  C l n a  *  D ,

A ( b , 0 ) : 0 :  C l n b * D .

After solving for C and D, the final solution for <D(p, Q) canbe written as

a @ . 0 ) :
V"lnblp

(3.1s3)
lnb/a

The E and FI fields can then be found using (3.13) and (3.18). Then the voltage, current, and
characteristic impedance can be determined as in Chapter 2. Attenuation due to dielectric
or conductor loss has already been treated in Chapter 2.

Higher Order Modes

The coaxial line, like the parallel plate waveguide, can also support TE and TM waveguide
modes in addition to a TEM mode. In practice, these modes are usually cutoff (evanescent),
and so have only a reactive effect near discontinuities or sources, where they are excited. It
is important in practice, however, to be aware of the cutoff frequency of the lowest order

I
I
I
T
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waveguide-type modes, to avoid the propagation of these modes. Deleterious effects may
otherwise occur, due to the superposition of two or more propagating modes with different
propagation constants. Avoiding the propagation of higher order modes sets an upper limit
on the size of a coaxial cable; this ultimately limits the power handling capacity of a coaxial
line (see the Point of Interest on power capacity of transmission lines).

We will derive the solution for the TE modes of the coaxial line; the TE11 mode is the
dominant waveguide mode of the coaxial line, and so is of primary importance.

For TE modes, Er:0, and H, satisfies the wave equation of (3.112):

(3.1s4)

where Hr(p,Q,z): hr(p,Q)s-lfz, andll: k? - p2.Tte general solution to this equa-
tion, as derived in Section 3.4, is given by the product of (3.1 18) and (3.120):

h r(p, Q) - (A sin nQ * B cos n@)( C J,(k, p) * DY"(k" p)). (3. lss)

ln this case, a < p < b, so we have no reason to discard the Y, term. The boundary conditions
are that

E a @ , Q ,  z ) : 0 ,  f o r  p  -  a , b .

Using (3.110b) to find E6 from FI. gives

n, : (! 1t sin nQ * B cos nQ)(C J n&, p) + Dy i(k" plys- i fl z' k "

Applying (3.156) to (3.157) gives two equations:

(3.156)

C Ji(k"a) * DY!(k,a) : 0,

c 4(k,b) -r DYi(k,b) : 0.

(# . :*. i# + r!) n,w, Q, : o

(3.rs7)

(3.158a)

(3.1s8b)

Since this is a homogeneous set of equations, the only nontrivial (C + 0, D + 0) solution
occurs when the determinant is zero. Thus we must have

J ift " a)Y i(k, b) : 4(k " b)Y l(k, a). (3.1se)

This is a characteristic (or eigenvalue) equation for ft". The values of k that satisfy (3.159)
then define the TEn. modes of the coaxial line.

Equation (3.159) is a transcendental equation, which must be solved numerically for
k". Figure 3.16 shows the result of such a solution for n:1, for various b/a ratros. An
approximate solution that is often used in practice is

kr: -2-
a + b '

Once ft. is known, the propagation constant or cutofffrequency can be determined. Solutions
for the TM modes can be found in a similar manner; the required determinantal equation is
the same as (3.159), except for the derivatives. Field lines for the TEM and TE11 modes of
the coaxial line are shown in Fieure 3.17.

EXAMPLE 3.3 HIGHER ORDER MODE OF A COAXIAL LINE

Consider a piece of RG-142 coaxial cable, with a : 0.035" and b :0.116", and
a dielectric with e, : 2.2. What is the highest usable frequency, before the TE11
waveguide mode starts to propagate?
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1.0
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FIGURE 3.16 Normal2ed cutoff frequency of the dominant TE11 waveguide mode for a coaxial
line.

Solution
We have

{ -
. t c  - : l7 GHz.

2o Jr,

In practice, a 5 Eo safety margin is usually recommended, so Io". 
- 0.95( 1 7 GHz) :

16 GHz. I

1210

b 0.116 .- - - - - 2

a -  O . O 3 5 - ' ' " '

From Figure 3. I 6, this value of b I a gives k"a : 0 .47 (the approximate result is
k,a :21(1 * b/a): 0.465). Thus, the cutofffrequency of the TE11 mode is

ck,

@

)\
i t i
f[
\ .  x\-- l_- / {ffi$

FIGIJRE 3.17 Field lines for the (a) TEM and (b) TErr modes of a coaxial line.
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POINT OF INTEREST: Coaxial Connectors

Most coaxial cables and connectors in common use have a 50 Q characteristic impedance, with
an exception being the 75 Q coax used in television systems. The reasoning behind these choices
is that an air-filled coaxial line has minimum attenuation for a characteristic impedance of 77 Q
(Problem 2.28), while maximum power capacity occurs for a characteristic impedance of 30 Q
(Problem 3.28). A 50 Q characteristic impedance thus represents a compromise between mini-
mum attenuation andmaximumpowercapacity. Requirements forcoaxial connectors includelow
SWR, higher-order-mode-free operation at a high frequency, high repeatability after a connect-
disconnect cycle, and mechanical strength. Connectors are used in pairs, with a male end and a
female end (or plug andjack). The photo above shows several types of commonly used coaxial
connectors and adapters. From top lefl Type-N, TNC, SMA, APC-7, 2.4 mm.

Type-N: This connector was developed in 1942 and named after its inventor, P. Neil, of Bell
Labs. The outer diameter of the female end is about 0.625 in. The recommended upper frequency
limit ranges from 1l to 18 GHz, depending on cable size. This rugged but large connector is
often found on older equipment.

TNC: This is a threaded version of the very common BNC connector. Its usage is limited to
frequencies below 1 GHz.

SMA: The need for smaller and lighter connectors led to the development of this connector in
the 1960s. The outer diameter ofthe female end is about 0.250 in. It can be used up to frequencies
in the range of 18-25 GHz, and is probably the most commonly used microwave connector today.

APC-7: This is a precision connector (Amphenol precision connector) that can repeatedly
achieve an SWR less than 1.04 at frequencies up to 18 GHz. The connectors are "sexless," with
butt contact between both inner conductors and outer conductors. This connector is used most
commonly for measurement and instrumentation applications.

2.4 mm: The need for connectors at millimeter wave frequencies led to the development of
two variations of the SMA connector: the K connector is useful to about 40 GHz, while the
2.4 mm connector is useful to about 50 GHz. The size of these connectors is similar to the SMA
connector.



3.6

3.6 Surface Waves on a Grounded Dielectric Slab 131

SURFACE WAVES ON A GROUNDED DIELECTRIC SLAB

We briefly discussed surface waves in Chapter 1, in connection with the field of a plane
wave totally reflected from a dielectric interface. In general, surface waves can exist in
a variety of geometries involving dielectric interfaces. Here we consider the TM and TE
surface waves that can be excited along a grounded dielectric slab. Other geomeffies that
can be used as surface waveguides include an ungrounded dielectric slab, a dielectric rod,
a comrgated conductor, or a dielectric coated conducting rod.

Surface waves are fypified by a field that decays exponentially away from the dielectric
surface, with most of the field contained in or near the dielectric. At higher frequencies
the field generally becomes more tightly bound to the dielectric, making such waveguides
practical. Because of the presence of the dielectric, the phase velocity of a surface wave is
less than the velocity of light in a vacuum. Another reason for studying surface waves is
that they may be excited on some types of planar ffansmission lines, such as microstrip and
slotline.

TM Modes

Figure 3.18 shows the geometry of a grounded dielectric slab waveguide. The dielectric
slab, of thickness d and relative dielectric constant €r, is assumed to be of infinite extent
in the y and e directions. We will assume propagation in the *e direction with an e-iB'
propagation factor, and no variation in the y direction (310y : A7.

Because there are two distinct regions, with and without a dielectric, we must separately
consider the field in these regions, and then match tangential fields across the intertace. E,
must satisfy the wave equation of (3.25) in each region:

(#*,,n* fl ')"@')): o'

- g')",{,,}) :0,(#
for0 < x (3.160a)

(3.160b)

(3.161a)

(3.16lb)

f o r d < x < o o ,

where Er(x, !, Z) : er(x, y)e-iFz.
Now define the cutoff wavenumbers for the two resions as

k? : ' ,4 - Pt,

h2 :  f l 2  -4 ,

where the sign onhz has been selected in anticipation of an exponenfially decaying result for
x > d . Observe that the same propagation constant B has been used for both regions. This

/
Ground plane

FIGURE 3.18 Geometry of a grounded dielectric slab.

+ k-o
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must be the case to achieve phase matching of the tangential fields at the .r : d interface
for all values of z.

The general solutions to (3.160) are then

Note that these solutions are valid for ft. and h either real or imaginary; it will turn out that
bothk. andh are real, because ofthe choice ofdefinitions in (3.161).

The boundary conditions that must be satisfied are

er(x,Y) :  Asink"x I  Bcosk"x '

er(x, y) : Ceh* * De-h' ,

Er(x, Y, z) : o,

Er(x, y, z) < oo,

Er(x, Y, z) continuous,

Hy(x, y, z) continuous,

f o r O < x < d ,

f o t d < r < @ .

(3.162a)

(3.162b)

(3.163a)

(3.163b)

(3.163c)

(3.163d)

(3.164a)

(3.164b)

a t  x  : 0 ,

asr  -+ @,

a t x :  d ,

a t x : d .

From(3.23) ,  H*:  Ey -  H, :0.Condi t ion(3.163a) impl iesthatB:0 in(3.162a).Con-
dition (3.163b) comes about as a requirement for finite fields (and energy) infinitely far
away from a source, and implies that C :0. The continuity of E. leads to

A sin krd : De-hd ,

while (3.23b) must be used to apply continuity to Hn, to obtain

f 
"o"o,o : orr-oo.

For a nontrivial solution, the determinant of the two equations of (3.164) must vanish,
leading to

kctmrkcd : €rh.

Eliminating B from (3.161a) and (3.161b) gives

(3.16s)

* , + n 2 : @ , - \ k f ; . (3.166)

Equations (3.165) and (3.166) constitute a set of simultaneous transcendental equa-
tions that must be solved for the propagation constants k, and h, given ko and er. These
equations are best solved numerically, but Figure 3.19 shows a graphical representation of
the solutions. Multiplying both sides of (3.166) by dz gives

(k,d)2 + (hd)z : G, - l)(kod)2,

which is the equation of a circle inthe k,d, hd plane, as shown in Figure 3.19. The radius of
the circle is J-e, - lkod, which is proportional to the electrical thickness of the dielectric
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slab. Multiplying (3.165) by d gives

krdtanktd : erhd,

which is also plotted in Figure 3.19. The intersection of these curves implies a solution to
both (3.165) and (3.166). Observe that k, may be positive or negative; from (3.162a) this
is seen to merely change the sign of the constant A. As Je, - tfoa becomes larger, the
circle may intersect more than one branch of the tangent function, implying that more than
one TM mode caa propagate. Solutions for negative fr, however, must be excluded since
we assumed ft was positive real when applying boundary condition (3.163b).

For any nonzero thickness slab, with a permittivity greater than unity, there is at least
one propagating TM mode, which we will call the TMs mode. This is the dominant mode
of the dielectric slab waveguide, and has a zero cutoff frequency. (Although for fts : Q,
k, : h : 0 and all flelds vanish.) From Figure 3.19,it can be seen that the next TM mode,
the TM1 mode, will not turn on until the radius of the circle becomes greater than n. The
cutoff frequency of the TM, mode can then be derived as

( _
2d Ja;-'

n : 0 , 1 , 2 , . . . . (3.167)

Once k" and ft have been found for a particular surface wave mode, the field expressions
can be found as

Er(x,  y ,  7)  :

Er(x, y, 7) -

Hr(x, y, z) :

+^cosk"xs-iflz

+ 
^ sink,ds-h(*-d) r-ip'

-t#^cosk,xs-if lz

-lf 
e sin k, d e - h (, - d), - i P,

f o r 0 < x < d

ford <.r  < oo,

f o r 0 < x < d

ford <.r  < oo,

f o r o < x < d

f o r d < r < o o .

(3. l68a)

(3.168b)

(3.168c)

I Asink,xe-ia'

l,+ rin nrdr-htx -dt 
e- i Pz

Graphical solution of the transcendental equation for the cutoff
surface wave mode of the grounded dielectric slab.

FIGURE 3.19 frequency of a TM
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TE Modes

TE modes can also be supported by the grounded dielectric slab. The Hz freld satisfies the
wave equations

(#. '1)n,a,),) :0,

(#-n ' )n ' {* ' } ) -o '

f o r 0 < x < d ,

ford <.x < oo,

(3.169a)

(3.169b)

(3.170a)

(3.170b)

(3.r7ra)

(3.r74)

with Hr(x, !, z) : hr(x, y)s-ifz, artd l4 and hz defined in (3.161a) and (3.161b). As for
the TM modes, the general solutions to (3.169) are

hr(x , Y) : A sin k"x * B cos k,x ,

h r (x ,y ) :  Ceh*  +  De-h ' .

To satisfy the radiation condition, C :0. Using (3.19d) to find E, from F/. leads to A : 0
for E, - 0 at.r : 0, and to the equation

f "tnn'n : "'-'o'
for continuity of E, at x : d. Continuity of H, at x : d gives

(2n - l\c
. f c  -  - - - - : ,  f o r  n  :  1 , 2 , 3 , . . . .

4dJe, - I

B coskrd : De-hd. (3.17lb)

Simultaneously solving (3.I7ta) and (3.171b) leads to the determinantal equation

-k" cotk,d : h. (3.172)

From (3.161a) and (3.161b) we also have that

t|+ n' : @, - ltfi. (3.r73)

Equations (3.I72) and (3.173) must be solved simultaneously for the variables k" and
fr. Equation (3.173) again represents circles inthe k,d, hd plane, whtle (3.172) can be
rewritten as

-k"d cot k"d : hd,

and plotted as a family of curves in the k,d, hd plane, as shown in Figure 3.20. Since
negative values of ft must be excluded, we see from Figure 3.20 that the first TE mode does
not start to propagate until the radius of the cirele, J7,7T ksd, becomes greater thann /2.
The cutoff frequency of the TE, modes can then be found as

Comparing with (3.167) shows that the order of propagation for the TM, and TE, modes
is,  TM6, TE1,  TM1, TE2,TM2,. . . .
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Graphical solution of the transcendental equation for the cutoff frequency of a TE
surface wave mode. Figure depicts a mode below cutoff.

f o r 0 < x < d

f o t d < r < o o ,

f o r 0 < x < d

f o t d < J r < o o ,

f o r 0 < x < d

for d <.r < oo.

(3.175a)

(3.175b)

(3.175c)

After finding the constants k" and h, the field expressions can be derived as

I B cosk"xe-ifz
Hr(x, y, z) : {

I B cos k"de-h(x -d\'- i fz

(  jpB

l ;s ink ,xs- i / :
H , (x ,  y ,z )  :  I

I # 
cos k,d s-ht'-d\ e-i Pz

[ 
-i9p"n 

sink,xs-tflz

E r ( x , y , O : l  
K c

I 
"F cos k"de-ht,-d) e-iPz

EXAMPLE 3.4 SURT:ACE WAYE PROPAGATION CONSTANTS

Calculate and plot the propagation constants of the first three propagating surface
wave modes of a grounded dielectric sheet with e, :2.55,for d/)"6: 0 to 1.2.

Solution
The first three propagating surface wave modes are the TMo, TEr , and TMr modes.
The cutoff frequencies for these modes can be found from (3 .L67) and (3. I 74) as

T M 6 :  f , : Q + ft:o,
T E 1 :  f , : = = ! a  L  : - L ,

4 d J e , - l  l . s  ( 4 J e , - l )

T M 1 : / ' : - ! a  ! : = L .
2dJe , - l  , l . e  (ZJe , - l )

The propagation constants must be found from the numerical solution of (3.165)
and (3. 1 66) for the TM modes, and (3.L7 2) and (3. 1 73) for the TE modes. This can
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1.4

B/k" 1.3

t .2

l . l

1 . 0
o .2 .4 .6 .8 1.0 1.2

d/io

FIGURE 3.21 Surface wave propagation constants for a grounded dielectric slab with €, :2.55.

be done with a relatively simple root-finding algorithm (see the Point of Interest
on root-finding algorithms); the results are shown in Figure 3.21. I

POINT OF INTEREST: Root-Finding Algorithms

In several examples throughout this book we will need to numerically find the root of a transcen-

dental equation, so it may be useful to review two relatively simple but effective algorithms for

doing this. Both methods can be easily programmed.
In the interval-halving method the root of /(r) : 0 is first bracketed between the values x1

and x2. These values can often be estimated from the problem under consideration. If a single

root lies between.{1 and x2, then f (x)f (x) < 0. An estimate,.x3, of the root is made by halving

the interval between rl and.{2. Thus,

I I  t I '

, r :  
Z - .

I t f ( x t ) f @ ) < 0 , t h e n t h e r o o t m u s t l i e i n t h e i n t e r v a l x r 1 x 1 x t ; r f f ( x t ) f ( x 2 ) < 0 , t h e n
the root must be in the interval x3 1x <xz. A new estimate, x4, can be made by halving

the appropriate interval, and this process repeated until the location of the root has been de-

termined with the desired accuracy. The figure below illustrates this algorithm for several
iteradons.

The Newton-Raphson method begins with an estimate, tl, of the root of /(x) : 0. Then a

new estimate, x2, is obtained from the formula

f (x)
it : -tt - --:--a ,

f ' ( x ' )

where /'(x1) is the derivative of f (x) at ;r1 . This result is easily derived from a two-term Taylor

series expansion of /(x) near.x : xt.f Q) : f (x) + (x - .xr)/'(xr). It can also be interpreted
geometrically as fitting a straight line at x : rl with the same slope as /(x) at this point; this line

then intercepts the x-axis at x : x2, as shown in the figure below. Reapplying the above formula
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gives improved estimates of the root. Convergence is generally much faster than with the interval
halving method, but a disadvantage is that the derivative of f(x) is required; this can often be
computed numerically. The Newton-Raphson technique can easily be applied to the case where
the root is complex (a situation that occurs, for example, when finding the propagation constant
of a line or guide with loss).

Reference: R. W. Hombeck, Numerical Methods, Quantum Publishers, New York, 1975.

STRIPLINE

We now consider stripline, a planar-type of transmission line that lends itself well to mi-
crowave integrated circuitry and photolithographic fabrication. The geometry of a stripline
is shown in Figure 3.22a. A thin conducting strip of width I4l is centered between two
wide conducting ground planes of separation b, and the entire region between the ground
planes is filled with a dielectric. In practice, stripline is usually constructed by etching the
center conductor on a grounded substrate of thickness b 12, and then covering with another
grounded substrate of the same thickness. An example of a stripline circuit is shown in
Figure 3.23.

Since stripline has two conductors and a homogeneous dielecffic, it can support a TEM
wave, and this is the usual mode of operation. Like the parallel plate guide and coaxial lines,
however, the stripline can also support higher order TM and TE modes, but these are usually
avoided in practice (such modes can be suppressed with shorting screws between the ground

. f1-1-11-
, ' , 4 - T - - t - - i - t  \

i { r r- : : : : - r , t , rt.'f-/--t-jl,'i
-Y-Y-J-J-if/

(b)

FIGURE 3.22 Stripline transmission line. (a) Geometry. (b) Electric and magnetic field lines.
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FIGURE 3.23 Photograph of a stripline circuit assembly, showing four quadrature hybrids, open-
circuit tuning stubs, and coaxial transitions.

Courtesy of Harlan Howe, Jr., M/A-COM Inc.

planes and by restricting the ground plane spacing to less than ),14). Intuitively, one can
think of stripline as a sort of "flattened out" coax-both have a center conductor completely
enclosed by an outer conductor and are uniformly filled with a dielectric medium. A sketch
of the field lines for stripline is shown in Figwe3.22b. The main difficulty we will have with
stripline is that it does not lend itself to a simple analysis, as did the transmission lines aad
waveguides that we have previously discussed. Since we will be concerned primarily with
the TEM mode of the stripline, an electrostatic analysis is sufficient to give the propagation
constant and characteristic impedance. An exact solution of Laplace's equation is possible
by a conformal mapping approach [6], but the procedure and results are cumbersome. Thus,
we will present closed-form expressions that give good approximations to the exact results
and then discuss an approximate numerical technique for solving Laplace's equation for a
geometry similar to stripline; this technique will also be applied to microstrip line in the
following section.

Formulas for Propagation Constant, Characteristic lmpedance,
and Attenuation

From Section 3.1 we know that the phase velocity of a TEM mode is given by

t:ia.:+

att.'l:::,
:!,:i:

!:::::

u p : l l ^ f p G o e r : c l J e r , (3.176)
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thus the propagation constant of the stripline is

In (3.176), c : 3 x 108 m,/sec is the speed of light in free-space. The characteristic impe-
dance of a transmission line is given by

I

u p C '

where /. and C are the inductance and capacitance per unit length of the line. Thus, we can
find Zs if we know C. As mentioned above, Laplace's equation can be solved by conformal
mapping to find the capacitance per unit length of the stripline. The resulting solution,
however, involves complicated special functions [6], so for practical computations simple
formulas have been developed by curve fitting to the exact solution 16l, Ul. The resulting
formula for characteristic impedance is

IT JLC
Zo: , , le :  C

(3.r77)

(3.178)

(3.179a)

(3.180a)

(3.180b)

30n b
7  _ _ _" - 

tF w" +o'441b'

where W" is the effective width of the center conductor given by

(3.17eb)

35-W/Dz fo r < 0.35.

These formulas assume a zero strip thickness, and are quoted as being accurate to about
l%o of the exact results. It is seen from (3.179) that the characteristic impedance decreases
as the sffip width W increases.

When designing stripline circuits, one usually needs to flnd the strip width, given the
characteristic impedance (and height 6 and permittivity e,), which requires the inverse of
the formulas in (3.179l. Such formulas have been derived as

for J€, Zo < 120

for Je, Zo > 120,

- 0.441.
J€,zo

Since stripline is a TEM type of line, the attenuation due to dielectric loss is of the same
form as that for other TEM lines and is given in (3.30). The attenuation due to conductor
loss can be found by the perturbation method or Wheeler's incremental inductance rule. An
approximate result is

2.7 x 10-3 R,€,Zo ^

w
b

0

(0.

W " W
b b

rc, [ , o.zs

where

with

d c :

W  [ x
_ t- _ \

b I o.8s - J66 -,
30n

30r(b - t)

0 .16R." B
Zob

A: t*#.: '#^(:+),

for 1@Zs < I2O

Np/m, (3.181)

for ,@Zs > 120

. B : l *  -  - !  ( o . t *
(0.5W + 0.7r1 \

where / is the thickness of the strip.

O.4I4t
W - *^Y{) ,
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EXAMPLE3.s STRIPLINEDESIGN

Find the width for a 50 Q copper stripline conductor, with b : 0.32 cm and €, :

2.20.If the dielectric loss tangent is 0.001 and the operating frequency is 10 GHz,
calculate the attenuation in dB/.},. Assume a conductor thickness of / = 0.01 mm.

Solution
Since Je,Zs : JZZ6O) : '14.2 < l2},andx :3On /(Je,Zi - 0.44I: 0.830,
(3.180) gives the width as W : bx: (0.32X0.830) :0.266 cm. At 10 GHz, the
wavenumber is

a * r  t  -

k : 
ot' J -t'/ 

t' 
: 3 lo.6 m-l ,

From (3.30) the dielectric attenuatiln is

ktan6
q d -

z

The surface resistance of copper at 10 GHz is R, - 0.026 S2. Then from (3.181)
the conductor attenuation is

2.7 x lO-3 RrerZsA :0.122 Np/m,d c :
30n(b - t)

since A : 4.74. The total attenuation constant is

In dB,

ot : otd I a" :0.277 Np/m.

a(dB) : 201oge" :2.41 dB/m

(310.6X0.001)
:0.155 Np/m.

At 10 GHz, the wavelength on the stripline is

f

X :  - : 2 . 0 2 c m .
t/e, I

so in terms of waveleneth the attenuation is

a(dB) : (2.41)(0.0202) :0.049 dB/.r..

An Approximate Electrostatic Solution

Many practical problems in microwave engineering are very complicated and do not lend
themselves to straightforward analytic solutions, but require some sort of numerical ap-
proach. Thus it is useful for the student to become aware of such techniques; we will in-
troduce such methods when appropriate throughout this book, beginning with a num6rical
solution for the characteristic impedance of stripline.

We know that the fields of the TEM mode on a stripline must satisfy Laplace's equation,
(3.1 1), in the region between the two parallel plates. The actual stripline geometry of Figure
3.22aextends to *oo, which makes the analysis more difficult. Since we suspect, from the
field line drawing of Figure 3.22b, that the field lines do not extend very far away from
the center conductor, we can simplify the geometry by truncating the plates beyond some
distance, say lxl > a/2, and placing metal walls on the sides. Thus, the geometry we will

I
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_ d 0
2

FIGURE 3.24 Geometrv of enclosed strioline.

analyze looks like that shown in Figure 3.24, where a ) b so that the fields around the
center conductor are not perturbed by the sidewalls. We then have a closed, finite region in
which the potential O(x, y) satisfies Laplace's equation,

v l o l x , y ) - 0 ,  f o r l x l  < a / 2 ,  o < y < b ,

with the boundary conditions that

O(x,  y) :  Q,  atx  :  la /2,

@(-r, y) : $, at Y - O, b.

nTx nTrv
An cos - sinh 

-
a a

nnx nn
B, cos - sinh -(b - y)

a a

(3.182)

(3.183a)

(3.183b)

f o r 0 < y < b / 2

(3.184)

f o r b / 2 < y < b .

f o r O < y < b l z

(3.186)

t o r b / 2 < y < b .

Laplace's equation can be solved by the method of separation of variables. Since the center
conductor dt y : b/2 will contain a surface charge density, the potential O(x, y) will
have a slope discontinuity there, because D: -eoerYtO is discontinuous at I : bl2.
So separate solutionsfor O(x, y)mustbe foundfor0 < y < b/2,andb/2 < y < b. The
general solutions for <D(x, y) in these two regions can be written as

<D(x, y):

6

\'
/2

n : l
odd

oo
\-
lJ

n :1
odd

In this solution, only the odd-n terms are needed because the solution is an even function
of-r. The reader can verify by substitution that (3.184) satisfies Laplace's equation in the
two regions and satisfies the boundary conditions of (3.183).

The potential must be continuous at y : 612, which from (3.184) leads to

A n :  B n . (3.185)

The remaining set of constants, A* can be found by solving for the charge density on the
center strip. Since E, : -AQ/0y, we have

- F o" /3).o, 
no* 

"o"hno!
n 7 _ t  

" \ a /  
a  a

odd

L A, l  -  f  cos -  cosh -(b -  y)
o - t  \ a /  a  a
odd

E y :
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The surface charge density on the strip at y : b /2 is

p , :  Dy (x , y :b /2+ ) -  D r (x , y  =b l2 - )

: eoerlEy(x,y : bl2+) - Er(x,y : bl2') l

- 2€o€ri o, (11) cos 
nn' 

,orhn!b .
7 : r  \ a /  a  z a
odd

which is seen to be a Fourier series in x for the surface charge density, p". If we know
the surface charge density, we could easily find the unknown constants, A,, and then the
capacitance. We do not know the exact surface charge density, but we can make a good
guess by approximating it as a constant over the width of the strip

Or,*)  :  
{  

1 fo t l x l<W12

for lx l>W12.

(3.187)

(3 .188)

(3.190)

(3 .191)

Fd/m. (3.re2)

Equating this to (3.187) and using the orthogonality properties of the cos(nn x f a) functions
gives the constants Au as

A _
2a sin(nnW /2a) (3.1 8e)

(n n )2 e o e, cosh(n n b I 2a)

The voltage of the center strip relative to the bottom conductor is

v  -  -  [u ' '  u , r * :o .y )dy :  i  a ,  , i r rnn lb
ro 

Fal 
za

The total charge, per unit length, on the center conductor is

rw12
Q : l  p " g ) d x : W C l m .

J_w12

so that the capacitance per unit length ofthe stripline is

g : 9 :
v

The characteristic impedance is then found as

2a sin(nn W /2a) sinh(nr b /2a)
(nr)2e oe, cosh(nr b /2a)

t-;--=Jrc 1 \E: - : - : -
C  u p C  c C '

m
\-

n: l
odd

Z o =

w h e r e c : 3 x 1 0 o m / s e c .

EXAMPLE 3.6 NUMERICAL CALCULATION OF STRIPLINE PARAMETERS

Evaluate the above expressions for a stripline having €r :2.55 and a : 1000, to
find the characteristic impedance for W lb : 0.25 to 5.0. Compare with the results
from (3.179).
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Solution
A computer program was written to evaluate (3.192). The series was truncated
after 500 terms. and the results are shown below.

wb
Numerical

Eq. (3.192)

Formula
Eq. (3.179)

0.25
0.50
1.0
2.0
3.5
5.0

98.8 (2

73.3
49.0

28.4
16.8
1 1 . 8

86.6 ()

62.7
4l .o
a ^  a

15.0
r0.8

3.8

We see that the results are in reasonable agreement with the closed-form
equations of (3.I79), particularly for wider strips. Better results could be obtained
if more sophisticated estimates were used for the charge density, p". t

MICROSTRIP

Microstrip line is one of the most popular types of planar transmission lines, primarily
because it can be fabricated by photolithographic processes and is easily integrated with
other passive and active microwave devices. The geometry of a microstrip line is shown
in Figure 3.25a. A conductor of width I/ is printed on a thin, grounded dielectric sub-
strate of thickness d andrelative permittivity e,; a sketch of the field lines is shown in
Figure 3.25b.

If the dielectric were not present (e, - 1), we could think of the line as a two-wire
line consisting of two flat strip conductors of width W, separated by a distance 2d (the

( b )

FIGURE 3.25 Microstrip transmission line. (a) Geometry. (b) Electric and magnetic field lines.

- E
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ground plane can be removed via image theory). In this case we would have a simple TEM
transmission line, with up : c and B : 1q.

The presence of the dielectric, and particularly the fact that the dielectric does not
fill the air region above the strip (y > d), complicates the behavior aad analysis of mi-
crostrip line. Unlike stripline, where all the fields are contained within a homogeneous
dielectric region, microstrip has some (usually most) of its field lines in the dielectric re-
gion, concenffated between the strip conductor and the ground plane, and some fraction
in the air region above the subsffate. For this reason the microstrip line cannot support
a pure TEM wave, since the phase velocity of TEM fields in the dielectric region would
be clJe,, but the phase velocity of TEM fields in the air region would be c. Thus, a
phase match at the dielectric-air interface would be impossible to attain for a TEM-type
wave.

In actuality, the exact fields of a microstrip line constitute a hybrid TM-TE wave, and
require more advanced analysis techniques than we are prepared to deal with here. In most
practical applications, however, the dielectric substrate is electrically very thin (d << ̂ .),
and so the fields are quasi-TEM. In other wordso the fields are essentially the same as those
of the static case. Thus, good approximations for the phase velocity, propagation constant,
and characteristic impedance can be obtained from static or quasi-static solutions. Then the
phase velocity and propagation constant can be expressed as

where e, is the effective dielectric constant of the microstrip line. Since some of the field
lines are in the dielectric region and some are in air, the effective dielectric constant satisfies
the relation

l < € " < e r ,

and is dependent on the substrate thickness, d, and conductor width, I/.
We will first present design formulas for the effective dielectric constant and charac-

teristic impedance of microstrip line; these results are curve-fit approximations to rigorous
quasi-static solutions [8], [9]. Then we will outline a numerical method of solution (simi-
lar to that used in the previous section for stripline) for the capacitance per unit length of
microstrip line.

Formulas for Effective Dielectric Constant, Characteristic
lmpedance, and Attenuation

The effective dielectric constant of a microstrip line is given approximately by

L

t/e"

fl : koJe",

(3.193)

(3.194)

(3.19s)e r * l  e r - l
+ -

2 ' 2

The effective dielectric constant can be interpreted as the dielectric constant of a homoge-
neous medium that replaces the air and dielecffic regions of the microstrip, as shown in
Figure 3.26.The phase velocity and propagation constant are then given by (3.193) and
(3.r94),.



FIGURE 3.26

3.8 Microstrip

Equivalent geometry of quasi-TEM microstrip line, where the dielectric slab of
thickness d and relative permittivity e. has been replaced with a homogeneous
medium of effective relative permittivity, e,.

the dimensions of the microstrip line, the characteristic impedance can be cal-Given
culated as

I
Z o :  I

t
#'"(#.#) f o r W l d < I

(3.1e6)
forWld > l .

(3.198)

(3.199)

l2on

Jalw ld + r.393 *0.667rn(W ld + r.444)1

For a given characteristic impedance Zs and dielectric constant e ,, the W f d ratio can
be found as

I s'o
w  I  e 2 A _ 2
7 : l ? l u - t - t n ( 2 8 -

t z L

f o r W l d  < 2

e " - 1 r  
+ 0 . 3 e _ q q l l  r o r w l d > 2 .t)+ 

* l tn(a 
- l )  - ' --  er Jl  (3.1e7)

where A -

o _ 377r" - 
zzoJe,'

Considering microstrip as a quasi-TEM line, the attenuation due to dielecffic loss can
be determined as

kse,(e. - 1)tandua: ,ffif;Notm'
where tan 6 is the loss tangent of the dielectric. This result is derived from (3.30) by multi
plying by a "filling factor,"

er(e" - 7)

€"(<,  -  l ) '

which accounts for the fact that the fields around the microsffip line are partly in air (lossless)
and partly in the dielectric. The attenuation due to conductor loss is given approximately
by t8l

o': ffiNvr^'
where R" : J@pW is the surface resistivity of the conductor. For most microsffip
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substrates, conductor loss is much more significant than dielectric loss; exceptions may
occur with some semiconductor substrates. however.

EXAMPLE3.T MICROSTRIPDESIGN

Calculate the width and length of a microstrip line for a 50 Q characteristic
impedance and a 90' phase shift at2.5 GHz. The subsffate thickness is d : 0.127
cm, with er :2.20.

Solution
We first findW ld for Zs :50 Q, and initially guess thatW /d > 2. From (3.I97),

B : 7 . 9 8 5 ,  W / d : 3 . 0 8 L .

So W ld > 2; otherwise we would use the expression for W ld < 2. Then W :

3.081d : 0.391cm. From (3.195) the effective dielectric constant is

e" : l'87 '

The line length, l,for a90' phase shift is found as

Q :90' - Fl : J-e"kol,
1 * {

ko - 
'-:-!- 

: 52.35 m-t ,
c

" 90'(n l l80) ^( : ---- _--- - 'r.19 Cm.
Je 'ko I

An Approximate Electrostatic Solution

We now look at an approximate quasi-static solution for the microstrip line, so that the
appearance of design equations like those of (3.195)-(3.197) is not a complete mystery.
This analysis is very similar to that carried out for stripline in the previous section. As in
that analysis, it is again convenient to place conducting sidewalls on the microstrip line,
as shown in Figure 3.27.The sidewalls are placed at x : La/2, where a )) d, so that the
walls should not perturb the field lines localized around the strip conductor. We then can
solve Laplace's equation in the region between the sidewalls:

Vf O(x, y):0,  for l . t l  < al2, 0 S y < oo, (3.200)

FIGURE 3.27 Geometry of a microstrip line with conducting sidewalls.



with boundary conditions,

O(;r, y) : Q,

O(-x, y) : Q,

at x : la/Z,

O t ) : Q , 9 9 .
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(3.201a)

(3.201b)

(3.202)

Since there are two regions defined by the airldielectric interface, with a charge discontinuity
on the strip, we will have separate expressions for <D(.r, y) in these regions. Solving (3.200)
by the method of separation of variables and applying the boundary conditions of (3.20ia,b)
gives the general solutions as

I i o" "orno' ,inh 
'o) 

for o < y < d
l F :  

"  a  a
@ ( x . v ) :  I  o d o

I  i  r ,  "o rY"  r -nor1o  fo rd  <y  <oo.
[ # ;  a

Now the potential must be continuous at y : d, so from (3.202) we have that

A, sinh 
nnd - Bne-nrd/a,

q

so O(x, y) can be written as

I i o, ,orn" "irrhnot
' l n = t  q  a

< D ( x . v ) -  |  
o a a

I i o, "o"no* sinT!!! "-"t(Y-d)/a
[ i * o  

a  a

(3.203)

f o r 0 < y < d

f o r d < y < o o .
(3.204)

f o r 0 < y < d

(3.205)
f o t d < y < o o .

(3.206)

The remaining constants, An, can be found by considering the surface charge density
on the strip. We first find E, : -DQ/3y:

t -  i  A " ( ! ! \ "o rno '  "o rhnoy
I  E t  

" \ a t  
a  a

-E,, : I ^^odd"' - 

| i. o, (T) coslla ,irrhnld "-nntv..dtta
l n = t  \ 4
t odd

Then the surface charge density on the strip at ) : d is

p, -  Dy(x,y -  d-)  -  Dr(x,y :  d-)

: eoEy(x, y : d+) - ese,Ey(x, y : d-)
m  n n x f  . n n d  , n r d l: .o I A, ('!).or - | smn - + €r cosn

- ' !  \ a ' /  a  L  q  a  Jn : l
odd

which is seen to be a Fourier series in x for the surface charge density, p". As for the
stripline case, we can approximate the charge density on the microstrip line by a uniform
distribution:

P ' (x ) :
for lx l<W12
for lx l>W12. (3.207)I r

l o
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Equating (3.20'7) to (3.206) and using the orthogonality of the cos nn x f a functions gives
the constants An as

A _
n n -

4a sinnnW l2a (3.208)
(nz)2eolsinh(nn d la) * e, cosh(nn d la)]'

The voltage ofthe strip relative to the ground plane is

v  -  -  fo  , , r *  :o .y )d ! :  i  e ,  " i , rh 'nd
Jo _"il a

The total charge, per unit length, on the center strip is

rw12
Q : 

J _*,r. 
p,(x)dx : w C/m.

so the static capacitance per unit length of the microstrip line is

g : 9 :
v oo

\-
n = l
odd

C

1  E .
o  -  V ' s

"  
upC cC

4a sin(nr W /2a) sinh(nn d I a)

(3.209)

(3.2r0)

(3.2rr)

(3.2r2)

(3.2r3)

(nn)2W e olsinh(nn d I a) * e, cosh(nr d I a)

Now to find the effective dielectric constant, we consider two cases of capacitance:

Let C : capacitance per unit length of the microstrip line with a dielectric substrate
(e, * r)

Let C o - capacitance per unit length of the microstrip line with an air dielectric (e, : I )

Since capacitance is proportional to the dielectric constant of the material homogeneously
filling the region around the conductors, we have that

So (3.212) can be evaluated by computing (3.211) twice; once with e, equal to the dielectric
constant of the substrate (for C), and then with a, - l (for Co). The characteristic impedance
is then

w h e r e c : 3 x 1 0 6 m / s e c .

EXAMPLE 3.8 NUMERICAL CALCULATIONOFMICROSTRIPPARAMETERS

Evaluate the above expressions for a microstrip line on a substrate with e, : 2.55.
Calculate the effective dielectric constant and characteristic impedancefor W f d :

0.5 to 10.0, and compare with the results from (3.195) and (3.196). Leta : IOOd.

Solution
Acomputerpiogramwaswrittentoevaluate (3.211) fore : €0 andthen € : €r€0.
Then (3 .212) was used to evaluate the effective dielectric constant, e n, and (3 .2I3)
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to evaluate the characteristic impedance, Zs. The series was truncated after 50
terms, and the results are shown in the followins table.

Numerical

Solutions Formulas

w/d Zo(9) Zo@)ee

0.5
1.0

2.0
4.0
7.0

10.0

t.977

1.989
2.036
2.179
2.287

2.351

100.9

94.9
75.8
45.0
29.5
21.7

1.938
1.990
2.068

2.t63
) )4\

2.198

119 .8

89.8

62.2
39.3
25.6
19.1

The comparison is reasonably good, although better results could be obtained
from the approximate numerical solution by using a better estimate of the charge
density on the strip.

3'9 THE TRANsvERsE RES.NAN.E TEcHNrouE

According to the general solutions to Maxwell's equations for TE or TM waves given in
Section 3.1, a uniform waveguide structure always has a propagation constant of the form

(3.2r4)

where k" : J t 1+ kj is the cutoff wavenumber of the guide and, for a given mode, is a
fixed functioir of the cross-sectional geometry of the guide. Thus, if we know ft. we can
determine the propagation constant of the guide. In previous sections we determine d k, by
solving the wave equation in the guide, subject to the appropriate boundary conditions; this
technique is very powerful and general, but can be complicated for complex waveguides,
especially if dielectric layers are present. In addition, the wave equation solution gives a
complete field description inside the waveguide, which is much more information than we
really need ifwe are only interested in the propagation constant ofthe guide. The transverse
resonance technique employs a transmission line model of the transverse cross section of
the waveguide, and gives a much simpler and more direct solution for the cutofffrequency.
This is another example where circuit and transmission line theory can be used to simplify
the field theory solution.

The transverse resonance procedure is based on the fact that in a waveguide at cutoff,
the fields form standing waves in the transverse plane of the guide, as can be inferred from
the "bouncing plane wave" interpretation of waveguide modes discussed in Section 3.2.
This situation can be modeled with an equivalent transmission line circuit operating at
resonance. One of the conditions of such a resonant line is the fact that, at any point on the
line, the sum of the input impedances seen looking to either side must be zero. That is,

zi"@) + z{n{x; :0, for all -r, (3.2r5)

where Zi@) afi Zl,(x) are the input impedances seen looking to the right and left, respec-
tively, at the point x on the resonant line.

T



150 Chapter 3: Transmission Lines and Waveguides

The transverse resonance technique only gives results for the cutoff frequency of the
guide. If fields or attenuation due to conductor loss are needed, the complete field theory
solution will be required. The procedure will now be illustrated with an example.

TEen Modes of a Partially Loaded Rectangular Waveguide

The transverse resonance technique is particularly useful when the guide contains dielectric
layers because the boundary conditions at the dielectric interfaces, which require the solution
of simultaneous algebraic equations in the field theory approach, can be easily handled as
junctions of different transmission lines. As an example, consider the rectangular waveguide
partially filled with dielectric, as shown in Figure 3.28. To find the cutoff frequencies for the
TE6, modes, the equivalent transverse resonance circuit shown in the figure can be used.
Thelinefor0<y</representsthedielectric-fi l ledpartoftheguide,andhasatransverse
propagation constant kya and a characteristic impedance for TE modes given by

where fro : oJtrto4, n0 : J p;fi. For / < y < b,the guide is air filled and has a trans-
verse propagation constant kro and an equivalent characteristic impedance given by

z k\ koqo
" 

kya kya

kono
t  - 4

Nya

(3.2r6a)

(3.2r6b)

Applying condition (3.215) yields

krotankrat * krltankyo(b - t) :0. (3.217)

This equation contains two unknowns,kro andkya. Anadditional equation is obtained from
the fact that the longitudinal propagation constant, B, must be the same in both regions, for
phase matching of the tangential fields at the dielectric interface. Thus, with k, : O,

a -v -

€,kA - k2r7: td - kl". (3.218)

Equations (3.217) and (3.218) can then be solved (numerically or graphically) to obtain kyd
andkyo. There will be an infinite number of solutions, corresponding to the n dependence
(number of variations in y) of the TEs, mode.

,1
D

(Air)

t
(Dielectric)

0

kv, zo

kra' Za

a x

FIGLIRE 3.28 A rectangular waveguide partially filled with dielectric and the transverse resonance

v
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WAVE VELOCITIES AND DISPERSION

So far, we have encountered two types of velocities related to the propagation of electro-
magnetic waves:

o The speed of light in a medium (t/JW)
o The phase velocity @p : alfl)

The speed of light in a medium is the velocity at which a plane wave would propagate
in that medium, while the phase velocity is the speed at which a constant phase point travels.
For a TEM plane wave, these two velocities are identical, but for other types of guided wave
propagation the phase velocity may be greater or less than the speed oflight.

If the phase velocity and attenuation of a line or guide are constants that do not change
with frequency, then the phase of a signal that contains more than one frequency component
will not be distorted. If the phase velocity is different for different frequencies, then the
individual frequency components will not maintain their original phase relationships as they
propagate down the transmission line or waveguide, and signal distortion will occur. Such
an effect is called dispersion, since different phase velocities allow the "faster" waves to lead
in phase relative to the "slower" waves, and the original phase relationships will gradually
be dispersed as the signal propagates down the line. In such a case, there is no single phase
velocity that can be attributed to the signal as a whole. However, if the bandwidth of the
signal is relatively small, or if the dispersion is not too severe, a group velocity can be
defined in a meaningful way. This velocity then can be used to describe the speed at which
the signal propagates.

Group Velocity

As discussed above, the physical interpretation of group velocity is the velocity at which a
narrow band signal propagates. We will derive the relation of group velocity to the propa-
gation constant by considering a signal f (t) in the time domain. The Fourier transform of
this signal is defined as

f @
,@) :  

J_*f  
( t te-r@t dt.

and the inverse transform is then

(3.219a)

f ( t ) : F(a)eptda. (3.21eb)

Now consider the transmission line or waveguide on which the signal ,f (r) is propa-
gating as a linear system, with a transfer function Z(a) thatrelates the output, Fo(a), of the
line to the input, F(ar), of the line, as shown in Figure 3.29. Thus,

F6(a): Z(a)F(a). (3.220)

*L

F'(a) = /'1au1P1t''

A transmission line or waveguide represented as a linear system with transfer func-
tton Z(ot).

FIGUR-E 3.29
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For a lossless, matched transmission line or waveguide, the transfer function Z(a) canbe
expressed as

Z(to):  Ae-iaz :  V@rle- iv . (3.22r)

where A is a constant and B is the propagation constant of the line or guide. The time-domain
representation of the output signal, fo(t), can then be written as

(3.222)

Now if lZ(a)l : A is a constant, and the phase ry' of Z(ot) is a linear function of crr,
say V - aa, then the output can be expressed as

f"(t) : * I : 
F @)tz(a)td@t 

-e1 0,.

1 f -
foft) : * J_* 

AFlapi'(t-o) da : Af (t - a),

srrrl :;[- f ()e-i'"t ri'' dt : F(at - ab),

(3.223)

which is seen to be a replica of f (t), except for an amplitude factor, A, and time shift, a.
Thus, a transfer function ofthe form Z(a): Ae-t'o does not diston the input signal. A
losslessTEMwavehasapropagationconstantB - c,.r/c,whichisofthisform,soaTEMline
is dispersionless, and does not lead to signal distortion. Ifthe TEM line is lossy, however,
the attenuation may be a function of frequency, which could lead to signal distortion.

Now consider a narrowband input signal of the form

s(t) :  f  ( t )cos(Dot :Relf  ( t )ei ' r l , (3.224)

which represents an amplitude modulated carrier wave of frequency a.rr. Assume that the
highest frequency component of f (t) is rrr., where (Dm 11 @o. The Fourier transform, S(ar),
of s(r), is

(3.22s)

where we have used the complex form of the input signal as expressed in (3.224). We will
then need to take the real part of the output inverse transform to obtain the time-domain
output signal. The spectrums of F(a;) and S(ar) are depicted in Figure 3.30.

The output signal spectrum is

S,(<r.r) : AF (a - ,,o)e-iFz, (3.226)

0 r ^ @ 4 o

(a)

0
(b)

FIGURE 3.30 Fourier spectrums of the signals (a) f (t) and (b) s(r).
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and in the time domain,

s,(r): J*. /- so(a)rei'td@
Lr '  J-m 

B.z2i l

: ]n. [ '"n'^ AF(a - aolelt-t-Fz) 46.1.
2n J."-.-

In general, the propagation constant B may be a complicated function of co. But if F(ar)
is narrowband (co* 11a.rr), then B can be linearized by using a Taylor series expansion
about arr:

b@): ptrs + 9l
e@ lr: ."

1 d 2 B l( a - a ; ) + ; 7 1  f r - a ) z * " ' .
z qo- la:a.

Retaining the first two terms gives

where

f (a t )=F,+ fLk ' t -@o) ,

p" : fl(ro),
d 8 l

P t : , 1_ 
do la :@"

(3.228)

(3.22e)

Then after a change of variables to y : @ * (Do, the expression for sr(r) becomes

so(/) : fi*"lrtr",-r" l_:^ r6yei<r-ok> ayl

: ARe lf O - 0'"4ei{'"t-0"o1
: Af (t - p'"D cos(aot * fl"2), (3.230)

which is a time-shifted replica of the original modulation envelope, f (t), of (3.224). The
velocity ofthis envelope is the group velocity, ur:

1  (  d p \ - ' l
r !  - - - l - - - : - l" : E: \^ ) l,:,.' 

(3'231)

EXAMPLE 3.9 WAVEGUIDE WAVE VELOCITIES

Calculate the group velocity for a waveguide mode propagating in an air-filled
guide. Compare this velocity to the phase velocity and speed of light.

Solution
The propagation constant for a mode in an air-filled waveguide is

p :JC-k? :J@/ , \ ' - k . .
Taking the derivative with respect to frequency gives

dB a/cz ko

da 
- 

1@Jcf *P 
- 

cB'

so from (3.234) the group velocity is

,,:(#)-':x
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The phase velocity is uo - a/F : &oc)lF.
Since B < ft6, we have that us < c < uo, which indicates that the phase

velocity of a waveguide mode may be greater than the speed of light, but the
group velocity (the velocity of a narrowband signal) will be less than the speed of
light.

3 .11 SUMMARY OF TRANSMISSION LINES AND WAVEGUIDES

In this chapter we have discussed a variety of transmission lines and waveguides; here we
will summarize some of the basic properties of these transmission media and their relative
advantages in a broader context.

In the beginning of this chapter we made the distinction between TEM, TM, and TE
waves and saw that ffansmission lines and waveguides can be categorized according to
which type of waves they can support. We have seen that TEM waves are nondispersive,
with no cutofffrequency, whereas TM and TE waves exhibit dispersion and generally have
nonzero cutofffrequencies. Other electrical considerations include bandwidth, attenuation,
and power handling capacity. Mechanical factors are also very important, however, and
include such considerations as physical size (volume and weight), ease offabrication (cost),

and the ability to be integrated with other devices (active or passive). Table 3.6 compares
several types of transmission media with regard to the above considerations; this table
only gives general guidelines, as specific cases may give better or worse results than those
indicated.

Other Types of Lines and Guides

While we have discussed the most common types of waveguides and transmission lines,
there are many other guides and lines (and variations) that we have not discussed. A few of
the more popular types are briefly mentioned here.

Ridge waveguide. The bandwidth of a rectangular waveguide is, for practical purposes, less
than an octave (a 2:1 frequency range). This is because the TE26 mode begins to propagate
at a frequency equal to twice the cutoff frequency of the TE16 mode. The ridge waveguide,
shown in Figurc 3.31, consists of a rectangular waveguide loaded with conducting ridges on

TABLE 3.6 Comparison of Common Tlansmission Lines and Waveguides

Characteristic Waveguide Stripline Microstrip

I

Modes: Preferred

Other

Dispersion

Bandwidth

Loss

Power capacity

Physical size

Ease of fabrication

Integration with

other components

TEM

TM,TE

None

High

Medium

Medium

Large

Medium

Hard

TEro
TM,TE

Medium
Low
Low
High
Large

Medium
Hard

TEM

TM,TE

None

High

High

Low

Medium

Quasi-TEM
Hybrid TM,TE

Low

High

High

Low

Small

Easy

Easy

Easy
Fair
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FIGURE 3.31 Cross section of a ridge waveguide.

thetop and/orbottomwalls. Thisloading tends tolowerthecutofffrequencyof thedominant
mode, leading to increased bandwidth and better impedance characteristics. Such a guide
is often used for impedance matching pulposes, where the ridge may be tapered along
the length of the guide. The presence of the ridge, however, reduces the power-handling
capacity of the waveguide.

Dielectric waveguide. As we have seen from our study of surface waves, metallic con-
ductors are not necessary to confine and support a propagating electromagnetic field. The
dielectric waveguide shown in Figure 3.32 is another example of such a guide, where e,2,
the dielectric constant of the ridge, is usually greater than €r1, the dielectric constant of the
substrate. The fields are thus mostly confined to the area around the dielectric ridge. This
type of guide supports TM and TE modes, and is convenient for integration with active
devices. Its small size makes it useful for millimeter wave to optical frequencies, although
it can be very lossy at bends or junctions in the ridge line. Many variations in this basic
geometry are possible.

Slotline. Of the many types of planar lines that have been proposed, slotline probably ranks
next, behind microstrip and stripline, in terms of popularity. The geometry of a slotline is
shown in Figure 3.33. It consists of a thin slot in the ground plane on one side of a dielectric
substrate. Thus, like microstrip, the two conductors of slotline lead to a quasi-TEM type of
mode. Changing the width of the slot changes the characteristic impedance of the line.

Coplanar waveguide. A structure similar to slotline is coplanar waveguide, shown in
Figure 3.34. Coplanar waveguide can be thought of as a slotline with a third conductor
centered in the slot region. Because of the presence of this additional conductor, this type
of line can support even or odd quasi-TEM modes, depending on whether the E-fields in
the two slots are in the opposite direction, or the same direction. Coplanar waveguide is
particularly useful for fabricating active circuitry, due to the presence ofthe center conductor
and the close proximity of the ground planes.

Covered microstrip, Many variations of the basic microstrip geometry are possible, but
one of the more cornmon is covered microstrip, shown in Figure 3.35. The metallic cover
plate is often used for electrical shielding and physical protection of the microstrip circuit

FIGURE 3.32 Dielectric waveguide geometry.
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FIGURE 3.33 Geometry of a printed slotline.

and is usually situated several substrate thicknesses away from the circuit. Its presence can,
however, perturb the operation of the circuit enough so that its effect must be taken into
account during design.

POINT OF INTEREST: Power Capacity of Transmission Lines

The power handling capacity of an air-filled transmission line or waveguide is limited by voltage
breakdown, which occurs at a field strength of about Ea :3 x 106 V/m for room temperature
air at sea level pressure.

In an air-filled coaxial line, the electric field varies as Eo:V"/(plnb/a), which has a
maximum at p - a. Thus the maximum voltage before breakdown is

V^u*: Eaa ln

and the maximum power capacity is then

(peak-to-peak),

p - . " : v : , * : o o ' E i  h 2 .
2Zo no a

As might be expected, this result shows that power capacity can be increased by using a larger
coaxial cable (latger a, b withfixedb la for the same characteristic impedance). But propagation

of higher order modes limits the maximum operating frequency for a given cable size. Thus,
there is an upper limit on the power capacity of a coaxial line for a given maximum operating
frequency, f.u", which can be shown to be given by

0.025 /  cE, \2  
,0 , ,  (  Eo  

1 '  .P . , , : - U * / : 5 . 8 x  
\ f i * /

As an example, at 10 GHz the maximum peak power capacity of any coaxial line with no higher
order modes is about 520 kW.

Inanair-filledrectangularwaveguide,theelectricfieldvariesasE, - E"sinQrx/a),whicb
has a maximum value of Eo al x : al2.Thus the maximum power capacity before breakdown
is

,  _ a b E i  _ a b E i' ^ * -  
4 Z u ,  

-  
4 2 ,

which shows that power capacity increases with guide size. For most waveguides, b = 2a. To

2
a

FIGURE 3.34 Coplanar waveguide geometry.
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FIGURE 3.35 Covered microstrip line.

avoid propagation of the TE26 mode, we must have a < cf f^u,, where f.u* is the maximum

operating frequency. Then the maximum power capacity of the guide can be shown to be

"-* -  o' t t  (+\ '  :2.6 xlo' '  f  g)
oo \ l ;^/  \1.*, /

As an example, at 10 GHz the maximum peak power capacity of a rectangular waveguide

operating in the TE16 mode is about 2300 kW, which is considerably higher than the power

capacity of a coaxial cable at the same frequency.
Because arcing and voltage breakdown are very high-speed effects, the above voltage and

power limits are peak quantities. In addition, it is good engineering practice to provide a safety

factor of at least two, so the maximum powers which can be safely transmitted should be limited

to about half of the above values. If there are reflections on the line or guide, the power capacity

is further reduced. In the worst case, a reflection coefficient magnitude of unity will double the

maximum voltage on the line, so the power capacity will be reduced by a factor of four.

The power capacity of a line can be increased by pressurizing the line with air or an inert

gas, or by using a dielectric. The dielectric strength (Ea) ofmost dielectrics is greater than that

of air, but the power capacity may be primarily limited by the heating of the dielectric due to

ohmic loss.

Reference: P. A.Nzzi, Microwave Engineering-Passive Circuits, Prentice-Hall, New Jersey, 1988.
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PROBLEMS

3.1 Derive Equations (3.5a-d) from equations (3.3) and (3.4).

3.2 Calculate the attenuation due to conductor loss for the TEn mode of a parallel plate waveguide.
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Consider a section of air-filled K-band waveguide. From the dimensions given in Appendix I, de-
termine the cutoff frequencies of the first two propagating modes. From the recommended oper-
ating range given in Appendix I for this guide, determine the percentage reduction in bandwidth
that this operating range represents, relative to the theoretical bandwidth for a single propagating

mode.

Compute the TEro mode attenuation, in dB/m, for K-band waveguide operating at f :20 GHz.
The waveguide is made from brass, and is filled with a dielectric material having e, :2.2 and
tanE : 0.002.

An attenuator can be made using a section of waveguide operating below cutoff, as shown below. If
a :2.286 cm and the operating frequency is 12 GHz, determine the required length of the below-
cutoff section of waveguide to achieve an attenuation of 100 dB between the input and output guides.

Isnore the effect of reflections at the step discontinuities.

Find expressions for the electric surface current density on the walls of a rectangular waveguide for
a TE16 mode. Why can a narrow slot be cut along the centerline of the broad wall of a rectangular
waveguide without perturbing the operation of the guide? (Such a slot is often used in a slotted line
for a probe to sample the standing wave field inside the guide.)

Derive the expression for the attenuation of the TM*n mode of a rectangular waveguide, due to
imperfectly conducting walls.

For the partially loaded rectangular waveguide shown on the next page, solve (3.109) with B : Q 16
find the cutoff frequency of the TE16 mode. Assume a : 2.286 cm, t : a/2, and e, : 2.25.

+

3.9 Consider the partially filled parallel plate waveguide shown below. Derive the solution (fields and
cutoff frequency) for the lowest order TE mode of this structure. Assume the metal plates are infinitely
wide. Can a TEM wave propagate on this structure?

3.3

3.4

3.5

3.6

3.7

3.8
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3.10 Consider the partially filled parallel plate waveguide shown below. Derive the solution (flelds and
cutofffrequency) for the TE modes. Can a TEM wave exist in this structure? Ignore fringing flelds at
the sides, and assume no x dependence.

,t
'l 'i M+

w>> d

3.11 Derive Equations (3.110a-d) for the transverse field components in terms of longitudinal fields, in
cylindrical coordinates.

3.12 Derive the expression for the attenuation of the TM,- mode in a circular waveguide with finite
conductivity.

3.13 Consider a circular waveguide with a : 0.8 cm, and filled with a dielectric material having €, : 2.3.
Compute the cutoff frequencies and identify the first four propagating modes.

3.14 Derive the E and 17 fields of a coaxial line from the expression for the potential given

in (3.153). Also find expressions for the voltage and current on the line and the characteristic
impedance.

3.15 Derive a transcendental equation for the cutoff frequency of the TM modes of a coaxial waveguide.
Using tables, obtain an approximate value of ft.a for the TMsl mode, lf b /a : 2.

3.16 Derive an expression for the attenuation of a TE surface wave on a grounded dielectric slab, when the
ground plane has finite conductivity.

3.17 Consider the grounded magnetic slab shown below. Derive a solution for the TM surface waves that
can propagate on this structure.

------..-..->

3.L8 Consider the partially filled coaxial line shown below. Can a TEM wave propagate on this line? Derive
the solution for the TMs* (no azimuthal variation) modes of this geometry.
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3.19 Design a stripline transmission line for a 70 Q characteristic impedance. The ground plane separation
is 0.316 cm, and the dielectric constant of the filling material is 2.20. What is the guide wavelength
on this transmission line if the frequency is 3.0 GHz?

3.20 Design a microstrip transmission line for a 100 Q characteristic impedance. The substrate thickness
is 0.158 cm, with e, :2.20. What is the guide wavelength on this transmission line if the frequency
is 4.0 GHz?

3.21 Al00Qmicrostriplineisprintedonasubstrateofthickness0.0T62cm,withadielectricconstantof
2.2. lgnoing losses and fringing fields, find the shortest length of this line that appea$ at its input as
a capacitor of 5 pF at2.5 GHz. Repeat for an inductance of 5 nH. Using a microwave CAD package

with a physical model for the microstrip line, compute the actual input impedance seen when losses
are included (assume copper conductors and tan 6 : 0.001).

3.22A microwave antenna feed network operating at 5 GHz requires a 50 Q printed transmission line that is
16), long.Possiblechoicesare(1)coppermicrostr ip,withd:0.16cm, e,:2.20,andtan6:0.001,
or (2) copper str ipl ine, with D:0.32 cm, <,:2.2O, t  :0.01 mm, and tan6:0.001. Which l ine
should be used, if attenuation is to be minimized?

Consider the TE modes of an arbitrary uniform waveguiding structure, where the transverse fields are
related to 11. as in (3.19). If 11. is of the form H,(x, y, z) : hr(x, l)e-iqz , where hr(x , y) is a real
function, compute the Poynting vector and show that real power flow occurs only in the z direction.
Assume that B is real, corresponding to a propagating mode.

Apieceofrectangularwaveguideisairfllledforz<0anddielectricfilledforz>0.Assumethatboth
regions can support only the dominant TEq6 mode, and that a TEls mode is incident on the interface
from z < 0. Using a field analysis, write general expressions for the transverse fi.eld components of
the incident, reflected, and transmitted waves in the two regions, and enforce the boundary conditions
at the dielectric interface to flnd the reflection and transmission coefflcients. Compare these results to
those obtained with an impedance approach, using Z1g for each region.

Use the transverse resonance technique to derive a transcendental equation for the propagation constant
of the TM modes of a rectangular waveguide that is air filled for 0 < x < d and dielectric filled for
d < x < a .

Apply the transverse resonance technique to find the propagation constants for the TE surface waves
that can be supported by the structure of Problem 3.17.

An X-band waveguide filled with Teflon is operating at 9.5 GHz Calculate the speed of light in this
material and the phase and group velocities in the waveguide.

As discussedinthePointof Interestonthepowerhandling capacityof transmissionlines, the maximum
power capacity of a coaxial line is limited by voltage breakdown, and is given by

P^u* - oo'Ei 
^b-

4 o a

where E1 is the field strength at breakdown. Find the value of b/a that maximizes the maximum
power capacity and show that the corresponding characteristic impedance is about 30 Q.

3.23

3.24

3.25

3.26

3.27

3.28



Microwave Network Analysis

Circuits operating at low frequencies, for which the circuit dimensions are small relative to
the wavelength, can be treated as an interconnection of lumped passive or active components
with unique voltages and currents defined at any point in the circuit. In this situation the circuit
dimensions are small enough so that there is negligible phase change from one point in the
circuit to another. In addition, the fields can be considered as TEM fields supported by two or
more conductors. This leads to a quasi-static type of solution to Maxwell's equations, and to
the well-known Kirchhoff voltage and current laws and impedance concepts of circuit theory

[1]. As the reader is aware, there exists a powerful and useful set of techniques for analyzing
low-frequency circuits. In general, these techniques cannot be directly applied to microwave
circuits. It is the purpose of the present chapter, however, to show how circuit and network
concepts can be extended to handle many microwave analysis and design problems of practical
interest.

The main reason for doing this is that it is usually much easier to apply the simple and
intuitive ideas of circuit analysis to a microwave problem than it is to solve Maxwell's equations
for the same problem. In a way, field analysis gives us much more information about the particular
problem under consideration than we really want or need. That is, because the solution to
Maxwell's equations for a given problem is complete, it gives the electric and magnetic fields
at all points in space. But usually we are interested in only the voltage or current at a set of
terminals, the power flow through a device, or some other type of "global" quantity, as opposed
to a minute description of the response at all points in space. Another reason for using circuit or
network analysis is that it is then very easy to modify the original problem, or combine several
elements together and flnd the response, without having to analyze in detail the behavior of
each element in combination with its neighbors. A field analysis using Maxwell's equations for
such problems would be hopelessly difftcult. There are situations, however, where such circuit
analysis techniques are an oversimplification, leading to erroneous results. In such cases one
must resort to a fleld analysis approach, using Maxwell's equations. It is part of the education of
a microwave engineer to be able to determine when circuit analysis concepts apply, and when
they should be cast aside.

The basic procedure for microwave network analysis is as follows. We first treat a set of
basic, canonical problems rigorously, using field analysis and Maxwell's equations (as we have

161
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done in Chapters 2 and 3, for a variety of transmission line and waveguide problems). When
so doing, we try to obtain quantities that can be directly related to a circuit or transmission line
parameter. For example, when we treated various transmission lines and waveguides in Chapter 3
we derived the propagation constant and characteristic impedance of the line. This allowed the
transmission line or waveguide to be treated as a distributed component characterized by its
length, propagation constant, and characteristic impedance. At this point, we can interconnect
various components and use network and/or transmission line theory to analyze the behavior of
the entire system of components, including effects such as multiple reflections, loss, impedance
transformations, and transitions from one type of transmission medium to another (e.g., coax to
microstrip). As we will see, a transition between different transmission lines, or a discontinuity
on a transmission line, generally cannot be treated as a simple junction between two transmission
lines, but must be augmented with some type of equivalent circuit to account for reactances
associated with the transition or discontinuity.

Microwave network theory was originally developed in the service of radar system and
component development at the MIT Radiation Lab in the 1940s. This work was continued and
extended at the Polytechnic Institute of Brooklyn by researchers such as E. Weber, N. Marcuvitz,
A. A. Oliner, L. B. Felsen, A. Hessel, and others [2].

4.1 IMPEDANCE AND EQUIVALENT VOLTAGES AND CURRENTS

Equivalent Voltages and Currents

At microwave frequencies the measurement of voltage or current is difficult (or impossible),
unless a clearly defined terminal pair is available. Such a terminal pair may be present in
the case of TEM-type lines (such as coaxial cable, microstrip, or stripline), but does not
strictly exist for non-TEM lines (such as rectangular, circular, or surface waveguides).

Figure 4.1 shows the electric and magnetic field lines for an arbitrary two-conductor
TEM transmission line. As in Chapter 3, the voltage, V, of the * conductor relative to the -

conductor can be found as

E  . d t , (4 .1 )

where the integration path begins on the * conductor and ends on the - conductor. It is
important to realize that, because of the electrostatic nature of the transverse fields between
the two conductors, the voltage defined in (4.1) is unique and does not depend on the shape
of the integration path. The total current flowing on the * conductor can be determined
from an application of Ampere's law as

r :6  u .a [ . ,  (4 .2 )
Jc+

where the integration contour is any closed path enclosing the + conductor (but not

, : f*
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- E

- - * -  E

FIGURE 4.1 Electric and magnetic field lines for an arbitrary two-conductor TEM line.

the - conductor). A characteristic impedance Zs canthenbe defined for traveling waves as

Z n : Y ." I (4.3)

(4.4a)

(4.4b)

At this point, after having defined and determined a voltage, cunent, and characteristic
impedance (and assuming we know the propagation constant for the line), we can proceed
to apply the circuit theory for transmission lines developed in Chapter 2 to characterize this
line as a circuit element.

The sifuation is more difficult for waveguides. To see why, we will look at the case of a
rectangular waveguide, as shown in Figwe 4.2. For the dominant TEle mode, the transverse
fields can be written. from Table 3.2. as

Er(x, !, z; : !e!! g"in!!r-iF' : Aey(x, !)e-if',

H*(x,y,r) :  iFo Asinfr ' "- iF '  :  Ahr(x, !)e- i fz.

'.........-.------------��
a x

j

i
I

FIGURE 4.2 Electric field lines for the TEls mode of a rectangular waveguide.
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Applying (4.1) to the electric field of (4.4a) gives

-l@LLa 1fx
v : - A s l n - e

7 f a
(4.s)

Thus it is seen that this voltage depends on the position, r, as well as the length of the
integrationcontouralongthey direction. Integratingfromy :0tob forx: al2givesa
voltage that is quite different from that obtained by integrating from }, : 0 to b for x : O,
for example. What, then, is the correct voltage? The answer is that there is no "correct"

voltage in the sense of being unique or pertinent for all applications. A similar problem
arises with cuffent, and also impedance. We will now show how we can define voltages,
currents, and impedances that can be useful for non-TEM lines.

There are many ways to define equivalent voltage, current, and impedance for wave-
guides, since these quantities are not unique for non-TEM lines, but the following consider-
ations usually lead to the most useful results ul, [3], [4]:

Voltage and current are defined only for a particular waveguide mode, and are defined
so that the voltage is proportional to the transverse electric field, and the current is
proportional to the transverse magnetic field.
In order to be used in a manner similar to voltages and currents of circuit theory
the equivalent voltages aad currents should be defined so that their product gives the
power flow of the mode.
The ratio of the voltage to the current for a single traveling wave should be equal to
the characteristic impedance of the line. This impedance may be chosen arbitrarily,
but is usually selected as equal to the wave impedance of the line, or else normalized
to unity.

For an arbitrary waveguide mode with both positively and negatively traveling waves,
the transverse fields can be written as

-tu' 
l,o''

E,(x,  y,  z) :  ?(x,  y)( /+ s- i f lz *  A- ei \ ' ;  :  
a(2D 

1v+ e- i \z t  V- " i f  2 l , ,  @.6a)' C r

17,(r, y, z) : h(x, i(l+"-in' - A-si0z1 : A.!g*s-ifz - I-si\z1, (4.6b)

where Z and h are the transverse field variations of the mode, and A+, A- arc the field
amplitudes of the traveling waves. Since E, and E, are related by the wave impedance, Z*,
according to (3.22) or (3.26), we also have that

r .  2  x  ?(x .Y)
n \ x . y ) :  

z .  
.

Equation (4.6) also defines equivalent voltage and current waves as

V (z) : Y+ r-if lz * V- eiFz .

I(z) : 7+ r-i?z - I- si?z ,

(4.7)

(4.8a)

(4.8b)

with V+ I F : V- / F : Zo. This definition embodies the idea of making the equivalent
voltage and current proportional to the transverse electric and magnetic fields, respectively.
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The proportionality constants for this relationship are C1 : V+ 14+ : V- lA- and C2:
I+ /A+ : I- lA-,andcanbedeterminedfromtheremainingtwoconditionsforpowerand
impedance.

The complex power flow for the incident wave is given by

1 . ^ r r
P ' : ; A - f l l  ? x h *

Z J J
s

v+I+* f f  _'2ds  :  ; ;  - .  l l  e  x  h .  .Zas .
Lv lv2  JJ

s
(4.e)

(4 .11)

(4.12a)

(4.13a)

(4.13b)

Since we want this power to be equal to (7 /2)V+ I+*, we have the result that

since Vr : CtA and 1+ : CzA, from (4.6a,b). If it is desired to have Z0: 2., the wave
impedance (Zry or Zry) of the mode, then

Alternatively, it may be desirable to normalize the characteristic impedance to unity
(Zo : 1), in which case we have

Ct

c ; :  r ' (4.r2b)

So for a given waveguide mode, (4.10) and (4.12) can be solved for the constants, C1
and Cy, and equivalent voltages and currents defined. Higher order modes can be treated
in the same way, so that a general field in a waveguide can be expressed in the following
form:

where Vf and If, are the equivalent voltages and currents for the nth mode, and C1, and
C2n arc the proportionality constants for each mode.

EXAMPLE 4.1 EQUMLENT VOLTAGE AND CURRENT
FOR A RECTANGULAR WAVEGUIDE

Find the equivalent voltages and currents for a TE16 mode in a rectangular wave-
guide.

c ( ; :  I I  ,  "  h*  .zds,

z n : Y  :  Y -  : 9 t  ." l + I - C z

Z: 
t. (Z1B or Z7y1).

E,(*, y,., : 
* (fru'o, * E,'o,) dn'", y),

H,(x, y, d : f_(fru'n, 
- 

*,,' 
o,) rt,e, il,

(4.10)

s

where the surface integration is over the cross section ofthe waveguide. The characteristic
impedance is
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Solution
The transverse field components and power flow of the TE16 rectangular wave-
guide mode and the equivalent transmission line model of this mode can be written
as follows:

Waveguide Fields Transmission Line Model

Er: (A+e-iaz a 4-" i fz)sin(trx/a)

n,: 
f i(e.slu 

- A-siaz)sin(rx/a)

,* -+ l,u,r:o*0, : hv.f

V ( z ) : V + e - i ? z  1 Y - s i f z

I ( d - I + e - i 0 z - 1 - " i f l 2

- i fz  -  y-r i fz)-  
*(r . ,

r : | v * f .

We now find the constants Ct : V+ I A+ : V 
- 

I A- and C2 : I+ / A* : I 
- 

/ A-
that relate the equivalent voltages V+ and currents 1* to the field amplitudes, A+.
Equating incident powers gives

4! I  - !y+J+*: \e+c{ i .
42rc, 2 '�-

If we choose Zo : Zrn, then we also have that

Z7v.

Solving for C1, C2 gives

Cz

which completes the transmission line equivalence for the TEls mode. :

The Goncept of lmpedance

We have used the idea of impedance in several different applications, so it may be useful
at this point to summarize this imponant concept. The term impedance was first used by
Oliver Heaviside in the nineteenth century to describe the complex ratio V / I in AC circuits
consisting of resistors, inductors, and capacitors; the impedance concept quickly became
indispensable in the analysis of AC circuits. It was then applied to transmission lines, in
terms of lumped-element equivalent circuits and the distributed series impedance and shunt
admittance of the line. In the 1930s, Schelkunoff recognized that the impedance concept
could be extended to electromagnetic fields in a systematic way, and noted that impedance
should be regarded as characteristic of the type of field, as well as the medium [2]. And, in
relation to the analogy between ffansmission lines and plane wave propagation, impedance
may even be dependent on direction. The concept of impedance, then, forms an important
link between field theory and transmission line or circuit theory.

v+ C1
I+ Cz

C1
l"b- \  
z '

1 fab
:  - ^ l  - .

Z r E \  2 '
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Below we summarize the various types of impedance we have used so far and their
notation:

. rl : J pk : intrinsic impedance of the medium. This impedance is dependent only
on the material parameters of the medium, and is equal to the wave impedance for
plane waves.

o Zr: E1f H1 - lf Y.: wave impedance. This impedance is a characteristic of
the particular type of wave. TEM, TM, and TE waves each have different wave
impedances (Zmu, Zrvt, Zrn), which may depend on the type of line or guide, the
material, and the operating frequency.

q Z0 : l lYo : JTTC = characteristic impedance. Characteristic impedance is the
ratio of voltage to current for a traveling wave on a transmission line. Since voltage
and current are uniquely defined for TEM waves, the characteristic impedance of a
TEM wave is unique. TE and TM waves, however, do not have a uniquely defined
voltage and current, so the characteristic impedance for such waves may be defined
in various ways.

EXAMPLE 4.2 APPLICATION OF WAVEGTJIDE IMPEDANCE

Consider a rectangular waveguide with a : 2.286 cm and b : 1�016 cm (X-band
guide), air filled for z < 0 and Rexolite filled (e, : 2.54) for z > 0, as shown in
Figure 4.3. If the operating frequency is 10 GHz, use an equivalent transmission
line model to compute the reflection coefficient of a TEls wave incident on the
inter facefromz<0.

Solution
The propagation constants in the air (z < O; and the dielectric (z > O; regions are

p " -

F a :

: 158.0 m-r

:304 .1  m- l ,

where fts : 209.4 m-1 .
The reader may verify that the TEls mode is the only propagating mode in

either waveguide region. Now we can set up an equivalent transmission line for
the TEls mode in each waveguide and treat the problem as the reflection of an
incident voltage wave at the junction of two infinite transmission lines.

r<---l
1.

FIGURE 4.3 Geometry of a partially filled waveguide and its transmission line equivalent for

Example 4.2.

f-"-.- .  )

, l r t-()-
T  ' - J

,l"oa - \;)

zooZoo
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By Example 4.7 andTable 3.2, the equivalent characteristic impedances for
the two lines are

zo^ : !!!e - Qoe.'!Q11) : 5oo.o e.p" 158.0

- kn ko4o 2O9AX377)z o o :  
f r a :  # :  

-  
3 o a r -  

: 2 5 9 ' 6  s 2 '

The reffection coefficient seen looking into the dielectric filled region is then

f -
zou - Zo, :  -0.316.
Zoo I Zo,

With this result, expressions for the incident, reflected, and transmitted waves can
be written in terms of fields, or in terms of equivalent voltages and currents. I

We now consider the arbitrary one-port network shown in Figure 4.4, and derive a
general relation between its impedance properties and electromagnetic energy stored in,
and the power dissipated by, the network. The complex power delivered to this network is
given by (1.91):

(4.r4)

where Ps is real and represents the average power dissipated by the network, and I4l. and
IV, represent the stored magnetic and electric energy, respectively. Note that the unit normal
vector in Figure 4.4 is pointing into the volume.

If we define real transverse modal fields, E and il . over the terminal plane of the network
such that

P : 
;f 

u " H* . ds : Pt *2ja(w^ * w"),

p  : ;  
l r r , .u  

x  l t  .as  :  
)v  r

E,(x, y, 7) - t/ (a)E(x, y)"-if '  ,

E,(*, y, 11 : 1 ()lt@, !)e-iFz,

with a normalization such that

I  u r n . d s : r ,
Js

then (4.14) can be expressed in terms of the terminal voltage and current:

(4.15a)

(4.1sb)

(4.16)

One-port
network

it

E .E

FIGUR"E 4.4 An arbitrary one-port network.
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Then the input impedance is

V V I* P Pt -t2ja(W* - W")
. (4.r7)Z i r = R + j X :

7 
:  

1t1'  
:  tSrp -

-------Lnt,

2 t -  |

Thus we see that the real part, R, of the input impedance is related to the dissipated power,
while the imaginary part, X, is related to the net energy stored in the network. If the network
is lossless, then Ps: 0 and R : 0. Then Zi' is purely imaginary, with a reactance

which is positive for an inductive load (W* > W"), and negative for a capacitive load
(W^ < W")'

Even and Odd Properties of Z(,:l andT(wl

Consider the driving point impedance, Z(to), at the input port of an electrical network. The
voltage and current at this port are related as V(ar) : Z(r't)I(a). For an arbitrary frequency
dependence, we can find the time-domain voltage by taking the inverse Fourier transform
of V (at):

,o): * f* ,{,),'''a,.

Z(a \ -Zo  R(a r ) -  Zo*  jX (co )

Z(a) * Zo R(ar) + Zo * jX(a)'

,  R(ro)  -  Zs-  jx(at )  n* .  .
L  l - W ,  :  L  l W t .

R ( o ) * Z o - j X ( t o )

(4.r9)

Since u(t) must be real, we have that u(l) : 2*11;, ot

[ *  , ( r r " t ' '  de; :  [ *  , .1r \ r - i - 'd(u:  [ *  , . r - r r r i ' '  d . .
J-a J-*  J-*

where the last term was obtained by a change of variable from a to -a. This shows that
V(al) must satisfy the relation

V(*a) :  V"(a) , (4.20)

which means that Re{V(ar)} is even in a,l, while Im{V(ar)} is odd in ar. Similar results hold
for I\a), and for Z(a) since

V"(-a): Z*(*a)l*(-ar) : Z*(-a)I(a) : V(a) : Z(a)I(a;).

Thus, if Z(ro) - R(rp) + j X(at), then R(a;) is even in ar and X(ar) is odd in rrr. These results
can also be inferred from (4.17).

Now consider the reflection coefficient at the input port:

(4.18)

(4.21)

(4.22)Then,

which shows that the real and imaginary parts of f (ro) are even and odd, respectively, in cr.r.
Finally, the magnitude of the reflection coefficient is

I f (ar) 12 : f (ar)f *(ar) : f (co)f (-ar) : I f (-a.r) 12, (4.23)

which shows that lf (ro)12 and lf (ar)l are even functions of ar. This result implies that only
even series of the form a * baz I caa *. . . can be used to represent lf(co)l or lf(ar)12.
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IMPEDANCE AND ADMITTANCE MATRICES

In the previous section we have seen how equivalent voltages and currents can be defined for
TEM and non-TEM waves. Once such voltages and currents have been defined at various
points in a microwave network, we can use the impedance and/or admittance matrices of
circuit theory to relate these terminal or "port" quantities to each other, and thus to essentially
arrive at a matrix description of the network. This type of representation lends itself to the
development of equivalent circuits of arbitrary networks, which will be quite useful when
we discuss the design ofpassive components such as couplers and filters.

We begin by considering an arbitrary N-port microwave network, as depicted in
Figure 4.5. The ports in Figure 4.5 may be any type of transmission line or transmission
line equivalent of a single propagating waveguide mode. (The teffn port was introduced by
H. A. Wheeler in the 1950s to replace the less descriptive and more cumbersome phrase,
"two-terminal pair" l3l, tzl.) If one of the physical ports of the network is a waveguide
supporting more than one propagating mode, additional electrical ports can be added to
account for these modes. At a specific point on the nth port, a terminal plane, tn, is defined
alongwithequivalentvoltagesandcurrentsfortheincident(Vn+,1r+)andreflected(V" ,1")
waves. The terminal planes are important in providing a phase reference for the voltage and
current phasors. Now at the nth terminal plane, the total voltage and current is given by

(4.24a)

(4.24b)

as seen from (4.8) when z : 0.
The impedance matrix [Z] of the microwave network then relates these voltages and

currents:

V,:  VI + v;,

In :  I I  -  I ; ,

':il:]Zn

[r ]] :17,"
L Y,u J LZ*,

vi,4
rlltj]*
*flJllt

v r . -  I r

VT.Ii
*TIIII
ljlfr*

v;  - I ;

FIGURE 4.5 An arbitrary N-port microwave network.
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or in matrix form as

IVI: lzlul.

Similarly, we can define an admittance matrix [Y] as

I rtt
I
I Yzr

- l

t '

l '
LYp r

or in matrix form as

u l :  [y ] [y ] .
Of course, the lzl and [f ] matrices are the inverses of each other:

lY l :  lz l -1 .

Note that both the [Z] and [I] matrices relate the total port voltages and currents.
From (4.25), we see lhat Z;ican be found as

(4.26)

(4.27)

(4.2s)

'1"1 
f ll: l l : l

Yrvrvl  LYruJL:]
Ytz

t":t l,r:o^,o*;

I' I
Y ; i :  I  I' '  

V j l v o : g t o , t 7 i

(4.28)

In words, (4.28) states that Z;i can be found by driving port j with the current f , open-
circuiting all other ports (so 1r : 0 for k I "t), and measuring the open-circuit voltage at
port l. Thus, Z;; is the input impedance seen looking into port i when all other ports are
open-circuited, and Zii is the transfer impedance between ports i and j when all other ports
are open-circuited.

Similarly, from(4.26),Yii carrrbe found as

(4.2e)

which states thatY;i canbe determined by driving port j with the voltage V;, short-circuiting
all other ports (so V* : O for k I j), and measuring the short-circuit current at port i.

In general, each Zi1 or I;; element may be complex. For an arbitrary N-port network,
the impedance and admittance matrices are N x N in size, so there are 2Nz independent
quantities or degrees of freedom. In practice, however, many networks are either reciprocal
or lossless, or both. Ifthe network is reciprocal (not containing any nonreciprocal media such
as ferrites or plasmas, or active devices), we will show that the impedance and admittance
matrices are symmetric, so that Zii : Zii, andYii : Yii.If the network is lossless, we can
show that all the Z;1 or Y;; elements are purely imaginary. Either of these special cases
serves to reduce the number of independent quantities or degrees of freedom that an N-port
network may have. We now derive the above characteristics for reciprocal and lossless
networks.

Reciprocal Networks

Consider the arbitrary network of Figure 4.5 to be reciprocal (no active devices, ferrites,
or plasmas), with short circuits placed at all terminal planes except those of ports 7 and 2.
Now let Eo, Ilo and Eu, fl6 Ue ttre fields anywhere in the network due to two independent
sources,4 and b, located somewhere in the network. Then the reciprocity theorem of (1.156)
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states that

(4.30)

where we will take S as the closed surface along the boundaries of the network and through
the terminal planes of the ports. If the boundary walls of the network and transmission lines
are metal, then E1'' : 0 on these walls (assuming perfect conductors). If the network or
the transmission lines are open structures, like microstrip or slotline, the boundaries of the
network can be taken arbitrarily far from the lines so that E1- is negligible. Then the only
nonzero contribution to the integrals of (4.30) come from the cross-sectional areas of ports 1
and2.

From Section 4.1. the fields due to sources a and b can be evaluated at the terminal
planes /1 andt2 as

E u :  V u ? t  H n :  I u h r

Erc :  Vr&t  Hn:  Iwhr

Ezo:  VuEz Eu:  Iuhz

Ezo : Vzu?z ITzt : Izuhz'

(4.31)

where 21, h1 and 82, il.2 arelhe transverse modal fields of ports I and},respectively, and the
Vs and 1s are the equivalent total voltages and cunents. (For instance, E11 is the transverse
electric field at terminal plane 11 of port 1 due to source b.) Substituting the fields of (4.31)
into (4.30) gives

f _ f _
(vulu,  -  vru l to \  

/ , r ,u t ,  
h t .  as *(v2126 -  vzolu)  

Jr ! ,  
"  i l2 '  d5 :0,  (4.32\

where ,S1, 52 are the cross-sectional areas at the terminal planes of ports I and2.
As in Section 4.1, the equivalent voltages and currents have been defined so that the

power through a given port can be expressed as V I* 12; then comparing (4.31) to (4.6)
implies that C1 : Cz - 1 for each port, so that

This reduces @.32]. to

f - - f
9 E " r H r . d S : Q E u x H o . d S .
. / S  J S

f t '

I  e r x h r . d s :  I  e z x h z . d s : 1 .
Js, Js,

VuIw - VrcIu * Vulzt - V26I2o - g.

Now use the 2 x 2 admittance matrix of the (effectively) two-port network to eliminate the
1s:

I r : Y n V r * Y o V z ,

I z : Y z t V r * Y 2 2 V 2 .

Substitution into (4.34) gives

(VnVzu - VnVu)(Ytz - Yz) :0. (4.3s)

Since the sources a and b are independent, the voltages Vro, VLb, V26, and V26 cafi take on
arbitrary values. So in order for (4.35) to be satisfied for any choice of sources, we must
have Yp : Yzr, and since the choice of which ports are labeled as 1 and 2 is arbitrary, we
have the general result that

y1i :  y1i.

Then if [Y] is a symmetric matrix, its inverse, [Z], is also symmetric.

(4.33)

(4.34)

(4.36)
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Lossless Networks

Now consider a reciprocal lossless N-port junction; we will show that the elements of the
impedance and admittance matrices must be pure imaginary. If the network is lossless, then
the net real power delivered to the network must be zero. Thus, Re{P*} : 0, where

Rell,Z,fil : llnfRe{lznn} : 0,

or RelZon| : Q.

Now let all port currents be zero except for I^ and 1,. Then (4.37) reduces to

(We have used the result from matrix algebra that ([A][B])t : lBltlAft .) Since the I,s are
independent, we must have the real part of each self term (I"Z",I;) equal to zero, since we
could set all port currents equal to zero except for the nth current. So,

1 1 1
Pu, : 

rlV)' lll. 
: 

1(lz)Ul)'Ul. 
: 

;lI l' lzlv l.

I:  
1Uflnl i  + ItZnI; -t  lzZzrl i  + " ')

: : i f ,^,^.,;
' ) - u
- n=I m--1.

'" -Ilr:o: Zo* z''

Pon --:.-
1 

---7''

(4.37)

(4.38)

R:e{(l, Ifr * I^ If)Z^nl : O,

sinceZ^n: Zn .But(l"lf i+ InI;) isapurelyrealquantitywhichis,ingeneral,nonzero.
Thus we must have that

RelZ*"| : Q. (4.3e)

Then (4.38) and (4.39) imply that Re {Z^nl :0 for any m, n.Thereader can verify that this
also leads to an imaginary [I] matrix.

EXAMPLE 4.3 EVALUATION OF IMPEDANCE PARAMETERS

Find the Z parurneters of the t'wo-port T-network shown in Figure 4.6.

Solution
From (4.28), Zy can be found as the input impedance of port 1 when port 2 is
open-circuited:

FIGURE 4.6 A two-port T-network.

..t-- Pott-.rt- 
2
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The transfer impedance Zp can be lbund measuring the open-circuit voltage al
port 1 when a current 12 is applied at port 2. By voltage division,

z r r : \ l  , =- 
Iz lr,:o

The reader can verify that 221 : Z1z,
Finally, 222 is found as

ZcVz
I z Z n * Z c

- Zs.

indicating that the circuit is reciprocal.

: Z p * Z c .

THE SCATTERING MATRIX

We have already discussed the difficulty in defining voltages and currents for non-TEM
lines. In addition, a practical problem exists when trying to measure voltages and currents
at microwave frequencies because direct measurements usually involve the magnitude (in-
ferred from power) and phase of a wave traveling in a given direction, or of a standing
wave. Thus, equivalent voltages and currents, and the related impedance and admittance
matrices, become somewhat of an abstraction when dealing with high-frequency networks.
A representation more in accord with direct measurements, and with the ideas of incident,
reflected, and transmitted waves, is given by the scattering matrix.

Like the impedance or admittance matrix for an N-port network, the scattering matrix
provides a complete description of the network as seen at its N ports. While the impedance
and admittance matrices relate the total voltages and currents at the ports, the scattering
matrix relates the voltage waves incident on the ports to those reflected from the ports.
For some components and circuits, the scattering parameters can be calculated using net-
work analysis techniques. Otherwise, the scattering parameters can be measured directly
with a vector network analyzeg a photograph of a modern network analyzer is shown in
Figure 4.7 . Once the scattering parameters of the network are known, conversion to other
matrix parameters can be performed, if needed.

Consider the N-port network shown in Figure 4.5, where Vn+ is the amplitude of the
voltage wave incident on port n, and y; is the amplitude of the voltage wave reflected
from port n. The scattering matrix, or [S] matrix, is defined in relation to these incident and
reflected voltage waves as

Srz St,v

I

V r l
Z '>c  -  ' l

Iz lt,:o

4.3

t[1l[;]:L:1 "'  Sr ,v

[v- ] :  [s] ty+1.

A specific element of the [S] matrix can be determined as

(4.40)

(4.41)

In words, (4.41) says that $; is found by driving port j with an incident wave of voltage Vf ,
and measuring the reflected wave amplitude, V,-, coming out of port i. The incident waves
on all ports except the jth port are set to zero, which means that all ports should be terminated
in matched loads to avoid reflections. Thus, S;i is the reflection coefficient seen looking

S , , :  4 ,  I' V; lvf=o ror rclj
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FIGURE 4.7 A photograph of the Hewlett-Packard HP8510B Network Analyzer. This test instru-
ment is used to measure the scattering parameters (magnitude and phase) of a one- or
two-port microwave network from 0.05 GHz to 26.5 GHz. Built-in microprocessors
provide error correction, a high degree of accuracy, and a wide choice of display
formats. This analyzer can also perform a fast Fourier transform of the frequency
domain data to provide a time domain response of the network under test.

Courtesy ofAgilent Technologies, Santa Rosa, Calif.

into port I when all other ports are terminated in matched loads, and fi; is the transmission
coefficient from port j to port i when all other ports are terminated in matched loads.

EXAMPLE 4.4 EVALUATION OF SCATTERING PARAMETERS

Find the S parameters of the 3 dB attenuator circuit shown in Figure 4.8.

Solution
From (4.41), Srr can be found as the reflection coefficient seen at port 1 when
port 2 is terminated in a matched load (Zo: 50 O):

r / _  |  7 ( I \  7 ^  |

S , ,  :  l f  l  :  f { l ' ; , . , . - n  - ' i . \ , - ' o  I' '  
v[ lr;:o 

" 2 -w 
zii '  + Zo lzo on pon 2
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8.56 cr 8.56 O

FIGIIRE 4.8 A matched 3 dB attenuator with a 50 Q characteristic impedance (Example 4.4).

b*, Z[]) : 8.56 + [141.s(s.s6 + 50)]/(141.8 + 8.56 + s0) : 50 Q, so Srr : 0.
Because of the symmetry of the circuit, Szz : 0.

Szr can be found by applying an incident wave at port 1, Vr+, and measuring
the outcoming wave at port 2, Vf . This is equivalent to the ffansmission coefficient
from port 1 to port 2:

V ; I
Sr r  :  - l - l

v{ l'}:'

From the fact that Srr : Szz : 0, we know that Vl : O when port 2 is terminated
in Zs :50 Q, and that V{ : 0. In this case we then have that VI : V and
Vl : Vz. So by applying a voltage V1 atport I and using voltage division twice
we find Vz : Vz as the voltage across the 50 O load resistor atport2:

vt : vz: u,( ", !)'!o^ .,) r-j=) : o.roru,.'  
\41.44 + 8.s6 /  \s0 + 8.s6l

wherc 47.44 : 14 1. 8(5 8.5 6) / (l4LB * 5 8.56) is the resistance of the parallel com-
bination of the 50 Q load and the 8.56 g resistor with the 141.8 A resistor. Thus.
Srz: Szt -0.707.

If the input power is lV{121220, then the output power is lVllzl2Zs:
lszff12 /220 : lszllzl2z\lvf l' : lvl12 /420, which is one-half (-3 dB) of
the input power.

We now show how the [S] matrix can be determined from the [Z] (or [Y]) matrix,
and vice versa. First, we must assume that the characteristic impedances, Zsr, of all the
ports are identical. (This restriction will be removed when we discuss generalized scattering
parameters.) Then for convenience, we can set Zsr: 1. From (4.24) the total voltage and
current at the ruth port can be written as

I

V, :  Vj  + v; ,

I n : I f  - I n  - V ; ' - V ; .

Using the definition of [Z] from (4.25) with (4.42) gives

I Z I I I ) :  l z l w + l  -  l z l w - ] :  [ y ]  :  [ y + ]  +  [ y - ] ,

which can be rewritten as

(4.42a)

(4.42b)

[zl + IUDIV-I : (zl - [u])[y+]. (4.43)
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where [U] is the unit, or identity, matrix defined as

Comparing (4.43) to (4.40) suggests that

ISI: ({zl + tuD-t("zl - tul), (4.44)

giving the scattering matrix in terms of the impedance matrix. Note that for a one-port
network (4.44) reduces to

sr : !1:-1-
z n * I '

in agreement with the result for the reflection coefficient seen looking into a load with a
normalized input impedance of 711.

To find [Z] in terms of [S], rewrite (4.44) as lzllsl + tultsl : lzl - [U], and solve
for lZl to give

lzl :  (ul+ tslxtul  -  tsl)- ' (4.4s)

Reciprocal Networks and Lossless Networks

As we discussed in Section 4.2,the impedance and admittance matrices are symmetric for
reciprocal networks, and purely imaginary for lossless networks. Similarly, the scattering
maffices for these types of networks have special properties. We will show that the [S]
matrix for a reciprocal network is symmetric, and that the [S] matrix for a lossless network
is unitary.

By adding (4.42a) and (4.42b) we obtain

:l
, ]

By subtractine @.42a) and (4.42b) we obtain

v ; : ) {v^+r , ) ,

lv+t :  )v lntu l ) t11.

I
V"  :  

r (V" -h) ,
I

l v - l :  ;qz l -  tu l ) t r l .

(4.46a)

(4.46b)

(4.47)so that

Eliminating [1] from (4.46a) and (4.46b) gives

lv-l : [z] - luDQZl+ [u])-1[y+],

tsl : (tzl - lul\Qz)+ tul)-I.

Taking the transpose of (4.47) gives

tsl' : {(tzl + tul)-' l'{lzl - tull' .

Now [U] is diagonal, so [U]' : lU), and if the network is reciprocal, [Z] is symmetric
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so that IZf' : [Zl.The above then reduces to

lslt : (zl + tuD-lezl - IUD,

which is equivalent to (4.44). We have thus shown that

[s] : [s]r,

[y+] '  [y+]* : lv 
- l t  

Iv 
- l* .

Using [V-] : [S][Y+] in (4.50) gives

lv+l' lv \" : Iy+]' [s]/ [s]* [y+]*,

for reciprocal networks.
If the network is lossless, then no real power can be delivered to the network. Thus,

if the characteristic impedances of all the ports are identical and assumed to be unity, the
average power delivered to the network is

l lpuu  :  tRe { [ y ] 'U l . ] :  tRe { ( [V+ ] ' +  t y - l 'X t y+ l *  -  t y -1 . ) ]
t a

I:  rRetlv+l ' [y+]* _ 1y+1'1V-l* + [V-1'Jy+]- _ [y-] ' [y-]. ]
z

l l
:  - l v+7 t lv  * ] .  -  - [ y - ] ' [ y - ] *  :0 .  (4 .49)

z z

since the terms -[V+]tlv-f* + [y-]'[y+]* are of the form A- A*, and so are purely
imaginary. Of the remaining terms in(4.49), (I/z)[V+1tlv +]* represents the total incident
power, while (l/2)lV-ltlV -l* represents the totalreflectedpower. So foralossless junction,
we have the intuitive result that the incident and reflected powers are equal:

(4.48)

(4.50)

(4.s2)

(4.s3b)

so that, for nonzero IV+],

or

lsl ' [S]. : lul,

[S]* : {lsl '}-t.

f sors ; :9 ,  fo r i  I  i .

(4.51)

A matrix that satisfies the condition of (4.51) is called a unitary matrix.
The matrix equation of (4.51) can be written in summation form as

I SriS;*. : E,r, for alli, 7,
k=I

where 6;; : 1 if i - j andJ;j : 0 if i + i is the Kroneckerdelta symbol. Thus, if i :,r
(4.52) reduces to

-  I , (4.53a)

while if i + j (4.52) reduces to

I so,si

k : l

In words, (4.53a) states that the dot product of any column of [S] with the conjugate of
that column gives unity, while (4.53b) states that the dot product of any column with the
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conjugate of a different column gives zero (orthogonal). Ifthe network is reciprocal, then

[S] is symmetric, and the same statements can be made about the rows of the scattering
matrix.

EXAMPLE 4.5 APPLICATION OF SCATTERING PARAMETERS

A two-port network is known to have the following scattering matrix:

r  0 .  l5 l0 '  0 .851-  45 '  I
[t] : lo.rrror' o.2to" J

Determine if the network is reciprocal, and lossless. If port two is terminated with
a matched load, what is the return loss seen at port 1? If port two is terminated
with a short circuit, what is the return loss seen at port 1?

Solution
Since [S] is not symmetric, the network is not reciprocal. To be lossless, the S
parameters must satisfy (4.53). Taking the first column (i : 1 in (4.53a)) gives

lSi l12 + lSzr12 :  (0.15)2 + (0.85)2 :0.745 # l ,

so the network is not lossless.
When port 2 is terminated with a matched load, the reflection coefficient seen

at port 1 is | : Str : 0.15. So the return loss is

RL: -20log lf | : -20log(0.15) : 16.5 dB.

When port 2 is terminated with a short circuit, the reflection coefficient seen at
port 1 can be found as follows. From the definition of the scattering matrix and the
fact that V{ : *Vl (for a short circuit at port 2), we can write

vr- : Srrvi + SDv{ : srrvi - snvl,

vl : szzvl -l s22v{ : szr vr+ - Szzvz .

The second equation gives

Srtr / -  -  t t ' fv z  -  
4 g r r ' t '

Dividing the first equation by Vr+ and using the above result gives the reflection
coefficient seen at port 1 as

r :F -s r r -  s *#-s r r -  ## ,
= 0 .15  -

(0.851- 45'X0.85r45'): -0.452.
1 + 0 . 2

So the return loss is RZ : -20log lf | : -20loe(0.a5D: 6.9 dB. I

An important point to understand about S parameters is that the reflection coeffrcient
looking into port n is not equal to ,S,r, unless all other ports are matched (this is illustrated in
the above example). Similarly, the transmission coefficient from port m to port n is not equal
to Sn*, unless all other ports afe matched. The S parameters of a network are properties only
of the network itself (assuming the network is linear), and are defined under the condition
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.  - l z  = O

FIGURE 4.9 Shifting reference planes for an N-port network.

that all ports are matched. Changing the terminations or excitations of a network does not
change its S parameters, but may change the reflection coefficient seen at a given port, or
the transmission coefficient between two ports.

A Shift in Reference Planes

Because the S parameters relate amplitudes (magnitude and phase) of traveling waves inci-
dent on and reflected from a microwave network, phase reference planes must be specified
for each port of the network. We now show how the S parameters are transformed when the
reference planes are moved from their original locations.

Consider the N-port microwave network shown in Figure 4.9, where the original termi-
nal planes are assumed to be located dt 7n :0 for the zth port, and where zn is an arbitrary
coordinate measured along the transmission line feeding the n th port. The scattering matrix
for the network with this set of terminal planes is denoted by tsl. Now consider a new set
of reference planes define d 4t zn : ln, for the nth port, and let the new scattering matrix be
denoted as [S']. Then in terms of the incident and reflected port voltages we have that

where the unprimed quantities are referenced to the original terminal planes at zn : 0, and
the primed quantities are referenced to the new terminal planes at Zn : ln.

Now from the theory of traveling waves on lossless transmission lines we can relate
the new wave amplitudes to the original ones as

lv-l  :  [ , t ] [y+],

lV'- l :  [S'][Y'+],

Vl+ - Y+ rie",

Vl- : Y-'-ie'

(4.54a)

(4.s4b)

(4.55a)

(4.5sb)

where 0n : f n{n is the electrical length of the outward shift of the reference plane of port n .
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Writing (4.55) in matrix form and substituting into (4.54a) gives

l"t' sjoz 
o 

I l '-" s-joz 
o

I lv'-t 
- rsr I

L o eieN) L o s- ion

Multiplying by the inverse of the first matrix on the left gives

fe-ie' 
s-ioz 

o 
I 

fe-te'

tY'-r:Lo ' ' ' : : 
"-,,,- l 

toL 
o 

' ' '"

Comparing with (4.54b) shows that

,:," ]

"_: ," ]

[v'').

lv'+1.

,t,: I
s - j h o

9- i9z

s- i0uI ,,,s- i0t

0

g- loz
(4.s6)

which is the desired result. Note that S'rr- e-2i0'Srn, meaning that the phase of S, is
shifted by twice the electrical length of the shift in terminal plare n, because the wave
travels twice over this length upon incidence and reflection.

Generalized Scattering Parameters

So far we have considered the scattering parameters for networks with the same character-
istic impedance for all ports. This is the case in many practical situations, where the char-
acteristic impedance is often 50 A. In other cases, however, the characteristic impedances
of a multiport network may be different, which requires a generalization of the scattering
parameters as defined up to this point.

Consider the N-port network shown in Figure 4. 10, where Zsn is the (reaD characteristic
impedance of the nth port, andVj and V;, respectively, represent the incident and reflected
voltage waves at port n.In order to obtain physically meaningful power relations in terms

FIGURE 4.10 An N-port network with different characteristic impedances.

Port I

N-port
network

Port n
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of wave amplitudes, we must define a new set of wave amplitudes as

", : vI lJ zo,,

br: V, /JZo,

where an represents an incident wave at the nth port, and b, represents a reflected wave
from that port [1], [5]. Then from(4.42a,b) we have that

(4.57a)

(4.s7b)

(4.58a)

(4.s8b)

Now the average power delivered to the nth port is

1 1  r - 1p, : ;Re{v,#}  :  lRelanlz  -  lbn lz  +(b^ol  *  b l ,o , ) l :  , r la^1,  - ; lu" l r ,  (4 .s9)

,io." tn"-qu- tity (b^ai - bia,) ispurely imaginary. This is u itryri"uiliratisfying result,
since it says that the average power delivered through port n is equal to the power in the
incident wave minus the power in the reflected wave. If expressed in terms of Vf and V; ,
the corresponding result would be dependent on the characteristic impedance of the nth
port.

A generalized scattering matrix can then be used to relate the incident and reflected
waves defined in (4.57):

[b] : [S][a],

where the l, jth element of the scattering matrix is given by

(4.60)

V n : V j + v ; : J Z o , @ ^ + b , ) ,

1 I
I " :  

d(V{ 
-  v;) :  

1O@n 
- b).

S r ,  :  b ' l
- aj lqk:o for k+i

n  v i  \ / L o i l
e l t  -  

|  t" Vi '/Zoi lvf:o ro, *+j

(4.61)

and is analogous to the result of (4.41) for networks with identical characteristic impedance
at all porrs. Using (4.57) in (4.61) gives

(4.62)

which shows how the S parameters of a network with equal characteristic impedance
(V,- /V{ with Vo- : 0 for ft I i) can be converted to a network connected to transmission
lines with unequal characteristic impedances.

POINT OF INTEREST: The Vector Network Analyzer

The S parameters ofpassive and active networks can be measured with a vector network analyzeq
which is a two- (or four-) channel microwave receiver designed to process the magnitude and
phase of the transmitted and reflected waves from the network. A simplified block diagram of a
network analyzer similar to the HP8510 system is shown below. In operation, the RF source is
usually set to sweep over a specified bandwidth. A four-port reflectometer samples the incident,
reflected, and transmitted RF waves; a switch allows the network to be driven from either port 1
or port 2. Four dual-conversion channels convert these signals to 100 kHz IF frequencies, which
are then detected and converted to digital form. A powerful intemal computeris used to calculate
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4.4

and display the magnitude and phase of the ,S parameters, or other quantities that can be derived
from the S parameters, such as SWR, return loss, group delay, impedance, etc. An important
feature of this network analyzer is the substantial improvement in accuracy made possible with
error correcting software. Errors caused by directional coupler mismatch, imperfect directivity,
loss, and variations in the frequency response of the analyzer system are accounted for by using
a twelve-term error model and a calibration procedure. Another useful feature is the capability to
determine the time domain response of the network by calculating the inverse Fourier transform
of the frequency domain data.

THE TRANSMTSSTON (ABCD) MATRTX

The Z , Y, and S parameter representations can be used to characterize a microwave network
with an arbitrary number of ports, but in practice many microwave networks consist of a
cascade connection of two or more two-port networks. In this case it is convenient to define
a 2 x 2 transmission, oTABCD matrix, for each two-port network. We will then see that the
ABCD matrix of the cascade connection of two or more two-port networks can be easily
found by multiplying the ABCD matrices of the individual two-ports.

T\e ABCD matrix is defined for a two-port network in terms of the total voltages and
currents as shown in Figure 4.11a and the following:

Vt : AVz -l B 12,

I r :  C V z +  D 1 2 ,

or in matrix form as

(4.63)

It is important to note from Figure 4.1 la that a change in the sign convention of 12 has
been made from our previous definitions, which had 12 as the current flowing into port 2.

[t]:fl ill';)
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(b)

FIGURE 4.11 (a) A two-port network; (b) a cascade connection of two-port networks.

The convention that 12 flows out of port2 will be used when dealing withABCD matrices so
that in a cascade network 12 will be the same current that flows into the adjacent network, as
shown in Figure 4.1lb. Then the left-hand side of (4.63) represents the voltage and current
at port 1 of the network, while the column on the right-hand side of (4.63) represents the
voltage and current at port 2.

In the cascade connection of two two-port networks shown in Figure 4.1 1b, we have that

(4.64a)

(4.64b)

Substituting g.eQ into (4.64a) gives

(4.6s)

which shows thatthe ABCD matrix of the cascade connection of the two networks is equal
to the product of the ABCD matrices representing the individual two-ports. Note that the
order of multiplication of the matrix must be the same as the order in which the networks
are arranged, since matrix multiplication is not, in general, commutative.

The usefulness of the A-BCD matrix representation lies in the fact that allbrary of ABCD
matrices for elementary two-port networks can be built up, and applied in building-block
fashion to more complicated microwave networks that consist of cascades of these simpler
two-ports. Table 4.1 lists a number of useful two-port networks and their ABCD matrices.

EXAMPLE 4.6 EVALUATION OFABCD PARAMETERS

Find the ABCD parameters of a two-port network consisting of a series impedance
Z between ports 1 and 2 (the firsr entry in Table 4.1).

Solution
From the defining relations of (4.63), we have that

V r l
A -  

^ l
Vz ln :o '

which indicates that A is found by applying a voltage yl at port I, and measuring

(a)

l2
.----->

I ll]: [3] ';,71';],

l';l:lt: ';)l';l

[l;]: [3r ",:)lt: ';]l';)
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TABLE 4.1 TheABCD Parameters of Some Useful Ttvo-Port Circuits

Circuit ABCD Parameters

the open-circuit voltage V2 atporl2. Thus, A : L Similarly,

^  Yr l  v tt  :  h lu , :o :  w :  
z '

c : L l  : 0 .
Vzlu:o

L l  I t
n - ' t  - - : - t" -  

h l u , : o -  I t - ' ' I

Relation to lmpedance Matrix

Knowing the Z paraneters of a network, one can determine the ABCD parameters. Thus,
from the definition of the ABCD parameters in (4.63), and from the defining relations for
the Z pansreters of (4.25) for a two-port network with Iz to be consistent with the sign
convention used with ABCD parameters,

V t : I r Z n - I z Z n ,

V z : l t Z z r - I z Z z z ,

(4.66a)

(4.66b)
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we have that

e : L l  :
Vz lo=o

n : L l  =
Iz lv.:o

'#: Ztr/Zzt,

:  z r r l ] l  -  t ,
vz:o lz lvr:o

-  , , r l t Z z z  -  2 , ,  :"  
I rZv

I ' l  I 'c :  
i ln:o 

: 
hfi :  

t1z"' (4'67c)

D : +l : IzZz?lZt : zzzlZzr. @.67d)
Iz lv , :o 12

If the network is reciprocal, then Zp: Zzr and (4.67) can be used to show that
A D  -  B C  : 1 .

i
IzZpIrZn

(4.67a)

(4.67b)
ZnZzz - ZpZzt

Zzt

Equivalent Gircuits for Two-Port Networks

The special case of a two-port microwave network occurs so frequently in practice that it
deserves further attention. Here we will discuss the use of equivalent circuits to represent an
arbitrary two-port network. Useful conversions for two-port network parameters are given
inTable 4.2.

Figure 4.12a shows a transition between a coaxial line and a microstrip line, and serves
as an example of a two-port network. Terminal planes can be defined at arbitrary points
on the two transmission lines; a convenient choice might be as shown in the figure. But
because of the physical discontinuity in the transition from a coaxial line to a microstrip
line, electric and/or magnetic energy can be stored in the vicinity of the junction, leading
to reactive effects. Charucteization of such effects can be obtained by measurement or by
theoretical analysis (although such an analysis may be quite complicated), and represented
by the two-port "black box" shown in Figure 4.12b. The properties of the transition can
then be expressed in terms of the network parameters (Z , Y , S, or ABCD) of the two-port
network. This type of treatment can be applied to a variety of two-port junctions, such as
transitions from one type of transmission line to another, transmission line discontinuities
such as step changes in width, or bends, etc. When modeling a microwave junction in
this way, it is often useful to replace the two-port "black box" with an equivalent circuit
containing a few idealized components, as shown in Figwe4.I2c. (This is particularly useful
if the component values can be related to some physical features of the actual junction.)
There is an unlimited number of ways in which such equivalent circuits can be defined; we
will discuss some of the most common and useful types below.

As we have seen from the previous sections, an arbitrary two-port network can be
described in terms of impedance parameters as

Vr:  ZnI t  *  ZpIz,

Vz: Zzrlr * 22212,

or in terms of admittance parameters as

(4.68a)

It:  YnVt * Y12V2,

Iz :  YzrV l  I  Y22V2.
(4.68b)
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zo" 
Tq 

c,T zo^

FIGURE 4.12

(cJ

A coax-to-microstrip transition and equivalent circuit representations. (a) Geometry
of the transition. (b) Representation of the transition by a "black box." (c) A possible
equivalent circuit for the transition [6].

If the network is reciprocal, then Zp : Zzt and Yn: Yx,. These representations lead
nafurally to the T and z equivalent circuits shown in Figure 4.13a and 4.13b. The relations
in Table 4.2 can be used to relate the component values to other network parameters.

Other equivalent circuits can also be used to represent a two-port network. If the network
is reciprocal, there are six degrees of freedom (the real and imaginary parts of three matrix
elements), so the equivalent circuit should have six independent parameters. A nonreciprocal
network cannot be represented by a passive equivalent circuit using reciprocal elements.

Equivalent circuits for a reciprocal two-port network. (a) T
equivalent.

(b)

FIGURE 4.13 equivalent. (b) n
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If the network is lossless, which is a good approximation for many practical two-
port junctions, some simplifications can be made in the equivalent circuit. As was shown
in Section 4.2, lhe impedance or admittance matrix elements are purely imaginary for a
lossless network. This reduces the degrees of freedom for such a network to three, and
implies that the T and n equivalent circuits of Figure 4.13 can be constructed from purely
reactive elements.

SIGNAL FLOW GRAPHS

We have seen how transmitted and reflected waves can be represented by scattering pa-
rameters, and how the interconnection of sources, networks, and loads can be treated with
various matrix representations. In this section we discuss the signal flow graph, which is an
additional technique that is very useful for the analysis of microwave networks in terms of
transmitted and reflected waves. We first discuss the feafures and the construction of the flow
graph itself, and then present a technique for the reduction, or solution, of the flow graph.

The primary components of a signal flow graph are nodes and branches:

o Nodes: Each port, j, of a microwave network has two nodes, a; and b;. Node a;
is identified with a wave entering port i, while node b; is identified with a wave
reflected from port i. The voltage at a node is equal to the sum of all signals entering
that node.

o Branches: A branch is a directed path between two nodes, representing signal flow
from one node to another. Every branch has an associated S parameter or reflection
coefficient.

At this point it is useful to consider the flow graph of an arbitrary two-port network, as
shown in Figure 4.14. Figure 4.14a shows a two-port network with incident and reflected
waves at each port, and Figure 4.14b shows the corresponding signal flow graph represen-
tation. The flow graph gives an intuitive graphical illustration of the network behavior.

For example, a wave of amplitude ar incident at port 1 is split, with part going through
S11 and out port 1 as a reflected wave and part transmitted through S21 to node b2. At node
b2, the wave goes out port 2; if a load with nonzero reflection coefficient is connected at
port 2, this wave will be at least partly reflected and reenter the two-port network at node
a2.Pafi of the wave can be reflected back out port 2via Szz, and patt can be transmitted out
port I through S12.

br Sn t12

(b)

FIGURE 4.14 The signalflow graphrepresentationof atwo-portnetwork. (a) Definitionofincident

and reflected waves. (b) Signal flow graph.
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I '

ib)

FIGURE 4.15 The signal flow graph representations of a one-port network and a source. (a) A

one-port network and its flow graph. (b) A source and its flow graph.

Two other special networks, a one-port network and a voltage source, are shown in
Figure 4.15 along with their signal flow graph representations. Once a microwave network
has been represented in signal flow graph form, it is a relatively easy matter to solve for the
ratio of any combination of wave amplitudes. We will discuss how this can be done using
four basic decomposition rules, but the same results can also be obtained using Mason's
rule from control system theory.

Decomposition of Signal Flow Graphs

A signal flow graph can be reduced to a single branch between two nodes using the four
basic decompositisn rules below, to obtain any desired wave amplitude ratio.

o Rule 1 (Series Rule). Two branches, whose common node has only one incoming
and one outgoing wave (branches in series), may be combined to form a single
branch whose coefficient is the product ofthe coefficients ofthe original branches.
Figure 4. 16a shows the flow graphs for this de. Its derivation follows from the basic
relation that

Vz : SzzVz: SzzSztVr. (4.6e)

o Rule 2 Garallel Rule). Two branches from one common node to another common
node (branches in parallel) may be combined into a single branch whose coefficient
is the sum of the coefficients of the original branches. Figure 4.16b shows the flow
graphs for this rule. The derivation follows from the obvious relation that

vz: sovr * sovt: (so * sa)vr. (4.'�l0)

r Rule 3 (Self-Loop Rule). When a node has a self-loop (a branch that begins and
endsonthe samenode) of coefficient S, the self-loopcanbe eliminatedby multiplying
coefficients ofthe branches feeding that node by 1/(1 - S).

Figure 4.16c shows the flow graphs for this rule, which can be derived as follows.
From the original network we have that

Vz: SuVl I 522V2,

Vz : SszVz.

(4.7ra)

(4.7rb)
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FIGT]RE 4.16 Decomposition rules. (a) Series rule. (b) Parallel rule. (c) Self-loop rule.
(d) Splitting rule.

Eliminating V2 gives

vr: fffiv,, (4.72)

which is seen to be the transfer function for the reduced graph of Figure 4.I6c.
o Rule 4 (Splitting Rule). A node may be split into two separate nodes as long as

the resulting flow graph contains, once and only once, each combination of separate
(not self loops) input and output branches that connect to the original node.

This rule is illustrated in Figure 4.16d, and follows from the observation that

V+: SqzVz: 521542V1,

in both the original flow graph and the flow graph with the split node.

We now illustrate the use of each of these rules with an example.

(4.73)

EXAMPLE 4.7 APPLICATION OF SIGNAL FLO\il GRAPII

Use signal flow graphs to derive expressions for f6 and fou, for the two-port
network shown in Figure 4.17.
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FIGURE 4.17 A terminated two-port network.

FIGURE 4.18 Signal flow path for the two-port network with general source and load impedances
of Fieue 4.17.

Solution
The signal flow graph for the circuit of Figure 4.17 is shown in Figure 4.18. In
terms of node voltages, fin is given by the ratio b1la1. The first two steps of
the required decomposition of the flow graph are shown in Figures 4.19a,b, from
which the desired result follows by inspection:

f , " : 4 : s , , *  
s t z s z l f e  

.
a t  

" "  '  
I  -Szz l t '

Next, loul is given by the ratio b2la2. T}ire first two steps for this decomposition
are shown in Figures 4.l9cd. The desired result is

b2szt
vs

br

b2 S12S21f"
l n r r r : - : J r l r

a 2  
- -  

l - S y  1 f t I

szr
a1  l - 52211  b2

br

(b)

szr
1 - S r r f "

r"

br Srz a2 br Srz a2

(c) (d)

Decompositions of the flow graph of Figure 4.18 to find lin: br/at and foul :
bz/az. @) Using Rule 4 on node a2. @) Using Rule 3 for the seH-loop atnode b2.
(c) Using Rule 4 on node b1. (d) Using Rule 3 for the self-loop at node ar .

srza2Srzbr

(a)

b2

szzTt

Srr\

FIGURE 4.19
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FIGURE 4.20 Block diagram of a network analyzer measurement of a two-port device.

Application to TRL Network Analyzer Calibration

As a further application of signal flow graphs we consider the calibration of a network
analyzer using the Thru-Reflect Line (TRL) technique [7]. The general problem is shown
in Figure 4.20, where it is intended to measure the S-parameters of a two-port device at
the indicated reference planes. As discussed in the previous Point of Interest, a network
analyzer measures S-parameters as ratios of complex voltage amplitudes. The primary
reference plane for such measurements is generally at some point within the analyzer itself,
so the measurement will include losses and phase delays caused by the effects of the
connectors. cables. and transitions that must be used to connect the device under test (DUT)

to the analyzer. In the block diagram of Figure 4.20 these effects are lumped together in
a two-port error box placed at each port between the actual measurement reference plane
and the desired reference plane for the two-port DUT. A calibration procedure is used to
characterize the error boxes before measurement of the DUT; then the actual enor-conected
S-parameters of the DUT can be calculated from the measured data. Measurement of a one-
port network can be considered as a reduced case of the two-port case.

The simplest way to calibrate a network analyzet is to use three or more known loads,
such as shorts, opens, and matched loads. The problem with this approach is that such
standards are always imperfect to some degree, and therefore inffoduce enors into the
measurement. These errors become increasingly significant at higher frequencies and as
the quality of the measurement system improves. The TRL calibration scheme does not
rely on known standard loads, but uses three simple connections to allow the error boxes
to be characterized completely. These three connections are shown in Figure 4.21. The
Thru connection is made by directly connecting port 1 to port 2, at the desired reference
planes. The Reflect connection uses a load having a large reflection coefficient, f1, such
as a nominal open or short. It is not necessary to know the exact value of f1, as this will
be determined by the TRL calibration procedure .The Line connection involves connecting
ports 1 and 3 together through a length of matched ffansmission line. It is not necessary to
know the length of the line, and it is not required that the line be lossless; these parameters
will be determined by the TRL procedure.

We can use signal flow graphs to derive the set of equations necessary to find the
S-parameters for the error boxes in the TRL calibration procedure. With reference to
Figure 4.20, we will apply the Thru, Reflect, and Line connections at the reference plane for
the DUT, and measure the S-parameters for these three cases at the measurement planes.
For simplicity, we assume the same characteristic impedance for ports L and2, and that the
error boxes are reciprocal and identical for both ports. The error boxes are characterized
by the S-matrix [S], and alternatively by the ABCD matrix. Thus we have S21 : ,Srz for
both error boxes, and an inverse relation between the ABCD matrices of the error boxes
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o"lllF fIJIJL,,

*flllf o,

b.\
srz I 5rz

(a)

FIGURE 4.21a Block diagram and signal flow graph for the Thru connection.

for ports I and2, since they are symmetrically connected as shown in the figure. To avoid
confusion in notation we will denote the measured S-parameters for the Thru, Reflect, and
Line connections as the [Z], [R], and [l] matrices, respectively.

Figure 4.21a shows the arrangement for the Thru connection and the corresponding
signal flow graph. Observe that we have made use of the fact that S21 : ,Srz and that the error
boxes are identical and symmetrically arranged. The signal flow graph can be easily reduced
using the decomposition rules to give the measured S-parameters at the measurement planes
in terms of the S-parameters of the error boxes as

D'{llf

rrr: bJl : s, * W"  
a t l a , : o  l - S i z

, , r :ui l , , :o: :h
By symmetry we have Tzz : T[, and by reciprocity we have Tzt : To.

"1 ftllll*

a' *rlllf
Reference

planes
for DUT

(4.74a)

(4.74b)

rllll*',

--{lltr 4,

l - l l  I

i  lE r ro r  I  i  i  I  Er ro r l  i

l-l 'l:'f fE fic;ll:,', I
M f f i

(b)

FIGURE 4.21b Block diagram and signal flow graph for the Reflect connection.
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FIGURE 421c Block diagram and signal flow graph for the Line connection.

The Reflect connection is shown in Figure 4.21b, with the corresponding signal flow
graph. Note that this arrangement effectively decouples the two measurement ports, so
Rn: Rzr: 0. The signal flow graph can be easily reduced to show that

R ' r : b ' l  : s , , + i 4 -
a t l o r : o  

"  
l - S y 2 l 7

lLl

(4.7s)

By symmetry we have Rzz = Rn.
The Line connection is shown in Figure 4.21c, with its corresponding signal flow graph.

A reduction similar to that used for the Thru case gives

L t :

L D :

h l- l
al laz=o

h l
,1,, :o

o , S22S2rre-2rt: rrl t 
T:Wry(

- S?re-vt
1 - S|re-zvt

(4.76a)

(4.76b)

By symmetry and reciprocity we have Lzz: Lt and L21 - Ln.
We now have five equations (4.74)-(4.76) for the five unknowns S11, S12, Szz, lr,

and e-vr; the solution is straightforward but lengthy. Since (4.75) is the only equation that
contains 11, we can first solve the four equations in (4.74) and (4.76) for the other four
unknowns. Equation (4.74b) can be used to eliminate S12 from (4.74a) and (4.76), and
then Srr can be eliminated trom (4.74a) and (4.76a). This leaves two equations for S22 and
e-/r i

Lpe-2rr * LnPn: Trze-lt - Tn9ns-rt @.77a)

e-zvt (Tr - SzzTr) - Tn9zz: Ln (r-zrt - SL) - SzzTrz. @.77b)

Equation (4.77a) can now be solved for Szz and substifutedinto (4.77b) to give a quadratrc
equation for e-vt. Application of the quadratic formula then gives the solution for e-v{ in
terms of the measured TRL S-parameters as

- w !
e ' - =

rlr + rlr - (Tn - Lr)z L
(4.78)

2LeTp
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The choice of sign can be determined by the requirement that the real and imaginary parts
of y be positive, orby knowing the phase of f1 (as determined from (4.83)) to within 180'.

Next we multiply (4.7 4b) by S22 and subtract from (4.7 4a) to get

Z r r : S r r J - S z z T n ,

and similarly multiply (4.76b) by Szz and subtract from (4.76a) to get

(4.79a)

I t t : S t t l S z z L p e - Y t .

Eliminating S11 from these two equations gives S22 in terms of e-vL as

Szz:
Tr, - Ln

Tn - Lns-rt '

Solving (4.79a) for S11 gives

S t t : 7 r r - S z z T t z ,

and solving (4.74b) for S12 gives

s?z: Tn(r - *u)

Finally, (4.75) can be solved for f1 to give

B 1
D l '

(4.79b)

(4.80)

(4.81)

(4.82)

I r :
R r r  -  S t r

(4.83)
Sf, + S2u (Rrr - Srr)

Equations (4.78) and (4.80)-(4.83) give the S-parameters for the error boxes, as well as the
unknown reflection coeffrcent, fr (to within the sign), and the propagation factor, s-l'{.
This completes the calibration procedure for the TRL method.

The S-parameters of the DUT can now be measured at the measurement reference
planes shown in Figure 4.20, and corrected using the above TRL error box parameters to
give the S-parameters at the reference planes of the DUT. Since we are now working with
a cascade of three two-port networks, it is convenient to use ABCD pararneters. Thus, we
convert the error box ,S-parameters to the correspondingABCD parameters, and convert the
measured S-parameters of the cascade to the corresponding A*B^C*Dt parameters. If
we use A'B'C'D' to denote the parameters for the DUT, then we have that

It: ",:l:lt "1lt: ":)lt ;]-'
from which we can determine the ABCD parameters for the DUT as

13 ":):lt "l-'lt: ":)l dLC
(4.84)
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POINT OF INTEREST: Computer-Aided Design for Microwave Circuits

Computer-aided design (CAD) software packages have become essential tools for the analysis,
design, and optimization of microwave circuits and systems. Several microwave CAD products

are commercially available, including SERENADE (Ansoft Corp.), Microwave Office (Applied

Wave Research, Inc.), ADS (Agilent Technologies, Inc.), and others. These packages are capable
of treating microwave circuits consisting of lumped elements, distributed elements, discontinu-
ities, coupled lines, waveguides, and active devices. Both linear and nonlinear modeling, as well
as circuit optimization, are generally possible. Although such computer programs can be fast,
powerful, and accurate, they cannot serve as a substitute for an experienced engineer with a good
understanding of microwave design.

A typical design process will usually begin with specifications or design goals for the circuit.
Based on previous designs and his or her own experience, the engineer can develop an initial
design, including specific components and a circuit layout. CAD can then be used to model and
analyze the design, using data for each of the components and including effects such as loss and
discontinuities. The CAD software can be used to optimize the design by adjusting some of the
circuit parameters to achieve the best performance. If the specifications are not met, the design
may have to be revised. The CAD analysis can also be used to study the effects of component
tolerances and errors, to improve circuit reliability and robustness. When the design meets the
specifications, an engineering prototype can be built and tested. If the measured results satisfy
the specifications, the design process is completed. Otherwise the design will need to be revised,
and the procedure repeated.

Without CAD tools, the design process would require the construction and measurement
of a laboratory prototype at each iteration, which would be expensive and time consuming.
Thus, CAD can greatly decrease the time and cost of a design, while enhancing its quality.
The simulation and optimization process is especially important for monolithic microwave
integrated circuits (MMICs) because these circuits cannot easily be tuned or trimmed after
fabrication.

CAD techniques are not without limitations, however. Of primary importance is the fact
that a computer model is only an approrimation to a "real-world" circuit, and cannot completely
account for the inevitable effects of component and fabricational tolerances, surface roughness,
spurious coupling, higher order modes, junction discontinuities, and thermal effects. These lim-
itations generally become most serious at frequencies above 10 GHz.

4.6 DISCONTINUITIES AND MODAL ANALVSIS

By either necessity or design, microwave networks often consist of transmission lines with
various types of transmission line discontinuities. In some cases discontinuities are an
unavoidable result of mechanical or electrical transitions from one medium to another (e.g.,
ajunction between two waveguides, or a coax-to-microstrip transition), and the discontinuity
effect is unwanted but may be significant enough to warrant characterization. In other cases
discontinuities may be deliberately introduced into the circuit to perform a certain electrical
function (e.g., reactive diaphragms in waveguide or stubs in microstrip line for matching
or filter circuits). In any event, a transmission line discontinuity can be represented as
an equivalent circuit at some point on the transmission line. Depending on the type of
discontinuity, the equivalent circuit may be a simple shunt or series element across the line
or, in the more general case, a T: or n-equivalent circuit may be required. The component
values of an equivalent circuit depend on the parameters of the line and the discontinuity,
as well as the frequency of operation. In some cases the equivalent circuit involves a shift
in the phase reference planes on the ffansmission lines. Once the equivalent circuit of a
given discontinuity is known, its effect can be incorporated into the analysis or design of
the network using the theory developed previously in this chapter.
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The purpose of the present section is to discuss how equivalent circuits are obtained
for transmission line discontinuities; we will see that the basic procedure is to start with a
field theory solution to a canonical discontinuity problem and develop a circuit model, with
component values. This is thus another example of our objective of replacing complicated
field analyses with circuit concepts.

Figures 4.22 and 4.23 show some cornmon transmission line discontinuities and their
equivalent circuits. As shown in Figures 4.22a--c, thin metallic diaphragms (or "irises")

can be placed in the cross section of a waveguide to yield equivalent shunt inductance,
capacitance, or a resonant combination. Similar effects occur with step changes in the
height or width of the waveguide, as shown in Figures 4.22d,e. Similar discontinuities can
also be made in circular waveguide. The best reference for waveguide discontinuities and
their equivalent circuits is The Waveguide Handbook l8l.

Some typical microstrip discontinuities and transitions are shown in Figure4.23: similar
geometries exist for stripline and other printed transmission lines such as slotline, covered
microstrip, coplanar waveguide, etc. Since printed transmission lines are newer, relative to
waveguide, and much more difficult to analyze, more research work is needed to accurately

Change in height

(e.)

FIGIIRE4.22 Rectangularwaveguidediscontinuities.
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Some common microstrip discontinuities. (a) Open-ended microstrip. (b) Gap in
microstrip. (c) Change in width. (d) T-junction. (e) Coax-to-microstrip junction.

characteize printed transmission line discontinuities; some approximate results are given
in reference [9].

Modal Analysis of an flPlane Step in Rectangular Waveguide

The fleld analysis of most discontinuity problems is very difficult, and beyond the scope of
this book. The technique of modal analysis, however, is relatively straightforward and similar
in principle to the reflection/transmission problems which were discussed in Chapters 1 and
2. In addition, modal analysis is a rigorous and versatile technique that can be applied
to many co:x, waveguide, and planar transmission line discontinuity problems, and lends
itself well to computer implementation. We will present the technique of modal analysis by

zo 4

4z
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"b_*
C A

FIGURE 4.24 Geometry of an l/-plane step (change in width) in rectangular waveguide

applying it to the problem of finding the equivalent circuit of an F/-plane step (change in
width) in rectangular waveguide.

The geometry of the l1-plane step is shown in Figure 4.24.It is assumed that only the
dominant TEls mode is propagating in guide 1 (z < 0), and that such a mode is incident
on the junction from z < 0. It is also assumed that no modes are propagating in guide 2,
although the analysis to follow is still valid ifpropagation can occur in guide 2. From Section
3.3, the transverse components of the incident TE16 mode can then be written, for z < 0,

-i 7rx
Li : srn -e

6-H
koqo
pfiZ i " :

-jpiz (4.85a)

(4.8sb)

(4.86)

(4.88a)

(4.88b)

where px :

is the propagation constant of the TE e mode in guide 1 (of width a), and

(4.87)

is the wave impedance of the TE,s mode in guide 1. Because of the discontinuity at z : 0
there will be reflected and transmitted waves in both guides, consisting of infinite sets of
TE"e modes in guides I and2. Only the TE16 mode will propagate in guide 1, but the
higher-order modes are also important in this problem because they account for stored
energy, localized reait 7 = 0. Because there is no y variation introduced by this discon-
tinuity, TEr. modes for m l0 are not excited, nor are any TM modes. A more general
discontinuity, however, may excite such modes.

The reflected modes in guide 1 may then be written, for z < 0, as

u: : 
-; 

sin!!,-iti'

m

Ei : )- A^si11'!!!1"ifiz,' - a

3$ e, nTrx iB",
n:  :  )  = -  S l11  -e r rn - ,"  - 2 1  a

n = l
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where A, is the unknown amplitude coefficient of the reflected TEns mode in guide 1. The

reflection coefficient of the incident TEls mode is then ,41. Similarly, the transmitted modes

into guide 2 canbe written, for 4 > 0, as

m

81, : I B,sir1!!!r-il; ',
L'

m

H!. :  - t  3 s innrx e- i f ; ' .^  
7 o z ;  c

where the prcpagation constant in guide 2 is

(4.89a)

(4.8eb)

(4.e0)

(4.er)

(4.e3)

(4.e4)

F i " :

and the wave impedance in guide 2 is

6-W
tr:w.

Now at z : 0, the transverse fields (Er, ,F1r) must be continuous for 0 < x < ci in

addition, E, must be zero for c < x < a becatse of the step. Enforcing these boundary

conditions leads to the following equations:

f o r o < x < c '  
@ . 9 2 a )

f o r c < x 1 a ,

u - : - Js in3+ i9  " i n " * :  - i  BJ r in ' ! "  f o r0  <  x  <c .  (4 .g2b)- Zi o frZfr o 7=,2f,  c

Equations (a.92a) and (4.92b) constitute a doubly infinite set of linear equations for the

modal coefficients Ao and Bn. We will first eliminate the Bns, and then truncate the resulting

equation to a finite number of terms and solve for the Ars.
Multiplying (4.92a) by sin(mr x la), integrating from .r : 0 to a, and using the or-

thogonality relations from Appendix D yields

\tx €- . nrx
E v : s i n - +  ) . A r s t n - :' a

n = L

where

o o m

\s^, + \ o^ : L u, r^, : I B* I^*.) )
N : I  K = I

-  f '  mTTx wtx ,
I * n :  I  s i n - s i n - d x

J':o a c

- l -  S S A ,  -  - c B *

4 t u +  ? o 4 t o ' : 4 '

is an integral that can be easily evaluated, and

"  f  I  i f m : nu ^ " :  
l o  i f  m  l n

(4.es)

is the Kronecker delta symbol. Now solve (4.92b) for Bp by multiplying (4.92b) by

sin(knxlc) and integrating from x :0 to c. After using the orthogonality relations, we

obtain

(4.e6)
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Substituting Bp from (4.96) into (4.93) gives an inflnite set of linear equations for the Ans,
w h e r e m : 1 . 2 .  . . .  -

0

zA* +
S S 2zIr^*rpnAn

?^?- czi,
2Zf, l^r ln a  ̂

-  _ A  1

cz i  2"^ ' '

oo

: T
Z-/
k=1

(4.e7)

(4.e8)

(4.99)

For numerical calculation we can truncate the above summations to N terms, which will
result in N linear equations for the first N coefficients, An. For example, let N : 1. Then
(4.97) reduces to

where Z1 : 4Zilhlac, which looks like an effective load impedance to guide 1. Accuracy
is improved by using larger values of N, and leads to a set of equations which can be written
in matrix form as

t0l tAl :  [P] ,
where [Q] is a square N x N matrix of coefficients,

Q^n:zu^^*hrt#
- k=l

[P] is an N x I column vector of coeffrcients given by

(4.100)

(4.101)

a ^ , 2 2 ' t l ? t ^  z z ' t l ? t  a
tn ' -  tz i  

n t  :  
,Z i  

-  
, '

Solving for 41 (the reflection coefficient of the incident TEls mode) gives

t , : Z ! : 4 ,  f o r N : r .-  Z t * Z i

P- :SZzf ' l ^ * lu  - ! i l , ." '  -  c Z ?  2 " " '
K : l  I

x - - i n r + A t"  ' t - A t

(4.102)

and [A] is an N x 1 column vector of the coef8cients A,. After the Ans are found, the Bns
can be calculated from (4.96), if desired. Equations (4.100)-(4.102) lend themselves well
to computer implementation.

Figure 4.25 shows the results of such a calculation. If the width, c, of guide 2 is such that
all modes are cutoff (evanescent), then no real power can be transmitted into guide 2, and all
the incident power is reflected back into guide 1. The evanescent fields on both sides of the
discontinuity store reactive power, however, which implies that the step discontinuity and
gaide 2 beyond the discontinuity look like a reactance (in this case an inductive reactance)
to an incident TEls mode in guide 1. Thus the equivalent circuit of the I1-plane step looks
like an inductor at the z: 0 plane of guide 1, as shown in Figure 4.22e. The equivalent
reactance can be found from the reflection coefficient A1 (after solving (4.100)) as

(4.103)

Figure 4.25 shows the normalized equivalent inductance versus the ratio of the guide
widths, cf a,forafree-spacewavelength.l.: l .4aandfor N: 1,2,andI0 equations.The
modal analysis results are compared to calculated data from reference [8]. Note that the
solution converges very quickly (because of the fast exponential decay of the higher-order
evanescent modes), and that the result using just two modes is very close to the data of
reference [8].

The fact that the equivalent circuit of the F/-plane step looks inductive is a result of
the actual value of the reflection coefficient, l4.1 , but we can verify this result by computing
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FIGURE 4.25 Equivalent inductance of an l/-plane asymmetric step.

the complex power flow into the evanescent modes on either side of the discontinuity. For

example, the complex power flow into guide 2 canbe found as

f c l b l

P : l  I  E x E . l  . 2 d x d y
J x:0 J y=O lz:0-

: -u 
l-'='E'H| 

dx

-ffiiw,Pto,l

: -u I *"=o[E ". ""ry)t : fi "'^ry\"
_ bc $ lB,l2- 2 3 2 f , .

(4.r04)

where the orthogonality property of the sine functions was used, as well as (4.89)-(4.91).
Equation (4.104) shows that the complex power flow into guide 2 is purely inductive. A
similar result can be derived for the evanescent modes in guide 1; this is left as a problem.

POINT OF INTEREST: Microstrip Discontinuity Compensation

Because a microstrip circuit is easy to fabricate and allows the convenient integration ofpassive

and active components, many t)4)es of microwave circuits and subsystems are made in microstrip

form. One problem with microstrip circuits (and other planar circuits), however, is that the

inevitable discontinuities at bends, step changes in widths, andjunctions can cause a degradation

in circuit performance. This is because such discontinuities introduce parasitic reactances that can

lead to phase and amplitude errors, input and output mismatch, and possibly spurious coupling.

One approach for eliminating such effects is to construct an equivalent circuit for the discontinuity
(perhaps by measurement), including it in the design of the circuit, and compensating for its

effect by adjusting other circuit parameters (such as line lengths and characteristic impedances,

or tuning stubs). Another approach is to minimize the effect of a discontinuity by compensating

the discontinuity directly, often by chamfering or mitering the conductor.

- Modal analysis using Nequations.

r r r Calculated data from Marcuvitz [8].

I = 1.4a

zi=k,nJ?t N= I
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Consider the case of a bend in a microstrip line. The straightforward right-angle bend shown
below has a parasitic discontinuity capacitance caused by the increased conductor area near the
bend. This effect could be eliminated by making a smooth, "swept" bend with a radius r > 3W,
but this takes up more space. Alternatively, the right-angle bend can be compensated by mitering
the corner, which has the effect ofreducing the excess capacitance at the bend. As shown below,
this technique can be applied to bends of arbitrary angle. The optimum value of the miter length,
a, depends on the characteristic impedance and the bend angle, but a value of a : I .8 I4l is often
used in practice.

The technique ofmitering can also be used to compensate step and T-junction discontinu-
ities, as shown below.

Mitered bends

4.7

Reference: T. C. Edwards, Foundations for Microwave Circuit Design, Wiley, New York, 1981.

EXCITATION OF WAVEGUIDES_ELECTRIC
AND MAGNETIC CURRENTS
So far we have considered the propagation, reflection, and transmission of guided waves in
the absence of sources, but obviously the waveguide or transmission line must be coupled
to a generator or some other source of power. For TEM or quasi-TEM lines, there is usually
only one propagating mode that can be excited by a given source, although there may be
reactance (stored energy) associated with a given feed. In the waveguide case, it may be
possible for several propagating modes to be excited, along with evanescent modes that
store energy. In this section we will develop a formalism for determining the excitation of a
given waveguide mode due to an arbitrary electric or magnetic current source. This theory
can then be used to find the excitation and input impedance ofprobe and loop feeds and, in
the next section, to determine the excitation of waveguides by apertures.

Current Sheets That Excite Only One Waveguide Mode

Consider an infinitely long rectangular waveguide with a transverse sheet of electric surface
current density at z:0, as shown in Figure 4.26.First assume that this current has i and

! components given as

j . * r r .  y) : - l2A*r 'n ' "or^ ' r  " inn ' r !  + izAi^mr r in^o*  "or?.  (4 .105)r b a b a a b

We will show that such a current excites a single TE., waveguide mode traveling away
from the current source in both the *z and -z directions.

+
ffi

r f f i
ffi
ffi

Right-angle
bend

ffiw
Mitered step

W
ffi

Mitered Z-junction

Swept bend
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FIGURE 4.26 An infinitely long rectangular waveguide with surface current densities at z: O.

From Table 3.2, the transverse fields for positive and negative ravelin gTE^, waveguide
modes can be written as

Ef : Zru(T) o*""o"Y!a siyln!!-"+it',

Ef, : -Zrrff) AfinsinrylacosnT' ,-'u,,

nf - +ff) Ai,sinYlacosnlu! e+i\,,

Hi : +(T) o*,"o"Y!A sinnlrt s+if,,

(4.106a)

(4.106b)

(4.106c)

(4.106d)

(4.10'7a)

(4.107b)

where the * notation refers to waves traveling in the *z direction or -z d*ection, with
amplitude coefficients Afr, and A;n, respectively.

From ( 1 .36) and ( 1 .37), the following boundary conditions must be satisfied at z : O:

@ + - E - ) x z : 0 ,

2 x (E+ - E-): i,.

Equation (4.107a) states that the transverse components of the electric field must be con-
tinuous at 7 - Q, which when applied to (4.106a) and (4.106b) gives

AIrn:  A*n ' (4.108)

Equation (4.107b) states that the discontinuity in the transverse magnetic field is equal to
the electric surface current density. Thus, the surface current density at z : O must be

i , : y ( H I - H ; ) - t ( H ; - H ; )

-  - i 2A*nno  ^^^m\Tx  ̂ , - n r !  ,  ^ . 2A f rnmn  ^ r ^ f f i TX  ̂^ ^n r r y  .  ( 4 .  109 )- - ^  
b  

c o s - s l n - * Y - , - s l n - c o s  
b

where (4.108) was used. This current is seen to be the same as the current of (4.105), which
shows, by the uniqueness theorem, that such a cunent will excite only the TE.n mode
propagating in each direction, since Maxwell's equations and all boundary conditions are
satisfied.

The analogous electric current that excites only the TM., mode can be shown to be

i - N ( x . r \ : i 2 B L ^ n  ^ -  m r T x  ̂, - n r !  | i 2 B I n n T t  r i n ^ o * . o , n t ) .  ( 4 .  1 1 0 )
d - c o s - s r n  b  

- -  
b  a  b

It is left as a problem to verify that this cunent excites TM, modes that satisfy the appro-
priate boundary conditions.
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Similar results can be derived for magnetic surface current sheets. From (1.36) and
(1.37) the appropriate boundary conditions are

(E* -  E-1x 2:  t r4, ,

2 x ( E + - f i ) : 0 .

(4.llIa)

(4. r 1lb)

(4.rr2)

(4.115a)

(4.11sb)

For a magnetic current sheet at z : 0o the TE-, waveguide mode fields of (4.106) must now
have continuous 11, and II, field components, due to (4.111b). This results in the condition
that

ALn:  -A ; r '

Then applying (4.1 1 la) gives the source current as

M:'
-i2Z1pAfinmr . mTrx nry ^2ZryA[,nn mftx wry

@.113\

The corresponding magnetic surface current that excites only the TM* mode can be
shown to be

.--rN/ -i2Bl-nn mnx nnv y2Bj,nn mTTx nTrv
M! " ' � :- -s  

b 
-^- -  

a b a a D

These results show that a single waveguide mode can be selectively excited, to the
exclusion of all other modes, by either an electric or magnetic current sheet of the appropriate
form. In practice, however, such currents are very difficult to generate, and are usually only
approximated with one or two probes or loops. In this case many modes may be excited,
but usually most of these modes are evanescent.

Mode Excitation from an Arbitrary Electric
or Magnetic Current Source

We now consider the excitation of waveguide modes by an arbitrary electric or magnetic
current source [4]. With reference to Figure 4.27, first consider an electric current source
i located between two transverse planes at zt md zz, which generates the fields E+, E+
traveling in the *z direction, and the fields E-. 11- traveling in the -z direction. These
fields can be expressed in terms of the waveguide modes as follows:

u* :+AI EI :1oIru" * 2e,n)s-iq^2, z ) 22,

U* :+AI Ef :1oIrU, t 2h,n1s-in,,, Z ) Zz,

I

'-T-UJ, i dW,i ,Wi-tr._
-=-t-i_--__--

FIGURE 4.27 An arbitrary electric or magnetic crxrent source in an infinitely long waveguide.
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E_ :1oru, :1orru" - Ze,)ei1",

: 
1 

o, U, - 
4 

or r-Un * 2h,n)ei P",,

z < z t ,

z < z r ,

(4.115c)

(4.11sd)

(4.116)

E_

where the single index n is used to represent any possible TE or TM mode. For a given
current i, we can determine the unknown amplitude AI by using the Lorentz reciprocity
theorem of (1.155) with Mt - I\4, :0 (since here we are only considering an electric
curTent source),

r _  _  f
Q @ r  x  H z -  E z  x  H t ) '  d s  :  |  ( E z '  J t  -  E t '  J z \ d u '
J .s  Jv

where S is a closed surface enclosing the volume V, and Ei, Hi are the fields due to the
current source ii (for i - 1 or 2).

To apply the reciprocity theorem to the present problem, we let the volume V be the
region between the waveguide walls and the ffansverse cross-section planes at zr afid zz.
Then let Er - EL and H1 : Ei, depending on whether z > zz, or z < zt, and let Er, fi,
be the nth waveguide mode traveling in the negative z direction:

Er: E, : (2, - 2ern)eiq"',

frz: Il; : (-frn + ZhrnyeiB,'.

Substirution into the above form of the reciprocity theorem gives, with ir : i and J2 : 6,

f  _ ,  f  -

| r r t -  
x  H ;  -  E ,  x  H=) .d t  :  

J rE , '  
Jdu .

The portion of the surface integral over the waveguide walls vanishes because the
tangent ia le lect r ic f ie ld iszerothere; that is ,  E x E .2:  E.(2 x E)  :0onthewaveguide

walls. This reduces the integration to the guide cross section, Ss, at the planes zr and zz.In
addition, the waveguide modes are orthogonal over the guide cross section:

r  _ ,  f  -
I  n i  "  Hf  .ds :  I  G^ *2e,n\  x  (Lh,  *  2h, ) .2ds

JSo JSo

:  + [  a^ x h, .  2ds :0,  for m f  n.  (4.117)
Jso

Using (4.1 15) and (4.1 17) then reduces (4.1 16) to

, f  f  -
A t r  |  GI  x  H;  -  E^  x  Hf ) .ds+ A;  |  (E ,  x  H;  -  E ;  x  H, \ 'ds

J z z  J z t

f _
:  

J rEn  
. Jdu .

Since the second integral vanishes, this further reduces to

AI I  l<e, *  2er,1 x (-hn + 2hz) -  @n - 2er) x dn + 2hz,\1.  zds' ' J z ,

:  - 2A f  I  u , ,  hn  .2ds  :  I  U ;  . i  au .
J z z  J V

.  - l  f  -  -  - l  f
o r  A f : 4 l E : - i d u : J l e " - 2 r , n \ . i e i 1 " d u .  ( 4 . 1 t 8 )"  P o J v  "  P n J v
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where (4.1r9)

is a normalization constant proportional to the power flow of the n th mode.
By repeating the above procedure with Ez : EI and Ez : Ef , the amplitude of the

negatively traveling waves can be derived as

P n : 2  
I ^ u ^ ,  

h , . 2 d s .

A; :;  
Luf 

. i  du : 
i  Lru, * 2e,n). is-i f .24,. (4.r20)

The above results are quite general, being applicable to any type of waveguide (in-
cluding planar lines such as stripline and microstrip), where modal fields can be defined.
Example 4.8 applies this theory to the problem of a probe-fed rectangular waveguide.

EXAMPLE 4.8 PROBE.FED RECTANGULAR WAVEGTIIDE

For the probe-fed rectangular waveguide shown in Figure 4.28, determine the am-
plitudes of the forward and backward traveling TEls modes, and the input resistance
seen by the probe. Assume that the TE16 mode is the only propagating mode.

Solution
If the current probe is assumed to have an infinitesimal diameter, the source volume
current density J can be written as

i 1 x , y , z ) : 1 o d  1 -  
- | ) X z l l ,  f o r o  <  y  = b .

From Chapter 3 the TEls modal fields can be written as

7fx
e t : y S l n - ,

, - i n xn r :  
T  

s l n  - ,

where 21 : kono/ fu is the TEls wave impedance. From (4.119) the normalization
constant P1 is

Then from (4.118) the amplitude Af is

ol : 
+ frsin1J.ril,'1od (x -

" : 
* 1,"=o l,'=rsi# 

Yax dY : 
*

4 \  ^ .  - I o b

i ) d f z V *  
a Y  d z :  g

-ZtIo
: -

a

FIGURE 4.28 A uniform current probe in a rectangular waveguide.
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Similarly,
- Z t I o

A r : - ; '

If the TEls mode is the only propagating mode in the waveguide, then this mode
carries all of the average power, which can be calculated for teal 21 as

P : :  I *u .  
x  E+* 'ds  + :  I ^n  

x  f r - * .ds

I7+* .ds

lAll2 ,rn, !" 4*4n
Z r a '

If the input resistance seen looking into the probe is Ri1, and the terminal current
is Is, then P : I& Rinlz, so that the input resistance is

^ 2P ablAl l2 _ bZr
R i n : T : - E Z  :  

o .

which is real for teal Z1(corresponding to a propagating TE16 mode)' t

A similar derivation can be carried out for a magnetic current source lVI. ttris source

will also generate positively and negatively traveling waves which can be expressed as a

superposition of waveguide modes, as in (4' 1 15)' For '/r - jz : 0' the reciprocity theorem

of (1.155) reduces to

frrl, 
, E, - E, x llt) .as : 

lrtnr 
NIz - Ez' tftidu. (4.121)

By following the same procedure as for the electric current case, the excitation coeffi-

cients of the nth waveguide mode can be derived as

(4.r22)

(4.r23)

where & is defined in (4.119).

EXCITATION OF WAVEGUIDES-APERTURE COUPLING

Besides the probe and loop feeds of the previous section, waveguides and other transmission

lines can also be coupled through small apertures. One common application of such coupling

is in directional couplers and power dividers, where power from one guide is coupled to

another guide through small apertufes in a common wall. Figure 4.29 shows a variety

of waveguide and other transmission line configurations where aperture coupling can be

employed. We will first develop an intuitive explanation for the fact that a small aperture can

be represented as an infinitesimal electric and/or an infinitesimal magnetic dipole, then we

will use the results of Section 4.7 to find the fields generated by these equivalent currents.

oI : +, I,u, 
. rir du : * Lnun * Zh,n). freit" dv,

A; : + Luf 
. u du : * frru" + zhzn). trrs-ie'z 4,,

4,8
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Coupling aperture Cavity

Waveguide
I

Waveguide
2

coupling 

tu'tr"rororo

aperture\ / I Ground

@
Stripline

FIGURE 4.29 Various waveguide and other transmission line conflgurations using aperture cou-
pling. (a) Coupling between two waveguides via an aperture in the common broad
wall. (b) Coupling to a waveguide cavity via an aperture in a transverse wall.
(c) Coupling between two microstrip lines via an apefture in the common ground
plane. (d) Coupling from a waveguide to a stripline via an apefiure.

Our analysis will be somewhat phenomenological l4l, [10]; a more advanced theory of
aperture coupling based on the equivalence theorem can be found in reference [11].

Consider Figure 4.30a, which shows the normal electric field lines near a conducting
wall (the tangential electric field is zero neur the wall). If a small aperture is cut into the
conductor the electric field lines will fringe through and around the aperture as shown
in Figure 4.30b. Now consider Figure 4.30c, which shows the fringing field lines around

Pe

n
D

Illustrating the development of equivalent electric and magnetic polarization cur-
rents at an aperture in a conducting wall. (a) Normal electric field at a conducting
wall. (b) Electric field lines around an aperture in a conducting wall. (c) Electric field
lines around electric polarization cuffents normal to a conducting wall. (d) Magnetic
field lines near a conducting wall. (e) Magnetic field lines near an aperture in a con-
ducting wall. (f) Magnetic field lines near magnetic polarization currents parallel
to a conducting wall.

I(b
sP

I
(c)

tO€r1

I+
, - )+
I

(b)

I
ttt^
| ----JtI r r

I
(eJ

nF-
=
+

j
(a)

l*
t t t l
| i lr r l

(d)

E

(f)

FIGURE 4.30
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two infinitesimal electric polarization currents, P", normal to a conducting wall (without

an aperture). The similarity of the field lines of Figures 4.30c and 4.30b suggests that an

aperture excited by a normal elecffic field can be represented by two oppositely directed

infinitesimal electric polarization cuffents, Pr, normal to the closed conducting wall. The

strength of this polarization current is proportional to the normal electric field, thus,

Pe : eoaefiE,8(x -.ro)6(y - ye)6(z - zo), (4.124)

where the proportionality constant de is defined as the electric polarizability of the aperture,

and (xo, )0, zo) are the coordinates ofthe center ofthe aperture.
Similarly, Figure 4.30e shows the fringing of tangential magnetic field lines (the normal

magnetic field is zero at the conductor) near a small aperture. Since these field lines are

similar to those produced by two magnetic polarization currents located parallel to the

conducting wall (as shown in Figure 4.30f), we can conclude that the aperture can be

replaced by two oppositely directed infinitesimal polarization culrents, F^, wherc

F^ : -a^Ilt6(x - -ro)d(y - yo)6(z - zo). (4.rzs)

In (4.125), o. is defined as the magnetic polarizability of the aperture.
The electric and magnetic polarizabilities are constants that depend on the size and

shape of the aperture, and have been derived for a variety of simple shapes [3]' [10]' [1 1].

The polarizabilities for circular and rectangular apertures, which are probably the most

commonly used shapes, are given in Table 4.3.
We now show that the electric and magnetic polarization cunents, P" and P^, canbe

related to electric and magnetic current sources, i and M. respectively. From Maxwell's

equations (1.27 a) and (l .27b) we have

V X E : - j a p f i - t u L .

V x E : i a e E + J .

Then using (1.15) and (1.z3),which define P" and P-, we obtain

V x E - -japoH - jro1.tsP. - M,

V x H - j o e s E * j a P " + J .

Thus, since IZ has the same role in these equations as j alt sP*, and J has the same role as
jaPr,we can define equivalent currents as

J = jaP",

tut : l@p,\rm.

These results then allow us to use the formulas of (4.118), (4.120), (4.122), and (4.723) to

compute the fields from these currents.

TABLE 4.3 Electric and Magnetic Polarizations

Aperhre Shape

(4.126a)

(4.r26b)

(4.127a)

(4.127b)

(4.r28a)

(4.128b)

Round hole

Rectangular slot

(Il across slot)

n - 3Lto

.
J

n ld2

1 6

ar3
J

n [d2

T6
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The above theory is approximate because of various assumptions involved in the eval-
uation of the polarizabilities, but generally gives reasonable results for apertures which are
small (where the term small irnplies small relative to an electrical wavelength), and not 1o-
cated too close to edges or corners of the guide. In addition, it is important to realize that the
equivalent dipoles given by ( 4 .124) and (4 .125) radiate in the presence of the conducting wall
to give the fields transmitted through the aperture. The fields on the input side of the conduct-
ing wall are also affected by the presence of the aperture, and this effect is accounted for by
the equivalent dipoles on the incident side of the conductor (which are the negative of those
on the output side). In this way, continuity oftangential fields is preserved across the aperture.
In both cases, the presence of the (closed) conducting wall can be accounted for by using
image theory to remove the wall and double the strength of the dipoles. These details will be
clarified by applying this theory to apertures in transverse and broad walls of waveguides.

Coupling Through an Aperture in a Transverse Waveguide Wall

Consider a small circular aperture centered in the transverse wall of a waveguide, as shown
in Figure 4.31a. Assume that only the TEls mode propagates in the guide, and that such a
mode is incident on the transverse wall from z < 0. Then, if the aperture is assumed to be
closed, as in Figure 4.31b, the standing wave fields in the region 2 < 0 can be written as

where B and Zrc are the propagation constant and wave impedance of the TEls mode. From
(4.124) and (4.125) we can determine the equivalent electric and magnetic polarization
currents from the above fields as

Ey - A(e-i\z - rifz)sin 11,
a

11" : 
-41r-i lz 

+ ei\zl r 'nnx .^ Z r c \ ' a

p" : 2eou"E,u(, -;)t(, - uu)urr., : o,

P- : -iq-H.6 (x
\

^2Au^  ̂ 1
: X - d l X -

Z'ro \

-;)'(, - i)'u,

(4.129a)

{4.r29b)

(4.130a)

(4.130b);)'(, -l)x,t,

since E. : 0 for a TE mode. Now, by (4.128b), the magnetic polarization current P. is
equivalent to a magnetic current density

14 : iatptsF^ = rtfu#tQ -i)t(t -br)a.., (4 .131)

As shown in Figure 4.31d, the fields scattered by the aperture are considered as being
produced by the equivalent currents P^ and -F^ on either side of the closed wall. The
presence of the conducting wall is easily accounted for using image theory, which has the
effect of doubling the dipole strengths and removing the wall, as depicted in Figue 4.31e
(forz<0)andFigure4.3lf(forz>0).Thusthecoefficientsofthetransmittedandreflected
waves caused by the equivalent aperture currents can be found by using (4.131) in(4.122)
and(4.123) to give

. ! -I f - 4j Arotrtoa^ 4j AFq
A l n :  _  l i l n . e j a p s P ^ 1 d u :  -'u  Pn t  abZn ab

o,, : 
-* 

I hn . 1-2ie)psP^sdu : !i#Y : !i#, @.132b)



4.8 Excitation of Waveguides-Aperture Coupling 213
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FIGURE 4.31 Applying small-hole coupling theory and image theory to the problem of an aperture

in the transverse wall of a waveguide. (a) Geometry of a circular aperture in the
transverse wall of a waveguide. (b) Fields with aperfure closed. (c) Fields with

aperture open. (d) Fields with aperture closed and replaced with equivalent dipoles.
(e) Fields radiated by equivalent dipoles for z < 0; wall removed by image theory.
(fl Fields radiated by equivalent dipoles for e > 0; wall removed by image theory.

since h1s : ?ft/Zrc)sin(nxla), and &o : ablZn.The magnetic polarizability u* is
given in Table 4.3. The complete fields can now be written as

E, : lAe-tL. + (A1o - A)eiaz1ri1!!'

, ,  :  
*r-Ae-i lz+ 

(A1o - A)ei lz1" inla,

Ey : Afoe-if' "in!a, for z > 0,

H, : 
-*r-iflz 

,ir1|, for z > o.

'U* +

forz < 0, (4.133a)

forz < 0, (4.133b)

(4.134a)

(4.r34b)

and
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---.->
z

FIGURE 4.32 Equivalent circuit of the aperture in a transverse waveguide wall.

Then the reflection and ffansmission coefficients can be found as

Au-  A  4 j f lo " ,
' :  

A  
: - - o b  - ' ' (4.135a)

(4.13sb)f : 4
A

4ifla*
ab

since Zrc: kono/F. Note that lf | > 1; this physically unrealizable result (for a passive
network) is an artifact of the approximations used in the above theory An equivalent circuit
for this problem can be obtained by comparing the reflection coefficient of (4.135a) with
that of the transmission line with a normalized shunt susceptance, jB, shown in Figure 4.32.
The reflection coefficient seen lookins into this line is

f  - 1 - ) * : r - , r * r U ,  -  - j B
l * y i n  l * ( 1  * " t B )  2 + j B

If the shunt susceptance is very large (low impedance), f can be approximated as

- 1  2
f -  

-  - - l - ; -
r + ( 2 / j B )  "  B

Comparison with (4.135a) suggests that the aperture is equivalent to a normalized
inductive susceptance,

-ab
B _

2fra*

Goupling Through an Aperture in the Broad Wall of a Waveguide

Another configuration for aperture coupling is shown in Figure 4.33, where two parallel
waveguides share a common broad wall and are coupled with a small centered aperture.
We will assume that a TEls mode is incident from z < 0 in the lower guide (guide 1), and

@ *-llljl flJIIr* @
I r_

e Uut"'- ltlt'-'- @
------.>

z

z

2b

-------)
Ya

FIGURE 4.33 Tlvo parallel waveguides coupled through an aperture in a common broad wall.
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compute the fields coupled to the upper guide. The incident fields can be written as

The excitation field at the center of the aperture at (x : a 12, ! : b, z = O) is then

Ey :  AsinYr- i f ' ,

H" : 
;:si1!!"-in'.

E v  : 4 ,

_A
H , :  

Z r o .

forz < 0,

forz < 0,

forz > 0,

(4.136a)

(4.136b)

(4.137a)

(4.r37b)

(4.138a)

(4.r38b)

(4.139a)

(4.13eb)

(4.t4oa)

(4.140b)

(4.r4Ia)

(ff the apeffure were not centered at x : af2, the H, field would be nonzero and would
have to be included.)

Now from (4.124), (4.125), and (4.128), the equivalent electric and magnetic dipoles
for coupling to the fields in the upper guide are

l, - io,esa"ou\ - t)u, - b)s(z),

,,: i2#t(. _i)xt *b)s(z).

Note that in this case we have excited both an electric and a magnetic dipole. Now let the
flelds in the upper guide be expressed as

E, = A- syrY"+ifz,

H; = 
*rin!!r+ie',

Ef, : e* sis!!r-itz,

H: : 
-+rin!!u-ie', 

forz > o,

where A+, A- are the unknown amplitudes of the forward and backward travetng waves
in the upper guide, respectively.

By superposition, the total fields in the upper guide due to the electric and magnetic
currents of (4. 138) can be found from (4. 1 1 8) and (4.122) for the forward wave as

o* = 
* l,{t;t,- H;M,)du =# (.0o" - 

X)
and from (4.120) and (4.123) for the backward wave as

A- : * I,@it, 
- nfu,)au : #(.*" + rX), (4.141b)

where P1s : ab lZn. Note that the electric dipole excites the same fields in both directions,
but the magnetic dipole excites oppositely polarized fields in the forward and backward
directions.
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PROBLEMS

Solve the problem of Example 4.2by witing expressions for the incident, reflected, and transmitted
E, and 11, fields for the regions z < 0 and z > 0, and applying the boundary conditions for these
fields at the dielectric interface at z : O.

Consider the reflection of a TE16 mode, incident from z < 0, at a step change in the height of a
rectangular waveguide, as shown below. Show that if the method of Example 4.2 is used, the result
f : 0 is obtained. Do you think this is the correct solution? Why? (This problem shows that the
one-mode impedance viewpoint does not always provide a correct analysis.)

4.3 Consider a series RZC circuit with a current, 1. Calculate the power lost and the stored electric and
magnetic energies, and show that the input impedance can be expressed as in (4.17).

4.4 Show that the input impedance, Z, of a parallel RLC circuit satisfies the condition that Z(-a) :
Z.(at).

4.5 Show that the admittance matrix of a lossless N-port network has purely imaginary elements.

4.6 Does a nonreciprocal lossless network always have a purely imaginary impedance matrix?

4.7 Deive the lZl and [1] matrices for the following two-port networks:

t1 l

t ) 1
L - l

t31

t4l
t5l
t6l

t8l
tel

17l

4.1

4.2
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*,Ya l---l Ya F--o
t " t l l ' l

Pon Pon
t  l Y n l  2

I I+
(b)

4.9

4.8 Consider a two-port network, and let z[!, Z?), 29, zfl Ue 'he input impedance seen when port 2
is short-circuited, when port I is short-circuited, when port 2 is open-circuited, and when port I is
open-circuited, respectively. Show that the impedance matrix elements are given by

zrt : zH, zzz: Zt), z?r: 23, : (t'# - z',i')zil

A two-port network is driven at both ports such that the port voltages and currents have the following
values (26 : 50 O):

V :20t0"  I r  :0 .4t90"

vz:41-90" 1z : 0.0810'

Determine the input impedance seen at each port, and find the incident and reflected voltages at each
port.

Derive the scattering matrix for each of the lossless transmission lines shown below, relative to a
system impedance of Zx. Verify that each matrix is unitary.

<-- l---------------- -l"------""-'->

2 Z o

4.11. Consider two two-port networks with individual scattering matrices, [SA] and [SB]. Show that the

overall S21 parameter of the cascade of these networks is given by

- si'si'.rr, : 
i:Sisfl,

4.12 Consider a lossless two-port network. (a) If the network is reciprocal, show that lsr.rlt : 1 - lStt l'.
(b) If the network is nonreciprocal, show that it is impossible to have unidirectional transmission,

where S12 : 0 and Sn # O.

4.13 Show that it is impossible to construct a three-port network that is lossless, reciprocal, and matched

at all ports. Is it possible to construct a nonreciprocal three-port network that is lossless and matched

at all ports?

4.14 Prove the following decoupling theorem: For any lossless reciprocal three-port network, one port (say

port 3) can be terminated in a reactance so that the other two ports (say ports 1 and 2) are decoupled
(no power flow from port I to port 2, or from port 2 to port 1).

4.15 A certain three-port network is lossless and reciprocal, and has Sr: : ,Sz: and S11 : ,Szz. Show that

if port 2 is terminated with, a matched load, then port 7 can be matched by placing an appropriate

reactance at port 3.

4.16 A four-port network has the scattering matrix shown below.

(a) Is this network lossless?
(b) Is this network reciprocal?
(c) What is the return loss at port 1 when all other ports are terminated with matched loads?
(d) What is the insertion loss and phase delay between ports 2 and 4, when all other ports are

terminated with matched loads?

4.r0

Port
2

Port Port
2 1

zoPort
I
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(e) What is the reflection coef0cient seen at port 1 if a short circuit is placed at the terminal plane of
port 3, and all other ports are terminated with matched loads?

[ 0.1d0" 0.8/-45' os/-45" 0 I
I o.at-qs' o o a.4A5" I

t t l : l o . r r -o t .  o  o  o .oz -+s .  l '
L ; 0.4a5" o.6t-45" o I

4.17 A four-port network has the scattering matrix shown below If ports 3 and 4 are connected with a
lossless matched transmission line with an electrical length of 60', flnd the resulting insertion loss
and phase delay between ports I and 2.

[ 0.3 / -30' 0
I  o olr-30"

r s l : l  o  o ' t r - 4 5 '
t "
L o.s/Q o

0 0.84 I
0.7/-45" 0 |
o.7t-30" 0 |

0 0.31-30" J

4.18 Consider a two-port network consisting of a junction of two transmission lines with characteristic
impedances Zs1 and 202, as shown below. Find the generalized scattering parameters of this network.

I

Terminal plane
for both oorts

4.19 The scattering parameters of a certain two-port network were measwed to be

Srr :  0.3 + j0.7, Srz : Szr :  j0.6, Szz :0.3 - j0.7.

Find the equivalent impedance parameters for this network, if the characteristic impedance is 50 Q.

4.20 When normalized to a single characteristic impedance Zs, a certait two-port network has scattering
parameters ,S,7 . Find the generalized scattering parameters, ,!u, when the characteristic impedances
at ports 1 and 2 are changed to Z()1 aad Zo2, rcspectively.

4.21 Find the impedance parameters of a section of transmission line with length l, characteristic impedance
Zs, aod propagation constant B.

4.22 The ABCD paftImeters of the first entry in Table 4.1 were derived in Example 4.6. Verify the ABCD
parameters for the second, third, and fourth entries.

4.23 Deive expressions that give the impedance parameters in tems of the ABCD parameters.

4.24 Use ABCD matrices to find the voltage V1 across the load resistor in the circuit shown below.

5 0 o l : 2  + 9 0 " _ - *

Port
I

310:
1/

Z o =  5 0  Q
+
VL Z t =  2 5  Q

4.25 FindtheABCDmatixforthefollowingcircuitbydirectcalculationusingthedefinitionoftheABCD
matrix, and compare with the ABCD matix of the appropriate cascade of canonical circuits from
Table 4.1.
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4.26 Show that the admittance matrix of the two parallel connected two-port z-networks shown below can

be found by adding the admittance matrices of the individual two-ports. Apply this result to find the

admittance matrix of the brideed-T circuit shown.

4.27 Deive the expressions for S parameters in terms of the ABCD parameters, as given inTable 4.2.

4.28 Find the S parameters for the series and shunt loads shown below. Show that Srz : I - 'S11 for the

series case, and that Srz : I * S11 for the shunt case. Assume a characteristic impedance Zs.

z r -
Port Port

4.29 As shown in the figure below, a variable attenuator can be implemented using a four-port 90" hybrid

coupler by terminating ports 2 and 3 with equal but adjustable loads. (a) Using the given scattering

matrix for the coupler, show that the transmission coefficient between the input (port 1) and the output
(port 4) is given as I : jf , where f is the reflection coefficient of the mismatch at ports 2 and 3.

Also show that the input port is matched for all values of f . (b) Plot the attenuation, in dB, from the

input to the output as a function of Z y I Zs, for 0 < Z, / Zo < l0 (let Z r be real).

tsl =

Use signal flow graphs to flnd the power ratios Pz/ Pr and
network shown below

Pz/Pt for the mismatched three-port

[ o . r r o l
, l j  0  o  1 l

g z l t o o ; l
L o l i o l

4.30
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4.31 The end of an open-circuited microstrip line has fringing fields that can be modeled as a shunt
capacitor, Cy, at the end of the line, as shown below. This capacitance can be replaced with an
additional length, A, of microstrip line. Derive an expression for the length extension in terms of the
fringing capacitance. Evaluate the length extension for a 50 O open-circuited microstrip line on a
subs t ra tewi thd :0 .158cmande. :2 .2 (w:0 .487cnr ,s " :1 .894) , i f the f r ing ingcapac i tance is
known to be C1 - 0.075pF. Compare your result with the approximation given by Hammerstad and

Bekkadar that A : o.ctza ( 
t" ro'3 \ /u +o'z6za\

\e" -  0.258/ \u + 0.813dl

Cr h o.c.
J W

- -.r.-'o

4.32For the l/-plane step analysis of Section 4.6, compute the complex power flow in the reflected modes
in guide 1, and show that the reactive power is inductive.

For the .F/-plane step of Section 4.6, assume that i. : l.2a and c :0.8a, so that a TEls mode can
propagate in each guide. Using N : 2 equations, compute the coefficients Ar and Az from the modal
analysis solution and draw the equivalent circuit of the discontinuity.

Derive the modal analysis equations for the symmetric I/-plane step shown below. (HINT: Because
of symmetry, only the TE s modes, for z odd, will be excited.)

A
-e

-.....-o

4.33

4.34

4.3s

4.36

4.37

-1
:__T

b

Find the transverse E and E fields excited by the current of (4.110) by postulating traveling TM-n
modes on either side of the source at z : O, and applying the appropriate boundary conditions.

Show that the magnetic surface current density of (4.114) excites TM., waves traveling away from
the source.

An infinitely long rectangular waveguide is fed with a probe of length d, as shown below. The current
on this probe can be approximated as I(y) : Iosinft(d - y)/ sinkd. ff the TEro mode is the only
propagating mode in the waveguide, compute the input resistance seen at the probe terminals.

,l
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4.38 Consider the inflnitely long waveguide fed with two probes driven I 80" out of phase, as shown below.
What are the resulting excitation coefficients for the TEls and TEzo modes? What other modes can
be excited by this feeding arrangement?

,1
b i

+

4.39 Consider a small current loop on the side wall of a rectangular waveguide, as shown below. Find the
TEle fields excited by this loop, if the loop is of radius rs.

l1'- l

9Y' l.+
4.40 A rectangular waveguide is shorted at I : Q, and has an electric current sheet, .I"y, located at I : i ,

where

J ' n : U s i n A '
a a

Find expressions for the fields generated by this curent by assuming standing wave fields for 0 <

z<d,andt rave l ingwavef ie lds fo rz>d,andapp ly ingboundarycond i t ionsat l :Qand7: f , .
Now solve the problem using image theory by placing a current sheet - ./",, at z : - d. , and removing

the shorting wall at z: 0. Use the results of Section 4.7 and superposition to find the fields radiated

by these two curents, which should be the same as the flrst results for z > 0.

-------------t-

z

,1



Impedance Matching
and Tuning

This chapter marks a turning point in that we now begin to apply the theory and techniques
of the previous chapters to practical problems in microwave engineering. We begin with the
topic of impedance matching, which is often a part of the larger design process for a microwave
component or system. The basic idea of impedance matching is illustrated in Figure 5.1, which
shows an impedance matching network placed between a load impedance and a transmission
line. The matching network is ideally lossless, to avoid unnecessary loss of power, and is usually
designed so that the impedance seen looking into the matching network is 26. Then reflections
are eliminated on the transmission line to the left of the matching network, although there will be
multiple reflections between the matching network and the load. This procedure is also referred
to as tuning. Impedance matching or tuning is important for the following reasons:

o Maximum power is delivered when the load is matched to the line (assuming the generator
is matched), and power loss in the feed line is minimized.

o Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.)
improves the signal-to-noise ratio of the system.

o Impedance matching in a power distribution network (such as an antenna array feed
network) will reduce amplitude and phase erors.

As long as the load impedance, Zy,has some nonzero real part, a matching network can
always be found. Many choices are available, however, and we will discuss the design and
performance of several types of practical matching networks. Factors that may be important in
the selection of a particular matching network include the following:

o Complexiry-As with most engineering solutions, the simplest design that satisfies the
required specifications is generally the most preferable. A simpler matching network is
usually cheaper, more reliable, and less lossy than a more complex design.

o Bandwidth-Any type of matching network can ideally give a perfect match (zero rc-
flection) at a single frequency. In many applications, however, it is desirable to match a
load over a band of frequencies. There are several ways of doing this with, of course, a
corresponding increase in complexity.

c Implementation-Depending on the type of transmission line or waveguide being used,
one type of matching network may be preferable compared to another. For example,

222
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FIGURE 5.1 A lossless network matchins an arbikarv load impedance to a transmission line.

tuning stubs are much easier to implement in waveguide than are multisection quarter-
wave transformers.

c Adjustability-In some applications the matching network may require adjustment to
match a variable load impedance. Some types of matching networks are more amenable
than others in this regard.

MATCHTNG W|TH LUMPED ELEMENTS (r NETWORKS)

Probably the simplest type of matching network is the L-section, which uses two reactive
elements to match an arbitrary load impedance to a transmission line. There are two possible
configurations for this network, as shown in Figure 5.2. If the normalized load impedance,
zr:ZrlZo, is inside the I + jx circle on the Smith chart, then the circuit of Figure 5.2a
should be used. If the normalized load impedance is outside the 1 * jx circle on the Smith
chart, the circuit of Figure 5.2b should be used. The 1 * j x circle is the resistance circle on
the impedance Smith chart for which r: 1.

In either of the configurations of Figure 5.2, the reactive elements may be either in-
ductors or capacitors, depending on the load impedance. Thus, there are eight distinct
possibilities for the matching circuit for various load impedances. If the frequency is low
enough and/or the circuit size is small enough, actual lumped-element capacitors and in-
ductors can be used. This may be feasible for frequencies up to about 1 GHz or so, although
modern microwave integrated circuits may be small enough so that lumped elements can be
used at higher frequencies as well. There is, however, a large range offrequencies and circuit
sizes where lumped elements may not be realizable. This is a limitation of the l-section
matching technique.

We will now derive the analytic expressions for the matching network elements of the
two cases in Figure 5.2, then illustrate an alternative design procedure using the Smith chart.

( a )

L-section matching networks. (a) Network for er
work for zr outside the 1 *.1-t circle.

(b)

inside the I t jx circle. (b) Net-FIGURE 5.2
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Analytic Solutions

Although we will discuss a simple graphical solution using the Smith chart, it may be useful
to derive expressions for the l-section matching network components. Such expressions
would be useful in a computer-aided design program for Z-section matching, or when it is
necessary to have more accuracy than the Smith chart can provide.

Consider first the circuit of Figure 5.2a, andlet Z7- fu * jXu We stated that this
circuit would be used when zr:Zr/Zo is inside the 1* jx circle on the Smith chart,
which implies that R1 > Z0 for this case.

The impedance seenlooking into the matching networkfollowed by the loadimpedance
must be equal to Zs, for a match:

Z s :  j X  I j B + r / ( R L - r j x L )
(s.1)

Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

B(XRL -  XrZ i :  Rr  -  Zo ,

X( l  -  BX) :  BZoRL -  Xr .

(5.2a)

(s.2b)

(5.3b)

(5.5a)

(s.5b)

Solving (5.2a) for X and substituting into (5.2b) gives a quadratic equation for B. The
solution is

xL+JEm n'�r+ x! - ZoRL
B -

R?r+ x2,
(5.3a)

Note that since R1 > 26, the argument of the second square root is always positive. Then
the series reactance can be found as

I XyZs Zs
 : - T -

B  R1  BRL

Equation (5.3a) indicates that two solutions are possible for B and X. Both of these
solutions are physically realizable, since both positive and negative values of B and X
are possible (positive X implies an inductor, negative X implies a capacitoq while positive
B implies a capacitor and negative .B implies an inductor.) One solution, however, may
result in significantly smaller values for the reactive components, and may be the preferred
solution if thebandwidth of the match is better, orthe SWR on the linebetween the matching
network and the load is smaller.

Now consider the circuit of Figure 5.2b. This circuit is to be used when zr is outside
thel*  jxc i rc le ontheSmithchart ,whichimpl iesthatRl  <Zs.The admit tanceseen
looking into the matching network followed by the load impedance Zt: Rr * "lXr must
be equal to I lZs, for a match:

: j B +
RL+ j ( x+xL )

(s.4)

Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

1

4

BZo(X -t X) - Zo - Rr,

( X + X ) = B Z o R r .
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Solving for X and B gives

X : *J Rr(Zs - Ry) * X7,

B : * . J@;=R,D4tr,

Since R1 < Zs,the arguments of the square roots are always positive. Again, note that two
solutions are possible.

In order to match an arbitrary complex load to a line of characteristic impedance Zs,the
real part of the input impedance to the matching network must be Zo, while the imaginary
part must be zero. This implies that a general matching network must have at least two
degrees of freedom; in the L-section matching circuit these two degrees of freedom are
provided by the values of the two reactive components.

Smith Chart Solutions

Instead of the above formulas, the Smith chart can be used to quickly and accurately design
Z-section matching networks, a procedure best illustrated by an example.

EXAMPLE 5.1 Z-SECTION IMPEDANCE MATCHING

Design an Z-section matching network to match a series RC load with an impedance
Z r :2OO * j 100 Q, to a 100 g line, at a frequency of 500 MHz.

Solution
The normalized load impedance is zr:2 - j1, which is plotted on the Smith
chart of Figure 5.3a. This point is inside the Il jx ckcle, so we will use the
matching circuit of Figure 5.2a. Since the first element from the load is a shunt
susceptance, it makes sense to convert to admittance by drawing the SWR circle
through the load, and a straight line from the load through the center of the chart,
as shown in Figure 5.3a. Now, after we add the shunt susceptance and convert
back to impedance, we want to be on the I * jx circle, so that we can add a
series reactance to cancel the jx and match the load. This means that the shunt
susceptance must move us from y1 to the 1 *,lx circle onthe admittance Smith
chart. Thus, we construct the rotated I { 7x circle as shown in Figure 5.3a (center
at r :0.333). (A combined ZY chart is convenient to use here, if it is not too
confusing.) Then we see that adding a susceptance of jb: jO.3 will move us
along a constant conductance circle to I :0.4 + j0.5 (this choice is the shortest
distance from y; to the shifted 1 * ,tx circle). Converting back to impedance leaves
us 8t 7 : I - j l.z,indicating that a series reactance I : j l.2will bring us to the
center of the chart. For comparison, the formulas of (5.3a,b) give the solution as
b : 0 . 2 9 , x : 1 . 2 2 .

This matching circuit consists of a shunt capacitor and a series inductor, as
shown in Figure 5.3b. For a frequency of / : 500 MHz, the capacitor has a value
of

C :  =+ - :O .9Z1F ,2n.f Zs

and the inductor has a value of

(5.6a)

(s.6b)
Zo

L : 
*Zo 

= 38.8 nH.
2nf
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It may also be interesting to look at the second solution to this matching prob-
lem. Ifinsteadofaddingashuntsusceptanceof b :0.3, weuseashuntsusceptance
of b : -0.7, we willmove to apointonthelowerhalf of the shifted I * jx ctcle,
to ) - 0.4 - j0.5. Then converting to impedance and adding a series reactance of
x : -l.2leads to a match as well. The formulas of (5.3a,b) give this solution as
b : -0.69, x = -1.22. This matching circuit is also shown in Figure 5.3b, and
is seen to have the positions of the inductor and capacitor reversed from the first
matching network. At a frequency of f :500 MHz, the capacitor has a value of

C _ :2 .61  pF,
2nfxZs

while the inductor has a value of

L :  
- Z o  

: 4 6 . 1  n H .
2rfb

Figure 5.3c shows the reflection coefficient magnitude versus frequency for
these two matching networks, assuming that the load impedance of Zy :200 -

j 100 ff,2 at 500 MHz consists of a200 O resistor and a 3.18 pF capacitor in series.
There is not a substantial difference in bandwidth for these two solutions. I

(a )

FIGURE 5.3 Solution to Example 5.1. (a) Smith chart for the l-section matching networks.

- 1
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5.1 Matching with Lumped Elements (L Networks)

38.8 nH

4=200- j f iOa

ZL=200 - j1O0 Q

0.75

lr l  0.5

0.25

0.25 0.5 0;15 I

f(GHz)
(c)

FIGURE 5.3 Continued. (b) The two possible l-section matching circuits. (c) Reflection coeffr-
cient magnitudes versus frequency for the matching circuits of (b).

POINT OF INTEREST: Lumped Elements for Microwave Integrated Circuits

Lumped R , L , and C elements can be practically realized at microwave frequencies if the length,
I, of the component is very small relative to the operating wavelength. Over a limited range of
values, such components can be used in hybrid and monolithic microwave integrated circuits
(MICs) at frequencies up to 60 GHz, if the condition that | < ),/10 is satisfied. Usually, how-
ever, the characteristics of such an element are far from ideal, requiring that undesirable effects
such as parasitic capacitance and/or inductance, spurious resonances, fringing fields, loss, and
perturbations caused by a ground plane be incorporated in the design via a CAD model (see the
Point of Interest concerning CAD).

Resistors are fabricated with thin films of lossy material such as nichrome, tantalum nitride,
or doped semiconductor material. In monolithic circuits such films can be deposited or grown,
while chip resistors made from a lossy fllm deposited on a ceramic chip can be bonded or soldered
in a hybrid circuit. Low resistances are hard to obtain,

Small values of inductance can be realized with a short length or loop of transmission line,
and larger values (up to about 10 nH) can be obtained with a spiral inductor, as shown in the fol-
lowing figures. Larger inductance values generally incur more loss, and more shunt capacitance;
this leads to a resonance that limits the marimum operating frequency.

Capacitors can be fabricated in several ways. A short transmission line stub can provide
a shunt capacitance in the range of 0 to 0.1 pF. A single gap or interdigital set of gaps in a

227
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2.61pF

Zo=100dl- 46.1 nH
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Chip resistor

Dielectric

Loop inductor Spiral inductor

ffi
Chip capacitor

ffiffi
Metal-insulator-
metal capacitor

5.2

transmission line can provide a series capacitance up to about 0.5 pF. Greater values (up to about
25 pF) can be obtained using a metal-insulator-metal (MIM) sandwich, either in monolithic
or chip (hybrid) form.

SINGLE.STUB TUNING

We next consider a matching technique that uses a single open-circuited or short-circuited
length of transmission line (a "stub"), connected either in parallel or in series with the trans-
mission feed line at a certain distance from the load, as shown in Figure 5.4. Such a tuning
circuit is convenient from a microwave fabrication aspect, since lumped elements are not
required. The shunt tuning stub is especially easy to fabricate in microstrip or stripline form.

In single-stub tuning, the two adjustable parameters are the distance, d,fromthe load
to the stub position, and the value of susceptance or reactance provided by the shunt or
series stub. For the shunt-stub case, the basic idea is to select d so that the admittance, I,
seen looking into the line at distance d fromthe load is of the form 16 * jB. Then the stub
susceptance is chosen as - j B , resulting in a matched condition. For the series stub case,
the distance d is selected so that the impedance, Z, seen looking into the line at a distance d
from the load, is of the form Zo * j X . Then the stub reactance is chosen as - j X, resulting
in a matched condition.

As discussed in Chapter 2, the proper length of open or shorted transmission line can
provide any desired value of reactance or susceptance. For a given susceptance or reactance,
the difference in lengths of an open- or short-circuited stub is ),/4. For transmission line
media such as microstrip or stripline, open-circuited stubs are easier to fabricate since
a via hole through the substrate to the ground plane is not needed. For lines like coax or
waveguide, however, short-circuited stubs are usually prefened, because the cross-sectional
area of such an open-circuited line may be large enough (electrically) to radiate, in which
case the stub is no longer purely reactive.

Below we discuss both Smith chart and analytic solutions for shunt and series stub
tuning. The Smith chart solutions are fast, intuitive, and usually accurate enough in practice.
The analytic expressions are more accurate, and useful for computer analysis.

Shunt Stubs

The single-stub shunt tuning circuit is shown in Figure 5.4a. We will first discuss aa example
illustrating the Smith chart solution, and then derive formulasfor d and l.

$-#.,"
Lossynrm 

ty'' 
ffi ffi@ f f i m t u Y

Planar resistor

Interdigital
gap capacitor
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FIGURE 5.4 Single-stub tuning circuits. (a)

(b)

Shunt stub. (b) Series stub.

EXAMPLE 5.2 SINGLE.STUB SHUNT TUNING

For a load impedance Zt:60 * j80 O, design two single-stub (short circuit)
shunt tuning networks tomatch this load to a 50 Q line. Assuming that the load is
matched at 2 GHz, and that the load consists of a resistor and capacitor in series,
plot the reflection coefficient magnitude from 1 GHz to 3 GHz for each solution.

Solution
The first step is to plot the normalized load impedance zL : 1.2 - 7 I .6, construct
the appropriate SWR circle, and convert to the load admittance, yL, as shown
on the Smith chart in Figure 5.5a. For the remaining steps we consider the Smith
chart as an admittance chart. Now notice that the SWR circle intersects the 1 * jD
circle at two points, denoted as /1 and y2 in Figure 5.5a. Thus the distance d,from
the load to the stub, is given by either of these two intersections. Reading the WTG
scale, we obtain

i l  : 0 .176  -  0 .065  :0 .110 .1 " ,

dz : 0.325 - 0.065 :0.260)".

Actually, there is an infinite number of distances, d, on the SWR circle that
intersect the 1 I j b circle. Usually, it is desired to keep the matching stub as close
as possible to the load, to improve the bandwidth of the match and to reduce losses
caused by a possibly large standing wave ratio on the line between the stub and
the load.

zo

I
I
I t o
I
& - - --open 

oi
shorted

stub

+ / -

+ d . +
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At the two intersection points, the normalized admittances are

) r : 1 . 0 0 + j 1 . 4 7 ,

) z : 1 . 0 0 - j I . 4 ' 1 .

Thus, the first tuning solution requires a stub with a susceptance of - j 1.47 . The
length of a short-circuited stub that gives this susceptance can be found on the
Smith chart by starting at y : oo (the short circuit) and moving along the outer
edge of the chatt(g :0) toward the generator to the - j 1.47 point. The stub length
is then

I t  :0 .09i l ' .

Similarly, the required open-circuit stub length for the second solution is

lz  :0 .405) . .

This completes the tuner designs.
To analyze the frequency dependence ofthese two designs, we need to know

the load impedance as a function of frequency. The series-Rl load impedance
is Z7 - 60 - j80 {lat2GHz, so R:60 g and C :0.995 pF. The two tuning

( a )

FIGURE 5.5 Solution to Example 5.2. (a) Smith chart for the shunt-stub tuners.
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0.995 pF 0.995 pF

(b)

0.8

l r l
0.4

0.2

U -
1.0 1.5 2.0 2.5 3.0

f(GHz)
(c)

FIGURE 5.5 Continued. (b) The two shunt-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

circuits are shown in Figure 5.5b. Figure 5.5c shows the calculated reflection
coefficient magnitudes for these two solutions. Observe that solution t has a sig-
nificantly better bandwidth than solution 2; this is because both d and I are shorter
for solution 1, which reduces the frequency variation of the match. I

To derive formulas for d and l, let the load impedance be written as Z2:
| / Y L : R L * j X u Then the impedance Z down a length, d, of line from the load is

-  ( R L *  i X ) *  i Z o t' : ' o  
h +  i ( R r + ' i x i ) t '

where / : tan 0d. The admittance at this point is

I

(s.7)

Y : G + j B : 2 ,

RL(.l + tz)
\ ' :  

R 2 L + ( x L + h t Y '
(5.8a)

(s.8b)
RLt - (Zo - XLI)(XL -t Zot)

+0.260I+ 60Q

\ i 
--r\\

--- \  t
ra Solution #2 

,'

" . i\ r i
sotutton #r 

\ 
ll 

!\ i
i !

where

B :
zo ln2r+(xt l -Zo02l
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Now d (which implies l) is chosen so that G : Yo : | /Zo. From (5.8a), this results in a
quadratic equation for /:

zo(Rr - ZOtz - 2xyZst + (RLzy - R? - xt) : o.

Solving for r gives

-
xr + v/ Rr [( zo - R t\2 + x2r)l zo

o for RL * Zo. (5.9)
R r - Z o

If R. - Zs, then t : -X r l2Zs. Thus, the two principal solutions for d are

(s. l0)

To find the required stub lengths, first use r in (5.8b) to find the stub susceptance, B" - -8.
Then, for an open-circuited stub,

(5.1 1a)

,  [ ] , , - " .  
r o r t > o

t : l  1
I *fu 

+ tan-r /). for I < 0.

T: *".'. '(*) :-jt*-' (".)
while for a short-circuited stub,

e ,  - l  - ,  / Y o \  I  - '  / Y o \
T :  2 r , - -  (a /  :  - t ln - ' ( . ; /  (5 . r rb )

If the length given by (5.1la) or (5.1lb) is negative, ),12 can be added to give a positive
result.

Series Stubs

The series stub tuning circuit is shown in Figure 5.4b. We will illustrate the Smith chart
solution by an example, and then derive expressions for d and l.

EXAMPLE 5.3 SINGLE.STUB SERIES TUNING

Match a load impedance of Zr : l0O * j80 to a 50 O line using a single series
open-circuit stub. Assuming that the load is matched at2 GHz, and that the load
consists of a resistor and inductor in series, plot the reflection coefficient magnitude
from 1 GHzto3 GHz.

Solution
The first step is to plot the normalized load impedancao tp :2+ jI.6, and draw
the SWR circle. For the series-stub design, the chart is an impedance chart. Note
that the SWR circle intersects the 1 * jx circle at two points, denoted as zr and
z2 in Figure 5.6a. The shortest distance, d1, from the load to the stub is, from the
WTG scale,

dt : 0.328 - 0.208 : 0.120)",

while the second distance is

d2 :  (0 .5  -  0 .208)  +O. I72 :0 .46T, .
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As in the shunt-stub case, additional rotations around the SWR circle lead to
additional solutions, but these are usually not of practical interest.

The normalized impedances at the two intersection points are

Z r : l - j 1 . 3 3 ,

Z z : 1 +  j L 3 3 .

Thus, the first solution requires a stub with a reactance of j1.33. The length of
an open-circuited stub that gives this reactance can be found on the Smith chart
by starting at z: @ (open circuit), and moving along the outer edge ofthe chart
(r : 0) toward the generator to the j I.33 point. This gives a stub length of

h : O'397)"

Similarly, the required open-circuited stub length for the second solution is

b :0 .103) ' .

This completes the tuner designs.

lat

FIGIIRE 5.6 Solution to Example 5.3. (a) Smith chart for the series-stub tuners.
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j,,'
100 c,

6.31 nll

+Q.lfQ,\+ -0.463tr-

Solution 1 Solution 2

0.75

l r l

0.5

1.0 1.5 2.0 2.5 3.0

f(GHz)
( c )

Continued. (b) The two series-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

(b)

FIGURE 5.6

If the load is a series resistor and inductor with Zr : 100 * j80 O at 2 GHz,
then R : 100 Q and L : 6.37 nH. The two matching circuits are shown in Figure
5.6b. Figure 5.6c shows the calculated reflection coefficient magnitudes versus
frequency for the two solutions.

To derive formulas for d and I for the series-stub tuner. let the load admittance be
written asYT - 1/Zr - Gt-t j Bu Then the admittance Y down alength, d, of line from
the load is

I

, ,  (Gt t  jB r )+  j tYo
' : 'o YoTjid;TjE;'

where / : tart frd,and Zo : 1 I Zo. Then the impedance at this point is

Z : R +  j X : ! .- Y ,

^  GvQ 1 t21n :  
G " a l B u y o r Y '

(s.12)

(5.13a)

(s.13b)GLt  - (Yo- tB) (Br* tYo)

where

X _
YolGzL+ @L *Y0il2)
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Now d (which implies r) is chosen so that R : Zo: llYo. From (5.13a), this results in a
quadratic equation for f:

Yo(G r - Yit2 * 2B;Yst + (G LYy - G', - n2") : o.

Solving for / gives

t :

-
BL t \f GLI(Yo - Gilz + n'�rllvo

for Gt * Yo. (5.14)
G r - Y o

If Gy : Ys, then t : -Brl2Yo. Then the two principal solutions for d are

(s.1s)

The required stub lengths are determined by first using r in (5.1 3b) to find the reactance,
X. This reactance is the negative of the necessary stub reactance, X". Thus, for a short-
circuited stub,

(5. l6a)

while for an open-circuited stub,

(s.16b)

Ifthe length given by (5.16a) or (5.16b) is negative, ).12 can be added to give a positive
result.

DOUBLE.STUB TUNING

The single-stub tuners of the previous section are able to match any load impedance
(as long as it has a nonzero real part) to a transmission line, but suffer from the disad-
vantage of requiring a variable length of line between the load and the stub. This may
not be a problem for a fixed matching circuit, but would probably pose some difficulty if
an adjustable tuner was desired. In this case, the double-stub tuner, which uses two tuning
stubs in fixed positions, can be used. Such tuners are often fabricated in coaxial line, with
adjustable stubs connected in parallel to the main coaxial line. We will see, however, that
the double-stub tuner cannot match all load impedances.

The double-stub tuner circuit is shown in Figure 5.7a, where the load may be an arbitrary
distance from the first stub. Although this is more representative of a practical situation,
the circuit of Figure 5.7b, where the load Y'rhas been transformed back to the position of
the first stub, is easier to deal with and does not lose any generality. The stubs shown in
Figure 5.7 arc shunt stubs, which are usually easier to implement in practice than are series
stubs; the latter could be used just as well, in principle. In either case, the stubs can be
open-circuited or short-circuited.

Smith Chart Solution

The Smith chart of Figure 5.8 illustrates the basic operation of the double-stub tuner.
As in the case of the single-stub tuners, two solutions are possible. The susceptance of

I  I , * - ' r  f o r r  >  o
o /^ :  l r i

l ; @ * t a n - r t )  
f o r r < 0 .

+: *,*- (*) :-j,*-,(;)

?:*'*-'(*) : j,*-'(+)

5.3
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FIGURE 5.7

(b)

Double-stub tuning. (a) Original circuit with the load an arbitrary distance from the
first stub. (b) Equivalent circuit with load at the first stub.

d +

+ d +

Forbidden
region

FIGURE 5.8 Smith chart diagram for the operation of a double-stub tuner
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the first stub, b1 (or b'r, for the second solution), moves the load admittance to yl (or yi).
Thesepointslieontherotatedl+ jb circle;theamountofrotationisdwavelengthstoward
the load, where d is the electrical distance between the two stubs. Then transforming y1
(or yi) toward the generator through a length, d, of line leaves us at the point yz @r yL),
which must be on the | -t jb circle. The second stub then adds a susceptance bz @r bL),
which brings us to the center of the chart, and completes the match.

Notice from Figure 5.8 that if the load admittance, !y, wera inside the shaded region
of the gs * jb ckcle, no value of stub susceptance b1 could ever bring the load point to
intersect the rotated | -l jb circle. This shaded region thus forms a forbidden range of load
admittances, which cannot be matched with this particular double-stub tuner. A simple way
of reducing the forbidden range is to reduce the distance, d, between the stubs. This has the
effect of swinging the rotated | * jb cif:cle back toward the y - oo point, but d must be
kept large enough for the practical purpose offabricating the two separate stubs. In addition,
stub spacings near O or ),/2lead to matching networks that are very frequency sensitive. In
practice, stub spacings are usually chosen as l/8 or 3),/8. If the length of line between the
load and the first stub can be adjusted, then the load admittance !7 can always be moved
out of the forbidden region.

EXAMPLE 5.4 DOT]BLE-STUB TUNING

Design a double-stub shunt tuner to match a load impedance Z7 = 60 - j80 S)
to a 50 O line. The stubs are to be open-circuited stubs, and are spaced l./8
apart. Assuming that this load consists of a series resistor and capacitor, and that
the match frequency is 2 GHz, plot the reflection coefficient magnitude versus
frequency from 1 GHz to 3 GHz.

Solution
The normalized load admittance is 1rr : 0.3 + j0.4, which is plotted on the Smith
chart of Figure 5.9a. Next we construct the rotated I + jb conductance circle, by
moving every point on the g: 1 circle l/8 toward the load. We then find the
susceptance of the first stub, which can be one of two possible values:

b t :  l ' 3 I4 ,

or b\: -0.1t+.

We now transform through the ),/8 section of line by rotating along a constant
radius (SWR) circle,l,/8 toward the generator. This brings the two solutions to the
following points:

l z :  1  -  j 3 .38 ,

o r  t L : l + j 1 . 3 8 .

Then the susceptance of the second stub should be

bz  :3 '38 '

or bL: -1.29.

The lengths of the open-circuited sfubs are then found as

h : 0.146)", {z :0.482)',

or l\ : 0.204)', l 'z:0.350X.

This completes both solutions for the double-stub tuner design.
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Now if the resistor-capacitor load Zr : 60 - j80 O at f 
- 2GHz, then R :

60 O and C :0.995 pF. The two tuning circuits are then shown in Figure 5.9b,
and the reflection coefficient magnitudes are plotted versus frequency in Figure
5.9c. Note that the first solution has a much nanower bandwidth than the second
(primed) solution, due to the fact that both stubs for the first solution are somewhat
longer (and closer to ),12) than the stubs ofthe second solution. I

Analytic Solution

Just to the left of the first stub in Figure 5.7b, the admittance is

Y r :  G r - f  j ( B r  * B r ) , (s.17)

where Yl : Gr* jBTis the load admittance and 81 is the susceptance of the first stub.
After transforming through a length d of transmission line, the admittance just to the right
of the second stub is

Yz :  Yo
G r *  j ( B r l  h * Y o t ) (5 .18)

Y o - f j t ( G r - t j B t * j B ) '

t a ,

FIGURE 5.9 Solution to Example 5.4. (a) Smith chart for the double-stub tuners.
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Continued. O) The two double-stub tuning solutions. (c) Reflection coefficient mag-

nitudes versus frequency for the tuning circuits of (b).

FIGURE 5.9

where / : tan frd and 16 : I lZo. At this point, the real part of Y2 must equal Y6, which
leads to the equation

c?- crvo\{ +
( Y o - B r t - B : i - ) z

: 0 . (s.1e)
t2

Solving for G1 gives

c,:Yo#lt-Wl (s.20)

Since G1 is real, the quantity within the square root must be nonnegative, and so

This implies that

o  . 4 t 2 ( Y o :  B i l  - . B ' r ) 2  
.  , .

Y&0 + P)2

. .  1 + t z  Y s
O < G r . < I o - - - - - - : -

72 sinz Bd'
(s.2r)

Solution 1 Solution 2

which gives the range on Gr that can be matched for a given stub spacing, d. After d
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has been fixed, the first stub susceptance can be determined from (5.19) as

Y o *
B r :  - B r l (s.22)

Then the second stub susceptance can be found from the negative of the imaginary part of
(5.18) to be

*Yo
B z :

The upper and lower signs in (5.22) and
open-circuited stub length is found as

while the short-circuited stub lensth is found as

Gfi

(5.23) conespond to the

(s.23)

same solutions. The

'; -- *".'(i,), (5.24a)

(s.24b)
t - 7' "  -  ' t a n

), 2n
- ' ( * ) ,

5.4

w h e r e B : B t o r B z .

THE QUARTER-WAVE TRANSFORMER

As discussed in Section 2.5, the quarter-wave transformer is a simple and useful circuit for
matching a real load impedance to a ffansmission line. An additional feature of the quarter-
wave transformer is that it can be extended to multisection designs in a methodical manner,
for broader bandwidth. If only a narrow band impedance match is required, a single-section
transformer may suffice. But, as we will see in the next few sections, multisection quarter-
wave transformer designs can be synthesized to yield optimum matching characteristics
over a desired frequency band. We will see in Chapter 8 that such networks are closely
related to bandpass filters.

One drawback of the quarter-wave transformer is that it can only match a real load
impedance. A complex load impedance can always be ffansformed to a real impedance,
however, by using an appropriate length of transmission line between the load and the
transformer, or an appropriate series or shunt reactive stub. These techniques will usually
alter the frequency dependence of the equivalent load, which often has the effect ofreducing
the bandwidth of the match.

In Section 2.5 we analyzed the operation of the quarter-wave transformer from an
impedance viewpoint and a multiple reflection viewpoint. Here we will concentrate on the
bandwidth performance of the transformer, as a function of the load mismatch;
this discussion will also serve as a prelude to the more general case of multisection trans-
formers in the sections to follow.

The single-section quarter wave matching transformer circuit is shown in Figure 5.10.
The characteristic impedance of the matching section is

z1 :  JZgZL. (s.2s)

At the design frequency, fs, the electrical length of the matching section is ls/4, but at
other frequencies the length is different, so a perfect match is no longer obtained. We will
now derive an approximate expression for the mismatch versus frequency.

(l -lt2)GJo - Gltz

YoGi lL+ tz ) -Gzr tz+G"Yo
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FIGURES.IO A single-section quarter-wave matching transformer. (:Lo/4 at the design
frequency /s.

The input impedance seen looking into the matching section is

where / : tan f{ : t&rr 0, and B(. : 0 : n /2 atthe design frequency, /s. The reflection
coefficient is then

Z , ^ :  Z , Z L *  
j z i  

.
Z r *  jZ i l

| _ zrn - zo _ z(zr - zO+ it(z? - zoz) 
.

Zin* zo Z{Zt * Zil + 1t(zl + zozr)'

Since Zl : ZoZr, this reduces to

(s.26)

(s.27)

(s.28)

(s.30)

I - _

The reflection coefficient maenitude is

Z r - Z o

ZLtZo+ j2 tJZiZt '

l r r l  -  l Z r - Z o l
" ' -  

l z r + h ) ' + 4 t ' z o z r (

l{2, + Z02l(Zr - zdz +l4t2z,zLl(zp - zo1z1ltt?

I

It +t+zozr/(Zr - zd2l+l4Zozil2 /(zr - zo1z1}1/z

:  
I  ( { ' ) g \

{r + VZozL/QL - Zo)2l rrr,olt/ '

since 1 * t2 : | + tar:2 0 : sec2 0.
Now if we assume that the frequency is near the design frequency, /s, then n - )"0/4

and0 - n12.Thensec29 >> l,and(5.29) simplif ies to

p1 - l- ] lcosdl. ror o near n lz.
2JZOZL

This result gives the approximate mismatch of the quarter-wave transformer near the de'sign
frequency, as sketched in Figure 5.1 1.

If we set a maximum value, f., of the reflection coefficient magnitude that can be
tolerated, then we can define the bandwidth of the matching transformer as

Lo :2(T - t-), (s.31)
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FIGURE 5.1I Approximate behavior of the reflection coefficient magnitude for a single-section
quarter-wave transformer operating near its design frequency.

since the response of (5.29) is symmetric about d : n 12, and f : l. at 0 : 0^ and at
0 : n - 0.. Equating f. to the exact expression for reflection coefficient magnitude in
(5.29) allows us to solve for 0*:

l r l

. a
/ 4 t z z v

| + [ 
L\/ z'oLL 

sec g- ]
\Zr -  Zo "/

r. z^EA;: : - .
J r - r k l z r - Z o l

cos0^

If we assume TEM lines, then

and the fractional bandwidth is, using (5.32),

I- :
nr.
^ m

(s.32)

A - R , - 2 r f  u P  - t f" - Y \ -  
u p  4 f o - 2 f o '

therefore the frequency of the lower band edge at 0 : 0* is

)a f^
^  -vm JU

J m  -  - ,

7f

Lf 2( fo - f^)
T :  f o  

: - - 2f^ ^ 40^--:- -
.Io 7t

(s.33)

The fractional bandwidth is usually expressed as a percentage, lOOA.f /fg %. Note that the
bandwidth of the transformer increases as Z7 becomes closer to Zo (a less mismatched
load).

The above results are strictly valid only for TEM lines. When non-TEM lines (such as
waveguides) are used, the propagation constant is no longer a linear function offrequency,
and the wave impedance will be frequency dependent. These factors serve to complicate
the general behavior of quarter-wave transformers for non-TEM lines, but in practice the
bandwidth of the transformer is often small enough so that these complications do not
substantially affect the result. Another factor ignored in the above analysis is the effect of
reactances associated with discontinuities when there is a step change in the dimensions of

^  4  _,  f  l ^  TJZAL1
: 2 - - ! v o  t : - t .

n LJt - 1-�2^ lzt - Zol )
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- 0  1  -

ftfo

Reflection coefficient magnitude versus frequency for a single-section quarter-wave

matching transformer with various load mismatches'

a transmission line. This can often be compensated for by making a small adjustment in the

length of the matching section.
Figure 5.12 shows a plot of the reflection coefficient magnitude versus normalized

frequency for various mismatched loads. Note the trend of increased bandwidth for smaller

load mismatches.

EXAMPLE5.5 QUARTER-WAVETRANSFORMERBANDWIDTH

Design a single-section quarter-wave matching transformer to match a 10 O load

to a l0 O fine, at fs : i Ctlr. Delermine the percent bandwidth for which the

swR < 1.5.

Solution
From (5.25), the characteristic impedance of the matching section is

z, = JzoZr: \^5ox1o) :22.36e",

and the length of the matching section is I I 4 at 3 GHz.An SWR of 1.5 corresponds

to a reflection coefficient magnitude of

t .:ff i:ff i=o'z'
The fractional bandwidth is computed from (5.33) as

Lf
fo

I

ZylZs=4,0.25

:0.29,  ot  297o.
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THE THEORY OF SMALL REFLECTIONS

The quarter-wave transformerprovides a simple means of matching any real load impedance
to any line impedance. For applications requiring more bandwidth than a single quarter-wave
section can provide, multisection transformers can be used. The design of such transformers
is the subject of the next two sections, but prior to that material we need to derive some
approximate results for the total reflection coefficient caused by the partial reflections from
several small discontinuities. This topic is generally referred to as the theory of small
reflections [1].

Si n gle-Section Transformer

Considerthe single-sectiontransformer showninFigure 5.13;we will derive an approximate
expression for the overall reflection coefficient f . The partial reflection and transmission
coefficients are

r  Z z - Z r
l t : - .'  Z z l Z r

f2  :  - f r ,

(s.34)

(5.3s)

(s.36)

(s.37)

(s.38)

Z r - Z z
f : :

Z r l  Zz
)7^

T ' , r : I - l - f ,  :  
- " '  

.
Z r * Z z

22'
T t r : I - l - f " -

Z r * Z z

We can compute the total reflection, f , seen by the feed line by the impedance method
or by the multiple reflection method, as discussed in Section 2.5. For our present purpose

*b 21
+ T z t

+ T n
z2

<_JC____>
fl 12

<__r
f3

|..-.--.--.->-
I
I
I
l----------.--

l----->-
I
I

FIGURE 5.13 Partial reflections and transmissions on a sinele-section matchins transformer.
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the latter technique is preferred, so we can express the total reflection as an infinite sum of
partial reflections and transmissions as follows:

f  :  f r  lTnTzrlze-zie aTpT2l l l l re-4iq a . . .

| 1 ! TeT21l ze-�zie ilil\ e-?'e .
n=0

Using the geometric series

o o l

\ - x ' :  
'  

.
/ - .  | - y

(5.39) can be expressed in closed form as

for lxl < 1,

(5.3e)

(s.41)

f : f r *
Ty2T21l3s-zio (s.40)
| - l2lts-zie'

F rom(5.35) , (5 .37) ,and(5 .38) ,weusef2- - f l ,Tz t :1* l t 'andTrz :1* f r in (5 .a0)
to give

l ,  * l r e - z j o
F -  '  "
^  -  

1+  l 1 l 3s -2 io '

Now if the discontinuities between the impedances 21, 22 and 22, Zp are small, then

lfrfsl << 1, so we can approximate (5.41) as

f - fr *l3e-2i0. (s.42)

This result states the intuitive idea that the total reflection is dominated by the reflection
from the initial discontinuity between 21 and Zz (f ), and the first reflection from the
discontinuity between 22 and 21 (l3e-2i01.The e-2i0 term accounts for the phase delay
when the incident wave travels up and down the line. The accuracy of this approximation
is illustrated in Problem 5.14.

Multisection Transformer

Now consider the multisection transformer shown in Figure 5.14. This transformer con-
sists of N equal-length (commensurate) sections of transmission lines. We will derive an
approximate expression for the total reflection coefficient f .

* 0 + * @

zo J) zr zL

<___r
ro

<__r
rl

-o 
o-'_---o I

?
z N 5

- -  
- l

-__r <__-f
12 fN

4

FIGIIRE 5.14 Partial reflection coefficients for a multisection matching transformer.
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Partial reflection coefficients can be defined at eachjunction, as follows:

r  Z r - Z o
I  o  :  - .'  

Z t l Z o

n  Z r + l  -  Z n
l - : - ."  

Z n + r * Z n

Z t - Z n
l M : - ."  

Z t * Z u

+ ... + )r*,rf, 
for N even,

f(d)  :  2e- jN0l locosNO + f l  cos(N -  2)0 +. . .  *  f ,  cos(N -  2n)0

(5.43a)

(s.43b)

(5.43c)

5,6

We also assume that all Z, increase or decrease monotonically across the transformer, and
thatZyisreal.Thisimpliesthatallfnwil lbereal,andofthesamesign(ln > Oif Zr > Zo:
f, < 0 if Zr < Z$.Then using the results of the previous section, the overall reflection
coefficient can be approximated as

f(g)  :  lo t l . . * -2 i0 * l2e-a iq + . . .  + l lqs-z iNe (s.44)

Further assume that the transformer can be made symmetrical, so that fo : fN, fl :

fl,'-r, fz : I N-2, etc. (Note that this does not imply that the Zns are symmetrical.) Then
(5.44) canbe written as

f (0) : e-iNe ll 'kiNe a "-iNel+lrleiw-2)0 * e-i@-Ter+ . . . l . (5.45)

If N is odd, the last term is f11,'-r;72(e/0 + "-ie), while if N is even the last term is f1s72.
Equation (5.45) is then seen to be of the form of a finite Fourier cosine series in 6, which
can be written as

f (d ) :  2e - jNe l f o .o rN0* f r cos (N  -  2 )0+ "  ' * f n  cos (N  -2n )0
L "

+ " '  +lgs-t ;1zcos0l,  forN odd.

(5.46a)

(s.46b)

The importance of these results lies in the fact that we can synthesize any desired
reflection coefficient response as a function offrequency (0), by properly choosing the frs
and using enough sections (N). This should be clear from the realization that a Fourier series
can approximate an arbitrary smooth function, if enough tems are used. In the next two
sections we will show how to use this theory to design multisection transformers for two of
the most commonly used passband responses: the binomial (maximally flat) response, and
the Chebyshev (equal ripple) response.

BINOMIAL MULTISECTION MATCHING TRANSFORMERS

The passband response of a binomial matching transformer is optimum in the sense that,
for a given number of sections, the response is as flat as possible near the design frequency.
Thus, such a response is also known as maximally flat. This type of response is designed,
for an N-section transformer, by setting the first N - I derivatives of lf (0)l to zero, at the
center frequency "f0. Such a response can be obtained if we let

f  (P)  :  A( l  + e-2 io)N (s.47)
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Note that I f (9)l : 0 for 0 : n I 2, andthat(d' E (e)D I d0" = 0 at9 : n I 2fot n : l, 2, . . .,
N - 1. (0 : nl2correspondstothecenterfrequency /s,forwhich L: Ll4vldQ - BL -

it 12.)
We can determine the constant A by letting f -0. Then 0 - 0t:0, and (5.47)

reduces to

f ( o ) : 2 N A : z r - z o .
Z r *  Z o '

since for "f : 0 all sections are of zero electrical length. Thus the constant A can be written
AS

(s.4e)

Then the magnitude lf (d)l is

where

l f (d ) l  :  lA l le - ie t 'P ie  ae- ie1u

: 2N lAllcos 0lN (s.48)

(s.s0)

(5.s1)

(s.s2)

A : 2 - N Z t - Z o .
Z t * Z o

Now expand f(9) in (5.47) according to the binomial expansion:

r(d) : A(t + e-zie1N : A lC{ "-' i",
n:0

r -N -  N!
- n  -  

( N - n ) l n ! '

are the binomial coefficients. Note that C{ - Cil-,, Cfl = 1, and Cf : N : Cfl-t. ttre
key step is now to equate the desired passband response as given in (5.50), to the actual
response as given (approximately) by (5.44):

N

f (9)  :  L lC,N e-z inq -  lo* lp-z ie * l2e-a iq + . . .  + lNs-z iNe.
n:0

This shows that the f, must be chosen as

f, = ACI.

where A is given by (5.49), and C{ is a binomial coefficient.
At this point, the characteristic impedances Zn can be found via (5.43), but a simpler

solution can be obtained using the following approximation [1]. Since we assumed that the
fn are small, we can write

, -  - _  Zn+ r  -  Z ,  -  I  r n  
Zn+ t  

."  
Z n + t * Z n  2  Z ,

since lnx = 2(x - I)/(x + 1). Then, using (5.52) and (5.49) gives

tnZ: '  -  21,  =2ACl  :212-N 12t  
-  Zo 

c !  -  z-N c!  t^z1.  (5 .53)
Z ,  Z t  *  Zo  

"n  " '  
Zo '  

\ J ' J J  '

which can be used to find Zn,, 1, stafiing with n : 0. This technique has the advantage of
ensuring self-consistency, in that Zy 11 computed from (5.53) will be equal to ZL, as it
should.

Exact results, including the effect ofmultiple reflections in each section, can be found
by using the transmission line equations for each section and numerically solving for the
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characteristic impedances [2]. The results of such calculations are listed in Table 5.1, which
give the exact line impedances for N : 2,3,4,5, and 6 section binomial matching trans-
formers, for various ratios of load impedance, Z7o to feed line impedance, Zs. The table
gives results only for ZrlZo > 1;if ZrlZo < 1, theresults for ZslZl shouldbeused, but
with Z 1 starting at the load end. This is because fhe solution is symmetric about Z 2 I Zg : I;
the same transformer that matches Z p to Zs can be reversed and used to match Zs to Z 1.
More extensive tables can be found in reference [2].

The bandwidth of the binomial transformer can be evaluated as follows. As in Section
5.4, let f. be the maximum value of reflection coefficient that can be tolerated over the
passband. Then from (5.48),

l ^ : 2N lA l cosN  o* ,

where 0- < Tt 12 is the lower edge of the passband, as shown in Figure 5.11. Thus,

0m : CoS (5.s4)

and using (5.33) gives the fractional bandwidth as

Lf 2(fo - f^l ^
T : - - . f r - : ' -

-'[;(fr)""],
40*

T

:z_ !,",_,[;(fr)""] (5.55)

EXAMPLE 5.6 BINOMIAL TRANSFORMER DESIGN

Design a three-section binomial transformer to match a 50 O load to a 100 Q
line, and calculate the bandwidth for f. :0.05. Plot the reflection coefficient
magnitude versus normalized frequency for the exact designs using 1, 2,3,4, and
5 sections.

Solution
For N : 3, Zt - 50 {2, Zs: 100 Q we have, from (5.49) and (5.53),

A :2-N zL - zo - - l-  6?t : -0.0433.
Z t * Z o -  2 N + 1 ' - ' Z o

From (5.55) the bandwidth is

o+:2_ !co"_, [ ; ( * ) " " ]

? t

, t 1 l

: z - !*,-' 
l; (u*h)"'] : o.ro, or ,ovo.

The necessary binomial coefficients are

C ? :

c i  :  3 !  : 3 .' 112!
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FIGURE 5.15

I

ftfo

Reflectioncoefficientmagnitude versus frequency formultisectionbinomial match-
ing transformers of Example 5.6. ZL : 50 O and Zo : 100 Q.

Then using (5.53) gives the required characteristic impedances as

n : 0 i ln 21 : ln Zo * 2-N C3^ h 
Z:

u Z o

: ln too + 2-3( t) tn 
,oo!9 

: 4.5 t 8,

Z r  : 9 I ' 7  Q ;

n  :  l ;  l n Z 2  :  l n Z t  * 2 - N  4  h Z :, Z O

:  lngr . j  +2-:(3)tn !  :  +.ze .
100

Zz :70 '7 {2;

n : 2 :  l n Z 3  -  l n Z z * 2 - N C l h Z :' Z o

: lnloJ +z-3a)rn 
iq 

: 4.00.
100

Z z : 5 4 . 5  9 .

To use the data in Table 5.1, we reverse the source and load impedances and
considerthe problem of matching a 100 O load to a 50 Q line. T\en Zr/Zo :2.0,
and we obtain the exact characteristic impedances as 21 :91.7 {2, Z2:70.7 9,
and 23: 54.5 Q, which agree with the approximate results to three significant
digits. Figure 5. 15 shows the reflection coefflcient magnitude versus frequency for
exact designs using N : I, 2, 3, 4, and 5 sections. Observe that greater bandwidth
is obtained for transformers using more sections. I

CHEBYSHEV M U LTISECTION MATCH I NG TRANSFORM ERS

In contrast with the binomial matching transformer, the Chebyshev transformer optimizes
bandwidth at the expense of passband ripple. If such a passband characteristic can be
tolerated, the bandwidth of the Chebyshev transformer will be substantiallv better than that

5,7
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of the binomial transformer, for a given number of sections. The Chebyshev transformer
is designed by equating f(0) to a Chebyshev polynomial, which has the optimum char-
acteristics needed for this type of transformer. Thus we will first discuss the properties of
the Chebyshev polynomials, and then derive a design procedure for Chebyshev matching
transformers using the small reflection theory of Section 5.5.

Chebyshev Polynomials

The nth order Chebyshev polynomial is a polynomial of degree n, and is denoted by fi'(x).
The first four Chebyshev polynomials are

T1(x) - 1s, (5.56a)

T2@) :2xz -  l ,  (5.56b)

ft(x) : 4x3 * 3x, (5.56c)

Ta@) : 8x4 - lxz + L. (5.56d)

Higher-order polynomials can be found using the following reculrence formula:

Tn(x) :ZxTn-{x) - Tn-z@). (5.57)

The first four Chebyshev polynomials are plotted in Figure 5.16, from which the fol-
lowing very useful properties of Chebyshev polynomials can be noted:

o For -1 Sx Sl,lT"(x)l < 1. In this range, the Chebyshev polynomials oscillate
between *1. This is the equal ripple property, and this region will be mapped to the
passband of the matching transformer.

o For lxl > 1,lT,(x)l > l. This region will map to the frequency range outside the
passband.

o For lxl > 1, the lT"(x)l increases faster with x as n

n = 7

FIGURE 5.16 The first fow Chebyshev polynomials, {,(x).
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Now let x : cos0 for lxl < 1. Then it can be shown that the Chebyshev polynomials
can be expressed as

or more generally as

Tr(cos9) : cosn9,

Tn(x) - cos(n cos-l x), for lx | < 1,

Tn(x) : cosh(n cosh-l x), for l-rl > 1.

We desire equal ripple in the passband of the transformer, so it is necessary to map 0* to
r : I and 7r - 0* to .r : - 1, where 0* and 7r - 0^ are the lower and upper edges of the
passband, as shown in Figure 5.1 1. This can be accomplished by replacing cos 0 in (5.58a)
with cos 0/ cos9*:

(5.58a)

(5.s8b)

(s.s9)

Then lsec0.cosOl  < I  for  0^ <0 <7r  *0^,  so lTn(sec0^cos0) l  < 1 over  th is  same
range.

Since cosn 0 can be expanded into a sum of terms of the form cos(n - 2m)0, the
Chebyshev polynomials of (5.56) can be rewritten in the following useful form:

T1(sec9. cosd) - secd. cos0, (5.60a)

T2(sec0^cosd) : secz e^1Il cos2g) - l, (5.60b)

T3(sec2^cosd) : sec3 d.1cos 3e +3cos0) - 3sec0^cos0, (5.60c)

Ta(sec2*cosg) : seca 0*(cos40 *4cos20 *3)

-4sec '0* (cos20 *  1 )+  t . (5.60d)

The above results can be used to design matching transformers with up to four sections,
and will also be used in later chapters for the design of directional couplers and filters.

Design of Chebyshev Transformers

We can now synthesize a Chebyshev equal-ripple passband by making f (0) proportional to
Ty(sec 0^ cos 9), where N is the number of sections in the ffansformer. Thus, using (5.46),

f (0)  :  2e- iN0 l locosNO f  f1  cos(N -  2)0 +.  . .  * f ,  cos(N -  2n)0 *  . . . l

: Ae- jNe Tu(secl^cos g), (5.61)

where the last term in the series of (5.61) is (I/2)l y p for N even and frn-r)/z cos I for
N odd. As in the binomial transformer case, we can find the constant A by letting 0 : O,
corresponding to zero frequency. Thus,

f ( 0 ) :
Z r - Z o

: ATn(sec0*),
Zr* Zo

t(#) :  r ,(seco^cosg): "orn[.or- '  (#)]

,  Z t - Z o  I
/ 1 :  -" -  

Z t+h f r6 " "e - )

so we have

(s.62)
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Now if the maximum allowable reflection coefficient magnitude in the passband is f., then

from(5.61) l^: lAl,sincethemaximumvalue of Tn(sec1*cos0)inthepassbandisunity.
Then, from (5.52) and the approximations introduced in Section 5.6, 0^ is determined as

r1,r(sec o*):  *  |  f f i l  = * l^Zl ,
or, using (5.58b),

sec o* _.*n 
[* 

cosh-l (*\ffi)]

-coshf*-'n-' (W)l
Once 0^ is known, the fractional bandwidth can be calculated from (5.33) as

sec o^ -."rn 
[* 

cosh-r ('?3)

:cosh[i-'n-'(ryffi)]
: 1.408,

(s.63)

(s.64)

From (5.61), the f, can be determined using the results of (5.60) to expand T1,,(sec 9.

cos 0) and equating similar terms of the form cos(N - 2n)0. The characteristic impedaaces

Zn can then be found from (5.a3); although, as in the case of the binomial transformer,

accuracy can be improved and self-consistency can be achieved by using the approximation

that

This procedure will be illustrated in Example 5.7.
The above results are approximate because of the reliance on small reflection theory,

but are general enough to design transformers with an arbitrary ripple level, | *. Table 5 .2

gives exact results [2] for a few specific values of f., for N : 2, 3 , and 4 sections; more

extensive tables can be found in reference [2].

EXAMPLEs.T CHEBYSIIEV TRANSFORMERDESIGN

Design a three-section Chebyshev transformer to match a 100 Q load to a 50 O line,

with f. = 0.05, using the above theory. Plot the reflection coefficient magnitude

versus normalized frequency for exact designs using 1, 2,3, and 4 sections.

Solution
From (5.61) with N : 3.

f (P) : 2e-i30llocos 39 * f 1 cos gl : Ae-i30 Tz(sec 9- cos d).

Then, A : l* :0.05, and from (5.63),

Lf ^ 40*
t -

. 1 0  J L

f -  -  1  , n Z n + t" 2 Z n

so,0^ - 44.'7".
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TABLE 5.2 Chebyshev Tbansformer Design

Zt /Zo

N : 2 N : 3

f. : 0.05

zr/zo zzlZo

f- 0.20

zr/Zo zz/Zo

f .  :0 .05

zt/zo Zz/Zo zz/Zo

f- : 0.20

zt/Zo Zz/Zo Zt/Zo

1 .0

1 .5
2.O
3.0
4.0
6.0

8.0
10.0

1.0000 1.0000
r.r347 1.3219
7.2193 1.6402
1.3494 2.2232
1.4500 2.7585
1.6047 3.7389
1.7244 4.6393
1.8233 5.4845

1.0000 1.0000
1.2247 1.2247
l.3161 1.5197
r.4565 2.0598

1.5651 2.5558
1.7321 3.4641

1.8612 4.2983

1.9680 5.0813

1.0000 1.0000 1.0000
1.1029 1.2247 1.3601
1.1475 1.4142 1.7429
1.2171 1.7321 2.4649
1.2662 2.0000 3.1591
1.3383 2.4495 4.4833
1.3944 2.8284 5.7372
1.4385 3.1623 6.9517

1.0000 1.0000 1.0000
1.2247 1.2247 1.2247
t.2855 1.4142 1.5558
1.3743 1.7321 2.1829
1.4333 2.0000 2.7908
1.5193 2.4495 3.9492
r.5766 2.8284 5.0742
r.6415 3.1623 6.0920

zt/Zo Zz/Zo Zt/Zo Zc/Zo

1.0000 1.0000 1.0000 1.0000
r.0892 1.1742 1.2775 1.3'772
1.1201 1.2979 1.5409 1.7855
1.1586 1.4876 2.0167 2.5893
r.1906 1.6414 2.4369 3.3597
1.2290 1.8773 3.1961 4.8820
1.2583 2.0657 3.8728 6.3578
1.2832 2.2268 4.4907 7.7930

f  -  : 0 .20

Zr/Zo zr/zo zz/Zo Zt/Zo Zq/Zo

1 .0
1 .5
2.0
3.0
4.0

6.0
8.0

10.0

1.0000 1.0000

t.2247 1.224'l

t.2727 1.3634

t .4879 1.5819
13692 1.7490
1.4415 2.0231
1.4914 2.2428
1.5163 2.4210

1.0000 1.0000
1.2247 1.2247
1.4669 t.5715
1.8965 2.0163
2.2870 2.9214
2.9657 4.1623
3.5670 5.3641
4.1305 6.5950

Using (5.60c) for T3 gives

2[ fs  cos30 *  f t  cosg]  :  A sec3 d,(cos 3e +3cosd) -  3A sec0^cos1.

Equating similar terms in cos nd gives the following results:

cos 30: 2|�s : A sec3 0^,

fo : 0.0698;

cos d : 211 :3A(sec3 0^ - sec0*),

f r  : 0 .1037 '

From svmmetrv we also have that

f : : f o : 0 . 0 6 9 8 ,

fz  :  f r  :0 .1037.

Then the characteristic impendances are:

n : O :  l n Z l - l n Z o * 2 l o

: ln50 + 2(0.0698) : 4.051

Zt : 57.5 {l

and
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FIGURE 5.17 Reflection coefficient magnitude versus frequency for the multisection matching

transformers of Example 5.7.

n : I :  l n Z 2 * l n Z r * 2 t t

:1n57.5 +2(0.1037) : 4.259

Zz :70 '7 Cl

n : 2 :  l n Z 3 - l n Z z l 2 f z

_ tn7o.7 +2rc.I037) : 4.466

Z z  : 8 7  ' O  I

These values can be compared to the exact values from Table 5.2 of 21 : 5'1 .37 Q,
Zz : 70.7 | S2, and Zz : 87 .15 O. The bandwidth, from (5.64), is

^ f  :2  -  4o^ :2  -  4  (y ! \ :  r .o l ,
f o  7 t  

-  
\ 1 8 0 ' /

or lol%o. This is significantly greater than the bandwidth of the binomial trans-

former of Example 5.6 (70Vo), which was for the same type of mismatch. The

trade-off, of course, is a nonzero ripple in the passband of the Chebyshev trans-

former.
Figure 5.17 shows reflection coefficient magnitudes versus frequency for the

exact designs from Table 5.2 for N : 1 , 2, 3, and 4 sections. t

TAPERED LINES

In the preceding sections we discussed how an arbitrary real load impedance could be

matched to a line over a desired bandwidth by using multisection matching transformers. As

the number, N, of discrete sections increases, the step changes in characteristic impedance

between the sections become smaller. Thus, in the limit of an infinite number of sections,

we approach a continuously tapered line. In practice, of course, a matching transformer

must be of finite length, often no more than a few sections long. But instead of discrete

sections, the line can be continuously tapered, as suggested in Figure 5.18a. By changing

the type oftaper, we can obtain different passband characteristics.

I

flfo

0 L
1t3

5.8
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z +  L z

FIGURE 5.18

(b)

A tapered transmission line matching section and the model for an incremental
length of tapered line. (a) The tapered ffansmission line matching section. (b) Model
for an incremental step change in impedance of the tapered line.

In this section we will derive an approximate theory based on the theory of small
reflections, to predict the reflection coefficient response as a function of the impedance
taper, Z(a). We will then apply these results to a few common types of tapers.

Consider the continuously tapered line of Figure 5.18a as being made up of a number
of incremental sections of length As, with an impedance change LZ(z) from one section
to the next, as shown in Fisure 5.18b. Then the incremental reflection coefficient from the
step at z is given by

A I :
( z + L Z ) - Z A Z

- 2 2 (s.6s)
(z+  LZ)+Z

In the limit as Az -+ 0, we have an exact differential:

0 L z

(a)

AT
.-+
I

2  Z + L Z

dZ 1d( lnZ/Z i  .
d l : : = : = - - - t l Z '

2 2 2 d z

d ( l n f ( z ) ) : r d f ( r )
d z  f d z

Then, by using the theory of small reflections, the total reflection coefficient at z : 0
can be found by summing all the partial reflections with their appropriate phase shifts:

r(e): ll ^,-'u, 
o ̂ (*)nr, (s.67)

where 0 :2fl1. So if Z(z) is known, f (0) can be found as a function of frequency. Alter-
natively, if f (0) is specified, then in principle Z(z) can be found. This latter procedure is
difficult, and is generally avoided in practice; the reader is referred to references [1], [4] for
further discussion of this topic. Here we will consider three special cases of Z(z) impedance
tapers, and evaluate the resulting responses.

(s.66)

since
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0 r 2 1 3 t 4 t r 5 r B L
(b)

FIGURE 5.19 A matching section with an exponential impedance taper. (a) Variation of im-
pedance. (b) Resulting reflection coefficient magnitude response.

Exponential Taper

Consider first an exponential taper, where

Z(z) : Zse"z, f o r 0 < z < L , (s.68)

as indicated in Figure 5.19a. At z:0, Z(O) : Zo, zs desired. At z : L, we wish to have
Z(L) : Zr : ZleoL, which determines the constant 4 as

4z)

ZL

o :  
t  

h ( z - ! \ .
L  \ z o /

We now find f (0) by using (5.68) and (5.69) in (5.67):

t  o L  )

r : i I "-zia, !. rlneo,)dz2  Jo  dz '

lnZy/Zs fL - r ,^:-_;7 
J, 

e-.rP'dz.

lnZTlZs -- 'utsinBL
2 p L

(5.6e)

(s.70)

Observe that this derivation assumes that B, the propagation constant of the tapered line, is
not a function of e-an assumption which is generally valid only for TEM lines.

The magnitude of the reflection coeffrcient in (5.70) is sketched in Figure 5.19b; note
that the peaks in lf I decrease with increasing length, as one might expect, and that the
length should be greater than L I 2 (P L > n ) to minimize the mismatch at low frequencies .
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Triangular Taper

Next consider a triangular taper for (d ln Z / Zi I dz, that is,

I7ns2rz /L \2  lnz t l zo
L l ? . \  :  |  -

I Znsta, I t-zr' I L'� - | | tn z I I 26
f o r 0 S z < L l 2

f o r L / 2 < z < L .
(5.7r)

Then.

d ( l n Z l Z o \ - t a / L 2 l n Z 2 l Z s  f o r 0 < z < L / 2  , < , . \
dz  

:  
le l t  -  4z lL2) tnZT lZs  fo r  L /2  s  z  =  L .  

tJ ' t z )

Z(z) is plotted in Figure 5.20a. Evaluating f from (5.67) gives

r(e): ),-'u'"(*)lW?1" (s.73)

The magnitude of this result is sketched in Figure 5.20b. Note that,for BL > 22, the peaks
of the triangular taper are lower than the corresponding peaks of the exponential case. But
the first null for the triangular taper occurs at BL :22, whereas for the exponential taper
it occurs at pL : tr.

Klopfenstein Taper

Considering the fact that there is an infinite number of possibilities for choosing an impedance
matching taper, it is logical to ask if there is a design which is o'best." For a given taper

,tza

zo
0

A matching section with a triangular taper for d(lnZ/Zd/dz. (a) Variation
impedance. (b) Resulting reflection coefficient magnitude response.

4z)

ZL

FIGURE 5.20



length (greater than a critical value), the Klopfenstein impedance taper I4l, t5l has been

shown to be optimum in the sense that the reflection coefflcient is minimum over the pass-

band. Alternatively, for a maximum reflection coefficient speciflcation in the passband, the

Klopfenstein taper yields the shortest matching section.
The Klopfenstein taper is derived from a stepped Chebyshev transformer as the number

of sections increases to infinity, and is analogous to the Taylor distribution of antenna affay
theory. We will not present the details of this derivation, which can be found in references

[1], [4]; only the necessary results for the design of Klopfenstein tapers are given below
The logarithm of the characteristic impedance variation for the Klopfenstein taper is

given by

tnZ(7) : 
*.rnzoZr * #o'Orrz/L 

- t, A),

where the function 4@, A) is defined as

hQqJTls ,'  n l

eJt -  v '

fn
f' : 

cosrr7'

because f (d) oscillates between *fs/ cosh A for flL > A.

QQ, Al:  -0(-x. Or: 
Io

f o r 0 < z < L , (s.74)

for lxl < 1, (5.75)

where 11(-r) is the modified Bessel function. This function has the following special values:

d (0 ,  A)  :0
x

Q k , 0 ) :  -
z
coshA - I

0 ( . J ,  A ) :

but otherwise must be calculated numerically. A very simple and efficient method for doing
this is available [6].

The resultins reflection coefficient is siven bv

r (p) :  ls" - iFrcosJ(FF 
-  # ,  

for  pL,  A." 
cosh A

If BL < A, the cos JGn - p termbecomescoshJ,4 - lBrf .
In (5.74) and (5.76), fs is the reflection coefficient at zero frequency. given a

Z r - Z o

A2

f o :
Zr* Zo

The passband is defined as BZ Z A, and so the maximum ripple in the passband i

= ) ^ ( * )

It is interesting to note that the impedance taper of (5.74) has steps at z : O and Z (the

ends of the tapered section), and so does not smoothly join the source and load impedances.
A typical Klopfenstein impedance taper and its response are given in the following example.

EXAMPLE 5.8 DESIGN OF TAPERED MATCHING SECTIONS

Design a triangular taper, an exponential taper, and a Klopfenstein taper (with

f, : 0.02) to match a 50 Q load to a 100 f,) line. Plot the impedance variations
and resultine reflection coefficient masnitudes versus 6I.

q - ,

[j

l l  r

.Yt
{ " ..h,?"
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Solution
Triangular taper: From (5.71) the impedance variation is

l e z t z l L t 2 r n z L l z o  f o r o < Z < L l z
Z(2.\ : Zn I-" 

f ,{tz/r-zz21L2-tltnzrlzs for L/2 < z = L,

with Zs: 100 O and 21: 50 O. The resulting reflection coefficient response is
given by (5.73):

tr(o)l : !  ̂ (t+\l'"\l+?1'.\ - / '  z " ' \ z o ) L  p L / 2  J
Exponential taper: From (5.68) the impedance variation is

Z(z) : /'osaz' for 0 < z < L'

N

N

Triangular, exponential, and
Klopfenstein impedance tapers

Z t = 5 0
Zz = 7oo

Solution to Example 5.8. (a) Impedance variations for the triangular, exponential,
and Klopfenstein tapers. (b) Resulting reflection coefficient magnitude versus fre-
quency for the tapers of (a).

,'y'

of K tapet

FIGURE 5.21
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witha : (1lL)ln ZrlZo : 0.6931L. The reflection coefficient response is, from
(5.70),

t f (0) t  : sin FL
BL

Klopfenstein taper: Using (5.77) gives f0 as

f o : :0 .346,

and (5.78) gives A as

A : cosh-r f &\ : cosh-r f !ry) :3.543.--  
\ f ,  /  \  0 .02 /

The impedance taper must be numerically evaluated from (5.74). Thb reflection

coefftcient magnifude is given by (5.76):

l f(o)l  :  fo
cosJlBrf -E

cosh A

The passband for the Klopfenstein taper is defined as BL > A :3.543 : 1.13r.

Figure 5.21a,b shows the impedaace variations (versus zlL), and the result-

ing reflection coefficient magnitude (versus BL) for the three types of tapers. The

Klopfenstein taper is seen to give the desired response of lf | < f. :0.02 for

0L > 1.13n, which is lower than either the triangular or exponential taper re-

sponses. Also note that, like the stepped-Chebyshev matching transformer, the

response of the Klopfenstein taper has equal-ripple lobes versus frequency in its

passband.

THE BODE.FANO CRITERION

In this chapter we discussed several techniques for matching an arbitrary load at a single

frequency, using lumped elements, tuning stubs, and single-section quarter-wave transform-

ers. We then presented multisection matching transformers and tapered lines as a means

of obtaining broader bandwidths, with various passband characteristics. We will now close

our study of impedance matching with a somewhat qualitative discussion of the theoretical

limits that constrain the performance of an impedance matching network.
We limit our discussion to the circuit of Figure 5.1, where a lossless network is used to

match an arbitrary complex load, generally over a nonzero bandwidth. From a very general

perspective, we might raise the following questions in regard to this problem:

o Can we achieve a perfect match (zero reflection) over a specified bandwidth?
o If not, how well can we do? What is the trade-offbetween f-, the maximum allowable

reflection in the passband, and the bandwidth?
r How complex must the matching networkbe for a given specification?

These questions can be answered by the Bode-Fano criterion [7], [8] which gives,

for certain canonical types of load impedances, a theoretical limit on the minimum reflec-

tion coefficient magnitude that can be obtained with an arbitrary matching network. The

Bode-Fano criterion thus represents the optimum result that can be ideally achieved, even

though such a result may only be approximated in practice. Such optimal results are always

:"(+)
i^(z)

T

5.9
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important, however, because they give us the upper limit of performance, and provide a
benchmark against which a practical design can be compared.

Figure 5.22a shows a lossless network used to match a parallel RC load impedance.
The Bode-Fano criterion states that

(s.79)

where f(a;) is the reflection coefficient seen looking into the arbirary lossless match-
ing network. The derivation of this result is beyond the scope of this text (the interested
reader is referred to references [7] and [8]), but our goal here is to discuss the implications
ofthe above result.

Assume that we desire to synthesize a matching network with a reflection coefficient
response like that shown in Figure 5.23a. Applying (5.79) to this function gives

/ * t n  
t  

d r .  
T

Jo lr(ar) l  
-  RC'

f 
* 
r' f,o, : Io.n {a,: Aa,ln #, = #,

Circuit

(s.80)

Bode-Fano limit

{-t nt--:- d" #

I,- *" ft10,.,^,

I,-#^#,^.#

l-"6 o, .T

(d)

The Bode-Fano limits for RC and Rl, loads matched with passive and lossless
networks (a.r6 is the center frequency of the matching bandwidth). (a) Parallel RC.
(b) Series RC. (c) Parallel Rl,. (d) Series RZ.

FIGURE 5.22



FIGURE 5.23

References 263

Not realizable

ft)

Illustrating the Bode-Fano criterion. (a) A possible reflection coefficient response.
(b) Nonrealizable and realizable reflection coefficient responses.

t l l
tzl

which leads to the following conclusions:

o For a given load (fixed RC product), a broader bandwidth (Aar) can be achieved
only at the expense of a higher reflection coefficient in the passband (f.).

o The passband reflection coefficient l, cannot be zero unless Aro : 0. Thus a per-

fect match can be achieved only at a finite number of frequencies, as illustrated in

Figure 5.23b.
o AsR and/orC increases,thequalityofthematch(Aarand/orl/t^)mustdecrease.

Thus, higher-Q circuits are intrinsically harder to match than are lower-Q circuits.

Since ln l/lf I is proportional to the return loss (in dB) at the input of the matching

network, (5.79) can be interpreted as requiring that the area between the return loss curve

and the lf | :1 (RL:0 dB) axis must be less than or equal to a particular constant.

Optimization then implies that the return loss curve be adjusted so that lf | : f. over

the passband and lf | :1 elsewhere, as in Figure 5.23a. In this way, no area under the
return loss curve is wasted outside the passband, or lost in regions within the passband

for which lf | < fr. The square-shaped response of Figure 5.23a is thus the optimum
response, but cannot be realized in practice because it would require an infinite number

of elements in the matching network. It can be approximated, however, with a reasonably
small number of elements, as described in reference [8]. Finally, note that the Chebyshev

matching transformer can be considered as a close approximation to the ideal passband of

Figure 5.23a, when the ripple of the Chebyshev response is made equal to l^.Figxe 5.22
lists the Bode-Fano limits for other types of RC and R,L loads.
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PROBLEMS

5.L Design lossless l-section matching networks for the following normalized load impedances:

t5l

t6l

I7l
t8l

(a) zr : 1.5 - j2.0
(b)  zr  :0 .5 + jo .3

(c)  zr  :0 .2 -  j0 .9
(d)  zr  :2 .0 -  j0 .3

5.2 We have seen that the matching of an arbitrary load impedance requires a network with at least two
degrees of freedom. Determine the types of load impedances/admittances that can be matched with
the two single-element networks shown below.

5.3 A load impedance Z2: 100 + j80 O is to be matched to a 75 O line using a single shunt-stub tuner.
Find two solutions using open-circuited stubs.

5.4 Repeat Problem 5.3 using short-circuited stubs.

5.5 A load impedance Zr :30 - j40 f2 is to be matched to a 50 O line using a single series stub tuner.
Find two solutions using open-circuited stubs.

5.6 RepeatProblem 5.5 using short-circuited stubs.

5.7 In the circuit shown below a Zr - 200 + j 100 O load is to be matched to a 40 Q line, using a length,
l, of lossless transmission line of characteristic impedance, Z1.Find, I and 21. Determine, in general,
what type of load impedances can be matched using such a circuit.

Zr=200 +j100 A

5.8 An open-circuit tuning stub is to be made from a lossy transmission line with an attenuation constant
a. What is the maximum value of normalized reactance that can be obtained with this stub? What is
the maximum value of normalized reactance that can be obtained with a shorted stub of the same type
of transmission line? Assume cvl is small.

5.9 Design a double-stub tuner using open-circuited stubs with a,l,/8 spacing to match a load admittance
YL:  (0 .4+  j1 .2 )Yo.

5.10 Repeat Problem 5.9 using a double-stub tuner with short-circuited stubs and a 3.1./8 spacing.

o)(al

t -
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5.1L Derive the design equations for a double-stub tuner using two series stubs, spaced a distance d apart.

Assumetheloadimpedance is Zy: Rr* jXt.

5.12 Consider matching aload ZL:200 sl to a 100 f,lline, using single shunt-stub, single series stub,

and double shunt-stub tuners, with short-circuited stubs. Which tuner will give the best bandwidth?

Justify your answer by calculating the reflection coefficient for all srx solutions at 1.1 f6, where /e is

the match frequency, or use CAD to plot the reflection coefficient versus frequency.

5.13 Design a single-section quarter-wave matching transformer to match a 350 O load to a 100 Q line.

What is the percent bandwidth of this transformer, for SI4zR < 2? lf the design frequency is 4 GHz,

sketchthe layoutof amicrostrip circuit, including dimensions, toimplementthis matching transformer.

Assume the substrate is 0.159 cm thick, with a dielectric constant of 2.2.

5.14 Consider the quarter-wave transfonner of Figure 5.13, with Zr : 100 Q, Zz * 150 Q, and 21 :

225 Q . Evaluate the worst-case percent error in computing lf I from the approximate expression of
(5.42), compared to the exact result.

5.15 A waveguide load with an equivalent TE10 wave impedance of 377 Q must be matched to an air-filled

X-band rectangular guide at 10 GHz. A quarter-wave matching transformer is to be used, and is to

consist of a section of guide filled with dielectric. Find the required dielectric constant and physical

length of the matching section. What restrictions on the load impedance apply to this technique?

5.16 A four-section binomial matching transformer is to be used to match a 12.5 Q load to a 50 Q line at

a center frequency of I GHz. (a) Design the matching transformer, and compute the bandwidth for

f- :0.05.UseCADtoplottheinputreflectioncoeffrcientversusfrequency.(b)Layoutthemicrostrip

implementation of this circuit on an FR4 substrate havinge, : 4.2, d : 0.158 cm, tanJ : 0.02, with

copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus frequency.

5.17 Derive the exact characteristic impedance for a two-section binomial matching transformer, for a

normalized load impedanc e Z t / Zo : 1.5. Check your results with Table 5. 1.

5.18 Calculate and plot the percent bandwidth for a N : 1 , 2, and 4 section binomial matching transformer,

vercts Z7f 26 - 1.5 to 6forl^:Q).

5.19 Using (5.56) and trigonometric identities, verify the results of (5.60).

5.20 Design a four-section Chebyshev matching transformer to match a 40 Q line to a 60 Q load. The

maximum permissible SWR over the passband is 1.2. What is the resulting bandwidth? Use the

approximate theory developed in the text, as opposed to the tables. Use CAD to plot the input

reflection coefficient versus frequency.

5.21 Derive the exact characteristic impedances for a two-section Chebyshev matching transformer, for a

normalized load impedance Zy/Zs: 1.5. Check your results with Table 5.2 for | ^ : 0.05.

s.22 Aloadof Zy/Zo: l.5istobematchedtoafeedlineusingamultisectiontransformer,anditisdesired
to have a passband response with lf(g)l : A(0.1+ cos2d;, for 0 < 0 < n.lJse the approximate

theory for multisection transformers to design a two-section transformer.

A tapered matching section has d(ln Z /Zi/dz : A sin:r z/L. Find the constant A so that Z(0) : Zo

and Z(L) : Zt. Compute f , and plot lf I versus BI.

Design an exponentially tapered matching transformer to match a 100 O load to a 50 O line. Plot lf I
versus BZ, and find the length of the matching section (at the center frequency) required to obtain

lf | < 0.05 over a lUOVo bandwidth. How many sections would be required if a Chebyshev matching

transformer were used to achieve the same specifications?

An ultra wideband (UWB) radio transmitter, operating from 3.1 to 10.6 GHz, drives a parallel RC load

with R : 75 Q and C :0.6 pF. What is the best return loss that can be obtained with an optimum

matching network?

C o n s i d e r a s e r i e s R t l o a d w i t h R : 8 0 A a n d l : 5 n H . D e s i g n a l u m p e d - e l e m e n t l - s e c t i o n
matching network to match this load to a 50 Q line at 2 GHz. Plot lf I versus frequency for this

network to detemine the bandwidth for which lf I S f. :0.1. Compare this with the maximum

possible bandwidth for this load, as given by the Bode-Fano criterion. (Assume a square reflection

coefficient response like that of Figure 5.23a.)

s.23

q t 5

5.24

s.26



Microwave Resonators

Microwave resonators are used in a variety of applications, including fllters, oscillators,
frequency meters, and tuned ampliflers. Since the operation of microwave resonators is very
similar to that of the lumped-element resonators of circuit theory we will begin by reviewing the
basic characteristics of series and parallel rRLC resonant circuits. We will then discuss various
implementations of resonators at microwave frequencies using distributed elements such as
transmission lines, rectangular and circular waveguide, and dielectric cavities. We will also
discuss the excitation ofresonators using apertures and current sheets.

6.1 SERIES AND PARALLEL RESONANT CIRCUITS

Near resonance, a microwave resonator can usually be modeled by either a series or parallel
RZC lumped-element equivalent circuit, and so we will derive some of the basic properties
of such circuits below.

Series Resonant Circuit

A series RIC resonant circuit is shown in Figure 6.1a. The input impedance is

Z i n : R * j c o L - j # ,

and the complex power delivered to the resonator is

(6.1)

p . -
. l n  -

:

) r , .  =)z;t , :) t^ l* l '

)t,r (o * ir,tL - t#)

266

(6.2)



I

(b)

impedance magnitude versus frequency.

The power dissipated by the resistor, R, is

4oss :  
l_Vf  

n,
z

the average magnetic energy stored in the inductor, ,L, is

w^ :  l g f t '
+

and the average electric energy stored in the capacitor, C, is

w" :  
r - l v . l2c  : l l t l ' � : - ." (  
4 t ' ( . t  

-  
4 ' - ,  t O 2 C

where V" is the voltage across the capacitor. Then the complex
rewritten as

Pin : Plo., -t2ja(W* - W"),

and the input impedance of (6.1) can be rewritten as

a 2Pin Plor, * 2ja(W, - W")o;": 
W 

---Fe .
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(6.3a)

(6.3b)

power

(6.3c)

ot (6.2) can be

R
0.707

R

0

FIGURE 6.1 A series l?lC resonator and its response. (a) The series RIC chcuit. (b) The input

Resonance occurs when the average stored magnetic and electric energies are equal,
or W^ : I7". Then from (6.5) and (6.3a), the input impedance at resonance is

- Plo..,r": ffi= *.
which is purely real. From (6.3b,c), W^ : lV" implies that the resonant frequency, rds, muSt
be defined as

1
0)0 :  = - : ,

\/ LC

(6.4)

(6.s)

(6.6)



268 Chapter 6: Microwave Resonators

Another important parameter of a resonant circuit is its Q, or quality factor, which is
defined as

(average energy stored)
(energy loss/second)

W * * W "
(6.7)

Thus Q is a measure of the loss of a resonant circuit-lower loss implies a higher p. For
theseriesresonantcircuitofFigure6.la,the Qcanbeevaluatedfrom(6.7)using(6.3),and
the fact thatW. : W" atresonance, to give

o

2W- aoL I
U : Qln-'  * 'P lo r .  

R  agRC'

which shows that Q increases as R decreases.
Now consider the behavior of the input impedance of this resonator near its resonant

frequency [1]. We let ar : {Do * Lia., where Aco is small. The input impedance can then be
rewritten from (6.1) as

/ | \
Z i n : R - l j a i � L l l - - l

\ -  azLC )

:  R + j r r  ( "  
- , " r \ .

\ @ 2 ) '

s ince a., f r  =I /LC. Now ar2 *c4:(a-a>d@t*ar6)- La\2ot-La)-2r, .Aa for
small Aar. Thus.

Z i a = R - t j 2 L L a t

- R +  ' 2 R Q L a t .  
6 . 9 )

@0

This form will be useful for identifying equivalent circuits with distributed element
resonators.

Alternatively, a resonator with loss can be modeled as a lossless resonator whose
resonant frequency a;6 has been replaced with a complex effective resonant frequency:

0)o <-,0 (t * 
h)

(6.8)

(6.10)

This can be seen by considering the input impedance of a series resonator with no loss, as
given by (6.9) with R : 0:

Z i " - j 2L (a -a ; s ) .

Then substituting the complex frequency of (6.10) for r,.rs gives

Z i n :  j 2 L  ( ,  -  r o -  j g )
\  

"  
2 Q /

: ry: * j2L(a- @o) : R -f j2LL,a,
u

which is identical to (6.9). This is a useful procedure because for most practical resonators
the loss is very small, so the Q can be found using the perturbation method, beginning with
the solution for the lossless case. Then the effect of loss can be added to the input impedance
by replacing aro with the complex resonant frequency given in (6.10).
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Finally, consider the half-power fractional bandwidth of the resonator. Figure 6.1b
shows the variation of the magnitude of the input impedance versus frequency. When the
frequency is such thatlZirl2:2R2, then by (6.2) the average (real) power delivered to
the circuit is one-halfthat delivered at resonance. IfBW is the fractional bandwidth, then
La I as : BW 12 at the upper band edge. Then using (6.9) gives

lR + jnO(BW)|z :2R2,

1
B W :  l .

O

Parallel Resonant Circuit

The parallelRZCresonant circuit, shown in Figure6.2a,is the dual of the series RICcircuit.

The input impedance is

'^: (+. #+ i,c)
and the complex power delivered to the resonator is

er" : )v r : !rz,,1tl' : )lv f fi
: f , ivr(* .# - i , r ) -

The power dissipated by the resistor, R, is

I  v l zp.
. r o s s - 2  

R

(6 .11)

(6.12)

(6.13)

(6.r4a)

I_______>

r u )  v  r - - >  + C  l t

0 f ala6

(b)

FIGURE 6.2 A parallel RLC resonator and its response. (a) The parallel RIC circuit. (b) The input

impedance magnitude versus frequency.
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the average electric energy stored in the capacitoq C, is

1 -
W " :  

O l V l " C ,

and the average magnetic energy stored in the inductor, Z, is

I " 1 ) I
W ^ :  

4 l l 2 l z L :  4 l V (  -  .

(6.14b)

(6.1s)

(6.16)

(6.18)

(6.14c)

wherc Il is the current through the inductor. Then the complex power of (6.13) can be
rewritten as

Pio : Ptor, -l 2ja(W^ - W"),

which is identical to (6.4). Similarly, the input impedance can be expressed as

which is identical to (6.5).
As in the series case, resonance occurs when W'. - I4lr. Then from (6.16) and (6.14a)

the input impedance at resonance is

Plo*2," :  f f i :  R,
which is a purely real impedance. From (6.14b,c), W*:W" implies that the resonant
frequency, rr.ro, should be defined as

'o:  : ! '  6 '17)
^/ LC

which again is identical to the series resonant circuit case.
From the definition of (6.7), and the results in (6.14), the Q of the parallel resonant

circuit can be expressed as

- 2Pin Ptor, * 2ja(W^ - W")
. i " :  

W : - - t r *  
,

2W- R
Q  =  @ o  p r * :  ^ r :  

a o R C ,

2,,= (+.Y#P + iotsc + i^a)c)

== (* * 'ffi+ i^,c) 
'

= (* + zi  ̂ ,Dc)

since V[- : W" at resonance. This result shows that the Q of the parallel resonant circuit
increases as R increases.

Near resonance, the input impedance of (6.12) can be simplified using the result that

1  - 1 - . r - r - . . . .
I * x

Letting (D : @o I Lco, where Aar is small, (6.12) canbe rewritten as [1]

R
! - :

|  *2j LroRC | *2j QLat/as
(6.19)
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since a-rfr : I I LC . When R : oo (6.19) reduces to

, -  |
' ' " -  

12c1r - to i l '

As in the series resonator case, the effect of loss can be accounted for by replacing <as
in this expression with a complex effective resonant frequency:

(6.20)

Figure 6.2b shows the behavior of the magnitude of the input impedance versus fre-
quency. The half-power bandwidth edges occur at frequencies (A,at/ao: BW/2), such
that

lzr^P : *,

which, from (6.19), implies that

@,o <-  ̂ ( .  h)

t
B W :  -" ' ,  -  

0 ,
as in the series resonance case.

(6.21)

Loaded and Unloaded @

The Q defined in the preceding sections is a characteristic of the resonant circuit itself, in the
absence of any loading effects caused by external circuitry and so is called the unloaded Q.
In practice, however, a resonant circuit is invariably coupled to other circuitry, which will
always have the effect of lowering the overall, or loaded Q, Qu of the circuit. Figure 6.3
depicts a resonator coupled to an extemal load resistor, Rr. If the resonator is a series RLC
circuit, the load resistor R; adds in series with R so that the effective resistance in (6.8) is
R * Rr. If the resonator is a parallel RIC circuit, the load resistor R1 combines in parallel
with R so that the effective resistance in (6.18) is RR1/(R * Rr). If we define an external
Q,  Q, ,  &s

for series circuits

for parallel circuits,

(6.22)

then the loaded Q canbe expressed as

(6.23)

Table 6.1 summarizes the above results for series and parallel resonant circuits.

, ": lE
l 'rL

1 1 1

Q t :  & - O

FIGURE 6.3 A resonant circuit connected to an extemal load. R'.
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TABLE 6.1 Summary of Results for Series and Parallel Resonators

Quantity Series Resonator Parallel Resonator

lnput Impedance/admittance

Power loss

Stored magnetic energy

Stored electric energy

Resonant frequency

Unloaded Q

External p

I
Z i n : R * j t o L - j -

2ROA'aN R+ j__ : -
oO

I
4 . . , : 7 l 1 l . R

I
W . :  

4 l I l ' L

w " : l vPJ -- 4 a ' C

I

\/ LC

aoL I
O: --:-- R aoRC

oaL
O.: --:-

R7

2OL.ot
+ i  -

Ra;o

I  l v 1 2p .  -  _ 'r r o s s - 2  
R

v - : l v P  ] -' 
4 a'L

w " : l v t ' c' 4

1
/ t t ^ :  -

\/ LC

R
Q: rooRc : 

,oL

R ,
Q":  - -1

aoL

Iv .  - _,. .  
R

I
- R

I
+ i a c - i a L

6.2 TRANSMISSION LINE RESONATORS

As we have seen, ideal lumped circuit elements are usually unattainable at microwave
frequencies, so distributed elements are more commonly used. In this section we will study
the use of transmission line sections with various lengths and terminations (usually open or
short circuited) to form resonators. Since we will be interested inthe Q of these resonators,
we must consider lossy transmission lines.

Short-Circuited .\/2 Line

Consider a length of lossy transmission line, short circuited at one end, as shown, in
Figure 6.4. The line has a characteristic impedance 20, propagation constant F, and
attenuation constart cv. At the frequency @ : (Do, the length of the line is I : )'/2, where
X :2n /fr. From (2.91), the input impedance is

Z;n: Zotanh(cv + jp)(-.

Using an identity for the hyperbolic tangent gives

tanhql -l j tan f (.
" i ' : t o l + j t w r p l f f i o ( (6.24)

Observe that 26 : j Zotan Bl lf a : 0 (no loss).
In practice, most transmission lines have small loss, so we can assume that al 11 l,

and so tanhal - cvl. Now let o : ats ! Lroo, where Aar is small. Then, assuming a TEM
line.

a( ao( A,a(.
P v : - : - - r - ,

up up up
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FIGURE 6.4 A short-circuited length of lossy transmission line, and the voltage distributions for
n : | (l : L/2) and n :2 (l : )') resonators.

where uo is the phase velocity of the transmission line. Since I : ). /2 : n u, f as for to :
6d0, we have

A,anp ( : r *  
^ ,

and then

/ A,an \ Acr.rz
t a n p ( : t a n l i r + - l : t a n

\  c d o /  @ 0

Using these results in (6.24) gives

, , ,=ro#f f i f f i=2,( , t * t#) ,(6.2s)

since A,aal/al6 ( 1.
Equation (6.25) is of the form

Z io :  R*2 jLL ' co ,

which is the input impedance of a series RIC resonant circuit, as given by (6.9). We can
then identify the resistance of the equivalent circuit as

R :  Zoa l ,

and the inductance of the equivalent circuit as

L :  
z o o  

.
2roo

The capacitance ofthe equivalent circuit can be found from (6.6) as

(6.26a)

(6.26b)

c :  + .
@6L

TheresonatorofFigure6.4thusresonatesfor L,a:0(l:),/2),anditsinputimpedance
a t th i s f requency i sZ in :R :Zsu l .Resonancea l sooccu rs fo r l : i l ' 12 ,n :1 ,2 ,3 , . . . .
The voltage distributions for the n : 1 and n : 2 resonarrt modes are shown in Figure 6.4.

(6.26c)
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The Q of this resonator can be found from (6.8) and (6.26) as

(6.27)

since Bl : n atlhefirst resonance. This result shows that the Q decreases as the attenuation
ofthe line increases, as expected.

EXAMPLE 6.1 0 OF HALF-WAVE COAXTAL LINE RESONATORS

A)"/2resonatoris madefromapiece of coppercoaxialline, with aninnerconductor
radius of 1 mm and an outer conductor radius of 4 mm. If the resonant frequency is
5 GHz, compare the Q of an air-filled coaxial line resonator to that of a Teflon-filled
coaxial line resonator.

Solution
We must first compute the attenuation of the coaxial line, which can be done using
the results of Example 2.6 or 2.7 . From Appendix F, the conductivity of copper is
o : 5.813 x 107 S/m. Then the surface resistivity is

R , : :  1.84 x 10-2 O,

<onL 7r B
/ 1 -  "  - _ - _ LY -  R  

- 2 a (  
2 a '

and the attenuation due to conductor loss for the air-filled line is

R ,  / 1  l \
u n : _ l _ _ ; l'  

2 r y l nb la  \ a  b  /

l . 8 4 x l 0 - 2  /  |  r  \
: 

2(37)r"(#4/0:-.00r) (#m . #*) 
:0'022 Np/m'

For Teflon, e, : 2.08 and tan 6 : 0.0004, so the attenuation due to conductor loss
for the Teflon-filled line is

t . 84x l0 -2JL08  /  |  I  \
d , . :  

- -  ' - ' - -  
I  

-  
+  l : 0 . 0 3 2 N o / m' 

2(377)ln(0.004/0.001) \0.001 o.OO4 /

The dielectric loss of the air-filled line is zero, but the dielectric loss of the Teflon-
filled line is

oo : kof tun6
z

gLryrgt: o.o3oNp/m.
Finally, from (6.27), the Qs can be computed as

n^,: *:  f f i :2380,
Qr.n" 

P ro4'7JTo8
" :  2o:  2(0J32+or3o) 

:  l2 l8 '

Thus it is seen that the Q of the air-filled line is almost twice that of the Teflon-filled
line. The Q canbe further increased by using silver-plated conductors. I

olto

2o
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Short-Circuited .\/4 Line

A parallel type of resonance (antiresonance) can be achieved using a short-circuited trans-
mission line of length )" 14. The input impedance of the shorted line of length I is

Zi,: Zotanh(d + jp)|,

tanh al -f j tan B(: to 
lT j t*t Ntarrhq(

_  l *  i t anhu l co tB l: Zo- --i . (6.28)" 
tanha(. - j cot B(. 

'

where the last result was obtained by multiplying both numerator and denominator by
* j cot B [.. Now assume fhat I : )" I 4 at at - @s, aifid let a : ao * A,a. Then, for a TEM
line,

<on( Lal T rLco
y w : - - r - : = - r - - : - - .'  

u p  u p  2  2 o o '

andso cotBr . : * t (+ .#) : * tanX = 
#

Also, as before, tanhal - al for small loss. Using lhese results in (6.28) gives

2,": z,\P!!9*9 - Zo 
6.2s)-" 

q[ * jn L,atl2as 
- 

q(.1 jn L,al2os'

since aln A,a /Zto << 1. This result is of the same form as the impedance of a parallel RLC
circuit, as given in (6.19):

7 . -  I
' ' "  - 

( l  /R\ +zj Lrc'

Then we can identify the resistance of the equivalent circuit as

2,,
R: ___: (6.30a)

a{

and the capacitance of the equivalent circuit as

c : ;! (6.30b)- 
4asZs'

The inductance of the equivalent circuit can be found as

L :  + .
@6C

(6.30c)
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The resonator of Figure 6.4 thus has a parallel type resonance for I : )'/4, with an input
impedanceatresonanceofZin:R:Zolql.From(6.18)and(6.30)theQofthisresonator
is

Q: . ,oRC : 
h

since I : n /2F at resonance.

Open-Circuited )/2 Line

A practical resonator that is often used in microstrip circuits consists of an open-circuited
length of transmission line, as shown in Figure 6.5. Such a resonator will behave as a parallel
resonant circuit when the length is )'/2, or multiples of ),/2.

The input impedance of an open-circuited line of length I is

Zin : zocoth(cv + j p){ : z 
| * j tan fl('tanhaL

o lrrth"a ', 1tanY 
'

As before, assume that L : ), 12 at a - @s, airrdlet a : a.b * Aar. Then,

n A,otp ( . :  n  +  - ,
@0

Aatr L.ar
tan B(. : tan -

(D o0

andtanhal - al.Using these results in (6.32) gives

Zs (6.33)
at * j(L,an lroo)

Comparing withthe input impedance of aparallelresonant circuit as givenby (6.19) suggests
that the resistance of the equivalent RLC circuit is

Zo
R :  - j ,

d,L

p
za

(6 .31)

(6.32)

(6.34a)

and so

Zin

zi,+> zo' I' o

l +

FIGURE 6.5 An open-circuited length of lossy transmission line, and the voltage distributions for

n : | (( : )\/2) and n :2 (l : L) resonators.



and the capacitance of the equivalent circuit is

C _
2atsZs

The inductance of the equivalent circuit is

Ir  - -" - r,fic'
From (6.18) and(6.34) the Q is

Q - a o R C :

since I : 7t I p at resonance.

1 5 1 . 0

EXAMPLE 6.2 A HALF-WAVE MICROSTRIP RESONATOR

Consider a microstrip resonator constructed from a )'12 length of 50 S2 open-
circuited microstrip line. The substrate is Teflon (e , : 2.08, tan 6 : 0.0004), with
a thickness of 0.159 cm. The conductors are copper. Compute the length of the
line for resonance at 5 GHz, and the Q ofthe resonator. Ignore fringing fields at
the end of the line.

Solution
From (3.197), the width of a 50 Q microstrip line on this substrate is found to be

I ,7 :0.508 cm,

and the effective permittivity is

€e :  1 '80 '

Then the resonant length can be calculated as

"  ) "  t ) p  c  3 x 1 0 8, _ _ :  : _ _ _ - _ : _ : _ : 1 2 A c y
2 2f 2f J€" 2(5 x 10e)/1.80

The propagation constant is

^ 2nf 2"f Je" 21,5 x tOelr/t.8O
p : ----:- : - : ----------;- : 151.0 radlm.'  

u p  c  3 x 1 0 E

From (3.199), the attenuation due to conductor loss is

R" 1.84 x 10-2o' : 7fr 
- 

5o(oJo5o8) 
: o'0724 NP/m'

where we used R" from Example 6.1. From (3.198), the attenuation due to dielectric
loss is

oo : !!951-28! - (104'7x2'08x0'80x0'0004) : 0.024 Np/m." 2^,F(€, - 1) z^/tSO(t.OS)

Then from (6.35) the 0 is

o :  * :
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(6.34b)

(6.34c)

(6.3s)7 t p

2a[. 2q,'

I2(0.0724 + 0.024)
: 7 8 3 .
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RECTANGU LAR WAVEGUIDE CAVITIES

Resonators can also be constructed from closed sections of waveguide, which should not be
surprising since waveguides are a type of transmission line. Because of radiation loss from
open-ended waveguide, waveguide resonators are usually short circuited at bo*r ends, thus
forming a closed box or cavity. Electric and magnetic energy is stored within the cavity, and
power can be dissipated in the metallic walls of the cavity as well as in the dielectric filling
the cavity. Coupling to the resonator can be by a small aperture or a small probe or loop.

We will first derive (he resonant frequencies for a general TE or TM resonant mode,
and then derive an expression for the Q of the TE1s7 mode. A complete treatrnent of the Q
for arrbitrao.y TE and TM modes canbe made using the same procedure, but is not included
here because of its length and complexity.

Resonant Frequencies

The geometry of a rectangular cavity is shown in Figure 6.6. It consists of a length d of
rectangular waveguide shorted at both ends (z : 0, d). We first find the resonant frequencies
of this cavity under the assumption that the cavity is lossless, then we determine the Q using
the perturbation method outlined in Section 2.7 . We could begin with the wave equations
and use the method of separation of variables to solve for the electric and magnetic fields
that satisfy the boundary conditions of the cavity, but it is easier to start with the TE and TM
waveguide fields, which already satisfy the necessary boundary conditions on the side walls
(x : 0, a and y :0,b) of the cavity. Then it is only necessary to enforce the boundary
conditions tha't E, - Ey :0 on the end walls at z : O, d.

From Table 3.2 the transverse electric fields (.E,, En) of the TE ̂ , orTM^n rectangular
waveguide mode can be written as

E,(*, y, z) : e(x, y)lA+ s-if^"2 * A- eif^"21, (6.36)

FIGURE 6.6 A rectangular resonant cavity, and the electric field distributions for the TEtor and
TE162 resonant modes.
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where Z(x, y) is the transverse variation of the mode, and A+, A- ne arbitrary amplitudes
of the forward and backward traveling waves. The propagation constant of the m, nth TE
or TM mode is

(6.37)

where ft : con@, and p,, e are the permeability of permittivity of the material filling the
cavity.

Applying the condition that E, :0 at z :0 to (6.36) implies that A+ : -A- (as
we should expect for reflection from a perfectly conducting wall). Then the condition that
E, : O at I : i leads to the equation

E,@ ' Y, d) : -?(x, iA+z j sin B^nd : o.

The only nontrivial @+ + 0) solution thus occurs for

B^rd : !.rv, ( . : 1 , 2 , 3 , . . . , (6.38)

which implies that the cavity must be an integer multiple of a half-guide wavelength long
at the resonant frequency. No nonffivial solutions are possible for other lengths, or for
frequencies other than the resonant frequencies. The rectangular cavity is thus a waveguide
version of the short-circuited )"/2 transmission line resonator.

A resonant wavenumber for the rectansular cavitv can be defined as

(6.3e)

Then we can refer to the TE*4 or TM*4 resonant mode of the cavity, where the indices
m, n, lreferto the number of variations in the standing wave pattern in the x, y, z directions,
respectively. The resonant frequency of theTE^* orTM^n2 mode is then given by

" ck^nr " mrmn,:ffi: *fu/(;) *(;) .(.;) (640)

If b < a < d,the dominant resonant mode (lowest resonant ftequency) will be the TE1s1
mode, corresponding to the TEls dominant waveguide mode in a shorted guide of length
)'r/2.The dominant TM mode is the TM116 mode.

O of the TEroz Mode

From Table 3.2, (6.36), and the fact that A- : - A+ , the total fields for the TE1ff resonant
mode can be written as

.  l t * , t 2  l w r t 2  / t n \ 2
k m n t :  

l \ ; )  
*  ( ; )  .  

\ ;  )

Ey: A+ sinllp-iLz - ei\rf,

,* : 
-!* 

sin[x 1s-i\' * elfl.....
L"fE a

u, : i: l+ 
cos' 

x 
1s-ia' - ,ia'f .

K4A A

(6.4ra)

(6.41b)

(6.41c)
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Letting Eo : -2j A+ and using (6.38) allows these expressions to be reduced to

which clearly show that the fields form standing waves inside the cavity. We cal now
compute the Q of this mode by flnding the stored electric and magnetic energies, and the
power lost in the conducting walls and the dielectric.

The stored electric energy is, from (1.84),

n x  [ n z
Eu : Eo sin sin .-:." a d

- jEo  nx  ! .nz
- sln

Z r y a d

jr Eo ftx lrz
flz : -- cos - srn -" k n a a d

w":r[ . ,r , t ;0,:t#r".
+ J v

while the stored magnetic energy is, from (1.86),

w^: t Irru,r|-r H,H)dv

:#q(+.#)

(6.42a)

(6.42b)

(6.42c)

(6.43a)

(6.43b)

Since 22Z516 : kqlfr, and B : Brc : Jkz - Qt /a)2. the quantity in parentheses in (6.43b)
can be reduced to

(  I  ,  12  \  p ' a l t r l a \2  I  e

\4; 
-  k ' �FA ):  k '4'  

:  
n '= i '

which shows lhat W" - W*. Thus, the stored electric and magnetic energies are equal at
resonance, analogous to the RZC resonant circuits of Section 6.1.

For small losses we can find the power dissipated in the cavity walls using the per-
turbation method of Section 2.7. Thus, the power lost in the conducting walls is given by
(1 .131 )  as

'': * l*^,".''Pa''
whereR": Jroltof2o isthesurfaceresistivityofthemetallicwalls,andtlristhetangential
magnetic field at the surface of the walls. Using (6.42b,c) in (6.44) gives

,, = *b fu [' wrk : o)lzdx ay + z fo fu ,r,r* :0)lz dy dz' 
2 [  . /v :o. l * :o  Jz:orv=o

fd fa r  . l  I
+2  |  |  l l a -1  :  o ) l '  *  lH , {y  :o ) l '  l dx  az l

J z : 0 J x : o L  I  I

R,82"),2 / (2ab bd Pa d \- -__:____:__t _ _r _ I _ _r _ l
gq2 \  a ,  

'  
a2 

'  
2d 

'  
2o) '

(6.44)

(6.4s)

where use has been made of the symmetry of the cavity in doubling the contributions from
the walls at x :0, y : 0, and z : 0 to account for the contributions from the walls at
x : a,! : bo and z : d, respectively. The relations that k:2n/). and Zrn: ktt/F:
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2dq /U. were also used in simplifying (6.45). Then, from (6.7), the Q of the cavity with
lossy conducting walls but lossless dielectric can be found as

2asW"
u v :  -

P"

k3 ab d4

4n2 R, l(L2ab /d2) -f (bd laz) t ({.2a /2d) + (d /2a)l

(kad)3bq I: - .r*2 D
L J L  I I S (2 lzazfr  +2bd3 I  l2a3d *  ad3)

We now compute the power lost in the dielectric. As discussed in Chapter 1, a lossy
dielectric has an effective conductivity o:o)€tt:@€/€0tan6, where e:€'- je" :
€1€i(l - j tan 6), and tan 6 is the loss tangent of the material. Then the power dissipated in
the dielectric is, from (I.92),

(6.46)

(6.48)

(6.4e)

The simplicity of this result is due to the fact that the integral in (6.43a) for 17, cancels with
the identical integral in(6.47)for P1. This result thus applies to Ql for an arbitrary resonant
cavity mode. When both wall losses and dielectric losses are present, the total power loss
is P" + Pa, so (6.7) gives the total Q as

(6.47)

where E is given by (6.42a). Then from (6.7) the Q of the cavity with a lossy dielectric
filling, but with perfectly conducting walls, is

,, : :1, i . E*du : + l,tnpa, : 4*#t,

2atW" e' I
'u  

P1 e"  tan 6 '

n :  ( ; .  * ) -

d: ---!!--.
Jt ,  -  ( t r  /a)2'

7f

EXAMPLE 6.3 DESIGN OF A RECTANGULAR WAVEGUIDE CAVITY

A rectangular waveguide cavity is made from a piece of copper WR-187 H-
band waveguide, with a : 4.755 cm and b : 2.215 cm. The cavity is filled with
polyethylene (e, : 2.25, tan 6 : 0.0004). If resonance is to occur at f - 5 GHz,
find the required length, d, atdthe resulting Q for the I : 1 and | :2resonarfi
modes.

Solution
The wavenumber k is

k  - 2 ' t f  J + :  I 5 7 . o 8 m - r .
c

From (6.40) the required length for resonance can be found as (m : l, n :0)

f o r  L :  l ,

for  |  :2 ,

f l -
/( rs7.08)2 - @ /0.047 55\2

d :2(2.20) :4.40 cm.

:2.20 cm,
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From Example 6.1, the surface resistivity of copper at 5 GHz is R,:1.84 x
10-2 O. The intrinsic impedance is

: 2 5 I . 3  Q .

Then from (6.46) the Q due to conductor loss only is

for (. : l, Qr  :8403,

377
, 

J,,

for ( :2, Q, : II,898.

From (6.48) the Q due to dielectric loss only is, for both I : 1 and | :2,

1 l
Qo:  , *u :  o .ooo4 

:2500 '

So the total Qs arc, from (6.49)

r o r ( : t ,  n : ( # . # )  : 1 e 2 7 .

f o r ( : 2 .  o : (  
|  

*  
I  

\ - ' : 3 0 6 5 .'  '  
\ 1 1 . 8 9 8 ' 2 5 0 0 /

Note that the dielectric loss has the dominant effect on the Q; higher Q
could thus be obtained using an air-filled cavity. These results can be compared to
those of Examples 6.1 and 6.2, which used similar types of materials at the same
frequency.

CIRCU LAR WAVEGUIDE CAVITIES

A cylindrical cavity resonator caa be constructed from a section of circular waveguide
shorted at both ends, similar to rectangular cavities. Since the dominant circular waveguide
mode is the TE11 mode, the dominant cylindrical cavity mode is the TE111 mode. We will
derive the resonant frequencies for the TEn6s anld TMr*1 circular cavity modes, and the
expression for the Q of the TEn*s mode.

Circular cavities are often used for microwave frequency meters. The cavity is con-
structed with a movable top wall to allow mechanical tuning of the resonant frequency,
and the cavity is loosely coupled to a waveguide with a small aperfure. In operation, power
will be absorbed by the cavity as it is tuned to the operating frequency of the system; this
absorption caa be monitored with a power meter elsewhere in the system. The tuning dial
is usually directly calibrated in frequency, as in the model shown in Figure 6.7. Since fre-
quency resolution is determined by the Q of the resonator, the TE611 mode is often used for
frequency meters because its 0 is much higher than the Q of the dominant circular cavity
mode. This is also the reason for a loose coupling to the cavity.

Resonant Frequencies

The geometry of a cylindrical cavity is shown in Figure 6.8. As in the case of the rectangular
cavity, the solution is simplified by beginning with the circular waveguide modes, which
already satisfy the necessary boundary conditions on the circular waveguide wall. From
Table 3.5, the transverse electric fields (Er, E$ of the TEn* or TMn, circular waveguide
mode can be written as

T

6.4

E,(p, Q, z) : E(p, Q)IA+ s-lP" z * A- eif" z1, (6.50)
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FIGURE 6.7 Photograph of a W-band waveguide frequency meter. The knob rotates to change the
length of the circular cavity resonator; the scale gives a readout of the frequency.

Photograph courtesy of Millitech Coqporation, Northampton, Mass.

where Z(p, @) represents the transverse variation of the mode, and A+ and A- are arbitrary

amplitudes of the forward and backward traveling waves. The propagation constant of the

TEn. mode is, from (3.126),

, 2
-  ( lur l  ,

\ a  /

-(ry)'

(6.51a)

while the propagation constant of the TM,. mode is, from (3.139),

where ft : @JW.
Now in order to have E, :0 at z :0, d, we must have A+ : -A-, and

A + s i n B ,  d : 0 ,

o r  B n ^ d :  ! n ,  f o r  l : 0 , 1 , 2 , 3 , . . . ,

which implies that the waveguide must be an integer number of half-guide
long. Thus, the resonant frequency of the TEn*a mode is

H  _  I I , Z
P n m  -  r l ^ (6.s1b)

.lnm(

(6.s2)

wavelengths

(6.53a)

FIGURE 6.8 A cylindrical resonant cavity, and the electric field distribution for resonant modes

L

)r fi1--Z-
H J e  
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d
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w i t h l : 7 o r l : 2 .



284 Chapter 6: Microwave Resonators

20 x 108

15 x 108

10 x 108

5 x 1 0 8

FIGURE 6.9 Resonant mode chart for a cylindrical cavity.

Adapted from data from R. E. Colln, Foundations for Microwave Engineertng (New York

McGraw-Hill, 1966). Used with permission.

and the resonant frequency of the TMn-7 mode is

(6.s3b)

Then the dominant TE mode is the TE111 mode, while the dominant TM mode is the TM11s
mode. Figure 6.9 shows a mode chart for the lower order resonant modes of a cylindrical
cavity. Such a chart is very useful for the design of cavity resonators, as it shows what
modes can be excited at a given frequency, for a given cavity size.

@ of the TE*t Mode

From Table 3.5, (6.50), and the fact that At : -A-, the fields of theTEn4 mode can be
written as

I
N

N

2 4
(2a/Az

H z *

H p :

H o :

F _

E 6 :

E ,  : 0 ,

where ry : JpF,and Hs: -2jA+

H,r"(ry)"o,no ,i"T,

#t,e)cosng"o'ff,
-#t,W)sinnQcosff

#t ,W)sinnosinf f

Wt,e)cosns*nff,

(6.54a)

(6.s4b)

(6.54c)

(6.s4d)

(6.54e)

(6.54f)

F F

il
/^\"i

I ,f'

I
(

4 I TM 1 0

lt,,/,il
TNI010

t/

*alt+r.(+)'
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Since the time-average stored electric and magnetic energies are equal, the total stored
energy is

w : zw":: [ '  [" f lnol, + lEal2)pdpdQdz'  
2  J r = o J t : o J o = o ' " '

- 't'n'o'o!ti- f l r: (arA + (:!-\' c (r-'t\1,ao: 
+tp,*t-  Jp=o |  \  o )-  \p ' , -p I  

" '  
\ -  o /  J

(6.ss)

wheretheintegralidentity of Appendix C.lThasbeenused. Thepowerlossinthe conducting
walls is

P , :

: l, nt n@,^)l+l' . (#)'1. (X)' (' - #)l (6 s6)
Then, from (6.8), the Q of the cavity with imperfectly conducting walls butlossless dielectric
is

o - : r o w - ( k a ) 3 n ! ' d  -  
t . � = ( h ) '

uc - - p. - -, r'# &MfAi _Tl 
(6 s7)

l2 L' 
'  \(p,^t, ) J 

'  \r1,,/ \- (p' i l ,  lJ

From (6.52) and (6.51) we see that B : tn /d and (ka)2 are constants that do not vary with
frequency, for a cavity with fixed dimensions. Thus, the frequency dependence of Q" is
given by k/R", which varies as 1lJ7; this gives the variation in Q, for a given resonant
mode and cavity shape (fixed n, m, f,, and af d).

Figure 6.10 shows the normalized Q due to conductor loss for various resonant modes
of a cylindrical cavity. Observe that the TEorr mode has a Q significantly higher than the
lower-order TE111, TMsrg, or TM111 modes.

To compute the Q due to dielectric loss, we must compute the power dissipated in the
dielectric. Thus,

\ l,rn,^f o,

+{ l:, lr'-^lt,u, 
: a)tz + tl,(p : etzfadg dz

*r lr:1,"_ol,rou: o)t2 + tHok: oll'�lpapaql

: F 
. E*du : T l"r,uotz + E.flau

sffit I, '^1(#)" : (Y) *': (ry)),,,
ae"k2n2aaH& 

[, _ /_l 
t tl

8(p,^^), L \ ,^) lfi{p'n) 
(6.s8)
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FIGURE 6.10 Normalized B for various cylindrical cavity modes (air-filled).

Adapted from data from R. E. Collin, Foundations for Microwave Engineering (New York:

McGraw-Hill, 1966). Used with permission.

Then (6.8) gives the Q as

(6.se)

where tand is the loss tangent of the dielectric. This is the same as the result for Q1 of
(6.48) for the rectangular cavity. When both conductor and dielectric losses are presenf, the
total cavity Q canbe found from (6.49).

EXAMPLE 6.4 DESIGN OF A CIRCULAR CAVITY RDSONATOR

A circular cavity resonator with d :2a is to be designed to resonate at 5.0 GHz
in the TEs11 mode. If the cavity is made from copper and is Teflon-filled (e' :

2.08, tanS : 0.0004), find its dimensions and Q.

Solution

2n(5 x 10ehr.0s
:  151 .0  m- l

3 x 1 0 8

From (6.53a) the resonant frequency of the TEe11 mode is

a W e l/ ) . - --a  -  
Pa €"  tan  6 '

,_ 2trfulJ€,
c

fott:-::W-$
with pi, : 3.832. Then, since d :2a

2trIotJe, _ L _
c

Solving for a gives

(+)'*(*)'
,rc.wFTCW+ (n l2)z

T h e n d : 5 . 4 8 c m .

1 5 1 . 0
:2.74 cm.
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The surface resistivity of copper at 5 GHz is R" : 0.0184 O. Then from (6'57),
with n : 0, m : [. : l, and d : 2a, the O due to conductor losses is

Q , :
(ka)3nad

4(p'o)2 R, [ad 12 * (f a2 I p'�ilz]

where (6.51a) was used to simplify the expression. From (6.59) the Q due to

dielectric loss is

: 2500.
0.0004

o - :2300.

This result can be compared with the rectangular cavity case of Example 6.3,

which had Q : I,927 for the TEls1 mode and Q - 2,065 fot the TE1s2 mode. If

this cavity were air-filled,the Q would increase to 42,400. I

DIELECTRIC RESONATORS

A small disc or cube of low-loss high dielectric constant material can also be used as a
microwave resonator. Such dielectric resonators are similar in principle to the rectangular

or cylindrical cavities previously discussed; the high dielectric constant of the resonator
ensures that most of the fields are contained within the dielectric but, unlike metallic cavities,
there is some field fringing or leakage from the sides and ends of the dielectric resonator.

Such a resonator is generally smaller in cost, size, and weight than an equivalent metallic

cavity, and can very easily be incorporated into microwave integrated circuits aad coupled to
planar transmission lines. Materials with dielectric constants 10 < e, < 100 are generally

used, with barium tetratitanate and titanium dioxide being typical examples. Conductor
losses are absent, but dielecric loss usually increases with dielectric constant; Qs of up to
several thousand can be achieved, however. By using an adjustable metal plate above the
resonator, the resonant frequency can be mechanically tuned. Because of these desirable
features, dielectric resonators have become key components for integrated microwave filters
and oscillators.

Below we will present an approximate analysis for the resonant frequencies of the
TEsl5 mode of a cylindrical dielectric resonator; this mode is the one most commonly used
in practice, and is analogous to the TEe11 mode of a circular metallic cavity.

Resonant Frequencies of TEs16 Mode

The geometry of a cylindrical dielectric resonator is shown in Figure 6. I 1. The basic oper-
ation of the TEoto mode can be explained as follows. The dielectric resonator is considered
as a short length, ,L, of dielectric waveguide open at both ends. The lowest order TE mode
of this guide is the TEel mode, and is the dual of the TMor mode of a circular metal-
lic waveguide. Because of the high permittivity of the resonator, propagation along the

z-axis can occur inside the dielectric at the resonant frequency, but the fields will be cut off
(evanescent) in the air regions around the dielectric. Thus the 11. fleld will look like that
sketched in Figure 6.12; higher-order resonant modes will have more variations in the z
direction inside the resonator. Since the resonant length, l, for the TEs16 mode is less than

kar :2g.3g0.
2R'

Q a :

So the total Q of the cavity is

1
tan 3

( ; . * ) '

6.5
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FIGURE 6.11 Geometrv of a cvlindrical dielectric resonator.

)'s/2(where I, is the guide wavelength of the TE61 dielectric waveguide mode), the symbol
6 : 2L /)'s < 1 is used to denote the z variation of the resonant mode. Thus the equivalent
circuit of the resonator looks like a length of transmission line terminated in purely reactive
loads at both ends.

Our analysis will follow that of reference [2], which involves the assumption that a
magnetic wall boundary condition can be imposed at p : a. This approximation is based on
the fact that the reflection coefficient of a wave in a hish dielectric constant resion incident
on an air-filled region approaches *1:

f -
tlo - tl -+ 1, as €r -> oo.
rlo + r7

This reflection coefficient is the same as that obtained at a magnetic wall, or a perfect open
circuit.

H,(p = 0)

H - n

Magnetic wall boundary condition approximation and distribution of H, versus z
for p : 0 of the first mode of the cylindrical dielectric resonator.

_ \ F - l
^ F + 1

FIGURE 6.12
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We begin by finding the fields of the TEsl dielectric waveguide mode with a magnetic
wall boundary condition at p - a. For TE modes, E, : 0, atd H, must satisfy the wave
equation

(Y2 +  kz)H, :0 ,

where  k : l "Eko 
fo r lz l<L l2

I ko for lal > Ll2.

Since 3/3@ : 0, the transverse fields are given by (3.110) as follows:

-  ja1- tsOH.
L A -

kt dP

- jp aH,
Iap:  - - ; ; - - ; - ,

K; dp

(6.60)

(6.6r)

(6.62a)

(6.62b)

(6.65a)

(6.65b)

(6.67a)

(6.67b)

where fi:k2 - B2. Since FI. must be finite at p:0 and zero at p - a (the magnetic
wall), we have

H, : HoJo(k,p)"rjf', (6.63)

where k, : pula, and "In(ps1) : 0 (por :2.405). Then from (6.62) the transverse fields
aIe

- jaPoHo ,,zo: 
TJ6(4deLjP', 6.64a)

rr +jf Ho ,,,Ho: !f2J6(k'derizz. 6.64b)

Now in the dielectric region, lzl < L/2, the propagation constant is real:

and a wave impedance can be deflned as

Intheairregion, lzl > L/2,the propagationconstantwillbeimaginary, soitisconvenient
to write

(6.66a)

and to define a wave impedance in the air region as

IA)U^

u
(6.66b)

which is seen to be imaginary.
From symmetry, the H, and E6 field distributions for the lowest-order mode will be

even functions about z : 0. Thus the transverse fields for the TEs15 mode can be written
for  lz l  < L/2as

- EO (o&o
" H p P

Eo: AJ6(k"p)cos Bz,
_ i  a

Ho : -#JA&,plsin Fz,' L 4
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and for lzl > Ll2 as

E6: BJ[(k"P)e-otzt, (6.68a)

n" : 
+J- 

t;(k"p)s-qtzr, (6.68b)" Z o

where A and B are unknown amplitude coeffrcients. In (6.68b), the t sign is used for
z > Ll2 or z < -L/2, respectively.

Matching tangential fields at z:L/2 (or z:-Llz) leads to the following two
equations:

8L
A c o s  -  : B e - u ' t ' ,

2
- j A  p L  B  _ n f / )
z o  

" ' n  
2 : f l t  

'

which can be reduced to a single transcendental equation:

-  j Z o s i n *  :  Z o . o ,  { .2 - 2
Using (6.65b) and (6.66b) allows this to be written as

P L a
f a n - :  -- - -  

2 p '

(6.69a)

(6.69b)

(6.70)

where B is given by (6.65a) and cy is given by (6.66a). This equation can be solved numer-
ically for ks, which determines the resonant frequency.

This solution is relatively crude, since it ignores fringing fields at the sides of the
resonator, and yields accuracies only on the order of IOVo (not accurate enough for most
practical purposes), but it serves to illustrate the basic behavior of dielectric resonators.
More accurate solutions are available in the literature [3].

The Q of the resonator can be calculated by determining the stored energy (inside and
outside the dielectric cylinder), and the power dissipated in the dielectric and possibly lost
to radiation. If the latter is small, the Q can be approximated as 1/ tan 6, as in the case of
the metallic cavity resonators.

EXAMPLE 6.s RESONANT FREQUENCY AND g OF A
DMLECTRIC RESONATOR

Find the resonant frequency and approximate Q for the TEs15 mode of a dielec-
tric resonator made from titania, with e. :95, and tan6 :0.001. The resonator
dimensions are a :0.413 cm. and L :0.8255 cm.

Solution
The transcendental equation of (6.70) must be solved for k6, with B and u given
by (6.65a) and (6.66a). Thus,

where d , :

A _

and
.  2 r f
k o :  -

c

pL ot
t a n  .  

: ; ,
. P

(2.405/a)z - tfi,

- (2.405 /a)2 ,
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Since cv and B must both be real, the possible frequency range is from fi to f2,
where

f,  :  * :  
t€:{D :2.853 GHz,

zr zfi.,llera

f, : *- 
c(2'405) 

: 27.804 GHz.
2n 2na

Using the interval-halving method (see the Point of Interest on root-finding al-
gorithms in Chapter 3) to find the root of the above equation gives a resonant
frequency of about 3.t52 GHz. This compares with a measured value of about

3.4 GHz from reference [2], indicating a l}Vo error. The approximate Q, due to
dielectric loss, is

Q a : = 1000.

6'6 ExcrrATroN oF RESoNAToRs
We now discuss how the resonators of the previous sections can be coupled to exter-
nal circuitry. In general, the way in which this is done depends on the type of resonator
under consideration; some typical coupling techniques are shown for various resonators in
Figure 6.13. In this section we will discuss the operation of some of the more cornmon
coupling techniques, notably gap coupling and aperfure coupling. First we will illustrate
the concept of critical coupling, whereby a resonator can be matched to a feedline, using a
lumped-element resonant circuit.

Critical Coupling

To obtain maximum power transfer between a resonator and a feedline, the resonator must

be matched to the feed at the resonant frequency. The resonator is then said to be critically

Coupling to microwave resonators. (a) A microstrip transmission line resonatot gap

coupled to a microsuip feedline. (b) A rectangular cavity resonator fed by a coaxial
probe. (c) A circular cavity resonator aperhrre coupled to a rectangular waveguide.
(d) A dielectric resonator coupled to a microstrip feedline.

I
I

t"r S

(b)

(d)(c)

FIGURE 6.13
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^t o t T '

l t^
FIGURE 6.14 A series resonant circuit coupled to a feedline.

coupled to the feed. We will first illustrate the basic concept of critical coupling by consid-
ering the series resonant circuit shown in Figure 6.14.

From (6.9), the input impedance near resonance of the series resonant circuit of
Figure 6.14 is given by

2ROLat
Z i n : R * j 2 L L o : R * j  

^  
,

and the unloaded Q is, from (6.8),

o : " L .
R

At resonance, L,<'; - 0, so from (6.71) the input impedance is Zin
the resonator to the line we must have

R :  Z r : .

Then the unloaded Q is

From (6.22), the external Q is

o  : ' o L  .
Zo

n" : f f :  Q,

O
t :  

& ,

(6 ;71)

(6.72)

: R. In order to match

(6.73)

{6.74)

(6.7s)

(6.76)

which shows that the external and unloaded Qs are equal under the condition of critical
coupling.

It is useful to define a coefficient ofcoupling, g, as

which can be applied to both series (g : Z0 / R) and parallel (S : R I Zi resonant circuits.
Then, three cases can be distinguished.

L g < 1 The resonator is said to be undercoupled to the feedline.
2. g : 1 The resonator is critically coupled to the feedline.
3. g > 1 The resonator is said to be overcoupled to the feedline.

Figure 6.15 shows a Smith chart sketch of the impedance loci for the series resonant
circuit, as given by (6.71), for various values of R corresponding to the above cases.

A Gap-Coupled Microstrip Resonator

Next we consider a),/2open-circuitedmicrostrip resonator coupled to amicrostrip feedline,
as shown in Figure 6.73a. The gap in the microstrip line can be approximated as a series
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FIGURE 6.15 Smith chart illustrating coupling to a series RZC circuit.

capacitor, so the equivalent circuit of this resonator and feed can be constructed as shown
in Figure 6.16. The normalized input impedance seen by the feedline is then

(6.77)

where b" : ZootC is the normalized susceptance of the coupling capacitor, C. Resonance
occurs with z : 0, or when

t a n  B l + b , - 0 .

C  - I +

(6.78)

Z .lL/aC * Zscot Btl . ( tan BL + bc\
, : a - - i  

h  
: - i \ U t a N  

) .

Open-circuit
,\/2 resonator

FIGURE 6.16 Equivalent circuit of the gap-coupled microstrip resonator of Figure 6.13a.
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BI = allv,

FIGURE 6.17 Solutions to (6.78) for the resonant frequencies of the gap-coupled microsrip
fesonator.

ThesolutionstothistranscendentalequationaresketchedinFigure6.lT.Inpracltce,b" ( 1,
so the first resonant frequency, ar1, will be close to the frequency for whtch pl: /r (the

first resonant frequency ofthe unloaded resonator). In this case the coupling ofthe feedline
to the resonator has the effect of lowering its resonant frequency.

We now wish to simplify the driving point impedance of (6.77) to relate this resonator
to a series RZC equivalent circuit. This can be accomplished by expanding z(a) in a Taylor
series about the resonant frequency, {\, and assuming that b, is small. Thus,

z(ro) - z(a)t) + (, - r)91 *" da 1,,

From (6.77) and (6.78), z(@) - 0. Then,

d r l  * - i s e c 2 f t d ( p t ) _ i ( t + u ? ) t  _ i  t  _  i ,
dcol,, b,tan B( da b? up 

- 
b7 up 

- 
a4b2,'

since b" ( 1 and n - nurfa\, where uo is the phase velocity of the transmission line
(assumed TEM). Then the normalized impedance can be written as

jn(o -  a)
z \ @ ) :  mottDT

(6.79)

(6.80)

(6.81)

So far we have ignored losses, but for a high-Q cavity loss can be included by
replacing the resonant frequency ar1 with the complex resonant frequency given by
a{l * j lzq, which follows from (6.10). Applying this procedure to (6.80) gives the
input impedance of gap-coupled lossy resonator as

*O :& . .n l (D -  @1)
+ J  -

<ttt0t

Note that an uncoupled ),12 open-+ircuited transmission line resonator looks like a parallel
RtrC circuit near resonance, but the present case of a capacitive coupled )'f2 resonator
looks like a series RZC circuit near resonance. This is because the series coupling capacitor
has the effect of inverting the driving point impedance of the resonator (see the discussion
of impedance inverters in Section 8.5).
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At resonance, then, the input resistance is R : Zon l2Qb?. For critical coupling we

must have R : Zo, or

(6.82)

The coupling coefficient of (6.76) is

(6.83)

If b, < Ji-/Z!,theng < l andtheresonatorisundercoupled;if b, > JiTZO.theng > I
and the resonator is overcoupled.

EXAMPLE 6.6 DESIGN OF A GAP.COUPLED MICROSTRIP RESONATOR

A resonator is made from an open-circuited 50 O microstrip line, and is gap-
coupled to a 50 O feedline, as in Figure 6.13a. The resonator has a length of
2.175 cm, an effective dielectric constant of 1.9, and an attenuation of 0.01 dB/cm
near its resonance. Find the value of the coupling capacitor required for critical
coupling, and the resulting resonant frequency.

Solution
The first resonant frequency will occur when the resonator is about | : Ls/2 in
length. Thus, ignoring fringing fields, the approximate resonant frequency is

Za 20b7
" R 7 t

"  up
"/u - "

c  3 x 1 0 8

2t"F 2q.Ozr7r.frs
: 5.00 GHz,

which does not include the effect of the coupling capacitor. Then from (6.35) the

Q ofthis resonator is

n'(8.7 dBA{p) : 6 2 8 .
2(0.02175 m)(1dB/m)

From (6.82) the normalized coupling capacitor susceptance is

b , : :0 .05 ,

so the coupling capacitor has a value of

C _
b, 0.05 : 0.032 pF,

p *

Q : L -  
"  

: : L :
2a Lea 2la

r'tZo 2n(5 x 10eX50)

which should result in the critical coupling of the resonator to the 50 O feedline.
Now that C is determined, the exact resonant frequency can be found by

solving the transcendental equation of (6.78). Since we know from the graphical
solution of Figure 6.17 that the actual resonant frequency is slightly lower than the
unloaded resonant frequency of 5.0 GHz, it is an easy matter to calculate (6.78) for
several frequencies in this vicinify, which leads to a value of about 4.918 GHz. This
is about 1.67o lower than the unloaded resonant frequency. Figure 6.18 shows a
Smith chart plot of the input impedance of the gap-coupled resonator for coupling
capacitor values that lead to under, critical, and overcoupled resonators. I

7f

2O
7r

2@8)
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FIGURE 6.18 Smith chart plot of input impedance of the gap-coupled microstrip resonator of
Example 6.6 versus frequency for various values of the coupling capacitor.

An Aperture-Goupled Cavity

As a final example of resonator excitation, we will consider the aperture aoupled waveguide
cavity shown in Figure 6.19. As discussed in Section 4.8, a small aperture in the transverse
wall acts as a shunt inductance. If we consider the first resonant mode of the cavity, which
occurs when the cavity length L : Le /2, then the cavity can be considered as a transmission
line resonator shorted at one end. The aperture-coupled cavity can then be modeled by the
equivalent circuit shown in Figure 6.20. This circuit is basically the dual of the equivalent
circuit of Figure 6.16, for the gap-coupled microstrip resonator, so we will approach the
solution in the same manner.

l( Waveguide-k--Cavity--_l

A rectangular waveguide aperture coupled to a rectangular cavity.FIGURE 6.19
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FIGURE 6.20 Equivalent circuit of the aperture-coupled cavity.

The normalized input admittance seen by the feedline is

(6.84)

where x1 : roL / Zo is the normalized rcactance of the aperture. An antiresonance occurs
when the numerator of (6.84) vanishes, or when

tan B[. t xL : O, (6.8s)

which is similar in form to (6.78), for the case of the gap-coupled microstrip resonator. In
practice, xt 11 l,sothefirstresonantfrequency,@r,willbeclosetotheresonantfrequency
for which Bl : n , similar to the solution illustrated in Figure 6.17.

Using the same procedure as in the previous section, the input admittance of (6.8a)
can be expanded in a Taylor series about the resonant frequency, @1 , assuming x L << 1, to
obtain

! :  ZoY :  - t (3+cotf t ) :  - , (+##)

y(ro) :y(@1) + {, - rSlJldl * .
a@ l r ,

since y(ar1) : 0. For a rectangular waveguide,

i ! . .  d ? l
= - ( ( D - a i .  |  ,

xi ct@ l,r

,(0

p , '

(6.86)

(6.87)

d p d- : -
da da

where c is the speed of light. Then (6.86) can be reduced to

In (6.87), ks, B, andxl should be evaluated at the resonant frequency a,l1.
Loss can now be included by assuming alttgh- Q cavity and replacing a1 in the numer-

ator of (6.87) with or(1 I j lz), to obtain

jnks(a -  a1)
! \ a l ) :  ^ a  )  .

p-cx7,

tf ksal .nks(a - o'l1)
Y\(')) = 

2op'r*'r+ J p'�cxi ' (6.88)

At resonance, the input resistance is R : 2QBzcxzrZslnksal. To obtain critical cou-
pling we must have R : Zo, which yields the required aperture reactance as

X r :  Z o (6.8e)

From X1, the necessary aperture size can be found.
The next resonant mode for the aperture-coupled cavity occurs when the input impe-

dance becomes zero, or Y --> oo. From (6.84) it is seen that this occurs at a frequency such
thattatB[.:0, or BL: n.In this case the cavity is exactly Lrl2long, so a null in the
transverse electric field exists at the aperture plane, and the aperture has no effect. This
mode is of little practical interest, because of this loose coupling.

nksal

,Ofr
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The excitation of a cavity resonator by an electric current probe or loop can be analyzed
by the method of modal analysis, similar to that discussed in Sections 4.7 and 4.8. The pro-
cedure is complicated, however, by the fact that a complete modal expansion requires fields
having irrotational (zero curl) components. The interested reader is referred to references

[1] and [a].

CAVITY PERTURBATIONS

In practical applications cavity resonators are often modified by making small changes
in their shape, or by the introduction of small pieces of dielectric or metallic materials.
For example, the resonant frequency of a cavity can be easily tuned with a small screw
(dielectric or metallic) that enters the cavity volume, or by changing the size of the cavity
with a movable wall. Another application involves the determination of dielectric constant
by measuring the shift in resonant frequency when a small dielectric sample is introduced
into the cavity.

In some cases, the effect of such perturbations on the cavity performance can be cal-
culated exactly, but often approximations must be made. One useful technique for doing
this is the perturbational method, which assumes that the actual fields of a cavity with a
small shape or material perfurbation are not greatly different from those of the unperturbed
cavity. Thus, this technique is similar in concept to the pernrrbational method introduced in
Section 2.7 for treating loss in good conductors, where it was assumed that there was not
a significant difference between the fields of a component with good conductors and one
with perfect conductors.

In this section we will derive expressions for the approximate change in resonanl
frequency when a cavity is pernrrbed by small changes in the material filling the cavify, or
by small changes in its shape.

Material Perturbations

Figure 6.21 shows a cavity perturbed by a change in the permittivity (Ae), or permeability
(Apc), of all or part of the material filling the cavity. If E0, E0 are the fields of the original
cavity, and E, E arc the fields of the perturbed cavity, then Maxwell's curl equations can
be written for the two cases as

V x E s - - j a s p & s ,

V x Ho - j@se Es,

V x E : - j a Q . t + L p ) H ,

y x E : j a ( e * A e ) E ,

where cr.re is the resonant frequency of the original cavity and ar is the resonant frequency
of the perturbed cavity.

(a) (b)

FIGURE 6.21 A resonant cavity perturbed by a change in the permittivity or permeability of the

(6.90a)

(6.90b)

(6.91a)

(6.91b)

material in the cavity. (a) Original cavity. (b) Perturbed cavity.
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Now multiply the conjugate of (6.90a) by E and multiply (6.91b) by Efi to get

E  . v  x  E $ :  1 a s p , H  . E { ,

E6 .V  x  17  :  ja (e - t  L )E[ .  E .

Subtracting these two equations and using the vector identity (B.8) that V .(,4 x B; :
B . v x  A - A . V x B e i v e s

V.(Efi x E;: jroplT Ht - ja(e-t tr lE6.E. (6.92a)

Similarly, we multiply the conjugate of (6.90b) by E and multiply (6.91a) by f{ to get

E .v x EI :  - ic : ,seE6.E,

Ed. V x E :  - jo( t t  + LtDHd. E.

Subtracting these two equations and using vector identity (B.8) gives

V.(E x  Ed) :  -  ja(p + Apr)F, f  . f i  +  jaoeE\ .E. (6.e'zb)

Now add (6.92a) and,(6.92b), integrate over the volume V6, and use the divergence theorem
to obtain

f - - f
I  v .@6 x  E  +  E x  E ;1au :  S  tEg x  E  +  E x  E [ \ .ds  :0

J Vo JSo

t
:  j  |  { l a to< -a (e l  Ae ) lE f i .E+ laop -a (LL+Apc ) l l i f  .Eydv ,  (6 .93 )

Jv"

where the surface integral is zero because fi x E :0 on Se. Rewriting gives

@ - @o - Ir^(nrE. Ed + LpE . Epau
- -

(D lr^Gn.Ed + 1tH . Hff)dv

This is an exact equation for the change in resonant frequency due to material pertur-
bations, but is not in a very usable form since we generally do not know E and fI, the
exact fields in the perturbed cavity. But, if we assume that Ae and Lp are small, then
we can approximate the perturbed fields E, E Uy ttre original fields Eo. fr0, and ar in the
denominator of (6.94) by ar6, to give the fractional change in resonant frequency as

(6.e4)

(6.9s)
( D - @ 0 - fr,{telEolz + t1.r.1t7sfVu

@
This result shows that any increase in e or p at any point in the cavity will decrease the

resonant frequency. The reader may also observe that the terms in (6.95) can be related to
the stored electric and magnetic energies in the original and perturbed cavities, so that
the decrease in resonant frequency can be related to the increase in stored energy of the
perturbed cavity.

EXAMPLE 6.7 MATERIAL PERTURBATION OF A RECTANGT]LAR CAVITY

A rectangular cavity operating in the TE1s1 mode is perturbed by the insertion of a
thin dielectric slab into the bottom of the cavity, as shown in Figure 6.22.Use the
perturbational result of (6.95) to derive an expression for the change in resonant
frequency.
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FIGURE 6.22 A rectangular cavity perturbed by a thin dielectric slirb.

Solution
Frcm(6.42a-c), the fields for the unperfurbed TE1e1 cavity mode can be written as

b

i
t

T

Ey: Asin! !srnf f

H r -

H z -

- i A  .  T r x  n z
: Slll - cos -.
Z r n  a  d '

i n A  r x  n z
- COS -  Srn - .
kna

In the numerator of (6.95), Ae : (6, - l)es for 0 < y < t, and zero elsewhere.
The integral can then be evaluated as

f;*tEot' 
+ ̂ pt*ot2)du : (e, - Dro 1,"=o I,'":r l:rlE,lzdzdy 

dx

(e, - l)esAzatd

4

The denominator of (6.95) is proportional to the total energy in the unperturbed
cavity, which was evaluated in (6.43), thus,

f  .  :  . "  - - -  .1  -  abd<o . .
I  t e lEo l2  - l  P l4o l2 ldu  -  " " : - ' "  

Az '
J v  2

Then (6.95) gives the fractional change (decrease) in resonant frequency as

Shape Perturbations

Changing the size of a cavity or inserting a tuning screw can be considered as a change
in the shape of the cavity and, for small changes, can also be treated by the perturbation
technique. Figure 6.23 shows an arbitrary cavity with a perturbation in its shape; we will
derive an expression for the change in resonant frequency.

As in the case of material perturbations, let Eo, Eo, oto be the fields and resonant
frequency of the original cavity and let E , E , ro be the fields and resonant frequency of the
perturbed cavity. Then Maxwell's curl equations can be written for the two cases as

I2b@0

V x E e : - j a s p & s ,

V ,>. ,?o - jt'tseEg,

(6.96a)

(6.e6b)
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A resonant cavity perturbed by a change in shape. (a) Original cavity. (b) Perturbed
cavity.

(6.97a)

(6.97b)

(6.98a)

(6.98b)

V x E : _ j a p * .

y x f r : j t o e E .

Now multiply the conjugate of (6.96a) by E and multiply (6.97b) by Efi to ger

f i  . v  x  E I :  j @ s p *  . H [ .

E f i . v x  n = i a e E f f . E .

Subtracting these two equations and using vector identity (B.8) then gives

V .(Ed x 171: jaoptE Ed - jarcEff. E.

Similarly, we multiply the conjugate of (6.96b) by E and (6.97a) by t/f to get

E .v  x  E I  =  - j rDse  E .E6 ,

, f d . v x E = - j a p f i { . 8 .

Subtracting and applying vector identity (B.8) gives

V . (E  x  E i l :  -  j r p i l i  .E  +  j ane  E  .E i

Now add (6.98a) and (6.98b), integrate over the volume V , and use the divergence theorem
to obtain

(6.ee)

s i n c e f f x E : 0 o n S .
Since the perturbed surface S : So - AS, we can write

f _ _ r r _ _ f
Q  E 6 " H . d s : 0  E J "  H . d s - Q  E I x H . d S : - Q  E f i x  H . d s .
Js  Jso  JAs Jas

because h x Eo: 0 on Ss. Using this result in (6.99) gives

( D - { O g :

- i f i r E S x E . a s
(6.100)

[ , ( rE.sfr  + p"r l  . f i { )du'

which is an exact expression for the new resonant frequency, but not a very usable one since
we generally do not initially know E, H, or ar. If we assume AS is small, and approximate

r  _  _  r _  -
lr ,  

. rU x Ef + EI x Etdu ,= 
[rrE 

x Ff + Efi  x E1.ds

f _ _ f:  
*f,Ud 

x E . ds : -j(.- ro\ 
JrtrE. 

Ed + ptl . Eftdu.

E,H
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E, H by the unperturbed values of Eo, Ho, then the numerator of (6.100) can be reduced
as follows:

f _ _ r r _
O Eg x H . ds - 6 EI x I7s. di :  - j<oo I klEoP - pl lTol2)du. (6.t0t)
J A S  J A S  J  A V

where the last identity follows from conservation of power, as derived from the conjugate
of (1.87) with o, J", and M" set to zero. Using this result in (6.100) gives an expression for
the fractional change in resonant frequency as

Ir,@ll1o12 - e1Es12sdu

@
where we have also assumed that the denominator of (6.100), which represents the total
energy stored in the perturbed cavity, is approximately the same as that for the unperturbed
cavity.

Equation (6.102) can be written in terms of stored energies as follows:

@ - @ o  L W * - L W "

@ o  W ^ I W "
(6.103)

where A,W^ and LW" are the changes in the stored magnetic energy and electric energy,
respectively, after the shape perturbation, and W* * W" is the total stored energy in the
cavity. These results show that the resonant frequency may either increase or decreaseo
depending on where the perturbation is located and whether it increases or decreases the
cavity volume.

EXAMPLE 6.8 SHAPE PERTURBATION OF A RECTANGULAR CAVITY

A thin screw of radius r0 extends a distance I through the center of the top wall of
a rectangular cavity operating in the TE1e1 mode, as shown in Figure 6.24.If the
cavity is air-filled, use (6.102) to derive an expression for the change in resonant
frequency from the unperturbed cavity.

Solution
From (6.42a-*), the fields for the unperturbed TE1s1 cavity can be written as

' - ^ ! -
a0

(6.102)

nx 7fz
E , : A s i n - s i n . ," a c l

-j A ltx ntz
Itlx : --;- Sln - COS ---;,

Lrp a cl

in A rrx nz
H_ -  "_  cos_s in_- - 4  

k n a  
- - -  

a  
- - ^ -  

d '

0 d z

FIGURE 6.24 A rectangular cavity perturbed by a tuning post in the center of the top wall.
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Now if the screw is thin, we can assume that the fields are constant over the cross-
section of the screw and can be represented by the fields at x : a 12, z : d 12:

/ a d \r ,  ( ,  i . r . r :  ; )  :  o .

(  a  d \
H * l x : ; , y , 2 : ; l = 0 .

\  z  z /

. . /  a  d \
4  ( "  :  

, ' ' ' ' :  ; )  
:  o '

Then the numerator of (6.102) can be evaluated as

f - " f
I  twltTol2 - elEo()au - -€e I e2av : -€0A2 Lv .

J L v  J t v

where A V : r tr? is the volume of the screw. The denominator of (6. 102) is, from
(6.43),

f  --- . )  .  = ,) .  .  abdegAz VsesA2
| (WlHol" -l elEol')du : ------7-
J v ^ z - 2 '

where Vs : abd is the volume of the unperturbed cavity. Then (6.102) gives

a - @ o : - 2 ! n r &  _ - z L V
coo abd Vo

which indicates a lowering of the resonant frequency.
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PROBLEMS

6.1 Consider the loaded parallel resonant RLC circ:uit shown below. Compute the resonant frequency,
unloaded Q, andloaded Q.

1800 o

Resonator Load

Derive an expression for the Q of a transmission line resonator consisting of a short-circuited trans-
mission line 1,1" long.

A transmission line resonator is fabricated from a )r/4 length of open-circuited line. Find the Q of
this resonator if the complex propagation constant of the line is a -l j fl.

T

t l l
t2l

t3l

t4l

6.2

6.3
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6.4 Consider the resonator shown below, consisting of a )"l2length of lossless transmission line shorted
at both ends. At an arbitrary point z on the line, compute the impedances Zy and Zp saan looking to
the left and to the nght, and show that Zr : Zh. (This condition holds true for any lossless resonator
and is the basis for the transverse resonance technique discussed in Section 3.9.)

A resonator is constructed from a 3.0 cm length of 100 Q air-fllled coaxial line, shorted at one end and
terminated with a capacitor at the other end, as shown. (a) Determine the capacitor value to achieve
the lowest-order resonance at 6.0 GHz. (b) Now assume that loss is introduced by placing a 10,000 Q
resistor in parallel with the capacitor. Calculate the Q.

6.6 A transmission line resonator is made from a length I of lossless transmission line of characteristic
impedance Zo : 100 Q. If the line is terminated at both ends as shown, find l/,1, for the first resonance,
and the Q of this resonator.

0 .1c) Zo= 700 0.1c2

-j50o + * -t50o-t- J

Write the expressions for the E and H fields for a short-circuited ),/2 coaxial line resonator, and show
that the time-average stored electric and magnetic energies are equal.

A series RZC resonant circuit is connected to a length of transmission line that is ,1,/4 long at its
resonant frequency. Show that, in the vicinity of resonance, the input impedance behaves like that of
a parallel RIC circuit.

6.5

6.7

6.8

\  7  ( f ^ n \  Izin* zo (fo' Q)

@fo

6.9 An air-fllled, brass-plated rectangular waveguide cavity has dimensions a : 4 cm, b :2 cm, d :

5 cm. Find the resonant frequency and Q of the TE1s1 and TE162 modes.

6.1.0 Derive the p for the TM11 1 mode of a rectangular cavity, assuming lossy conducting walls and lossless
dielectric.

6.11 Consider the following rectangular cavity resonator partially filled with dielectric. Derive a tran-
scendental equation for the resonant frequency of the dominant mode by writing the fields in the

+ J . 0 c m +
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air- and dielectric-filled regions in terms of TE16 waveguide modes, and enforcing boundary condi-
tions at z : 0, d - t, and d.

6.12 Determine the resonant frequencies of a rectangular cavity by carying out a full separation of variables
solution to the wave equation for E (for TM modes) and 11. (for TE modes), subject to the appropriate
boundary conditions of the cavity. (Assume a solution of the form X(x)Y (y)Z(z).)

6.L3 Find the Q for the TMn.6 resonant mode of a circular cavity. Consider both conductor and dielectric
losses.

6.14 Design a circular cavity resonator to operate in the TE111 mode with maximum Q at a frequency of
6 GHz. The cavity is gold plated, and filled with a dielectric material having e, : 1.5 and tand :
0.0005. Find the cavity dimensions and the resulting Q.

6.15 An air-filled rectangular cavity resonator has its first three resonant modes at the frequen cies 5 .2 GHz,
6.5 GHz, and7.2 GHz. Find the dimensions of the cavity.

6.16 Considerthemicrostripringresonatorshownbelow.Iftheeffectivedielectricconstantofthemicrostrip
line is e,, flnd an equation for the frequency of the first resonance. Suggest some methods of coupling
to this resonator.

6.17 A circular microstrip disk resonator is shown below. Solve the wave equation for TM,.6 modes for
this structure, using the magnetic wall approximation that Ho:0 at p - a.If fringing fields are
neglected, show that the resonant frequency ofthe dominant mode is given by

f . . ^  -
. r l t u  -

1.841c
2TaJe,

@
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6.18 Compute the resonant frequency of a cylindrical dielectric resonator with e, :36.2,2a = 7 .99 mm,
and L :2.74 mm.

6.19 Extend the analysis of Section 6.5 to derive a transcendental equation for the resonant frequency of
the next resonant mode of the cylindrical dielectric resonator. (Hr odd in z.)

6.20 Consider the rectangular dielectric resonator shown below. Assume a magnetic walI boundary con-
dition around the edges ofthe cavity, and allow evanescent fields in the Az directions away from the

, dielectric, similar to the analysis of Section 6.5. Derive a transcendental equation for the resonant
frequency.

6,21 Ahigh-QresonatorusefulatmillimeterwavefrequenciesistheFabry-Perotresonator,whichconsists
of two parallel metal plates (see figure below). A plane wave traveling at normal incidence between the
two plates will exhibit resonance when the plate separation is equal to a multiple of ),/2. (a)Deive
an expression for the resonant frequency of a Fabry-Perot resonator having a plate separation, d,
and mode number, l. (b) If the plates have conductivity, o, derive an expression for the Q of the
resonator. (c) Use these results to find the resonant frequency and Q of a Fabry-Perot resonator
having d : 4.0 cm, with copper plates, and a mode number I :25.

.lllf_* ";
E; {III

6,22 A paral lel RlCcircuit ,  with R:1000 O, L:7.26 nH, C:0.804 pF, is coupled with a series
capacitor, C6, to a 50 Q transmission line, as shown $elow. Determine Co for critical coupling to the
line. What is the resonant frequency?

6.23An aperture coupled rectangular waveguide cavity has a resonant frequency of 9.0 GHz and a Q
of 1 1,000. If the waveguide dimensions are a : 2.5 cm, b : 1.25 cm, find the normalized aperture
reactance required for critical coupling.

At frequencies of 8.220 and 8.245 GHz, the power absorbed by a certain resonator is exactly one-half
of the power absorbed by the resonator at resonance. If the reflection coefflcient at resonance is 0.33,

T
c

T

6.24
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find the resonant frequency, coupling coefficient, and the unloaded and loaded Qs of the resonator.
Carry out these calculations for both series and parallel resonators.

6.25 A two-port transmission resonator is modeled with the equivalent circuit shown below. If a,ls and Q
are the resonant frequency and Q of the unloaded resonator, and g is the coupling coefficient to eilher
transmission line, derive an expression for the ratio of transmitted to incident power, P, f Pi, and sketch
P,/P; versus g, at resonance.

6.26 A thin slab of magnetic material is inserted next to the e : 0 wall of the rectangular cavity shown
below. ff the cavity is operating in the TE1e1 mode, derive a perturbational expression for the change
in resonant frequency caused by the magnetic material.

6.27 Deive an expression for the change in resonant frequency for the screw-tuned rectangular cavity of
Example 6.8 if the screw is located at x : a/2, z : 0, where fl, is maximum and E, is minimum.



Power Dividers
and Directional Couplers

Power dividers and directional couplers are passive microwave components used for power
division or power combining, as illustrated in Figure 7.1. In power division, an input signal is
divided by the coupler into two (or more) signals of lesser power. The coupler may be a three-
port component as shown, with or without loss, or may be a four-port component. Three-port
networks take the form of T-junctions and other power dividers, while four-port networks take
the form of directional couplers and hybrids. Power dividers are often of the equal-division
(3 dB) type, but unequal power division ratios are also possible. Directional couplers can be
designed for arbitrary power division, while hybrid junctions usually have equal power division.
Hybrid junctions have either a 90' (quadrafure) or a 180' (magic-T) phase shift between the
outport ports.

A wide variety of waveguide couplers and power dividers were invented and characterized at
the MIT Radiation Laboratory in the 1 940s. These included E- and f/-plane waveguide tee junc-
tions, the Bethe hole coupler, multihole directional couplers, the Schwinger coupler, the wave-
guide magic-T, and various types of couplers using coaxial probes. In the mid-1950s through
the 1960s, many of these couplers were reinvented to use stripline or microstrip technology. The
increasing use of planar lines also led to the development of new types of couplers and dividers,
such as the Wilkinson divider, the branch line hybrid, and the coupled line directional coupler.

We will first discuss some of the general properties of three- and four-port networks, and
then treat the analysis and design of several of the most common types of dividers, couplers,
and hybrids.

BASIC PROPERTIES OF DIVIDERS AND COUPLERS

In this section we will use the scattering matrix theory of Section 4.3 to derive some basic
properties of three- and four-port networks. We will also define the terms isolation, coupling,
anddirectivity, which are useful quantities for the characterization of couplers and hybrids.

308

7.1
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Pz= aPt

P 3 = Q - a ) P 1

ls rz12 + ' ls r :12 :  1 ,

l s n l z + l S z z l 2 : 1 ,

lsr: 12 + lszslz : L,

sfrsr, :9,

si'st2 : g'

sirsl' : 6.

+Pz

-P:

(a) (b)

FIGURE 7.1 Power division and combining. (a) Power division. (b) Power combining.

Three-Port Networks (TJunctions)

The simplest type of power divider is a T-junction, which is a three-port network with two
inputs and one output. The scattering matrix of an arbitrary three-port network has nine
independent elements:

Sn sr: I
Srr  Sr .  l .

s;; s;. J
(7.1)

If the component is passive and contains no anisotropic materials, then it must be reciprocal
and its [S] matrix must be symmetric (Si; : 5rr;. Usually, to avoid power loss, we would
like to have a junction that is lossless and matched at all ports. We can easily show, however,
that it is impossible to construct such a three-port lossless reciprocal network that is matched
at all ports.

If all ports are matched, then S;; : 0, and if the network is reciprocal the scattering
matrix of (7.1) reduces to

(7.2)

Now ifthe network is also lossless, then energy conservation (4.53) requires that the scat-
tering matrix be unitary, which leads to the following conditions IIl,l2l:

I stt
lsl : I s21

L Sgr

T  0  S r r  S r r ' " 1

tfl: I s', t t;; I
L S r :  S z :  0 l

(7.3a)

(7.3b)

{7.3c)

(7.3d)

(7.3e)

(7.3f)

Equations (7.3d-0 show that at least two of the three parameters (Srz, Sr:, S23) must be
zero. But this condition will always be inconsistent with one of equations (7.3a-c), implying
that a three-port network cannot be lossless, reciprocal, and matched at all ports. If aay one
of these three conditions is relaxed, then a physically rcalizable device is possible.

Ifthe three-port network is nonreciprocal, then Si1 I S1i, and the conditions ofinput
matching at all potts and energy conservation can be satisfied. Such a device is known as
a circulator [1], and generally relies on an anisotropic material, such as ferrite, to achieve
nonreciprocal behavior. Circulators will be discussed in more detail in Chapter 9, but we
can demonstrate here that any matched lossless three-port network must be nonreciprocal

P t = P z + P z
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and, thus, a circulator. The [S] matrix of a matched three-port network has the following
form:

f  0 ,S ' r  ,Srr - l
|  ' -  . '  I

lsl : I s21 0 sz: l. (7.4)
L S : r  S z z  0 l

Then if the network is lossless, [S] must be unitary, which implies the following:

sf1s32 : o'

si1s23 : o'

si2S13 : o'

l S r z l 2 + l S r r 1 2 : 1 ,

l S z r 1 2 + l S z z l 2 : I ,

l S : r 1 2 + l S z z l 2 : 1 '

These equations can be satisfied in one of two ways. Either

Srz -  Sz: :  S3r :0,  lSzr l  :  lS:zl  :  lSr: l  :  1,

or Szt:  Szz: St3 :0,  lSrzl  :  lSz: l  :  lS:r l  :  1.

(7.5a)

(7.sb)

(7.5c)

(7.sd)

(7.5e)

(7.sf)

(7.6a)

(7.6b)

This result shows that S;1 I S1i for i 17, which implies that the device must be nonre-
ciprocal. The [S] matrices for the two solutions of (7.6) are shown in Figure 7.2, together
with the symbols for the two possible types of circulators. The only difference is in the
direction of power flow between the ports. Thus, solution(1.6a) corresponds to a circulator
that allows power flow only from port 1 to 2, or port 2 to 3, or port 3 to 1, while solution
(7.6b) conesponds to a circulator with the opposite direction of power flow.

Alternatively, a lossless and reciprocal three-port network can be physically realized if
only two of its ports are matched [1]. If ports I and2 are these matched ports, then the [S]
matrix canbe written as

[ 0  S r z  S r : l
l s l : l S r 2  O  S z : 1 .

L Sr: Szz Sr I

To be lossless, the following unitarity conditions must be satisfied:

("1.7)

(7.8a)

(7.8b)

(7.8c)

sf3s23 - Q,

S izSrs+Si3S33 -Q,

SisSrz +,SjrS13 : g,

[o t o-]
r s l - 1 0  0  1 l

L 1  o 0 j
[ o o r l

t s l = l  1  0  0  |
L0 1 0_l

(b)

The two types of circulators and their [S] matrices. (The phase references for the
ports are arbitrary.) (a) Clockwise circulation. (b) Counterclockwise circulation.

FIGURE 7.2
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r - - - - -
I
I
I

- - - - - - l

I

521= sio I

sn= eio

FIGURE 7.3 A reciprocal, lossless three-port network matched at ports 1and2.

[o eig ol
t s t = l e i a  o  o  I

[o o "i6)

Equations (7.8d-e) show that I Sr: | : lS3 l, so (7.8a) leads to the result that Sr: : Szg : 0.
Then, lSrzl : lS:sl : l.Thescatteringmatrixandcorrespondingsignalflowgraphforthis
network are shown in Figure 7.3, where it is seen that the network actually consists of
two separate components, one a matched two-port line and the other a totally mismatched
one-port.

Finally, if the three-port network is allowed to be lossy, it can be reciprocal and matched
at all ports; this is the case of the resistive divider, which will be discussed in Section 7.2.
In addition, a lossy three-port can be made to have isolation between its output ports
(for example, S23 : S32 - Q).

Four-Port Networks (Directional Couplers)

The [S] matrix of a reciprocal four-port network matched at all pons has the following form:

[ 0  S r z  5 1 3  S r + I

r.st : I sr2 o Szr sz IL"r 
I St, Sz.r O Su l'
L S r +  S u  S : +  0 l

If the network is lossless, 10 equations result from the unitarity, or energy conservation, con-
dition [1], [2]. Let us consider the multiplication of row 1 and row 2, andthe multiplication
ofrow 4 and row 3:

S IsSzr+SfaS2a:Q,

siasr: + sis23 :9.

Now multiply (7.LOa) by Sio and (7.10b) by Si:, and subtract to obtain

sfa(lsr:12 - lsz12) :0.

Similarly, the multiplication of row 1 and row 3, and the multiplication of row 4 androw 2,
gives

l s r z l 2 + l s r : 1 2 : 1 ,

lS rz l2+  lSzs l z :L ,

lsr:12 + lszzl2 + ls:s12 = 1.

SizSz: * SioS34 :9,

Si+Srz + SioS23 :9.

(7.8d)

(7.8e)

(7.80

(7.e)

(7.r0a)

(7.10b)

(7.rr)

(7.rZa)

(7.rzb)

\3 -  e i $
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Now multiply (7.12a) by S12 and (7.Izb) by S:+, and subtract to obtain

Sz:( lSrz12 - lS:+12) :  0. (7.r3)

One way for (7.11) and (7.13) to be satisfied is if S1a - 523:0, which results in a
directional coupler. Then the self-products of the rows of the unitary [S] matrix of (7.9)
yield the following equations:

l s r z l 2 + l s r : 1 2 : 1 ,

l S r z l 2 + l S z + 1 2 : 1 ,

lSsn12 + lszqlz :7,

l sz+12+ ls :+12 :1 ,

(7.r4a)

(7.r4b)

(7.14c)

(7.r4d)

which imply that lS13l : l,Szl (using 7.14a and7.14b), andthat lSrzl : lS3al (using 7.14b
and 7.14d).

Further simplification can be made by choosing the phase references on three of the
four ports. Thus, we choose Srz : S:+ : cv, Sr: : Beie, and S2a : Bsif, where cy atd B are
real, and 0 and Q are phase constants to be determined (one of which we are still free to
choose). The dot product ofrows 2 and 3 gives

SizSr: + SjoS34 :9,

which yields a relation between the remaining phase constants as

0 + 0 : n l . 2 n n .

(7.rs)

(7.16)

lf we ignore integer multiples of 2r, therc are two particular choices that commonly occur
in practice:

1. The Symmetrical Coupler: 0 : Q : n I 2. The phases of the terms having amplitude

B are chosen equal. Then the scattering matrix has the following form:

,,,: [i i, i {]
2. The Antisymmetrical Coupler: 0 : 0, Q : n . The phases of the terms having am-

plitude B are chosen to be 180" apart. Then the scattering matrix has the following
form:

'": [l ], i ?l

(7.r7)

(7 .18)

Note that the two couplers differ only in the choice of reference planes. Also, the
amplitudes u and B are not independent, as (7 .14a) requires that

a2 + f r2  :1 . (7.1e)

Thus, apart from phase references, an ideal directional coupler has only one degree of
freedom.

Anotherwayfor(7.11)and(7.13) tobesat is f ied is i f  lSr : l  :  lSz+landlSrz l  :  lS34l . I f
we choose phase references, however, such that Sr: : Sz+ : a, and Srz : ,Ss+ : jB (which
satisfies (7.16)), then (7.10a) yields a(S23 + Si4) : 0, and (7.I2a) yields B(Sio - Sz:) : 0.
These two equations have two possible solutions. First, S1a - Sz3 :0, which is the same
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FIGURE 7.4 TWo commonly used symbols for directional couplers, and power flow conventions.

as the above solution for the directional coupler. The other solution occurs for a : fr : O,
which implies that S12 : S13 : Sz+ : S:a : 0. This is the case of two decoupled two-port
networks (between ports 1 and 4, and ports 2 and 3), which is of trivial interest and will
not be considered further. We are thus left with the conclusion that any reciprocal, lossless,
matched four-port network is a directional coupler.

The basic operation of a directional coupler can be illustrated with the aid of Figure 7.4,
which shows two commonly used symbols for a directional coupler and the port definitions.
Power supplied to port 1 is coupled to port 3 (the coupled port) with the coupling factor

lSr:12 : B2, while the remainder of the input power is delivered to port 2 (the through
port) with the coefficient lSplz : a2 : 1 - P2.In an ideal directional coupler, no power
is delivered to port 4 (the isolated port).

The following three quantities are generally used to charucteize a directional coupler:

Coupl ing :  C : l0 log *  :  -20logB dB." P 3

Direct iv i ty  :  D:  fOfog |  :20log *  Ot ." Pa " 
lSr+l

lsolation - I --fOfog | : -zlloglsi4l dB.' P t

(7.20a)

(7.20b)

(7.20c)

The coupling factor indicates the fraction of the input power that is coupled to the output
port. The directivity is a measure of the coupler's ability to isolate forward and backward
waves, as is the isolation. These quantities are then related as

I : D + C d B . (7.2r)

The ideal coupler would have infinite directivity and isolation (Sr+ : 0). Then both a and

B could be determined from the coupling factot, C.
Hybrid couplers are special cases ofdirectional couplers, where the coupling factor is

3 dB, which implies that a : P : 1/\/2. There are two types of hybrids. The quadrature
hybrid has a 90' phase shift between ports 2 and 3 (0 : Q : n /2) whenfed at port 1, and
is an example of a symmetrical coupler. Its [S] matrix has the following form:

[ 0  1  i  0 l
r  l l  o  o  j l

O l i  o  o  t l
L 0  j  r  0 l

lSl = (7.22)
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The magic-T hybrid or rat-race hybrid has a 180' phase difference between ports 2 and 3
when fed at port 4, and is an example of an antisymmetrical coupler. Its [S] matrix has the
following form:

[s] : (7.23)

POINT OF INTEREST: Measuring Coupler Directivity

The directivity of a directional coupler is a measure of the coupler's ability to separate forward
and reverse wave components, so applications of directional couplers often require high (35 dB
or greater) directivity. Poor directivity will limit the accuracy of a reflectometer, and can cause
variations in the coupled power level from a coupler when there is even a small mismatch on the
through line.

The directivity of a coupler generally cannot be measured directly because it involves a
lowlevel signal that can be masked by coupled power from a reflected wave on the through arm.
Forexample, i f  acouplerhasC :20 dB and D:35 dB, withaloadhaving RI:30dB, the
signal level through the directivity path will be D * C : 55 dB below the input power, but the
reflected power through the coupled arm will only be RL + C : 50 dB below the input power.

One way to measure coupler directivity uses a sliding matched load, as follows. First, the
coupler is connected to a source and matched load, as shown in the left-hand figure below, and
the coupled ouq)ut power is measured. If we assume an input power P;, this power will be
P, : C2 Pi, where C - 10(-c dB)/20 is the numerical voltage coupling factor of the coupler. Now
reverse the position of the coupler as shown in the right-hand figure below and terminate the
through line with a sliding load.

Changing the position of the sliding load introduces a variable phase shift in the signal reflected
from the load and coupled to the output port. Thus the voltage at the output port can be written as

V o :

where V; is the input voltage, D : lo@dB)/2o > 1 is the numerical value of the dircctivity, lf I
is the reflection coefficient magnitude of the load, and I is the path length difference between
the directivity and reflected signals. Moving the sliding load changes 0, so the two signals will
combine to trace out a circular locus, as shown in the following figure.

;[i j, i i]

,, ( f ,  *ctr te- io) ,

(P.*, P.6)

Im V6



7.2 The T-Junction Power Divider 315

The minimum and maximum output powers are given by

Now let M and m be defined in terms of these powers as follows:

P^u*: Pi(3 * ",. ' ) '

*:*: (tt+E)' ' P . u *  / 1 + l f l D \ ' �* :  
P ^ ^ : \ r - l r p / '

P ^ i n :  P i ( 9  -  . , . ' ) ' ,

7.2

These ratios can be accurately measured directly by using a variable attenuator between the
source and coupler. The directivity (numerical) can then be found as

/ 2 m \
D : M \ ^ * t )

This method requires that lf | < llD or, in dB, Rl > D.

Reference: M. Sucher and J. Fox, edttors, Handbook of Microwave Measurements, third edition, volume II,

Polytechnic Press, New York, 1963.

THE T.JUNCTION POWER DIVIDER

The T-junction power divider is a simple three-port network that can be used for power

division or power cornbining, and can be implemented in virtually any type of transmission

line medium. Figure 7.5 shows some commonly used T-junctions in waveguide and micro-

strip or stripline form. The junctions shown here are, in the absence of transmission line

loss, losslessjunctions. Thus, as discussed in the preceding section, suchjunctions cannot

be matched simultaneously at all ports. We will treat such junctions below, followed by a

discussion of the resistive divider, which can be matched at all ports but is not lossless.

{ c l

FIGURE 7.5 Various T-junction power dividers. (a) E plane waveguide T. (b) 11 plane waveguide

(a)

T. (c) Microstrip T-junction.
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FIGURE 7.6 Transmission line model of a lossless T-iunction.

Lossless Divider

The lossless T-junctions of Figure 7.5 can all be modeled as a junction of three transmission
lines, as shown in Figure7.6l3l.In general, there are fringing fields and higherorder modes
associated with the discontinuity at such ajunction, leading to stored energy that can be
accounted for by a lumped susceptance, B. In order for the divider to be matched to the
input line of characteristic impedance Z0,we must have

Yi" :  jB J (7.24)

If the transmission lines are assumed to be lossless (or of low loss), then the characteristic
impedances are real. ff we also assume B : O,then (7.24) reduces to

(7.2s)

In practice, if B is not negligible, some type of reactive funing element can usually be added
to the divider to cancel this susceptance, at least over a n€trrow frequency range.

The output line impedances Zr and 22 can then be selected to provide various power
division ratios. Thus, for a 50 Q input line, a 3 dB (equal split) power divider can be made
by using two 100 O output lines. If necessary, quarter-wave transformers can be used to
bring the output line impedances back to the desired levels. If the output lines are matched,
then the input line will be matched. There will be no isolation between the two output ports,
and there will be a mismatch looking into the output ports.

EXAMPLE 7.1 THE T.JT]NCTION POWER DIVIDER

A lossless T-junction power divider has a source impedance of 50 Q. Find the
output characteristic impedances so that the input power is divided in a 2:1 ratio.
Compute the reflection coefficients seen looking into the output ports.

Solution
If the voltage at the junction is Vs, as shown in Figure 7 .6, the input power to the
matched divider is

1 1 1
t _

4 -  z r -  4 '

1 1 1
_ I _ - _

Z r '  Z r -  Z o

I V ?p. - ___!_" '  2 Z o
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while the output powers are

These results yield the characteristic impedances as

Zt  =  3Zo:  150 Q,

z r : 3 Z o  : 7 5 g .- 2

Then the input impedance to the junction is

Zi" :7511150 :  50 O,

so that the input is matched to the 50 g source.
Looking into the 150 Q output line, we see an impedance of 501175 : 30 Q,

while at the 75 Q output line we see an impedance of 50ll15O :37.5 Q. Thus, the
reflection coefficients seen looking into these ports are

o  _ r v &  _ 1 o"  -  
,4  t "n '

r v :  2p ^ - _  v  - _ p .' z -  
2 Z z -  3 ' n '

t ,  :1 -J5o: -0 .666.'  3 0 + 1 5 0

37.5  -75
f z : :  -0.333.

37.5 +75

Resistive Divider

If a three-port divider contains lossy components it can be made to be matched at all ports,
although the two output ports may not be isolated [3]. The circuit for such a divider is
illustrated in Figure 7.7,using lumped-element resistors. An equal-split (-3 dB) divider is
shown, but unequal power division ratios are also possible.

The resistive dividerof Figure 7.7 can easily be analyzedusing circuittheory. Assuming
that all ports are terminated in the characteristic impedance Zs, the impedance Z, seen

I

FIGURE 7.7 An equal-split three-port resistive power divider.



Power Dividers and Directional Couplers

looking into the Zsl3 resistot followed by the output line, is

(7.26)

Then the input impedance of the divider is

Z i n : (7.27)

which shows that the input is matched to the feed line. Since the network is symmetric from
all three ports, the output ports are also matched. Thus, ̂ !11 : S2z : S:: : 0.

Ifthe voltage at port I is V1, then by voltage division the voltage V at the center ofthe
junction is

Zn 42"t : i - r Z o :  
3

Zn 22"" I  " - Z n .
a
J J

l  [ 0  I

t s l : r l l  0
' L l  I

! v?
2  Z o '

v  :  v ,  2zo l3 :?r , .'  Zo/3 - t2Zo/3 3 '

and the output voltages are, again by voltage division,

(7.28)

(7.2e)

(7.30)

(7.3r)

(7.32)

Thus, S21 - S31 : Szz : ll2, which is -6 dB below the input power level. The network
is reciprocal, so the scattering matrix is symmetric, and can be written as

v . t : v z : v  z o  : 1 u : ! r , .
Z o * Z o / 3  4  2

; ]

The reader may verify that this is not a unitary matrix.
The power delivered to the input of the divider is

D , _r l n -

while the output powers are

P .  :  Pz  _  ! ( l  /2v )2  :  ! v?  :  1O- .. z - ' 5 - 2  
Z s  

- g Z o  
4 " n .

which shows that half of the supplied power is dissipated in the resistors.

7,3 THE WILKINSON POWER DIVIDER

The lossless T-junction divider suffers from the problem of not being matched at all ports
and, in addition, does not have any isolation between output ports. The resistive divider
can be matched at all ports, but even though it is not lossless, isolation is still not achieved.
From the discussion in Section 7.1, however, we know that a lossy three-port network can
be made having all ports matched with isolation between the output ports. The Wilkinson
power divider [4] is such a network, with the useful property of being lossless when the
output ports are matched; that is, only reflected power is dissipated.

TheWilkinsonpowerdividercanbemade with arbitrarypowerdivision, butwe will first
consider the equal-split (3 dB) case. This divider is often made in microstrip or stripline
form, as depicted in Figure 7.8a; the corresponding transmission line circuit is given in
Figure 7.8b. We will analyze this circuit by reducing it to two simpler circuits driven by
symmetric and antisymmetric sources at the output ports. This "even-odd" mode analysis
technique [5] will also be useful for other networks that we will analyze in later sections.
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FIGURE 7.8 The Wilkinson power divider. (a) An equal-split Wilkinson power divider in micro-
strip form. (b) Equivalent transmission line circuit.

Even-Odd Mode Analysis

For simplicity, we can normalize all impedances to the characteristic impedance Zs, and
redraw the circuit of Figure 7.8b with voltage generators at the output ports as shown in
Figure 7.9. This network has been drawn in a form that is symmetric across the midplane;
the two source resistors of normalized value 2 combine in parallel to give a resistor of
normalized value 1, representing the impedance of a matched source. The quarter-wave
lines have a normalized characteristic impedance Z , atdthe shunt resistor has a normalized
value of r; we shall show that, for the equal-split power divider, these values should be
Z : J2 and r : 2, as given in Figure 7.8.

Now we define two separate modes of excitation for the circuit of Figure 7 .9: the even
mode, where Vgz: Vgz - 2Vo, and the odd mode, wherc Vsz - -Vg - 2Vo.Then by
superposition of these two modes, we effectively have an excitation of Vgz :4Vs,V$ :0,
from which we can find the S parameters of the network. We now treat these two modes
separately.

Even mode. For the even-mode excitation, Vsz: Vgz - ZVo, and so Vi : Vf and there
is no current flow through the r 12 resistors or the short circuit between the inputs of the
two transmission lines at port 1. Thus we can bisect the network of Figure 7.9 with open

Port2
+

+Vz

r/2

+
Port 3

(b)(a)

I

/4nto

:K

FIGURE 7.9 The Wilkinson power divider circuit in normalized and svmmetric form.
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FIGURE 7.10

(b)

Bisection of the circuit of Figure 7.9. (a) Even-mode excitation. (b) Odd-mode
excitation.

circuits at these points to obtain the network of Figure 7.10a (the grounded side of the ),/4
line is not shown). Then, looking into port 2, we see an impedance

(7.33)

since the transmission line looks like a quarter-wave transformer. Thus, if Z : r/2,port2
will be matched for even mode excitation; then Vf, : Vo since Zfn: 1. The rf2 resistot
is superfluous in this case, since one end is open-circuited. Next, we find Vr' from the
transmission line equations. If we let .r : 0 at port 1 and x : -)" 14 at port 2, the voltage
on the transmission line section can be written as

7z
2 ' �

z ln :

Then,

V(x) : Y+1" if lx + lei/*).

vf :  v(-),14): jv+(l - f) :  Vo

V f  :  V (O) :  V+( l  +  f ) :  jY r=

t E
a - y L

2+ \ /2
f , ?  / ;v l  :  - J  v \ v  z .

The reflection coefficient f is that seen at port 1, looking toward the resistor of normalized
value 2, so

(7.34)

(7.3s)and

Oddmode. Fortheodd-modeexcitation, Vr2: -Vgz - 2Vo,andso Vr" - -V{,andthere

is a voltage null along the middle of the circuit in Figure 7.9. Thus, we can bisect this circuit
by grounding it at two points on its midplane to give the network of Figure 7.10b. Looking
into port 2, we see an impedance of r /2, since the parallel-connected transmission line is
).l4long and shorted at port 1, and so looks like an open circuit at port 2. Thus, port 2 will

Port 2

Port 2



2,,: )1J-y' 
: t.

(Zin: I at port 1)

(ports 2 and 3 matched for even and odd modes)

The preceding formula for Srz applies because all ports are matched when terminated with
matched loads. Note that when the divider is driven at port 1 and the ouQuts are matched, no
power is dissipated in the resistor. Thus the divider is lossless when the outputs are matched;
only reflected power from ports 2 or 3 is dissipated in the resistor. Since S23 : S32 - Q,
ports 2 and 3 are isolated.
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be matched for odd mode excitation if we select r :2.ThenVf - Vo andVi : 0; for this
mode of excitation all power is delivered to the r 12 resistors, with none going to port 1.

Finally, we must flnd the input impedance at port 1 of the Winkinson divider when
ports 2 and 3 are terminated in matched loads. The resulting circuit is shown in Figure 7.1 la,
where it is seen that this is similar to an even mode of excitation, since Vz : Vz. Thus, no
current flows through the resistor of normalized value 2, so it can be removed, leaving
the circuit of Figure 7.11b. We now have the parallel connection of two quarter-wave
transformers terminated in loads of unity (normalized). The input impedance is then

(7.36)

ln summary, we can establish the following S parameters for the Wilkinson divider:

v f  +v?
Srz : Szr : 

ffi 
: -i lJ, (symmetry due to reciprocity)

S r t  : 0

S 2 2 : , $ 3 3 - Q

S t : : S s r : - j l J t
S 2 3 : $ 3 2 - S

(symmetry of ports 2 and3)

(due to short or open at bisection)

(b)

Analysis of the Wilkinson divider to flnd Sr r . (a) The terminated Wilkinson divider.
(b) Bisection of the circuit in (a).

FIGURE 7.11
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40
0.5/o

FIGURE 7.12 Frequency'response of an equal-split Wilkinson power divider. Port I is the input
port; ports 2 and 3 are the output ports.

EXAMPLE 7.2 DESIGN AND PERFORMANCE OF A WILKINSON DIVIDER

Design an equal-split Wilkinson power divider for a 50 Q system impedance at
frequency/s,andplotthereturnloss(S11),insertionloss(S21 : Ssr),andisolation
(Sz: : S32) versus frequency from 0.5/s to 1.5/e.

Solution
From Figure 7.8 and the above derivation, we have that the quarter-wave transmis-
sion lines in the divider should have a characteristic impedance of

Z :  J 1 Z o : 7 0 . 7  Q ,

and the shunt resistor a value of

R  : 2 Z o :  1 0 0  S 2 .

The transmission lines ne )"/4long at the frequency /e. Using a computer-aided
design program for the analysis of microwave circuits, the S parameter magnitudes
were calculated and plotted in Figure 7.12. I

Unequal Power Division and tFway Wilkinson Dividers

Wilkinson-type power dividers.can also be made with unequal power splits; a microstrip
version is shown in Figure 7 .13. lf the power ratio between ports 2 and 3 is K2 : Pt I Pz,

&=4/K

FIGURE 7.13 A Wilkinson power divider in microstrip form having unequal power division.



then the following design equations apply:

Zoz :  Zo
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(7.37a)

(7.37b)

(1.37c)

Zoz : KzZoz : ZoJ KQ + Kz),

R :  Zo( " .  + )

7.4

Note that the above results reduce to the equal-split case for K : 1. Also observe that the
output lines are matched to the impedances R2 : ZoK and R3 : ZolK, as opposed to the
impedance Zs; matching transformers can be used to ffansform these output impedances.

The Wilkinson divider can also be generalized to an N-way divider or combiner [4],
as shown in Figure 7.14. This circuit can be matched at all ports, with isolation between
all ports. A disadvantage, however, is the fact that the divider requires crossovers for the
resistors for N > 3. This makes fabrication difficult in planar form. The Wilkinson divider
can also be made with stepped multiple sections, for increased bandwidth. A photograph
of a 4-way Wilkinson divider network is shown in Figure 7.15.

WAVEGUIDE DIRECTIONAL COUPLERS

We now turn our attention to directional couplers, which are four-port devices with the char-
acteristics discussed in Section 7.1.To review the basic operation, consider the directional
coupler schematic symbols shown in Figure 7.4. Power incident at port 1 will couple to
port 2 (the through port) and to port 3 (the coupled port), but not to port 4 (the isolated port).
Similarly, power incident in port 2 will couple to ports I atd4, but not 3. Thus, ports 1 and
4 are decoupled, as are ports 2 and 3. The fraction ofpower coupled from port 1 to port 3 is
given by C, the coupling coeffrcient, as defined in (7.20a), and the leakage of power from
port 1 to port 4 is given by 1, the isolation, as defined in (7.20c). Another quantity that can
be used to characteize a coupler is the directivity, D : I - C (dB), which is the ratio of the
power delivered to the coupled port and the isolated port. The ideal coupler is chancteized
solely by the coupling factor, as the isolation and directivity are infinite. The ideal coupler
is also lossless and matched at all ports.

Directional couplers can be made in many different forms. We will first discuss wave-
guide couplers, followed by hybridjunctions. A hybridjunction is a special case of a direc-
tional coupler, where the coupling factor is 3 dB (equal split), and the phase relation between
the output ports is either 90" (quadrature hybrid), or l8O' (magic-T or rat-race hybrid).Then
we will discuss the implementation of directional couplers in coupled transmission line form.

i to",N i
.  ^  \  - z

-)rt4-lqlilrn J

FIGURE 7.14 An N-way, equal-split Wilkinson power divider.

l + K 2
Kt
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FIGURE 7.15 Photograph of a four-way corporate power divider network using three microstrip
Wilkinson power dividers. Note the isolation chip resistors.

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Bethe Hole Coupler

The directional property of all directional couplers is produced through the use of two
separate waves or wave components, which add in phase at the coupled port and are canceled
at the isolated port. One of the simplest ways of doing this is to couple one waveguide to
another through a single small hole in the common broad wall between the two guides. Such
a coupler is known as a Bethe hole coupleq two versions of which are shown in Figure 7.16.
From the small-aperture coupling theory of Section 4.8, we know that an aperfure can be
replaced with equivalent sources consisting of electric and magnetic dipole moments [6].
The normal electric dipole moment and the axial magnetic dipole moment radiate with
even symmetry in the coupled guide, while the transverse magnetic dipole moment radiates
with odd symmetry. Thus, by adjusting the relative amplitudes of these two equivalent
sources, we can cancel the radiation in the direction of the isolated port, while enhancing
the radiation in the direction of the coupled port. Figure 7.16 shows two ways in which these
wave amplitudes can be controlled; in the coupler shown in Figure 7 .I6a, the two guides
are parallel and the coupling is controlled by s, the aperture offset from the sidewall of the
guide. For the coupler of Figure 1 .L6b, the wave amplitudes are controlled by the angle, 0,
between the two guides.

First considerthe configuration of Figure 7.16a, with an incidentTEl6 mode into port 1.
These fields can be written as

Ey: A"inl l r - i f l ' ,

H-:  
-A 

sinfr* s- i \ ' ." ' Z n a

in  A  rx  _ ,^ "
H , -  

"  
c o s - e - r P '"  

f raZto a

(7.38a)

(7.38b)

(7.38c)
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@ lThroughl
(Coupled) @

(Input) @

@
(Through)

(Input) @

FIGURE 7.16 Two versions ofthe Bethe hole directional coupler. (a) Parallel guides. (b) Skewed
suides.

where Zs : koeo/9 is the wave impedance of the TEls mode. Then, from (4.124) and
(4.725), this incident wave generates the following equivalent polarization currents at the
aperture atr : J, y : b, z: O:

_ Tr.t
Pe = €0d"9 A sin -:6(x - s)6(y - b)6(z).

u

f - +
P- : -a-Al -1.i" 11

L Z n  a
+ 2ffi-' ?] 6(r - s)6(y * b)s(z).

(7.39a)

(7.39b)

(7.40a)

Using (4.128a,b) to relate P" and P* to the currents J and M, and then using (4.118),
(4.120), (4.122), and (4.123) gives the amplitudes of the forward and reverse traveling
waves in the top guide as

o;;  = 
* I ,uo. i  du * h ["n*. M au

: #l.oo,,in' T - tr (,r"' T . #""" ?)],
- 1  f  _ ,

A , o :  ^  l E i o . J d u *rl0 Ju

- joA | .  )  7TS poo,m / . t  TS 7T2 r ns \ l:  pro leoaesin' ;  * 
H (sin' 

- - 
Wco{ 

- 
) l .  

(7.40b)

wherePls:ab/Zrcisthepowernormalizationconstant.Notefrom(7.40a,b)thattheam-
plitude of the wave excitedtowardport4 (A1+s) is generally differentfromthat excitedtoward
port 3 (A 1s) (because H: : - H;) so we can cancel the power delivered to port 4 by setting
Aio : 0. If we assume that the aperfure is round, then Table 4.3 gives the polarizabilities

I  f  _ ,  -

i l  J ,u [o '  
M du
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ds d," : 2rfi 13 afi a^ : 4rd 13, where rs is the radius of the aperture. Then from (7.40a)
we obtain the followins condition:

4o'l"o j

FzazV*cos-
(",-H)'^'7fs

a

7fs

a

t * 2
aJa . ,

- ----;- COS-(tfi - zBz) sinz

ff

The coupling factor is then given by

and the directivitv bv

The coupling factor then simplifles to

7fs

a

7[S

u

\  - ^
- kn2 )sin211l- /  a

- 0 ,

t - 2
LJL

- --;-,

. Irs

a
(7.4r)

(7.42a)

(7.42b)

(7.43a)

(7.43b)

(7.44)

c :2oroe la l  *- t A ; l

D:2oros. l4" lor .-  
lAIo I

Thus, a Bethe hole coupler of the type shown in Figure 7 .l6a canbe designed by flrst using
(7 .41) to find s, the position of the aperture, and then using(1 .42a) to determine the aperture
size, rs, to give the required coupling factor.

FortheskewedgeometryofFigureT.l6b,theaperturemaybecenteredats:alZ,and
the skew angle d adjusted for cancellation at port 4. In this case, the normal electric field
does not change with d, but the ffansverse magnetic field components are reduced by cos 0.
We can thus account for the skew by replacing u* in the previous derivation by a^ cos9.
The wave amplitudes of (7.40a,b) then become, for s : a/2,

o i , :#(,0o"-rX*"),

A r r : # ( r o o " + t , * * " ) .

Setting AL : O results in the following condition for the angle 0:

ken - 
4\0 

cosd : 0.- Zio

c o s 9 :
k6
,F

(7.4s)

The geometry of the skewed Bethe hole coupler is often a disadvantage in terms of
fabrication and application. Also, both coupler designs operate properly only at the design
frequency; deviation from this frequency will alter the coupling level and the directivity, as
shown in the following example.

c :2otosl+l :  -2orog f f iu.

2
;--;-----; )-+7r" - K6a' z(x! - a2)
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EXAMPLE 7.3 BETIIE IIOLE COT]PLER DESIGN AND PERFORMANCE

Design a Bethe hole coupler of the type shown in Figure 7 .l6a for X-band wave-
guide operatingat9 GHz, with a coupling of 20 dB. Calculate and plot the coupling
and directivity from 7 to II GHz. Assume a round aperfure.

Solution
For X-band waveguide at9 GHz, we have the following constants:

a:0.02286m,
b  : 0 . 0 1 0 1 6 m ,

lo : 0.0333 m,
k o : 1 8 8 . 5 m - l ,

fr : 129.0m-r,
Zn :550 .9 {2 ,
Prc:4.22 x l0-7 r*lf l".

Then (7.41) can be used to flnd the aperture position s:

. 7fs
s l n -  =

a

The coupling is 20 dB, so

:0 .972,

-1 0.972 :0.424a: 9.69 mm.

).6

a
s : - s l n

7f

c : 200e : zo ron la l ."  
lA lo  I

la l :  ro2o/20:ro,
l A l o  I

thus, lAr/Al : I/10. We now use (7.40b) to find re:

lAio I
l A l i : h[(*", . X) e.s44) - ffiros6)]

Since a, : Zr3 ft and u^ : 4rB l3,we obtain

0 . I :  I . 44  x  106 r j ,

or  ro :4.15 mm.

This completes the design of the Bethe hole coupler. To compute the coupling and
directivity versus frequency, we evaluate (7 .42a) and(1 .4Zb),using the expressions
for A, and Arro given in (7.40a) and (7.40b). In these expressions, the aperture
position and size are fixed at s : 9.69 mm and rs - 4.15 mm, and the frequency
is varied. A short computer program was used to calculate the data shown in
Figure 7.17. Observe that the coupling varies by less than 1 dB over the band.
The directivity is very large (>60 dB) at the design frequency, but decreases to
15-20 dB at the band edges. The directivity is a more sensitive function of fre-
quency because it depends on the cancellation of two wave components. I

Design of Multihole Couplers

As seen from Example 7.3, a single-hole coupler has a relatively narrow bandwidth, at least
in terms of its directivity. But if the coupler is designed with a series of coupling holes, the

x3 - o')
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7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Frequency GHz

FIGURE 7.17 Coupling and directivityversus frequencyfortheBetheholecouplerofExample 7.3.

extra degrees offreedom can be used to increase this bandwidth. The principle ofoperation
and design of such a multihole waveguide coupler is very similar to that of the multisection
matching transformer.

Firstletus considerthe operationof thetwo-hole coupler showninFigure 7.18. Twopar-
allel waveguides sharing a common broad wall are shown, although the same type of struc-
ture could be made in microstrip or stripline form. Two small apertures are spaced I , I 4 apart,
and couple the two guides. A wave entering at port 1 is mostly transmitted through to port 2,
but some power is coupled through the two apertures. If a phase reference is taken at the
first aperfure, then the phase of the wave incident at the second aperture will be -90'. Each
aperture will radiate a forward wave component and a backward wave component into the
upper guide; in general, the forward and backward amplitudes are different. In the direction
of port 3, both components are in phase, since both have traveled ).r / 4 to the second aper-
ture. But we obtain a caacellation in the direction of port 4, since the wave coming through
the second aperture travels ),g 12 further than the wave component coming through the first
aperture. Clearly, this cancellation is frequency sensitive, making the directivity a sensitive
function offrequency. The coupling is less frequency dependent, since the path lengths from
port 1 to port 3 are always the same. Thus, in the multihole coupler design, we synthesize
the directivity response, as opposed to the coupling response, as a function of frequency.

We now consider the general case of the multihole coupler shown in Figure 7.19,
where N f 1 equally spaced apertures couple two parallel waveguides. The amplitude of
the incident wave in the lower left guide is A and, for small coupling, is essentially the same as
the amplitude of the through wave. For instance, a 20 dB coupler has a power coupling factor

10

20
E
^ ? O

r i

40

60

(Isolated)

(Input) (Through)

FIGI-IRE 7.18 Basic operation of a two-hole directional coupler
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-,J-_:'UC-JC-J l-....---1trF'  n = N

FIGURE 7.19 Geometry of an N * t hole waveguide directional coupler.

o1 1g-20l10 - 0.01, so the power transmitted through waveguide A is 1 - 0.01 : 0.99 of

the incident p ower (l%o coupled to the upper guide). The voltage (or field) drop in waveguide
Ais JA99 : O.995,orO.5Vo.Thus, the assumption that the amplitude of the incident field is

identical at each aperture is a good one. Ofcourse, the phase will change from one aperture

to the next.
As we saw in the previous section for the Bethe hole coupler, an aperture generally

excites forward and backward traveling waves with different amplitudes. Thus, let

Fn denote the coupling coefficient of the nth apertue in the forward direction'

B, denote the coupling coeffrcient of the n th aperture in the backward direction.

Then the amplitude of (he forward wave can be written as

N

F _  Ae_ ipNoDO, ,
n=0

since all components travel the same path length. The amplitude of the backward wave is

N

B :  AlBnr- ' t?no
n=0

since the path length for the nth componenr is 2Bnd, where d is the spacing between the

apertures. In (7.46) and (7.47) the phase reference is taken atthe n = 0 aperture.
From the definitions in (7.20a) and(1 .2Ob) the coupling and directivity can be computed

AS

c : -zoroe l{l- l A l

D : -2obs lf I

(7.48)
t A l

:  - 2 0 l o g l )  . r , l d B ,
l n = 0  |

- _2oros.lDl=o n^r-'ie'o 
1- | L'i,=oF, I

(7.46)

(7.47)

(7.4e)

(7.50a)

(7.s0b)

- -c -2obe 
I f n,"-'ia*lan.

Now assume that the apeffures are round holes with identical positions, s, relative to
the edge of the guide, with r, being the radius of the nth aperture. Then we know from

Section 4.8 and the preceding section that the coupling coefficients willte proportional to

the polarizabilities cv, and u* of the aperture, and hence proportional to rj . So we can write

Fn: Kfi,

B, = Kr*,
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where K1 and K6 are constants for the forward and backward coupling coefficients that are
the same for all apertures, but are functions of frequency. Then (7.48) and (7 .49) reduce to

In (7.51), the second term is constant with frequency. The first term is not affected
by the choice of r,s, but is a relatively slowly varying function of frequency. Similarly,
in (7.52) the first two terms are slowly varying functions of frequency, representing the
directivity of a single apeffure, but the last term (S) is a sensitive function of frequency due
to phase cancellation in the summation. Thus we can choose the rns to synthesize a desired
frequency response for the directivity, while the coupling should be.relatively constant with
frequency.

Observe that the last term in (7.52),

C : -ZoroslKrl - 2ologf rj dn,
n=0

t J L  ̂  ^ ^ , l
D : -C - 20log lKul - 20log I lr le-un'41

l n = O  I

-  -C -201oglK6l -  201ogS dB.

1 N  t  N / z

t = | I r le-zinel : rDrjcos(N - 2n)0.
I n:0 | n:o

^ t - -4Prol
I '

C : -2oloslKrl - 2orogk - 2orogf cfl an
n:0

1 N

I )-'j,
I n:O

(7.s1)

(7.s2)

(7.53)

(7.55)

is very similarinformtotheexpressionobtainedin Section 5.5 formultisectionquarter-wave
matching transformers. As in that case, we will develop coupler designs that yield either a
binomial (maximally flat) or a Chebyshev (equal ripple) response for the directivity. Another
interpretation of (7.53) may be recognizable to the student familiar with basic antenna theory
as this expression is identical to the array pattern factor of an N f 1 element array with
element weights r3r.Inthat case, too, the pattern may be synthesized in terms of binomial
or Chebyshev polynomials.

Binomial response. As in the case of the multisection quarter-wave matching transformers,
we can obtain a binomial, or maximally flat, response for the directivity of the multihole
coupler by making the coupling coefficients proportional to the binomial coefficients. Thus,

r : :  kcl  , (7.s4)

where k is a constant to be determined, and Cfl is a binomial coefficient given in (5.51). To
find k, we evaluate the coupling using (7.51) to give

Since we know K7, N, and C, we can solve for ft and then find the required aperfure radii
from (7.54). The spacing d should be ),r14 at the center frequency.

Chebyshev response. First assume that N is even (an odd number of holes), and that the
coupler is symmetric, so that r0 : rN, 11 : rN-l, etc. Then from (7.53) we can write S as
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where 9 : Bd. To achieve a Chebyshev response we equate this to the Chebyshev poly-
nomial of degree N:

N/2

s : 2I rj cos(N - 2n)0 : klTx(secl^cos d)|,
n:0

where ft and 0^ are constants to be determined. From (7.53) and (7.56), we see that for
0 : o, s : If;=o r1 : klTNGec g.)1. Using this result in (7.51) gives the coupling as

C : _2otoglKrl _

2}roglKyl -

From (7.52) the directivity is

D : -C - 20loglKul - 20log S

:2olog I *roro*= ?(t!"0') ^. as. (7.58)' Ku " 
fiy(sec 0, cos 9)

The term log K y I K6 is a function of frequency, so D will not have an exact Chebyshev
response. This error is usually small, however. Thus, we can assume that the smallest value
of D will occur when T^r(sec1*cosd) : 1, since 1Z,.,.(sec 0*)l > lTTs@ec0^ cos9)1. So if
D*in is the specified minimum value of directivity in the passband, then 0* can be found
from the relation

Dmin : 20log Zl',(sec e; dB. (7.s9)

Alternatively, we could specify the bandwidth, which then dictates 0^ and D-6. In either
case, (7.57) can then be used to find fr, and then (7.56) solved for the radii, rn.

If N is odd (an even number of holes), the results for C, D, and D,;n in (7 .57), (7.58),
and (7.59) still apply, but instead of (7.56), the following relation is used to find the aperfure
radii:

(N-r)/2

S : 2 I rj cos(N - 2n)0: frlTv(sec 0*cos0)1.
n:O

EXAMPLE 7.4 MULTIHOLE WAVEGUIDE COUPLER DESIGN

Design a four-hole Chebyshev coupler in X-band waveguide using round apertures
located at s : a/4. The center frequency is 9 GHz, the coupling is 20 dB, and the
minimum directivity is 40 dB. Plot the coupling and directivity response from 7 to
1 1 G H z .

Solution
For X-band waveguide at9 GHz, we have the following constants:

a:0.02286m,
b  :0 .01016  m,
lo : 0.0333 m,
fto : 188.5 m-1,

f l : 129 .0m-1 ,
Z n : 5 5 0 . 9  { 2 ,
P rc :4 .22x I0 -7  m2 /9 .

20los Sl- 
le:o

Z0logk - 20log lZly(sec 0*)l dB.

('7.s6)

(7.s7)

(7.60)
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From (7.40a) and (7.40b), we obtain for an aperture at s : a/4:

2 k o  |  , n t  2 f 2 / . ,
l-f( rl : I Sln- - - - | Sll l-'  J '  3qoPrc l  a  f t6  \

2 k n  t  " o l  
* { ( " i n ,lKol: ffi [sin'- k_o \

. #""u T)] :3.e53 x ro1

#*u?)]  
:3.454x105

7ts

a

7fs

a

For a four-hole coupler, N : 3, so (7.59) gives

4O :20logTz6ec9^) dB,

100 : f3(sec 0.) : cosh(3 cosh-r(sec 0-)),

sec0^ -  3.01,

where (5.58b) was used. Thus g. :7O.6 and 109.4' at the band edges. Then from
('7.57) we can solve for k:

C :20 :  -20 log (3 .953  x  105 )  -2 } l ogk  -40dB ,

2o logk :  -17 I .94 ,

k  : 2 .53  x  10 -e .

Finally, (7.60) and the expansion from (5.60c) for Z3 allow us to solve for the radii
as follows:

S : zldcos39 * rf cosg] : ft[sec3 O^(cos3e + 3cosd) - 3 secg*cos9],

2rl : 11 sec3 0* =+ ro : 13 : 3,26 mm,

2rl :3111s..3 0^ - secl*) + 11 : rz: 4.51 mm.

The resulting coupling and directivity are plotted in Figure 7.20; note the increased
directivity bandwidth compared to that of the Bethe hole coupler of Example 7.3.
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FIGURE 7.20 Coupling and directivity versus frequency for the four-hole coupler of Example 7.4
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FIGURE 7.21 Geometry of a branch-line coupler.

THE QUADRATURE (90') HYBRID

Quadrature hybrids are 3 dB directional couplers with a 90' phase difference in the outputs
of the through and coupled arms. This type of hybrid is of{en made in microstrip or stripline
form as showninFigure 7.21, andis alsoknown as abranch-linehybrid. Other3 dB couplers,
such as coupled line couplers or Lange couplers, can also be used as quadrature couplers;
these components will be discussed in later sections. Here we will analyze the operation
of the quadrature hybrid using an even-odd mode decomposition technique similar to that
used for the Wilkinson power divider.

With reference to Figure 7 . 2 I the basic operation of the branch-line coupler is as follows .
With all ports matched, power entering port 1 is evenly divided between ports 2 and3,wirh
a 90' phase shift between these outputs. No power is coupled to port 4 (the isolated port).

Thus, the [S] matrix will have the following form:

- 1
tsl: .rt

[ 0 i t 0 l
I i  o  o  l l

I r  o  o  i l
L o r j 0 l

(7.61)

Observe that the branch-line hybrid has a high degree of symmetry, as any port can be used
as the input port. The output porrs will always be on the opposite side of the junction from
the input port, and the isolated port will be the remaining port on the same side as the input
port. This symmetry is reflected in the scattering matrix, as each row can be obtained as a
transposition of the first row.

Even-Odd Mode Analysis

We first draw the schematic circuit of the branch-line coupler in normalized form, as in
Figure 7.22, where it is understood that each line represents a transmission line with in-
dicated characteristic impedance normalized to Zs. The cornmon ground return for each
transmissionlineisnotshown.Weassumethatawaveof unitamplitude Ar: I isincident
at port 1.

Now the circuit of Figure 7.22 can be decomposed into the superposition of an even-
mode excitation and an odd-mode excitation [5], as shown in Figure 7.23. Note that super-
imposing the two sets of excitations produces the original excitation of Figure 7.22, and
since the circuit is linear, the actual response (the scattered waves) can be obtained from
the sum of the responses to the even and odd excitations.
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A t = \_______* e l/\D

FIGURJE 7.22 Circuit of the branch-line hybrid coupler in normalized form

Because of the symmetry or antisymmetry of the excitation, the four-port network can
be decomposed into a set of two decoupled two-port networks, as shown in Figure 7.23.
Since the amplitudes of the incident waves for these two-ports arc *112, the amplitudes of
the emerging wave at each port of the branch-line hybrid can be expressed as

n r : ) r " * ) r , ,

n r :  ) r "  * ) r " ,

1 1
Bz:  

tT"  
-  

,7 , ,

n + : ) r " - ) r , ,

+rl2 fi)
+ V It^1,

(7.62a)

(7.62b)

(7.62c)

(7.62d)

+

+

(a)

+ll2 fn
+ V 1/^/,

+U2

(b)

FIGURE 7.23 Decomposition of the branch-line coupler into even- and odd-mode excitations.

Line of symmetry
1 = 0
V= max

+l12
-------> | UJ2 I

ffi
Open-circuited stubs
(2 separate 2-ports)

Line of antisymmetry
7 = 0
1= max

Short-circuited stubs
(2 separate 2-ports)

(a) Even mode (e). (b) Odd mode (o).
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where f"., andT".o are the even- and odd-mode reflection and transmission coeffrcients for
the two-port networks of Figure 7 .23. First consider the calculation of f, and 7", for the
even-mode two-port circuit. This can best be done by multiplying the ABCD matrices of
each cascade component in that circuit, to give

l e  B l : f 1  o . l  I  o_  i / J i l l r  o ' l  :
L c  D ) " - L i  t ) L i J L  o  l L ;  r l

-\#-_+
Shunt ),/4 Shunt
Y: j  Transmiss ion Y:  j

line

F _

( - 1 + j + j - D l J '

- 0 ,

- l
:  

o0+ i l '

(port I is matched),

(half-power, -90' phase shift from pon 1 to 2),

(half-power, -180' phase shift from port 1 to 3),

I  l - 1  j  I
a L  i  - r J '

where the individual matrices can be found from Table 4.L, and the admittance of the shunt
open-circuited ),/8 stubs is I : j tan Bl - j. Then Table 4.2 can be used to convert from
ABCD parameters (defined here with Zo : 1) to S parameters, which are equivalent to the
reflection and transmission coef0cients. Thus.

A + B - C - D  ( - 1 + j - j + r t l J 2

(7.63)

(7.64a)

(7.64b)

A + B + C + D  ( _ 1 + j -Dta
a

r -  '  -"  A + B + C + D

Similarly, for the odd mode we obtain

l t  B l  r _ f r  i 1
l c  D  ) " :  A L i  r . l '

which gives the reflection and transmission coefficients as

f ,  : 0 ,

I
T , :  

A( t  
-  i ) .

Then using (7 .64) and (7 .66) in (7 .62) gives the following results:

(7.6s)

(7.66a)

(7.66b)

Bq : O (no power to port 4).

(7.6'7a)

(1.67b)

(7.67c)

(7.67d)

These results agree with the first row and column of the [S] maffix given in (7 .61); the
remaining elements can easily be found by transposition.

In practice, due to the quarter-wave length requirement, the bandwidth of a branch-line
hybrid is limited to lA*20Vo. But as with multisection matching ffansformers and multihole
directional couplers, the bandwidth of a branch-line hybrid can be increased to a decade or
more by using multiple sections in cascade. In addition, the basic design can be modified
for unequal power division and/or different characteristic impedances at the output ports.
Another practical point to be aware of is the fact that discontinuity effects at the junctions

of the branch-line coupler may require that the shunt arms be lengthened by 10'-20'.
Figure 7.24 shows a photograph of a quadrature hybrid.

+ i

2

B t : o

B z :  -

8 3 :  -

t

fn

I
--7
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FIGURE 7.24 Photograph of a microstrip quadrature hybrid prototype.
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory Lexington, Mass.

EXAMPLE 7.5 DESIGN AND PERFORMANCE OF A QUADRATURE HYBRID

Design a 50 Q branch-line quadrature hybrid junction, and plot (he S parameter
magnitudes from 0.5/s to 1.5/0, where /s is the design frequency.

Solution
After the preceding analysis, the design of a quadrature hybrid is trivial. The lines
are ), / 4 at the design frequency fs, and the branch-line impedances are

Zs 50

, n :  o : 3 5 ' 4 Q '
The calculated frequency response is plotted in Figure 7.25. Note that we obtain
perfect 3 dB power division in ports 2 and3, and perfect isolation and return loss
at ports 4 and l, respectively, at the design frequency "f0. All of these quantities,
however, degrade quickly as the frequency departs from /s. I

40
0.5"f0 fo 1.5f0

versus frequency for the branchline coupler of Exam-J parameter magnitudes
ple 7.5.

=--r- j"

FIGURE 7.25
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FIGURE 7.26 Various coupled transmission line geometries. (a) Coupled stripline (planar, or
edge-coupled). (b) Coupled stripline (stacked, orbroadside-coupled). (c) Coupled
microstrip.

COUPLED LINE DIRECTIONAL COUPLERS

When two unshielded transmission lines are close together, power can be coupled between
the lines due to the interaction of the electromagnetic fields of each line. Such lines are
referred to as coupled transmission lines, and usually consist of three conductors in close
proximity, although more conductors can be used. Figure 7.26 shows several examples of
coupled transmission lines. Coupled transmission lines are usually assumed to operate in
the TEM mode, which is rigorously valid for stripline structures and approximately valid
for microstrip structures. In general, a three-wire line, like those of Figure 7 .26, can support
two distinct propagating modes. This feature can be used to implement directional couplers,
hybrids, and filters.

We will first discuss the theory of coupled lines and present some design data for
coupled stripline and coupled microstrip. Then we will analyze the operation of a single-
section directional coupler, and extend these results to multisection coupler design.

Coupled Line Theory

The coupled lines of Figure 7.26, or any other tlree-wire line, can be represented by the
structure shown in Figure 7.27.If we assume TEM propagation, then the electrical charac-
teristics of the coupled lines can be completely determined from the effective capacitances
between the lines and the velocity of propagation on the line. As depicted inFigure 7.27,
C12 represents the capacitance between the two strip conductors, while Cy and C22 rep-
resent the capacitance between one strip conductor and ground. Ifthe strip conductors are
identical in size and location relative to the ground conductor, then C11 : Czz. Note that
the designation of "ground" for the third conductor has no special relevance beyond the
fact that it is convenient, since in many applications this conductor is the ground plane of a
stripline or microsffip circuit.

UU +|._
t , , l

C , , *  + c 2 2. ' t l
m

7,6

ctz

FIGURE 7.27 A three-wire coupled transmission line and its equivalent capacitance network.
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ZCn 2Cn

(b)

FIGURE 7.28 Even- and odd-mode excitations for a coupled line, and the resulting equivalent

capacitance networks. (a) Even-mode excitation. (b) Odd-mode excitation.

Now consider two special types of excitations for the coupled line: the even mode,
where the currents in the strip conductors are equal in amplitude and in the same direc-
tion, and the odd mode, where the currents in the strip conductors are equal in ampli-
tude but in opposite directions. The electric field lines for these two cases are sketched in
Figure 7.28.

For the even mode, the electric field has even symmetry about the center line, and no
current flows between the two strip conductors. This leads to the equivalent circuit shown,
where C12 is effectively open-circuited. Then the resulting capacitance of either line to
ground for the even mode is

C " :  C t :  C z z , (7.68)

assuming that the two strip conductors are identical in size and location. Then the charac-
teristic impedance for the even mode is

=>

(a)

+

JTq
c"

1
,rc"'

(7.69)

where uo is the phase velocity of propagation on the line.
For the odd mode, the elecffic field lines have an odd symmetry about the center line,

and a voltage null exists between the two strip conductors. We can imagine this as a ground
plane through the middle of Cp, which leads to the equivalent circuit as shown. In this case,
the effective capacitance between either strip conductor and ground is

lH*wal l

C o : C n * 2 C n : C z z * 2 C n , (7.70)
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and the characteristic impedance for the odd mode is

1zoo = 
ipz'

In words, Zs"(Zs)isthe characteristic impedance of one of the strip conductors relative

to ground when the coupled line is operated in the even (odd) mode. An arbitrary excitation

of a coupled line can always be treated as a superposition of appropriate amplitudes of

even and odd modes. This analysis assumes the lines are symmetric, and that fringing

capacitances are identical for even and odd modes.
If the coupled line is purely TEM, such as coaxial, parallel plate, or stripline, analytical

techniques such as conformal mapping [7] can be used to evaluate the capacitances per unit

length of line, and the even- and odd-mode characteristic impedances can then be deter-

mined. For quasi-TEM lines, such as microstrip, these results can be obtained numerically

or by approximate quasi-static techniques [8]. In either case, such calculations are generally

too involved for our consideration, so we will present only two examples of design data for

coupled lines.
For a symmetric coupled stripline of the type shown in Figure 7.26a,the design graph

in Figure 7.29 can be used to determine the necessary strip widths and spacing for a given

set of characteristic impedances, Zs" and Zso, and the dielectric constant. This graph should

cover ranges ofparameters for most practical applications, and can be used for any dielectric
constant, since stripline supports a purely TEM mode.

For microstrip, the results do not scale with dielectric constant, so design graphs must

be made for specific values of dielectric constant. Figure 7.30 shows such a design graph

for coupled microstrip lines on a substrate with e, : 10. Another difftculty with microstrip

coupled lines is the fact that the phase velocity is usually different for the two modes of

(7.71)

140

, \
9- l2o

oor
,ol

20 40 60 80 100 r20 140 160
^/120"

FIGURE 7.29 Normalized even- and odd-mode characteristic impedance design data for edge-

coupled striplines.
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FIGURE 7.30

Zoo

Even- and odd-mode characteristic impedance design data for coupled microstrip
lines on a substrate with e. : 10.

propagation, since the two modes operate with different field configurations in the vicinity
ofthe air-dielectric interface. This can have a degrading effect on coupler directivity.

EXAMPLE 7.6 IMPEDANCE OF A SIMPLE COUPLED LINE

For the broadside coupled stripline geometry of Figure 7.26b, assume I4l >> ,S
andW )) b, so that fringing fields can be ignored, and determine the even- and
odd-mode characteristic impedances.

Solution
We first find the equivalent network capacitances, Crr and C12 (since the line is
symmetric, Czz : Cu). The capacitance per unit length of broadside parallel lines
with width, I7, and separation, d, is

e : + F i l m ,
d

with e being the substrate permittivity. This formula ignores fringing fields.
C11 is formed by the capacitance of one strip to the ground planes. Thus the

capacitance per unit length is

e , , :244 pu^.
D - S

The capacitance per unit length befween the strips is

e ,, : !:3{ ru^.
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Then from (7.68) and (7.7O), the even- and odd-mode capacitances are

2e"enWC":C u: f f i  Fi lm,

e o:  e  ,  +ze t2 :2e,eow ( . - l - -  .  : )  Fd/m.
\ b - s  s /

The phase velocity on the line is uo : 1l^F,eyW: cf .1@, so the characteristic
impedances are

1  b * s
Zo": -----= : iio:=::--.

upC" ' "2W 
Je,

Z o o : = q o
2W \Flr/(b * s) + l/sl

Design of Coupled Line Couplers

With the preceding definitions of the even- and odd-mode characteristic impedances, we can

apply an even-odd mode analysis to a length of coupled line to arrive at the design equations
for a single-section coupled line coupler. Such a line is shown in Figure 7.31. This four-port
network is terminated in the impedance 26 at three of its ports, and driven with a voltage
generator of ZVs and internal impedance Zs at port 1. We will show that a coupler can be

designed with arbitrary coupling such that the input (port 1) is matched, while pon 4 is

isolated. Port 2 is the through port, and port 3 is the coupled port. In Figure 
'l 

.31, a ground

conductor is understood to be common to both strip conductors.

@
Through

(a)

v - t l'  I t  t 4

-!\ 
zo'Zoo

FIGURE 7.31 A single-section coupled line coupler. (a) Geometry and port designations. (b) The

I

*L- zo

Coupled

schematic circuit
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v o

+

v 0

FIGURE 7.32 Decomposition of the coupled line coupler circuit of Figure 7.31 into even- and

odd-mode excitations. (a) Even mode. (b) Odd mode.

For this problem we will apply the even-odd mode analysis technique in conjunction
with the input impedances of the line, as opposed to the reflection and ffansmission coeffi-

cients of the line. So by superposition, the excitation at port 1 in Figure 7 .31 can be treated

as the sum of the even- and odd-mode excitations shown in FigureT .32. From symmetry, we

canseethat  I f  :  I i , l i :  I i ,Vf  :Vf  ,andVf :Vt for theevenmodes,whi le l t '  -  - I t ,

Ii : - Ii, Vf : -V! , and Vf : -v; for the odd mode.
The input impedance at port 1 of the coupler of Figure 7.3I can thus be expressed as

V, Vf +V!
7 . - '" 'o- 

11 
-  

I f  +I i
(7.72)

(7.73a)

(7.73b)

(7.74a)

(7.74b)

Now if we let Zinbe the input impedance at port 1 for the even mode, and Ziobe the input

impedance for the odd mode, then we have

Zg ! j Zs,tan9
Z"n: Zo"

Zln: Zoo

Zo" * j  Zotan?'

Zs I j Zs,tan9
Zb + jZytarte '

since, for each mode, the line looks like a transmission line of characteristic impedance Zs"

or Zgo, terminated in a load impedance, Zs.Then by voltage division

Z?-vi : vo4i 
h,

Z:.vi : v0z"*;1,
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ro - -----:-' 1  -  
zyn+  zo '

(7.75a)

(7.7sb)

(7.76)

(7.77)

(7.78)

(7.81)

,f :#e,
Using these results in (7.72) yields

zi,(zr"+ zo) + zr,(zi^+ zo)
Z i o :

Now if we let

z i ,+ zin+zzo
2(z?"2i"- z3)
Zfn- l  Zi"*2Zs

: Z o *

tm
L0 :  \ /  L\eL\o,

7  J7*+iJ f i tan?
" ' JZo" *  j t /Zoo tan9

ao z  JZ i+ iJzu tanoz t n : . o o 5 a  
i @ , t a n o .

so that ZfoZin: Zo"Zoo : /fi, and (7.76) reduces to

Zio = Zo'

2Zo* j (Zo " lZo ) tan?

Zo, - Zoo
w : 7 | l Z s o '

then (7.73a,b) reduce to

Zln =

t- 2Zn
v l - C - : ; - - ; ; - '

z,oe t r.0o

iC tan9
t l  _  t l

J t - c z * j a n o

Thus, as long as (7.77) is satisfied, port 1 (and, by symmetry, all other ports) will be matched.

Now if (7.77) is satisfied, so that Zin : 20, we have thatVl: Vo, by voltage division.

The voltage at port 3 is

vz: vi + vi : v{ - vi : vol =3+=- - = 
ti 

=1. (7.7s1
LZ{,+ Zo Zi , *  Zs1

where (7.74) has been used. From (7.73) and (7.77), we can show that

Zi"  _ Zo* jZo"Ian9

Zfo* Zs 
- 

2Zo * j(Zo" * Zo)tan?'

Z "h  _  Zo l jZoo tan9

Zin*  Zs 2Zo' t  j (Zo"  *  Zo) tan9'

so that (7.79) reduces to

V z :  V o

Now define C as

j(Zo" - Zg")taa9 (7.80)

which we will soon see is actually the midband voltage coupling coefficient, V3 f Vs. Then,

so that (7.82)
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I

l - c 2

c2

FIGURE 7.33 Coupled and through port voltages (squared) versus frequency for the coupled line
coupler ofFigure 7.31.

Similarly, we car show that

3rr
2

7f 7f

2

V + : V f + V f : v ;  - v f : 0 ,

J l -1 ,

C ,

-iJL - c'� '

(7.83)

(7.84)

(7.85)

(7.86)

(7.87a)

(7.87b)

and vz: vf -f vf : yo
J I - C 2 c o s 0 f j s i n d

Equations (7.82) and (7.84) can be used to plot the coupled and through port voltages
versus frequency, as shown in Figure 7.33. At very low frequencies (0 <<n/2), virtually
all power is transmitted through port 2, with none being coupled to port 3. For 0 : 7r /2,the
coupling to port 3 is at its first maximum; this is where the coupler is generally operated,
for small size and minimum line loss. Otherwise, the response is periodic, with maxima in
V 3 f o t 0 : r / 2 , 3 r / 2 , . . . .

For 0 : n / 2, the coupler is )./4 long, and (7 .82) and (7.84) reduce to

V t _

Vs

V2

Vo

which shows that C < 1 is the voltage coupling factor at the design frequency, 0 : ru 12.
Note that these results satisfy power conservation, since Pln : Q lz)lvolz lZs, while the out-
put  powers arc P2 -  0/2) lvz l2 /20:0/2)( I  -  C\ lvy lz  /20,  P3:  Q/z) lc lz lvy lz lZ0,
P+: O, so that Pin: Pz * P: * Pa. Also observe that there is a 90' phase shift between
the two output port voltages; thus this coupler can be used as a quadrature hybrid. And, as
long as (7.77) is satisfied, the coupler will be matched at the input and have perfect isolation,
at any frequency.

Finally, if the characteristic impedance, Zs, and the voltage coupling coefficient, C,
are specified, then the following design equations for the required even- and odd-mode
characteristic impedances can be easily derived from (7 .77) and (7.81):

Zo" :  Zo

Zoo:  Zo
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In the above analysis, it was assumed that the even and odd modes of the coupled line

structure have the same velocities of propagation, so that the line has the same electrical

length forboth modes. For a coupled microstrip, or other non-TEM line, this condition will

generally not be satisfied, and the coupler will have poor directivity. The fact that coupled

microstrip lines have unequal even- and odd-mode phase velocities can be intuitively ex-

plained by considering the field line plots of Figure 7.28, which show that the even mode

has less fringing field in the air region than the odd mode. Thus its effective dielectric con-

stant should be higher, indicating a smaller phase velocity for the even mode. Techniques

for compensating coupled microstrip lines to achieve equal even- and odd-mode phase

velocities include the use of dielectric overlays and anistropic substrates.

This type of coupler is best suited for weak couplings, as tight coupling requires

lines that are too close together to be practical, or a combination of even- and odd-mode

characteristic impedances that is nonrealizable.

EXAMPLE 7.7 SINGLE.SECTION COUPLER DESIGN AND PERFORMANCE

Design a2O dB single-section coupled line coupler in stripline with a ground plane

spacing of 0.32cm,adielecffic constantof 2.2,achatacteristic impedance of 50 Q,

and a center frequency of 3 GHz. Plot the coupling and directivity from 1 to 5 GHz.

Include the effect of losses by assuming a loss tangent of 0.05 for the dielectric

material, and copper conductors of 2 mil thickness.

Solution
The voltage coupling factor is C - 1g-zo1z0:0.1. From (7.87), the even- and

odd-mode characteristic impedances are

Zo" :  Zo

Zoo: Zo

l= :ss28e,

:45.23 f2 .

To use Figure 7.29,we have that

Je,Zo, - 82.0,

J+Zoo - 67 'l'

and so Wlb= 0.809and Slb:0306. This gives a conductor width of W:
0.259 cm, and a conductor separation of S - 0.098 cm (these values were actually
found using a commercial CAD package).

FigareT .34 shows the resulting coupling and directivity vs. frequency, includ-
ing the effect of dielectric and conductor losses. Losses have the effect of reducing
the directivity, which is typically greater than 70 dB in the absence of loss. I

Design of Multisection Goupled Line Gouplers

As Figure 7.33 shows, the coupling of a single-section coupled line coupler is limited in
bandwidth due to the ),/4length requirement. As in the case of matching ffansformers
and waveguide couplers, bandwidth can be increased by using multiple sections. In fact,
there is a very close relation between multisection coupled line couplers and multisection
quarter-wave traasformers [9].

1 - C
t + c
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1.0 2.0 3.0 4.0 5.0
Frequency (GHz)

FIGURE 7.34 Coupling versus frequency for the single-section coupler of Example 7.7.

Because the phase characteristics are usually better, multisection coupled line couplers
are generally made with an odd number of sections, as shown in Figure 7.35. Thus, we will
assume that N is odd. We will also assume that the coupling is weak (C > 10 dB), and that
each section is )'/4long(0 : r/2) at the centerfrequency.

For a single coupled line section, with C << 1, (7.82) and (7.84) simplify to

^ 1 0
E

5 z o
o

.g 30
ba

u 5 0

Y: : ic , '^e = ,i l ' ,Tt = - . iC sinoe-io,
V 1  J t - C r t j a n 7  

-  
l +  j t a n 9  l - '

v2 JT-e - e-io-
v1  J l  -  C2 cos0 *  7  s ind

(7.88a)

(7.88b)

Then for d : r / 2,we have that V3 I V1 : C and Vz I V - - j. This approximation is equiv-
alent to assuming that no power is lost on the through path from one section to the next,
and is similar to the multisection waveguide coupler analysis. It is a good assumption for
small C, even though power conservation is violated.

Using these results, the total voltage at the coupled port (port 3) ofthe cascaded coupler
in Figure 7.35 can be expressed as

\ : (j C 1 sin 0 e- i0 )Vr * Q Cz sin g s- i 0 
7yrs-2i0

t (iCu ttng"-le)Vte-2i(N-De , (7.8e)

vr lrYur

FIGURE 7.35 An N-section coupled line coupler.
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where Cn is the voltage coupling coefficient of the nth section. If we assume that the coupler
is symmetric, so that Cr : C u, Cz : C x -t, etc., (7.89) can be simplified to

V3: jVlsinee-is lCr( l+ e-zi(N-r)0) + C2(e zie l  s z i(N-2 
)  + . .  - l  Cue-iQ'r- t te1

(7.90)

w h e r e M : ( N + l ) / 2 .
At the center frequency, we define the voltage coupling factor Co:

C o : (7.9r)

Equation (7.90) is in the form of a Fourier series for the coupling, as a function of

frequency. Thus, we can synthesize a desired coupling response by choosing the coupling

coefficients, Cn. Note that in this case, we synthesize the coupling response, while in the

case of the multihole waveguide coupler we synthesized the directivity response. This is

because the path for the uncoupled arm of the multisection coupled line coupler is in the

forward direction, and so is less dependent on frequency than the coupled arm path, which is

in the reverse direction; this is the opposite situation from the multihole waveguide coupler.

Multisection couplers of this form can achieve decade bandwidths, but coupling levels

must be low. Because of the longer electrical length, it is more critical to have equal

even- and odd-mode phase velocities than it is for the single-section coupler. This usually

means that stripline is the preferred medium for such couplers. Mismatched phase velocities

will degrade the coupler directivity, as will junction discontinuities, load mismatches, and

fabrication tolerances. A photograph of a coupled line coupler is shown in Figure 7.36.

FIGURE 7.36 Photograph of a single-section microstrip coupled line coupler.

. . . ^  r
: 2 jV sin9e-t'" 

lCr 
cos(N - l)e + Cz cos(N - r e  + . . . + ) c " f ,

lY ,  I
l.['.l,:,,,'

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory Lexington, Mass.
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EXAMPLE 7.8 MULTISECTION COUPLER DESIGN AND PERFORMANCE

Design a three-section 20 dB coupler with a binomial (maximally flat) response,
a system impedance of 50 Q, and a center frequency of 3 GHz. Plot the coupling
and directivity from 1 to 5 GHz.

Solution
For a maximally flat response for a three-section (N : 3) coupler, we require that

d n l

* ' " \ l r : , , r . :  
o '  fo t  n  :  l ' 2 '

From (7.90),

,  : l+l :2rina lc,"osze* 1.r- l
l v t  I  L  z  I

:  Cr(sin30 - s in0) * Czsin9

dC 

:  Cr  s in3d * (Cz-  Cr )s in9 ,

so 
"i= 

: l3Crcos 39 * (Cz - Cr) cos dl | : 0,
d A  l n  / 2

d2c--;;; : l-9Ctsin3? - (Cz - Cr) sin9ll : 10Cr - Cz: O.
dA '  t n / 2

Now at midband, 0 : n l2and Cs : 20 dB. Thus, C - 1g-zo/zo : 0.1 : Cz -
2C1. Solving these two equations for C1 and C2 gives

Cr  :  Cs :  0 .0125,

Cz: O'125.

Then from (7.87) the even- and odd-mode characteristic impedances for each
section are

Z [ " :  Z l " : 5 9 : 50.63 O,

zA, : zl.: so,/9287s : 4e.38 o,
v 1.0125

D > 1 0 0 d B

3

Frequency (GHz)

10

= - ^

(.)
J(',

40l:
I

FIGURE 7.37 Coupling versus frequency for the three-section binomial coupler of Example 7.8.
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Zf;" = 50

Zl" = 50

"E:56 .6eo.
v 0.875

.E  =44. r0e .
v 1.125

7.7

The coupling and directivity for this coupler are plotted inFigure7.37. I

THE LANGE COUPLER

Generally the coupling in a coupled line coupler is too loose to achieve coupling factors of

3 dB or 6 dB. One way to increase the coupling between edge-coupled lines is to use several

lines parallel to each otheE so that the fringing fields at both edges of a line contribute to

the coupling. Probably the most practical implementation of this idea is the Lange coupler

[0], shown in Figure 7.38a. Here, four coupled lines are used with interconnections to

provide tight coupling. This coupler can easily achieve 3 dB coupling ratios, with an octave

or more bandwidth. The design tends to compensate for unequal even- and odd-mode phase

velocities, which also improves the bandwidth. There is a 90'phase difference between the

output lines (ports 2 and 3), so the Lange coupler is a type of quadrature hybrid. The main

FIGURE 7.38 The Lange coupler. (a) Layout in microstrip form. (b) The unfolded Lange coupler.



350 Chapter 7: Power Dividers and Directional Couplers

Coupled
.+

Coupled
-

rl

+
Input

Z"4,Zo4

(a)

, 90o+

2"4, Zo4

+
Through

Isolated
___.>

----'----:t>

Through

@

(b)

FIGURE 7.39 Equivalent circuits for the unfolded Lange coupler. (a) Four-wire coupled line
model. (b) Approximate two-wire coupled line model.

disadvantage of the Lange coupler is probably practical, as the lines are very narrow, close
together, and it is difficult to fabricate the necessary bonding wires across the lines. This
type of coupled line geometry is also referred to as interdigitated; such structures can also
be used for filter circuits.

The unfolded Lange coupler [11], shown in Figure 7.38b, operates essentially the same
as the original Lange coupler, but is easier to model with an equivalent circuit. Such an
equivalent circuit consists of a four-wire coupled line structure, as shown in Figure 7.39a.
All the lines have the same width and spacing. If we make the reasonable assumption that
each line couples only to its nearest neighbor, and ignore more distant couplings, then we
effectively have a two-wire coupled line circuit, as shown in Figure 7.39b. Then, if we can
derive the even- and odd-mode characteristic impedances, Z"a and Zoa,of the four-wire
circuit of Figure 7.39a in terms of Zs, and Zs, the even- and odd-mode characteristic
impedances of any adjacent pair of lines, we can apply the coupled line coupler results of
Section 7.6 to analyze the Lange coupler.

Figure 7.40a shows the effective capacitances between the conductors of the four-wire
coupled line of Figure 7.39a. Unlike the two-line case of Section 7.6, the capacitances of the

cm

?---1*-T *^T
(a) (b)

Effective capacitance networks for the unfolded Lange coupler equivalent circuits
of Figure 7.39. (a) Effective capacitance for the four-wire model. (b) Effective
capacitance for the two-wire model.

FIGURE 7.40
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four lines to ground are different depending on whether the line is on the outside (l and 4),
or on the inside (2 and 3). An approximate relation between these capacitances is given as

lr2l

Cin: C"" -
C"*C^ (7.92)

C.** C^

For an even-mode excitation, all four conductors in Figure 7.40a are at the same po-
tential, so C. has no effect and the total capacitance of any line to ground is

C " q : C . * l C i n . (7.93a)

For an odd-mode excitation, electric walls effectively exist through the middle of eachC^,
so the capacitance of any line to ground is

C o 4 : C e x * C i " * 6 C * .

The even- and odd-mode characteristic impedances are then

(7.93b)

where uo is the phase velocity of propagation on the line.
Now consider any isolated pair of adjacent conductors in the four-line model; the

effective capacitances are as shown in Figure 7.40b. The even- and odd-mode capacitances
are

1
Ze4: ----7-,

uPLe4

I
Zo4: -----;-,

uPLo+

C" : C"*,

C o :  C " * + 2 C ^ .

(7.94a)

(7.94b)

(7.95a)

(7.9sb)

(7,96a)

(7.96b)

(7.97a)

('1.97b)

Solving (7.95) for C"* and C^, and substituting inro (7 .93) with the ud of (1 .92) gives the
even-odd mode capacitances of the four-wire line in terms of a two-wire coupled line:

Since characteristic impedances are related to capacitance as Zs : 1 lu pC , we can rewrite
(7 .96) to give the even/odd mode characteristic impedances of the Lange coupler in terms
of the characteristic impedances of a two-conductor line which is identical to any pair of
adjacent lines in the coupler:

c"(3c" + c,)
L - -ee4 - 

cn + co

co(3co + c")
I  . -  -e o 4 -  

c n + c o

,"0:ffir.",
z,o:A#2,",

where Zs", Zs, arethe even- and odd-mode characteristic impedances of the two-conductor
pair.
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Now we can apply the results of Section 7.6 to the coupler of Figure 7.39b. From (7 .77)
the characteristic impedance is

Zs:  JzAzoa: (7.e8)

while the voltage coupling coefficient is, from (7.81),

z(z!" - z!,)
(7.ee)

z(zft"+ 23,) +2Zs"Zso'

where (7.97) was used. For design pu{poses, it is useful to invert these results to give
the necessary even- and odd-mode impedances for a desired characteristic impedance and
coupling coefficient:

Z"+ - Zo4

Z"q I Zoa

z  4 C - 3 + J 9 - 8 C ' _
^  2 c J 0 - c ) / 0 + c )

,^ : 4C *3 - J9 -Eez 
,^

2 c J 0 + c ) / ( r - c )

(7.100a)

(7.100b)

7.8

These results are approximate because of the simplifications involved with the appli-
cation of two-line characteristic impedaaces to the four-line circuit, and because of the
assumption of equal even- and odd-mode phase velocities. In practice, however, these re-
sults generally give sufficient acuracy. If necessary, a more complete analysis can be made
to directly determine Zsa and Zoafor the four-line circuit, as in reference [13].

THE 180" HYBRID

The 180' hybrid junction is a four-port network with a 180' phase shift between the two
output ports. It can also be operated so that the outputs are in phase. With reference to the
180' hybrid symbol shown in Figurc7.41, a signal applied to port I will be evenly split into
two in-phase components at ports 2 and 3, and port 4 will be isolated. If the input is applied
to port 4, it will be equally split into two components with a 180' phase difference at ports
2 and3, and port 1 will be isolated. When operated as a combiner, with input signals applied
at ports 2 and 3, the sum of the inputs will be formed at port 1, while the difference will
be formed at port 4. Hence, ports I and 4 arc referred to as the sum and difference ports,
respectively. The scattering matrix for the ideal 3 dB I 80" hybrid thus has the following form:

l s l : (7 .101)

The reader may verify that this maffix is unitary and symmetric.
The 180" hybridcanbefabricatedinseveralforms. Theringhybrid, orrat-race, shown

in Figures 7 .42 and7 .43a, can easily be constructed in planar (microstrip or stripline) form,

(E) or---------r@ ------->
180"

(^) | hybrid I

@ - @ - - - - - . - >

FIGURE 7.41 Symbol for a 180' hybrid junction.

r 0  1  1  0 l
- i l r  o  o  - l l
A l t  o  o  t  I

L 0  - r  r  0 l

Zs"Z6o(Zso * Zo)2

(3Zoo lZs " ) (32s " *Zo ) '
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FlGVnn7.42 Photograph of a microstrip ring hybrid.

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory Lexington, Mass.

riw
/ " 4

(c)

FIGURE 7.43 Hybrid junctions. (a) A ring hybrid, or rat-race, in microstrip or stripline form.

t
fr)
v

(b) A tapered coupled line hybrid. (c) A waveguide hybridjunction, or magic-T.
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although waveguide versions are also possible. Another type of planar 180' hybrid uses
tapered matching lines and coupled lines, as shown in Figure 7.43b. Yet another type of
hybrid is the hybrid waveguide junction, or magic-T, shown in Figure 7.43c. We will first
analyze the ring hybrid, using an even-odd mode analysis similar to that used for the branch-
line hybrid, and use a similar technique for the analysis of the tapered line hybrid. Then we
will qualitatively discuss the operation of the waveguide magic-T.

Even-Odd Mode Analysis of the Ring Hybrid

First consider a unit amplitude wave incident at port 1 (the sum port) of the ring hybrid of
Figure 7.43a. At the ring junction this wave will divide into two components, which both
arrive in phase at ports 2 and 3, and 180o out of phase at port 4. Using the even-odd mode
analysis technique [5], we can decompose this case into a superposition of the two simpler
circuits and excitations shown in Figure 7.44.Then the amplitudes of the scattered waves
from the ring hybrid will be

1 1Bt: tl" * ar",

nz:  ) r "  * ) r " ,

I

tTo'

1- 
tT''

8 3 :

8 4 :

1* f .
2 -

!r.
2 "

(t.1O2a)

(7.102b)

(7.102c)

(7.102d)

We can evaluate the required reflection and transmission coefficients defined in Fig-
ure 7.44 using theABCD matrix for the even- and odd-mode two-port circuits in Figurel .44.

+

(a)

+
+ll2 r]\

...4 V
an t o

(b)

Even- and odd-mode decomposition of the ring hybrid when port I is excited with
a unit amplitude incident wave. (a) Even mode. (b) Odd mode.

o.c.

FIGURE 7.44
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l e  8 1
t t :

L C  D  ) "

l t  8 1
I C  D ) .

Then with the aid of Table 4.2wehave

B t  : 0 ,

- i
B't : --L.

-  / a '

4 :  
-- ! ,
\/2

B a : 0 ,

1 l
Bt :  

,7"  
-  

tT" ,
1 1

Bz :  t l "  t f  " ,

1 1Bz: ,7" * a'" ,
l 1

Bq: 
t l "  n t ' ' '
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(7.103a)

(7.r03b)

(7.104a)

(7.104b)

(7.104c)

(7.104d)

(7.105a)

(7.1Osb)

(7.105c)

(7.10sd)

(7.106a)

(7.106b)

(7.106c)

(7.106d)

I t jJtl
L ia  - t  I '
|  - t  jJ t l
Li^tz t I '

T,

- l

- j

j

- j

f"

f,

To

Using these results in (7.102) gives

which shows that the input port is matched, port 4 is isolated, and the input power is evenly

divided and in phase between ports 2 and 3. These results form the first row and column of

the scattering matrix in (7.101).
Now consider a unit amplitude wave incident at port 4 (the difference port) of the ring

hybrid of Figure 7.43a.The two wave components on the ring will arrive in phase atports2
and 3, with a net phase difference of 180' between these ports. The two wave components
will be 180' out of phase at port 1. This case can be decomposed into a superposition of

the two simpler circuits and excitations shown in Figure 7.45. Then the amplitudes of the

scattered waves will be
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FIGURE 7.45 Even- and odd-mode decomposition of the ring hybrid when port 4 is excited with

c_>
r"

(a)

a unit amplitude incident wave. (a) Even mode. (b) Odd mode.

The ABCD matrices for the even- and odd-mode circuits of Figure 7 .45 arc

l A  8 1  [ - r  i A 1
I  l : l
LC D )" Lia 1 I' 

Q 'ro7a)

l A  B l : f  I  i a 1
LC D J, t ia 

"-t  
I  

Q'ro1b)

Then from Table 4.2, the necessary reflection and transmission coef8cients are

Using these results in (7.106) gives

I

-  
l . '

- i
- / .

- i
L O  -

- i
T " :  - * .

B t  : 0 ,

i
B t  = : : .- / a

- i
B z :  - 4 .

- l a

8 4 : 0 ,

(7.108a)

(7.108b)

(7.108c)

(7.108d)

(7.109a)

(7.109b)

(7.ro9c)

(7.1Oed)
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which shows that the input port is matched, port 1 is isolated, and the input power is evenly
divided into ports 2 and3 with a 180' phase difference. These results form the fourth row
and column of the scattering matrix of (7.101). The remaining elements in this matrix can
be found from symmetry considerations.

The bandwidth of the ring hybrid is limited by the frequency dependence of the ring
lengths, but is generally on the order of 2O-30Vo. Increased bandwidth can be obtained by
using additional sections, or a symmetric ring circuit as suggested in reference [14].

EXAMPLE 7.9 DESIGN AND PERFORMANCE OF A RING HYBRID

Design a 180' ring hybrid for a 50 O system impedance, and plot the magnitude
of the S parameters (S1;) from 0.5 /e to 1.5 /e, where /s is the design frequency.

Solution
With reference to Figure 7 .43a, the characteristic impedance of the ring transmis-
sion line is

J-zo: io. i  a,

while the feedline impedances are 50 O. The S parameter magnitudes are plotted
versus frequency in Figure 7.46. I

Even-Odd Mode Analysis of the Tapered Coupled Line Hybrid

The tapered coupled line 180" hybrid [15], shown in Figure 1.43b, can provide any power
division ratio with a bandwidth of a decade or more. This hybrid is also referred to as an
asymmetric tapered coupled line coupler.

The schematic circuit of this coupler is shown in Figure 7.47; the ports have been
numbered to correspond functionally to the ports of the 180' hybrids in Figures 7.4I and
7.43. The coupler consists of two coupled lines with tapering characteristic impedances
over the length 0 < z < L. At z:0 the lines are very weakly coupled so that Zs"(O):
Zso(O) : Zs, while at z : L the coupling is such that Zo"(L) : Zo/k and Zo,(L) - kZo,
where 0 < k < I is a coupling factor which we will relate to the voltage coupling factor.
Theevenmodeofthecoupledlinethusmatchesaloadimpedanceof Zs/k(atz: L)toZo,
while the odd mode matches aload of kZg to Zo;note thal Zo"(z)Zo"k) : Z2o for all z. The
Klopfenstein taper is generally used for these tapered matching lines. For L < z < 2L,the
lines are uncoupled, and both have a characteristic impedance Zs;Ihese lines are required

40
0.5/o L , J J Ofo

t - - - - - ' = - . ! - - - { 1 3

FIGURE 7.46 S parameter magnitudes versus frequency for the ring hybrid of Example 7.9.
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FIGURE 7.47 (a) Schematic diagram of the tapered coupled line hybrid. (b) The variation of

characteristic impedances.

for phase compensation of the coupled line section. The length of each section, 0 : FL,
must be the same, and should be electrically long to provide a good impedance match over
the desired bandwidth.

First consider an incident voltage wave of amplitude Vs applied to port 4, the difference
input. This excitation can be reduced to the superposition of an even-mode excitation and
an odd-mode excitation, as shown in Figure 7.48a,b. At the junctions of the coupled and

<__r
f-

(a)

-vol2 zo
->---------4,

@ \ ^ ? p

ZooQ)
.� 2,,

+vs /2zo@- * re
_:+4 f; To

<-r
lo

(b)

FIGURE 7.48 Excitation of the tapered coupled line hybrid. (a) Even-mode excitation. O) Odd-

vo/2 zo

mode excitation.
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uncoupled lines (z : L), the reflection coefficients seen by the even or odd modes of the

tapered lines are

.  Z n - Z n l k  k - l
' " -  

Z o - f Z o l k  k + l '

n ,  Z o - k Z o  I - k
t o :  

7 o a 1 a f i :  l + k '

Then at z : 0 these coefficients are transformed to

k - l
| - :-----:-e-zio,' " -  

k + l

1 _ kf ': ffie-2io'

Then by superposition the scattering parameters of ports 2 and 4 are as follows:

s* :  ) { r "*  r , )  :0,

sro: !r{r"- f,) : ftr-'tt.

(7.1 10a)

(7.110b)

(7.1 1 1a)

(7 .11 lb )

(7.112a)

(7.112b)

By symmetry, we also have that Szz: O and Sa2: $2a.
To evaluate the transmission coefficients into ports 1 and 3, we will use the ABCD

parameters for the equivalent circuits shown in Figure 7.49, where the tapered matching

sections have been assumed to be ideal, and replaced with transformers. TheABCD maffix
of the hansmission line-ffansformer-transmission line cascade can be found by multiplying

the three individualABCD matrices for these components, but it is easier to use the fact that

the ffansmission line sections affect only the phase of the transmission coefficients. The
ABCD matrix of the transformer is. for the even mode,

IJE o I
L o t /Jn l '

"lE: I

+ + z o  @
+ 0 + + e +

(a) 

-{

r : . ' lE

zo? ; l

- 0 + + 0 +

(b) 
-*

Equivalent circuits for the tapered coupled line hybrid, for kansrnission from port 4

to port 3. (a) Even-mode case. (b) Odd-mode case.
FIGURE 7.49
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and for the odd mode is

r t tJE o l
L o JE)-

Then the even- and odd-mode transmission coefficients are

T "  :  To :  4 " - ' t ' ,

since T :21(A+ Blzo+CZt+ D):zJTl(k* 1) for both modes; the e-zjq factor
accounts for the phase delay of the two transmission line sections. We can then evaluate the
following S parameters:

^  l _  2 J E  _ , , oSzq : 
r(7" * T) : 

T11e-'t'.
I

Su : 
t(7" 

- T) :0.

The voltage coupling factor from port 4 to port 3 is then

F : l s y l  : ? f , .  o < p < r .
k + r

while the voltage coupling factor from port 4 to port 2 is

k - r
cv : lSz+l : -;11, 0 < cv < 1.

Power conservation is verified by the fact that

lSz+12 + lS:+12 :  a2 + F2 :1.

If we now apply even- and odd-mode excitations at ports 1 and 3, so that superposition
yields an incident voltage wave at port 1, we can derive the remaining scattering pararneters.
With a phase reference at the input ports, the even- and odd-mode reflection coefficients at
port 1 will be

r  l - k
l" : 

i *7e-2i0.
k - l  _ , , ,

I  o :  
- e  - t " .

Then we can calculate the following S parameters:

s r , : j { r " + f , ) - 0 ,

g, : 
){r"- r,) : fi"-'it 

: qe-2i0.

From symmetry we also have that S33 - 0, Sr: - S31, and that Sr+ : ^S:2, Srz : S:a.
The tapered coupled line 180' hybrid thus has the following scaffering matrix:

'":[i i.i t,,f*"

(7.r13)

(7.114a)

(7.1r4b)

(7.rIla)

(7.1 15b)

(7.rr6a)

(7.116b)

(7.117a)

(7.rr7b)

(7. 1 18)
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+ @

@ *

(b)

FIGURE 7.50 Electric fleld lines for a waveguide hybrid junction. (a) Incident wave at port 1.

ft) Incident wave at Dort 4.

Waveguide Magic-T

The waveguide magic-T hybrid junction in Figure 7.43c has terminal properties similar
to those of the ring hybrid, and a scattering matrix similar in form to (7.101). A rigorous
analysis of this junction is too complicated to present here, but we can explain its operation
in a qualitative sense by considering the field lines for excitations at the sum and difference
ports.

First consider a TEls mode incident at port 1. The resulting E, field lines are illustrated
in Figure 7.50a, where it is seen that there is an odd symmetry about guide 4. Since the field
lines of a TEle mode in guide 4 would have even symmetry, there is no coupling between
ports 1 and 4. There is identical coupling to ports 2 and 3, however, resulting in an in-phase,
equal-split power division.

For a TEls mode incident at port 4, the field lines are as shown in Figure 7.50b. Again
ports 1 and 4 are decoupled, due to symmetry (or reciprocity). Ports 2 and 3 are excited
equally by the incident wave, but with a 180' phase difference.

In practice, tuning posts or irises are often used for matching; such components must
be placed symmetrically to maintarn proper operation of the hybrid.

OTHER COUPLERS

While we have discussed the general properties of couplers, and have analyzed and derived
design data for several of the most frequently used couplers, there are many other types of
couplers that we have not treated in detail. In fhis section, we will briefly describe some of
these.

Moreno crossed-guide coupler This is a waveguide directional coupleq consisting of two
waveguides at right angles, with coupling provided by two aperfures in the common broad
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FIGURE 7.51 The Moreno crossed-guide coupler.

wall of the guides. See Figure7.5T.Byproper design [16], the two wave components excited
by these apertures can be made to cancel in the back direction. The apertures usually consist
of crossed slots, in order to couple tightly to the fields of both guides.

Schwinger reversed-phase couplen This waveguide coupler is designed so that the path
lengths for the two coupling apertures are the same for the uncoupled port, so that the
directivity is essentially independent of frequency. Cancellation in the isolated port is ac-
complished by placing the slots on opposite sides of the centerline of the waveguide walls,
as shown in Figure 7.52, which couple to magnetic dipoles with a 180' phase difference.
Then, the ),g14 slot spacing leads to in-phase combining at the coupled (backward) port,
but this coupling is very frequency sensitive. This is the opposite situation from that of the
multihole waveguide coupler discussed in Section 7.4.

Riblet short-slot coupler Figure 7.53 shows a Riblet short-slot coupler, consisting of two
waveguides with a common sidewall. Coupling takes place in the region where part of the
common wall has been removed. In this region, both the TEls (even) and the TEzo (odd)
mode are excifed, and by proper design can be made to cause cancellation at the isolated
pon and addition at the coupled port. The width of the interaction region must generally be
reduced to prevent propagation of the undesired TE:o mode. This coupler can usually be
made smaller than other waveguide couplers.

7'rhrouen

Coupled Input

FIGURE 7.52 The Schwinger reversed-phase coupler.

Through
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Through

Isolated Input

FIGURE 7.53 The Riblet short-slot coupler

Symmetric tapered coupled line coupler We saw that a continuously tapered transmission
line matching transformer was the logical extension of the multisection matching trans-
former. Similarly, the multisection coupled line coupler can be extended to a continuous
tapeq yielding a coupled line coupler with good bandwidth characteristics. Such a coupler
is shown in Fi gure7 .54. Generally, both the conductor width and separation can be adjusted
to provide a synthesized coupling or directivity response. One way to do this involves the
computer optimization of a stepped-section approximation to the continuous taper [17].
This coupler provides a 90' phase shift between the outputs.

Couplers with apertures in planar lines. Many of the above-mentioned waveguide couplers
can also be fabricated with planar lines such as microsffip, stripline, dielectric image lines, or
various combinations of these. Some possibilities are illustrated in FigureT .55.In principle,

the design of such couplers can be carried out using the small-hole coupling theory and

analysis techniques used in this chapter. The evaluation of the fields ofplanar lines, however,
is usually much more complicated than for rectangular waveguides.

POINT OF INTEREST: The Reflectometer

A reflectometer is a circuit that uses a directional coupler to isolate and sample the incident

and reflected powers from a mismatched load. It forms the heart of a scalar or vector network

analyzel as it can be used to measure the reflection coefficient of a one-port network and, in a

more general configuration, the S parameters of a two-port network. It can also be used as an

SWR meter, or as a power monitor in systems applications.
The basic reflectometer circuit shown on the next page can be used to measure the reflection

coefficient magnitude of an unknown load. If we assume a reasonably matched coupler with loose

FIGURE 7.54 A symmetric tapered coupled line coupler.
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FIGURE 7.55
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(c)

Various aperfire coupled planar line couplers. (a) Microstrip-to-microstrip
coupler. (b) Microstrip-to-waveguide coupler. (c) Microstrip-to-dielectric image
line coupler.

coupling (C << 1), so that y'l * C2 - l, then the circuit can be represented by the signal flow
graph shown below. In operation, the directional coupler provides a sample, V;, of the incident
wave, and a sample, %, of the reflected wave. A ratio meter with an appropriately calibrated
scale can then measure these voltages and provide a reading in terms of reflection coefficient
magnitude, or SWR.

Realistic directional couplers, however, have finite directivity, which means that both the
incident and reflected powers will contribute to both Vi and, V,,leading to an error. If we assume
a unit incident wave from the source, inspection of the signal flow graph leads to the following
expressions for V; and V.:

J
f

v 1 :  g  l 9 v r i e

* Cleta,

where f is the reflection coefficient of the load, D - 10(D dB/20) is the numerical directivity of the
coupler, arrd 0, Q are unknown phase delay differences through the circuit. Then the maximum
and minimum values of the magnitude of V, /Vi can be written as

v . : 9' D

l v ,  I  l f  l * ;

I tr l*,:;gf
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For a coupler with inflnite directivity this reduces to the desired result of lll. Otherwise a
measurement uncertainty of approximately +l I D is introduced. Good accuracy thus requires a
coupler with high directivity, preferably greater than40 dB.

t l l
t )1

t3l
t4l
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PROBLEMS

Microwave Theory and

IEEE Trans. Microwave

and Continuously Tapered Symrnetrical
on Microwave Theory and Techniques,

7.1 ConsidertheT-junctionofthreelineswithcharacteristicimpedancesZl,22,and23,asshownbelow.
Demonstrate that it is impossible for all three lines to be matched, when looking toward the junction.
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7.2 A dtrectonal coupler has the scattering matrix given below. Find the directivity, coupling, isolation,
and retum loss at the input port when the other ports are terminated in matched loads.

l s l :

o.0s190l
o.rcq I
o.e6D I
0.0513Ql

r o  0 5 / 3 0

I o.soza
lo . rc9
L o.osz9Q

0.96D. 0.1D0
o.05z30 o.osl90
0.0sD9. 0.04133�9.
0.rD9. 0.e6D

7.4

7.5

7.6

7.3 Two identical 90" couplers with C : 8.34 dB are connected as shown below. Find the resulting phase
and amplitudes at ports 2' and3', relative to port 1.

A 2 W power source is connected to the input of a directional coupler with C : 20 dB, D : 25 dB,
and an insertion loss of 0.7 dB. Find the output powers (in dBm) at the through, coupled, and isolated
ports. Assume all ports to be matched.

Design a lossless T-junction divider with a 30 O source impedance to give a 3:1 power split. Design
quarter-wave matching transformers to convert the impedances of the ouput lines to 30 O. Determine
the magnitude of the S parameters for this circuit, using a 30 O characteristic impedance.

Consider the T and z resistive attenuator circuits shown below. If the input and output are matched
to Zs, andthe ratio of output voltage to input voltage is o, derive the design equations for R1 and R2
for each circuit. If Zo :50 Q, compute R1 and R2 for 3 dB, l0 dB, and 20 dB attenuators of each
tvDe.

4vo

7.7 Design a three-port resistive divider for an equal power split and a 100 Q system impedance. If port
3 is matched, calculate the change in output power at port 3 (in dB) when port 2 is connected first to
a matched load, and then to a load having a mismatch of f : 0.3.

J
f = 0 o r 0 . 3
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Consider the general resistive divider shown below. For an arbitrary power division ratio, a : Pz/ Pz,
derive expressions for the resistors R1, Rz, and R3, and the output characteristic impedances Zoz, Zoz
so that all ports are matched, assuming the source impedance is 26.

Pt"-

Design a Wilkinson power divider with a power division ratio of fu I P2 : 1/3, and a source impedance
of 50 g.

Derive the design equations in (7.37a,b,c) for the unequal-split Wilkinson divider.

For the Bethe hole coupler of the type shown in Figure 7.16a, derive a design for s so that port 3 is
the isolated port.

Design a Bethe hole coupler of the type shown in Figure 7.16a for Ku-band waveguide operating at
l1 GHz. The required coupling is 20 dB.

Design a Bethe hole coupler ofthe type shown in Figure 7.16b for Ku-band waveguide operating at
17 GHz. The required coupling is 30 dB.

Design a five-hole directional coupler in Ku-band waveguide with a binomial directivity response.
The center frequency is 17.5 GHz, and the required coupling is 20 dB. Use round apertures centered
across the broad wall of the waveguides.

RepeatProblemT.14 for a design with a Chebyshev response, having a minimum directivity of 30 dB.

Develop the necessary equations required to design a two-hole directional coupler using two wave-
guides with apeffures in a common sidewall, as shown below.

7.9

7.10

7.ll

7.12

7.r3

7.14

7.15

7.16

i
i

7.17 Consider the general branch-line coupler shown on the next page having shunt arm characteristic
impedances Zo, and series arm characteristic impedances 26. Using an even-odd mode analysis,
derive design equations for a quadrature hybrid coupler with an arbitrary power division ratio of
u : Pz/ Pz, and with the input port (port l) matched. Assume all arms are ),/4long.Is port 4 isolated,
in seneral?
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7.18 An edge-coupled stripline with a ground plane spacing of 0.32 cm and a dielectric constant of 2.2 is
required to have even- and odd-mode characteristic impedances of Zs" : 70 Q and Zoo : 40 Q. Find
the necessary strip widths and spacing.

7.19 A coupled microstrip line on an FR-4 substrate with e, : 4.2 and d : 0.158 cm has strip widths of
0.30 cm and a strip spacing of 0.1173 cm. Find the even- and odd-mode characteristic impedances.

7.20 Repeat the derivation in Section 7 .6 for the design equations of a single-section coupled line coupler
using reflection and transmission coef0cients, instead of voltages and currents.

7.21 Designasingle-sectioncoupledlinecouplerwithacouplingof19.ldB,asystemimpedanceof60Q,
and a center frequency of 8 GHz. If the coupler is to be made in stripline (edge-coupled), with €, : 2.2
and b :0.32 cm, find the necessary strip widths and separation.

7.22 RepeatProblem7 .21 for a coupling factor of 5 dB. Is this a practical design?

7.23 Deive Equations (7.83) and (7.84).

7.24 A 20 dB three-section coupled line coupler is required to have a marimally flat coupling response,
with a center frequency of 3 GHz, and 26 : 50 A. (a) Design the coupler and find Zs. dnd Zx, for each
section. Use CAD to plot the resulting coupling (in dB) ftom 1 to 5 GHz. (b) Lay out the mioostrip
implementation of the coupler on an FR4 substrate havinge , = 4.2, d : 0.158 cm, tan 6 : 0.02, with
copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus frequency.

7.25 Repeat Problem 7.24 for a coupler with an equal-ripple coupling response, where the ripple in the
coupling is I dB over the passband.

7.26 For the Lange coupler, derive the design equations (7.100) for Zs" and Zoo ftom (7.98) and (7.99).

7.27 Design a 3 dB Lange coupler for operation at 5 GHz. If the coupler is to be fabricated in microstrip on
an alumina substrate with €, : 10 and d : 1 .0 mm, compute Zs, and Z0o for the two adjacent lines,
and find the necessary spacing and widths of the lines.

7.28 Consider the four-port hybrid transformer shown below. Determine the scattering matrix for this de-
vice, and show that it is similar in form to the scattering matrix for the 180' hybrid. Let the port

characteristic impedances be Zu - Zu : Zo; Zoz. : Zot :22o. (Thrs type of transformer is often
used in telephone circuits.)

7.29 An input signal V1 is applied to the sum port of a 180' hybrid, and another signal Va is applied to the
difference port. What are the output signals?

/ t \

rn
v

zozbzoo

@

P2

------->
P^
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7.30 Calculate the even- and odd-mode characteristic impedances for a tapered coupled line 180" hybrid
coupler with a 3 dB coupling ratio and a 50 Q characteristic impedance.

7.31 Find the S parameters for the four-port Bagley polygon power divider shown below.

7.32 For the symmetric hybrid shown below, calculate the output voltages if port I is fed with an incident
wave of l/Q V. Assume the outputs are matched.

7.33 The Bailey unequal-split power divider uses a 90' hybrid coupler and a T-junction, as shown below.
The power division ratio is controlled by adjusting the feed position, a, along the transmission line of
length b that connects ports I and 4 of the hybrid. A quarter-wave transformer of impedance Zo/ J2
is used to match the input of the divider. (a) For b : I/4, show that the output power division ratio
isgivenby \/P2:tanz(na/2b). (b)Usingabranch-linehybridwith Zo:50 Q,designapower
divider with a division ratio of fi / P2 : 0.5, and plot the resulting input retum loss and transmission
coeffi cients versus frequency.

4 o t

it4



Microwave Filters

A microwave filter is a two-port network used to control the frequency response at a certain
point in a microwave system by providing transmission at frequencies within the passband of the
filter and attenuation in the stopband of the filter. Typical frequency responses include low-pass,
high-pass, bandpass, and band-reject characteristics. Applications can be found in virnrally any
type of microwave cofilmunication, radar, or test and measurement system.

Microwave fllter theory and practice began in the years preceding World War II, by pioneers
such as Mason, Sykes, Darlington, Fano, Lawson, and Richards. The image parameter method
of filter design was developed in the late 1930s and was useful for low-frequency filters in
radio and telephony. In the early 1950s a group at Stanford Research Institute, consisting of
G. Matthaei, L. Young, E. Jones, S. Cohn, and others, became very active in microwave filter and
coupler development. A voluminous handbook on filters and couplers resulted from this work
and remains a valuable reference [1]. Today, most microwave filter design is done with sophis-
ticated computer-aided design (CAD) packages based on the insertion loss method. Because
of continuing advancements in network synthesis with distributed elements, the use of low-
temperature superconductors, and the incorporation of active devices in filter circuits, micro\ryave
filter design remains an active research area.

We begin our discussion of filter theory and design with the frequency characteristics
of periodic structures, which consist of a transmission line or waveguide periodically loaded
with reactive elements. These structures are of interest in themselves, because of the appli-
cation to slow-wave components and traveling-wave amplifler design, and also because they
exhibit basic passband-stopband responses that lead to the image parameter method of filter
design.

Filters designed using the image parameter method consist of a cascade of simpler two-port
filter sections to provide the desired cutoff frequencies and attenuation characteristics, but do
not allow the specification of a frequency response over the complete operating range. Thus,
although the procedure is relatively simple, the design of filters by the image parameter method
often must be iterated many times to achieve the desired results.

A more modern procedure, called the insertion loss method, uses network synthesis tech-
niques to design filters with a completely specified frequency response. The design is simplified
by beginning with low-pass filter prototypes that are normalized in terms of impedance and
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8.1 Periodic Structures 371

frequency. Transformations are then applied to convert the prototype designs to the desired
frequency range and impedance level.

Both the image parameter and insertion loss method of filter design provide lumped-
element circuits. For microwave applications such designs usually must be modified to use
distributed elements consisting of transmission line sections. The Richard's transformation and
the Kuroda identities provide this step. We will also discuss transmission line filters using
stepped impedances and coupled lines; filters using coupled resonators will also be briefly
described.

The subject of microwave filters is quite extensive, due to the importance of these compo-
nents in practical systems and the wide variety of possible implementations. We give here a
treatment of only the basic principles and some of the more common filter designs, and refer
the reader to references such as [1], [2],131, and [4] for further discussion.

8.1 PERIODIC STRUCTURES

An infinite transmission line or waveguide periodically loaded with reactive elements is
referred to as a periodic structure. As shown in Figure 8.1, periodic structures can take
various forms, depending on the transmission line media being used. Often the loading
elements are formed as discontinuities in the line, but in any case they can be modeled as
lumped reactances across a transmission line as shown in Figure 8.2. Periodic structures
support slow-wave propagation (slower than the phase velocity of the unloaded line), and

W W M M @ # @ W ffi W

(a)

(b)

Examples of periodic structures. (a) Periodic stubs on a microstrip line. (b) Periodic
diaphragms in a waveguide.

FIGURE 8.1
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Zo' k \-...-...vJ

Unit cell

.+
z

FIGURE 8.2 Equivalent circuit of a periodically loaded tansmission line. The unloaded line has
characteristic impedance Zo arld propagation constant k.

have passband and stopband characteristics similar to those offilters; they find application
in traveling-wave tubes, masers, phase shifters, and antennas.

Analysis of Infinite Periodic Structures

We begin by studying the propagation characteristics of the infinite loaded line shown in
Figure 8.2. Each unit cell of this line consists of a length d of transmission line with a
shunt susceptance across the midpoint of the line; the susceptance b is normalized to the
characteristic impedance, Zs. If we consider the infinite line as being composed of a cascade
of identical two-port networks, we can relate the voltages and currents on either side of the
nth unit cell usins the ABCD matrix:

(8 .1 )

where A, B, C, and D are the matrix parameters for a cascade of a transmission line section
of length d f 2, a shunt susceptance b, and another transmission line section of length d 12.
From Table 4.1 we then have, in normalized form,

I t ; l: I

l ';1:lt 3)l '; i l,

; (,i'e *ur*"t *ur) ("o,e - 
u1'^t)

"o,t1 ,,t" 1l r , of [ ""'X i '* X I
i sinf, *,x lLiu 'l Lr,- x "", x J

(.o,a -  
l "^t)  ;  (s i 'e +l*,e . �br)

]  

( 8 2 )

where 0 : kd, andk is the propagation constant of the unloaded line. The reader can verify
that AD - BC : 1, as required for reciprocal networks.

For a wave propagating in the *z direction, we must have

V(z):  V(o)s-rz,

I(z):  I (Q)s-rz,

(8.3a)

(8.3b)

for a phase reference at z : 0. Since the structure is infinitely long, the voltage and current
at the n th terminals can differ from the voltage and current at the n * 1 terminals only bv



the propagation factor, e-Y d . Thus,

Vn+l : Vng-Yd

In+1 :  Ing-Yd,

Using this result in (8.1) gives the following:

For a nontrivial solution. the determinant of the above matrix must vanish:

AD a szrd - @ + Dlsra - BC : 0,

l';) : lt',ll';i) : l'*::;1'
lo;" 2, s ,, ')l ' ; i l  : o'
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(8.4a)

(8.4b)

(8.6)

or, since AD - BC : l,

1 + ezvd - (A+ o)eva

,-vd 4 rrd

coshyd

- 0 ,

:  A *  D ,

A + D :coSd -brs ine , (8.7)

(8.9a)

where (8.2) was used for the values of A and D. Now if y : a I j fr , we have that

coshyd: coshsd co s Bd -f j sinhad sin Bd :cos g - b; 
sine. (8.8)

L

Since the right-hand side of (8.8) is purely real, we must have either cv : 0 or f : O.

Case l: ot :0, P + O. This case corresponds to a nonattenuating, propagating wave on
the periodic structure, and defines the passband ofthe structure. Then (8.8) reduces to

which can be solved for B if the magnitude of the right-hand side is less than or equal to
unity. Note that there are an infinite number of values of B that can satisfy (8.9a).

Case 2: q + 0, f : 0, n. In this case the wave does not propagate, but is attenuated along
the line; this defines the stopband of the structure. Because the line is lossless, power is not
dissipated, but is reflected back to the input of the line. The magnitude of (8.8) reduces to

^ b
cosBd :  cos0  -  

1s in0 ,

cosh ad : I cos g - 
f,sinel 

>- t. (8.eb)

whichhasonlyonesolution(cv > 0)forpositivelytravelingwaves; cv < 0appliesfornega-
tively traveling waves. If cos 0 - (b /2) sin 0 < - 1, (8.9b) is obtained from (8.8) by letting

fl : n; then all the lumped loads on the line are ),12 aparr, yielding an input impedance the
same as if p : g.

Thus, depending on the frequency and normalized susceptance values, the periodically
loaded line will exhibit either passbands or stopbands, and so can be considered as a type
of filter. It is important to note that the voltage and current waves defined in (8.3) and (8.4)
are meaningful only when measured at the terminals of the unit cells, and do not apply to
voltages and currents that may exist at points within a unit cell. These waves are similar to
the elastic waves (Bloch waves) that propagate through periodic crystal lattices.
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Besides the propagation constant of the waves on the periodically loaded line, we
will also be interested in the characteristic impedance for these waves. We can define a
characteristic impedance at the unit cell terminals as

ZB:  ZOH (8.10)

(8 .1  1 )

(8.r2)

since Vr11 and In',1in the above derivation were normalized quantities. This impedance is
also referred to as the Bloch impedance. From (8.5) we have that

(A - eY")Vnar -f B In+t - O,

so (8.10) yields

Z n :
-BZo

A  -  e Y d '

From (8.6) we can solve for evd interms of A and D as follows:

(A+ D)*J(ETW - 4
2

Then the Bloch impedance has two solutions given by

-2BZs
Z;

2 A - A - D a J ( A + D P =
For symmetrical unit cells (as assumed in Figure 8.2) we will always have A : D. In this
case (8. I 1) reduces to

X.BZoZ i :
Jp=

The * solutions correspond to the characteristic impedance for positively and negatively
traveling waves, respectively. For symmetrical networks these impedances are the same
except for the sign; the characteristic impedance for a negatively traveling wave turns out
to be negative because we have defined 1, in Figure 8.2 as always being in the positive
direction.

From (8.2) we see that B is always purely imaginary. If cv : 0, B I 0 (passband), then
(8.7) shows that cosh yd : A < 1 (for symmetrical networks) and (8.12) shows that Z3
wi l lbereal . I ta  lO,  f  :0(stopband), then(8.7)showsthatcoshyd -  A> 1,and(8.12)
shows that Zp is imaginary. This situation is similar to that for the wave impedance of a
waveguide, which is real for propagating modes and imaginary for cutoff, or evanescent,
modes.

Terminated Periodic Structures

Next consider a truncated periodic structure, terminated in a load impedance Zr, as shown
in Figure 8.3. At the terminals of an arbitrary unit cell, the incident and reflected voltages

In
+

FIGURE 8.3 A periodic structure terminated in a normalized load impedance Z;.
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and currents can be written as (assuming operation in the passband)

Vn - l/{ s-iF"o + V; "iF'o ,

t t - l  t / -
In: l{s-l7no + I;rifno : }s-if lna a J-9-si|nd,

Z; Z;

(8.13a)

(8.13b)

(8.14a)

(8.14b)

(8.15a)

(8.1sb)

(8.16)

(8.17)

(8. r8)

where we have replaced yz in (8.3) with jpnd, since we are interested only in terminal
quantities.

Now define the followins incident and reflected voltases at the nth unit cell:

Then (8.13) can be written as

Vf : VIs-iana,

v; : v; eiBnd .

v , : V f  + v ; ,
v! v:

I - --.!!- -L --J!-" -  z [ '  z u '

At the load, where n : N, we have

VN : Vi + Y; : ZyI1,1 : t, (4 -+)

so the reflection coefficient at the load can be found as

- vN zL/z; - |
vi zLlz; - I

If the unit cell network is symmetrical (A : D), then Ztr : -Z; = Zn, which reduces
(8.17) to the familiar result that

^  Z r - Z a
' -  

Z t l Z n '

So to avoid reflections on the terminated periodic structure, we must have Z7 - Zp,
which is real for a lossless structure operating in a passband. If necessary, a quarter-wave
ffansformer can be used between the periodically loaded line and the load.

kB Diagams and Wave Velocities

When studying the passband and stopband characteristics of a periodic sffucture, it is useful
to plot the propagation constant, B, versus the propagation constant of the unloaded line,
k (or ro). Such a graph is called a k-B diagram, or Brillouin diagram (after L. Brillouin, a
physicist who studied wave propagation in periodic crystal strucfures).

Thek-B diagramcanbe plotted from (8.9a), whichis the dispersion relation for a general
periodic structure. In fact, ak-B diagramcan be used to study the dispersion characteristics
of many types of microwave components and transmission lines. For instance, consider the
dispersion relation for a waveguide mode:

k2 - k?,

p2 + t4, (8.1e)
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Slope = vrlc

Slope = volc

0

FIGURE 8.4 k-B diagram for a waveguide mode.

where k, is the cutoff wavenumber of the mode, fr is the free-space wavenumber, and F is the
propagation constant of the mode. Relation (8.19) is plotted in the k-B diagram of Figure 8.4.
For values of ft < ft., there is no real solution for B, so the mode is nonpropagating. For
k > k", the mode propagates, and ft approaches B for large values of B (TEM propagation).

The k-B diagram is also useful for interpreting the various wave velocities associated
with a dispersive sffucture. The phase velocify is

(8.20)

which is seen to be equal to c (speed of light) times the slope of the line from the origin to
the operating point on the k-B diagram. The group velocity is

da dk
, r :  

d f i : ,  d p ,

which is the slope of the k-B curve at the operating point. Thus, referring to Figure 8.4,
we see that the phase velocity for a propagating waveguide mode is infinite at cutoff and
approaches c (from above) as k increases. The group velocity, however, is zero at cutoffand
approaches c (from below) as ft increases. We finish our discussion of periodic structures
with a practical example of a capacitively loaded line.

EXAMPLE 8.1 ANALYSIS OF A PERIODIC STRUCTURE

Consider a periodic capacitively loaded line, as shown in Figure 8.5 (such aline may
be implemented as in Figure 8. I with short capacitive stubs). If Z0 - 5O 52, d :
1.0 cm, and Cs :2.666 pF, sketch the k-B diagram and compute the propagation
constant, phase velocity, and Bloch impedance at f :3.0 GHz. Assume k : ko.

a k, r :  
7 : ,  p ,

(8.21)

L -
T-'

t l
-  L ^  -  L 0

t " l+..zo,k I

T.'
FIGURE 8.5 A capacitively loaded line.

v/
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Solution
We can rewrite the dispersion relation of (8.9a) as

cosBd: coskod - (ry)kodsinkod.

Then

2(0.01)

so we have

cos pd : cos frod - zkad sinksd.

The most straightforward way to proceed at this point is to numerically evaluate
the right-hand side of the above equation for a set of values of ftsd startin g at zero.
When the magnitude of the right-hand side is unity or less, we have a passband

and can solve for Bd. Otherwise we have a stopband. Calculation shows that the
first passband exists for 0 < kod < 0.96. The second passband does not begin until
the sin ked term changes sign at ksd : ir . As kod increases, an infinite number
of passbands are possible, but they become nturower. Figure 8.6 shows the k-B
diagram for the first two passbands.

At 3.0 GHz, we have

krd :2JS t-r::)(o.or) : 0.6283 - 36o,
3 x 1 0 u

so Bd :1.5 and the propagation constant is B : 150 rad/m. The phase velocity
is

koc 0.6283
, o : i : t L 5  r : 0 . 4 2 c ,

which is much less than the speed of light, indicating that this is a slow-wave

CsZsc_ :
2d

-3 :2 -1

k-B diagram for Example 8.1.

(2.666 x to-12xso)(3 x 108)

T-
lban

l_
FIGURE 8.6
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strucfure. To evaluate the Bloch impedance, we use (8.2) and (8.12):

i :  
t9* : r.256,

0 : k o d : 3 6 o ,

A :cosg -b ls tne

r  :  i  (s ind  +brcose -

:0 .0707,

uu): 
to'to''n

Then,

BZ"
7 ^ -  "  -
u b -

\ / 4 ' � - l

(j0.347e)(s0)
:  I 7 .4  Q . I

i l -Q.olW

8.2 FILTER DESIGN BY THE IMAGE PARAMETER METHOD

The image parameter method of filter design involves the specification of passband and
stopband characteristics for a cascade of two-port networks, and so is similar in concept to
the periodic structures that were studied in Section 8.1. The method is relatively simple but
has the disadvantage that an arbitrary frequency response cannot be incorporated into the
design. This is in contrast to the insertion loss method, which is the subject of the following
section. Nevertheless, the image parameter method is useful for simple filters and provides
a link between infinite periodic structures and practical filter design. The image parameter
method also finds application in solid-state traveling-wave amplifier design.

lmage lmpedances and Transfer Functions for Two-Port Networks

We begin with definitions of the image impedances and voltage transfer function for an
arbitrary reciprocal two-port network; these results are required for the analysis and design
of filters by the image parameter method.

Consider the arbitrary two-port network shown in Figure 8.7, where the network is
specified by its ABCD parameters. Note that the reference direction for the current atport2
has been chosen according to the conventionfor ABCD parameters. The image impedances,
Zi1 a\d Z;2, ure defined for this network as follows:

Zir : input impedance at port I when port 2 is terminatedwith Z;2,

Ziz : input impedance at port 2 when port 1 is terminated with Z;1.

Thus bothports arematched whenterminatedin theirimage impedances. We willnow derive
expressions for the image impedances in terms of the ABCD parameters of a network.

Zin t Zin z

FIGURE 8.7 A two-port network terminated in its image impedances.
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The port voltages and currents are related as

V t :  A V z +  B I z ,

I t : C V z + D I z .

The input impedance at port 1, with port 2 terminatedin Ziz,is

(8.22a)

(8.22b)

(8.23)

(8.25)

(8.26a)

(8.26b)

(8.27a)

(8.27b)

since V2 : ZnIz.
Now solve (8.22) for Vz, Izby inverting the ABCD matrix. Since AD - BC : I for a

reciprocal network, we obtain

Vz :  DVr -  B I t ,  ( 8 .24a )

Iz :  -CVr + Ah.  (8.24b)

Then the input impedance at port 2, with port 1 terminated in Z;1, can be found as

V1  AVz*  B Iz  AZ iz *  B
, r n r  -  

1 1  
-  

C V 2 +  D I 2 -  C Z i 2 *  D '

-V2 DVt -  BI t  DZir  *  B
utnz -  

12 -CVr *  Al r  
-  

CZir  *  A '

IED
ziz : ,l lc,

since [ : -Zitlr (circuit of Figure 8.7).
We desire that Zi6 : Zt and Zinz = Zi2, so (8.23) and (8.25) give two equations for

the image impedances:

Z;(C Zi2 + D) : AZiz * B,

Z t D - B : Z i z ( A - C Z i l .

Solving for Zi1 an:d Zi2 gles

with Z;2: DZtlA.If the network is symmetric, then A : D and Zir : Zrz as expected.
Now consider the voltage transfer function for a two-port network terminated in its

image impedances. With reference to Figure 8.8 and (8.24a), the output voltage at port 2
can be expressed as

Vz:  DVr  - (8.28)

zir 7. .^

FIGURE 8.8 A two-port network terminated in its image impedances and driven with a voltage

nr , :  (o -  
* ) r '

Ir

A B
C D ,

generator.
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(since we now have Vr : ItZi) so the voltage ratio is

O , : , _ B  - D _ B
Vt Zir

Similarly, the current ratio is

(8.29a)

(8.33)

(8.34)

(8.29b)

The factor JDTA occurs in reciprocal positions in (8.29a) and (8.29b), and so can be
interpreted as a transfonner turns ratio. Apart from this factor, we can define a propagation
factor for the network'as

e - Y : J T D - t m , (8.30)

withy -qf TBasusual.Sinceer '  : l l (JAD - Jncl :(AD - BC)/(" [AE - JnC):
J eO + J B C, andcosh 7 - @v * e-v ) l2,we also have that

coshy : JeP. (8 .31)

Two important types of two-port networks are the T and n circuits, which can be made
in symmeffic form. Table 8.1 lists the image impedances and propagation factors, along
with other useful parameters, for these two networks.

Constant-k Filter Sections

We can now develop low-pass and high-pass filter sections. First consider the T network
shown in Figure 8.9; intuitively, we can see that this is a low-pass filter network because
the series inductors and shunt capacitor tend to block high-frequency signals while passing
low-frequency signals. Comparing with the results given in Table 8.1, we have 21 : jaL

and 22 : | /i aC , so the image impedance is

Z i r :

If we define a cutoff freque\cy, ac, as

(8.32)

2
* ' -  

' [LC '

and a nominal characteristic impedance, Rs, as

b V , T A
i 

: -, 
i * A : -CZit * A : rl irln 

- J Bq.

ITn o : y ' a : k '

ffi
t l
| .,', L .,,

T"'� '  T -' � '
I I

(a) (b)

FIGURE 8.9 Low-pass constant-ft filter sections in Z and z form. (a) Z-section. (b) z-section.

C D
AB

L

a
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TABLE 8.1 lmage Parameters for T and n Networks

? Network n Network

ztlz4t2

ABCD parameters:

A : 1 *  h / 2 2 2
B : Z t + Z ? / 4 2 2
c : r/Zz
D :1 ,  *  h /222

Z parameters:

Zt: : Zzz: Zz * Zt/2
Zp :  221  :  / , 2

Image impedance:

z;7: Jz17a.frTz7n;
Propagation constant:

ev : I t zt /2zz + JZJZ;+4qE,

ABCD parameters:

A  -  1 *  h /222
B : Z t
c : r lzz+ hl4z3
D : l * 2 1 / 2 2 2

Yparameters:

Yt : Yzz: l/Zt + l/222

Y p : Y z t : l / Z r

Image impedance:

zin : JZ1Z2/,trTZtFQ: ZrZz/Zir

Propagation constant:

ev : | * zt /2Zz + JZ, / zrTZ t +2,

where ft is a constant, then (8.32) can be rewritten as

Z t r :  R o

Then Zi7 : Ro for co: O.
The propagation factor, also from Table 8.1, is

(8.3s)

(8.36)e y  : r  - ' 4  * a
(,); a)c

Now consider two frequency regions:

1. For (D < a)c: This is the passband of the filter section. Equation (8.35) shows that
Z;7 is rcal, and (8.36) shows that y is imaginary, since az lr'fi - I is negative and

l e y l : l :

" / 2a.2 \2 4ut2 / a.,2 \e y l ' :  ( t - a /  *  o l \ t -  * , ) : t '
2. For <o > ar": This is the stopband of the filter section. Equation (8.35) shows that Z;1

is imaginary, and (8.36) shows that ev is real and -1 < el < 0 (as seen from the
limits as (D --> (Dc and ar -> m). The attenuation rate for @ ) @c is 40 dB/decade.

Typical phase and attenuation constants are sketched in Figure 8.10. Observe that the
attenuation, c, is zero or relatively small near the cutoff frequency, although cv -+ oo as
@ --+ oo. This type of filter is known as a constent-k low-pass prototype. There are only

a)2- ; -
@;
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v a . b

FIGURE 8.10 Tlpical passband and stopband characteristics ofthe low-pass constant-ft sections
of Figure 8.9.

two parameters to choose (L and C), which are determinedby ro,, the cutofffrequency, and
R6, the image impedance at zero frequency.

The above results are valid only when the filter section is terminated in its image im-
pedance at both ports. This is a major weakness of the design, because the image impedance
is a function of frequency which is not likely to match a given source or load impedance.
This disadvantage, as well as the fact that the attenuation is rather low near cutoff, can
be remedied with the modified ra-derived sections to be discussed shortly.

For the low-pass n network of Figure 8.9, we have that Z 1 : j a L and Zz : 1 / j aC, so
the propagation factor is the same as that for the low-pass Z network. The cutofffrequency,
{Dr, and nominal characteristic impedance, Rs, irre the same as the corresponding quantities
for the IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIInetwork as given in (8.33) and (8.34). At ot :0 we have that Z;7 : Zin : R0,
wherc Z;n is the image impedance of the low-pass z-network, but Zi7 and Zio arc generally
not equal at other frequencies.

High-pass constant-ft sections are shown in Figure 8.11; we see that the positions of
the inductors and capacitors are reversed from those in the low-pass prototype. The design
equations are easily shown to be

a , B

IT
R n : . / - ."  v c

I

(8.37)

(8.38)
2JLC.

2C 2C
o__lF__r____lF<

a
I
> L
\

I+
(a)

FIGURE 8.11 High-pass constant-& filter sections in Z and rz form. (a) Z-section (b) :r-section
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z1l2 z;t2 zit2

f f i w
t,, 2"

mZ112

(c)

FIGURE 8.12 Development of an rr-derived filter section from a constant-k section. (a) Constant-k

section. ft) General m-deived section. (c) Final m-derived section.

m-Derived Filter Sections

We have seen that the constant-/c filter section suffers from the disadvantages of a relatively
slow attenuation rate past cutoff, and a nonconstant image impedance. The m-derivedfilier
section is a modification of the constant-k section designed to overcome these problems. As
shown in Figure 8.l2a,b the impedances Zt and 22inaconstant-k T-section are replaced

with Z| and Z'r, and we let

Z l :  m Z t . (8.3e)

Then we choose Z'rto obtain the same value of Z;7 as for the constant-k section. Thus,

from Table 8.1,

Z i r :

Solving for Z', gives

(8.40)

4t2

(b)(a)

f - ,:  l t,rri+ + :

(8.41)

Because the impedances Zl and Zzrepresenlrcactive elements, Z'rrepresents two elements
in series, as indicated in Figure 8.12c. Note thatm:1 reduces to the original constant-k
section.

For a low-pass filter, we have 21 : joL and 22: lljaC. Then (8.39) and (8.41)

give the m-deived components as

- t  22  21  mZt  Zz  ,  ( l  -  7n ' )  o
L ^ : -  

- T - p t ,' m 4 m 4 m 4 m

Z' t :  ja ;Lm,

z t : ;c^* ! -Dja '

(8.42a)

(8.42b)

ZrZz * 
'-! .  m ' L l

m Z l Z ' r +  ^ J

which results in the circuit of Figure 8.13. Now consider the propagation factor for the
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2Clm
^ l

t -

(a) (b)

FIGURE 8.13 m-deived filter sections. (a) Low-pass T-section. (b) High-pass Z-section.

m-deived section. From Table 8.1,

e Y  : r *  3 *
L L 2

For the low-pass ru-derived filter,

';FA)
(8.43)

jaLm_ : _
4 -M* I -C :A-Xa / ,DJ '

where ar. : 2l J LC as before. Then,

| ,  Z ' ,  l - f u t l o , ) 2
'  - r  

4 :  1 -  11-  ̂211ot r *Y '

If werestrict O <m < 1, thentheseresults showthat ev isrcalandlev | > I for o)) @c.
Thus the stopband begins at ar : o)s; ds for the constant-t section. However, when ar : @6,
where

0)c
w m _ E - i ,

\ / r _ m -
(8.44)

the denominators vanish and el' becomes infinite, implying infinite attenuation. Physically,
this pole in the attenuation characteristic is caused by the resonance of the series IC
resonator in the shunt arm of the T; this is easily verified by showing that the resonant
frequency of this lC resonator is a,l*. Note that (8.44) indicates that ar- > alc, so infinite
atlenuation occurs after the cutoff frequetrc!1 @c, as illustrated in Figure 8.14. The position
of the pole at @ca can be controlled with the value of m.

V a. @n (n

FIGURE 8.14 Typical attenuation responses for constant-ft, zr-derived, and composite filters.

Z\ -(2amlo+)z

L/m

Composite
response
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22/m

FIGURE 8.15 Development of at m-deived z-section. (a) Infinite cascade of n-derived

Z-sections. (b) A de-embedded z-equivalent.

We now have a very sharp cutoffresponse, but one problem with the z-derived section

is that its attenuation decreases for a > a.r*. Since it is often desirable to have infinite

attenuation as @ --> oo, the m-derived secfion can be cascaded with a constant-ft section to

give the composite attenuation response shown in Figure 8.14.

The ru-derived Z-section was designed so that its image impedance was identical to that

of the constant-k section (independent of lrz), so we still have the problem of a nonconstant

image impedance. But the image impedance of the z-equivalent will depend on m, and this

extra degree of freedom can be used to design an optimum matching section.

The easiest way to obtain the corresponding rr-section is to consider it as a piece of

an infinite cascade of m-derived Z-sections, as shown in Figure 8.15a'b. Then the image

impedance of this network is, using the results of Table 8'1 and (8.35)'

mZ1l2 mZ1l2 *ri-t, mz1t2

hZz* z?0 -  m\14
RoJI - kolat)z

2,,2,"
7. - ---!---t -

Zir
(8.4s)

Now Z1Z2: LIC: Ro2 and Z?: -r'Lt : -4RAQDl@,")2, so (8.45) reduces to

7 .uttr -
1 - (1  -m217a /a , ) z

(8.46)
$:@t,J

Since this impedance is a function of m, we can choose m to minimize the variation of Zio

over the passband of the filter. Figure 8.16 shows this variation with frequency for several

values of m; a value of m : 0.6 generally gives the best results.

This type of rn-derived section can then be used at the input and output of the filter

to provide a near$ constant impedance match to and from Rq. But the image impedance

of the constant-k andm-deived T-sections, Zir, does not match Zio; this problem can be

surmounted by bisecting the n-sections, as shown in Figure 8'17' The image impedances

Rs.

zy'm

Q-, * l  , ,
4m

2%
< i

m

--\2(I -mz)zr 
---

4m
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v @ c Q

FIGURE 8.16 Yartattonof Zio in the passband of a low-pass m-deived section for various values
of m.

of this circuit are Zir : Zir and Zi2: Zio, which can be shown by finding its ABCD
parameters:

Zi
A :  1- l -  - ! .

4zi
Zi

B - __r.
2 '
1

2zi
D  : 1 ,

(8.47a)

(8.47b)

(8.47c)

(8.47d)

(8.48a)

(8.48b)

and then using (8.27) for Z;1 and Zi2:

,rt:F1
7 . ^ - @' ' ' - , l  t+z l /4z i

:  Z i r ,

: zizi : z,-.
Zir

where (8.40) has been usedfor Z;7.

Composite Filters

By combining incascade the constant-k, rn -derived sharp cutoff, andthe m -derived matching
sections we can rcalize a filter with the desired attenuation and matching properties. This

Z i 1 = Z i 7 ) Q z,r=2,,

FIGURE 8.17 A bisected z-section used to match Zio to Zir.
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Matching
section

Highy'
cutoff

Sharp
cutoff

Matching
section

zir zir

FIGURE 8.18 The final four-stage composite filter.

type of design is called a composite filter, and is shown in Figure 8.18. The sharp-cutoff
section, with m < 0.6, places an attenuation pole near the cutoff frequency to provide a
sharp attenuation response; the constant-/c section provides high attenuation further into
the stopband. The bisected-n sections at the ends of the filter match the nominal source
and load impedance, Ro, to the internal image impedances, Zi7, of the constant-ft and
n-derived sections. Table 8.2 summarizes the design equations for low- and high-pass

TABLE 8.2 Summary of Composite Filter Design

Low-Pass High-Pass

Constant-ft Tsection

L/2 Llz

L=2Rola,
C =2/a,Ro

rz-derived I section

mLl2 mLl2

T
_ L .

T "
ao= Juc
a"=u^fLC

Z, C Same as constant-k section

| $ -Gt.S for sharp-cutoff
m =  1

| 0.6 for matching

Bisected-n matching section

Z, C Same as constant-ft section

| .t1:@W for sharp-cutoff
m = 1

L 0.6 for matching

Bisected-zr matching section

Constant-t ? section

no= J-uc L= Rol2a,
a "= I | 2JLC  C= l / 2a ,Ru

m-derived Tsection

2Clm

---€
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composite filters; notice that once the cutoff frequency and impedance are specified, there
is only one degree of freedom (the value of m for the sharp-cutoff section) left to control
the filter response. The following example illustrates the design procedure.

EXAMPLE 8.2 LOW-PASS COMPOSITE FILTER DESIGN

Design alow-pass composite filter with acutofffrequency of 2MHzand impedance
of 75 Q. Place the infinite attenuation pole at 2.05 MHz, and plot the frequency
response from 0 to 4MHz.

Solution
All the component values can be found from Table 8.2. For the constant-t section:

L  =2Ro :  n .94  r tH ,
0)c

For the m-denved sharp-cutoff section:

C :  
2  :2 .122rF .

Ro@,

m L-;-  :  1.310 PH'
L

mC :465.8 pF,

l - m z

4m 
L :12 .94  pH .

For the m :0.6 matchins sections:

mL

2 
:3'582 1t'H'

m C
^ :  636'5 PF.
z

l - m 2
^  L :  6 .368  pH .

The completed filter circuit is shown in Figure 8.19; the series pairs of induc-
tors between the sections can be combined. Figure 8.20 shows the resulting
frequency response for lS12l. Note the sharp dip at f 

-2.05MH2 due to the
m :0.2195 section, and the pole at 2.50 MHz, which is due to the m :0.6

matching sections.

3.582 1tH 5.97 1tH 5.97 1tH 1.310 pcH

T

Matching Constant-k m-deived

FIGURE 8.19 Low-pass composite filter for Example 8.2.

1.310 pH 3.582 pH

Matching
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lstzl -ro
dB

40

-50

-60

Frequency (MHz)

FIGURE 8.20 Frequency response for the low-pass filter of Example 8.2.

Pole due
t o m = 0 . 6

section

I
, l /
t t /
\ t l
I  * /

Pole due to
m = 0.2195

secti0n

8'3 FTLTER DEST.N By rHE TNSERTT'N Loss METH'D

The perfect filter would have zero insertion loss in the passband, infinite attenuation in the
stopband, and a linear phase response (to avoid signal distortion) in the passband. Of course,
such filters do not exist in practice, so compromises must be made; herein lies the art of
filter design.

The image parameter method of the previous section may yield a usable filter response,
but if not there is no clear-cut way to improve the design. The insertion loss method,
however, allows a high degree of control over the passband and stopband amplitude and
phase characteristics, with a systematic way to synthesize a desired response. The neces-
sary design trade-offs can be evaluated to best meet the application requirements. If, for
example, a minimum insertion loss is most important, a binomial response could be used;
a Chebyshev response would satisfy a requirement for the sharpest cutoff If it is possible
to sacrifice the attenuationrate, a better phase response can be obtained by using a linear
phase filter design. And in all cases, the insertion loss method allows filter performance to
be improved in a straightforward manner, at the expense of a higher order fllter. For the filter
prototypes to be discussed below, the order of the filter is equal to the number of reactive
elements.

Characterization by Power Loss Ratio

In the insertion loss method a filter response is defined by its insenion loss, orpower loss
ratio, Pyy:

Power available from source
P L n :

Power delivered to load

Pin. 1
: - : - -

Ploud 1- l f (&r)12'
(8.4e)

Observe that this quantity is the reciprocal of lsrz 12 if both load and source are matched.
The insertion loss (IL) in dB is

IL:  l0 log Pm. (8.s0)
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From Section 4.1 we know that lf (co)12 is an even function of ar; therefore it can be
expressed as a polynomialin o2. Thus we can write

if(ar)12 :
M(rz) (8.s1)

M(az) * N@z;'

where M and N are real polynomials in ro2. Substifuting this form in (8.49) gives the
following:

M(a2\
PLr :  1+ 

N(r , r r )
(8.s2)

Thus, for a filter to be physically realizable its power loss ratio must be of the form in
(8.52). Notice that specifying the power loss ratio simultaneously constrains the reflection
coefficient, f (ro). We now discuss some practical filter responses.

Maximally flar. This characteristic is also called the binomial or Butterworth response,
and is optimum in the sense that it provides the flattest possible passband response for a
given filter complexity, or order. For a low-pass filter, it is specified by

PI ,n : (8.s3)

where N is the order of the filter, and co" is the cutoff ftequency. The passband extends
from a.r = 0 to ar : o)ci &tthe baad edge the power loss ratio is 1 + k2.If we choose this as
the -3 dB point, as is common, we have ft = 1, which we will assume from now on. For
@ 2 (D", the attenuation increases monotonically with frequency, as shown in Figure 8.21.
For ro )) @", PLrr - kz(a/cor)zN, which shows that the insertion loss increases at the rate
of 20N dB/decade. Like the binomial response for multisection quarter-wave matching
transformers, the first (2N - 1) derivatives of (8.53) are zero at co : 0.

Equal ripple. If a Chebyshev polynomial is used to specify the insertion loss of an N-order
low-pass filter as

(8.54)

then a sharper cutoff will result, although the passband response will have ripples of ampli-
tude 1 * ft2, as shown in Figure 8.21, since fir(.r) oscillates between *1 for lxl < 1. Thus,

l + t 8

I

U U.5 l.U l.) oilu"

FIGURE 8.21 Maximally flat and equal-ripple low-pass filter responses (N : 3).

z  r 2 N

t + P l e - )

PLR:  t+Pr f i (# )

.0
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FIGT]RE 8.22

A-u*

0 1

Elliptic function low-pass filter response.

k2 determines the passband ripple level. For large x, Zrv(x) : jtZx)N , so for c,.r )) aL the
insertion loss becomes

P m :

which also increases at the rate of 20N dB/decade. But the insertion loss for the Chebyshev
case is QzN)/4 greater than the binomial response, at any given frequency where ccr ) ro,.

Elliptic function. The maximally flat and equal-ripple responses both have monotonically
increasing attenuation in the stopband. In many applications it is adequate to specify a
minimum stopband attenuation, in which case a better cutoff rate can be obtained. Such
filters are called elliptic function filters [3], and have equal-ripple responses in the passband
as well as the stopband, as shown in Figure 8.22.The maximum attenuation in the passband,
A.*, can be specified, as well as the minimum attenuation in the stopband, A-in. Elliptic
function filters are difficult to synthesize, so we will not consider them further; the interested
reader is referred to reference [3].

Linear phase. The above filters specify the amplitude response, but in some applications
(such as multiplexing filters for communication systems) it is important to have a linear
phase response in the passband to avoid signal distortion. Since a sharp-cutoffresponse is
generally incompatible with a good phase response, the phase response of a filter must be
deliberately synthesized, usually resulting in an inferior attenuation characteristic. A linear
phase characteristic can be achieved with the following phase response:

(8.ss)

where @(or) is the phase of the voltage transfer function of the filter, and p is a constant. A
related quantity isthe group delay, definedas

. d  - (8.s6)

which shows that the group delay for a linear phase filter is a maximally flat function.
More general filter speciflcations can be obtained, but the above cases are the most

common. We will next discuss the design of low-pass filter prototypes which are normalized
in tenns of impedance and frequency; this normalization simplifies the design of filters for

r(T)"

Q@): e,lt+, (;)"] ,

ffi: ol' * orr*+ 1) (;)'"] ,
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FIGURE 8.23 The process of filter design by the insertion loss method.

arbitrary frequency, impedance, and type (low-pass, high-pass, bandpass, or bandstop).
The low-pass prototypes are then scaled to the desired frequency and impedance, and the
lumped-element components replaced with distributed circuit elements for implementation
at microwave frequencies. This design process is illustrated in Figure 8.23.

Maximally Flat LowPass Filter Prototype

Consider the two-element low-pass filter prototype shown in Figure 8.24; we will derive
the normalized element values, Z and C, for a maximally flat response. We assume a source
impedance of 1 Q, and a cutofffrequency @c : 1. From (8.53), the desired power loss ratio
wil l be. for N :2.

P L R :  l * a a ' (8.s7)

The input impedance of this filter is

Z i n :  j a L  {
R ( l *  j o R C )

(8.s8)
| + @2R2Cz

Since

the power loss ratio can be written as

n  Z ; n - l
l : - .

Z i " * l

PLn: , -h :
t v  t  r t z
lzin 

-l. r I: - .
Z(Zi" * Zh)| * [(Zi" - r)l(Zi" + I)lIQh * I)lZh+ 1)l

(8.s9)

Now,
2R

7. _L 74' n  I  u i n  -  
I  +  @ 2 R 2 C z ,

a n d  t Z i " * r t z :  ( * # o - +  r ) ' +  ( , r - ; f u \ '  ,

FIGURE 8.24 Low-pass filter prototype, N :2.
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so (8.59) becomes

^ r * ul(cz I f ==:__+ r)'+ (m _, ,,lT'" =_)'lP r_n : - - -?R- [ \ma ;e* /  
\  t+ , ,R rc r )  )

l ":  
l^{n' +zR + r + Rzozcz + a2L2 + aaLzczR2 -2a2LCR2)

I: 1+ 
a;t( l  

- R)2 + (Rzc2 + L2 -zrcn\a] + LzczRzatal. (8.60)

Notice that this expression is a polynomialin of . Comparing to the desired response of
(8.57) shows that R : 1, since Pr-n : 1 for a,l : 0. In addition, the coefficient of o2 must

vanish, so

C 2 + L z * 2 L C : ( C - L ) z : 0 ,

ot L : C. Then for the coeffrcient of aa lo be unitv we must have

I t , r"  
-  lLa :7,

L : C : J r .

In principle, this procedure can be extended to find the element values for filters with
an arbitrary number of elements, N, but clearly this is not practical for large N. For a
normalized low-pass design where the source impedance is 1 O and the cutoff frequency
is crr. - 1, however, the element values for the ladder-type circuits of Figure 8.25 catt
be tabulated [1]. Table 8.3 gives such element values for maximally flat low-pass filter
prototypes for N : 1 to 10. (Notice that the values for N : 2 agree with the above analytical
solution.) This data is used with either of the ladder circuits of Figure 8.25 in the following
way. The element values are numbered from gs at the generator impedance to g1,,..1 at the
load impedance, for a filter having N reactive elements. The elements alternate between

h=  ez

=

=
(b)

Laddercircuits for low-pass filterprototy?es and their element definitions. (a) Proto-

type beginning with a shunt element. (b) Prototype beginning with a series element.

R e = g o = l

FIGURE 8.25
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TABLE 8.3 Element Values for Madmally Flat Low-Pass Filter Prototypes Go - 1,,'),:1, N: I to 10)

8to

I 2.0000
2 1.4142
3 1.0000
4 0;1654
5 0.6180
6 0.5176
7 0.4450
8 0.3902
9 0.3473

10 0.3729

1.0000
1.4142 1.0000
2.0000 1.0000 1.0000
1.8478 t.8478 0.7654 1.0000
1.6180 2.0000 1.6180 0.6180 1.0000
1.4142 1,9318 1.9318 1.4142 0.5176 1.0000
r.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.0000
1.1111 r.6629 1.9615 1.9615 7.6629 1.1111 0.3902 1.0000
1.0000 1.5321 1.8794 2.0000 t.8794 1.5321 1.0000 0.3473 1.0000
0.9080 1.4142 1.7820 1.9754 1.9754 r.7820 1.4142 0.9080 0.3129 1.0000

Sozrce; Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures (Dedham, Mass.: Artech House, 1980) with permission.

series and shunt connections, and gp has the following definition:

,o : { ::ffi ::: ::::ffi::?;n::f }'Jl,l#?",
g* : { 

indu"tunce for series inductors
(/r=1 to N) | capacitance for shunt capacitors

8,s+, : { ff: ::::,ffi::ii; iJll:[:1i".fi",
Then the circuits of Figure 8.25 can be considered as the dual of each other, and both will
give the same response.

Finally, as a matter of practical design procedure, it will be necessary to determine the
size, or order, ofthe filter. This is usually dictated by a specification on tle insertion loss at
some frequency in the stopband of the filter. Figure 8.26 shows the attenuation characteristics
for various N, versus normalized frequency. If a filter with N > l0 is required, a good result
can usually be obtained by cascading two designs of lower order.

Equal-Ripple Low-Pass Filter Prototype

For an equal-ripple low-pass filter with a cutoff frequency oc : 1, the power loss ratio from
(8.54) is

p rn : l+kzTf rkD, (8.61)

where 1 t kz is the ripple level in the passband. Since the Chebyshev polynomials have the
property that

fO  fo rNodd ,
Zru(O):  {

t  I  forNeven,

equation (8.61) shows that the filter will have a unity power loss ratio at a - 0 for N odd,
but a power loss ratio of 1 * kz at @ :0 for N even. Thus, there are two cases to consider,
depending on N.
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(8.63)

0 L
0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10

l a l  l

la ,  I

FIGURE 8.26 Attenuation versus normalized frequency for maximally flat filter prototypes.

Adapted from G. L. Matthaei, L. Young, and E. M. T.Iones, Microwave Filters, Impedance'

Matching Nenvorks, and Coupling Structures (Dedham, Mass.: Artech House, 1980) with

permission.

For the two-element filter of Figure 8.24, the power loss ratio is given in terms of the
component values in (3.60). From (5.56b), we see that T2(x) :2xz - l, so equating (8.61)

to (8.60) gives

1+k2(4e)4 -4a2 +1) = t * frt,t 
- n)2 +(n2c2 +L2 -zLCR\a)z +L2c2Rzr,;41,

(8.62)

which can be solved for R, L, and C if the ripple level (as determined by /c2) is known.
Thus. at ar = 0 we have that

. ,  ( 1  -  R )2
A  -  - .

4R

R :1*  Z t2  +ArJ414 ( fo rNeven) .

Equating coefficients of af androa yields the additional relations

4k2 : J-L2C2R2.
4R

" 1-4k2 :  
# ro ' r '+  

L2  -zLCR2) .

which can be used to find L and C. Note that (8.63) gives a value for R that is not unity,
so there will be an impedance mismatch if the load actually has a unity (normalized)
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TABLE 8.4 Element Yalues for Equal-Ripple Low-Pass Filter Prototypes Go : l, e": 1, N : 1 to 10,
0.5 dB and 3.0 dB rippte)

8to8qN

0.5 dB Ripple

8s 8a

1
2
3

A

5
6
7
8
9

10

0.6986 1.0000
1.4029 0.7071
1.5963 1.0967
1.6703 1.t926
1.7058 t.2296
1.7254 1.2479
1.7372 1.2583
1.7451 1.2647
t.7504 1.2690
1.7543 1.2721

1.9841
1.5963 1.0000

2.3661 0.8419 1.9841
2.5408 1.2296 1.7058
2.6064 1.3137 2.4758
2.6381 r.3444 2.6381
2.6564 1.3590 2.6964
2.6678 1.3673 2.7239
2.6'�154 1.3725 2.7392

1.0000

0.8696 1.9841
1.2583 1.7372
1.3389 2.5093
r.3673 2.6678

1.3806 2.7231

1.0000

0.8796 1.9841
t.2690 1.7504 1.0000

1.3485 2.5239 0.8842 1.9841

8 to8s8q8 tN

3.0 dB Ripple

8s 8a

1 1.9953
2 3.1013
3 3.3487
4 3.4389
5 3.4817
6 3.5045
'7 3.5182
8 3.5277
9 3.5340

10 3.5384

1.0000
0.5339 5.8095

0.7t17 3.3487 1.0000

0.7483 4.347t 0.5920 5.8095
0.7618 4.5381 0.7618 3.4817 1.0000
0.7685 4.6061 0.7929 4.4641 0.6033 5.8095
0.7723 4.6386 0.8039 4.6386 0.7723 3.5182 1.0000
0.7745 4.6575 0.8089 4.6990 0.8018 4.4990 0.6073 5.8095
0.7760 4.6692 0.8118 4.7272 0.8118 4.6692 0.7760 3.5340 1.0000
0.7771 4.6768 0.8136 4.7425 0.8164 4.7260 0.8051 4.5142 0.6091 5.8095

Sonrce: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structu.res (Dedham, Mass.: Artech House, 1980) with permission.

impedance; this can be corrected with a quarter-wave ffansformer, or by using aa additional
filter element to make N odd. For odd N, it can be shown that R : 1. (This is because there
is a unity power loss ratio at co : 0 for N odd.)

Tables exist for designing equal-ripple low-pass filters with a normalized source im-
pedance and cutoff frequency @1,:7) [1], and can be applied to either of the ladder
circuits of Figure 8.25. This design data depends on the specified passband ripple level;
Table 8.4 lists element values for normalized low-pass filter prototypes having 0.5 dB or
3.0 dB ripple, for N : I to 10. Notice that the load impedance gry+r f 1 for even N. If the
stopband attenuation is specified, the curves in Figures 8.27a,b can be used to determine
the necessary value ofN for these ripple values.

Linear Phase Low-Pass Filter Prototypes

Filters having a maximally flat time delay, or a linear phase response, can be designed in
the same way, but things are somewhat more complicated because the phase of the voltage
transfer function is not as simply expressed as is its amplitude. Design values have been
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Attenuation versus normalized frequency for equal-ripple filter prototypes.

(a) 0.5 dB ripple level. (b) 3.0 dB ripple level.

Adapted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-
Matching Networks, and Coupling Structures (Dedham, Mass.: Artech House, 1980) with
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TABLE 8.5 Element Values for Maximally-Flat Time Delay Low-Pass Filter Prototypes (go -- l, u" --

L.  N:  I  to  10)

8 to8s8e8t8s8qN

I 2.0000
2 1.5'�174
3 t.2550
4 1.0598

5 0.9303
6 0.8377
7 0.7677
I 0.'7125
9 0.6678

10 0.6305

1.0000
0.4226 1.0000

0.5528 0.1922 1.0000
0.5116 0.3181 0.1104 1.0000
0.4577 0.3312 0.2090 0.0718 1.0000
0.4116 0.3158 0.2364 0.1480 0.0505 1.0000
0.3744 0.2944 0.2378 0.1778 0.1104 0.0375 1.0000
0.3446 0.2735 0.229'�r 0.1867 0.1387 0.0855 0.0289 1.0000
0.3203 0.2547 0.2t84 0.1859 0.1506 0.1111 0.0682 0.0230 1.0000
0.3002 0.2384 0.2066 0.1808 0.1539 0.1240 0.0911 0.0557 0.0187 1.0000

Source.' Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters Impedance-Matching
Nenuorks, and Coupling Structures {Dedham, Mass.: Artech House, 1980) with permission.

8.4

derived for such filters [1], however, again for the ladder circuits of Figure 8.25, and are
given in Table 8.5 for a normalized source impedance and cutoff frequency (ari : 1). The
resulting group delay in the passband will be e : 7l@| : l.

FILTER TRANSFORMATIONS

The low-pass filter prototypes of the previous section were normalized designs having a
source impedance of R" : 1 O and a cutoff frequency of co, : 1. Here we show how these
designs can be scaled in terms ofimpedance and frequency, and converted to give high-pass,
bandpass, or bandstop characteristics. Several examples will be presented to illustrate the
design procedure.

lmpedance and Frequency Scaling

Impedance scaling. In the prototype design, the source and load resistances are unity
(except for equal-ripple filters with even N, which have nonunity load resistance). A source
resistance of Re can be obtained by multiplying the impedances of the prototype design
by Ro. Then, if we let primes denote impedance scaled quantities, we have the new filter
component values given by

L'  :  RoL,

c ' : ! ,
Ro

Rj - Ro'

RL :  RoRr'

where l, C, and R1 are the component values for the original prototype.

(8.64a)

(8.64b)

(8.6ac)

(8.64d)
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Frequency scaling for low-pass filters. To change the cutoff frequency of a low-pass
prototype from unity to a.r" requires that we scale the frequency dependence of the filter by
the factor If a,,which is accomplished by replacing aby af a,:

a)
0 ) < - - -

(t)(

Then the new power loss ratio will be

(8.6s)

PiR(&,) :  Pr*  (9)  .
\ a+  I

where ar" is the new cutoff frequency; cutoff occurs whet af a,: 1, or a-l - ror. This
transformation can be viewed as a stretching, or expansion, of the original passband, as
illustrated in Figure 8.28a,b.

The new element values are determined by applying *re substitution of (8.65)

to the series reactances, jotLp, and shunt susceptarces, jaCp, of the prototype filter.
Thus"

jXr , :  j  9ro:  iaL| , ,
a)c

j Br, : j 9Co: jaCl,,
a)c

which shows that the new element values are given by

L L :  
L o  

," 
a)c

c i . : 9 .- 
(t)"

When both impedance and frequency scaling are required, the results of (8.64) can be
combined with (8.661to sive

LL :Y ,

Ci. : 
Ck

" Ro@.

(8.66a)

(8.66b)

(8.67a)

(8.67b)

- l

FIGURE 8.28

0
(a)

0
(b)

0

(c)

Frequency scaling for low-pass filters and transformation to a high-pass response.
(a) Low-pass filter prototype response for a" :1. (b) Frequency scaling for low-
pass response. (c) Transformation to high-pass response.
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Low-pass to high-pass transformation. The frequency substitution where
(Dc

a)

Rs@.Lk'

can be used to convert a low-pass response to a high-pass response, as shown in Figure 8.28c.
This substitution maps co : 0 to a) : tcc�, and vice versa; cutoff occurs when ar - la".
The negative sign is needed to convert inductors (and capacitors) to realizable capacitors
(and inductors). Applying (8.68) to the series reactances, j aLp, and the shunt susceptances,
j ctCp, of the prototype filter gives

(t)- I
j X * : - j - L * : - : - - - ; .

@  J @ L t

(t)" Ij  B* :  - t ; ro  :  
1 r r ; .

which shows that series inductors Z1 must be replaced with capacitors C'0, and shunt ca-
pacitors Cp must be replaced with inductors Zi. The new component values are given
by

cL :# ,

Impedance scaling can be included by using (8.64) to give

C L :

. 1
L : - -" a"Ct

(8.68)

(8.69a)

(8.6eb)

(8.70a)

(8.70b)
. R n

I t  _
L t - -" a"C*

EXAMPLE 8.3 LOW.PASS FILTER DESIGN COMPARISON

Design a maximally flat low-pass filter with a cutofffrequency of 2 GHz, impedance
of 50 Q, and at least 15 dB insertion loss at 3 GHz. Compute and plot the amplitude
response and group delay for f : O to 4 GHz, and compare with an equal-ripple
(3.0 dB ripple) and linear phase filter having the same order.

Solution
First find the required order of the maximally flat filter to satisfy the insertion loss
specification at3 GHz. We have thatlat/a,l - 1 :0.5; from Figure 8.26 we see
that N : 5 will be sufficient. Then Table 8.3 gives the prototype element values
AS

8 t  : 0 . 6 1 8 ,

8 z : 1 . 6 1 8 ,

8z :2.OOO,

8+ - 1.618,

8s  :0 .618.
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Rs=5ocr

R r = 5 0 o

FIGURE 8.29 Low-pass marimally flat filter circuit for Example 8.3.

Then (8.67) can be used to obtain the scaled element values:

Ci : 0.984 PF,
LL:6 '438nn'
C6 : 3.183 PF,
LL: 6.438n11,
C! : 0.984 PF.

The final filter circuit is shown in Figure 8.29; the ladder circuit of Figure 8.25a
was used, but that of Figure 8.25b could have been used just as well.

The component values for the equal-ripple filter and the linear phase filter, for
N = 5, can be determined from Tables 8.4 and 8.5. The amplitude and group delay
results for these three filters are shown in Figure 8.30. These results clearly show
the trade-offs involved with the three types of filters. The equal-ripple response
has the sharpest cutoff, but the worst group delay characteristics. The maximally
flat response has a flatter attenuation characteristic in the passband, but a slightly
lower cutoff rate. The linear phase filter has the worst cutoff rate, but a very good
group delay characteristic.

Bandpass and Bandstop Transformations

Low-pass prototype filter designs can also be transformed to have the bandpass or bandstop
responses illustrated in Figure 8.31. If rD1 and @2 denote the edges of the passband, then a
bandpass response can be obtained using the following frequency substitution:

I

@ o  / a
@ < - | - _

(DZ - Cor \(D0

,o\ |  /a , , ro\-  |  :  - .  |  -  -  -  |  .
a /  A \ r o o  a /

(8.71)

(8.72)
0)) - (Dr

A _a - -

@0

is the fractional bandwidth of the passband. The center frequency, crrs, could be chosen as the
arithmetic mean of ar1 and at2, but the equations are simpler if it is chosen as the geometric
mean:

tog: ^,161@2. (8.73)

Then the transformation of (8.71) maps the bandpass characteristics of Figure 8.31b to the
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FIGURE 8.30

FIGURE 8.31

(a)

2.0

Frequency (GHz)

(a)

t .25

1.0

0.75

0.5

0.25

0
0 1.0 2.0 3.0 4.0

Frequency (GHz)
(b)

Frequency response of the filter design of Example 8.3. (a) Amplitude response.
(b) Group delay response.

@ 1 @ 2 4

.d

o
I

o

q

r l

Bandpass and bandstop frequency transformations. (a) Low-pass filter prototype
response for a, : 1. (b) Transformation to bandpass response. (c) Transformation
to bandstop response.

(b)

Linear phase
l / -  <

Maximally flat

-@2 -@l
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low-pass response of Figure 8.31a as follows:

when o = cr,o. *(x- #) 
: o,

whena, :c r r .  * ( ; ;  _ f l : * (+#)  :_ , ,

W h e n a r =  
l ( '  c ' r o \  l / . , 2 ' - z o t \= a ) 2 '  
^  ( a  

- ; ) :  
^  (  , * ;  ) : t '

The new filter elements are determined by using (8.71) in the expressions for the series
reactance and shunt susceptances. Thus,

i  /  a  , o \ ,  . a L *  . a o L *  .  , t  .  I
i x * :  i  ( ;  - ;  

) ro :  i f r o -  i - ; ; :  i a tL i , -  i  , , , q .

which shows that a series inductor, I;,, is transformed to a series LC circfit with element
values,

. L t
^ Acoo

- Ac i :  -'- 
@oL*

Similarly,

-  i  / a  a r o \ ^  . a C *  . a o C *  .  ^ t  I
iBr  :  i  ( ;  -  

;  )co 
:  i i ,o-  i ; ;  :  iafp -  i  . r4,

which shows that a shunt capacitor, Cr, is transformed to a shunt LC circuit with element
values,

. A
f | _" k  -  

@ock '

. Ct'c;. - ---:-.^ Aa.ro

The low-pass filter elements are thus converted to series resonant circuits (low impedance at
resonance) in the series arms, and to parallel resonant circuits (high impedance at resonance)
in the shunt arms. Notice that both series and parallel resonator elements have a resonant
frequency of tos.

The inverse transformation can be used to obtain a bandstop response. Thus,

(8.74a)

(8.74b)

(8.74c)

(8.74d)

(8.76a)

(8.76b)

(8.75)

where A and a,ls have the same definitions as in (8.72) and (8.73). Then series inductors of
the low-pass prototype are converted to parallel ZC circuits having element values given
by

/  a  c . - r n \ - l
@ < - a l - -  " l

\ o o  a /

. A.L,
Li. - ---." a o

. 1
cL :  ,o t ro '
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TABLE 8.6 Summary of Prototype Filter tansformations (" : 
#)

Low-pass High-pass Bandpass Bandstop

?
)
! r
! '
I r,rsCA
\
r cA

T , O

C
ar6,4

?
I r
I '"^
I a
T'ot

T
L

I I-T 
a^L

J
l
I r  a
f '+c %c

I
6

{ '

l.
I

.l-#[ t*--T-

The shunt capacitor of the low-pass prototype is converted to series ZC circuits having
element values given by

r t  -

C L :

asA,CI<

L C r .
(,)0

(8.76c)

(8.76d)

The element transformations from a low-pass prototype to a highpass, bandpass, or
bandstop filter are summarized in Table 8.6. These results do not include impedance scaling,
which can be made using (8.64).

EXAMPLE 8.4 BANDPASS FILTER DESIGN

Design a bandpass filter having a 0.5 dB equal-ripple response, with N :3.

The center frequency is 1 GHz, the bandwidth is 10Vo, and the impedance
is 50 S2.

FIGURE 8.32 Bandpass filter circuit for Example 8.4.
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0.5 0.75 1.0 1.25

Frequency (GHz)

FIGURE 8.33 Amplitude response for the bandpass filter of Example 8.4.

Solution
From Table 8.4 the element values for the low-pass prototype circuit of Figure 8.25b
are given as

8 r - 1 . 5 9 6 3 = L r ,

g z : 1 . 0 9 6 7  =  C z ,

g z : I . 5 9 6 3 = L z ,

g a - 1 . 0 0 0 : R 1 .

Then (8.64) and (8.74) give the impedance-scaled and frequency-transformed
element values for the circuit of Fisure 8.32 as

9 2 0

n
o l n

L', : 
LlZ,o 

: 127.o nH,'  
ooL

Ci :  --!-:0.199 pF,'  
aoL lZo

r i :  
LZ !  : 0 .726nH,' cooCz

Ci : -52- :34.91pF,' 
aoL.Zo

L\ : 
LtZ,o 

: 127.0 nH.- 
aoL

, ! :  #A: o.ree pF.

The resulting amplitude response is shown in Figure 8.33. I

FILTER IMPLEMENTATION

The lumped-element filter design discussed in the previous sections generally works well at
low frequencies, but two problems arise at microwave frequencies. First, lumped elements

8.5
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such as inductors and capacitors are generally available only for a limited range of values
and are difficult to implement at microwave frequencies, but must be approximated with
distributed components. In addition, at microwave frequencies the distances between filter
components is not negligible. Richard's transformation is used to convert lumped elements
to transmission line sections, while Kuroda's identities can be used to separate fllter elements
by using transmission line sections. Because such additional transmission line sections do
not affect the filter response, this type of design is called redundant filter synthesis. It is
possible to design microwave filters that take advantage of these sections to improve the filter
response [4]; such nonredundant synthesis does not have a lumped-element counterpart.

Ri chard's Transfo rmatio n

The transformation.

9 : t a n f l : (8.77)

maps the rr.r plane to the Q plane, which repeats with a period of al I u o : 22. This trans-
formation was introduced by P. Richard [6] to synthesize an LC network using open- and
short-circuited transmission lines. Thus, if we replace the frequency variable ar with O, the
reactance of an inductor can be written as

,^(t),

j X r :  j  Q L :  j L t a n B t ,

and the susceptance of a capacitor can be written as

(8.78a)

(8.78b)j B c : j { 2 C : j C t a n B l .

These results indicate that an inductor can be replaced with a short-circuited stub of length

Bl andcharacteristic impedance L, while a capacitor can be replaced with an open-circuited
stub of length Bl and characteristic impedance 1l C . A unity filter impedance is assumed.

Cutoff occurs at unity frequency for a low-pass filter prototype; to obtain the same
cutoff frequency for the Richard's-transformed filter, (8.77) shows that

S 2 : 1 : t a n p L ,

which gives a stub length of I : ),/8, where I is the wavelength of the line at the cutoff
frequency, rtt,. At the frequency e)0 : 2e)r, the lines will be ), /4 long, and an aftenuation
pole will occur. At frequencies away from @r, the impedances of the stubs will no longer
match the original lumped-element impedances, and the filter response will differ from
the desired prototype response. Also, the response will be periodic in frequency, repeating
every 4ar.

In principle, then, the inductors and capacitors of a lumped-element filter design can be
replaced with short-circuited and open-circuited stubs, as illusffated in Figure 8.34. Since
the lengths of all the stubs are the same (),/8 at rrr.), these lines are called commensurate lines.

Kuroda's ldentities

The four Kuroda identities use redundant ffansmission line sections to achieve a more
practical microwave filter implementation by performing any of the following operations:

o Physically separate transmission line stubs
o Transform series stubs into shunt stubs, or vice versa
o Change impractical characteristic impedances into more realizable ones
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- t  A l9 ' l ac

i xL+> 2 , r  j x t *  l s .c- 1
--I Zn= L

i/8 at a,

,t"nJ+

(al

jB ,+ o.c.

(b)

FIGURE 8.34 Richard's transformation. (a) For an inductor to a short-circuited stub. (b) For a
capacitor to an open-circuited stub.

The additional transmission line sections are called unit elements and are )"/8long at a";
the unit elements are thus commensurate with the stubs used to implement the inductors
and capacitors of the prototype design.

The four identities are illustrated in Table 8.7, where each box represents a unit element,
or ffansmission line, of the indicated characteristic impedance and length Q'/8 at ar"). The
inductors and capacitors represent short-circuit and open-circuit sfubs, respectively. We

TABLE 8.7 TheFourKurodaldentities (n2 : | * Zz/Z)

1 1
22 n2Zz , .

\--_.rr-r t- ----r r--. .:---l ,, [ = "]]].,', [_]f

zr= +

(a)

(b)

(c)

z1
-n -

(d)
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o.c.
shunt
stub

Unit
element

n2 = 1+ ZzlZr

FIGURE 8.35 Equivalent circuits illustrating Kuroda identity (a) in Table 8.7.

will prove the equivalence of the first case, and then show how to use these identities in
Example 8.5.

The two circuits of identity (a) in Table 8.7 can be redrawn as shown in Figure 8.35;
we will show that these two networks are equivalent by showing thattheir ABCD matrices
are identical. From Table 4.1, the ABCD matrix of a length I of transmission line with
characteristic impedance ̂ Z1 is

l t  u l_  [  
cosB(  i 4s inB t l  

_  t  [ -  
' ^  i az '1

L ; ; i : L l s i n f t  c o s B (  l : 6 l n  ,  l  
( 8 7 e )

where Q :tat?L. Now the open-circuited shunt stub in the first circuit in Figure 8.35
has an impedance of - j Z2cot Bl : - j Zzl Q, so the ABCD matrix of the entire circuit
is

l e  B l - t . t ^ t l I t ^  j a z ' 1  r
l c  , 1 , : l * , ) l ' *  ,  l f f i

_ T 1 jeh "l
1 |  |: : t  r  t  -  l \  . r _ o z Z t  I '  t 8 . 8 o a )

JjT@ Lrn (r, zz) __ z, )

The short-circuited series stub in the second circuit in Figure 8.35 has an impedance
of j (Z 1 I n2) tan B L : j 9Z 1 / n2,so the ABCD maffix of the entire circuit is

, a z r 1 f  t  t * 1
l  n 2  l l  n z  I  I

i l  t -, . 1  L , , J *
t t  r4<2,+D1

l l n z ' I

. . / r + o z l g :  r _ a z z J  I
L Z z  Z z  J

l e  8 1  [  r

f  c  D)o :  l  t ! " '
L Z z

(8.80b)
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The results in (8.80a) and (8.S0b) are identical if we choose n2 :7 i Zzlh. The other
identities in Table 8.7 can be proved in the same way.

EXAMPLE 8.5 LOW.PASS FILTER DESIGN USING STUBS

Design a low-pass fllter for fabrication using microstrip lines. The specifications
are: cutoff frequency of 4 GHz, third order, impedance of 50 O, and a 3 dB equal-
ripple characteristic.

Solution
From Table 8.4, the normalized low-pass prototype element values are

g : 3 ' 3 4 8 7  =  L r ,

8 z : O ' 7 1 I 7 : C z ,

8z :3 '3487 = Lz,

8 + : 1 . 0 0 0 0 = R r ,

with the lumped-element circuit shown in Figure 8.36a.

J,

=)t l8a t ro= l

Zo= 3.348'7

= '

I = i l S a t r u o = 1

(c.)

FIGURE 8.36 Filter design procedure for Example 8.5. (a) Lumped-element low-pass filter pro-

totype. (b) Using Richard's transformations to convert inductors and capacitors to
series and shunt stubs. (c) Addine unit elements at ends offilter.

L r=3 .3487 h=3.3487

ry
I

t _ ^

Zo= 3'3487

I

r{AA&-r
t - J
Y_.- = '

Cz= 0.7177

Zo= 1.405
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FIGURE 8.36

4=4350

(d)

Z o = 2 1 7 . 5 Q  4 = 2 1 7 . 5 4

I

rM A-
(ry1

Y-

5 0 o

lryJ

= '

3,,'
zo=
& 9 4

zo=
64.9 A

(fl

Continued. (d) Applying the second Kuroda identity. (e) After impedance and fre-
quency scaling. (f) Microstrip fabrication of final filter.

The next step is to use Richard's ffansformations to convert series inductors
to series stubs, and shunt capacitors to shunt stubs, as shown in Figure 8.36b. Ac-
cording to (8.78), the characteristic impedance of a series stub (inductor) is l, and
the characteristic impedance of a shunt stub (capacitor) is I I C . For commensurate
line synthesis, all stubs arc ).l8long at (o : a)c. (It is usually most convenient to
work with normalized quantities until the last step in the design.)

The series stubs of Figure 8.36b would be very difficult to implement in
microstrip form, so we will use one of the Kuroda identities to convert these to
shunt stubs. First we add unit elements at either end of the filter, as shown in Figure
8.36c. These redundant elements do not affect filter performance since they are
matched to the source and load (Zo : l). Then we can apply Kuroda identity (b)
from Table 8.7 to both ends of the filter. In both cases we have that

n 2 : l + 2 : l +  
I  

: 1 . 2 9 9 .
Zr 3.3487

The result is shown in Figure 8.36d.
Finally, we impedance and frequency scale the circuit, which simply involves

multiplying the normalized characteristic impedances by 50 S2 and choosing the
lineandstublengthstobei./8 at4GHz.ThefinalcircuitisshowninFigure8.36e,
with a microstrip layout in Figure 8.36f.

Zo= 4.350
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Frequency (GHz)

FIGURE 8.37 Amplitude responses of lumped-element and distributed-element low-pass filter of

Example 8.5.

The calculated amplitude response of this design is plotted in Figure 8.37,
along with the response of the lumped-element version. Note that the passband
characteristics are very similar up to 4 GHz, but the distributed-element filter has a
sharper cutoff. Also notice that the distributed-element filter has a response which
repeats every 16 GHz, as a result of the periodic nature of Richard's trans-break
formation.

Similar procedures can be used for bandstop filters, but the Kuroda identities are not
useful for high-pass or bandpass filters.

lmpedance and Admittance lnverters

As we have seen, it is often desirable to use only series, or only shunt, elements when
implementing a filter with a particular type of transmission line. The Kuroda identities can
be used for conversions of this form, but another possibility is to use impedance (K) or
admittance ("/) inverters [1], [4], [7]. Such inverters are especially useful for bandpass or
bandstop filters with nrurow (<IIVo) bandwidths.

The conceptual operation of impedance and admittance inverters is illustrated in Figure
8.38; since these inverters essentially form the inverse of the load impedance or admittaace,
they can be used to ffansform series-connected elements to shunt-connected elements, or
vice versa. This procedure will be illustrated in later sections for bandpass and bandstop
filters.

In its simplest form, a J or K inverter can be constructed using a quarter-wave trans-
former of the appropriate characteristic impedance, as shown in Figure 8.38b. This imple-
mentation also allows the ABCD matrix of the inverter to be easily found from the ABCD
parameters for a length of transmission line given in Table 4.1. Many other types of circuits
can also be used as ./ or K inverters, with one such alternative being shown in Figure 8.38c.
Inverters of this form turn out to be useful for modeling the coupled resonator filters of
Section 8.8. The lengths, 012, of the transmission line sections are generally required to be
negative for this type ofinverter, but this poses no problem ifthese lines can be absorbed
into connectins transmission lines on either side.

9 2 0

9 3 0

I

0
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Impedance inverters Admittance inverters

o)

Yin= JzlYL

-) t /4-

Yo= J

+ 0 / 2 + , , + 0 1 2 +
o-----o1l+-

r 0

t =Yotnletzl

n= ---l-
1- (Jtvdz

0 =-tan-r ?E
Yo

jB
Yo

Y = zotanl otzl

X = K ^
| -(Ktzd'

0=+ar � t  4
zo

_ C

(c)

_ C

FIGURE 8.38

(d)

Impedance and admittance inverters. (a) Operation of impedance and admittance
inverters. (b) Implementation as quarter-wave transformers. (c) Implementation
using transmission lines and reactive elements. (d) Implementation using capacitor
networks.

8'6 srEppED-TMpEDANcE Low-pASS FTLTERS

A relatively easy way to implement low-pass filters in microstrip or stripline is to use
alternating sections ofvery high and very low characteristic impedance lines. Such filters
are usually refenedto as stepped-impednnce,orhi-Z,low-Z filters, and are popularbecause
they are easier to design and take up less space than a similar low-pass filter using stubs.
Because of the approximations involved, however, their electrical performance is not as
good, so the use of such filters is usually limited to applications where a sharp cutoff is not
required (for instance, in rejecting out-of-band mixer products).

Approximate Equivalent Circuits lor Short Transmission
Line Sections

We begin by finding the approximate equivalent circuits for a short length of transmis-
sion line having either a very Targe or very small characteristic impedance. The ABCD

zn= K2lZr

*)r/4+

zo= K

+Q/ /++012+

K= l laC J = a C
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, X
t -" 2t xr t

O-l-r.Yry\-o

X = ZoFl

TIGURE 8.39

(8.82)

whiletheshuntelementof theT-equivalentisZ1y... Soif Bl <TTl2,theserieselements
have a positive reactance (inductors), while the shunt element has a negative reactance
(capacitor). We thus have the equivalent circuit shown in Figure 8.39a, where

(8.81a)

(8.81b)

(8.83a)

(8.83b)

(8.84a)

(8.84b)

(8.85a)

(8.8sb)

which implies the equivalent circuit of Figure 8.39b (a series inductor). For a short lengtl
of line and a small characteristic impedance, (8.83) approximately reduces to

X - ZgB[.,

B  = O ,

X  = 0 ,

B - Y6Bl,

which implies the equivalent circuit of Figure 8.39c (a shunt capacitor). So the series induc-
tors of a low-pass prototype can be replaced with high-impedance line sections (Zo: Zn),
and the shunt capacitors can be replaced with low-impedance line sections (Zo : ZD.The

I
+ jB

o---r*---<
I

t  B=yopt

( c l

Approximate equivalent circuits for short sections of transmission lines.
(a)T-equivalentcircuitforatransmissiontnesectionhavingpl <<n/2.(b)Equiv-
alent circuit for small pl and large Zs. (c) Equivalent circuit for small Bl and
small Zo.

parameters of a length, l, of Iine having characterisfic impedance Zs ure given in Table 4.7;
the conversion in Table 4.2 can then be used to find the Z-parameters as

A
Z t :  Z z z :  

a :  
-  j Z s c o t B t ,

I
Z p : Z z r : e : - j Z s c s c B { . .

The series elements of the Z-equivalent circuit are

zrt _ zn : _j ZolT#] : j zor*(ry),

t : r.""(ry),
B :  Ls in l t .

Zo

Now assume a short length ofline (say Bl < r l4) andalarge characteristic impedance.
Then (8.83) approximately reduces to
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ratio 21,l Zs should be as high as possible, so the actual values of Zy and Zl are usually set
to the highest and lowest characteristic impedance that can be practically fabricated. The
lengths of the lines can then be determined from (8.84) and (8.85); to get the best response
near cutoff, these lengths should be evaluated at a : ro". Combining the results of (8.84)
and (8.85) with the scaling equations of (8.67) allows the electrical lengths of the inductor
sections to be calculated as

il: 
LA 

(inductor),' Z n

and the electrical length of the capacitor sections as

CZt
Pt: 

Ro 
(capacitor).

4.0
: u - - l : 0 . 6 ;

z .J

L^

(8.86a)

(8.86b)

where R6 is the filter impedance and L and C are the normalized element values (the gps)
of the low-pass prototype.

EXAMPLE 8.6 STEPPED-IMPEDANCE FIITER DESIGN

Design a stepped-impedance low-pass filter having a maximally flat response and
a cutoff frequency of 2.5 GHz.It is necessary to have more than 20 dB insertion
loss at 4 GHz. The filter impedance is 50 O; the highest practical line impedance
is 120 S2, and the lowest is 20 Q. Consider the effect of losses when this filter is
implemented with a microstrip substrate having d - 0.158 cm, er : 4.2, tan d :
0.02, and copper conductors of 0.5 mil thickness.

Solution
To use Figure 8.26 we calculate

a)- - 1
a)c

L2

Ir Iz It Iq Is le

z o 4 z h z t z h 4 z h z o

(b)

{ c l

Filter design for Example 8.6. (a) Low-pass filter prototype circuit. (b) Stepped-
impedance implementation. (c) Microstrip layout of fnal filter.

FIGURE 8.40
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then the figure indicates N : 6 should give the required attenuation at 4.0 GHz.
Table 8.3 gives the low-pass prototype values as

g : O ' 5 1 7 : C t ,

8 z :  l ' 4 L 4 :  L z ,

8z :  7 '932:  Cz,

g q : 1 ' 9 3 2 :  L q ,

g s : 1 ' 4 1 4 :  C s ,

8 e  : O . 5 7 7 :  L o .

The low-pass prototype filter is shown in Figure 8.40a.
Next, (8.86a,b) are used to replace the series inductors and shunt capacitors

with sections of low-impedance and high-impedance lines. The required electrical
line lengths, Bli, along with the physical microstrip line widths, Wi, andlengths,
l;, are given in the table below.

Z i = Z t o r Z n Fli W, (mm) l; (mm)

|  20a
2 t20Q
3 20{2
4 120Q

5 20s)
6 12}A

11 .8 '
33.8'
44.3"
46.1'

32.4'
12.3'

11.3 2.05
0.428 6.63

11.3 7.69
0.428 9.04

11.3 5.63
0.428 2.41

The final filter circuit is shown in Figure 8.40b, with Zt :209 and Zp -
120 O. Note that BL < 45' for all but one section. The microstrip layout of the
filter is shown in Figure 8.40c.

Figure 8.41 shows the calculated amplitude response of the filter, with and
without losses. The effect of loss is to increase the passband attenuation to about

\
N.

\ vi-z.Lo-z
\

Lumped element \

1.0 2.0 3.0
Frequency (GHz)

Amplitude response of the stepped-impedance low-pass filter of Example 8.6, with
(dotted line) and without (solid line) losses. The response of the corresponding
lumped-element filter is also shown.

^ 1 0
'd

;

a

4 z o

:) _(.14.0

FIGURE 8.41
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1 dB at 2 GHz. The response of the corresponding lumped-element filter is also
shown in Figure 8.41. The passband characteristic is similar to that of the stepped
impedance filter, but the lumped-element filter gives more attenuation at higher
frequencies. This is because the stepped-impedance filter elements depart sig-
nificantly from the lumped-element values at higher frequencies. The stepped-
impedance filter may have other passbands at higher frequencies, but the response
will not be perfectly periodic because the lines are not commensurate. I

8.7 COUPLED LINE FILTERS

The parallel coupled transmission lines discussed in Section 7.6 (for directional couplers)
can also be used to construct many types of filters. Fabrication of multisection bandpass
or bandstop coupled line filters is particularly easy in microstrip or stripline form, for
bandwidths less than abott 20Vo. Wider bandwidth filters generally require very tightly
coupled lines, which are difficult to fabricate. We will first study the filter characteristics
of a single quarter-wave coupled line section, and then show how these sections can be
used to design a bandpass filter [7]. Other filter designs using coupled lines can be found
in reference [1].

Filter Properties of a Coupled Line Section

A parallel coupled line section is shown in Figure 8.42a, with port voltage and current
definitions. We will derive the open-circuit impedance matrix for this four-port network by
considering the superposition of even- and odd-mode excitations [8], which are shown in
Figure 8.42b. Thus, the current sources i1 and 13 drive the line in the even mode, while 12
and i+ drive the line in the odd mode. By superposition, we see that the total port currents,
Ii, can be expressed in terms of the even- and odd-mode currents as

I r : i r + . i z ,

I z :  i r  -  i z ,

I z : i z - i q ,

Iq:  iz  *  iq .  (8.87d)

First consider the line as being driven in the even mode by the i1 current sources. If the
other ports are open-circuited, the impedance seen at port 1 or 2 is

(8.87a)

(8.87b)

(8.87c)

(8.88)

(8.8e)

Zln: -  jZs"cotBL.

The voltage on either conductor can be expressed as

,1"(z) : urak) : vi 1s-i BQ-r) I si flQ-01

:2V: cos 0( l  *  z),

so the voltage at port I or 2 is

ujlo; : ujlO; : 2Vj cos p{. : ilzfn.

This result and (8.88) can be used to rewrirc (8.89) in terms of it as

cos B(. - z) .u)(z) :  uiQ) :  -  i  Zu-&tt i  r . (8.90)
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FIGURE 8.42

(c)

Definitions pertaining to a coupled line filter section. (a) A parallel coupled line
section with port voltage and current definitions. (b) A parallel coupled line sec-
tion with even- and odd-mode current sources. (c) A two-port coupled line section
having a bandpass response.

Similarly, the voltages due to current sources i3 driving the line in the even mode are

(8.e1)

Now consider the line as being driven in the odd mode by current iz.If Ihe other ports
are open-circuited, the impedance seen at port 1 or 2 is

1 , ,  ? , ,  c o s B z .
u;(z)  :  v i \O :  -J  Lo"  

" in  Nr3.

Zln: - jZs,cotBL.

The voltage on either conductor can be expressed as

u|k) : _r?k) : V{ls-if{z-t) + ej?k-t)7: ZV{ cos B(t. - z).

Then the voltage at port 1 or port 2 is

(8.e2)

4e) : -u?e) : ZV{ cos Bt - i2Zln.

(8.e3)
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This result and (8.92) can be used to rewrite (8.93) in terms of i2 as

,2e): -r\k): - jro"Y#rr.

Similarly, the voltages due to current ia driving the line in the odd mode are

ulkt: -r[rd: - jzo,c+*i..

Now the total voltage at port I is

(8.e4)

(8.es)

(8.97a)

(8.97b)

(8.97c)

(8.e7d)

(8.e8)

(8.99a)

(8.eeb)

(8.99c)

(8.99d)

" 
='::'i,:","":;":,:':*I'-1,",",, t Zo.iq)csc., (8 e6)

where the results of (8.90), (8.91), (8.94), and (8.95) were used, and0 : Bl. Next, we solve
(8.87) for the ij in terms of the Is:

i r :  
)g,  + rr) ,

i r :  
)e,  

-  r r ) ,

i r : )g r+ro) ,

io : l . . { t+ -  t ) ,

and use these results in (8.96):

V ,  :  
- ]1Zs , I1J-  

Zs . I2 l  Zoo l r  -  Zs , l2 )co t |- 2

4(Zo"t, t Zs"Ia * ZooI+ - Zsoh) csc A .
2 ' " ' "

This result yields the top row of the open-circuit impedaace matrix lZl that describes the
coupled line section. From symmetry all other matrix elements can be found once the first
row is known. The matrix elements are then

Z 1  :  Z z z :  2 3 3 :  Z * :  ! 6 0 "  *  Z o o \ c o t l ,
z

Z n :  Z z t :  2 3 4 :  Z o r : 1 Q 0 "  -  Z o o ' ) c o t l .
2 *

- i
Zn : Zzt - Zzq : Za2 : -!(Zs" - Zs) csc 0,

z
- i

Ztq :  Zqt  -  ZB :  f t2 :  - ! (Zo"  I  Zoo)csc9.
z

A two-port network can be formed from the coupled line section by terminating two
of the four ports in either open or short circuits; there are ten possible combinations, as
illustratedinTable 8.8. As indicatedinthistable, thevarious circuitshave differentfrequency
responses, including low-pass, bandpass, all pass, and all stop. For bandpass filters, we are
most interested in the case shown in Figure8.42c, as open circuits are easier to fabricate than
are short circuits. In this case, Iz: Iq:0, so the four-port impedance matrix equations
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TABLE 8.8 Ten Canonical Coupled Line Circuits

Circuit Image Impedance Response

_ 2Zg.Zn.cos9
" 

^lQo"+Zso)2 cos20 -{Zs"-Zgol2

- Zo&oo
t iz=  

4

ReZ,,)
^ "  / \  /l_/ \_,
0 r f i 3 f i

2 Lo* pur. 2

Z t =
2Z6"Zno sin 0

"f 1zo" - zoo12 * 1zs" + zso)2 cos2 o

Re(Zi1), ^/ \+ \  /  \
| \-/ \-/
l t l l
0 t n 3 f i

2  o^ -^^^^^  2

+ 0 +*e
e.@

Z l =
ffi

2 sin4

Re(2,)

i ,a. ,-
|  / , \  ,  /  ,
0 r r 3 , n

2 B-dpur, 2

2 , ,  *0 -
-;o_@N::-

:

;*o-@l
L i 1

.lhz- .{a;-V&-A;;m;Jo
(Zoe + Zoo\ srn 0

Zit =

- ZoZoo
L i t =  -

Zir

Re(Zi)

t , a .  -
O n r 3 r

2 B-dpur, 2

+ 0 +
ffiffi

zi.@*
_ Zo"+ Zoo
tir= ---T- All pass

- 2ZoZoo
" 

Zsn * 211o
All pass

z i t  + o +

e*@-t--->o-ffiffiH z,r=,[zo"z,* All pass

- 0 -

5@*e
eew

22"2"^
2 , ,= - i  " '  " "  co tQ" " 

211*'lZgo

- ZoZoo
"iz= 

Zn

All stop

z,r=i ^{zog,o" t^e All stop

eo---@
;*G.-.@L i l  + 0 +

z,r=4 .[207,* cote All stop
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Re(Z;)

Zo" - Zoo

FIGURE 8.43 The real part of the image impedance of the bandpass network of Figure 8.42c.

reduce to

3zr 0
2

Vr :  Z r I t  *  Zn Iz ,

V z : Z z t l t l Z z z l z ,

(8.100a)

(8.100b)

(8.102)

where Zil is given in (8.99).
We can analyze the f,lter characteristics of this circuit by calculating the image impe-

dance (which is the same at ports 1 and 3), and the propagation constant. From Table 8.1,
the image impedance in terms of the Z-parameters is

, , : rFr- t*
1

2
(Zo" - Zso)z csc2 0 - (Zo" -l Zo)2 cotz 0. (8 .101)

When the coupled line section is )./4 long (0 : n /2), the image impedance reduces to

z , : ) { z o " - Z o o ) ,

which is real aad positive, since Zo" > Zoo. But when 0 --> O or n, Zi -+ *joo, indicating
a stopband. The real part of the image impedance is sketched in Figure 8.43, where the
cutoff frequencies can be found from (8.101) as

cosgl : -cos9z : 
Z=0" 

. Zo" .
Zo" * Zoo

The propagation constant caa also be calculated from the results ofTable 8.1 as

^ Etrz"cosp - 
l-r

which shows B is real for fu < 0 < 0z -

Zn Zo" * Zoo
: -*: : =€ cos0, (8.103)

Ztz Zo" - Zoo

n - 0t,where cos dl : (Zo" - Zo)l(Zo" I Zo).

Design of Goupled Line Bandpass Filters

Narrowband bandpass filters can be made with cascaded coupled line sections of the form
shown in Figure 8.42c.To derive the design equations for filters of this type, we first show
that a single coupled line section can be approximately modeled by the equivalent circuit
shown in Figure8.44. We will do this by calculating the image impedaace and propagation
constant of the equivalent circuit and showing that they are approximately equal to those
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FIGURE 8.44 Equivalent circuit of the coupled line section of Figure 8.42c.

of the coupled line section for 0 : n 12, which will correspond to the center frequency of
the bandpass response.

The ABCD parameters of the equivalent circuit can be computed using the ABCD
matrices for transmission lines from Table 4.1 :

l t  Bt  [ :o . 'a^  jzss in , l l  _ j1r ] t  
;3 , "% 

jzos in , l

f c  r . l  :L '#  cose l l - r ,  o  iLT  cosd l

: l  ( ' , ' : .  h)sin,cosd ' , ( '4"*-1- +) I  (8 r04)-  

I t  G4sin2d 
-  " r "o , ' �e)  ( t to*#)" "acosa- l  

\v ' rv- /

The ABCD parameters of the admittance inverter were obtained by considering it as a
quarter-wave length of transmission of characteristic impedance, If J. From (8.27) the
image impedance of the equivalent circuit is

,-
Z, :  ^ l  

B_ _ |  
J Z' �osinz 0 -^( l I  J)cosz 0 

.- '  -  
V c 

-  
V t t  lJZl ls in2 o -  J cos2o'

which reduces to the following value at the center frequency, 0 : n 12:

(8.10s)

(8.106)

(8.107)

(8.108a)

(8.108b)

Z i :  J Z 3 .

From (8.31) the propagation constant is

cosB -  e :  ( tz r .  h )s ingcosd.
Equating the image impedances in (8.102) and (8.106), and the propagation constants of
(8.103) and (8.107), yields the following equations:

1 ^

2(Zo" 
- Zo): J26,

Zo" I Zoo I

f f i - r Z o + J h '
where we have assumed sin d - 1 for 0 near n /2. These equations can be solved for the
even- and odd-mode line impedances to give

Z o " : Z o l l * J Z s + ( J Z d z l ,

Z o o : Z o f l - J Z o + Q Z d z l .

Now consider a bandpass filter composed of a cascade of N * I coupled line sections,
as shown in Figure 8.45a. The sections are numbered from left to right, with the load on the

I
I



422 Chapter 8: Microwave Filters

<-- I Q _-______________

Zg" ' Zoo

(b)

- j z o c o t 9  - j Z s c o t 9  1 : - 1

zo

(c)

(d)

FIGURE 8.45

*H[*Tr
1: JZs <- Il4------>

zs (N =2)

26  (N  =2 )

(f)

Development of an equivalent circuit for derivation of design equations for a
coupled line bandpass filter. (a) Layout of an N * I section coupled line band-
pass filter. (b) Using equivalent circuit ofFigure 8.44 for each coupled line section.
(c) Equivalent circuit for transmission lines of length 20. (d) Equivalent circuit
of the admittance inverters. (e) Using results of (c) and (d) for the N:2 case.
(f) Lumped-element circuit for a bandpass filter for N :2.

u,l f., J 2
- 900

L2 7 C t
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right, but the filter can be reversed without affecting the response. Since each coupled line
section has an equivalent circuit of the form shown in Figure 8.44, the equivalent circuit of
the cascade is as shown in Figure 8.45b. Between any two consecutive inverters we have
a transmission line section that is effectively 20 in length. This line is approximately ),12
long in the vicinity of the bandpass region of the filter, and has an approximate equivalent
circuit that consists of a shunt parallel lC resonator, as in Figure 8.45c.

The first step in establishing this equivalence is to find the parameters for the
Z-equivalent and ideal transformer circuit of Figure 8.45c (an exact equivalent). TheABCD
matrix for this circuit can be calculated usins the results in Table 4.1 for a ?-circuit and an
ideal transformer:

I  Ztr  Z2r,  -  Z2r,  I
l e  8 1  _ 1 1  z "  l l - t  o l _
L c  D l - l  t  Z ,  l L o  - r l -

I' Z n  Z n  J

Equating this result to the ABCD parameters for a transmission line of length 20 and
characteristic impedance Zs gives the parameters of the equivalent circuit as

| -Zt z?, - z?, I
I z" T l. rr.,onr
l - l  - Z t  I
L z n  z "  I

- l  jZo
' t ' -  

c  
-  

s in2o '
Z n :  Z z z :  - Z p A :  -  j Z o c o t Z e .

Then the series arm impedance is

Z  . -  c o s 2 0  + 1
rt  -  Zn :  - iZo 

sinZe 
- - jZscot9.

The 1:-1 transformer provides a 180o phase shift, which cannot

(8.1 10a)

(8.110b)

(8 .1  13)

(8.1 14a)

(8.1 14b)

(8 . r11 )

be obtained with the
I-network alone; since this does not affect the amplitude response of the filter, it can be
discarded. For d - n /2 the series arm impedances of (8. 1 1 1) are near zero, and can also be
ignored. The shunt impedance Ze,howeve4looks like the impedance of a parallel resonant
circuit for 0 - r/2. If we let ar: arg * Ac,r, where 0 :n/2 at the center frequency r,.rs,
then we have20 - f( : alf u, - (coo + Lc't)n /ao : r(1 * La>f ah), so (8.110a) can be
written for small Aar as

- 
- i Zocoo

tt(@ - ad'
(8.rr2)

From Section 6.1 the impedance near resonance of a parallel ZC circuit is

jZo
Z n :

sinz(1 * A,ot/rci.o)

- iLa?
7 -  "  v

2(a - oi,s)'

with a.rfr : 1 / LC . Equating this to (8.1 12) gives the equivalent inductor and capacitor values
AS

22"
L - _____:_,

7t (D0

1
t - -
v - - -

@6L

The end sections of the circuit of Figure 8.45b require a different treatment. The lines
of length 9 on either end of the filter are matched to Zs, and so can be ignored. The end
inverters, "I1 and fi,'a1, caneachberepresentedas atransformerfollowedby a)./4 section

J L

2Zsas
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of line, as shown in Figure 8.45d. The ABCD matrix of a transformer with a turns ratio N
in cascade with a quarter-wave line is

- j " 1  
_ l  0

o  l - l  
- i t

s Z o

.  (8 .11s)

Comparing this to the ABCD matrix of an admittance inverter (part of (8.104)) shows that
the necessary turns ratio is N : J Zo. The ),l4 line merely produces a phase shift, and so
can be ignored.

Using these results for the interior and end sections allows the circuit of Figure 8.45b to
be transformed into the circuit of Figure 8.45e, which is specialized to the N : 2 case. We
see that each pair of coupled line sections leads to an equivalent shunt lC resonator, and
an admittance inverter occurs between each pair of lC resonators. Next, we show that the
admittance inverters have the effect of transforming a shunt LC resonator into a series lC
resonator, leading to the final equivalent circuit of Figure 8.45f (shown for N : 2). This
will then allow the admittance inverter constants, Jn, to be determined from the element
values of a low-pass prototype. We will demonstrate this for the N : 2 case.

With reference to Figure 8.45e, the admittance just to the right of the /2 inverter is

|  "  ' ' : ( Y - ' o ) + z o r ? .
j a C z +  -  * Z s J ; : i , 1 - ,

J@Lz V Lz \ roo at  /

since the transformer scales the load admittance by the square of the furns ratio. Then the
admittance seen at the input of the filter is

I t  sl : lT ;l [;
- j z o j

N l
0 l

'  :;z,li"'* fi,*
r?

i \re;f6t@/i,oo)- (@oldl + zoJ?

I( ; -  T). I
I

1+ - +'  
j rL \

( ; - T).

1
-
J(26

J?23
r?

(8.1 18a)

(8.118b)

(8.1 I  8c)
r?44

4

jJe;f6Ko/ati - @o/a)l+2 ,4  l '
(8.1 16)

These results also use the fact, from (8.114), that LnCn : l/alfor all LC resonators.
Now the admittance seen lookins into the circuit of Fisure 8.45f is

Y :  jaCi
jai l \+ I l jatC'r* Zs

i Jq4r[ktlt'td - @oll.l)] + Zo'
(8.1 17)

which is identical in form to (8.1 16). Thus, the two circuits will be equivalent if the following
conditions are met:

tr
t -

\ r ,

IC,
t -

\ r ,

:h{ '

L;

C; ,

- Zs.
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We know L, and C, from (8.1 1a); L'n and Cl are determined from the element values
of a lumped-element low-pass prototype which has been impedance scaled and frequency

transformed to a bandpass filter. Using the results in Table 8.6 and the impedance scaling
formulas of (8.64) allows the L'" and Cj values to be written as

where A :(az-a)/ao is the fractional bandwidth of the filter. Then (8.118) can be
solved for the inverter constants with the following results (for N : 2):

. L,Zn
L \ : : ,- @ogr

o 1
^ l  d r
L r : - .' La\1Zg

r I  EzZo
' Lttta

. A
C'r:  -- '  -  ,' tttogzzo

l lZs : (# ) ' ' ^ :

^  / C , C . \ t / a  r A '
J2Zg :  hz6l  ,=\LzL2 /  zr t r tgr '

Ei
ZsJ l :  

t l  , r r ,

(8.1 19a)

(8.1 r9b)

(8.1 19c)

(8.1 19d)

(8.120a)

(8.120b)

(8. l20c)l3Zs:* , : rE

After the "/ns are found, Zo" and Zso for each coupled line section can be calculated from
(8.108).

The above results were derived for the special case of N :2 (three coupled line
sections), but more general results can be derived for any number of sections, and for the
casewhereZr#Zo(orgn+r f l,asinthecaseofanequal-rippleresponsewithNeven).
Thus, the design equations for a bandpass filter with N * 1 coupled line sections are

ZoJn
n A ,

f o r n : 2 , 3 , . . . , N ,

(8.121a)

(8.121b)

(8 .121c)ZoJx+ t :

The even and odd mode characteristic impedances for each section are then found from
(8.108).

EXAMPLE 8.7 COUPLED LINE BANDPASS FILTER DESIGN

Design a coupled line bandpass filter with N : 3 and a 0.5 dB equal-ripple re-
sponse. The center frequency is 2.0 GHz, the bandwidth is 1OVo, and Zs: 50 Q.
What is the attenuation at 1.8 GHz?

n L ,

2ct
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Solution
The fractional bandwidth is A :0.1. We can use Figure 8.27ato obtain the at-
tenuation at 1.8 GHz, but first we must use (8.71) to convert this frequency to the
normalized low-pass form (a.r. : 1);

(t) <- -2 .17 .

Then the value on the horizontal scale of Figure 8.27ais

l . lt - l  -  I  :  I  -  2 . 1 1 1 -  1  :  1 . 1 1 ,
l a ' l

which indicates an attenuation of about 20 dB for N : 3.
The low-pass prototype values, 9,, Te given in Table 8.4; then (8.121) can

be used to calculate the admittance inverter constants, J". Finally, the even- and
odd-mode characteristic impedances can be found from (8.108). These results are
summarized in the followins table:

ZoJn Zo"(Q) zo"(Q)

i (# -9:#(#-#) :

I
2
J

t
+

1.5963
1.0967
1.5963
1.0000

0.3137
0.1 187
0.1 187
0.3137

70.61
56.64
56.64
70.6r

39.24
44.7'�|
44.77

39.24

Note that the filter sections are symmetric about the midpoint. The calculated
response of this filter is shown in Figure 8.46; passbands also occur at 6 GHz,
10 GHz, etc.

Many other types of filters can be constructed using coupled line sections;
most of these are of the bandpass or bandstop variety. One particularly compact
design is the interdigitated filter, which can be obtained from a coupled line filter
by folding the lines at their midpoints; see [1] and [3] for details. I

2.0
Frequency (GHz)

E t n

E

o ? n
B - "

FIGURE 8.46 Amplitude response of the coupled line bandpass filter of Example 8.7.
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FILTERS USING COUPLED RESONATORS

We have seen that bandpass and bandstop filters require elements that behave as series or
parallel resonant circuits; the coupled line bandpass filters ofthe previous section were of

this type. Here we will consider several othertypes of microwave filters thatusetransmission
line or cavity resonators.

Bandstop and Bandpass Filters Using Quarter-Wave Resonators

From Chapter 6 we know that quarter-wave open-circuited or short-circuited transmission
line stubs look like series or parallel resonant circuits, respectively. Thus we can use such
stubs in shunt along a transmission line to implement bandpass or bandstop filters, as shown
in Figure 8.47. Quarter-wavelength sections of line between the stubs act as admittaace
inverters to effectively convert alternate shunt resonators to series resonators. The stubs and
the transmission line sections arc ),14long at the center frequency, os.

For narrow bandwidths the response of such a filter using N stubs is essentially the
same as that of a coupled line filter using N * 1 sections. The internal impedance of the stub
filter is Zs,while in the case of the coupled line filter end sections are required to transform
the impedance level. This makes the stub filter more compact and easier to design. A
disadvantage, however, is that a filter using stub resonators often requires characteristic
impedances that are difficult to realize in practice.

We first consider a bandstop filter using N open-circuited stubs, as shown in
Figure 8.47a.The design equations for the required stub characteristic impedances, Zsn,
will be derived in terms of the element values of a low-pass prototype through the use of
an equivalent circuit. The analysis ofthe bandpass version, using short-circuited stubs, fol-
lows the same procedure so the design equations for this case are presented without detailed
derivation.

As indicated in Figure 8.48a, an open-circuited stub can be approximated as a series IC
resonator when its length is near 90o. The input impedance of an open-circuited transmission

(b)

Bandstop and bandpass filters using shunt transmission line resonators (0 : r /2
at the center frequency). (a) Bandstop filter. (b) Bandpass filter.

+ 0 + + 0 +

+ 0 + + 0 +

FIGURE 8.47
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0 = r l 2 a t a = o o

(c)

FIGURE 8.48 Equivalent circuit for the bandstop filter of Figure 8.47a. (a) Equivalent circuit of
open-circuited stub for 0 near r /2. (b) Equivalent filter circuit using resonators and
admittance inverters. (c) Equivalent lumped-element bandstop filter.

line of characteristic impedance Zs, is

Z -  - jZoncot9,

where0 :n/2for  a:  @s.  I f  weletat :ao* La,  where Aro ( (  aro,  then 0:n/2( l *
Latlan), and this impedance can be approximated as

o

1".
\

I

T - n

(4.,

zo

(8.r22)

for frequencies in the vicinity of the center frequency, are. The impedance of a series .LC
circuit is

r L,a iZonn(to - too)
Z: iZontuo 

Zro 
= ----X,;j.

1
Z - i a L " * : : i" " jaCn

E r .
Vc ;  \ *

_e:_) =zi @ - o o - 2j L,(at - ci,s),

(8.123)

where L,Cn: Il4. Equating (5.122) and (8.123) gives the characteristic impedance of
the stub in terms of the resonator parameters:

4@sLn

7r

L3

c3

J - llZo
-90'

/
l L zr * >

l r ^
I  T ' 2

J = llZo
-90"

l L r

I

-r "r

(8.124)
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Then, if we consider the quarter-wave sections of line between the stubs as ideal
admittance inverters, the bandstop filter ofFigure 8.47a can be represented by the equivalent
circuit of Figure 8.48b. Next, the circuit elements of this equivalent circuit can be related
to those of the lumped-element bandstop filter prototype of Figure 8.48c.

With reference to Figure 8.48b, the admittance, Y, seen looking toward the L2C2
resonator is

jaLz * 0/jaCz)

1

1  l - t
- L - l'  zoJY -

j J Lz/ Cz lko / roi - kDo I @)l

I  t  I  l l
-  r -  L _ l' 
zo I i 'ILJq[@l.,ot - (aolo)] ' zo l'

The admittance at the corresponding point in the circuit of Figure 8.48c is

. l i-irDr4+ z']'

j J Li/ citko / aD - kDo / @)l

I  r  l - '
_ y l  

-  
_ y z  I'  

I i rc lq[@loi l -@ol, ) ] '  
" l

These two results will be equivalent if the following conditions are satisfied:

t E
4 !a

E
\ C ,

Since LnCn : L'nCt: 1/@z',these results can be solved for Ln:

Then using (8.124) and the impedance-scaled bandstop filter elements from Table 8.6 gives
the stub characteristic impedances as

where A : (oz - al) I ao is the fractional bandwidth of the filter. It is easy to show that the
general result for the characteristic impedances of a bandstop filter is

Z?
r .  -  v' 

at6L\

L 2 :  L ' r ,

423 4Zo
t ^ - - -

nosL\  ngrL

4ooL\ 4Zo
t ^ ^ - -

7t T gzL

42"
Z n , :  J

T  8 n L

. h l
jaLr * l/ iaC1

Y =
jaL|+ l / jaC,

I

(8.12s)

(8.126)

(8.r27a)

(8.127b)

(8.128a)

(8.128b)

(8.129a)

(8.12eb)

(8.130)
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For a bandpass filter using short-circuited stub resonators the corresponding result is

nZsA,
Z o n : (8 .131)

These results only apply to filters having input and output impedaaces of Zs, ffid so cannot
be used for equal-ripple designs with N even.

EXAMPLE 8.8 BANDSTOP FILTER DESIGN

Design a bandstop filter using three quarter-wave open-circuit stubs. The center
frequency is 2.0 GHz, the bandwidth is 15Vo, and the impedance is 50 O. Use an
equal-ripple response, with a 0.5 dB ripple level.

Solution
The fractional bandwidth is A :0.15. Table 8.4 gives the low-pass prototype
values, g, for N :3. Then the characteristic impedances of the stubs can be
found from (8.130). The results are listed in the followins table:

I t.5963 265.9 A

2 t.0967 387.0 Q
3 r.5963 265.94

The filter circuit is shown in Figure 8.47a,withall stubs and transmission line
sections ),l4long at2.0 G}{z. The calculated attenuation for this filter is shown in
Figure 8.49; the ripple in the passbands is somewhat greater than 0.5 dB, as a result
of the approximations involved in the development of the design equations. I

The performance of quarter-wave resonator filters can be improved by allowing the
characteristic impedances of the interconnecting lines to be variable; then an exact cor-
respondence with coupled line bandpass or bandstop filters can be demonsffated. Design
details for this case can be found in reference [1].

1.0 1.5 2.O 2.5

Frequency (GHz)

FIGURE 8.49 Amplitude response of the bandstop filter of Example 8.8.
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(8.132)

Bt Bz B3

ffi/M/MiM *fu/*w
h

(a)

-iL-d*-t*lin-- Ji--b--iF-

zozs4^

zo zo
- - - #

o o o o O o o o O - - #

zo4LO

(c)

FIGURE 8.50

Bandpass Filters using capacitively coupled series Resonators

Another tlpe of bandpass filter that can be conveniently fabricated in microstrip or stripline

form is the capacitive-gap coupled resonator filter shown in Figure 8.50' An Nth order

filter of this form will use N resonant series sections of transmission line with N f 1

capacitive gaps between them. These gaps can be approximated as series capacitors; design

data relating the capacitance to the gap size and transmission line palameters is given in

graphical form in ,if"r"n." [1]. The filter can then be modeled as shown in Figure 8.50b.

The resonators are approximately )"12long at the center frequency, a.r6'

Next, we redraw the equivalent circuit of Figure 8.50b with negativeJength transmis-

sion line sections on either side of the series capacitors. The lines of length { will be }"/2

long at @0, so the electrical length, 0i, of the ith section in Figures 8.50a'b is

Development of the equivalence of a capacitive-gap coupled fesonator bandpass

filter to the coupled line bandpass filter of Figure 8.45. (a) The capacitive-gap

coupled resonator bandpass filter. (b) Transmission line model. (c) Transmission

line model with negative-length sections forming admittance inverters (h/2 .0).

(d) Equivalent circuit using inv efiers and)t f2 tesonatols (0 : n at a;o). This circuit

is now identical in form with the coupled line bandpass filter equivalent cilcuit in

Figure 8,45b.

1 1- n + ) Q i + , h + t ,  f o r I :

with d; < 0. The reason for doing this is that the combination of series capacitor and

negative-length transmission lines forms the equivalent circuit of an admittance inverter, as

seen from Figure 8.38c. In order for this equivalence to be valid, the following relationship
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must hold between the electrical length of the lines and the capacitive susceptance:

Qi: -tar{1(2zoB). (8.133)

Then the resulting inverter constant caa be related to the capacitive susceptance as

(These results are given in Figure 8.38, and their derivation is requested in Problem 8.15.)
The capacitive-gap coupled filter can then be modeled as shown in Figure 8.50d. Now

consider the equivalent circuit shown in Figure 8.45b for a coupled line bandpass filter.
Since these two circuits are identical (as 4 : 20 : n at the center frequency), we can
use the results from the coupled line filter analysis to complete the present problem. Thus,
we can use (8.121) to find the admittance inverter constants, "[, from the low-pass prototype
values (g;) and the fractional bandwidth, A. As in the case of the coupled line filter, there
will be N * 1 inverter constants for an Nth order filter. Then (8.134) can be used to find
the susceptance, Bi, for the lth coupling gap. Finally, the electrical length of the resonator
sections can be found from (8.132) and (8.133):

g' : ---!:-.'  
1 - (ZoJi)'

oi : n - 
f,rr*-t <rroBi) * tan-t 12zsB,*)1.

(8.134)

(8.135)

EXAMPLE 8.9 CAPACITIVELY COUPLED SERIES RESONATOR BANDPASS
FILTER DESIGN

Design a bandpass filter using capacitive coupled series resonators, with a 0.5 dB
equal-ripple passband characteristic. The center frequency is 2.0 GHz, the band-
width is IOVo, and the impedance is 50 O. At least 20 dB of attenuation is required
a t2 .2GHz

Solution
We first determine the order of the filter to satisfy the attenuation specification at
2.2 GHz. Using (8.71) to convert to normalized frequency gives

@ < -

- 1 : 1 . 9 1  - 1 . 0 : 0 . 9 1 .

From Figure 8.27 a, we see that N : 3 should satisfy the attenuation specification
at2.2GHz The low-pass prototype values are given in Table 8.4, from which the
inverter constants can be calculated using (8.121). Then the coupling susceptances
can be found from (8.134), and the coupling capacitor values as

C n :

Finally, the resonator lengths can be calculated from (8.135). The following table
summarizes these results.

*(; -T):#(n-'#):
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50
1.0 2.0

Frequency (GHz)

Amplitude response for the capacitive-gap coupled series resonator bandpass filter

of Example 8.10.

ZoJn

FIGURE 8.51

0,cnBn8,

I 1.5963
2 1.0967
3 r.5963
4 1.0000

6.96 x 10-3

2.41 x l0-3

2.41 x l0-3

6.96 x 10 3

0.554 pF

O.l92pF

0.192 pF

0.554 pF

0.3137
0 .1187
0.1 I  87
0.3137

155.8'
166.5'

155.8'

The calculated amplitude response is plotted in Figure 8.51. The specifications
of this filter are the same as the coupled line bandpass filter of Example 8.8, and
comparison of the results in Figures 8.51 and 8.46 shows that the responses are
identical near the passband region.

Bandpass Filters Using Capacitively Coupled Shunt Resonators

A related type of bandpass filter is shown in Figure 8.52, where short-circuited shunt
resonators are capacitively coupled with series capacitors. An Nth order filter will use
N stubs, which are slightly shorter than )" 14 atthefilter center frequency. The short-circuited
stub resonators can be made from sections of coaxial line using ceramic materials having
very high dielectric constant and low loss, resulting in a very compact design even at
UHF frequencies [9]. Such filters are often referred to as ceramic resoncfior filters, and are

czt

T

cncor

FIGURE 8.52 A bandpass filter using capacitively coupled shunt stub resonators.
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presently the most common type of RF bandpass filter used in portable wireless systems.
Virtually every modern cellular/PCS telephone, wireless LAN, and GPS receiver employs
between two and four of these filters.

Operation and design of this filter can be understood by beginning with the general
bandpass filter circuit of Figure 8.53a, where shunt LC resonators alternate with admit-
tance inverters. As in the case ofprevious coupled resonator bandpass and bandstop filters,
the function of the admittance inverters is to convert alternate shunt resonators to series
resonators; the extra inverters at the ends serve to scale the impedance level ofthe filter to a
realistic level. Using an analysis similar to that used for the bandstop filter, the admittance
inverter constants can be derived as

ZsJo l :

ZoJu,x+r :

Similarly, the coupling capacitor values can be found as

nA .7 ^ rz v r n , n + L  -  
|
+ ,,/ 8n 8n+1

Jot
v(Jt ---------- : .

aot/ 1 - (ZoJor)'

Jn,n+l
en ,n+ t  -

@0

(8.136a)

(8.136b)

(8.136c)

(8.137a)

(8.137b)

(8.137c)
Jr,r,r,,t+t

Cu,u+r :
,oJl - (ZsJ^r,N*t1z

Note that the end capacitors are treated differently than the internal elements.
Now replace the admittance inverters of Figure 8.53a with the equivalent z-network

of Figure 8.38d, to produce the equivalent lumped-element circuit shown in Figure 8.53b.
Note that the shunt capacitors of the admittance inverter circuits are negative, but these
elements combine in parallel with the larger capacitor of the LC resonator to yield a posi-
tive capacitance value. The resulting circuit is shown in Figure 8.53c, where the effective
resonator capacitor values are given by

C, : Cn + LCn - Cn - Cr-1,, - Cn,n+I, (8.  l  38)

where AC, = -Cn-t,n - Cn,n+r represents the change in the resonator capacitance caused
by the parallel addition of the inverter elements.

Finally, the shunt LC resonators of Figure 8.53c are replaced with short-circuited
transmission stubs, as in the circuit of Figure 8.52. Note that the resonant frequency of the
stub resonators is no longer @s, since the resonator capacitor values have been modified

i r L

48t

48xgu+t
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by the AC,s. This implies that the length of the resonator is less than )"/4 at co6, the
filter center frequency. The transformation of the stub length to account for the change
in capacitance is illustrated in Figure 8.53d. A short-circuited length of line with a shunt
capacitor at its input has an input admittance of

Y : Y L * j a g C , (8.139a)

where 11 : /cot B!..If the capacitor is replaced with a short length, Al, of transmission
line, the input admittance would be

I  Yt+ j l tanr. t t
Y _ =YL+  j f# (8.13eb)

t t  
** 

iY2tanBA,[

The last approximation follows for BLL (( 1, which is true in practice for filters of this
type. Comparing (8.139b) with (8.139a) gives the change in stub length in terms of the
capacitor value:

ZsasC
L.T : (8.140)

Note that if C < 0, then Ll < O,indicating a shortening of the stub length. Thus the overall
stub length is given by

:(ry)^

n ^. ( ZsasL,C,\t ^ :  o * \ = T ) ^ . (8 .141)

where AC, is defined in (8.138). The characteristic impedance of the stub resonators is Zo.
Dielectric material properties play a critical role in the performance of ceramic res-

onator filters. Materials with high dielectric constants are required in order to provide
miniaturization at the frequencies typically used for wireless applications. Losses must be
low to provide resonators with high Q,leading to low passband insertion loss and maximum
attenuation in the stopbands. And the dielectric constant must be stable with changes in
temperature to avoid drifting of the filter passband over normal operating conditions. Most
materials that are commonly used in dielectric resonator filters are ceramics, such as barium
tetratitanate, zinclstrontium titanate, and various titanium oxide compounds. For example,
a zinclstrontium titanate ceramic material has a dielectric constant of 36, with a O of 10,000
at4 GHz, and a dielectric constant temperature coefficient of -7 ppm/C'.

EXAMPLE 8.10 CAPACITIVELY COUPLED SHUNT RESONATOR BANDPASS
FILTERDESIGN

Design a third-order bandpass filter with a 0.5 dB equal-ripple response using
capacitively coupled short-circuited shunt stub resonators. The center frequency
is2.5 GHz, and the bandwidth is 107o. The impedance is 50 Q. What is the resulting
attenuation at3.0 GHz?

Solution
We first calculate the attenuation at 3.0 GHz. Using (8.71) to convert 3.0 GHz to
normalized low-pass form gives

, . -  * (#  -  T ) :  #  (#  - ' ; ) :3667
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Then, to use Figure 8.27a,the value on the horizontal axis is

l o t
t - l -  l :  l - 3 . 6 6 7 1  - 7 : 2 . 6 6 7 ,
l a ' l

from which we find the aftenuation as 35 dB.
Next we calculate the admittance inverter constants and coupling capacitor

values using (8.136) and (8.137):

ZoJn-t .n c*-r," (pF)

I
2
J

4

ZsJu :9.2213

ZsJn:9.9594
ZsJn :6.9594

ZsJ3a:9.2219

Then we use (8.138), (8.140), and (S.141) to find the required resonator lengths:

AC, (pF) Ll,( )

r.5963
t.0967
r.5963
1.0000

Cor :0.2896

Cn :0 .0756
Cx :0-0756

Cv :0.2896

I
2
3

-0.04565

-0.0189
-0.04565

Note that the resonator lengths are slightly less than 90' (f/4)' The calculated

amplitude response of this design is shown in Figure 8.54. The stopband rolloff at

high frequencies is less than at lower frequencies, and the attenuation at 3 GHz is

seen to be about 30 dB, while our calculated value for a canonical lumped-element

bandpass filter was 35 dB.

-i.oo 
1.50 2.oo 2.5o 3.oo 3.50 4.oo

Frequency (GHz)

Amplitude response of the capacitively coupled shunt resonator bandpass filter of

Example 8.10.

-0.3652
-0.1512
-0.3652

73.6'

83.2
73.6'

I

FIGURE 8.54
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PROBLEMS

8.1 Considerthefiniteperiodicstructureshownbelow,consistingofeight80(-2resistorsspacedatintervals
of ),/2 along a transmission line with Zo : 50 Q. Find the voltage V (z) along the line, and plot lV(z)l
versus z.

0 0.5 1.0 1.5 2.O 2.5 3.0 3.5 z/)"

8.2 Sketch the k-p diagram for the infinite periodic structure shown below. Assume Zo : l}OQ, d :
1.0 cm, k : ko, and ls - 3.0 nH.

8.3 Verify the expression for the image impedance of a z-network given in Table 8.1.

8.4 Compute the image impedances and propagation factor for the network shown below.

Design a composite low-pass filter by the image parameter method with the
tions: Re : 50 a, f" : 5O MHz, and f* : 52 MHz. Use CAD to plot the
frequencv.

following specifica-
insertion loss versus

8.5
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8.6 Design a composite high-pass filter by the image parameter method with the following specifica-

t ions: R6:75{2, f":50 MHz, and f*:48 MHz. Use CAD to plot the insert ion loss versus

frequency.

8.7 Solve the design equations in Section 8.3 for the elements of an N : 2 equal-ripple filter if the ripple

specification is 1.0 dB.

8.8 Design a low-pass maximally flat lumped-element filter having a passband of 0 to 3 GHz, and an

attenuation of 20 dB at 5 GHz. The characteristic impedance is 75 Q. Use CAD to plot the insertion

loss versus frequency.

8.9 Design a five-section high-pass lumped-element fllter with a 3 dB equal-ripple response, a cutoff

frequency of I GHz, and an impedance of 50 f2. What is the resulting attenuation at 0.6 GHz? Use

CAD to plot the insertion loss versus frequency.

8.10 Design a four-section bandpass lumped-element filter having a maximally flat group delay response.

The bandwidth should be SVo with a center frequency of 2 GHz The impedance is 50 Q. Use CAD

to plot the insertion loss versus frequency.

8.11 Design a three-section bandstop lumped-element fllter with a 0.5 dB equal-ripple response, a band-

width of 107o centered at 3 GHz, and an impedance of 75 Q. What is the resulting attenuation at 3.1

GHz? Use CAD to plot the insertion loss versus frequency.

8.12 Verify the second Kuroda identity in Table 8.7 by calculatingthe ABCD matrices for both circuits.

8.1.3 Design a low-pass third-order maximally flat filter using only series stubs. The cutoff frequency is

6 GHz and the impedance is 50 Q. Use CAD to plot the insertion loss versus frequency.

8.14 Design a low-pass fourth-order marimally flat filter using only shunt stubs. The cutoff frequency is

8 GHz and the impedance is 50 O. Use CAD to plot the insertion loss versus frequency.

8.15 Verify the operation of the admittance inverter of Figure 8.38c by calculating its ABCD matrix and

comparing it to the ABCD matrix of the admittance inverter made from a quarter-wave line.

8.16 Show that the n equivalent circuit for a short length oftransmission line leads to equivalent circuits

identical to those in Figure 8.39b and c, for large and small characteristic impedance, respectively.

8.17 Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz, and a fifth-order

0.5 dB equal-ripple response. Assume Ro : 50 Q, Zt : 15 9, and Zy : 120 A. (a) Find the required

electrical lengths of the five sections, and use CAD to plot the insertion loss from 0 to 6 GHz. (b) Lay

out the microstrip implementation of the filter on an FR4 substrate having e, : 4.2, d : 0.079 cm,

tan 6 : 0.02, with copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus frequency

in the passband of the filter, and compare with the lossless case.

8.18 Design a stepped-impedance low-pass filter with /" :2.0 GHz and R6 : 50 Q, using the exact

transmission line equivalent circuit of Figure 8.39a. Assume a maximally flat N : 5 response, and

solve for the necessary line lengths and impedancesif Za : 10 Q and Zn : 150fl". Use CAD to plot

the insertion loss versus frequency.

8.19 Design a four-section coupled line bandpass fllter with a 0.5 dB equal ripple response. The center

frequency is 2.45 GHz, the bandwidth is 107o, and the impedance is 50 O. (a) Find the required

even and odd mode impedances ofthe coupled line sections, and calculate the expected attenuation

at2.1 GHz. Use CAD to plot the insertion loss from 1.55 to 3.35 GHz. (b) Lay out the microstrip

implementation of the filter on an FR4 substrate having e. :4.2,d: 0.158 cm, tan d : 0.01, with

copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus frequency in the passband

of the filter, and compare with the lossless case.

8.20 Design a maximally flat bandstop filter using four open-circuited quarter-wave stub resonators. The

center frequency is 3 GHz, the bandwidth is l5Vo, and the impedance is 40 Q. Use CAD to plot the

insertion loss versus frequency.

8.21 Design a bandpass filter using three quarter-wave short-circuited stub resonators. The filter should

have a 0.5 dB equal-ripple response, a center-frequency of3 GHz, a2}Vabandwidth, and an impedance

of 100 Q. (a) Find the required characteristic impedances of the resonators, and use CAD to plot the

insertion loss from 1 to 5 GHz. (b) Lay out the microstrip implementation of the filter on an FR4

substrate having e. : 4.2, d : 0.079 cm, tan 6 : 0.02, with copper conductors 0.5 mil thick. Use
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CAD to plot the insertion loss versus frequency in the passband of the filter, and compare with the
lossless case.

8.22 Derivethedesignequationof(8.131)forbandpassfiltersusingquarter-waveshortedstubresonators.

8.23 Design a bandpass filter using capacitive-gap coupled resonators. The response should be maximally
flat, with a center frequency of 4 GHz, a bandwidth of l7%o, and at least 12 dB attenuation at 3.6
GHz. The characteristic impedance is 50 Q. Find the electrical line lengths and the coupling capacitor
values. Use CAD to plot the insertion loss versus frequency.

8.24 A bandpass filter is to be used in a PCS receiver operating in the 824-849 MFIz band, and must
provide at least 30 dB isolation at the lowest end of the transmit frequency band (869-894 MHz).
Design a 1 dB equal-ripple bandpass filter meeting these specifications using capacitively coupled
short-circuited shunt stub resonators. Assume an impedance of 50 Q.

8.25 Derive the design equations of (8.136) and (8.137) for the capacitively coupled shunt stub resonator
bandoass filter.



Theory and Design
of Ferrimagnetic Components

The components and networks discussed up to this point have all been reciprocal. That is,
the response between any two ports, i arrd j, of a component did not depend on the direction
of signal flow (thus, S;; : S;;). This will always be the case when the component consists of
passive and isotropic material, but if anisotropic (different properties in different directions)
materials are used, nonreciprocal behavior can be obtained. This allows the implementation of
a wide variety of devices having directional properties.

In Chapter 1 we discussed materials with electric anisotropy (tensor permittivity), and mag-
netic anisotropy (tensor permeability). The most practical anisotropic materials for microwave
applications are ferrimagnetic compounds such as YIG (yttrium iron garnet), and ferrites com-
posed of iron oxides and various other elements such as aluminum, cobalt, manganese, and
nickel. In contrast to ferromagnetic materials (e.g., iron, steel), ferrimagnetic compounds have
high resistivity and a significant amount of anisotropy at microwave frequencies. As we will
see, the magnetic anisotropy of a ferrimagnetic material is actually induced by applying a
DC magnetic bias field. This fleld aligns the magnetic dipoles in the ferrite material to pro-
duce a net (nonzero) magnetic dipole moment, and causes the magnetic dipoles to precess at a
frequency controlled by the strength of the bias field. A microwave signal circularly polarized
in the same direction as this precession will interact strongly with the dipole moments, while an
oppositely polarized field will interact less strongly. Since, for a given direction of rotation, the
sense of polaization changes with the direction of propagation, a microwave signal will prop-
agate through a ferrite differently in different directions. This effect can be utilized to fabricate
directional devices such as isolators, circulators, and gyrators. Another useful characteristic of
ferrimagnetic materials is that the interaction with an applied microwave signal can be con-
trolled by adjusting the strength of the bias field. This effect leads to a variety of control devices
such as phase shifters, switches, and tunable resonators and filters.

We will begin by considering the microscopic behavior of a ferrimagnetic material and its
interaction with a microwave signal to derive the permeability tensor. This macroscopic descrip-
tion of the material can then be used with Maxwell's equations to analyze wave propagation
in an infinite ferrite medium, and in a ferrite-loaded waveguide. These canonical problems
will illustrate the nonreciprocal propagation properties of ferrimagnetic materials, including

441
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Faraday rotation and birefringence effects, and will be used in later sections when discussing
the operation and design of waveguide phase shifters and isolators.

q t
VI ! 

BASIC PROPERTIES OF FERRIMAGNETIC MATERIALS

In this section we will show how the permeability tensor for a ferrimagnetic material can
be deduced from a relatively simple microscopic view of the atom. We will also discuss
how loss affects the permeability tensor, and the demagnetization field inside a finite-sized
piece of ferrite.

The Permeability Tensor

The magnetic properties of a material are due to the existence of magnetic dipole moments,
which arise primarily from electron spin. From quantum mechanical considerations [1], the
magnetic dipole moment of an electron due to its spin is given by

o n
^ : ? : 9 . 2 7 x 1 0 - 2 4 A - m 2 .

lftl e

(e.1)

where fi. is Planck's constant divided by 2n , q is the electron charge, and m" is the mass of
the elecffon. An electron in orbit around a nucleus gives rise to an effective current loop, and
thus an additional magnetic moment, butthis effectis generallyinsignificant comparedto the
magnetic moment due to spin. The Land6 g factor is a measure of the relative contributions
of the orbital moment and the spin moment to the total magnetic moment; g : 1 when the
moment is due only to orbital motion, and g : 2 when the moment is due only to spin.
For most microwave ferrite materials, g is in the range of 1.98 to 2.0L, so g - 2 is a good
approximation.

In most solids, electron spins occur in pairs with opposite signs so the overall magnetic
moment is negligible. In a magnetic material, however, a large fraction of the electron spins
are unpaired (more left-hand spins than right-hand spins, or vice versa), but are generally
oriented in random directions so that the net magnetic moment is still small. An external
magnetic field, however, can cause the dipole moments to align in the same direction to
produce a large overall magnetic moment. The existence of exchange forces can keep
adjacent electron spins aligned after the external field is removed; the material is then said
to be permanently magnetized.

An electron has a spin angular momentum given in terms of Planck's constant as l1l,l2l

(e.2)

The vector direction of this momentum is opposite the direction of the spin magnetic dipole
moment, as indicated in Figure 9.1. The ratio of the spin magnetic moment to the spin
angular momentum is a constant called the gyromagnetic ratio:

n
- a

m
r -

s
: 1.759 x 1011 C/Kg, (e.3)
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FIGURE 9.1 Spin magnetic dipole moment and angular momentum vectors for a spinning electron.

where (9.1) and (9.2) have been used. Then we can write the following vector relation
between the masnetic moment and the angular momentum:

m :  - y S , (e.4)

where the negative sign is due to the fact fhat these vectors are oppositely directed.
When a magnetic bias field Eo:2Ho is present, a torque will be exerted on the

magnetic dipole:

f  : m x E o -  F o r T t x E s : - l t g y i x f r s .  ( 9 . 5 )

Since torque is equal to the time rate of change of angular momentum, we have

This is the equation of motion for the magnetic dipole moment, fi. We will solve this equation
to show that the magnetic dipole precesses around the ,F/o-field vector, as a spinning top
precesses around a vertical axis.

Writing (9.6) in terms of its three vector components gives

d ! - - 1 * : r : p . s r l t x E s .
d t y d t

dm
* : - * o ' m x H o '

+ 
: -&ormyHo,

T: &orm,Ho,

d*' :  o.
dt

(9.6)

(9.7a)

(e.7b)

(9.7c)
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Now use (9.7 a,b) to obtain two equations for m * and mn:

where

d2m* ) ^
d p  

+ @ 6 m x : v ,

t 2 - * a f , m n - 0 ,
cl t'

{Dg: ps)/ H0

ff ix  :  AcoS@g/,

my :  Asin@g/ '

1,4 + ̂ 1
sln Y : 

rrrrl

dA4--;- :  -1tsyM x H.
d t

(9.8a)

(e.8b)

(e.e)

(9.10a)

(9.10b)

(e.r4)

is called the larrnor, or precession, frequency. One solution to (9.8) that is compatible with
(9.7a,b) is given by

Equation (9.7c) shows thatmz is a constant, and (9.1) shows that the magnitude of fr is also
a constant, so we have the relation that

l m l -  : : * 1  + * 2 r + * 2 r =  A 2  + m ? . (9 .11)

Thus the precession angle,0, between m and I7o (the z-axis) is given by

'  -  x 2

t#)

(9.r2)

The projectiot of m on the xy plane is given by (9.10), which shows that m traces a
circular path in this plane. The position of this projection at time r is given by Q : aot,
so the angular rate of rotation is dQ / dt - ar6, the precession frequency. In the absence of
any damping forces, the actual precession angle will be determined by the initial position
of the magnetic dipole, and the dipole will precess about Eo at this angle indefinitely (free
precession). In reality, however, the existence of damping forces will cause the magnetic
dipole moment to spiral in from its initial angle until m is aligned with F1o (g : 0).

Now assume that there are N unbalanced electron spins (magnetic dipoles) per unit
volume, so that the total magnetization is

M : N m .

and the equation of motion in (9.6) becomes

(e. l 3)

A

l m l

where -FI is the internal applied field. (Note: In Chapter I we used P^ for magnetization
and IUI for magnetic currents; here we use M for magnetization, as this is common practice
in ferrimagnetics work. Since we will not be using magnetic currents in this chapter, there
should be no confusion.) As the strength of the bias field /10 is increased, more magnetic
dipole moments will align with F1s until all are aligned, and M reaches an upper limit. See
Figure 9.2.The material is then said to be magnetically saturated, and M, is denoted as the
saturation magnetization. M" is thus a physical property of the ferrite material, and typically
rangesfrom4TrM,:300to5000gauss.(AppendixHliststhesaturationmagnetizationand
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Applied bias field 116

FIGURE 9.2 Magnetic moment of a ferrimagnetic material versus bias field, 110.

other physical properties of several types of microwave ferrite materials.) Below saturation,
ferrite materials can be very lossy at microwave frequencies, and the RF interaction is
reduced. Thus ferrites are usually operated in the saturated state, and this assumption is
made for the remainder of this chapter.

The saturation magnetization of a material is a strong function of temperature, decreas-
ing as temperature increases. This effect can be understood by noting that the vibrational
energy of an atom increases with temperature, making it more difficult to align all the
magnetic dipoles. At a high enough temperature the thermal energy is greater than the
energy supplied by the internal magnetic field, and a zero net magnetization results. This
temperature is called the Curie temperature, Tg.

We now consider the interaction of a small AC (microwave) magnetic field with a
magnetically saturated ferrite material. Such a field will cause a forced precession of the
dipole moments around the H0(2) a.xis at the frequency of the applied AC field, much like
the operation of an AC synchronous motor. The small-signal approximation will apply to
all the ferrite components of interest to us, but there are applications where high-power
signals can be used to obtain useful nonlinear effects.

If Ii is the applied AC field, the total magnetic field is

H , : H o 2 * 1 7 , (e.1s)

where we assume that lHl ( I1o. This field produces a total magnetizalion in the ferrite
material given by

M t = M r 2 * M , (e.16)

where M" is the (DC) saturation magnetization and M is the additional (AC) magnetization
(in the xy plane) caused by Ii. Substituting (9.16) and (9.15) into (9.14) gives the following
component equations of motion:

s M "

o

o

6

dM-

; 
: -ttoy My(Ho -f H,) + ltoT(M, + M,)Hy,

dM,,

O; 
: ttoY M,(Ho + H,) - ltoy(M' I M,)H,,

dM.

i  
:  - l toyM*Hy - l  poyMyHr.

(9.lta)

(e. r7b)

(9.17c)
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since dM,f dr :0. Since lEl << H6, we have l i l I l lEl <<lMlHo and l i l t l l fr l  < M|El.
so we can ignore MH products. Then (9.17) reduces to

wherezos : pyyHoandat^: FyTM,.Solving(9.I8a,b)forM,andM, givesthefollowing
equations:

dM-

d t  
: - r ooMy la^Hr ,

dM.,

i : ( D o M * - @ ^ H r ,

dM.__j  :0 ,
clt

dzM, .  dH. ,- i + a 5 M , : r ^ i l a s a ^ H * ,

d2M., . dH"

n 
+ utfiM, : -r^ 

,1, 
* tttsarHr.

(9.18a)

(e.18b)

(9.18c)

(9.r9a)

(9.19b)

(9.20a)

(9.20b)

(9.22a)

(9.22b)

These are the equations of motion for the forced precession of the magnetic dipoles, as-
suming small-signal conditions. It is now an easy step to arrive at the permeability tensor
for ferrites; after doing this, we will try to gain some physical insight into the magnetic
interaction process by considering circularly polarized AC fields.

If the AC E field has an ej'' time-harmonic dependence, the AC steady-state form of
(9.19) reduces to the following phasor equations:

(d - r') u, : a)oe)mHx * j aa*Hr,

(o! - o2)un - - j aa*H* | a4a;aHy,

which shows the linear relationship between E and M. As in (1.24), (9.20) canbe written
with a tensor susceptibility, [X], to relate E and IVI:

(e.2r)

where the elements of [X] are given by

A)04)m

A X X - A y y -  r  ^ t
/ t \1 -  l t rz

J@@m
X x y :  - X y x :

af, - az'

The 2 component of 11 does not affect the magnetic moment of the material, under the
above assumptions.

To relate B and E, we have from (1.23) that

B:  t to(M + f i l :14n,

where the tensor permeability [p] is given by

(e.23)

;]  
(2bias)

I X'* XrY 0l
u :1x1a: 

Lrd" 
^d, 3l 

n

tr,tt: tto(tul + txl) :lj- 
t[

(9.24)
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The elements of the permeability tensor are then

I , t  :  t to( l  *  X,*)  :  / . ro( l  *  Xyy)  :  po (  1*  ?0" , ) .
\  @ 6 _ @ - /

rc : - i l-toXry : j &oXy, : l-to#!-.
(oo - @-

(9.25a)

(9.zsb)

(9.28a)

(e.28b)

A material having a permeability tensor of this form is called gyrotropic; note that an -i
(or !) component of E gives rise to both.t and ! components of B. with a 90' phase shift

between them.
If thedircctionofbiasisreversed,both116 atdM, wil lchangesigns,so atsanda^will

chaage signs. Equation (9 .25) then shows that tr^r will be unchanged, but r will change sign.

If the bias field is suddenly removed (F/s : 0), the ferrite will generally remain magnetized
(0 < lMl < M,); only by demagnetizing the ferrite (with a decreasing AC bias field, for
example) can M : 0 be obtained. Since the results of (9.22) and (9.25) assume a saturated
ferrite sample, both M, and H0 should be set to zero for the unbiased, demagnetized case.
Then ars : am :0, and (9.25) show that p - p's and rc : 0, as expected for a nonmagnetic
material.

The tensor results of 0.24\ assume bias in the 2 direction. If the ferrite is biased in a

different direction the permeability tensor will be transformed according to the change in
coordinates. Thus, if Eo : *Ho, the permeability tensor will be

(.f bias), (9.26)

while if Hs : jHs the permeability tensor will be

I t t l : (j bias). (9.2'�1)

A comment must be made about units. By tradition most practical work in magnetics is

done with CGS units, with magnetization measured in gauss (1 gauss : 10-a weber/m2),

and field strength measured in oersteds (42 x 10-3 oersted : 1 A/m). Thus, pe : 1 gauss/

oersted in CGS units, implying that B and H have the same numerical values in a non-

magnetic material. Saturation magnetization is usually expressed as 4r M, gauss; the cor-

responding MKS value is then psM, weber/fi? : 10*a (4r M, gauss). In CGS units, the

Larmor frequency can be expressed as ,f0 
- agl2nT : trtsyHgl2lT : (2.8 MHz/oersted)

(IIe oersted), and f^: @ml2n : ptsyM,f2n: (2.8 MHz/oersted) '(4nM' gauss). In
practice, these units are convenient and easy to use.

Circularly Polarized Fields

To get a better physical understanding of the interaction of an AC signal with a saturated

ferrimagnetic material we will consider circularly polarized fields. As discussed in Sec-

tion 1.5, a right-hand circularly polarized field can be expressed in phasor form as

H + : H + ( i - j i l ,

f t t o  0  0 l
k J : 1 0  t t  j * l

L 0  - j r c  p - l

I  t t  0 - i ' l

L,9' ' ;  i j

and in time-domain form as

?l+ : Re{E+ ej-' l  : H+1i cosi.i,t * y sin rol),
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where we have assumed the amplitude .F1+ as real. This latter form shows that ?/+ is a
vector which rotates with time, such that at time / it is oriented at the angle ai from the
.r-axis; thus its angular velocity is ar. (Also note that |fljl: H+ + lE+|.) Applying the
RHCP field of (9.28a) to (9.20) gives the magnetization components as

M! :  
' *  

H* .^ 
ttlo - at

,  - i a'f : ;ffi,*.
so the magnetization vector resulting from E+ canbe written as

M+ :M j i+Mt r i= f f i n *@- i i l , (e.2e)

which shows that the magnetization is also RHCP, and so rotates with angular velocity ar in
synchronism with the driving field, i{+. Since IZ+ and E+ are vectors in the same direction,
we car write B+ : po([4+ + E\: p+E+, where pr.+ is the effective permeability for
an RHCP wave given by

'  / .  Q)m \
l-t- : lto (\1 + 

&ro _ @----l

The angle, 07,a,between./i4+ andthe z-axis is given by

tanot r :va* l :  
o .H+ :  @oHt

' N I -  
M ,  

-  
( a o - @ ) M , -  ( a g - @ ) H s '

while the angle,0s, between I7+ and the z-axis is given by

111+l H+
tAl)os : : -.'- 

Ho Ho

(e.30)

(e.31)

(e.32)

(9.33a)

(e.33b)

For frequencies such thatat < 2o0, (9.3I) and(9.32) show that 0u > 0n, as illustrated in
Figure 9.3a. In this case the magnetic dipole is precessing in the same direction as it would
freely precess in the absence of E+.

Now consider a left-hand circularly polarized field, expressed in phasor form as

E - : H - ( i + j f i ,

and in time-domain form as

11- : RelE- ej ' '  | : H- (i cosax - j sincor).

Equation (9.33b) shows that 'H- is avector rotating in the -r, (left-hand) direction. Apply-
ing the LHCP field of (9.33a) to (9.20) gives the magnetization components as

0)m
i l I - :  

'  
P - '

@ t t a )

M " :  
j ' :  

u - ,"  Q O + a )

so the vector magnetization can be written as

M- : M* i + M; i : -3!-H-(i + jil,
o O + A )

(e.34)
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(a) (b)

Forced precession of a magnetic dipole with circularly polarized fields. (a) RHCR

ou >  on . (b )LHCP,  ou  <0n.

z 4
I
t _

l H -

FIGURE 9.3

which shows that the magnetization is LHCR rotating in synchronism with 11-. Writing

B- : lto(M- + E-) : tt- H- gives the effective permeability for an LHCP wave as

p  :  t L o ( t .  ̂ t  )

The angle, ?y,between lfr- andthe z-axis is given by

(9.3s)

(e.36)tM- l @^H- aoH-

(as ! o)M, (ato * <o)Ho'
tan91a -

M,

which is seen to be less than 0s of (9.32), as shown in Figure 9.3b. In this case the magnetic

dipole is precessing in the opposite direction to its free precession.
Thus we see that the interaction of a circularly polarized wave with a biased ferrite

depends on the sense of the polarization (RHCP or LHCP). This is because the bias fleld

sets up a preferential precession direction coinciding with the direction offorced precession

for an RHCP wave but opposite to that of an LHCP wave. As we will see in Section 9.2,

this effect leads to nonreciprocal propagation characteristics.

Effect of Loss

Equations (9.22) and (9.25) show that the elements of the susceptibility or permeability

tensors become infinite when the frequency, ar, equals the Larmor frequency, a4. This effect

is known as gyromagnetic resonance, and occurs when the forced precession frequency is

equal to the free precession frequency. In the absence ofloss the response may be unbounded,

in the same way that the response of an LC resonant circuit will be unbounded when driven

with an AC signal having a frequency equal to the resonant frequency of the LC circuit.

All real ferrite materials, however, have various magnetic loss mechanisms that damp out

such singularities.
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As with other resonant svstems. loss can be accounted
frequency complex:

for by making the resonant

@0 1- oto * jaa, (e.37)

where cv is a damping factor. Substituting (9.37) into (9.22) makes the susceptibilities
complex:

X r r : X l r r - j X i ,

X ,y :  X t ly+  ix ' -y

where the real and imaginary parts are given by

, r r * (4 - r ' )+asapa laz

lal - a\(t + q\)z * 4urtaza2
x*,

A*r '

(9.38a)

(e.38b)

(9.39a)

(e.3eb)

(9.39c)

(e.3ed)

(e.40)

aaa^1,'tl + az(l + a2 )]
n" - 

lr7 -.\t + o\f2 + 4rrpry'

a o . l a l - @ 2 ( l + a 2 ) ]
^" : 

lolo - .\A o'r)' + +o,'*r'o''

2aga^aza

lafi - o2(r + a\]z a 4af;alaz

Equat ion(9.37)cata lsobeappl iedto(9.25)  togiveacomplex p: l .L ' -  j l - t " ,  andr :
rc' - j *": this is why (9.38b) appears to define X'*, and Xi, backward, as Xxy : j rc / po.

For most ferrite materials the loss is small, so cy << 1, and the (l + ot2) terms in (9.39) can
be approximated as unity. The real and imaginary parts of the susceptibilities of (9.39) are
sketched in Figure 9.4 for a typical ferrite.

The damping factor, a, is related to the linewidth, A^F1, of the susceptibility curve near
resonance. Consider the plot of X/" versus bias field, fls, shown in Figure 9.5. For a fixed
frequency, @tr>, resonance occurs when H0: Hr, such that @o: &oyHr. The linewidth,
AF1, is defined as the width of the curve of 11, versus .FIs where Xl, has decreased to
half its peak value. If we assume (l + a2) - l, (9.39b) shows that the maximum value of

Xi, is a4/2aa, ar,td occurs when ro : @0. Now let as2 be the Larmor frequency for which
Ho : Hz, where 1/" has decreased to half its maximum value. Then we can solve (9.39b)
for a in terms of cr.r62:

aa.,a-(af,, + oo2) (Dm

@3r-r,) '*4r,ftroPu2

4 a 2 a 4 : ( d r _ r r ) ,

@ o z : a t / I * 2 a - a ( l * q ) .

Then Arrre :2(aoz - roo) = 2fat(l * a) * atl :2qa, and using (9.9) gives the line-
width as

A , H : a ' r o o  - 2 a a
ltoY PoY

Typical linewidths range from less than 100 Oe (for yttrium iron garnet) to 100-500 Oe
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(b)

Complex susceptibilities for a typical ferrite. (a) Real and imaginary parts of X,,.
(b) Real and imaginary parts of X,r.

(a)

FIGURE 9.4

(for ferrites); single-crystal YIG can have a linewidth as low as 0.3 Oe. Also note that this
loss is separate from the dielectric loss that a ferrimagnetic material may have.

Demagnetization Factors

The DC bias field, 116, internal to a ferrite sample is generally different from the externally
applied field, Ho, because ofthe boundary conditions at the surface ofthe ferrite. To illus-
trate this effect, consider a thin ferrite plate, as shown in Figure 9.6. When the applied field
is normal to the plate, continuity of Bn at the surface of the plate gives

B, :  &oHo: po(M, + Ho),

so the internal magnetic bias field is

Ho:  Ho -  M, .

HI H, H2 Hs(as/a)

FIGURE 9.5 Definition of the linewidth , A, H , of the gyromagnetic resonance.
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I'" ---------------- Ho

FIGURE 9.6 Internal and extemal fields for a thin ferrite plate. (a) Normal bias. (b) Tangential
bias.

This shows that the intemal field is less than the applied field by an amount equal to the
saturation magnetization. When the applied field is parallel to the ferrite plate, continuity
of H, at the surfaces of the plate gives

H 1  : I l o - l t s .

In this case the internal field is not reduced. In general, the internal field (AC or DC). r{,
is affected by the shape of the ferrite sample and its orientation with respect to the external
field, 8", and can be expressed as

H : H" * NM, (e.4r)

where N : N' Ny, or N. is called the demagnetization factor for that direction of the
external field. Different shapes have different demagnetization factors, which depend on
the direction of the applied field. Table 9.1 lists the demagnetization factors for a few simple
shapes. The demagnetizattort factors are defined such that N, + N, * N. : 1.

The demagnetization factors can also be used to relate the internal and external RF
fields near the boundary of a ferrile sample. For a z-biased ferrite with transverse RF fields,

TABLE 9.1 Demagnetization Factors for Some Simple Shapes

o)

A
l r .

(a)

Shape N, N' 4
' l  / '

rhindisk.'ffi

rhinrod # '
/ z

F Y, l

Sphere 

@--

0

I
2

I
J

0

1
2

1
3

0

1
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(9.41) reduces to

where

H * : H * " - N r M * ,

H r : H v " - N r M r '

H , : H o - N r M r ,

(9.42a)
(9.42b)
(9.42c)

where H,", Hr" are the RF fields extemal to the ferrite, and Ho is the externally applied
bias field. Equation (9.21) relates the internal transverse RF fields and magnetization as

M* :X* rH ,  lX t yHy ,

M r : X y r H r * X y y H y .

Using (9.42a,b) to eliminate H, and 11, gives

M, : X*rH"" * XryHy" - X**N,M, - XryNrMr,

My : XyrHt" * XyyHy" - XytN*M, - XyyNyMy.

These equations can be solved for Mr, Mn to give

x,*(1 * xyyNy) -_xdz!tp7," 
+ pH,.".tvtx:- - - - - - - - - -d-  "xe I  

D'

u r :YH**Wur" ,
D : (7 * X,,N,)(l * XrrNr) - XyX'yN"Nr.

(9.43a)

(e.43b)

(e.44)

This result is of the form M : lX"fH , where the coefficients of H*" and Hr" in (9.43) can
be defined as "external" susceptibilities since they relate magnetization to the external RF
fields.

For an infinite ferrite medium gyromagnetic resonance occurs when the denominator of
the susceptibilities of (9.22) vanishes, at the frequency @, : (') : o)0. But for a finite-sized
ferrite sample the gyromagnetic resonance frequency is altered by the demagnetization fac-
tors, and given by the condition that D : 0 in (9.43). Using the expressions in (9.22) for
the susceptibilities in (9.44), and setting the result equal to zero gives

l .  .  asa -N* \ / ,  ,  @sa . taNr \  . ' r ' -
l l + i  , f t r - r  , - - - - - -  N * N u : 0 .
\  , 6 - o 2 /  \  r r , 1 6 - a 2 /  ( a z o - a z \ '

After some algebraic manipulations this result can be reduced to give the resonance fre-
quency, (r/, aS

@ r : ( D : @  Q . 4 5 )

Since @s: l-LyyH0: Foy(Ho-NrMr), and a^: FyTMs, (9.45) can be rewritten in

terms of the applied bias field strength and saturation magnetization as

(e.46)

POINT OF INTEREST: Permanent Magnets

Since ferrite components such as isolators, gyrators, and circulators generally use permanent

magnets to supply the required DC bias field, it may be useful to mention some of the important

characteristics of permanent magnets.

('), : l-Lyy J[Ho * (N, - N)M'][H' + (Ny - Nr)M'1.

This result is known as Kittel's equation f4f.
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A permanent magnet is made by placing the magnetic material in a strong magnetic field,
and then removing the field, to leave the material magnetized in a remanent state. Unless the
magnet shape forms a closed path (like a toroid), the demagnetization factors at the magnet ends
will cause a slightly negative fl field to be induced in the magnet. Thus the "operating point" of
a permanent magnet will be in the second quadrant of the B-H hysteresis curve for the magnet
material. This portion of the curve is called the demagnetization curve. A typical example is
shown below.

The residual magnetization, for H :0, is called the remanence, 8,, of the material. This
quantity characterizes the strength of the magnet, so generally a magnet material is chosen to have
a large remanence. Another important parameter is the coercivity, ,F1., which is the value of the
negative 11 field required to reduce the magnetization to zero. A good permanent magnet should
have a high coercivity to reduce the effects of vibration, temperature changes, and external fields,
which can lead to a loss of magnetizaton. An overall figure of merit for a permanent magnet
is sometimes given as the maximum value of the Bll product, (BID^^*, on the demagnetization
curve. This quantity is essentially the maximum magnetic energy density that can be stored by
the magnet, and can be useful in electromechanical applications. The following table lists the
remanence, coercivity, and (BIl).u* for some of the most cofirmon permanent magnet materials.

Material Composition
B,

(oe)
H,
(G)

(BA^u*
(G-Oe) x 106

ALNICO 5
ALNICO 8
ALMCO9
Remalloy
Platinum Cobalt
Ceramic
Cobalt Samarium

A1, Ni, Co, Cu
Al, Ni, Co, Cu, T1
Al, Ni, Co, Cu, T;

Mo, Co, Fe
Pt, Co

BaOoFezO:
Co, Sm

12,000
7,100

10,400
10,500
6,450
3,950
8,400

720
2,000
1,600

250
4,300
2,400
7,000

5.0
5.5
u.)
l . l
9 .5
3.5

16.0

9.2 PLANE WAVE PROPAGATION IN A FERRITE MEDIUM

The previous section gives an explanation of the microscopic phenomena that occur inside
a biased ferrite material to produce a tensor permeability of the form given in (9.24) (or in
(9.26) or (9 .27 ), depending on the bias direction). Once we have this macroscopic description
of the ferrite material, we can solve Maxwell's equations for wave propagation in various
geometries involving ferrite materials. We begin with plane wave propagation in an infinite
ferrite medium, for propagation either in the direction of bias, or propagation transverse to
the bias field. These problems will illustrate the important effects of Faraday rotation and
birefringence.
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Propagation in Direction of Bias (Faraday Rotation)

Consider an infinite fenite-filled region with a DC bias field given by lis:2H0, and a
tensor permittivity [pl] given by (9.24). Maxwell's equations can be written as

YxE : - j a \p .1 f r ,

y x l l : j a e E ,

V ' D  : 0 ,

V . E  : 0 .

Now assume plane wave propagation in the z direction, with 3/0x : 0l0y: 0. Then the
electric and magnetic fields will have the following form:

E : fi',"-i/',

fr = llos-i?z'

The two curl equations of (9.47a,b) reduce to the following, after using (9.24):

jFEy: *jco(ttH, * jrcHr),

- jpE.: - ja(-jrcH* * U,Hy),

Q - -japsH.,

j fHy :  j aeE* ,

*jpH, - jaeEy,

0 - jaeE.

Equations (9.49c) and(9.490 show that Ez : Hz: 0, as expected forTEM plane waves. We
also have Y . D =Y .E :0, since 0l3x :010y :0. Equations (9.49d,e) give relations
between the transverse field components as

(9.47a)

(9.47b)

(9.4'�tc)

(9.47d)

(9.48a)

(9.48b)

(9.49a)

(e.4eb)

(9.49c)

(e.4ed)

(9.49e)

(e.4ef)

(9.51a)

(e.slb)

(e.s2)

(e.s0)

where Y is the wave admittance. Using (9.50) in (9.49a) and (9.49b) to eliminate H* and
11, gives the following results:

j oze rc E" + $2 - af p.e)E, : 0,

(flz * rz pe)E* * j azerc E, - O.

For a nontrivial solution for E" and E, the determinant of this set of equations must vanish:

a4e2 *2 - (p2 - a2 p,e)z - o,

F*: ,JrQ" + *).

', H, -H* @€
-  

E  D  A ,
L x  L y  P

So there are two possible propagation constants, f+ md F-.
First consider the fields associated with B1, which can be found by substituting B1 into

(9.51a), or (9.51b):

jozercEraozercEr -0 ,

E r : * j 8 , .
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Then the electric field of (9.48a) must have the followins form:

E+: Eo(i - i i)e-i|* ',

which is seen to be a right-hand circularly polarized plane wave. Using
associated magnetic field as

fr+: Eoy+(ji + j,ys*ia*r,

where 11 is the wave admittance for this wave:

(9.53a)

(9.50) gives the

(e.s3b)

(9.53c)

(9.54a)

(9.s4b)

(e.ss)

,  - @ €r+ -  - ; -

P+

Similarly, the fields associated with B- are left-hand circularly polarized:

E- : EoG -l j itg-if-2.

E-: EoY-(- j i  + g)e-iB-',

where Y- is the wave admittance for this wave:

(9.54c)

Thus we see that RHCP and LHCP plane waves are the source-free modes of the
2-biased fenite medium, and these waves propagate through the ferrite medium with differ-
ent propagation constants. As discussed in the previous sectiono the physical explanation for
this effect is that the magnetic bias field creates a preferred direction for magnetic dipole pre-
cession, and one sense of circular polarization causes precession in this preferred direction
while the other sense of polarization causes precession in the opposite direction. Also note
that for an RHCP wave, the ferrite material can be represented with an effective permeability
of p + r, while for an LHCP wave the effective permeability is t-r, - r. In mathematical
tems, we can state that (p * rc) and (p, - rc-), or 8,, and p -, are the ei genvalue s of the system
of equations in (9.51), and that E* and E- are the associated eigenvectors. When losses
are present, the attenuation constants for RHCP and LHCP waves will also be different.

Now consider a linearly polarized electric field at z : 0, represented as the sum of an
RHCP and an LHCP wave:

v
p-

Et,:o: iEo - 7r, 
- itl + Eltr + ji).

The RHCP component will propagate in the z direction ss s- i fl+2, and the LHCP component
will propagate as e-if z, so the total field of (9.55) will propagate as

n : Elr* - i !)e-iB*' + 
Elo 

* i i)s-ir-z

: !.o-X1r-io*z a,-ifl-zy - i*re-t\+z - "-ifl-zy

_ l - ^  ( f * - a _ \  / f + - f _ \ l _ , , " *- to 
Lo.o' (lr--r- ), 

- , 'i" (I1 2-5 )rlu',u 
-F \:/2. (e.s6)

This is still a linearly polarized wave, but one whose polarization rotates as the wave
propagates along the z-axis. At a given point along the z-axis the polarization direction
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measured from the x-axis is given by

(e.st)

This effect is called Faraday rotation, after Michael Farcday, who first observed this phe-
nomenon during his study of the propagation of light through liquids that had magnetic
properties. Note that for a fixed position on the z-axis, the polarization angle is fixed,
unlike the case for a circularly polarized wave, where the polarization would rotate with
time.

Forco < as, p andr arepositive and p, > r. Then fl+ > F-,and (9.57) shows that @
becomes more negative as z increases, meaning that the polarization (direction of E) rotates
counterclockwise as we look in the +z direction. Reversing the bias direction (sign of FIs
and M,) changes the sign of r, which changes the direction of rotation to clockwise. Simi-
larly, for *e bias, a wave traveling in the -z direction will rotate its polarization clockwise
as we look in the direction of propagation (-z); if we were looking in the *e direction,
however, the direction of rotation would be counterclockwise (same as a wave propagating
inthe*zdi rect ion) .Thus,awavethat t ravelsf romz:0toz:Landbackagaintoz:0
undergoes a total polarization rotation of 2Q, where @ is given in (9.57) with z - Z. So,
unlike the situation of a screw being driven into a block of wood and then backed out,
the polarization does not "unwind" when the direction of propagation is reversed. Faraday
rotation is thus seen to be a nonreciprocal effect.

EXAMPLE 9.1 PLANE WAYE PROPAGATION IN A FERRITE MEDIUM

Consider an infinite ferrite mediumwith{n M, : 1800 gauss, AI1 : 75 oersted,
€, :14, and tand : 0.001. If the bias field strength is 110 - 3570 oersted, cal-
culate and plot the phase and attenuation constants for RHCP and LHCP plane
waves versus frequency, for f :0 to 20 GHz.

Solution
The Larmor precession frequency is

{ ^ -
J U  _

Q = tan-1 ti : r*-' y-^ (P. r-P-) .] : -(ry),

and

o0

2"
0)m

2"
f -

J m  -

: (2.8 MHz/oerstedx3570 oersted) : 10.0 GHz,

: (2.8 MHz/oersted) (1800 gauss) : 5.04 GHz.

At each frequency we can compute the complex propagation constant as

yt : qt -t j F+ : j.Jrtl, + *1.

where e : €oer(l - "/ tand) is the complex permittivity, and p, K are given by
(9.25). The following substitution for a.ls is used to account for ferrimagnetic loss:

.  . p | y L H
@ o < - < o o * J  

2  
.

or fo *-.r, * j!1!yl+99:99 : (10. + 70.105) GHz,
-
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which is derived from (9.37) and (9.40). The quantities (p + r) can be simplified
to the following, by using (9.25):

p + K  -  * o ( ,  *  
' -  

) .
\  ( D 0 - @ /

u - K : u r ( t * - + - )
\  a o l a /

The phase and attenuation constants are plotted in Figure 9.8, normalized to the
free-space wavenumber, ftg.

Observe that B1 and a1 (for an RHCP wave) show a resonance near f : 7o -

10 GHz; B- anda- (for an LHCP wave) do not, however, because the singularities
in p, and r cancel in the (9, - r) term contained in y-. Also note from Figure 9.7
that a stopband (B1 near zero,large cv-p) exists for RHCP waves for frequencies
between fo md fo * f^ (between @0 and @0 * o*). For frequencies in this range,
the above expression for (p * r) shows that this quantity is negative, and B* : g
(in the absence of loss), so an RHCP wave incident on such a ferrite medium would
be totally reflected. I

Propagation Transverse to Bias (Bi ref rin gence)

Now consider the case where an infinite ferrite region is biased in the.f direction, transverse
to the direction of propagation; the permeability tensor is given in (9.26). For plane wave
fields of the form in (9.48), Maxwell's curl equations reduce to

jfrEy: -jroltoH,,

- j p E, : - j to(p,H, * j rc Hr),

0: - jat(- jrcH, * ltHr),
j f  Hy :  j aeE , ,

- jpH, : joxEr,

O-  j aeE ,

(9.58a)

(e.s8b)
(9.58c)

(e.58d)

(9.58e)

(e.58f)

o

E
o
6

N

z

22

20

1 8

t6

t4

t2

1 0

8

6

4

2

0
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Frequency (GHz)

Normalized phase and attenuation constants for circularly polarized plane waves in
the ferrite medium of Example 9.1.

i Stopband for RHCP wave

FIGURE 9.7
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Then Er:0, and V'D :0 since 0l0x:313y :0. Equat ions (9.58d,e) give an admit-
tance relation between the transverse field components:

(e.se)

Using (9.59) in (9.58a,b) to eliminate H, and Hr, and using (9.58c) in (9.58b) to eliminate

f/., gives the following results:

F'E, : az P'()e Et'

p@2 - az p,e)E, - -a2eKz E,.

One solution to (9.60) occurs for

0': aJl-tG'

with E" : 0. Then the complete fields are

Eo : itEss-iQ'2,

Ho: -ftf,oYos-if l '2,

since (9.59) shows that /1n : 0 when E" : 0, and (9.58c) shows that F1, : 0 when Hy : O.

The admittance is

@€v  - _ -
L o  -  

o
Po

This wave is called the ordinary wave,because it is unaffected by the magnetization of

the ferrite. This happens whenever the magnetic field components transverse to the bias

direction are zero (Hy : Hr: 0). The wave propagates in either the *z ot -z direction

with the same propagation constant, which is independent of F16.
Another solution to (9.60) occurs for

., Hv -H* a€, : 1 :  E ,  : 7 .

H" : EoY" (, + /!),-tu"',

@€
v  - -

Pe

(9.60a)

(e.60b)

(e.61)

(9.62a)

(e.62b)

(e.63)

(e.64)

(e.6s)

(e.66b)

(e.67)

f,:  aJlt7.

with E, : 0, where trr,, is an effective permeability given by

P z - r c z
I t r e :  - '

p

This wave is called the extraordinary wave, and is affected by the ferrite magnetization.

Note that the effective permeability may be negative for certain values of ro, a.b. The electric

field is

E": ftgos-iq"z. (9.66a)

Since En :0, (9.58e) shows that H, : O. H, can be found from (9.58d), and H, from
(9.58c), giving the complete magnetic field as

where

These fields constitute a linearly polarized wave, but note that the magnetic field has a

component in the direction of propagation. Except for the existence of I/., the extraordinary
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400 600 800 1000 1200 1400
.FIo (OERSTEDS)

FIGURE 9.8 Effective permeability, ,pr," , versus bias field, F16, for various saturation magnetizations
and freouencies.

9.3

wave has electric and magnetic fields that are perpendicular to the corresponding fields
of the ordinary wave. Thus, a wave polarized in the y direction will have a propagation
constant fro @rdtnary wave), but a wave polaized in the x direction will have a propagation
constant B" (exfiaordinary wave). This effect, where the propagation constant depends on
the polarization direction, is called birefringence [2]. Birefringence often occurs in optics
work, where the index ofrefraction can have different values depending on the polarization.
The double image seen through a calcite crystal is an example of this effect.

From (9.65) we can see that p,",the effective permeability for the extraordinary wave,
canbenegat ive l f  rcz> p2.Thiscondi t iondependsonthevalues ef  at ,  o)s,af tdo*,or
f , Ho, and M", but for a fixed frequency and saturation magnetization there will always be
some range of bias field for which p" < 0 (ignoring loss). When this occurs B" will become
imaginary, as seen from (9.64), which implies that the wave will be cutoff, or evanescent.
An i polarized plane wave incident at the interface of such a ferrite region would be totally
reflected. The effective permeability is plotted versus bias field strength in Figure 9.8, for
several values of frequency and saturation magnetization.

PROPAGATION IN A FERRITE.LOADED
RECTANGULAR WAVEGUIDE
In the previous section we introduced the effects of a ferrite material on elecffomagnetic
waves by considering the propagation of plane waves in an infinite ferrite medium. In
practice, however, most ferrite components use waveguide or other types of transmission
lines loaded with ferrite material. Most of these geometries are very difficult to analyze.
Nevertheless, it is worth the effort to treat some of the easier cases, involving ferrite-loaded
rectangular waveguides, in order to quantitatively demonstrate the operation and design of
several types of practical ferrite components.

TEn'6 Modes of Waveguide with a Single Ferrite Slab

We first consider the geometry shown in Figure 9.9, where a rectangular waveguide is
loaded with a vertical slab of ferrite material, biased in the j direction. This geometry and

4lrMs=3000c 6GHz

47rMs= 1700G

l 1 G H z

OCUr/ \ \
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v

FIGURE 9.9 Geometry of a rectangular waveguide loaded with a transversely biased ferrite slab.

its analysis will be used in later sections to treat the operation and design of resonance
isolators, field-displacement isolators, and remanent (nonreciprocal) phase shifters.

In the ferrite slab, Maxwell's equations can be written as

V x E : _jotfp.lH,

V x I l - j a e E ,

(9.68a)

(9.68b)

(9.69a)

(e.6eb)

(9.69c)

(e.6ed)

(9.69e)

(9.6ef)

(9.70a)

(9.70b)

(9.70c)

where [p] is the permeability tensor for j bias, as given in (9.27). Then if we let E1x , ! , z) :

le@, y) * 2e,(x, :r.)le- 
jFz and fr(x, !, z) : lfr@, y) -t 2hr(x, t)fe- 

jflz, (9.68) reduces to

ForTE.s modes, we know that Er: 0 and 0/0y :0. Then (9.69b) and (9.69d) imply
that e, : hy : O (since B2 * ,t t"o, for a waveguide mode) and so (9.69) reduces to three
equations:

3e,

fi 
+ lfret: -io(p.h, - irch,),

0e.- j / e * - : : - i a > p o h y ,

\en 0e*
n 

- 
U 

: -jat(jrchy * t"th,),

ah,
a y + i P n ' = J @ ( € a '

ah.- jPh- - ----1 : jcoee,

\hn 0h,

0x 3y

j F e y : - j a ( p h , - j r c h r ) ,

* : - j o t ( j r c h , i L t h , ) ,

j a e e r :  -  j P h ,  - *
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We can solve (9.70a,b)for h, andh.' as follows. Multiply (9.70a)by p. and (9.70b) by jrc,
then add to obtain

where p." : Qr' - K\/lL. Substituting (9.71) into (9.70c) gives a wave equationfor en:

.  - j p l  ^  0 e , \  j  / ^ \ e u  3 ' " n \
J o e e y :  , u * ; U n € y  

-  K  
A .  ) -  , t r W \ - e  U  

+  t ,  
A - ,  ) .

.  I  /  ^  E e u \
r r*  :  

i t t l t " \ -PPey 
-  r  

A_ ) .

Now multiply (9.70a) by j rc and (9.7la) by p, then add to obtain

' , :h ( *o1+-* ) '

/  a 2  - " \
( *  *  k ; ) e ' : o '

wherc ko is the cutoff wavenumber for the air regions:

t < 2 , : t l - 9 2 .

The magnetic field in the air region is given by

,  - p  - 1
l l x  :  - € y :  

; - € y ,
colrO Lu '

,  i 0 e ,
llz : - -;-.

@lLO dx

(9.7ra)

(e.7rb)

(e.73)

(e.74)

(9.7s)

(9.76a)

(9;76b)

f o r 0  <  x  1 c ,

f o r c < x < c + t o

f o r c * t < x < a .
(9.77b)

(#.n'v)", :o ' (e.72)

where /c7 is defined as a cutoff wavenumber for the ferrite:

kzf : roz P"e - flz '

We can obtain the corresponding results for the air regions by letting & : F0, rc : O,
arld €" : 1, to obtain

The solutions for e, in the air-ferrite-air regions of the waveguide are then

I Asink"x. for0 <,r  < c.
I

ey :  I  Bs inkyk  -c )+  Cs inkyG + t  -  x ) ,  fo rc  <  x  <  c+ t ,  (9 .77a)
I
I  Ds tnk " (a -x ) ,  f o r c *  t  <  x  < (1 ,

which have been constructed to facilitate the enforcement of boundary conditions at x : O,
c,c+t ,andal3 l .  Wewi l la lsoneed h.whichcanbefoundfrom (9.77a),  (9.71b) ,and
0.76b\:

l(i 
k,A lau,) cos kox.

h, : l(i 
I to tt tt"){rc f[B sin ft7(x - c) + C sin k 7 @ * t - x)]

I  
ap .ky [B  cosky(x  -c ) -Ccoskyk* t  -x ) ] ] ,

l;.1 f" o 1 op) cos ko(a - x).
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Matching e, and h, at x : c and x : c * t : a - d gives four equations for the constants
A .  B . C .  D :

Asinkoc * C sinkyt,

Bsink1t  -  Dsinkod,

(9.78a)

(e.78b)

(e.78d)

AlL cosk", : nb - , 
#g-B 

sink yt + tLkr coskyt), (9.78c)

n ]-f* p sink yt + t-tk r cosk1t) - rY : - DlL coskod.

Solving (9.78a) and (9.78b) for C and D, substituting into (9.78c) and (9.78d), and then
eliminating A or B gives the following transcendental equation for the propagation constant,

B :
r  2  /  ^  

^  
. - o  \  /

fL) '  + (  !L\ '  -  kocotk, ,  (  - ! ! -  cotk r t+ 'p )  -  (  ! " \ "
\ t t " /  \ l t l . t " /  \ l to l t "  

"  
l toq l te l  \ l t ' /

x  cot f toccot  kod -  kocotkod (JJ- �cotk l t -  :4- )  :  o .  O.7g\- '  
\ l to l t "  

"  
Fo&pe.)

After using (9.73) and (9.75) to express the cutoff wavenumbers ft7 and fto in terms of

B, Q.79) can be solved numerically. The fact that (9.79) contains terms that are odd in
rB indicates that the resulting wave propagation will be nonreciprocal, since changing the
direction of the bias field (which is equivalent to changing the direction of propagation)
changes the sign of r, which leads to a different solution for B. We will identify these two
solutions as B1 and B-, for positive bias and propagation in the *z direction (positive r),
or in the -z direction (negative r), respectively. The effects of magnetic loss can easily be
included by allowing c,to tobe complex, as in (9.37).

In later sections we will also need to evaluate the electric field in the guide, as given
in (9.77a).If we choose the arbitrary amplitude constant as A, then B, C, and D can be
found in terms of A by using (9.78a), (9.78b), and (9.78c). Note from (9.75) that if B > ko,
then ko will be imaginary. In this case, the sin ftox function of (9 .77 a) becomes j sinh lkolx ,
indicating an almost exponential variation in the field distribution.

A useful approximate result can be obtained for the differential phase shift, fr+ - fl-,
by expanding f in (9 !79) in a Taylor series about / : 0. This can be accomplished with
implicit differentiation after using (9.73) and (9.75) to express ky and ko in terms of f [a].
The result is

(e.80)

wheret , : r la  is thecutof f f requencyof  theemptyguide,andAS/S:  t la is thef i I l ing

factor, or ratio of slab cross-sectional area to waveguide cross-sectional area. Thus, this
formula can be applied to other geometries such as waveguides loaded with small ferrite
strips or rods, although the appropriate demagnetization factors may be required for some
ferrite shapes. The result in (9.80) is accurate, however, only for very small ferrite cross
sections, typically for AS/S < 0.01.

This same technique can be used to obtain an approximate expression for the forward
and reverse attenuation constants, in terms of the imaginary parts of the susceptibilities
defined in (9.39):

fr+ - fr- =Yt sin2k,c :2k";+ sin2k"c,

"* = 
ff{Olxi* 

sinz k,x + kz,x!'rcos2 k"* + x:yk,B" sin2k,x), (9.81)
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Magnetic
wall

FIGURE 9.10 Geometry of a rectangular waveguide loaded with two symmetrical ferrite slabs.

where Bo : JE] is the propagation constant of the empty guide. This result will be
useful in the design ofresonance isolators. Both (9.80) and (9.81) can also be derived using
a perturbation method with the empty waveguide fields [4], and so are usually referred to
as the perturbation theory results.

TE,'s Modes of Waveguide with Two Symmetrical Ferrite Slabs

A related geometry is the rectangular waveguide loaded with two symmetrically placed
ferrite slabs, as shown in Figure 9.10. With equal but opposite !-directed bias fields on
the ferrite slabs, this configuration provides a useful model for the nonreciprocal remanent
phase shifter, which will be discussed in Section 9.5. Its analysis is very similar to that of
the single-slab geometry.

Since the h, and ft. fields (including the bias fields) are antisyrnrnetric about the
midplane of the waveguide at x : al2, a magnetic wall can be placed at this point. Then
we only need to consider the region for 0 < x < a /2. The electric field in this region can
be written as

A sinkox,

<c+t ,  (9 .82a)

< x  < a f 2 ,

which is similar in form to (9.77a), except that the expression for c * t < x < a/2 was
constructed to have a maximum at x : a/2 (since h. must be zero at x : al2). The cutoff
wavenumbers ky and ko arc defined in (9.73) and (9.75).

Using (9.71) and (9.76) gives the h, field as,

f ( i k ,A lau " ) cos f tox ,  o<x  <c ,
I

,  |  ( i lat t t r") l - rc8[Bsink1(x -  c)+Csinky@ *t -  x)]
n , :  I'  

I  l p . k y f B c o s k y @  - c ) * C c o s k y G * t  - x ) l l ,  c  <  x  < c + t ,
I
l ( j k ,D/a1 t " \s ink , (a l2 -x ) ,  c+ t  <x  <a /2 .

(9.82b)

Matchinge,, andhratx: candx: c * t : a12- dgivesfourequationsfortheconstants
A ,  B , C ,  D :

0 E-l

/v
r

1l*6*l*6)1[71
al2 a

z

< C ,0 < x
- c ) + C s i n k y k * t - x ) ,  c < x

l 2 * x ) ,  c + t

B sinky(x

D cosko(a

, r : {

Asinkoc - C sinkft,

Bs ink1 t :  Dcoskod . ,

(9.83a)

(9.83b)
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sinkyt + pkr cosk1t),

B 
i  coskp/) -  ckf = DlL sinkod.

**@B 
sinkyt { 1t'k, 

F" rro

rsr : l? s]
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(9.83c)

(9.83d)

(e.8s)

9.4

Reducing these results gives a transcendental equation for the propagation constant, B:

r  2  ,  ^  \ 2  /  t  "  , . p  \  Z r _  r 2
( g { l )  + ( l ! - )  - r , c o t k o c (  o t  

c o t k s t +  
* P  

) + ( 9 )
\ 1 . t " /  \ l r l r " )  

-  
\ l t o l . t " -  

'  
& o & F " / ' \ t t " /

x  co tkac tan  kod +  ko tankod (J l - � co tk l t -  : : i f "  )  
:0  O.84)" 

\ltopt" 
" 

ltoltlte t

This equation can be solved numerically for B. As it (9.79) for the single-slab case,
rc and B appear in (9.84) only as Kfr, K2, or B2, which implies nonreciprocal propagation,
since changing the sign of r (or bias fields) necessitates a change in sign for B (propagation
direction) for the same root. At first glance it may seem that, for the same waveguide and
slab dimensions and parameters, two slabs would give twice the phase shift of one slab, but
this is generally untrue because the fields are highly concentrated in the ferrite regions.

FERRITE ISOLATORS

One of the most useful microwave ferrite components is the isolator, which is a two-port
device having unidirectional transmission characteristics. The ̂ l matrix for an ideal isolator
has the form

indicating that both ports are matched, but transmission occurs only in the direction from
port 1 to port 2. Since [S] is not unitary, the isolator must be lossy. And, of course, [S] is
not symmetric, since an isolator is a nonreciprocal component.

A common application uses an isolator between a high-power source and a load to
prevent possible reflections from damaging the source. An isolator can be used in place of
a matching or tuning network, but it should be realized that any power reflected from the
load will be absorbed by the isolator, as opposed to being reflected back to the load, which
is the case when a matching network is used.

Although there are severaltypes of ferrite isolators, we will concentrate on the resonance
isolator and the field displacement isolator. These devices are ofpractical importance, and
can be analyzed and designed using the results for the ferrite slabloaded waveguide ofthe
previous section.

Resonance lsolators

We have seen that a circularly polarized plane wave rotating in the same direction as the
precessing magnetic dipoles of a ferrite medium will have a strong interaction with the
material, while a circularly polarized wave rotating in the opposite direction will have a
weaker interaction. Such a result was illustrated in Example 9.1, where the attenuation of
a circularly polarized wave was very large near the gyromagnetic resonance of the ferite,
while the attenuation of a wave propagating in the opposite direction was very small. This
effect can be used to construct an isolator; such isolators must operate near gyromagnetic
resonance and so are called resonance isolators. Resonance isolators usually consist of a
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(a) (b)

FIGURE 9.11 Two resonance isolator geometries. (a) ,E-plane, full-height slab. (b) I1-plane slab.

ferrite slab or strip mounted at a certain point in a waveguide. We will discuss the two
isolator geometries shown in Figure 9. I 1.

Ideally, the RF fields inside the ferrite material should be circularly polarized. In an
empty rectangular waveguide the magnetic fields of the TEle mode can be written as

i R

Hr : #Asinkrxs-lq'z'
Kc

Hz:  AcoskrYP- l8 � "z .

where ft, = r la is the cutoff wavenumber and Bo : JE -E is the propagation constant
of the empty guide. Since a circularly polarized wave must satisfy the condition that
H, / H, : */, the location, x, of the CP point of the empty guide is given by

tatkrx (e.86)

Ferrite loading, however, may perturb the fields so that (9.86) may not give the actual
optimum position, or it may prevent the internal fields from being circularly polarized for
any position.

First consider the full-height E-plane slab geometry of Figure 9.1Ia; we can analyze
this case using the exact results from the previous section. Altematively, we could use the
perturbation result of (9.81), but this would require the use of a demagnerization factor for
h, utd would be less accurate than the exact results. Thus, for a given set of parameters,

{9.79) can be solved numerically for the complex propagation constants of the forward and
reverse waves of the ferrite-loaded guide. It is necessary to include the effect of magnetic
loss, which can be done by using (9.37) for the complex resonant frequency, ros, in the
expressions for p" and r. The imaginary part of @o can be related to the linewidth, AFI,
of the ferrite through (9.40). Usually the waveguide width, a, frequency, ar, and ferrite
parameters 4r M, , and <, will be fixed, and the bias field and slab position and thickness
will be determined to give the optimum design.

Ideally, the forward attenuation constant (aa) would be zero, with a nonzero attenuation
constant (a-) in the reverse direction. But for the E-plane ferrite slab there is no position
x : c where the fields are perfectly CP in the ferrite (this is because the demagnetization
factor N, - 1 l4D. Hence the forward and reverse waves both contain an RHCP component
and an LHCP component, so ideal attenuation characteristics cannot be obtained. The
optimum design, then, generally minimizes the forward attenuation, which determines the
slab position. Alternatively, it may be desired to maximizetheratio of the reverse to forward

- + _

Fo
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attenuations. Since the maximum reverse attenuation generally does not occur at the same
slab position as the minimum forward attenuation, such a design will involve a trade-offof
the forward loss.

For a long, thin slab, the demagnetization factors are approximately those of a thin
disk N, - 1, N, - Nz - 0. It can then be shown via the Kittel equation of (9.45) that the
gyromagnetic resonance frequency of the slab is given by

, - Jro(a,o+ o;, (e.87)

which determines -F1s, given the operating frequency and saturation magnetization. This is
an approximate resulq the transcendental equation of (9.79) accounts for demagnetization
exactly, so the actual internal bias field, Hs, can be found by numerically solving (9.79) for
the attenuation constants for values of .FIs near the approximate value given by (9.87).

Once the slab position, c, and bias field, Ho, have been found the slab length, L, canbe
chosen to give the desired total reverse attenuation (or isolation) as (a-)t. The slab thickness
can also be used to adjust this value. Typical numerical results are given in Example 9.2.

One advantage of this geometry is that the full-height slab is easy to bias with an
extemal C-shaped permanent magnet, with no demagnetization factor. But it suffers from
several disadvantages :

o Zero forward attenuation cannot be obtained because the internal magnetic field is
not truly circularly polarized.

o The bandwidth of the isolator is relatively nzurow, dictated essentially by the line-
width, AFI, of the ferrite.

o The geometry is not well suited for high-power applications because of poor heat
transfer from the middle of the slab, and an increase in temperature will cause a
change in M' which will degrade performance.

The first two problems noted above can be remedied to a significant degree by adding
a dielectric loading slab; see reference [5] for details.

EXAMPLE 9.2 FERRITE RESONANCE ISOLATOR DESIGN

Design an E-plane resonance isolator in X-band waveguide to operate at 10 GHz
withaminimumforwardinsertionloss and 30 dB reverse attenuation. Use a0.5 mm
thick fenite slab with 4n M, - 1700 G, A,H : 200 Oe, and €, : 13. Determine
the bandwidth for which the reverse attenuation is at least 27 dB.

Solution
The complex roots of (9.79) were found numerically using an interval-halving
routine followed by a Newton-Raphson iteration. The approximate bias field, I/s,
givenby (9.87) is 2820Oe, butnumericalresults indicatethe actual fieldtobecloser
to 2840 Oe for resonance at 10 GHz. Figure 9.12a shows the calculated forward
(cv+) and reverse (a-) attenuation constants at 10 GHz versus slab position, and
it can be seen that the minimum forward attenuation occurs for c/a:0.L25:
the reverse attenuation at this point is cv- : 12.4 dB/cm. Figure 9.12b shows the
attenuation constants versus frequency for this slab position. For a total reverse
attenuation of 20 dB, the length of the slab must be

30 dB
t : 

t* oo" 
: 2'-l cm'
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f= l0GHz

cla

(4)
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l0

e 8
I

0.50.40.20.1 9.8 10.2

f(GHz)
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4nM,=7700G Ho=2840Oe A.F1-200Oe a=2.286cm r=0.05cm e ,=  13

FIGURE 9.12 Forward and reverse attenuation constants for the resonance isolator of Ex-
ample 9.2. (a) Versus slab position. (b) Versus frequency.

For the total reverse attenuation to be at least2T dB, we must have

27 dB
d- .  

ZAcm: 
11.3 dB/crn.

So the bandwidth according to the above definition is, from the data of Figure
9.12b, less than 2Vo. This result could be improved by using a ferrite with a
larger linewidth, at the expense of a longer or thicker slab and a higher forward
attenuatron.

Nextweconsideraresonanceisolatorusingthe H-planeslabgeometryofFigure9.llb.
If the slab is much thinner than it is wide, the demagnetization factors will approximately
be N, : N. : 0, Ny : l. This means that a stronger applied bias field will be required to
produce the internal field, flo, in the y direction. But the RF magnetic field components,
h, and h. wlll not be affected by the air-ferrite boundary since N, - N, :0, and perfect
circular polarized fields will exist in the ferrite when it is positioned at the CP point of the
empty guide, as given by (9.86). Another advantage of this geometry is that it has better
thermal properties than the E-plane version, since the ferrite slab has a large surface area
in contact with a waveguide wall for heat dissipation.

Unlike the full-height E-plane slab case, the l/-plane geometry of Figure 9.1lb cannot
be analyzed exactly. But ifthe slab occupies only a very small fraction ofthe total guide cross
section(AS/S < l,whereASandSarethecrosssectionalareasoftheslabandwaveguide,
respectively), the perturbational result for cv1 in (9.81) can be used with reasonable results.
This expression is given in terms of the susceptibilities X*, : X',, - j Xi-, Xr, = X'a7 -

i xi.lr, and Xry : X'ly + i x',y, as defined for a )-biased ferrite in a manner similar to (9.22).
For ferrite shapes other than a thin /1-plane slab, these susceptibilities would have to be
modified with the appropriate demagnetization factors, as in (9.43) [4].

I
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As seen from the susceptibility expressions of (9.22), gyromagnetic resonance for this
geometry will occur when a) : cr.ro, which determines the intemal bias field, Ils. The center
of the slab is positioned at the circular polarization point of the empty guide, as given by
(9.86). This should result in a near-zero forward attenuation constant. The total reverse
attenuation, or isolation, can be controlled with either the length, .L, of the ferrite slab or
its cross section AS, since (9.81) shows cva is proportional to AS/S. If AS/S is too large,
however, the purity of circular polarization over the slab cross section will be degraded, and
forward loss will increase. One practical alternative is to use a second identical ferrite slab on
the top wall of the guide, to double AS/S without signiflcantly degrading polarization purity.

The Field Displacement lsolator

Another type of isolator uses the fact that the electric field distributions of the forward and
reverse waves in a ferrite slab-loaded waveguide can be quite different. As illustrated in
Figure 9. 13, the electric field for the forward wave can be made to vanish at the side of the
ferrite slab at x : c * t, wltiTe the electric field of the reverse wave can be quite large at
this same point. Then if a thin resistive sheet is placed in this position, the forward wave
will be essentially unaffected while the reverse wave will be attenuated. Such an isolator
is called a field displacement isolator; high values of isolation with a relatively compact
device can be obtained with bandwidths on the order of 70Vo. Another advantage of the
field displacement isolator over the resonance isolator is that a much smaller bias field is
required, since it operates well below resonance.

The main problem in designing a field displacement isolator is to determine the design
parameters that produce field distributions like those shown in Figure 9.13. The general
form of the electric field is given in (9.77a), from the analysis of the ferrite slab-loaded
waveguide. This shows that for the electric field of the forward wave to have a sinusoidal
dependenceforc * t < x < a, andtovanish atx : c * t,thecutoffwavenumberkj must
be real and satisfy the condition that

(e.88)

where d : a - c - t. In addition, the electric field of the reverse wave should have a
hyperbolic dependence for c * t < x < a, which implies that k; must be imaginary. Since

z

n

u  
d '

0

/

FIGURE 9.13 Geometry and electric fields of a field displacement isolator.
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from (9.75), l4 : 4 - Bz , the above conditions imply that B+ < fts and B- > kg, where
ko : aJ6oeo. These conditions on B1 depend critical$ on the slab position, which mustbe
determined by numerically solving (9.79) for the propagation constants. The slab thickness
also affects this result, but less critically; a typical value is t : a/l}.

It also turns out that in order to satisfy (9.88), to force Ey : O at x : c I t, 1t " :

Q"' - *\l t" must be negative. This requirement can be intuitively understood by thinking
ofthewaveguidemodeforc *t < x < 4asasuperpositionoftwoobliquelytravelingplane
waves. The magnetic field components 11, and H, of these waves are both perpendicular
to the bias field, a situation which is similar to the extraordinary plane waves discussed in
Section 9.2, where it was seen that propagation would not occur for 1t " < 0. Applying this
cutoff condition to the ferrite-loaded waveguide will allow a null in E, for the forward wave
t o b e f o r m e d a t x : c l t .

The condition that p," be negative depends on the frequency, saturation magnetiza-
tion, and bias field. Figure 9.8 shows the dependence of p," versus bias field for several

0.0
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Propagation constants and electric field distribution for the field displacement iso-
lator of Example 9.3. (a) Forward and reverse propagation constants versus slab
position. (b) Electric fleld amplitudes for the forward and reverse waves.
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frequencies and saturation magnetization. This type of data can be used to select the sat-
uration magnetization and bias field to give p," < 0 at the design frequency. Observe that
higher frequencies will require a ferrite with higher saturation magnetization, and a higher
bias field, but 1t, < 0 always occurs before the resonance in p, at J,t{,D1+,r;. Further
design details will be given in the following example.

EXAMPLE 9.3 FIELD DISPLACEMENT ISOLATOR DESIGN

Design a field displacement isolator in X-band waveguide to operate at 11 GHz.
The fenite has 4n M,: 3000 G, and €r : 13. Ferrite loss can be ignored.

Solution
We first determine the intemal bias field, IIs, such that trt" < 0. This can be found
from Figure 9.8, which shows p,"f p,o versus f1e for 4tr M" : 3000 G at 11 GHz.
We see that I/s : I20O Oe should be sufficient. Also note from this figure that a
ferrite with a smaller saturation magnetization would require a much larger bias
field.

Next we determine the slab position, c/a,by numerically solving (9.79) for
the propagation constants, B1, as a function of cla. The slab thickness was set
to t =0.25cm, which is approximately a/lO. Figure 9.14a shows the resulting
propagation constants, as well as the locus of points where Ba and c f a satisfy the
condition of (9.88). The intersection of B1 with this locus will insure that Ey = 0
at x : c I t for the forward wave; this intersection occurs for a slab position
of c f a :0.028. The resulting propagation constants arc fr+ - 0.724k0 < ks and

f r - : I . 6 0 7 k 0 > f t 0 .
The electric fields are plotted in Figure 9.14b. Note that the forward wave has

a null at the face of the ferrite slab, while the reverse wave has a peak (the relative
amplitudes of these fields are arbitrary;. Then a resistive sheet can be placed at
this point to attenuate the reverse wave. The acfual isolation will depend on the
resistivity ofthis sheet; a value of75 Q per square is typical. I

FERRITE PHASE SHIFTERS

Another important application of ferrite materials is in phase shifters, which are two-
port components that provide variable phase shift by changing the bias field ofthe ferrite.
(Microwave diodes and FETs can also be usedto implementphase shifters; see Section 10.3.)
Phase shifters find application in test and measurements systems, but the most significant use
is in phased array antennas where fhe antenna beam can be steered in space by electronically
controlled phase shifters. Because of this demand, many different types of phase shifters
have been developed, both reciprocal (same phase shift in either direction) and nonreciprocal

l2l, 16l.One of the most useful designs is the latching (or remanent) nonreciprocal phase
shifter using a ferrite toroid in a rectangular waveguide; we can analyze this geometry with
a reasonable degree of approximation using the double ferrite slab geometry discussed in
Section 9.3. Then we will qualitatively discuss the operation of a few other types of phase
shifters.

Nonreciprocal Latching Phase Shifter

The geometry of a latching phase shifter is shown in Figure 9.15; it consists of a toroidal
ferrite core symmetrically located in the waveguide with a bias wire passing through its
center. When the ferrite is magnetized, the magnetization of the sidewalls of the toroid will
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Toroidal
fenite

FIGURE 9.15 Geometry of a nonreciprocal latching phase shifter using a ferrite toroid.

be oppositely directed andperpendicularto theplane of circularpolarizationof the RFfields.
Since the sense of circular polarization is also opposite on opposite sides of the waveguide,
a strong interaction between the RF fields and the fenite can be obtained. Of course, the
presence of the ferrite perturbs the waveguide fields (the fields tend to concentrate in the
ferrite), so the circular polarization point does not occur attarkcx : kr/ fl0, as it does for
an empty guide.

In principle, such a geometry can be used to provide a continuously variable (analog)
phase shift by varying the bias current. But a more useful technique employs the magnetic
hysteresis of the ferrite to provide a phase shift that can be switched between two values
(digital). A typical hysteresis curve is shown in Figure 9.16, showing the variation in
magnetization, M , withbias field, I1o. When the ferrite is initially demagnetized and the bias
field is off, both M and Fle are zero. As the bias field is increased, the magnetization increases
along the dashed line path until the ferrite is magnetically saturated, and M : M,. If the bias
field is now reduced to zero, the magnetization will decrease to a remanent condition (like a
permanent magnet), where M : M,. A bias field in the opposite direction will saturate the
ferrite with M = -M, whereupon the removal of the bias field will leave the ferrite in a
remanent state with M : - M, . Thus we can "latch" the ferrite magnetization in one of two
states, where M : LM,, giving a digital phase shift. The amount of differential phase shift
between these two states is controlled by the length ofthe ferrite toroid. In practice, several
sections having individual bias lines and decreasing lengths are used in series to give binary
differential phase shifts of 180', 90o,45o, etc. to as fine a resolution as desired (or can be
afforded). An important advantage of the latching mode of operation is that the bias current
does not have to be continuously applied, but only pulsed with one polarity or the other to
change the polarity of the remanent magnetization; switching speeds can be on the order
of a few microseconds. The bias wire can be oriented perpendicular to the electric field in
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FIGURE 9.16 A hysteresis curve for a ferrite toroid.
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the guide, with a negtgible perturbing effect. The top and bottom walls of the ferrite toroid
have very little magnetic interaction with the RF fields because the magnetization is not
perpendicular to the plane of circular polarization, and the top and bottom magnetizations
are oppositely directed. So these walls provide mainly a dielectric loading effect, and the
essential operating features ofthe remanent phase shifters can be obtained by considering
the simpler dual ferrite slab geometry of Section 9.3.

For a given operating frequency and waveguide size, the design of a remanent dual
slab phase shifter mainly involves the determination of the slab thickness, /, the spacing
between the slabs, s :2d: a -2c -2t (see Figure 9.10), and the length of the slabs
for the desired phase shift. This requires the propagation constants, Ba, for the dual slab
geometry, which can be numerically evaluated from the transcendental equation of (9.84).
This equation requires values for p, and rc, which can be determined from (9.25) for the
remanent state by setting Ho : O (aro : 0) and M" : M, (to^ : FoT Mr)i

P :  l - Lo '

a)m
rc : -&o-

a)

K  ' @ ^  |

lto 0)

Using a numerical root-finding technique, such as interval halving, we can solve
(9.84) for the propagation constants F+ ffid B- by using positive and negative
valuesofr.Figure9.lTshowstheresultingdifferentialphaseshift,(Ba - fl-)lko,
versus slab thickness, /, for several slab spacings. Observe that the phase shift
increases as the spacing, s, between the slabs decreaseso and as the slab thickness
increases, for t la up to about 0.12.

From the curve in Figure 9.17 for J : 1 mm, we see that the optimum slab
thickness for maximum phase shift is tfa:0.72, or t:2.'14 mm, since 4:
2.286 cmforX-band guide. The corresponding normalized differential phase shift
is 0.40, so

(9.89a)

(e.8eb)

The differential phase shift, Ba - f-, is linearly proportional to r, for K I p0 up to about
0.5. Then, since r is proportionalto M,, as seen by (9.89b), it follows that a shorter ferrite
can be used to provide a given phase shift if a ferrite with a higher remanent magnetization
is selected. The insertion loss ofthe phase shifter decreases with length, but is a function of
the ferrite linewidth, AH. A figure of merit commonly used to characterize phase shifters
is the ratio of phase shift to insertion loss, measured in degrees/dB.

EXAMPLE 9.4 REMANENT PHASE SHIFTER DESIGN

Design a two-slab remanent phase shifter at 10 GHz using X-band waveguide
with ferrite having 4nM, - 1786G Euld €, : 13. Assume that the ferrite slabs
are spaced 1 mm apart. Determine the slab thicknesses for maximum differential
phase shift, and the lengths ofthe slabs for 180' and 90" phase shifter sections.

Solution
From (9.89) we have that

u'  -  I ,
Po

(2.8MHz/OeX1786 G) : *0.5
10.000 MHz

/ 2.09 rad \
f+ - F- - O.4ko: 0.4 ( .* /

: 0.836 rad/cm : +8" lcm.
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0.8
Hn

t 1
H S = 0

S = 1 m m

S = 2 m m

,9= 3 mm

0 0.04 0.08 0.r2 0.16
Slab thickness t1a

FIGURE 9.17 Differential phase shift for the two-slab remanent phase shifter of Example 9.4.

The ferrite length required for the 180' phase shift section is then

[80'
L _ : 3.75 cm,

48 ' /cm

while the length required for a 90o section is

d 0.6
I
+

o U.r+

6

I
.6 0.2

90'
L - _ : l . g g c m .

48o I cm t

Other Types of Ferrite Phase Shifters

Many other types of ferrite phase shifters have been developed, with various combinations of
rectangular or circular waveguide, transverse or longitudinal biasing, latching or continuous
phase variation, and reciprocal or nonreciprocal operation. Phase shifters using printed
transmission lines have also been proposed. Even though PIN diode and FET circuits offer
a less bulky and more integratable alternative to ferrite components, ferrite phase shifters
often have advantages in terms of cost, power handling capacity, and power requirements.
But there is still a great need for a low-cost, compact phase shifter.

Several waveguide phase shifter designs are derived from the nonreciprocal Faraday
rotation phase shifter shown in Figure 9.18. In operation, a rectangular waveguide TEls
mode entering at the left is converted to a TE11 circular waveguide mode with a short
transition section. Then a quarter-wave dielectric plate, oriented 45' from the electric field
vector, converts the wave to an RHCP wave by providing a 90' phase difference between the
field components that arc parallel and perpendicular to the plate. In the ferrite-loaded region
the phase delay is f+2, which can be controlled with the bias field strength. The second
quarter-wave plate converts the wave back to a linearly polarized field. The operation is
similar for a wave entering at the right, except now the phase delay is B-z; the phase
shift is thus nonreciprocal. The ferrite rod is biased longitudinally, in the direction of
propagation, with a solenoid coil. This type of phase shifter can be made reciprocal by
using nonreciprocal quarter-wave plates to convert a linearly polarized wave to the same
sense of circular polarization for either propagation direction.



9.5 Fenite Phase Shifters 475

FIGURE 9.18 Nonreciprocal Faraday rotation phase shifter.

The Reggia-Spencer phase shiftet shown in Figure 9. 1 9, is a popular reciprocal phase
shifter. In either rectangular or circular waveguide form, a longitudinally biased ferrite rod
is centered in the guide. When the diameter of the rod is greater than a certain critical size,
the fields become tightly bound to the ferrite and are circularly polaized. A large reciprocal
phase shift can be obtained over relatively short lengths, although the phase shift is rather
frequency sensitive.

The Gyrator

An important canonical nonreciprocal component is the gyrator, which is a two-port device
having a 180' differential phase shift. The schematic symbol for a gyrator is shown in
Figure 9.20, and the scattering matrix for an ideal gyrator is

rsr: [_1 (e.e0)

which shows that it is lossless, matched, and nonreciprocal. Using the gyrator as a basic
nonreciprocal building block in combination with reciprocal dividers and couplers can lead
to useful equivalent circuits for nonreciprocal components such as isolators and circulators.

FIGUR"E 9.19 Reggia-Spencer reciprocal phase shifter.
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FIGURE 9.20 Symbol for a gyrator, which has a differential phase shift of 180'.

9.6

Figure 9.21, for example, shows an equivalent circuit for an isolator using a gyrator and
two quadrature hybrids.

The gyrator can be implemented as a phase shifter with a 180' differential phase shift;
bias can be provided with a permanent magnet, making the gyrator a passive device.

FERRITE CIRCULATORS

As we discussed in Section7.1, a circulator is a three-port device that can be lossless and
matched at all ports; by using the unitary properties of the scattering matrix we were able to
show how such a device must be nonreciprocal. The scattering matrix for an ideal circulator
thus has the followins form:

(9.e1)

which shows that power flow can occur from ports I to 2, 2 to 3, and 3 to 1, but not in the
reverse direction. By transposing the port indices, the opposite circularity can be obtained.
In practice, this result can be produced by changing the polarity of the ferrite bias field. Most
circulators use perrnanent magnets for the bias field, but if an electromagnet is used the
circulatcr can operate in a latching (remanent) mode as a single-pole double-throw (SPDT)
switch. A circulator can also be used as an isolator by terminating one of the ports with a
matched load. A junction circulator is shown inFigure9.22.

We will first discuss the properties of an imperfectly matched circulator in terms of its
scattering matrix. Then we will analyze the operation of the stripline junction circulator.
The operation of waveguide circulators is similar in principle.

Properties of a Mismatched Circulator

If we assume that a circulator has circular symmetry around its three ports and is lossless,
but not perfectly matched, its scattering matrix can be written as

lsl : (e.e2)

An isolator constnrcted with a gyrator and two quadrature hybrids. The forward
wave (-+) is passed, while the reverse wave (+-) is absorbed in the matched load
of the first hybrid.

[ 0  0  i l
l s l : l l  0  0 1 ,

L 0 l 0 l

[ r  P  c Y l

l a  r  P l
L P  d  f l

FIGURE 9.21
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FIGURE 9.22 Photograph of a disassembled ferrite junction circulator, showing the stripline con-
ductor, the ferrite disks, and the bias magnet. The middle port of the circulator is

terminated with a matched load, so this circulator is actually conflgured as an iso-
lator. Note the charrge in the width of the stripline conductors, due to the different
dielectric constants of the ferrite and the surrounding plastic material.

Since the circulator is assumed lossless, [S] must be unitary, which implies the following

two conditions:

F f + l p f * @ P : r ,
t r f * + c v f * *  B u * : 0 .

(9.93a)

(e.e3b)

If the circulator were matched (I' : 0), then (9.93) shows that either cv : 0 and lfl : 1,
or P - 0 and lcvl : 1;this descnbes the ideal circulator with its two possible circularity
states. Observe that this condition depends only on a lossless and matched device.

Now assume small imperfections, such that lf | << 1.To be specific, consider the cir-
cularity state where power flows primarily inthe I-2-3 direction, so that lcvl is close to unity
and lpl is small. Then Bf - 0, and (9.93b) shows that cvf * + Pq* - 0, so lf | - lFl. Then
(9.93a) shows that lalz - | -2l\ l2 - | -2lf l2, or lcvl - 1- lf 12.Then the scattering
matrix of 0.92\ can be written as

l - f  f  I
t s l : 1 1 - f 2  f

L  r  r - r 2
(9.e4)

ignoring phase factors. This result shows that circulator isolation, P = f , and transmission,
a - | - f2, both deteriorate as the input ports become mismatched.

;t '-l,
f l
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(a) (b)

FIGURE 9.23 A stripline junction circulator. (a) Pictorial view. (b) Geometry,

Junction Circulator

The stripline junction circulator geometry is shown in Figure 9.23, and in the photograph
of Figure 9.22.Two ferrite disks fill the spaces between the center metallic disk and the
ground planes of the stripline. Three stripline conductors are attached to the periphery of
the center disk at 120' intervals, forming the three ports of the circulator. The DC bias field
is applied normal to the ground planes.

In operation, the ferrite disks form a resonant cavity; in the absence of a bias field,
this cavity has a single lowest-order resonant mode with a cos@ (or sind) dependence.
When the ferrite is biased this mode breaks into two resonant modes with slightly different
resonant frequencies. The operating frequency of the circulator can then be chosen so that
the superposition of these two modes add at the output port and cancel at the isolated port.

We can utalyze the junction circulator by treating it as a thin cavity resonator with elec-
tric walls on the top and bottom, and an approximate magnetic wall on the side. Then E, -

E6 = O,atdl/02: 0, so wehave TMmodes. Since E. oneither side of thecenterconduct-
ing disk is antisymmetric, we need only consider the solution for one of the fenite disks [7].

We begin by transforming (9.23), B:Lplfi, From rectangular to cylindrical co-
ordinates:

Bp:  B* cos@ * B,  s in@

: (&H, *  j rcHr)cos@ * ( -  j rcH,1 p.Hr)s inQ

: &Hp -t jrcHE,

Bo :  *8 ,  s i nd  *  B rcosQ

: -QrH* + jKHy) sind * ?ircH, l trt Hr)cosQ
- - j r c H p * t t H o .

(9.95a)

(9.95b)

So we have that

: [l,t] li;l
L H , Jl{)

Isolated

where [pi] is the same matrix as for rectangular coordinates, as given in (9.24).

(e.96)



9.6 Ferrite Circulators 479

In cylindrical coordinates, with 0/32:0, Maxwell's curl equations reduce to the
followine:

where ft2 - aze(L+? - K2)/ p - a2€ k" is an effective wavenumber, and Y : J7fu is an
effective admittance. Using (9.98) to eliminate H o and Ha in (9.97 c) gives a wave equation
for Er:

!+ :  - j . , (uHo*  j rcHat .
p o Q

EE,_ 6 : - j o ( _ j r c H o * p t H d ,

l l aOno l  _u ro1  :  i ae  E . .
p L  o p  a 0 J

Solving (9.97a,b) for Ho and Hq in terms of E. gives

, ,: ';e#*,rT),
,,:#(##.-#),

*  * lY  *  + *  +kzE . :0 .
dp' p dp p" oq'

Ho,: -ivlt+,ei"'lr^0, + ffit,ora)
* A_,e-inllr^0, - 

;t,AOll
(9.100b)

(9.97a)

(e.e7b)

(9.97c)

(9.98a)

(9.e8b)

(e.ee)

This equation is identical in form to the equation for E. for the TM mode of a circular
waveguide, so the general solution can be written as

Ern : lApej"Q + A_ne-t"l l,(t p), (9.100a)

where we have excluded the solution with Y,(kp) because E. must be finite at p - 0. We
will also need H6n, which can be found using (9.98b):

The resonant modes can now be found by enforcing the boundary condition that H4 : Q
A t  P : 4 .

If the fenite is not magnetized, then Ho : M, : 0 and (D0 : (Dm: 0 so that rc :0

and p : ltre : Fo, and resonance occurs when

Ji(ka1 : g,

or ka-xo: p\t:1.841. Define this frequency as @0 (not to be confused with
ros : )/ psH6)i

xo I.841
at/e&, a1t<l fo

(9 .101)

When the ferrite is magnetized there are two possible resonant modes for each value
ofzr, as associated with either a ej"Q vaiationor e-jnQ variation. The resonance condition
for the two 14 : I modes is

! -h lo ) *  " / { (x ) :0 , (9.102)



480 Chapter 9: Theory and Design of Ferrimagnetic Components

where x : ka . This result show s the nonreciprocal property of the circulator, since changing
the sign of r (the polarity of the bias field) in (9.L02) leads to the other root and propagation
in the opposite direction in @.

If we let .r1 and x- be the two roots of (9.102), then the resonant frequencies for these
two n : 1 modes can be expressed as

X+
Q ) + :  -- a Je 1.c,

We can develop an approximate result for ar1 if we assume that rc I p, is small, so that
ro1 will be close to at of (9.101). Using a Taylor series about xs for the two terms in (9.102)
gives the following results, since "((xs) : Q;

ilx) = Jr(xo) + @ - xs)Ji@d : Jr(xo),

Ji@) = Ji@il + 1x - xs)Ji' @o)

' 
+) rr(xo).: _ ( x _ " 0 ) | , t _  
r U ,

(e.103)

(9.104)

(9.10s)

Then (9.102) becomes

h+ ( ; r+  
- xo )  ( ' -  * )  

:  o ,

x+ - xo(r * o.+rsr) ,

since xs : 1.841. This result gives the resonant frequencies as

@ a l a s ( l  + o . + r s t ) .
\  p /

Note that cda approaches rrls ?s rc --> 0, and that

I 
to, for Q - 0 (Port 1),

E,(p : a.Q\: 
I 

-"0, for Q - l2O' (Port2),

t 0, for Q - 240' (Port3).

( D - < @ g < @ a .

Now we can use these two modes to design a circulator. The amplitudes of these modes
provide two degrees of freedom that can be used to provide coupling from the input to the
output port, and to provide cancellation at the isolated port. It will turn out that ars will
be the operating frequency, between the resonances of the cd* modes. Thus, I14 f 0 over
the periphery of the ferrite disks, since co * a+.If we select port 1 as the input, port 2 as
the output, and port 3 as the isolated port, as in Figure 9 .23, we can assume the following
E, field at the ports at p : e:

(9.106a)

If the feedlines are narrow, the E, field will be relatively constant across their width. The
corresponding Ha field should be

f o r - { < Q < l / ,
for 120" -rlt < 0 < 120" +{t,
elsewhere.

H6(p: ",r:ln:, (9. t06b)
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Equating (9.106a) to E. of (9.100a) gives the mode amplitude constants as

A a 1 :
Eo(l+ j /^f i l

(9.r07a)

(e.107b)

2Uka)

2Holr

^  Eo ( l  -  j l " t z l
'{- l  :  

ut(k") 
'

Then (9.100a,b) can be reduced to give the electric and magnetic fields as

u, , : '4#l( ' .*) , ia +(r- h). ' , )
:W( .o ,0 -#)  (e1o8a)

Ho, : -#{ 
(' . h)l'*rr> + ffit,o,ot)"io
* (t - tn)|,^rr>- 

ffit,<r,or]"-;o| 
(e.10sb)

To approximately equate H61 to H6 in (9.106b) requires that H4 be expanded in a Fourier
series:

m
, , \ - -

H 6 ( p : a . Q ) :  \  C n e t ' a :
n=-&

I J l - m

+ T I l{r + r-i'"nl3leinf + (1 1 eiz""lz1e-inof
"  

n : l

sinnlr"7. (e.10e)

The z : 1 term of this result is

HQr(p: a.e):  
- i ' f3!t :sin' l '  

l ( '  *  *) , ' '  -  ( t  -  +) ,- ' '1.
2n L\  J3/  \  . /3 /  J

which can now be equated to (9.108b) for p - a. Equivalence can be obtained if two
conditions are met:

J i&a) :0,

Y E6rc JlHssinlh- :
kap n

The first condition is identical to the condition for resonance in the absence of bias,
which implies that the operating frequency is ro6, as given by (9.101). For a given operating
frequency, (9.101) can then be used to find the disk radius, a.The second condition can be
related to the wave impedance atport | or 2;

Eo _ JSkap,sint - p, sinlr
Z . -

Hs nYrc rcY
(9.110)
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120. 240" 360. A
f t
I I

Output Isolated

FIGURD 9.24 Magnitude of the electric field around the periphery of the junction circulator.

since ̂f3ka /n : J16.A+9 ln - I.O.Thus, Z, can be controlled for impedance matching
by adjusting rc I pt via the bias field.

We can compute the power flows at the three ports as follows:

P i n :  P r  -  - p ' E  x  E *  :  E r H a l  :"  -  ld=O

EsHs sinl/l E1rcY 
,  (9.11la)

ln,l

0
I

I
Input

Pout : Pz : B. E x fr* : -rrrrlr:rro" : tUlY!

4,o : P.r :  B. E x E* : -trOrlr:^ '" = O.

lt lr

a 2 , , v
: : ! :4 ,  (g .1 l lb )

f tp

(9 .11 lc )

This shows that power flow occurs from port 1 to 2, but not from 1 to 3. By the azimuthal
symmetry of the circulator, this also implies that power can be coupled from port 2 to 3, or
from port 3 to 1, but not in the reverse directions.

The electric field of (9.108a) is sketched in Figure 9.24 along the periphery of the
circulator, showing that the amplitudes and phases of the etiQ modes are such that their
superposition gives a null at the isolated port, with equal voltages at the input and output
ports. This result ignores the loading effect of the input and output lines, which will distort
the field from that shown in Figure 9.24.This design is narrowband, but bandwidth can be
improved using dielectric loading; the analysis then requires consideration ofhigher order
modes.
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PROBLEMS

A certain ferrite material has a safuration magnetization of 4n M , : 1780 G. Ignoring loss, calculate
the elements of the permeability tensor at / = l0 GHz for two cases: (a) no bias field and ferrite
demagnetized (M, : Ho: 0) and (b) a z-directed bias field of 1000 oersted.

Consider the following field transformations from rectangular to circular polarized components:9.2

B * : ( B * + j B y ) / z ,

B * : ( B * _ j B r ) / 2 ,

B , :  8 , ,

H + : ( H , + j H y ) / 2 ,

H - : ( H , _  j H r ) / 2 ,

H r :  H r .

For a z-biased ferrite medium, show that the relation between B and E can be expressed in terms of
a diagonal tensor permeability as follows:

;l tfil@ { r c )
0
0tfilI: l

I
L

0
(lr - K)

0

9.3 A YIG sphere with 4tt M" - 1780G lies in a uniform magnetic field having a strength of 1200 Oe.
What is the magnetic field strength inside the YIG sphere?

9.4 A thin rod is biased along its axis with an extemal applied fleld of fl, : 1000 Oe.II4tr M,: 600G,
calculate the gyromagnetic resonance frequency for the rod.

An infinite lossless ferrite medium with a saturation magnetizattonof 4n M, : 1200 G and a dielectric
constant of 10 is biased to a field strength of 500 oersted. At 8 GHz, calculate the differential phase
shift per meter between an RHCP and an LHCP plane wave propagating in the direction of bias. If
a linearly polarized wave is propagating in this material, what is the distance it must travel in order
that its polarization is rotated 90'?

Aninfinitelosslessferritemediumwithasaturationmagnetizationof4nM,: lT80Gandadielectric
constant of 13 is biased in the i direction with a field strength of 2000 oersted. At 5 GHz, two plane
waves propagate in the *z direction, one linearly polarized in x and the other linearly polarized in y.
What is the distance these two lvaves must travel so that the differential phase shift between them is
180"?

Consider a circularly polarized plane wave normally incident on an infinite ferrite medium, as shown
in the following figure. Calculate the reflection and transmission coefflcients for an RHCP (f +, f +)

and an LHCP (f-, f-) incident wave. HINT: The transmitted wave will be polarized in the same
sense as the incident wave, but the reflected wave will be oppositely polarized.

9.5

9.6

9.7

EIrUU+
-Jlfu
IE'
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9.8 An infinite lossless ferrite materialwith 4n M, : 1200 G is biased in the i direction with I7o : Hot.
Determine the range of llo, in oersteds, where an extraordinary wave (polarized in i, propagating
in ?) will be cutoff. The frequency is 4 GHz.

9.9 Find the forward and reverse propagation constants for a waveguide half-filled with a transversely
biased ferrite. (The geometry of Figure 9.9 with c : 0 and t : a/2.) Assume a:1.0 cm, f *

10 GHz, 4n M, - 1700G, and €, : 13. Plot versus fls : 0 to 1500 Oe. Ignore loss and the fact that
the ferrite may not be saturated for small F1e.

9.10 Findtheforwardandreversepropagationconstantsforawaveguidefilledwithtwopiecesofoppositely
b i a s e d f e r r i t e . ( T h e g e o m e t r y o f F i g u r e 9 . l 0 w i t h c : 0 a n d t : a / 2 . ) A s s u m e a : 7 . 0 c m , f :
10 GHz, 4tr M, - 1700 G, and €. : 13. Plot versus I10 : 0 to 1500 Oe. Ignore loss and the fact that
the ferrite may not be saturated for small 116.

9.11 Consider a wide, thin ferite slab in a rectangular X-band waveguide, as shown in Figure 9.1 lb. If

7 : l0 GHz,4n M, : 1700 G, c : a/4, and AS :2mm2, use the perturbation formula of (9.80) to
plot the differential phase shift, (F+ - fl-)l ko, versus the bias field for 110 - 0 to 1200 Oe. Ignore
loss.

9.12 AnE-planeresonanceisolatorwiththegeometryofFigure9.llaistobedesignedtooperateat8GHz,
with a ferrite having a saturation magnetizati on of 4n M , : 1500 G. (a) What is the approximate bias
field, Ilo, required for resonance? (b) What is the required bias field if the l1-plane geometry of
Figure 9.1 lb is used?

9.13 Design a resonance isolator using the H -plane ferrite slab geometry of Figure 9.1 lb in an X-band
waveguide. The isolator should have minimum forward insertion loss, and a reverse attenuation of
30 dB at 10 GHz. Use a ferrite slab having AS/S : 0.01,4n M, : 1700 G, and AfI : 200 Oe.

9.14 Calculate and plot the two normalized positions, x f a,where the magnetic fields of the TE16 mode of
an empty rectangular waveguide are circularly polarized, for fts : k, to 2k,.

9.15 The latching ferrite phase shifter shown in the figure below uses the birefringence effect. In state 1,
the ferrite is magnetized so that 116:0 and M : M,i.In state 2, the ferrite is magnetized so that
Ilo :0 arrd M : M,i.lf f :5 GHz, e, : l0,4trM, - 1200 G, and L:3.65 cm, calculate the
differential phase shift between the two states. Assume the incident plane wave is i polarized for both
states, and ignore reflections.

9.16 Rework Example 9.4 with a slab spacing of s : 2 mm, and a remanent magnetiaation of 1000 G.
(Assume all other parameters as unchanged, and that the differential phase shift is linearly proportional
to r.)

9.17 Consider a latching phase shifter constructed with a wide, thin .F/-plane ferrite slab in an X-band
wavegu ide ,asshowninF igureg. l lb .  I f  f  :9GiJ rz ,4 t tM, -  1200G,  c :a14,andAS:2mm2,
use the perturbation formula of (9.80) to calculate the required length for a differential phase shift of
22 .5 ' .

9.18 Designagyratorusingthetwin,I/-planeferriteslabgeometryshownonthenextpage.Thefrequencyis
9.OGHz,andthesaturationmagnetizationis4nM,: 1700G.Thecross-sectionalareaofeachslabis
3.0mm2, andthe guideis X-bandwaveguide. Thepermanentmagnethas a field strength of H. : 4000
Oe. Determine the internal field in the ferrite, F1o, and use the perfurbation formula of (9.80) to

ut

v
H
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determine the optimum location of the slabs and the length, Z, to give the necessary 180' differential
phase shift.

Draw an equivalent circuit for a circulator using a gyrator and two couplers.

A certain lossless circulator has a retum loss of 10 dB. What is the isolation? What is the isolation if
the retum loss is 20 dB?

I
b

I--T

9.19

9.20

3_ a__-________--__4



Noise and Active
RF Components

The effect of noise is critical to the performance of most RF and microwave communications,
radar, and remote sensing systems because noise ultimately determines the threshold for the
minimum signal that can be reliably detected by a receiver. Noise power in a receiver will be
introduced from the external environment through the receiving antenna, as well as generated
internally by the receiver circuitry. Here we will study the sources of noise in microwave
systems, and the characlenzation of microwave components in terms of noise temperature and
noise flgure, including the effect of impedance mismatch. We will also discuss the related topics
of dynamic range and intermodulation distortion, which are important considerations when large
signal levels are present in nonlinear components such as diodes and transistors. The additional
noise-related topics of oscillator phase noise and antenna noise temperature will be discussed
in Chapters 12 and 13.

The components and circuits that we have discussed so far have been linear and passive,
but practical microwave systems invariably require the use of some nonlinear and active com-
ponents. Such devices, which include diodes, transistors, and electron fubes, can be used for
signal detection, mixing, amplification, frequency multiplication, switching, and as sources of
microwave and RF signals. We will discuss some of the basic characteristics of microwave
diodes and transistors in this chapter, and present equivalent circuits for these devices. We will
avoid any discussion of the physics of diodes or transistors (see references [1]-[6] for such
material), since for our purposes it will be adequate to characterize these devices in terms of
their circuit properties. These results will be used to study some basic diode detector and control
circuits, and in later chapters for the design of amplifier, mixer, and oscillator circuits using
diodes and transistors. We conclude this chapter with an overview of microwave integrated
circuits.

The earliest detector diode was probably the "cat-whisker" crystal detector used in early
radio work. The advent of tubes used as detectors and amplifiers eliminated this component in
most radio systems, but the crystal diode was later used by Southworth in his 1930s experiments
with waveguides, since the tube detectors of that era could not operate at such high frequencies.
Frequency conversion and heterodyning were also first developed for radio applications, in the
1920s. These same techniques were later applied to microwave radar receiver design at the
MIT Radiation Laboratory during World War II using crystal diodes as mixers [1], but it was

486
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not until the 1960s that microwave solid-state devices saw significant development. PIN diodes
were invented, and used as microwave switches and phase shifters. The basic theory of the field
effect transistor (FET) was developed by Shockley in 1952, and the flrst FETs were fabricated
on silicon. The first microwave gallium arsenide FETs were developed in the late 1960s [2].

The logical trend for microwave circuits has since been to integrate transmission lines,
active devices, and other components on a single semiconductor substrate to form a monolithic
microwave integrated circuit (MMIC). The first single-function MMICs were developed in the
late 1960s, but more sophisticated circuits such as multistage FET amplifiers, 3- or 4-bit phase
shifters, complete transmit/receive radar modules, and other circuits are now being fabricated
as MMICs [2]. The present trend is toward MMICs with higher performance, lower cost, and
greater complexity.

1o'1 N.,,E rN MrcRowAVE crRcurrs
Noisepoweris aresultof randomprocesses such as the flow of charges orholes in anelectron
tube or solid-state device, propagation through the ionosphere or other ionized gas, or, most
basic of all, the thermal vibrations in any component at a temperature above absolute zero.
Noise can be passed into a microwave system from extemal sources, or generated within the
system itself. In either case the noise level of a system sets the lower limit on the strength
ofa signal that can be detected in the presence ofthe noise. Thus, it is generally desired to
minimize the residual noise level of a radar or communications receiver, to achieve the best
performance. In some cases, such as radiometers or radio asffonomy systems, the desired
signal is actually the noise power received by an antenna, aad it is necessary to distinguish
between the received noise power and the undesired noise generated by the receiver system
itself.

Dynamic Range and Sources of Noise

In previous chapters we have implicitly assumed that all components were linear, meaning
that the output is directly proportional to the input, and determinrslic, meaning that the
output is predictable from the input. In reality no component can perform in this way over
an unlimited range of input/output signal levels. In practice, however, there is a range of
signal levels over which such assumptions are valid; this range is called the dynamic range
of the component.

As an example, consider a realistic microwave transistor amplifier having a gain of
10 dB, as shown in Figure 10.1. If the amplifier were ideal, the output power would be
related to the input power as

Poul : 10Pin,

and this relation would hold true for any value of 4n. Thus if 4n :0, we would have
&ut :0, and if Pin : 106 W we would have Pou, : 107 W. Obviously neither of these
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FIGURE 10.1 Illustrating the dynamic range of a realistic amplifier.

conditions will be true in practice. Because of noise generated by the amplifier itseli a
certain nonzero noise power will be delivered by the amplifler even when the input power is
zero. For very high input powers, the amplifier will be destroyed. Thus, the actual relation
between the input and output power will be as shown in Figure 10.1. At very low input
power levels, the output will be dominated by the noise of the amplifier. This level is often
called the noise floor of the component or system; typical values may range from -60 dBm
to -100 dBm over the bandwidth of the system, with lower values being obtainable with
cooled components. Above thenoise floor, the amplifierhas arange of inputpowerforwhich
Pout : 104n is closely approximated. This is the usable dynamic range of the component.
At the upper end of the dynamic range, the output begins to saturate, meaning that the output
power no longer increases linearly as the input power increases. A quantitative measure of
the onset of saturation is given by the 1 dB compression point, which is defined as the input
power for which the output is I dB below that of the ideal amplifier (the corresponding
output power level can also be used to specify this point). Ifthe input power is excessive,
the amplifier can be destroyed.

Noise is usually generated by the random motions of charges or charge carriers in
devices and materials. Such motions can be caused by any of several mechanisms, leading
to various sources of noise:

o Thermal noise is the most basic type of noise, being caused by thermal vibration of
bound charges. Also known as Johnson or Nyquist noise.

. Shot noise is due to random fluctuations of charse carriers in an electron tube or
solid-state device.
Flicker noise occurs in solid-state components and vacuum tubes. Flicker noise
power varies inversely with frequency, and so is often called 1//-noise.
Plasma noise is caused by random motion of charges in an ionized gas, such as a
plasma, the ionosphere, or sparking electrical contacts.

o Quantum noise results from the quantized nature of charge carriers and photons;
often insignificant relative to other noise sources.

40-50-60

nrnplifierlu /

ran!"

1 dB compression
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FIGURE 10.2 A random voltage generated by a noisy resistor.

It is sometimes necessary for measurement purposes to have a calibrated noise source.
Passive noise generators consist of a resistor held at a constant temperature, either in a
temperature-controlled oven or a cryogenic flask. Active noise sources can be made using
gas-discharge tubes or avalanche diodes; such sources generally give much higher noise
power than passive sources.

Noise Power and Equivalent Noise Temperature

Consider a resistor at a temperature of Z degrees kelvin (K), as depicted in Figure 10.2. The
electrons in this resistor are in random motion, with a kinetic energy that is proportional to
the temperature, Z. These random motions produce small, random voltage fluctuations at
the resistor terminals, as illustrated in Figure 10.2. This voltage has a zero average value,
but a nonzero rms value given by Planck's black body radiation law,

t l *r n  - (10 .1)

where

h : 6.626 x 10-34 J-sec is Planck's constant.
ft : 1.380 x 10-23J/'Kis Boltzmann's consnnr.
Z is the temperafure in degrees kelvin (K).
B is the bandwidth of the system in Hz.

/ is the center frequency of the bandwidth in Hz.
R is the resistance in O.

This result comes from quantum mechanical considerations, and is valid for any frequency,

/. At microwave frequencies the above result can be simplified by making use of the fact
that hf << kT. (As a worst-case example, let f : 100 GHz and 7 : 100K. Then h/ :

6.6 x 1O-23 11 kT : 1.4 x l}-2r.) Using the first two terms of a Taylor series expansion
for the exponential gives

so that (10.1) reduces to

ehf  lk t  - ,  =  
#,

V, : ^1Q117 3P. (10.2)

This is the Rayleigh-Jeans approximation, and is the form most commonly used in
microwave work [3]. For very high frequencies or very low temperatures, however, this

4hf BR
- ,
e h l / k r  _  I '
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FIGURE 10.3 Equivalent circuit of a noisy resistor delivering maximum power to a load resistor
through an ideal bandpass filter.

approximation may be invalid, in which case (10.1) should be used. Note that this noise
power is independent of frequency; such a noise source has a power spectral density that
is constant with frequency, and is referred to as a white noise source. The noise power is
directly proportional to the bandwidth, which in practice is usually limited by the passband
of the microwave system. Since independent white noise sources can be treated as Gaussian
distributed random variables, the noise powers (variances) are additive.

The noisy resistor of Figure 10.2 can be replaced with a Th6venin equivalent circuit
consisting of a noiseless resistor and a generator with a voltage given by (10.2), as shown
in Figure 10.3. Connecting a load resistor R results in maximum power transfer from the
noisy resistor, with the result that power delivered to the load in a bandwidth B, is

p -
( * ) ' R : m: krB, (10.3)

since V, is an rms voltage. This important result gives the maximum available noise power
from the noisy resistor at temperature Z. Observe the following trends:

As B -+ O, Pn --> 0. This means that systems with smaller bandwidths collect less
noise power.
As IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-+ O, P, --> 0. This means that cooler devices and components generate less
noise power.
As B -+ oo, & -+ oo. This is the so-calledultraviolet catastrophe, which does not
occur in reality because (10.2-10.3) are not valid as / (or B) + m; (10.1) must be
used in this case.

If an arbitrary source of noise (thermal or nonthermal) is "white," so that the noise
power is not a strong function of frequency, it can be modeled as an equivalent thermal
noise source, and characterized with an equivalent noise temperature.Thts, consider the
arbitrary white noise source of Figure 10.4, which has a driving-point impedance of R and
delivers a noise power No to a load resistor R. This noise source can be replaced by a noisy
resistor of value R, at temperature Q, where 4 is an equivalent temperature selected so

*  , " = *

Ideal
bandpass

filter

I
| -rft-r

FIGURE 10.4 The equivalent noise temperature,7", of an arbitrary white noise source.
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that the same noise power is delivered to the load. That is,

(10.4)

Components and systems can then be characterized by saying that they have an equiv-
alent noise temperature, 4; this implies some fixed bandwidth, B, which is generally the
bandwidth of the component or system.

For example, consider a noisy amplifier with a bandwidth B and gain G. Let the
amplifier be matched to noiseless source and load resistors, as shown in Figure 10.5. If
the source resistor is at a (hypothetical) temperature of T, : 0 K, then the input power to
the amplifier will be Ni : 0, and the output noise power N, will be due only to the noise
generated by the amplifier itself. We can obtain the same load noise power by driving an
ideal noiseless amplifier with a resistor at a temperature,

No
' " -  

k B

so that the output power in both cases is N, - GbT"B. Then T" is the equivalent noise
temperature of the amplifier.

Active noise sources use a diode or tube to provide a calibrated noise power output,
and are useful for test and measurement applications. Active noise generators can be char-
acteized by an equivalent noise temperature, but a more common measure of noise power
for such components is the excess noise ratio (ENR), defined as

N^
t " :  

G k B '

ENR(dB): 10log 
5& 

: 10los k#,

\- e GkB

(10.s)

(10.6)

where N, and Tr are the noise power and equivalent temperature of the generator, and N,
and f0 are the noise power and temperature associated with a room-temperature passive
source (a matched load). Solid-state noise generators typically have ENRs ranging from
20 to 40 dB.

N;= 0

l r "

Defining the equivalent noise temperature of a noisy amplifier. (a) Noisy amplifler.
(b) Noiseless amplifi er.

FIGT]RE 10.5
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FIGURE 10.6 The f -factormethodformeasuring the equivalentnoise temperature of an amplifier.

Measurement of Noise Temperature

In principle, the equivalent noise temperature of a component can be determined by measur-
ing the output power when a matched load at 0 K is connected at the input of the component.
In practice, of course, the 0 K source temperature cannot be achieved, so a different method
must be used. If two loads at significantly different temperatures are available, then the
Y-factor method can be applied.

This technique is illustrated in Figure 10.6, where the amplifier (or other component)
under test is connected to one of two matched loads at different temperatures, and the
output power is measured for each case. Let Tr be the temperature of the hot load, and
Z2 the temperature of the cold load (21 > T), and let Pr and P2 be the respective powers
measured at the amplifier output. The output power consists of noise power generated by
the amplifier as well as noise power from the source resistor. Thus we have

T2@old)

- R

N r : G k T r B + G k T , B .

Nz:  GkTzB +  GkT"B,

(10.7a)

(10.7b)

(10.8)

(10.e)

which are two equations for the two unknowns, T" and GB (the gain-bandwidth product of
the amplifier). Define the l-factor as

which is determined via the power measurements. Then (10.7) can be solved for the equiv-
alent noise temperature,

N 1  T t * 7 ,
A - - - - / l

N2  Tz *7 "

T1 - YT2
"  

Y  - l

in terms of the load temperatures and the Y -factor.

Observe that to obtain accurate results from this method, the two source temperatures
must not be too close together. If they are, N1 will be close to N2, Y will be close to unity,
and the evaluation of (10.9) will involve the subtractions of numbers close to each other,
resulting in a loss of accuracy. In practice, one noise source is usually a load resistor at room
temperature (Io), while the other noise source is either "hotter" or "colder," depending on
whether I is greater or lesser than Io. An active noise generator can be used as a "hotter"

source, while a "colder" source can be obtained by immersing a load resistor in liquid
nitrogen (T :77 K), or liquid helium (T : 4K).

EXAMPLE 10.1 NOISE TEMPERATURE MEASUREMENT

An X-band amplifier has a gain of 20 dB and a 1 GHz bandwidth. Its equivalent
noise temperafure is to be measured via the Y -factor method. The following data
is obtained:

for T1-290K, Nr : -62.0 dBm.

for T2 -JJ Y, Nz : -64.'7 dBm.
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Determine the equivalent noise temperature of the amplifier. If the amplifier is
used with a source having an equivalent noise temperature of 7l : 450K, what is
the output noise power in dBm?

Solution
From (10.8), the Y-factor in dB is

I : (Nr - N2) dB : (-62.0) - (-64.7) - 2.1 dB,

which is a numeric value of I : 1. 86. Then using ( 10.9) gives the equivalent noise
temperature as

2e0 - (r.86)(77)
: 170 K.

1 .86  -  1
T1 - YT2

-  
Y  - l

If a source with an equivalent noise temperature of Z, : 450 K drives the
amplifier, the noise power into the amplifier will be kT, B . The total noise power
out of the amplifier will be

No:  GkT,B + Gkr,B:  100(1.38 x 10-23;110eX450 + 170)

: 8.56 x 10-ro w : -60.7 dBm.

Noise Figure

We have seen that a noisy microwave component can be characterized by an equivalent noise
temperature. An alternative characteization is the noise figure of the component, which is
a measure of the degradation in the signal-to-noise ratio between the input and output of the
component. The signal-to-noise ratio is the ratio of desired signal power to undesired noise
power, and so is dependent on the signal power. When noise and a desired signal are applied
to the input of a noiseless network, both noise and signal will be attenuated or amplified by
the same factor, so that the signal-to-noise ratio will be unchanged. But if the network is
noisy, the output noise power will be increased more than the output signal power, so that
the output signal-to-noise ratio will be reduced. The noise figure, F, is a measure of this
reduction in signal-to-noise ratio, and is defined as

T

S'/M
F -  "  > 1 .

So/No 
- (10.10)

where S;, Ni are the input signal and noise powers, and S,, No ate the output signal and
noise powers. By definition, the input noise power is assumed to be the noise power resulting
from a matched resistor zt Ts :290K; that is, Ni : kToB.

Consider Figure 10.7, which shows noise power N; and signal power $ being fed
into a noisy two-port network. The network is characterized by a gain G, a bandwidth
B,afi,anequivalentnoisetemperature,T".TheinputnoisepowerisN;: kTsB,andthe

FIGURE 10.7 Determining the noise figure of a noisy network.



494 Chapter 10: Noise and Active RF Components

FIGURE 10.8

; I

I R --------->

No= kTB

Determining the noise figure of a lossy line or attenuator with loss I and temper-
ature ?.

output noise power is a sum of the amplifled input noise and the internally generated noise:
N, : kGB(To * 7,). The output signal power is S, : GSi. Using these results in (10.10)
gives the noise figure as

F :  &
kTsB

kGB(To + T")
GS,

: 1 + L
To

>  l .  ( 1 0 . 1 1 )

noiseless, 7" would be zero,

(r0.r4)

(10.1s)

(10 .16)

In dB, F : 10log(1 + T"lTi dB > 0. If the network were
giving F : 1, or 0 dB. Solving (10.11) for Z, gives

T" :  (F  -  1 )Zo. (ro.r2)

It is important to keep in mind two things concerning the definition of noise figure:
noise figure is defined for a matched input source, and for a noise source that consists of
a resistor at temperature To :290 K. Noise figure and equivalent noise temperatures are
interchangeable characterizations of the noise properties of a component.

An important special case occurs in practice when the two-port network is a passive,
lossy component, such as an attenuator or lossy transmission line, held at a temperature, Z.
Consider such a network with a matched source resistor, which is also at temperature 7,
as shown in Figure 10.8. The gun, G , of a lossy network is less than unity; the loss factor,
l, can be defined as L : l/G > 1. Because the entire system is in thermal equilibrium at
the temperature Z, and has a driving point impedance of R, the output noise power must be
No : kTB. But we can also think of this power as coming from the source resistor (through
the lossy line), and from the noise generated by the line itself. Thus we also have that

No :kTB :GkTB*GNu66"6 , (10 .13)

where Nu66.6 is the noise generated by the line, as if it appeared at the input terminals of
the line. Solving (10.13) for this power gives

Nudo"o : 
fforu: 

(L - I)krB.

Then (10.4) shows that the lossy line has an equivalent noise temperature (as referred to the
input) given by

T . : l - G r : ( L - r ) 7 .
G

Then from (10.11) the noise figure is

F : 1 +  ( L - l l L' T o

If the line is at temperature 26, then F : l. For instance, a 6 dB attenuator at room
temperature has a noise figure of F : 6 dB.
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Noise Figure of a Cascaded System

In a typical microwave system the input signal travels through a cascade of many different
components, each of which may degrade the signal-to-noise ratio to some degree. If we
know the noise figure (or noise temperature) of the individual stages, we can determine the
noise figure (or noise temperafure) of the cascade connection of stages. We will see that the
noise performance of the first stage is usually the most critical, an interesting result that is
very important in practice.

Consider the cascade of two components, having gains G 1 , G2, noise figures Fl , Fz,
and noise temperature Tet, T"z, as shown in Figure 10.9. We wish to find the overall noise
figure and noise temperature of the cascade, as if it were a single component. The overall
gain of the cascade is G1G2.

Using noise temperatures, the noise power at the output of the first stage is

Nr :  Gf tToB I  Gf tT ,1B, (10 .1  7 )

since N; : kToB for noise figure calculations. The noise power at the output of the second
stage is

N o -

(10. l  8)

For the equivalent system we have

No: GrGzkB(4u. + Zo),  (10.19)

so comparison with (10.18) gives the noise temperature of the cascade system as

GzM I G2kT"2B

GtGzkB (ro * r", + fr,)

Using (10.12) to convert the temperatures in (10.20) to noise figures yields the noise figure
of the cascade system as

1
Tcas: 7"1 * 

^r"r.

1
F"ur :  F1 + 

^@z 
-  1) .

(10.20)

(10.21)

Equations (10.20) and (10.21) show that the noise characteristics of a cascaded system
are dominated by the characteristics of the first stage, since the effect of the second stage
is reduced by the gain ofthe first. Thus, for the best overall system noise performance, the

FIGURE 10.9 Noise figure and equivalent noise temperature of a cascaded system. (a) Two cas-
caded networks. (b) Equivalent network.



496 Chapter 10: Noise and Active RF Components
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F ^ = 4 d B

FIGURE 10.10 Block diagram of a wireless receiver front-end for Example 10.2.

first stage should have a low noise figure and at least moderate gain. Expense and effort
should be devoted primarily to the first stage, as opposed to later stages, since later stages
have a diminished impact on the overall noise performance.

Equations (10.20) and (10.21) can be generalized to an arbitrary number of stages, as
follows:

rcas: r"1*? * {f tr* ,

4u , :  F r+T*H*

(r0.22)

(10.23)

EXAMPLE 10.2 NOISE ANALYSN OF A WIRELESS RECEIVER

The block diagram of a wireless receiver front-end is shown in Figure 10.10.
Compute the overall noise figure of this subsystem. If the input noise power from
a feeding antenna is N; - bTAB, where Za : 150 K, find the output noise power
in dBm. If we require a minimum signal-to-noise of 2O dB at the output of the
receiver, what is the minimum signal voltage that can be applied at the receiver
input? Assume the system is at temperature Zs, with a characteristic impedance of
50 g, and an IF bandwidth of 10 MHz.

Solution
We first perform the required conversions from dB to numerical values:

Go :  l 0  dB  :  10  G f  :  - 1 .0  dB  :0 .79

Fo :2 dB :  1.58 Fr  :  I  dB :  1.26

G ^ :  - 3 . 0  d B  : 0 . 5

F * : 4 d B : 2 . 5 1

Then we can use (10.23) to find the overall noise figure of the system:

F r - l  F ^ - l  . _ ^  ( 1 . 2 6 - l )  ( 2 . 5 1 - l )
E : E  _ L  J  _ L  

" '  
: l ( Q _ L  _ _ L

Go GoG f  l0  (10X0.79)

:  1 . 8 0 : 2 . 5 5  d B .

The best way to compute the output noise power is to use noise temperatures. From
(IO.I2), the equivalent noise temperature of the overall system is

T" :  (F -  1) fo :  (1.80 -  1)(290)  :232K.

The overall gain of the system is G : (10)(0.79X0.5) : 3.95. Then we can find
the output noise power as

No:k(Ta+T")BG: (1.3g x tO-23;1tSO +232)(10 x 106X3.95)

:  2.08 x 10-13 W: -96.8 dBm.
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For an output SNR of 20 dB : 100, the input signal power must be

o - s 't r - E

N, :  N,F (* )

- 
*f i* 

- ,oo2'08:10-13 :5.27 x t0-12 w: -82.8 dBm.

For a 50 g system impedance, this corresponds to an input signal voltage of

Vi : JZ,S;: /50)6.27 ,. 10-t1 :1.62 x 10-5 Y : 16.2 pr.V (rms).

Note: It may be tempting to compute the output noise power from the definition
ofthe noise figure, as

: NiFG: kTeBFG

: (1.38 x 10-23X150X10 x 106)(1.8)(3.95)  :  1 .47 x 10-13 w.

This is an incorrect result! The reason for the disparity with the earlier result is
because the definition of noise figure assumes an input noise level of kZoB, while
this problem involves an input noise of kTtB, with Ta : 150 K I 7s. This is a
common error, and suggests that when computing absolute noise power it is often
safer to use noise temperatures to avoid this confusion. I

Noise Figure of a Passive Two-Port Network

We previously derived the noise figure for a matched lossy line or attenuator by using a
thermodynamic argument. Here we generalize that technique to evaluate the noise figure
of general passive networks (networks that do not contain active devices such as diodes or
ffansistors, which generate nonthermal noise). In addition, this method will account for the
change in noise figure that occurs when a component is impedance mismatched at either its
input or output port. Generally it is easier and more accurate to find the noise characteristics
of an active device, such as a diode or transistor, by direct measurement than by calculation
from first principles.

Figure 10.11 shows an arbitrary passive two-port network, with a generator at port 1
and a load at port 2. The network is characterized by its S parameter matrix, [^S]. In the
general case, impedance mismatches may exist at each port, and we define these mismatches
in terms of the following reflection coefficients:

fs : reflection coefficient looking toward generator,

fin : reflection coefficient looking toward port 1 of network,

fout : reflection coefficient looking toward port 2 of network,

fr : reflection coefficient looking toward load.

ZL

I" r; Ilu, rr,

A passive two-port network with impedance mismatches. The network is at physi-
cal temperature T.

FIGURE 10.11
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If we assume the network is at temperature 7, and an input noise power of N1 : kTB is
applied to the input of the network, the available output noise power at port 2 canbe written
AS

Nz: Gz&TB * GzrNaooeo, (r0.24)

where Nu46"6 is the noise power generated internally by the network (referenced to port 1),
and G 21 is the av ailable p ow er gain of the network from port I to port 2. The available gain
can be expressed in terms of the S parameters of the network and the port mismatches as
(see Section 11.1),

G 2 t :
power available from network lsz r l2 (1  -  l f s l2 )- -

l l  -  s i l f s 1 2 ( 1 -  l f o u , 1 2 ) '
(10.2s)

(10.26)

(r0.27)

(10.28)

(to.2e)

power available from source

As derived in Example 4.7,the output port mismatch is given by

Observe that when the network is matched to its external circuitry, so that f, :0 and
Szz :00 we have fout : 0 and G21 : lszr 12, which is the gain of the network when it is
matched. Also observe that the available gain of the network does not depend on the load
mismatch, f1. This is because available gain is defined in terms of the maximum power
that is available from the network, which occurs when the load impedance is conjugately
matched to the output impedance of the network.

Since the input noise power is kTB, and the network is at temperature Z, the network is
in thermodynamic equilibrium, and so the available output noise power must be N2 : p73.

Then we can solve for Nuoo"a from (10.24) to give

fout:s22.*ff i

|  - G , ,
Nuaa.o : 

' 
;- 

-' 
kTB.

|J2 l

Then the equivalent noise temperature of the network is

T  N r o o " o  1 - G l -

kB  Gz t

and the noise figure of the network is

T.
F - l r - - : -

To

l - G r t  T
1 +  - ' -

Gzr To

Note the similarity ot (10.27)-(10.29) to the results in (10.14)-(10.16) for the lossy line-
the essential difference is that here we are using the available gain of the network, which
accounts for impedance mismatches between the network and the external circuit. We will
now illustrate the use of this result with some applications to problems of practical interest.

Noise Figure of a Mismatched Lossy Line

Earlier we found the noise figure of a lossy transmission line under the assumption that
it was matched to its input and output circuits. Now we consider the case where the line
is mismatched to its input circuit. Figure 10.12 shows a transmission line of length L at
temperature 7, with a power loss factor L : L / G, and an impedance mismatch between
the line and the generator. Thus, Zr I Zs, and the reflection coefficient looking toward the
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Z^

Il Ij" Io* lz,=0

A lossy transmission line at temperature Z with an impedance mismatch at its

input port.

generator can be written as

l . : Z r - Z o  + 0 ."  Z s I Z o '
The scattering matrix of the lossy line of characteristic impedance Zs can be written as

'r:[? ;]#, (10.30)

where B is the propagation constant of the line. Using (10.26) gives the reflection coefficienl
looking into port 2 of the line as

foot : Szz *

Then the available gain, from (10.25), is

SrzSzt f ,  l r  - -z i ' ,
1 -  s t t l ,  

:  
T "

t ( l  -  l f ,12)- * : 1 r ; 2

(10 .31)

(r0.32)

(10.33)

1 "
; ( l  -  l f " l ' )

G x : L : =
I  -  l fou , l '

Wecanverifytwolimitingcasesof (10.32):when.L : I wehave Gzt: l,andwhenfs :0

we have Gn : 7 /L. Using (10.32) in (10.28) gives the equivalent noise temperature of the
mismatched lossy line as

7  -  G l ,
T  -  " ' t -

'  
Gz t

(L -  l ) (L + l f"  12) _
z ( 1  -  l 1 l 2 )  

'

The corresponding noise figure can then be evaluated using (10.11). Observe that when
the line is matched, f, : 0 and (10.33) reduces to T, - (L - l)T , in agreement with the
result for the matched lossy line given by (10.15). If the line is lossless, then I : 1 and
(10.33) reduces to Te - 0 regardless of mismatch, as expected. But when the line is lossy
and mismatched, so that L > | and lf, | > 0, then the noise temperature given by (10.33)
is greater than T" : (L - I)T , the noise temperature of the matched lossy line. The reason
for this increase is that the lossy line actually delivers noise power out ofboth its ports, but
when the input port is mismatched some of the available noise power at port 1 is reflected
from the source back into port 1, and appears at port 2. When the generator is matched to
port 1, none ofthe available power from port 1 is reflected back into the line, so the noise
power available at port 2 is a minimum.

EXAMPLE 10.3 APPLICATION TO A WILKINSON POWER DIYIDER

Find the noise figure of a Wilkinson power divider when one of the output ports is
terminated in a matched load. Assume an insertion loss factor of L from the input
to either output port.
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Solution
From Chapter 7 the scattering matrix of a Wilkinson divider is given as:

where the factor L > 1 accounts for the dissipative loss from port 1 to port 2 or
3. To evaluate the noise figure of the Wilkinson divider, we first terminate port 3
with a matched load; this converts the 3-port device to a 2-port device. If we
assume a matched source at port 1, we have l, : 0. Equation (10.26) then gives
fout : S22 : 0, ald so the available gain can be calculated from (10.25) as

G21 : lS21l2 -
I

n
Then the equivalent noise temperature of the Wilkinson divider is, from (10.28),

. l - 0  1 1 1" ':#li s il

T . : l - G " T : e L -'  
Gzr

where Z is the physical temperature of the divider.
figure as

1)r ,

Using (10.11) gives the noise

T"
F : 7 * :

To
: l * Q L - l ) l ' T o

Observe that if the divider is at room temperature, then Z : Ze and the above
reduces to F : 2L.If the divider is at room temperature and lossless, this reduces
to F : 2 : 3 dB.In this case the source of the noise power is the isolation resistor
contained in the Wilkinson divider circuit.

Because the network is matched at its input and output, it is easy to obtain
these same results using the thermodynamic argument directly. Thus, if we apply
an input noise power of kTB to port I of the matched divider at temperature Z, the
system will be in thermal equilibrium and the output noise power must therefore
be kTB. We can also express the output noise power as the sum of the input power
times the gain of the divider, and Nu66"6, the noise power added by the divider itself
(referenced to the input to the divider):

k rB :k rB  +Nadded .
2L 2L

Solving for Nua6"6 gives Nu46"6 : kTB(2L - 1), so the equivalent noise tempera-
ture is

T r -

in agreement with fhe above.

Nuao"o
: (2L - I)7,

DYNAMIC RANGE AND INTERMODULATION DISTORTION

Since thermal noise is generated by any lossy component, and all realistic components have
at least a small loss, the ideal linear component or network does not exist in the sense that
its output response is always exactly proportional to its input excitation. Thus, all realistic
devices are nonlinear at very low power levels due to noise effects. In addition, all practical

KB

T

10.2
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FIGURE 10.13 A seneral nonlinear device or network.

components also become nonlinear at high power levels. This may ultimately be the result
ofcatastrophic destruction ofthe device at very high powers or, in the case of active devices
such as diodes and transistors, due to effects such as gain compression or the generation
of spurious frequency components due to device nonlinearities. In either case these effects
set a minimum and maximum realistic power range, or dynamic range, over which a given
component or network will operate as desired. In this section we will study dynamic range,
and the response of nonlinear devices in general. These results will be useful for our later
discussions of amplifiers (Chapter 11), mixers (Chapter l2), and wireless receiver design
(Chapter 13).

Devices such as diodes and transistors are nonlinear components, and it is this nonlin-
earity that is of great utility for functions such as amplification, detection, and frequency
conversion [1]. Nonlinear device characteristics, however, can also lead to undesired re-
sponses such as gain compression and the generation of spurious frequency components.
These effects may produce increased losses, signal distortion, and possible interference
with other radio channels or services.

Figure 10.13 shows a general nonlinear network, having aa input voltage ur and an
output voltage u' In the most general sense, the ouq)ut response of a nonlinear circuit can
be modeled as a Taylor series in terms of the input signal voltage:

uo :  ao * alui '1 o2r l  + a3ul + ' '

where the Taylor coefflcients are defined as

ao : uo(O)

d u o l
u t  -  - l.  

dui 1,,=n

dzu , l
A t :  - l-  

du! 1. .|  , u i = O

(DC output)

(linear output)

(squared output)

(10.34)

(10.35a)

(l0.3sb)

(10.35c)

and higher order terms. Thus, different functions can be obtained from the nonlinear network
depending on the dominance of particular terms in the expansion. If ae is the only nonzero
coefficient in (10.34), the network functions as a rectifier, converting an AC signal to DC. If
a1 istheonlynonzerocoeffrcient,wehavealinearattenuator(a1 < 1)oramplifier(41 > 1).
If a2is the only nonzero coefficient, we can achieve mixing and other frequency conversion
functions. Usually, however, practical devices have a series expansion containing many
nonzero terms, and a combination of several of these effects will occur. We consider some
important special cases below.

Gain Gompression

First consider the case where a single frequency sinusoid is applied to the input ofa general
nonlinear network, such as an amplifier:

ui : Vo coS a)g/. (10.36)



502 Ghapter 10: Noise and Active RF Components

FIGURE 10.14 Definition of the 1 dB compression point for a nonlinear amplifier

Then (10.34) gives the output voltage as

t)o : a0 t alVscoS @s/ -f a2Vl cosz ast * a3V] cos3 ,e/ + ' . .

: (oo + i"rv&) -t (a1vs + Jazvf) cos {ars/ + iorv& cosz.,st

+ f ,a3v ]  cos3ros /  * ' . . .

This result leads to the voltage gain of the signal component at frequency ctrs:

P'-
(dBm)

(10.37)

(10.38)

where we have retained only terms through the third order.
The result of (10.38) shows that the voltage gain is equal to the a1 coefficient, as ex-

pected, but with an additional term proportional to the square of the input voltage amplitude.
In most practical amplifiers a3 is typically negative, so that the gain of the amplifier tends to
decrease for large values of V6. This effect is called gain compression, or saturation Phys-
ically, this is usually due to the fact that the instantaneous output voltage of an amplifier
is limited by the power supply voltage used to bias the active device. Smaller values of a3
will lead to higher output voltages.

A typical amplifier response is shown in Figure 10.14. For an ideal linear amplifier
a plot of the output power versus input power is a straight line with a slope of unity, and
the gain of the amplifier is given by the ratio of the output power to the input power. The
amplifier response of Figure 10.14 tracks the ideal response over a limited range, then begins
to saturate, resulting in reduced gain. To quantify the linear operating range of the amplifier,
we define the I dB compression point as the power level for which the output power has
decreased by I dB from the ideal characteristic. This power level is usually denoted by

&, and can be stated in terms of either input power or output power. For amplifiers Pr is
usually specified as an output power, while for mixers P1 is usually specified in terms of
input power.

Intermodulation Distortion

Observe from the expansion of (10.37) that a portion of the input signal at frequency r.,;6 is
converted to other frequency components. For example, the first term of (10.37) represents

. , :+ : t !#4:ar* lorv&,

^

o
F

,!l

I
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a DC voltage, which would be a useful response in a rectifier application. The voltage
components at frequencies 2als or 3as can be useful for frequency multiplier circuits.
In amplifiers, however, the presence of other frequency components will lead to signal
distortion if those components are in the passband of the amplifier.

For a single input frequency, or tone,a;s, the output will in general consist of harmonics
of the input frequency of the form n@0, for n : 0,1,2, . . .. Usually these harmonics lie
outside the passband of the amplifier, and so do not interfere with the desired signal at
frequency rrs. The situation is different, however, when the input signal consists of two
closely spaced frequencies.

Consider a two-tone input voltage, consisting of two closely spaced frequencies, ar1
and a2:

ui : Vo (cos arr r -l cos a2t).

From (10.34) the output is

uo : a0 * alVs(cosra.lt -f cosat2t) + a2V]@osia,i- * cosazt)2

* asVf@osa( -f cosazt)3 + . ' .

: ao * olvgcos@1t I alvscos@2t +lazvf{t I cos2a4t) +}azvr2{t * cos}azt)

-la2Vr2 cos(r-o1 - @)t t a2Vl cos(or * at)t t

* a3Vl (f cos c,.,1r * j cos 3a4t) * otvi (l cos {o2t + I cos3atzt) +

-t a3Vl llcosatzt f J cos(2ar1 - @)t * ]cos(Za1 * a)tl+.

*a3V] l lcosr l . r t  *  ]cos(2o2 
- a)t  *  ]cos(2a2+ro1)r]  +. . . .  (10.40)

where standard trigonometric identities have been used to expand the initial expression. We
see that the output spectrum consists of harmonics of the form

m@r + n(Dz, (10.41)

withm, n = 0, +1, +2, +3, . . . . These combinations of thetwo inputfrequencies are called
intermodulation products, and the order of a given product is defined as lml a Inl. For ex-
ample, the squared term of (10.40) gives rise to the following four intermodulation products
of second order:

(10.3e)

2at

2az

@r-( l . ) �z

( i , t *@z

(secondharmonicofarl) m :2 n :O order :2,

(second harmonic of aD) m : 0 n :2 order : 2,

(difference frequency) m :1 n: -l order:2,

(sumfrequency)  m: I  n :  I  order :2.

All of these second-order products are undesired in an amplifier, but in a mixer the sum
or difference frequencies form the desired outputs. In either case, if @1 and (o2 are close,
all the second order products will be far from @1 ot @2, and can easily be filtered (either
passed or rejected) from the output of the component.

The cubed term of (10.40) leads to six third-order intermodulation products: 3at,3az,
2o\ * az,Ztoz * at,2a4 - a2, and2ta,2 - ar1. The first four of these will again be located
far from {\ ot {D2, and will typically be outside the passband of the component. But the
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@l @2

2a1-a2 2a2-a1
2ar 2az

(D2+ a l
\ 3<,,,

2c's2+ a1
3ut

fuo1+a2

FIGURA 10.15 Output spectrum of second- and third-order two-tone intermodulation products,
assuming (D1 I a2.

two difference terms produce products located near the original input signals at a4 and a2,
and so cannot be easily filtered from the passband of an amplifier. Figure 10.15 shows a
typical spectrum of the second- and third-order two-tone intermodulation products. For an
arbitrary input signal consisting of many frequencies of varying amplitude and phase, the
resulting in-band intermodulation products will cause distortion of the output signal. This
effect is called third-order intermodulation distortion.

Third-Order Intercept Point

Equation (10.40) shows that as the input voltage Ve increases, the voltage associated with the
third-order products increases as Vo3. Since power is proportional to the square of voltage,
we can also say that the output power of third-order products must increase as the cube of
the input power. So for small input powers the third-order intermodulation products must
be very small, but will increase quickly as input power increases. We can view this effect
graphically by plotting the output power for the first- and third-order products versus input
power on log-log scales (or in dB), as shown in Figure 10.16.

The output power of the first-order, or linear, product is proportional to the input
power, aad so the line describing this response has a slope of unity (before the onset of
compression). The line describing the response of the third-order products has a slope of 3.
(The second-order products would have a slope of 2, but since these products are generally
not in the passband of the component, we have not plotted their response in Figure 10.16.)
Both the linear and third-order responses will exhibit compression at high input powers, so

(referred to output)

P1 (referred to output) Compression

P3 (referred to input)

*50 -40 -30 -20 -10

P; (dBm)

FIGURE 10.16 Third-order intercept diagram for a nonlinear component.
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we show the extension of their idealized responses with dotted lines. Since these two lines
have different slopes, they will intersect, typically at a point above the onset of compression,
as shown in the figure. This hypothetical intersection point, where the first-order and third-
order powers are equal, is called the third-order intercept point, detoted P3, and specified
as either an input or an output power. Usually P3 is referenced at the output for amplifiers,
and at the input for mixers. As depicted in Figure 70.76, Pz generally occurs at a higher
power level than P1, the 1 dB compression point. Many practical components follow the
approximate rule that P3 is 1 2 to 15 dB greater than Pr , assuming these powers are referenced
at the same point.

We can express P3 in terms of the Taylor coefficients of the expansion of (10.40) as
follows. Define P,, as the output power of the desired signal at frequency ar1. Then from
(10.40) we have

f., : lazrVl. (10.42)

Similarly, define P2,,-., as the output power of the intermodulation product of frequency
Zat - atz. Then from (10.40) we have

Pz.,-.,: i( lotVilz : $azrVf . (10.43)

By definition, these two powers are equal at the third-order intercept point. If we define the
input signal voltage at the intercept point as Vrp, then equating (10.42) and (10.43) gives

Lr?v?r: $alvf".
Solving for V7p yields

Vrc- (r0.44)

Since P3 is equal to the linear response of P,, at the intercept point, we have from (10.42)

and (10.44) that

P3 :  P, , lvo:y, , : (10.45)

where P3 in this case is referred to the output port. This expression will be useful in the
following section.

Dynamic Range

We can define dynamic range in a general sense as the operating range for which a component
or system has desirable characteristics. For a power amplifier this may be the power range
that is limited at the low end by noise and at the high end by the compression point. This is
essentially the linear operating range for the amplifier, and is called the linear dynamic range
(DR7). For low-noise amplifiers or mixers, operation may be limited by noise at the low end
and the maximum power level for which intermodulation distortion becomes unacceptable.
This is effectively the operating range for which spurious responses are minimal, and is
called the spurious-free dynamic range (DR7).

We thus compute the linear dynamic range DRa as the ratio of P1, the I dB compression
point, to the noise level of the component, as shown in Figure 10.17. These powers can
be referenced at either the input or the output of the device. Note that some authors prefer

t  ̂ ZrrZ -  2A?
z u l v l P  -  

3 " r ,

4at

3az
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FIGURE 10.17 Illustrating linear dynamic range and spurious free dynamic range.

to define the linear dynamic range in terms of a minimum detectable power level. This
definition is more appropriate for a receiver system, rather than an individual component,
as it depends on factors external to the component itself, such as the type of modulation
used, the recommended system SNR, effects of error-correcting coding, and related factors.

The spurious free dynamic range is defined as the maximum output signal power for
which the power of the third-order intermodulation product is equal to the noise level of the
component.ThissituationisshowninFigure 10.17. If P,, istheoutputpowerof thedesired
signal at frequency {d1, and Pz.,-r. is the output power of the third-order intermodulation
product, then the spurious free dynamic range can be expressed as

P
D R r  -  = ' - t  ," pz.r_r,

with Pyorr-.. taken equal to the noise level of the component. P2rr--
terms of P3 and P,, as follows:

*'fvf: : - :
4ai
t7'

p^
' Z A t - @ 2  -

ealvf (Prr)3

( P : ) 2 '

(10.46)

can be written in

(r0.47)

(10.48)

32

where (10.42) and (10.a5) have been used. Observe that this result clearly shows that the
third-order intermodulation power increases as the cube of the input signal power. Solving
(10.47) for P,,, and applying the result to (10.46) gives the spurious free dynamic range in
terms of P3 and No, the output noise power of the component:

DRr-+,- l  : (#) '" 
Pzr,- rz l  p2*,- - ,  uo

This result can be written in terms of dB as

DR1@Bt :  l {Pz  -  N , ) . (10.4e)

for P3 and N, expressed in dB or dBm. If the output SNR is specified, this can be added to
N, to give the spurious free dynamic range in terms of the minimum detectable signal level.
Finally, although we derived this result for the 2a4 - a2 product, the same result applies
for the 2o2 - tol product.
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EXAMPLE 10.4 DYNAMIC RANGES

A receiver has a noise figure of 7 dB, a I dB compression point of 25 dBm
(referenced to outpu|, a gain of 40 dB, and a third-order intercept point of 35 dBm
(referenced to output). If the receiver is fed with an antenna having a noise tem-
perature of Ta:150 K, and the desired output SNR is 10 dB, find the linear and
spurious free dynamic ranges. Assume a receiver bandwidth of 100 MHz.

Solution
The noise power at the receiver output can be calculated as

No :  GkBfTn + ( r  -  I )Tof  :104(1.38 x t0-23;1108)t150 + (4.01X290) l

: 1.8 x 10-8 w : -41.4 dBm.

Then the linear dynamic range is, in dB,

DRt - Pr * No: 25 dBm + 47.4 dBm : 12 dB.

Equation (10.49) gives the spurious free dynamic range as

DRt -  
?<p, 

-N, -  sNR) :  l {zs + 47.4- l0) :  48.3 dB.

Observe thalDRl (�1D&.

Intercept Point of a Cascaded System

As in the case of noise figure, the cascade connection of components has the effect of
degrading (lowering) the third-order intercept point. Unlike the case of a cascade of noisy
components, however, the intermodulation products in a cascaded system are deterministic
(coherent), so we cannot simply add powers, but must deal with voltages.

With reference to Figure 10.18, let G1 and P{ be the power gain and third-order intercept
point for the first stage, and G2 and P!'bethe corresponding values for the second stage.
From (10.47) the third-order distortion power at the output of the first stage is

p:... -..,: .('1)=,', (ro.5o)' 2a1-a2 ( plf '

where P[, is the desired signal power at frequency @r at the output of the first stage. The
voltage associated with this power is

VJ..,--:

where Zs is the system impedance.

(10.s1)

LL
@ 1 @ 2

Third-order intercept point for a cascaded system. (a) TWo cascaded networks. (b)

Equivalent network.

(b)(a)

(pL,)'zo
Pirr-.rZo

FIGURE 10.18
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The total third-order distortion voltage at the output of the second stage is the sum of this
voltage times the voltage gain of the second stage, and the distortion voltage generated by the
second stage. This is because these voltages are deterministic and phase-related, unlike the
uncorrelated noise powers that occur in cascaded components. Adding these voltages gives
the worst-case result for the distortion level, because there may be phase delays within the
stages that could cause partial cancellation. Thus we can write the worst-case total distortion
voltage at the output ofthe second stage as

,K'ff
Pl'

vk,-*: (#; *tt)

v{,,_,,

Since Pj, : GzPL,, we have

Then the output distortion power is

vL. . , f  : (  ,  * l \ ,  (p, , \3_gUPi, ' - . r : t  
, ,  \Gzp j  q )  \ " r , )  :  

, {

Thus the third-order intercept point of the cascaded system is

":(&-+)-'

(10.s2)

(10.53)

(10.54)

Note that Pz : GzPi for Pi' --> oo, which is the limiting case when the second stage has
no third-order distortion. This result is also useful for transferring P3 between input and
output reference points.

EXAMPLE 10.5 CALCULATION OF CASCADE INTERCEPT POINT

A low-noise amplifier and mixer are shown in Figure 10.19. The amplifier has a
gain of 20 dB and a third-order intercept point of 22 dBm (referenced at output),
and the mixer has a conversion loss of 6 dB and a third-order intercept point of
13 dBm (referenced at input). Find the intercept point ofthe cascade network.

Solution
First we transfer the reference of P3 for the mixer from its input to its output:

P!' : 13 dBm - 6 dB : 7 dBm (referenced at output).

Converting the necessary dB values to numerical values yields:

P4:22 dBm: 158 mW (for amplifier),
Pl' :7 dBm : 5 mW (for mixer),
Gz : -6 dB : 0.25 (for mixer).

c2(r;,)3 zs

(p::,)'zo.

FIGURE 10.19 System for Example 10.5.
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Then using (10.54) gives the intercept point of the cascade as

/  |  l \ - r  /  1  
' r - l

p . - t  r -  -  
|  : t  : + l )  : 4 . 4 m w : 6 . 4 d B m ." - \ c r p j '  P ; '  )  

- \ t o . z s l r t s s ) '  
s ) ' - -

which is seen to be much lower than the P3 of the individual components. I

Passive lntermodulation

The above discussion of intermodulation distortion was in the context of active circuits

involving diodes and transistors, but it is also possible for intermodulation products to be
generated by passive nonlinear effects in connectors, cables, antennas, or almost any com-
ponent where there is a metal-to-metal contact. This effect is c alledpassive intermadulation
(PIM) and, as in the case of intermodulation in amplifiers and mixers, occurs when signals

at two or more closely spaced frequencies mix to produce spurious products'

Passive intermodulation can be caused by a number of factors, such as poor mechanical

contact, oxidation ofjunctions between ferrous-based metals, contamination of conducting

surfaces at RF junctions, or the use of nonlinear materials such as carbon fiber composites

or ferromagnetic materials. In addition, when high powers are involved, thermal effects

may contribute to the overall nonlinearity of a junction. It is very difficult to predict PIM

levels from first principles, so measurement techniques must usually be used.
Because of the third-power dependence of the third-orderintermodulationproducts with

input power, passive intermodulation is usually only significant when input signal powers

are relatively large. This is frequently the case in cellular telephone base station transmitters,

which may operate with powers of 30-40 dBm, with many closely spaced RF channels.

It is often desired to maintain the PIM level below -125 dBm, with two 40 dBm transmit

signals. This is a very wide dynamic range, and requires careful selection of components

used in the high-power portions of the transmitter, including cables, connectors, and antenna

components. Because these components are often exposed to the weather, deterioration due

to oxidation, vibration, and sunlight must be offset by a careful maintenance program.

Passive intermodulation is generally not a problem in receiver systems, due to the much

lower power levels.

RF DIODE CHARACTERISTICS

In this section we will discuss characteristics of the major types of diodes used in RF and

microwave circuits. A diode is a two-terminal semiconductor device having a nonlinear

V-lrelationship. This nonlinearity can be exploited for the useful functions of signal detec-

tion, demodulation, switching, frequency multiplication, and oscillation [1]. Diodes can be

packaged as axial lead components, surface mountable chips, or monolithically integrated

with other components on a single semiconductor substrate.

Schottky Diodes and Detectors

The classical pn junction diode commonly used at low frequencies has a relatively large
junction capacitance that makes it unsuitable for high frequency application. The Schottky

barrier diode, however, relies on a semiconductor-metal junction that results in a much

lower junction capacitance. The primary application of diodes of this type is infrequency

conyersion of an input signal. Figure 10.20 illustrates the three basic frequency conversion

operations of rectification (conversion to DC), detection (demodulation of an amplitude

modulated signal), and mixing (frequency shifting).
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FIGURE 10.20

l-,r^jf-

( c )

Basic frequency conversion operations of rectification, detection, and mixing.
(a) Diode rectifier. (b) Diode detector. (c) Mixer.

(a,

+
--==>'

Modulation

t
L-----=-+/
V^

The Schottky diode can be modeled as a nonlinear resistor, with a small-signal V-1
relationship expressed as

I (V) :  I ,1e"v  -  11 , (l0.ss)

where cy:qlnkT, and q is the charge of an electron, ft is Boltzmann's constant, Z is
temperature, n is the idealty facto4 and 1" is the saturation current t4)-t61. Typically, 1" is
between 10-6 and 10-15 A. and cv : qlnkT is approximately I/(25 mV) for T :29OK.
The idealty factor, n, depends on the sffucfure of the diode itself, and can vary from 1 .2 fot
Schottky barrier diodes to about 2.0 for point-contact silicon diodes. Figure 10.21 shows a
typical diode V-1 characteristic.

Small-signal approximation. Now let the diode voltage be

V : V o * u , (10.s6)

where Vo is a DC bias voltage and u is a small AC signal voltage. Then (10.55) can be
expanded in a Taylor series about V6 as follows:

(b)

J R F - J L O  J R F  f J L O

r (v) : ro +, #1,,* l* #l "" * (10.s7)
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FIGURE 10.2I V-I characteristics of a Schottky diode.

where 1s : I(Vd is the DC bias current. The first derivative can be evaluated as

(10.s8)

which defines R;, the junction resistance of the diode, and Ga : LlRi, which is called the
dynamic conductance of the diode. The second derivative is

*Llr , :  
d l 'eovo :  q( Io+ ' l ' )  -  o ' :  

i '

d ' I  I  d G a l  ,
t r l r " :  f f i l r n :  az l " " vo  :  q2 ( Io  *  1 ' )  :  uG, :  Q to '

I (v )  :  Io  *  i  -  Io  t  uGa +  lc ;  + . . .

(10.s9)

Then (10.57) can be rewritten as the sum of the DC bias current, Is, and an AC current, i:

(10.60)

I

I

The three-term approximation for the diode current in (10.60) is called the small-signal
approximation, and will be adequate for most of our purposes.

The small-signal approximation is based on the DC voltage-current relationship of
(10.55), and shows that the equivalent circuit of a diode will involve a nonlinear resistance.
In practice, however, the AC characteristics of a diode also involve reactive effects due to
the structure and packaging of the diode. A typical equivalent circuit for a diode is shown in
Figurel022.Theleadsandcontactsofthediodepackageleadtoaseriesinductance, Lo,and
shunt capacitance, Co. The series resistor, R", accounts for contact and current-spreading
resistance. C1 and Ri are thejunction capacitance and resistance, and are bias-dependent.

Diode rectifiers and detectors. In a rectifier application, a diode is used to convert a fraction
of an RF input signal to DC power. Rectification is a very common function, and is used for
power monitors, automatic gain control circuits, and signal strength indicators. If the diode
voltage consists of a DC bias voltage and a small-signal RF voltage,

V : Vo * us cos @s/, (10.6r)

RiU)

FIGURE 10.22 Equivalent AC circuit model for a Schottky diode.
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then (10.60) shows that the diode current will be

Is is the bias current ana tfiC',1+ is the DC rectified current. The output also contains AC
signals of frequency cr.rs, ?nd 2ag (and higher-order harmonics), which are usually filtered
out with a simple low-pass filter. A current sensitivity, fi, ean be defined as a measure of
the change in DC output current for a given input RF power. From (10.60) the RF input
power is ulCalZ (using only the first term), while (10.62) shows the change in DC current
is ufiG'ol+. The current sensitivity is then

I : Io * usGa cos@g/ * 
*o'o 

cosz ast

:  1o *  
*o 'o 

*usG7 cos ,o +*G'ocos2ast .

B, : 
L-ld' : G'o 

A/w.
4n 2Ga

i(t) : ulcd(l * m cos a^t) cos ,st + $c'r{L * m cos a^t)z cos 2ast
z

f m m " l: uoGa 
lcos 

atr * 
; 

cos(ab * a4)t * 
7 

cos(at - ,^)t 
)

m 2  m 2
+ 

t 
+2m cos a*t I 

t 
cos 2a*t * cos Zagt

(10.62)

(10.63)

(10.66)

An open-circuit voltage sensitivity, B* can be defined in terms of the voltage drop across
the junction resistance when the diode is open-circuited. Thus,

f r , :  f iR j . (10.64)

Typical values for the voltage sensitivity of a diode range from 400 to 1500 mV/mW.
In a detector application the nonlinearity of a diode is used to demodulate an amplitude

modulated RF carrier. For this case, the diode voltage can be expressed as

u( l ) :2011 +m cos a^t )cosci ,gt , (r0.6s)
where a* is the modulation frequency, ars is the RF carrier frequency (at >> o*), and m
is defined as the modulation index (0 < m < 1). Using (10.65) in (10.60) gives the diode
current:

+f c' ' lr
*m cos(2ao * a^)t * mcos(2ao - a^)t *

cos2(ars *a*) t

N

m 2
* 7 c o s 2 ( a o - a ^

)m-
_ L _

4

E I

c ,

9 E. r i

s ' o
o k
& o

ll "or 2rn,
2 "

)']
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, +
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l +

FIGURE 10.23 Output spectrum of a detected AM modulated signal.
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TABLE 10.1 Frequencies and Relative Amplitudes
of the Square-Law Output of a Detected AM Signal

Frequency Relative Amplitude

0
Q)m

2a^

2a\

2asL@*

2(ax * a4)

|  +m2 /2
2m

m2/2
|  +m2 /2

m
m2 /4

The frequency spectrum of this output is shown in Figure 10.23. The output current
terms which are linear in the diode voltage (terms multiplying usG) have frequencies
of ars and @s L. @^, while the terms that are proportional to the square of the diode volt-
age (terms multiplying ufiC'olZl include the frequencies and relative amplitudes listed in
Table 10.1.

The desired demodulated output of frequency al. is easily separated from the un-
desired components with a low-pass filter. Observe that the amplitude of this current is
mufic',12, which is proportional to the power of the input signal. This square-law behav-
ior is the usual operating condition for detector diodes, but can be obtained only over a
restricted range of input powers. If the input power is too large, small-signal conditions
will not apply, and the output will become saturated and approach a linear, and then a
constant, i versus P characteristic. At very low signal levels the input signal will be lost
in the noise floor of the device. Figure 10.24 shows the typical uesl v€fSUS 4n character-
istic, where the output voltage can be considered as the voltage drop across a resistor in
series with the diode. Square-law operation is particularly important for applications where
power levels are inferred from detector voltage, as in SWR indicators and signal level in-
dicators. Detectors may be DC biased to an operating point that provides the best sensi-
tivity.

log vou,

1 V

100 mV

10 mV

l m V

100 pV

10;rV

I | | | | | | | I | , logPln' 
40 -30 -20 -10 0 10 20 30 40 (dBm)

FIGURE 10.24 Square-law region for a typical diode detector.
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POINT OF INTEREST: The Spectrum Analyzer

A spectrum analyzer gives a frequency-domain representation of an input signal, displaying the
average power density versus frequency. Thus, its function is dual to that of the oscilloscope,
which displays a time-domain representation ofan input signal. A spectrum analyzer is basically
a sensitive receiver that tunes over a specified frequency band and gives a video output that is
proportional to the signal power in a narrow bandwidth. Spectrum analyzers are invaluable for
measuring modulation products, harmonic and intermodulation distortion, noise and interference
effects.

The diagram below shows a simplified block diagram of a spectrum analyzer. A microwave
spectrum analyzer can typically cover any frequency band from several hundred megahertz to
tens of gigahertz. The frequency resolution is set by the IF bandwidth, and is adjustable from
about 100 Hz to I MHz. A sweep generator is used to repetitively scan the receiver over the
desired frequency band by adjusting the local oscillator frequency, and to provide horizontal
deflection of the display. An important part of the modem spectrum analyzer is the YlG-tuned
bandpass filter at the input to the mixer. This filter is tuned along with the local oscillator, and acts
as a preselector to reduce spurious intermodulation products. An IF amplifier with a logarithmic
response is generally used to accommodate a wide dynamic range. Of course, like many modem
test instruments, state-of-the-art spectrum analyzers often contain microprocessors to control
the system and the measurement process. This improves performance and makes the analyzer
more versatile, but can be a disadvantage in that the computer tends to remove the user from the
physical reality of the measurement.

YIG tuned
filter LP filter

PIN Diodes and Control Circuits

Switches are used extensively in microwave systems, for directing signal or power flow
between other components. Switches caa also be used to construct other types of control
circuits, such as phase shifters and attenuators. Mechanical switches can be made in wave-
guide or coaxial form, and can handle high powers, but are bulky and slow. PIN diodes,
however, can be used to construct an elecffonic switching element easily integrated with
planar circuitry and capable ofhigh-speed operation. (Switching speeds of 10 nanoseconds
or less are typical.) FETs can also be used as switching elements.

PIN diode characteristics. The PIN diode has V-I characteristics that make it a good
RF switching element. When reverse biased, a small series junction capacitance leads
to a relatively high diode impedance, while a forward bias current removes the junction

capacitance and leaves the diode in a low impedance state [5]. Equivalent circuits for these
two states are shown in Figure 10.25. Typical values for the parameters are: C 1 : 1 pF, or
less; li : 0.5 nH, or less; R, : 5 f,2, or less; Rf : I g, or less. The equivalent circuits do
not include parasitic effects due to packaging, which may be important. The forward bias

IFAmp.
r l^o I Detector

YIG
oscillator H
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FIGURE 10.25 Equivalent circuits for the ON and OFF states of a PIN diode. (a) Reverse bias
(OFF) state. (b) Forward bias (ON) state.

current is typically 10-30 mA, and the reverse bias voltage is typically 40-60 V. The bias
signal must be applied to the diode with RF chokes and DC blocks to isolate it from the RF
signal.

Single-pole PIN diode switches. A PIN diode can be used in either a series or a shunt
configuration to form a single-pole, single-throw RF switch. These circuits are shown in
Figure 10.26, with bias networks. In the series configuration of Figure l0.26a, the switch
is on when the diode is forward biased, while in the shunt configuration the switch is on
when the diode is reversed biased. In both cases, input power is reflected when the switch
is in the OFF state. The DC blocks should have a very low impedaace at the RF operating
frequency, while the RF choke inductors should have a very high RF impedance. In some
designs, high impedance quarter-wavelength lines can be used in place of the chokes, to
provide RF blocking.

Ideally, a switch would have zero insertion loss in the ON state, and infinite attenuation
in the OFF state. Realistic switching elements, of course, result in some insertion loss
for the ON state, and finite attenuation for the OFF state. Knowing the diode parameters
for the equivalent circuits of Figure 10.25 allows the insertion loss for the ON and OFF
states to be calculated for the series and shunt switches. With reference to the simplified
switch circuits of Figure 10.27 , we can define the insertion loss in terms of the actual load
voltage, Vr, and Ve, which is the load voltage which would appear if the switch (Z) were
absent:

I

Rf

(b)

Li

Rr

(a)

I L : -2oro- ltr l." l Y o l (10.67)

(a)

FIGURE 10.26 Single-polePINdiode switches. (a) Seriesconfiguration. (b) Shuntconfiguration.
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2 v o

FIGURE 10.27 Simplified equivalent circuits for the series and shunt single-pole PIN diode
switches. (a) Series switch. ft) Shunt switch.

Simple circuit analysis applied to the two cases of Figure 10.27 gives the following results:

v l,

In both cases, Z7 is the diode impedance for either the reverse or forward bias state. Thus,

IL : -2ototl#Zl tr"ri", switch),

I L : -2ototl#41 frnon, switch).

_ [ Z, : R, * j (coLi - | laC 1) for reverse bias
to:  

lZs = Ry *  jcoLi  for forwardbias.

(10.68a)

(10.68b)

(10.69)

The ON state or OFF state insertion loss of a switch can usually be improved by adding an
external reactance in series or in parallel with the diode, to compensate for the reactance of
the diode. This technique usually reduces the bandwidth, however.

Several single-throw switches can be combined to form a variety of multiple-pole
and/or multiple-throw configurations [6]. Figure 10.28 shows series and shunt circuits for
a single-pole, double-throw switch; such a switch requires at least two switching elements.
In operation, one diode is biased in the low impedance state, with the other diode biased
in the high impedance state. The input signal is switched from one output to the other by
reversing the diode states. The quarter-wave lines of the shunt circuit limit the bandwidth
of this confisuration.

EXAMPLE 10.6 SINGLE-POLE PIN DIODE SWITCH

A single-pole switch is to be constructed using a PIN diode with the following
parameters: Ci :0.1PF, R, : 1 O, R/ : 5.0 O, Li :0.4 nH. If the operating
frequency is 5 GHz, and Zs: 50 O, what circuit (series or shunt) should be used
to obtain the greatest ratio of off-to-on attenuation?

Solution
We first compute the diode impedance for the reverse and forward bias states,
using (10.69):

-  l loCi) :  1.0 -  i305.7 A
:  0 .5  *  j12 .6  A .

{  z , :  R ,  +  . i@Li
It o : l z f : R t | _ j t o L 1

4

zozd

(b)
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(b)

FIGURE 10.28 Circuits for single-pole double-throw PIN diode switches. (a) Series. (b) Shunt.

Then using (10.68) gives the insertion losses for the ON and OFF states of the
series and shunt switches as follows:

For the series circuit,

l 2 Z n l
lLon -  -20log l ; ; - -= I  :0 .1t  dB.- l 2 l o * Z r l

l 2 Z n l
I L o r -  - 2 0 1 o g l i r + Z l  :  l 0 . l 6 d B .

For the shunt circuit.

l 2 2
I Lon - -20log |;--l : O.O: On.*  

l ' 22 ,  - l  Zo l

r Lon - *2orosl:z=l : ,.0, au.
1 " o 1 1 Z s l

So the series configuration has the greatest difference in attenuation between the

ON and OFF states, but the shunt circuit has the lowest ON insertion loss. I

PIN diode phase shifters. Several types of microwave phase shifters can be constructed
with PIN diode switching elements. Compared with ferrite phase shifters, diode phase

shifters have the advantages of small size, integrability with planar circuitry, and high
speed. The powerrequirements for diode phase shifters, however, are generally greater than
those for a latching ferrite phase shifter, because diodes require continuous bias current
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FIGURE 10.29 A switchedline ohase shifter.

while the latching ferrite device requires only a pulsed current to change its state. There are
basically three types of PIN diode phase shifters: switched line,loaded line, and refiection.

The switched-line phase shifter is the most straightforward type, using two single-pole
double-throw switches to route the signal flow between one of two transmission lines of
different length. See Figure 10.29. The differential phase shift between the two paths is
given by

L Q : B ( . 2 - 1 . ) , (10.70)

where B is the propagation constant of the line. If the transmission lines are TEM (or quasi-
TEM, like microstrip), this phase shift is a linear function of frequency, which implies a true
time delay between the input and output ports. This is a useful feature in broadband systems,
because distortion is minimized. This type of phase shifter is also inherently reciprocal, and
can be used for both receive and transmit functions. The insertion loss of the switched line
phase shifter is equal to the loss of the SPDT switches plus line losses.

Like many other types of phase shifters, the switched-line phase shifter is usually
designed for binary phase shifts of A@ : 180o, 90o, 45", erc. One potential problem with
this type of phase shifter is that resonances can occur in the OFF line, if its length is near a
multiple of ),12. The resonant frequency will be slightly shifted due to the series junction
capacitances of the reversed biased diodes, so the lengths $ and 12 should be chosen with
this effect taken into account.

A design that is useful for small amounts of phase shift (generally 45', or less) is the
loaded-line phase shifter. The basic principle ofthis type ofphase shifter can be illustrated
with the circuit of Figure 10.30a, which shows a transmission line loaded with a shunt
susceptance, jB. The reflection and transmission coefficients can be written as

_  l - ( t + j b \  - j b
: -^  

l + ( t + j b )  2 + j b '

T : l * l :  
2

2 +  j b

(10.71a)

(10.71b)

where b - BZo is the normalized susceptance. Thus the phase shift in the transmitted
wave introduced by the load is

Ad : tan-r
b
; ,z

(r0.72)

which can be made positive or negative, depending on the sign of b. A disadvantage is
the insertion loss that is inherently present, due to the reflection from the shunt load. And
increasing b to obtain a larger A@ entails a greater insertion loss, as seen from (10.71a).

Y Y

t-1, I
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* 0 " +

+ z o

(b)

Loaded-line phase shifters. (a) Basic circuit. (b) Practical loaded-line phase shifter
and its equivalent circuit.

The reflections from the shunt susceptance can be reduced by using the circuit of
Figure 10.30b, where two shunt loads are separated by a)'l4length of line. Then the partial
reflection from the second load will be 180" out of phase with the partial reflection from
the first load, leading to a cancellation. We can analyze this circuit by calculating its ABCD
matrix and comparing it to the ABCD matrix of an equivalent line having a length 0" and
characteristic impedance Z".Thuq for the loaded line,

It 3]: [,'" i1l,i,, '',')l;' ?]
_ |- -BZo jzo 1- 

Li<t lz, -  BzZd -nzo l '
while the equivalent transmission line has anABCD matrix given by

l A  B l _ [  c o s Q  i Z " s i n 9 " l
Lc n )- l , i  sino"lz" cosQ .l

So we have that

cos0,  -  *BZo:  -6 ,

Z" :  Zocosg,  -  -L .
J l - b 2

For small b,0" will be close to n /2, and these results reduce to

o " -  t * b ,
/ b \Z" - Zo l.t * Z,l

(10.73a)

(10.73b)

(10.74a)

(10.74b)

(10.75a)

(10.7sb)

The susceptance, B, can be implemented with a lumped inductor or capacitor, or with a
stub. and switched between two states with an SPST diode switch.

The third type of PIN diode phase shifter is the reflection phase shifter, which uses an
SPST switch to control the path length of a reflected signal. Usually a quadrature hybrid

UU'{-

+ A / 4 +



52O Chapter 10: Noise and Active RF Components

90'Hybrid

FIGURE 10.31 A reflection phase shifter using a quadrature hybrid.

is used to provide a two-port circuit, although other types of hybrids, or even a circulator,
could be used for this purpose.

Figure 10.31 shows a reflection-type phase shifter using a quadrature hybrid. In oper-
ation, an input signal divides equally among the two right-hand ports of the hybrid. The
diodes are both biased in the same state (forward or reverse biased), so the waves reflected
from the two terminations will add in phase at the indicated output port. Turning the diodes
on or off changes the total path length for both reflected waves by A@, producing a phase
shift of A@ at the output. Ideally, the diodes would look like short circuits in their on state,
and open circuits in their off state, so that the reflection coefficients at the right side of the
hybrid can be written as f : e-i@+r) for the diodes in their ON state, and f : g-i@+t47

for the diodes in their OFF state. There are infinite numbers of choices of line lengths that
give the desired A@ (that is, the value of @ is a degree of freedom), but it can be shown that
bandwidth is optimized if the reflection coefficients for the two states are phase conjugates.
Thus, if Ld :9O, the best bandwidth will be obtained for 6 * 45'.

A good input match for the reflection-type phase shifter requires that the diodes be
well-matched. The insertion loss is limited by the loss of the hybrid, as well as the forward
and reverse resistances of the diodes. Impedance transformation sections can be used to
improve performance in this regard.

Varactor Diodes

Avaractor diodeprovides ajunction capacitance that varies with bias voltage, thus providing
an electrically adjustable reactive circuit element. The most common application of varactor
diodes is to provide electronic frequency tuning of the local oscillator in a multichannel
receiveq such as those used in cellular telephones, wireless local area network radios,
and television receivers. This is accomplished by using a varactor diode in the resonant
circuit of a transistor oscillator, and changing the DC bias voltage applied to the diode.
The nonlinearity of varactors also makes them very useful for frequency multipliers (to be
discussed further in Chapter l2). Yaractor diodes are usually made from silicon or gallium
arsenide semiconductors.

A simplified equivalent circuit for a reverse-biased varactor diode is shown in
Figure 10.32. The junction capacitance is dependent on the junction bias voltage, V,

c j(v)

6 L 6
trz*l--T--

FIGURE 10.32 Equivalent circuit of a reverse biased varactor diode.
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according to

(10.76)

where Cs and Ve are constants, and y is an exponent that varies between l/3 and 5,
depending on the semiconductor doping profile used in the diode. A constant doping profile
results in y - | /2. R j is the junction resistance, which for reverse bias is typically greater
than 106 O, and can usually be ignored. R" is the series junction and contact resistance,
typically on the order of a few ohms. A typical varactor diode might have Cs : 0.2 pF and
Vo : 0.5 V, resulting in a junction capacitance that varies from about 0.1 pF to 0.2 pF as
the bias voltage ranges from 2.0 to 0 volts.

Other Diodes

Here we summarize the characteristics of several otherdiode devices that are commonly used
in microwave circuits. These devices are most useful at millimeter wave frequencies since
three-terminal devices fiunction and field effect transistors) usually offerbetterperformance
at lower frequencies. More details on these and related diode devices can be found in the
references.

IMPATT diodes. An IMPATT (Impact Avalanche and Transit Time) diode has a physical
structure similar to a PIN diode, but relies on an avalanche effect for its unique properties. It
exhibits negative resistance over a broad frequency band that extends into the submillimeter
range, aad can therefore be used to directly convert DC to RF power. Typical IMPATTs
operate at frequencies from l0 to 300 GHz, at relatively high powers, with efficiencies
ranging ap to I5Vo.IMPATT diodes are the only practical solid-state device that can pro-
vide fundamental frequency power above 100 GHz. IMPATT devices can also be used for
frequency multiplication and amplification.

Silicon IMPATT diodes can provide CW power ranging from l0 W at 10 GHz, to I W
at94 GHz, with efficiencies typically below I}Vo. GaAs IMPAITs caa provide CW power
ranging from 20 W at 10 GHz, to 5 mW at 130 GHz. Pulsed operation generally results
in higher powers and higher efficiencies. Because of the low efficiency of these devices,
thermal considerations are the limiting factor for both CW and pulsed operation. IMPAfT
oscillators can be both mechanically and electrically tuned. A disadvantage of IMPAIT
oscillators is that their AM noise level is generally higher than that of other sources.

Gunn diodes. The Gunn diodehas an I-V characteristic that exhibits a negative differential
resistance (negative slope) that can be used to generate RF power from DC. Its operation
is based on the transferred electron effect (also known as the Gunn effect), which was
discovered by J. B. Gunn in 1963. Practical Gunn diodes typically use either GaAs or InP
materials. Gunn diodes can produce continuous power of up to several hundred milliwatts,
at frequencies from 1 to 100 GHz, with efficiencies ranging from 5Vo to 157o. Oscillator
circuits using Gunn diodes require a high-Q resonant circuit or cavity, which is often tuned
mechanically. Electronic tuning by bias adjustment is limited to l%o or less, but varactor
diodes are sometimes included in the resonant circuit to provide a greater range of electronic
tuning. Gunn diode sources are used extensively in low-cost applications such as traffic
radars, motion detectors for door openers and security alarms, and test and measurement
systems.

BARITT diodes. A BARITT (Barrier Injection Transit Time) diode has a structure similar
to a junction transistor without a base contact. Like the IMPATT diode, it is a transit-time

C , ( V l :  
C o

J '  ( l - V / V o ) r
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10.4

device. It generally has a lower power capability than the IMPAIT diode, but the advantage
of lower AM noise. This makes it useful for local oscillator applications, at frequencies up
to 94 GHz. BARITT diodes are also useful for detector and mixer applications.

RF TRANSISTOR CHARACTERISTICS

Transistors are critical components of modern RF and microwave systems, finding applica-
tion as amplifiers, oscillators, switches, phase shifters, mixers, and active filters. Transistor
devices can be categorized as either junction transistors, or field effect transistors l5l*191.

Junction transistors include bipolar junction transistors (BJTs) and heterojunction
bipolar transistors (HBTs), in either npn or pnp configurations. Modern junction transis-
tors are made using silicon, silicon-germanium, gallium arsenide, and indium phosphide
materials. The silicon junction transistor is one of the oldest and most popular active RF
devices because of its low cost and good operating performance in terms of frequency
range, power capacity, and noise characteristics. Siliconjunction transistors are useful for
amplifiers up to the range of 2-I0 GHz, and in oscillators up to about 20 GHz. Bipolar
transistors typically have very low l// noise characteristics, making them well suited for
oscillators with low phase noise. Recent developments with junction transistors using SiGe
have demonstrated much higher cutofffrequencies, making these devices useful in low-cost
circuits operating atfrequencies of 20 GHz orhigher. Heterojunctionbipolartransistors may
use GaAs or InP materials, and can operate at frequencies exceeding 100 GHz.

Field effect transistors (FETs) can take many forms, including the MESFET (metal
semiconductor FET), the HEMT (high electron mobility transistor), the PHEMT (pseudo-
morphic HEMT), the MOSFET (metal oxide semiconductor FET), andthe MISFEI(metal
insulator semiconductor FET). FET transistor technology has been under continuous devel-
opment for more than 50 years-the first junction field effect ffansistors were developed in
the 1950s, while the IffiMT was proposed in the early 1980s. Unlike junction transistors,
which are current-controlled, FETs are voltage-controlled devices, and can be made with
either a p-channel or an n-channel. GaAs MESFETs are one of the most commonly used
transistors for microwave and millimeter wave applications, being usable at frequencies up
to about 40 GHz. Even higher operating frequencies can be obtained with GaAs HEMTs.
GaAs FETs and HEMTs are especially useful for low-noise amplifiers, since these tran-
sistors have lower noise figures than any other active devices. Table 10.2 summarizes the
performance characteristics of some of the most popular microwave transistors.

In this section we will give a brief discussion of the basic construction of microwave
FETs and bipolar transistors, along with small-signal equivalent circuit models for these

TABLE 10.2 Performance Characteristics of Microwave Thansistors

Si

BJT

si
CMOS

SiGe

HBT

GaAs

MESFET

GaAs GaAs

HEMT HBT

Useful frequency range (GHz)

Typical gain (dB)

Noise figure (dB)

(frequency)

Power capacity

Cost

Single polarity supply?

10 20
10-t5 10-20
2.0 1.0

(2GHz) (4GHz)

30
10-15
0.6

(8 GHz)

Medium

Medium
Yes

40
5-20
1.0

(10 GHz)

Medium

Medium
No

100 60
10-20 rv20
0.5 4.0

(l2GHz) (l2GHz)

Medium High

High High

No Yes

High Low

Low Low

Yes Yes
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Source

N* Epitaxial layer

Gate

-0.3 pm ,ilfux.".Buffer layer -3 ltm

High-resistivity substrate -100trrm

(a.) (b)

MESFET; (b) top view, showing drain, gate, andFIGURE 10.33 (a) Cross section of a GaAs
SOufCe I

devices, and DC biasing considerations. The design of amplifiers and oscillators relies pri-

marily on the terminal characteristics of the transistor, and these can be expressed either in

terms of the two-port S parameters of the device, or in terms of the component values of an

equivalent circuit. We will use the S parameter method for most of our design work, as this

is a procedure that is both accurate and convenient, although it does have the drawback of

requiring knowledge of the transistor S parameters (usually through measurement) over the

frequency band ofinterest. This is usually not a serious problem unless a very wide frequency

range is being considered, since the S parameters of microwave traasistors typically change

fairly slowly with frequency. In contrast, the use of a good transistor equivalent circuit model

involves only a few circuit parameters which are generally stable over a wide frequency

range. An equivalent circuit model can also provide a closer linkage between the operation

of the device and its physical parameters, and can be more useful for some design problems.

Field Effect Transistors (FETs)

Microwave field effect transistors can be used at frequencies well into the millimeter wave

range with high gain and low noise figure, making them the device of choice for hybrid

and monolithic integrated circuits at frequencies above 5 to 10 GHz Ul-191. Figure 10.33

shows the construction of a typical GaAs MESFET. The desirable gain and noise features

of the GaAs FET are a result of the higher elecffon mobility of GaAs compared to silicon,

and the absence of shot noise. In operation, elecffons are drawn from the source to the &ain

by the positive ydr supply voltage. An input signal voltage on the gate then modulates these

majority electron carriers, producing voltage amplification. The maximum frequency of

operation is limited by the gate length; presently manufactured FETs have gate lengths on

the order of 0.3 to 0.6 p,m, with corresponding upper frequency limits of 100 to 50 GHz.

A small-signal equivalent circuit for a microwave FET is shown in Figure 10.34, for

a common-source configuration. The components and typical values for this circuit model

are listed below:

R; (series gate resistance) :7 Q

R7, (drain-to-source resistance) : 400 Q

Cg, (gate-to-source capacitance) :0.3 pF

C7" (drain-to-source capacitance) : 0.L2 pF

Cga (gate-to-drain capacitance) : 0.01 pF

g. (transconductance) : 40 mS

This model does not include package parasitics, which typically introduce small series

resistances and inductances at the three terminals due to ohmic contacts and bonding leads.

The dependent current generator g-V, depends on the voltage across the gate-to-source

capacitor Cr", leading to a value of lszrl > 1 under normal operating conditions (where



524 Chapter 10: Noise and Active RF Gomponents

FIGURE 10.34 Small-signal equivalent circuit for a microwave FET in the common-source
conflguration.

port 1 is atthe gate, and port 2 is at the drain). The reverse signal path, given by Srz, is due
solely to the capacitance Csa. As can be seen from the above data, this is typically a very
small capacitor which can often be ignored in practice. In this case, Slz : 0, and the device
is said tobe anilateral.

The equivalent circuit model of Figure 10.34 can be used to determine the upper
frequency of operation for the transistor. The short-circuit current gain, G',', is defined as
the ratio of drain to gate current when the output is short-circuited. For the unilateral case,
wherc C ga is assumed to be zero, this can be derived as

(r0.77)

The upper frequency limit, ft, is the frequency where the short-circuit current gain is unity,
thus we have that

^sc I  to l  ls^v, l  E.
'  

l l r l  I  IB 1 <oCs,

For proper operation, the transistor must be DC biased at an appropriate operating point. This
depends on the application (low-noise, high-gain, high-power), the class of the amplifier
(class A, class AB, class B), and the type of transistor (FET, HBT, HEMT). Figure 10.35a
shows a typical family of DC fu" versus V7" curves for a GaAs FET. For low-noise design,
the drain current is generally chosen to be about 15Vo of fu* (the saturated drain-to-source
current). High-power circuits generally use higher values of drain current. DC bias voltage
must be applied to the gate and drain, without disturbing the RF signal paths. This can be

l 0 /a' (v)

(a)

FIGURE 10.35 (a) DC characteristics of a GaAs FET; (b)

(10.78)
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Emitter Base

- 0 . 1 p m
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-200 1tm

FIGURE 10.36 (a) Cross section of a microwave silicon bipolar transistor; ft) top vieq showing
base and emitter contacts.

done as shown in Figure 10.35b, which shows the biasing and decoupling circuitry for a
dual polarity supply. The RF chokes provide a very low DC resistance for biasing, and a
very high impedance at RF frequencies to prevent the microwave signal from being shorted
by the bias supply. Similarly, the input and output decoupling capacitors block DC from the
input and output lines, while allowing passage of microwave signals. There are many other
types of bias circuits that provide compensation for temperature and device variations, and
that can work with single-polarity power supplies.

Bipolar Junction Transistors (BJTs)

Microwave bipolar transistors are usually of the npn type, and are often preferred over
GaAs FETs at frequencies below 2 to 4 GHz because of higher gain and lower cost. Bipolar
transistors are subject to shot noise as well as thermal noise effects, so their noise figure
is not as good as that of FETs. Figure 10.36 shows the construction of a typical silicon
bipolar transistor. In contrast to the FET, the bipolar transistor is current driven, with the
base current modulating the collector current. The upper frequency limit of the bipolar
transistor is controlled primarily by the base length, which is on the order of 0.1 pm.

A small-signal equivalent circuit model for a microwave bipolar transistor is shown in
Figure 10.37, for a common emitter configuration. The components of this circuit, along
with typical values, are listed below:

R6 (base resistance) : 7 Q

R" (equivalent r resistance) : I 10 O

C" (equivalent z capacitance) : 13 np
C" (collector capacitance) : 18 pF

g. (transconductance) : 900 mS

Observe that the transconductance is much higher than that of the GaAs FET, leading to
higher power gain at lower frequencies. The larger capacitances in the bipolar ffansistor

(a)

Emitter

Simplified hybrid-n equivalent circuit for a microwave bipolar transistor in the
common emitter confi guration.

N 
+ 

collector substrate

FIGURE 10.37
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FIGURE 10.38 (a) DC characteristics of a silicon bipolar transistor; (b) biasing and decoupling

circuit for a bioolar transistor.

model serve to reduce the gain at higher frequencies. The model in Figure 10.37 is popular
because of its similarity to the FET equivalent circuit, but more sophisticated equivalent
circuits may be advantageous for use over wide frequency ranges t7l-t91. In addition, this
model does not include parasitic resistances and inductances due to the base and emitter
leads.

The equivalent circuit of Figure 10.37 can be used to estimate the upper frequency
limit, f7, where the short-circuit current gain is unity. The result is similar to that found
above for the FET:

1r = 1.0 mA

18 = 0.75 mr{

h = 0.50 mA
Ia= 0.25 mA

^ 8 m
t d  -  _t t  -  

zncn
(10.79)

Figure 10.38a shows typical DC operating characteristics for a bipolar transistor. As with
the FEI the biasing point for a bipolar transistor depends on the application and type of
transistor, with low collector currents generally giving the best noise figure, and higher
collector currents giving the best power gain. Figure 10.38b shows a typical bias and
decoupling circuit for a bipolar ffansistor that requires only a single polarity supply.

MICROWAVE INTEGRATED CIRCUITS

The trend of any maturing electrical technology is toward smaller size, lighter weight, lower
cost, and increased complexity. Microwave technology has been moving in this direction
for the last 10-20 years, with the development of microwave integrated circuits [2]. This

10 .5



10.5 Microwave Integrated Circuits 527

technology serves to replace bulky and expensive waveguide and coaxial components with
small and inexpensive planar components, and is analogous to the digital integrated circuitry
that has led to the rapid increase in sophistication of computer systems. Microwave inte-
grated circuitry (MIC) can incorporate transmission lines, discrete resistors, capacitors, and
inductors, and active devices such as diodes and transistors. MIC technology has advanced
to the point where complete microwave subsystemso such as receiver front ends and radar
transmiVreceive modules, can be integrated on a chip that is only a few square millimeters
in size.

There are two distinct types of microwave integrated circuits. Hybrid MICs have one
layer of metallization for conductors and traasmission lines, with discrete components (re-
sistors, capacitors, transistors, diodes, etc.) bonded to the substrate. In a thin-film hybrid
MIC, some of the simpler components are deposited on the substrate. Hybrid MICs were
first developed in the 1960s, and still provide a very flexible and cost-effective means for cir-
cuit implementation. Monolithic microwave integrated circuits (MMICs) are a more recent
development, where the active and passive circuit elements are grown on the substrate. The
substrate is a semiconductor material, and several layers of metal, dielectric, and resistive
films are used. Below we will briefly describe these two types of MICs, in terms of the
materials and fabrication processes that are required and the relative merits of each type of
circuitry.

Hybrid Microwave Integrated Circuits

Material selection is an important consideration for any type of MIC; characteristics such
as electrical conductivity, dielectric constant, loss tangent, thermal transfer, mechanical
strength, and manufacturing compatability must be evaluated. Generally the substrate ma-
terial is of primary importance. For hybrid MICs, alumina, quartz, and Teflon fiber are
commonly used for substrates. Alumina is a rigid ceramic-like material with a dielectric
constant of about 9-10. A high dielectric constant is often desirable for lower frequency cir-
cuits because it results in a smaller circuit size. At higher frequencies, however, the substrate
thickness must be decreased to prevent radiation loss and other spurious effects; then the
transmission lines (typically microstrip, slotline, or coplanar waveguide) can become too
nalrow to be practical. Quartz has a lower dielectric constant (-4) which, with its rigidity,
makes it useful for higher frequency (>20 GHz) circuits. Teflon and similar types of soft
plastic substrates have dielectric constants ranging from2 to 10, and can provide a large
substrate areaat a low cost, as long as rigidity and good thermal transfer are not required.
Transmission line conductors for hybrid MICs are typically copper or gold.

Computer-aided design (CAD) tools are used extensively for microwave
circuit design, optimization, layout, and mask generation. Commonly-used soft
ages include CADENCE (Cadence Design Systems, Inc.), ADS (Agilent Tech
Inc.), Microwave Office (Applied Wave Research, Inc.), and SERENADE or DESI
(Ansoft, Inc.). The mask itself may be made on rubylith (a soft mylar film), usually'.ara
magnified scale (2x, 5 x, 10x, etc.) for a high accuracy. Then an actual-size mask islrqdei -* i
^- -  fLi-  cLaat ^f  ^ l^.^ ^{ ^11^4d 'FL^ *^+^l i -^,1 orr l ro+ofa:.  ^^^+^,t  . , , i+ l^ ^L^+^*-. : ."  ^^, ,X*^;!  

' "al- . i i
on a thin sheet of glass or quartz. The metalized substrate is coated with photoresist,

. . 4

with the mask, and exposed to a light source. The substrate can then be etched to
unwanted areas of metal. Plated-through, or via, holes can be made by evaporating
of metal inside a hole that has been drilled in the substrate. Finallv. the discrete
are soldered or wire-bonded to the conductors. This is generally the most labor-i
pafi of hybrid MIC fabrication, and therefore the most expensive part of the

Then the MIC can be tested. Often provision is made for variations in
values and other circuit tolerances by providing tuning or trim stubs that can be manually
trimmed for each circuit. This increases circuit yield, but also increases cost since trimming
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Ground Chip FET Ceramic Choke
plane capacitor chip subsftate inductor

FIGURE 10.39 Layout of a hybrid microwave integrated circuit.

involves labor at a highly skilled level. The layout of a typical hybrid MIC circuit is shown
in Figure 10.39. A photograph of a hybrid MIC module is shown in Figure 10.40.

Monolithic Microwave Integrated Gircuits

Progress in GaAs material processing and device development since the late 1970s has
led to the feasibility of the monolithic microwave integrated circuit, where all passive and

Photograph of one of the 25,344 hybridintegrated TlRmodules used in Raytheon's
Ground Based Radar system. This X-band module contains phase shifters, am-
plifiers, switches, couplers, a ferrite circulator, and associated control and bias
circuitry.

Courtesy of Raytheon Company, Lexington, Mass.

FIGURE 10.40
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active components required for a given circuit can be grown or implanted in the substrate.
Potentially, the MMIC can be made at low cost because the manual labor required for fab-
ricating hybrid MICs is eliminated. In addition, a single wafer can contain a large number
ofcircuits, all ofwhich can be processed and fabricated simultaneously.

The substrate of an MMIC must be a semiconductor material to accommodate the
fabrication of active devices; the type of devices and the frequency range dictate the type
of substrate material. Thus, silicon bipolar transistors can be used up to several gigahertz,
silicon-on-sapphire (SOS) MESFETs can be used up to several gigahertz, and submicron
gate-length GaAs FETs have been used up to 60 GHz. The GaAs FET is a very versatile
circuit element, finding applications in low-noise amplifiers, high-gain amplifiers, broad-
band amplifiers, mixers, oscillators, phase shifters, and switches. Thus, GaAs is probably the
most common substrate for MMICs, but silicon, silicon-on-sapphire, and indium phosphide
(InP) are also used.

Transmission lines and other conductors are usually made with gold metallization.
To improve adhesion of the gold to the substrate, a thin layer of chromium or titanium is
generally deposited first. These metals are relatively lossy, so the gold layer must be made at
least several skin depths thick to reduce attenuation. Capacitors and overlaying lines require
insulating dielectric films, such as SiO, SiO2, Si2Na, and Ta2O5. These materials have a
high dielectric constant and low loss, and are compatible with integrated circuit processing.
Resistors require the deposition of lossy films;NiCr, Ta, Ti, and doped GaAs are commonly
used.

Designing an MMIC requires extensive use of CAD software, for circuit design and
optimization as well as mask generation. Careful consideration must be given to the circuit
design to allow for component variations and tolerances, and the fact that circuit trimming
after fabrication will be difficult, or impossible (and defeats the goal of low-cost production).
Thus, effects such as transmission line discontinuities, bias networks, spurious coupling,
and package resonances must be taken into account.

After the circuit design has been finalized, the masks can be generated. One or more
masks are generally required for each processing step. Processing begins by forming an
active layer in the semiconductor substrate for the necessary active devices; this can be done
by ion implantation or by epitaxial techniques. Then active areas are isolated by etching or
additional implantation, leaving mesas for the active devices. Next, ohmic contacts are made
to the active device areas by alloying a gold or gold/germanium layer onto the substrate.
FET gates are then formed with a titanium/platinum/gold compound deposited between the
source and drain areas. At this time the active device processing has been essentially com-
pleted, and intermediate tests can be made to evaluate the wafer. If it meets specifications,
the next step is to deposit the first layer of metallization for contacts, transmission lines,
inductors, and other conducting areas. Then resistors are formed by depositing resistive
films, and the dielectric films required for capacitors and overlays are deposited. A second
layer of metallization completes the formation of capacitors and any remaining interconnec-
tions. The final processing steps involve the bottom, or backside, of the substrate. First it is
lapped to the required thickness, then via holes are formed by etching and plating. Via holes
provide ground connections to the circuitry on the top side of the substrate, and provide a
heat dissipation path from the active devices to the ground plane. After the processing has
been completed, the individual circuits can be cut from the wafer, and tested. Figure 10.41
shows the structure of a typical MMIC, and Figure 10.42 shows a photograph of an X-band
monolithic integrated power amplifi er.

Monolithic microwave integrated circuits are not without some disadvantages, when
compared with hybrid MICs or other type of circuitry. First, MMICs tend to waste large areas
of relatively expensive semiconductor substrate for components such as transmission lines
and hybrids. Also, the processing steps and required tolerances for an MMIC are very critical,
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MIM

Ground
plane

metalization

FIGURE 10.41 Layout of a monolithic microwave integrated circuit

resulting in low yields. These factors tend to make MMICs expensive, especially when made
in small quantities (less than several hundred). MMICs generally require a more thorough
design procedure to include effects such as component tolerances and discontinuities, and
debugging, tuning, or trimming after fabrication is difficult. Because their small size limits
heat dissipation, MMICs cannot be used for circuits requiring more than moderate power

Photograph of a monolithic integrated X-band power amplifier. This circuit uses
eight heterojunction bipolar transistors with power dividers/combiners at the input
and output to produce 5 watts.

Courtesy of M. Adlerstein and R. Wohlert, Raytheon Company, Lexington, Mass.

Au

FIGURE 10.42
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levels. And high-Q resonators and filters are difficult to implement in MMIC form because
of the inherent resistive losses in MMIC materials.

Besides the obvious features of small size and weight, MMICs have some unique
advantages over other types of circuits. Since it is very easy to fabricate additional FETs
in an MMIC design, circuit flexibility and performance can often be enhanced with little
additional cost. Also, monolithically integrated devices have much less parasitic reactance
than discrete packaged devices, so MMIC circuits can often be made with broaderbandwidth
than hybrid circuits. And MMICs generally give very reproducible results, especially for
circuits from the same wafer.

POINT OF INTEREST: RF MEMS Switch Technology

An exciting new field is the use of micromachining techniques to form suspended or movable
structures in a silicon substrate that can be used for microwave resonators, antennas, and switches.
A micromachined RF switch, having a mechanically movable contact, is an example of a micro-

electro-mechanical system (MEMS), where the unique properties of silicon can be used to

construct extremely small devices that employ miniaturized mechanical components such as

levers, gears, motors, and actuators.
Rp MEMS switches are one of the most promising applications of this new technology.

A MEMS switch can be made in several different conflgurations, depending on the signal path
(capacitive or direct contact), the actuation mechanism (electrostatic, magnetic, or thermal),
the pull-back mechanism (spring or active), and the type of structure (cantilever, bridge, lever

arm, or rotary). One popular co4figuration for microwave switches is shown below, where the

capacitance of the signal path is switched between a low capacitance state and a high capaci-
tance state by moving a flexible conductive membrane through the application of a DC control
voltase.

I-ow-capacitance
(open circuit)

High-capacitance
(closed circuit)

MEMS switches have very good loss characteristics, very low power consumption, wide

bandwidth, and (unlike diode or transistor switches) exhibit virtually no intermodulation distor-
tion or other nonlinear effects. The table below compares some of the key parameters of MEMS
switches with popular solid-state switch technology over the 10-20 GHz band.

Switch Insertion
technology loss lsolation

Switching
power

DC
voltage

Switching
speed

PIN Diode
FET

MEMS

0.1-0.8 dB 2545 dB
0.5-1.0 dB 20-50 dB
0.1-1.0 dB 25-60 dB

1-5 mW
1-5 mW
l p w

1-10 V
1-10 V

10-20 v

1-5 nS
2-10 nS
>30 pr.S

Probably the most significant drawbacks of RF MEMS switches are the relatively slow

switching time and potential lifetime limitations; both of these are a result of the mechanical
nature of the device. One of the most important applications foreseen for MEMS switches is

to low-cost switchedline-length phase shifters, which are required in large numbers for phased

arTay antennas.
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PROBLEMS

10.1 The l-factor method is used to measure the noise figure of an amplifier, with a noise source having
an ENR : 20 dB, and a cold load at a temperature of 77 K. If the Y-factor ratio is measured to be
16.285 dB, what is the noise figure of the amplifier?

10.2 Assume that measurement error introduces an uncertainty of AI into the measurement of I in a
Y-factor measurement. Derive an expression for the normalized error, LT"/T", of the equivalent
noise temperature in terms of LY /Y and the temperatures Tr, Tz, and [. Minimize this result with
respect to T" to obtain an expression for I in terms of T1 andT2 that will result in minimum error.

10.3 It is necessary to connect an antenna to a low-noise receiver with a transmission line. The frequency
is 10 GHz, and the distance is 2 meters. The choices are: copper X-band waveguide, RG-8/U coaxial
cable, or copper circular waveguide with an inner diameter of 2.0 cm. Which type of line should be
used for the best noise figure? Disregard impedance mismatch.

10.4 A certain transmission line has a noise figure F : 1 dB at a temperature To :290 K. Calculate and
plot the noise flgure ofthis line as its physical temperature ranges from 7 : 0 K to 1000 K.

10.5 An amplifier with a bandwidth of 1 GHz has a gain of 15 dB and a noise temperature of 250 K. If
the 1 dB compression point occurs for an input power level of - 10 dBm, what is the linear dynamic
range of the amplifier?

10.6 An amptfier with a gain of 12 dB, a bandwidth of 150 MHz, and a noise figure of 4.0 dB feeds a
receiver with a noise temperature of 900 K. Find the noise figure of the overall system.

10.7 A PCS cellular receiver front-end circuit is shown below. The operating frequency is 1805-1 880 MHz,
and the physical temperature of the system is 300 K. A noise source with N, : -95 dBm is applied
to the receiver input. (a) What is the equivalent noise temperature of the source over the operating
bandwidth? (b) What is the noise figure (in dB) of the amplifier? (c) What is the noise figure (in dB)
of the cascaded transmission line and amplifier? (d) What is the total noise power output (in dBm) of
the receiver over the operating bandwidth?

Noise
source

Transmission
line Amplifier

G= 12dB
?"= 180 r

4= -95 dBm t= 1.5 dB
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Consider the wireless local mea network (WLAN) receiver front-end shown below, where the band-

width of the bandpass filter is 100 MHz centered at 2.4 GHz. If the system is at room temperature,

find the noise figure of the overall system. What is the resulting signal-to-noise ratio at the output, if

the input signal power level is -90 dBm? Can the components be rearranged to give a better noise

flgure?

1Z = 1.5 dB G - 1 0 d 8
P  = 2 d B

G =20 dB
F = 2 d B

f0.9 A two-way power divider has one output port terminated in a matched load, as shown below. Find

the noise flgure of the resulting two-port network if the divider is (a) an equal-split two-way resistive

divider, (b) a two-way Wilkinson divider, and (c) a 3 dB quadrature hybrid. Assume the divider in

each case is matched, and at room temperature.

Showthat,forf lxedlossL>l,theequivalentnoisetemperatureofamismatchedlossyl inegivenin
(10.33) is minimized when lf,l - 0.

A lossy line at temperature I feeds an amplifier with noise figure F, as shown below. If an impedance

mismatch f is present at the input of the amplifier, find the overall noise flgure of the system.

10.12 A balanced amplifier circuit is shown below. The two amplifiers are identical, each with power gain G

and noise figure F. The two quadrature hybrids are also identical, with an insertion loss from the

input to either output of L > 1 (not including the 3 dB power division factor). Derive an expression

for the overall noise figure of the balanced amplifier. What does this result reduce to when the hybrids

are lossless?

G , F

10.13A receiver subsystem has a noise figure of 6 dB, a 1 dB compression point of 21 dBm (referenced

to output), a gain of 30 dB, and a third-order intercept point of 33 dBm (referenced to output). If

the subsystem is fed with a noise source with Ni : -105 dBm, and the desired output SNR is 8 dB,

find the linear and spurious free dynamic ranges of the subsystem. Assume a system bandwidth of

2OMHz.

In practice, the third-order intercept point is extrapolated from measured data taken at input power

levels well below Pr. For the spectrum analyzer display shown on the next page, where AP is the

-+
L

.-----.--->
L

G , F

10.14
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difference in power between P,, and Pz.r-on, show that the third-order intercept point is given by
Pz : P.r - 

itp.Is this referenced at the input or output?

10.15 A two-tone input with a 6 dB difference in the two signal levels is applied to a nonlinear component.
What is the relative power ratio of the resulting two third-order intermodulation products 2to1 - at2
andZa4 - a4,if ay and a2 are close together?

10.16 Find the third-order intercept point for the problem of Example 10.5 when the positions of the amplifier
and mixer are reversed.

10 .17  Ad iodehasthe fo l low ingparameters :  C i :01  pR R, :  15  O,  1 , :0 .1  pA,  and.Lr :Co:0 .
Compute the open-circuit voltage sensitivity at 10 GHz for 16 - 0, 20, and 50 lcA. Assume o :

I lQ5 mV), and neglect the effect of bias current on the junction capacitance.

10.18 A single-pole, single-throw switch uses a PIN diode in a shunt configuration. The frequency is 4 GHz,
Z o : 5 O Q , a n d t h e d i o d e p a r a m e t e r s a r e C , : 0 . 5 p f l R . : 0 . 5 Q ,  R r : 0 . 3 f 2 ,  L i *  0 . 3 n H . F i n d
the electrical length of an open-circuited shunt stub, placed across the diode, to minimize the insertion
loss for the ON state of the switch. Calculate the resulting insertion losses for the ON and OFF states.

10.19 A single-pole, single-throw switch is constructed using two identical PIN diodes in the arrangement
shown below. In the ON state, the series diode is forward biased and the shunt diode is reversed biased;
and vice versa for the OFF state. lf f : 6 GHz, Zo : 50 Q, C i : 0.1 PR R. : 0.5 O, R/ : 0.3 Q,
and L, :0.4 nH. determine the insertion losses for the ON and OFF states.

Consider the loaded-line phase shifter shown below. lf Zs :50 O, find the necessary stub lengths
for a differential phase shift of 45" , and calculate the resulting insertion loss for both states of the
phase shifter. Assume all lines are lossless, and that the diodes can be approximated as ideal shorts or

opens.

10.20
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Use the equivalent circuit ofFigure 10.37 to derive the expression for the short-circuit current gain
of a bipolar transistor. Assume a unilateral device, where C, : O.

Derive expressions for the y parameters of an FET using the unilateral equivalent circuit model. Eval-
uate these parameters at 5 GHz for the following FET characteristics: Ri : 7 {2, R7" = 400 O, (r" -

0.3 pF, C7" : 0.12 pR Cto : O, 8n :3A mS. Convert the y parameters to S parameters for a 50 Q
system impedance, and find the unilateral transducer gain assuming conjugately matched source and
load impedances.

10.22



Microwave Amplifier Design

Ampliflcation is one of the most basic and prevalent microwave circuit functions in mod-
ern RF and microwave systems. Early microwave amplifiers relied on tubes, such as klystrons
and traveling-wave tubes, or solid-state reflection ampliflers based on the negative resistance
characteristics of tunnel or varactor diodes. But due to the dramatic improvements and inno-
vations in solid-state technology that have occurred since the 1970s, most RF and microwave
amplifiers today use transistor devices such as Si or SiGe BJTs, GaAs HBTs, GaAs or InP
FETs, or GaAs HEMTs t1l-t41. Microwave transistor amplifiers are rugged, low-cost, reliable,
and can be easily integrated in both hybrid and monolithic integrated circuitry. As discussed
in more detail in Chapter 10, transistor amplifiers can be used at frequencies in excess of 100
GHz in a wide range of applications requiring small size, low-noise figure, broad bandwidth,
and low to medium power capacity. Although microwave tubes are still required for very high
power and/or very high frequency applications, continuing improvement in the performance of
microwave transistors is steadily reducing the need for microwave tubes.

Our discussion of transistor amplifier design will rely on the terminal characteristics of tran-
sistors, as represented by either S parameters or one of the equivalent circuit models introduced
in the previous chapter. We will begin with some general definitions of two-port power gains
that arc useful for amplifier design, and then discuss the subject of stability. These results will
then be applied to single-stage transistor amplifiers, including designs for maximum gain, spec-
ified gain, and low noise figure. Broadband balanced and distributed amplifiers are discussed
in Section 1 1.4. We conclude with a brief treatment of transistor power ampliflers.

TWO-PORT POWER GAINS

In this section we develop several expressions for the gain and stability ofa general two-port
amplifier circuit in terms of the S parameters of the transistor. These results will be used in
the following sections for amplifier aad oscillator design.

536
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FIGURE 11.1 A two-port network with general source and load impedances.

Definitions of Two-Port Power Gains

Consider an arbitrary two-port network [S] connected to source and load impedances Z5

and 21, respectively, as shown in Figure 11.1. We will derive expressions for three types

of power gain in terms of the S parameters of the two-port network and the reflection

coefficients, f5 and 11, ofthe source and load.

c PowerGain: G: PrlPin is the ratio of power dissipated in the load Zytothe
power delivered to the input of the two-port network. This gain is independent of

25, although some active circuits are strongly dependent on Zs.
o Available Gain : G 4 : Purnf Puu. is the ratio of the power available from the two-

port network to the power available from the source. This assumes conjugate match-
ing of both the source and the load, and depends on Z5 but nor 27.

o Transducer Power Gain : Gr : Prl Puuu is the ratio of the power delivered to the
load to the power available from the source. This depends on both Zs and Zr.

These definitions differ primarily in the way the source and load are matched to the two-port

device; if the input and output are both conjugately matched to the two-port, then the gain

is maximized and G : Ge: Gr.
With reference to Figure 11.1, the reflection coefficient seen looking toward the load is

l L :
Z t - Z o (1  1 .1a)
Zr * Zo'

while the reflection coefficient seen looking toward the source is

f s :
Z s - Z o (1  1 . lb )
Zs  I  Zo '

where Zs is the characteristic impedance reference for the S parameters of the two-port
network.

In general, the input impedance of the terminated two-port network will be mismatched
with a reflection coefficient given by fin, which can be determined using a signal flow graph
(see Example 4."1), or by the following analysis. From the definition of the S parameters
that V{ : I rVl , we have

vi : suVr+ + szvj : SrrvJ 1- splpvl,

VJ : Suv{ + sr2v{ : Szft -t S22f pVl.

Eliminating Vl from(II.2a) and solving for Vr*/Vr+ gives

(11.2a)

(r1.2b)

(1 1.3a)- Y; StzSztfr Zin - Zo
" " -  

V f  
- v r r  I  

l - 5 2 2 1  7 -  Z i n l Z o '

*{Jlft tzi
rllllLu;

lllf *
*JIIII

where Z1n is the impedance seen looking into port 1 of the terminated network. Similarly,



538 Ghapter 11: Microwave Amplifier Design

the reflection coefficient seen looking into port 2 of the network when port 1 is terminated
by Z5 is

By voltage division,

-  V; StzSztfs| _......-
V ;  

- -  
1 - S 1 1 f 5

Zt^
vt : vsa# : Yr+ + vt : vI (1 * fin).

LS -T Lin

Using

1 *  f 6Z i " :  ZoTl f i ,

from (11.3a) and solving for V,+ in terms of V5 gives

,  V "  ( l - f ( )
l / T  -  _ :  " '
' t  -  

2  ( 1  - f s f i n ) '

_  1  ,__L,2  , ,  ._  . , \  ' u * , , , t  
=T , r ,u  ( t  *  l r r l r )Pi" :  

2zo ly t - l -  ( l  -  l f i " l - )  :  
i ro  l l  _  f5f ;n l ,  .

where (11.4) was used. The power delivered to the load is

lv^- l 'pL :  
zZ  ( l  -  l r . l r ) .

Solving for Vl from (11.2b), substituting into (11.6), and using (11.4) gives

(11 .3b)

(11 .4)

(11.s)

(11 .6)

(11 .7)

( 1 1 . 8 )

If peak values are assumed for all voltages, the average power delivered to the network is

G _

-  lv ,+12 lszr12 ( t  -  1r .12;  VAz lsxl2 (r  -  l r r l ' )11 -  rs l2
" :2h F l ;F ; - :  tz , f f i

The power gain can then be expressed as

Py lsz r12  (1  -  l f r l t )

The power available from the source, Puu' is the maximum power that can be delivered
to the network. This occurs when the input impedance of the terminated network is conju-
gately matched to the source impedance, as discussed in Section 2.6. Thus, from (11.5),

I  l 7 s l 2  l l  -  f s l 2
D  - D .  |  -I  avs -  !  'n  

1. , "=r1-  8zo ( t  -  l f  s l2)  
'

delivered to the load. Thus, from (1I.7),

p  -  p . l  -  lvs l2  ls2r l2  ( l  -  l r " " , l2)  11 -  rs l2  |ravn : t'|..=.r*: 
% ffi l.r:.r,,'

(11.e)

Similarly, the power available from the network, Puun, is the maximum power that can be

( 1 1 . 1 0 )



Observe that Puu, and Puun have been expressed in terms of the source voltage, Vs, which is
independent of the input or load impedances. There would be confusion if these quantities
were expressed in terms of V1, since Vr- is different for each of the calculations of P1,
Puu., and Puun.

Using (11.11) and (11.9), the available power gain is then
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In (11.10), f;p must be evaluated for f; : fjo,. From (ll.3a), it can be shown that

l l  -  srr fs12 (1 -  l f* , | ' � ) t

Ir - s22r;",12
l1 -  fsf i " l2 |

lf.=f;ur

which reduces (1 1.10) to

^  l vs l2  l sz r12  11  -  f s l 2
'  avu -  gzo l l  -  sr  r fs l2  ( l  -  l r * ,12)  

'

Puun lSzr l2 ( l  -  l fs l2)
t '^ :  

P* 
:  

l l  -  s l l fs l ' �  ( l  -  l f*" | ' � ) '

From (11.7) and (11.9), the transducer power gain is

P7 lsr '  12 ( l  - l fsl2) (r - lrr l ' � )" r : P u * : 6

lszr 12 (1 -  l r r l2)  ( r  -  l r . l ' )v T U : f f i

( 1 1 . 1 1 )

(11.12)

( 1  1 . 1 3 )

( 1  1 . 1 5 )

A special case of the transducer power gain occurs when both the input and output are
matched for zero reflection (in contrast to conjugate matching). Then fl : fs :0, and
(1 1.13) reduces to

G7 : lS21l2 . (r1.14)

Another special case is the unilateral transducer power gain, G7y, where Srz : 0 (or is
negligibly small). This nonreciprocal characteristic is common to many practical amplifier
circuits. From (11.3a), fin : S11 when Srz = 0, so (11.13) gives the unilateral transducer
gain as

EXAMPLE 11.1 COMPARISON OF POWER GAIN DEFINITIONS

A microwave transistor has the following S parameters at 10 GHz, with a 50 Q
reference impedance:

srr :0.4545Q'

Srz :0.01 ,z-10"

Szt : 2'05 /10"

Szz:0.40/-150"

The source impedance is Zs - 20 Q and the load impedanceis Zp: 30 O. Com-
pute the power gain, the available gain, and the transducer power gain.
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Solution
From (11.la,b) the reflection coefficients at the source and load are

rr: z-!:l!: 
=1 - -o.4zs,

Z s * Z o  2 0 + 5 0

r, : z-!: 3-o-: 1:* : *0.250.
Z r * Z o  3 0 + 5 0

From (11.3a,b) the reflection coefficients seen looking at the input and output of
the terminated network are

f ; .  :  s , ,  *  
srzszt f r  :o .45z l5o '  +
I - S22f1

:0.455/150",

f^,,r : ,r, * 
stzszl fs : o.4oll 50" +- -  
I  - 5 1  1 f 5

: 0 . 4 0 8 2 - 1 5 1 " .

Then from (l 1.8) the power gain is

lszr12 (1 - l fr l ' � ) Q.orz [r - 1o.zso;'�]
(r - lrrl') lr - szzril2

: 5 . 9 4 .
Ir - (0.+oz=15Q') t-o.zso)l' t1 - (0.4ss)'�1

From (11.12) the available power gain is

G a :
lsz ,12 (1 -  l rs12) Q.orztll - Q. }cDzl

l l  - srlrs12 (1- lr*,1') lr - (0.+sz-tso'){-0.+zDl' t1 - (0.40s)21
:  5 .85 .

From (1 1.13) the transducer power gain is

l sz r12  ( l  -  l r s12 )  ( t  -  l r r l ' )" z :  p - * a * ; 1 t - t r a . , z

Q.Or2 U - Q.42\21t1 - (o.2so)21
: 5 . 4 9 .

lr - (0.+oz-tso') {-o.zso)l' lt - 1-0.+zs) (0.+ssz-tso';1" I

Further Discussion of Two-Port Power Gains

A single-stage microwave transistor amplifier can be modeled by the circuit of Figure 11.2,
where a matching network is used on both sides of the transistor to transform the input and

zo

-)
Y

Input
matching

circuit
G"

- l r Transistor

t,rl
Go

--l r
Output

matching
circuit

GL

T' l- |.
J  

_ l n

(0.0 1 /* 1 0')(2.05 l8')(-0.250)
I - (0.40/-150'x-0.250)

(0.0 1 /- 1 0';1 2.05 a0\e0.429)
I - (0.4s15Q')e0.429)

4

FIGURE 11.2 The general transistor amplifier circuit.
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output impedafice Zs to the source and load impedances Zs and ZuThe most useful gain
definition for amplifier design is the transducer power gain of (11.13), which accounts for
both source and load mismatch, Thus, from (11.13), we can define separate effective gain
factors for the input (source) matching network, the transistor itself, and the output (load)
matching network as follows:

Then the overall transducer gain is Gr : GsGoG;. The effective gains from Gs and G1
are due to the impedance matching of the transistor to the impedance Zs.

If the transistor is unilateral, so that Srz : 0 or is small enough to be ignored, then
(1 1.3) reduces to f6 : Sl1, foo, : Szz, and the unilateral transducer gain reduces to G ru -

G5GsG1, where

l - l f " l 2
Gs : -----i--:: ^,-  

11  -  f i n f s l '

Gs:  lS^12 ,

1 - l f ' 1 2
Gr : - - - - - - * .- 

11 - SzzlLl '

1  -  l f s l 2
Lts: ---------------- ,-  

l 1 -  s r r f s l '

Gg:  lS^12 ,

I  -  l f z 1 2
( r t : - .- 

l l  - Szzltl '

( l  1 .16a)

(1 1.16b)

(1 1.16c)

(11.17a)

(1  1 .17b)

(r1.ri c)

The above results have been derived using the S parameters of the transistor, but it is
possible to obtain alternative expressions for gain in terms of the equivalent circuit para-
meters of the transistor. As an example, consider the evaluation of the unilateral transducer
gain for a conjugately matched GaAs FET using the equivalent circuit of Figure 10.34
(with C ga : 0). To conjugately match the transistor we choose source and load impedances
as shown in Figure 11.3. Setting the series source inductive reactance X: llaCs, will
make Zin : 23, and setting the shunt load inductive susceptance B - -aCas will make
Zott : Zi;this effectively eliminates the reactive elements from the FET equivalent circuit.
Then by voltage division V, : Vsl2jaR;Cs,, and the gain can be easily evaluated as

f l s^v , |2  Ra,  g2^Ra,
G r u :

lvA'/n,  
-  

4at2RiCzs,
( l l . l 8 )

where the last step has been written in terms of the cutoff frequency, f7 , from ( 10.78). This

Py

Puu. H(?,

Z ou,Zin

Unilateral FET equivalent circuit and source and load terminations for
tion of unilateral transducer power gain.

FIGURE 11.3 the calcula-
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FIGURE 11.4 Photograph of a low noise MMIC amplifier using three HEMTs with coplanar
waveguide circuitry. The amplifier has a gain of 20 dB from 20 to 24 GHz. The

contact pads on the left and right of the chip are for RF input and output, with DC

bias connections at the top. Chip dimensions are 1.1 x 2.0 mm.

Courtesy of R. W. Jackson and B. Hou of the University of Massachusetts-Amhe$1, and
J. Wendler of M/A-COM, Lowell, Mass.

11.2

shows the interesting result that the gain of a conjugately matched FET amplifier drops off
as L lfz, or 6 dB per octave. A photograph of a MMIC low-noise amplifier is shown in
Figure 11.4.

STABILITY

We now discuss the necessary conditions for a transistor amplifier to be stable. In the
circuit of Figure 11.2, oscillation is possible if either the input or output port impedance
has a negative real part; this would then imply that |fnl > 1 or lfourl > 1. Because l-io
and foul depend on the source and load matching networks, the stability of the amplifier
depends on f 5 and fz as presented by the matching networks. Thus, we define two types of
stability:

(Jnconditional stability: The network is unconditionally stable if lfi"l < 1 and

lfou,l < l for all passive source and load impedances (i.e., lfsl < l and lfrl < 1).
Conditional stability: The network is conditionally stable if lfinl < 1 and lfoull < I
only for a certain range of passive source and load impedances. This case is also
referred to as potentially unstable.

Note that the stability condition of an amplifier circuit is usually frequency dependent,
since the input and output matching networks generally depend on frequency. Thus it is
possible for an amplifier to be stable at its design frequency, but unstable at other frequen-
cies. Careful amplifier design should consider this possibility. We must also point out that
the following discussion of stability is limited to two-port amplifier circuits of the type
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shown in Figure I1.2, and where the S parameters of the active device can be measured
without oscillations over (he frequency band of interest. The rigorous general treatment of
stability requires that the network S parameters (or other network parameters) have no poles
in the right-half complex frequency plane, in addition to the conditions that lfiol < 1 and

I fou, I < 1 [6]. This can be a difficult assessment in practice, but for the special case consid-
ered here, where the S parameters are known to be pole-free (as confirmed by measurability),
the following stability conditions are adequate.

Stability Circles

Applying the above requirements for unconditional stability to (11.3) gives the following
conditions that must be satisfied by f5 and fr if the amplifier is to be unconditionally
stable:

If the device is unilateral (Srz :0), these conditions reduce to the simple results that

I Sr I | < I and I S22 | < 1 are sufficient for unconditional stability. Otherwise, the inequalities
of ( I 1. 1 9) define a range of values for f 5 and f 1 where the amplifier will be stable. Finding
this range for f5 and f1 can be facilitated by using the Smith chart, and plotting the input
and output stability circles. The stability circles are defined as the loci in the f; (or f5)
plane for which lf6l : 1 (or lfootl : 1). The stability circles then define the boundaries
between stable and potentially unstable regions of f5 and fr. fs and f1 must lie on the
Smith chart (lfsl < 1, lfzl < 1 forpassive matching networks).

We can derive the equation for the output stability circle as follows. First use (11.19a)
to express the condition that lfirl : I as

r f iot  :1r, ,* f f i1 =t,

rroo,r : lr,*ff i1 .t

l ',,*ffi1:',
lSrr(1 - Szzl)* ^i12'l21f1l : l1 - Szzlrl.

(1 1.19a)

(1 1.19b)

(1r.20)

Now define A as the determinant of the scatterins maffix:

A: SrrSzz - SrzSzr.

Then we can write the above result as

(11.2r)

l s r l - A f r l  : 1 1 - S z z l L l . (rr.22)

Now square both sides and simplify to obtain

lsrr12 + l l12lrr12 - (afzsl l  + a.f;s11) : r + lszzlzl l i lz -(sizf i  * szzl)

( lSzz l2 -  lA l2) rz f ;  - (Szz-  ASf l ) r l  -6 ; r -  a*s11)r ; :  ls l r12 -  1

(S22 -  ASi ' ) f r  * (S iz  -  A*Su) f I  _  lSr '12 -  l  _  .  01.23),  t r  t -  :  
; 5 r p  _  1 n 1 ,
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Next, complete the square by adding I S22 - A Sir 12 l(Szzl2 - | A 12 )2 to both sides:

(tt.24\

Inthecomplexf plane,anequationoftheform lf - Cl : Rrepresentsacirclewithcenter
at C (a complex number) and a radius R (a real number). Thus, (11.24) defines the output
stability circle with a center C p and radius R1, where

l -  (s22 -  as i r ) .12 lsr r l2  -  |

I ' L -  l s r r r - l A P  |  
:  

l s r r P - | l P  
-

l -  (S22 - ASfr)-  |  |  SrzSzr I
I ' t  

-  
lszr l ,  -  L \p  l :  lp r rp  -  L l r l

,,:fffiffi (center),

o.:l6ffhl r,uaio,r

tr:frffi (center),

o':lffiiul ouut"u'

lS22 - ASi1l2
(lszzlz - lt1z1z'

Similar results can be obtained for the input stability circle by interchanging S11 and S22:

(rI.25a)

(11.2sb)

(11.26a)

(rr.26b)

Given the S parameters of the transistor, we can plot the input and output stability
circles to define where lf;nl : I and lfou,l : 1. On one side of the input stability circle
we will have lfoo,l < 1, while on the other side we will have lfoo,l > 1. Similarly, we will
have lfi,,l < 1 on one side of the output stability circle, and lfinl > I on the other side. So
we now need to determine which areas on the Smith chart represent the stable region, for
which lf i. l  < I and lfou,l < 1.

Consider the output stability circles plotted in the f1 plane for lSrr I < 1 and lS11l > 1,
as shown in Figure 11.5. If we set ZL - Zo,then fr :0 and (11.19a) shows that lfinl :

lSrr l. Now if lslt | < 1, then lfml < 1, so f1 : 0 must be in a stable region. This means
that the center of the Smith chart (fz : 0) is in the stable region, so all of the Smith chart
( | f r | < I ) that is exterior to the stability circle defines the stable range for f ;. This region is

FIGURE11.5 Outputstabi l i tycirclesforacondit ional lystabledevice.(a)lSrr l< l .(b)lJrr l> 1.
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shadedinFigurel l .5a.Al ternat ive ly , i fweset  Zr :ZobuthavelSrr l> l , thenl f in l  > 1
for fl : 0 and the center of the Smith chart must be in an unstable region. In this case the
stable region is the inside region of the stability circle that intersects the Smith chart, as
illustrated in Figure 11.5b. Similar results apply to the input stability circle.

If the device is unconditionally stable, the stability circles must be completely outside
(or totally enclose) the Smith chart. We can state this result mathematically as

l l c r l -  R r l  >  1 ,

l l c s l  - R s l  > 1 ,

for  lS11l  < 1,

for lSzzl < 1.

(Ir.27a)

(rr.27b)

If lslll > 1 or lSzzl > 1, the amplifier cannot be unconditionally stable because we can
always have a source or load impedance of 26 leading to f5 - 0 or f1 : 0, thus causing

lfnl > 1 or lfooll > 1.If the device is only conditionally stable, operating points for f5
and f; must be chosen in stable regions, and it is good practice to check the stability at
several frequencies near the design frequency. Ifit is possible to accept a design with less
than maximum gain, a ffansistor can usually be made to be unconditionally stable by using
resistive loading.

Tests for Unconditional Stability

The stability circles discussed above can be used to determine regions for f 5 and fp where
the amplifier circuit will be conditionally stable, but simpler tests can be used to determine
unconditional stability. One of these is the K - L, test, where it can be shown that a device
will be unconditionally stable if Rollet's condition, defined as

K _
1-  lSrr12 - lSzz lz  + la12> 1 , (r 1.28)

2lsnsnl

along with the auxiliary condition that

lA l  :  lS11S22 -  S12S21l  < 1, (r1.29)

are simultaneously satisfied. These two conditions are necessary and sufficient for uncon-
ditional stability, and are easily evaluated. If the device S parameters do not satisfy the
K - A test, the device is not unconditionally stable, and stability circles must be used to
determine if there are values of f5 aad f1 for which the device will be conditionally stable.
Also,recallthatwemusthave lSrr| < I and lSzzl < 1if thedeviceistobeunconditionally
stable.

While the K - A test of (11.28)-(11.29) is a mathematically rigorous condition for
unconditional stability, it carmot be used to compare the relative stability of two or more
devices since it involves constraints on two separate parameters. Recently, however, a new
criterion has been proposed [7] that combines the S parameters in a test involving only a
single parameteL p,, defined as

1 -  l S r r 1 2 > 1 . (1 1.30)p L :
l S r r - A S f ,  l * l S ' r S r ' l

Thus, if 1.t > 1, the device is unconditionally stable. In addition, it can be said that larger
values of pc imply greater stability.
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We can derive the pc-test of (11.30) by starting with the expression from (11.3b) for
fouti

S12S21f5  S22 -  A f5
'  o v t -  v z z '  

I  - 5 1 1 1 5  
-  

I  - S r r f s '
( 1 1 . 3 1 )

(1 1.33a)

(11 .33b)

(rr.34)

where A is the determinant of the S matrix defined in (11.21). Unconditional stability
implies that lfoo,l < 1 for any passive source termination, f5. The reflection coefficient for
a passive source impedance must lie within the unit circle on a Smith chart, and the outer
boundaryof  th isc i rc lecanbewr i t tenasf5:  eta.Theexpressiongivenin(11.31)maps
this circle into another circle in the fool plane. We can show this by substituting I s * sra
into (11.31) and solving for eta:

o J Q  -
Szz - foo,

A - S11fou1

Taking the magnitude of both sides gives

l s r r - r * ,  1 - r .
lA  -  51  1 fou1  |

Squaring both sides and expanding gives

lf"*12(1 - lsrr12) f fo6(A*s11 - slr l+ f;ut(asir - szz)-lLlz - lszzlz

Next, divide by I - l511 12 to obtain

lfou,12 *
(A*Srr - Siz)fout * (ASL - Szz)fJut _ lLlz - lSzzl2

1  -  l S r r 1 2 I  -  l S r r 1 2

Now comptere the square by adding lo, t'i; 
li'J' to both sides:

( l  -  lS r r l ' ) '

l a^ , , ,  *  
AS i r  -  szz  

12  _  la l2  -  l sz?12 *  lA*s ,  -  s iz l2  _  l s rzszr12  _  .  ( r t .32 \
l r o u r '  l - l s r r l t l -  l - l s r r 1 2  

'  
( l _ l s , , l r ) ,  ( r _ l s , , l r ) r '  

\ L t ' J ' '

This equation is of the form lfoul - Cl : R, which represents a circle with center C and
radius R in the fou; plane. Thus the center and radius of the mapped lfsl : 1 circle are
given by

^ S22 - ASil
L : -

I  -  lSrr  l '

4 : lsrzszr l- .
1 -  l S r r l '

If points within this circular region are to satisfy lf ou, | < 1, then we must have that

l c l +  R  <  l .

Substituting (11.33) into (11.34) gives

ls22 -  As i l l *  ls12s21l  .  1-  lsu l2

which after rearranging yields the tr-c-test of (11.30):

1  -  l S r r 1 2
lS22 - ASir l*  lSrzSzrl

> 1 .
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The K - A test of ( 1 1 .28)-( 1 1 .29) can be derived from a similar starting point, or more
simply from the p-test of (11.30). Rearranging (11.30) and squaring gives

ls22 -  as i r l '  .  ( l  -  ls r r  12 -  ls rzSu r  l )2 .

It can be verified by direct expansion that

ls22 - ASil;2 - ls12s21l '+ (t - lsrr12)(lszrl '  -  l t l ' ) ,

so (1 1.35) expands to

lsrzszr l ' �+( t  -  ls r r l t ) ( lszz l t  -  lA l ' )=(1-  ls '12)(1 -  ls r r12 -2 lsnsul )+ lsrzszr12.

Simplifying gives

lSzz l2  -  lA l2  =  1 -  lSr r12  -Z lSnSx l ,

which yields Rollet's condition of (11.28) after rearranging:

I  -  l s r r12  - l szz l z  +  l a l z: K > 1 .
2lsnsnl

In addition to ( 1 1 .28), the K - A test also requires an auxiliary condition to guarantee
unconditional stability. Although we derived Rollet's condition from the necessary and
sufficient result of the p-test, the squaring step used in ( I 1 .35) introduces an ambiguity in
the sign of the right-hand side, thus requiring an additional condition. This can be derived
by requiring that the right-hand side of (l 1.35) be positive before squaring. Thus,

l s r z S z r l < l - l S r r 1 2 .

Because similar conditions can be derived for the input side of the circuit, we can
interchange S11 and S22 to obtain the analogous condition that

l S r z S z r l  . l - l S z z 1 2 .

Adding these two inequalities gives

2lSny.Szrl < 2 - lSil2 - lSzzl2.

From the triangle inequality we know that

lAl  :  lS11S22 - SrzSzrl  < lSrrSzzl *  lSrzSzrl ,

so we have thal

( 1 1 . 3 5 )

l^ l  <  ls r l l ls2z l+ t  -  l ts ' , t '  - ) ts r r l ' .  r  -  j ( ts ' '  12 * ls rz l ' ) . r ,

Srr : 0.894/-60.6",

Szr :3. I22/123.6",

Sn:0.02062'4",

Szz : 0.787 /-27.6" .
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Determine the stability of this transistor by using the K - A test and the p-test,
and plot the stability circles on a Smith chart.

Solution
From (11.28) and(1I.29) we compute K and lAl as

lAl : l51152z - S:r1"Szrl:10.696/-83'l :0.696,

K _
1 -  ls r r  12 -  lszz lz  + la l2:0 .607.

2lSnSxl

Thus we have lAl :0.696 < 1, but K < l, so the unconditional stability criteria
of (11.28)-(11.29) is not satisfied, and the device is potentially unstable. The
stability of this device could also be evaluated using the p-test, for which (1 1.30)
gives pc : 0.86, again indicating potential instability.

The centers and radii of the stability circles are given by ( 1 1 .25) and (Il .26):

(s22 - asir)*, r :  
f r l r a . * : 1 . 3 6 1 r 4 7  

.

n, : -{tStll= :0.50." 
lSzzl ' -  l4 l '

6:, : 
(s.5 3-sirf : t.t32r68'." 
lSn l' - l\l'

o, :#*h:o. lee.

This data can be used to plot the input and output stability circles, as shown
in Figure 11.6. Since lSrr I < 1 and lS22l < 1, the central part of the Smith chart
represents the stable operating region for f5 and f1. The unstable regions are
darkened.

SING LE.STAGE TRANSISTOR AMPLIFIER DESIGN

Design for Maximum Gain (Conjugate Matching)

After the stability of the transistor has been determined, and the stable regions for f5 and
f; have been located on the Smith chart, the input and output matching sections can be
designed. Since Go of ( 1 1.16b) is fixed for a given transistor, the overall gain of the amplifier
will be controlled by the gains, G5 and G1, of the matching sections. Maximum gain will be
realized when these sections provide a conjugate match between the amplifier source or load
impedance and the transistor. Because most ffansistors appear as a significant impedance
mismatch (large lS11l and lSzl), the resulting frequency response will be narrowband.
In the next section we will discuss how to design for less than maximum gain, with a
corresponding improvement in bandwidth. Broadband amplifier design will be discussed in
Section 11.4.

WithreferencetoFigure ll.2andourdiscussioninSection2.6onconjugateimpedance
matching, we know that maximum power transfer from the input matching network to the
transistor will occur when

T

1 1 . 3

fin : f3, (1 1.36a)
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Input
stability

circle

Output
stability
circle

FIGURE 11.6 Stability circles for Example 11.2.

and the maximum power transfer from the transistor to the output matching network will
occur when

fout - fi. (1 1.36b)

Then, assuming lossless matching sections, these conditions will maximize the overall
transducer gain. From (11.13), this maximum gain will be given by

In the general case with a bilateral transistor, f1 is affected by foor, and vice versa, so
that the input and output sections must be matched simultaneously. Using ( 1 1 .36) in ( 1 1.3)
gives the necessary equations:

_  I  . ^ . ,  l - l f r l 2
Gr ,u *  :  

t  _  11 - ,112  
l sz r l - , 1  _  5 r1 ip .

r3: s' + *#,
rL: szz- *ffi

(rr.37)

(1 1.38a)

(11 .38b)
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We can solve for f5 by first rewriting these equations as follows:

rs: sir 1- 
JL-$r-

t1 ri - Si2

r* S22 - Af5
' r -  

l - s l l f s '

where A : Sn Szz - SrzSzr. Substituting lhis expression for fi into the expression for f5
and expanding gives

rr(1 - lszzlz)+ r3(As;-srr) : rs(asilsi2- lsrr12-Asbs;r)

+ sl1(1 - lszzlz) + sizshs2z.

Using the result that A(SirSi2 - Si2S;1) : lAl2 allows this to be rewritten as a quadratic
equation for f5:

(s11 - as;2)r! + ( l l t ' � -  lsrr12 *lszzl2 * 1)rr + (sl l  - A*s22) - Q,

The solution is

B r *
f s :" 2Cr

Similarly, the solution for l1 can be written as

B z l
f l :

The variables Br, Cr, Bz, Cz are defined as

Br  :  I *  lSn12 -  lszz lz  -  la12,
Bz:  |  - t  lSzz l2 -  ls r r12 -  la12,

C t : S t t - L S ; z ,

Cz:  Szz -  ASir .

2Cz

(11.3e)

(1 1.40a)

(11.40b)

(11 .41a)

(11 .4 lb )

(11 .41c)

(11 .4 ld )

(rr.42)

Solutions to (11.40) are only possible if the quantity within the square root is positive, and
it can be shown that this is equivalent to requiriug K > l. Thus unconditionally stable
devices can always be conjugately matched for maximum gain, and potentially unstable
devices can be conjugately matched if K > I and lAl < 1. The results are much simpler
for the unilateral case. When Srz : 0, (11.38) shows that fs : Sl and f1 : Siz, and then
maximum transducer gain of (11.37) reduces to

Gru^":,, _fi*,r 'f ds.p.
The maximum transducer power gain given by (11.37) occurs when the source and load are
conjugately matched to the transistor, as given by the conditions of ( 1 1 .36). If the transistor

B?  -   l c t l z



11.3 Single-Stage Transistor Amplifier Design 551

is unconditionally stable, so that K > l, the maximum ffansducer power gain of (11.37)

can be simply rewritten as follows:

(r1.43)

This result can be obtained by substituting (11.a0) and (11.41) for f5 and f1 into (11.3'l)
and simplifying. The maximum transducer power gain is also sometimes referred to as the
matched gain. The maximum gain does not provide a meaningful result if the device is
only conditionally stable, since simultaneous conjugate matching of the source and load
is not possible if K < 1 (see Problem 11.7). In this case a useful figure of merit is the
maximumstablegain,definedasthemaximumtransducerpowergainof(11.43)withK:1.
Thus.

/: - lSzr I"^ t  -  
ls rz l '

(rr.44)

The maximum stable gain is easy to compute, and offers a convenient way to compare the
gain of various devices under stable operating conditions.

EXAMPLE 11.3 CONJUGATELY MATCHED AMPLIFIER DESIGN

Design an amplifier for maximum gain at 4.0 GHz using single-stub matching
sections. Calculate and plot the input return loss and the gain from 3 to 5 GHz.
The GaAs FET has the following S parameters (Zs : 50 Q):

f (GHz)

Gr**-l#," -JK,-1).

Szz,SrzSzrSrr

3.0
4.0
5.0

0.80L_89"
0.72/-116"
0.66t-142'

2.86/99"
2.60D_6"
23e6!"

0.03d6'
o.$&"
o.B&"

0.76/-41"
0.73/-54"

0.72L68"

Solution
We first check the stabilitv of the transistor bv calculatins A and K at 4.0 GHz:

A : SrrSzz - SrzSzr - 0.488/ -162",

K _
1-  l s r r12  - l szz lz  +  la l2= 1 .195.

2ls:r,sl,l

Since lAl < 1 and K > I, the transistor is unconditionally stable at4.O GHz.
There is no need to plot the stability circles.

For maximum gain, we should design the matching sections for a conjugate
match to the ffansistor. Thus, f5 : f[ and f1 : f]o1, and f5, f1 can be deter-
mined from (11.40):

B , iJ4-4tc*
f s :

f l :

2Ct

B ,+J  4  -  4w

:0.872/ I23"

:0.87661" .
2Cz
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Then the effective gain factors of ( 1 I .16) can be calculated as

Gs :  --1------  :4.17: 6.20 dB,
I  -  l r s l '

Gs  :  lS21 12  :6 .76 :  8 .30  dB,

c, : -J: f t! - : r.6i :2.22 dB.
ll - S22l7l' �

So the overall transducer gain will be

Gr** : 6.20 + 8.30 + 2.22 : 16.7 dB.

The matching networks can easily be determined using the Smith chart. For the
input matching section, we first plot fs, as shown in Figure 11.7a. The impedance,
Zs, represented by this reflection coef8cient is the impedance seen looking into
the matching section toward the source impedance, 26. Thus, the matching section
must transform Zs to the impedance Z s. There are several ways of doing this, but

Length of
open-circuited

stub 0.206,\

( a )

FIGURE 11.7 Circuit design and frequency response for the transistor amplifier of Example 1 1.3.
(a) Smith chart for the design of the input matching network.



11.3 Single-Stage Transistor Amplifier Design 553

-20
J-t, 3.5 4.0 4.5

Frequency (GHz)

(c)

FIGURE 11.7 Continued. (b) RF circuit. (c) Frequency response.

we will use an open-circuited shunt stub followed by a length of line. Thus we
convert to the normalized admittance y' and work backward (toward the load on
theSmithchart)tofindthatalineof length0.i20),willbringustothe I t jbcircle.
Then we see that the required stub admittance is *j3.5, for an open-circuited stub
length of 0.206X. A similar procedure gives a line length of 0.206.1. and a stub
length of 0.206)" for the output matching circuit.

The final amplifier circuit is shown in Figure 11.7b. This circuit only shows
the RF components; the amplifier will also require some bias circuitry. The return
loss and gain were calculated using a CAD package, interpolating the necessary
S parameters from the table on page 551. The results are plotted in Figure 11.7c,
and show the expected gain of 16.7 dB aL 4.O GHz, with a very good return loss.
The bandwidth where the gain drops by I dB is abott2.5%o. I

Constant Gain Circles and Design for Specified Gain

In many cases it is preferable to design for less than the maximum obtainable gain, to
improve bandwidth or to obtain a specific value of amplifier gain. This can be done by
designing the input and output matching sections to have less than maximum gains; in
other words, mismatches are purposely introduced to reduce the overall gain. The design
procedure is facilitated by plotting constant gain circles on the Smith chart, to represent loci
of 15 and f1 that give fixed values of gain (G5 and G1). To simplify our discussion, we will

0.206 i
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only treat the case of a unilateral device; the more general case of a bilateral device must
sometimes be considered in practice and is discussed in detail in references lll,l21, and [3].

In many practical cases lS12l is small enough to be ignored, and the device can then
be assumed to be unilateral. This greatly simplifies the design procedure. The error in the
transducer gain caused by approximating lSrz I as zero is given by the ratio Gr /Gru.lt can
be shown that this ratio is bounded by

I G r l

t t + u f  
' G * ' 1 t * u y '

where U is defined as the unilateral figure of merit,

U _ lS rz l lSz r l lS r r l lSzz l

(11.4s)

(11.46)

(rI.47a)

(r1.47b)

(11.48a)

(1i .48b)

(r1.49)

(1 -  ls, , l r )(1 -  lSzzl2) '

Usually an effor of a few tenths of a dB or less justifies the unilateral assumption.
The expressionfor G5 and G1 fortheunilateral case are givenby (1 1.17a) and (Il.L7c):

_  I  _  l f s l 2
f-

l l  -  5 1 1 f 5 l 2 '

^  I  -  l f r l 2
Gt : 

[ -J22frP'

These gains are maximized when f s : Sir and f 1 : Siz, resulting in the maximum values
given by

I
G s ' -  :  

1 _ | s r l P '
I

Gr^*:  
T_ ls*.

Now define normalized gain factors gs and gz as

G 5  l - l f s l 2  , a  , ^ , r \gs  :  
cs *  

:  
1 l  _  5 *p  

( l  -  lS r r  l ' ) .

G 7  l - ; 1 - - t zrr: i*: I rs],fu(t - lsrrl ').

Then we have that 0 = gr < l, and O . gt . l.
Forfixedvaluesof 95 ff idgL,(11.48)representscirclesinthef5orflplane.Toshow

this, consider (l 1.48a), which can be expanded to give

ssl l  -  srrrs12 :  (1 -  l r r l ' ) (1 -  ls , ,12),

(sr lsrr  l '  + t  *  lsrr12) l rs12 -  ss(srr fs *  s i , r ] ;  :  1 -

r r*  gs(Srrfs + si l f3) 1 -  lsrr  l t  -  gt
r s r s -  

I - ( l - g s ) U r r f  
:  

l - ( l - g s ) l s r P '

Now add (s3lsr r l2)/tt - ( 1 - gs)lsrr l2l2 to both sides to complete the square:

1.. -
t -

gss i r  l2  _ ( t  -  ls t r12 -  sr ) [ t  -  ( t  -  sr ) ls r r12]  + s3 lsr t12
1 - ( l  - ss)lsl 12 | 

- 
[r - rr - ss)lsu l2]2
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Simplifying gives

l', -I - (1 - ss)lSrr 12
t_
t-

J T - s s ( r - l s r r l 2 )
I  -  (1  -  gs ) lSr r12  '

grsir

which is the equation of a circle with its center and radius given by

gssir

( l  1.50)

(11 .51a)

(11 .s  lb )

(Il.52a)

(11.52b)

C s :

R s :

1  -  (1  -  g r ; lSr r  12 '

/T - sr(t - lsrr l ')
l * ( 1  - s s ) l S r r 1 2

The results for the constant gain circles ofthe output section can be shown to be,

sts;2
l - ( 1  - s i l l S z z l z '

JT-n(t- lsrr l2)
R l :

1 - ( 1  - s ) l S z z l z

The centers of each family of circles lie along straight lines given by the angle of Sft or
Sjr. Note that when gs (or gr) : 1 (maximum gain), the radius R5 (or Rr) :0, and the
center reduces to SI1 1or Sj2), as expected. Also, it can be shown that the 0 dB gain circles
(Gs - I or G p : 1) will always pass through the center of the Smith chart. These results
can be used to plot a family of circles of constant gain for the input and output sections.
Then f5 and f1 can be chosen along these circles to provide the desired gains. The choices
for f5 and f1 are not unique, but it makes sense to choose points close to the center of
the Smith chart to minimize the mismatch and thus maximize the bandwidth. Alternatively,
as we will see in the next section, the input network mismatch can be chosen to provide a
low-noise desisn.

EXAMPLN 11.4 AMPLIFIER DESIGN FOR SPECIFIED GAIN

Design an amplifier to have a gain of 11 dB at 4.0 GHz Plot constant gain circles
for G5 :2 dB and 3 dB, and G p: 0 dB and 1 dB. Calculate and plot the input
return loss and overall amplifier gain from 3 to 5 GHz. The FET has the following
S parameters (Zs = 5OQ):

f (GHz) Srr Szz,SrzSzr

J

A

5

0
0
0

0.66t-50"
0.60L=J0"
0.58/-85"

Solution
Since S12 : 0 and lSrr | < 1 and lS22l < 1, the transistor is unilateral and uncon-
ditionally stable. From (11.41) we calculate the maximum matching section gains
AS

0.80/-90"
0.75/-120"
o.7l/-140"

2.8r100"
2.s,80"
2s@"

Gs.* : -#p 
:2.2e: 3.6 dB,

GL^u, :  
dW: 

1.56:  1 .9 dB.
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The gain of the mismatched ffansistor is

Go :  lSv l2 :  6 .25:  8.0 dB,

so the maximum unilateral transducer gain is

Gtv^* : 3.6 + L.9 * 8.0 : 13.5 dB.

Thus we have 2.5 dB more available gain than is required by the specifications.
We use (11.48), (11.51), and (11.52) to calculate the following data for the

constant sain circles:

G s : 3 d B
G s : 2 d B
G r : l d B
G r : 0 d B

8s - 0.875

8s : 0.691

8r : 0.806

8r :0.640

Cs :0.706/120"

Cs :0.627 1120"

CL :0.520/70"

CL :0.440/70"

Rs : 0.166

Rs :0-294

Rr : 0.303
Rr :0.440

The constant gain circles are shown in Figure 1 1.8a. We choose G s : 2 dB and
Gr:7 dB, for an overall amplifier gain of 11 dB. Then we select f5 and f1

( a )

Circuit design and frequency response for the transistor amplifier of Example 1 1 .4.
(a) Constant gain circles.

FIGURE 11.8
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FIGURE 11.8 Continued. (b) RF circuit

4.0 4.5 5.0

Frequency (GHz)

(cJ

(c) Transducer gain and return loss.

along these circles as shown, to minimize the distance from the center of the chart
(this places f5 and f1 along the radial lines at I20' and 70', respectively). Thus,
f s : 033 /120o and f1 : 0.22/70' , and the matching networks can be designed
using shunt stubs as in Example 1 1.3.

The final amplifier circuit is shown in Figure 11.8b. The response was calcu-
lated using CAD software, with interpolation of the given S parameter data. The
results are shown in Figure 11.8c, where it is seen the desired gain of 11 dB is
achieved at 4.0 GHz. The bandwidth over which the gain varies by +1 dB or less
is about 25Vo, which is considerably better than the bandwidth of the maximum
gain design in Example 11.3. The return loss, however, is not very good, being
only about 5 dB at the design frequency. This is due to the deliberate mismatch
introduced into the matching sections to achieve the specified gain. I

Low-Noise Amplif ier Design

Besides stability and gain, another important design consideration for a microwave amplifier
is its noise figure. In receiver applications especially, it is often required to have a preamplifier
with as low a noise figure as possible since, as we saw in Section 10.1, the first stage of a
receiver front end has the dominant effect on the noise performance of the overall system.
Generally it is not possible to obtain both minimum noise figure and maximum gain for an

0.045 l
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amplifier, so some sort of compromise must be made. This can be done by using constant
gain circles and circles of constant noise figure to select a usable trade-off between noise
figure and gain. Here we will derive the equations for constant noise figure circles, and
show how they are used in transistor amplifier design.

As derived in references [4] and [5], the noise figure of a two-port amplifier can be
expressed as

Is : Gs * j Bs : source admittance presented to transistor.

lopt : optimum source admittance that results in minimum noise figure.

F-n : minimum noise figure of transistor, attained when Y5 : Iopt.

Rn : equivalent noise resistance oftransistor.

Gs : real part of source admittance.

Instead of the admittance Y5 and Yoolo we can use the reflection coefficients f5 ?nd f6p1,
where

Rn,
F :F* in+ i l lYs  -Yop , l '

where the following definitions apply:

1 1 - f "
Y " : -"  Z o 1 * f s

'  l l - f o p r

Zg | * lopl

- ,  .1  4 l fs  -  fop, l2l r s -%p, l ' : 4 [+ f f f i

1  1  -  l f s lz
4nTTfr

( l  1 .s3)

(11.54a)

(11.54b)

(11.s5)

(11.s6)

(11.s7)

f5 is the source reflection coefficient defined in Figure 11.1. The quantities F-in, fopt,
and R1,. are characteristics of the particular transistor being used, and are calledthe noise
parameters of the device; they may be given by the manufacturer, or measured.

Using (11.54), the quantity lYs - Yoorlz can be expressed in terms of f s and fool:

Also,

G s : R e t ) ' s l : :  f =  +  = ) :2 Z o \ l * r s  I + r . i /

Using these results in (11.53) gives the noise figure as

For a fixed noise figure, F, we can show that this result defines a circle in the f 5 plane.
First define the noise figure parameter, N, as

r  D  , 4 R 1 y  l f s - f o p , l 2
I _'  - r m r n '  

Z o  \ l - l f s l 2 l l l * f o p , l z '

':{:t'$:ffi, +r.p,r2 (1 1.s8)
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which is a constant, for a given noise figure and set of noise parameters. Then rewrite
(11.58)  as

(fs - foptxf} - f;0,) : N(l - lfslt),

fsfS - (fsfJp, + fjf.pt) + foptf;pt - N - Nlfs12,

r r* 
(fsfjo, * f lfop') N - l lop, 12r J r s -  

A / + l  
:  

A / + l  
.

Now add lf,p,l2/(N * 1)2 to both sides to complete the square to obtain

t F l
l -  ' o p t  I

|  
"  N + 1 1 ( N + 1 )

This result defines circles of constant noise fieure with centers at

(r r.se)

(1 1.60a)

(1 1.60b)

co : 
fon'

'  
N + l

and radii of

N + 1

EXAMPLE 11.5 LOW.NOISEAMPLIFIERDESIGN

A GaAs FET is biased for minimum noise figure, and has the following S pa-
rameters and noise parameters at 4 GHz (Zo :50 Q): Srr - 0.6./-60o, 521 -

1.9 6!", Sp : 0.05 t26o, Sr, : 0.5 / -60". F,,io : 1.6 dB, fopt : 0.62,2100",
Ru :20 9. For design pu{poses, assume the device is unilateral, and calculate
the maximum error in G7 resulting from this assumption. Then design an amplifier
having a2.0 dB noise figure with the maximum gain that is compatible with this
noise figure.

Solution
We first compute the unilateral figure of merit from ( I 1.46):

U _ lSrzSzr Sr r Szz I :0 .059.
( l  -  ls , , l t ) ( r  -  lsr l r )

Then from (1 1.45) the ratio Gr / Gru is bounded as

I

( 1 +  w

0.891

G7 1

G * ' 1 t - r y y '
G '  

.  r . l 3o .
G7ry

N(N.+ 1 -  l fop, l2)

N ( N + 1 - l f , p t l 2 )
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In dB, this is

-0.50 < Gr - Gru < 0.53 dB,

where G7 and G7y are now in dB. Thus, we should expect less than about
+0.5 dB error in gain.

Next, we use (11.58) and (11.60) to compute the center and radius of the 2 dB
noise figure circle:

1 9  _  r : & ' n , ,  _ "  p  _ 1 . 5 8 - 1 . 4 4 5 n + 0 . 6 2 / r o o " p"  -  
4RN/h -  l r  t  I  op t l  :  

+ t zo / so )  ' '  '  v ' v - l - - -  |

: 0.0986,

f^^.Co : f f i : 0 ' 56 /100 '

:0 .24 .
N + 1

This noise figure circle is plotted in Figure 11.9a. Minimum noise figure (Fn;n -

1.6 dB) occurs for f5 - fopr : 0.62/100'.
Next we calculate data for several input section constant sain circles. From

(11.s1) ,

Gs(dB) R5cs

1 .0
1 .5
1 .7

0.805
0.904
0.946

0.52/60"
0.s6@"
0.5816q"

0.300
0.205
0.150

These circles are also plotted in Figure 11.9a. We see that the G5 : 1.7 dB gain
circle just intersects the F :2 dB noise figure circle, and that any higher gain will
result in a worse noise figure. From the Smith chart the optimum solution is then
f  s : 0 . 5 3 / 7 5 ' , y i e l d i n g  G s : 1 . 7  d B a n d  F : 2 . O d B .

For the output section we choose Tr: Siz:0.5/60' for a maximum
Gr of

The transistor eain is

I
GL : ;-----; o : 1.33 = 1.25 dB.

| - lJzzl'

G6  :  lS21  12  :3 .61 :  5 .58  dB ,

so the overall transducer pain will be

Gru : Gs * Go -l Gy : 8.53 dB.

A complete AC circuit for the amplifier, using open-circuited shunt stubs in the
matching sections, is shown in Figure 11.9b. A computer analysis of the circuit

r

N ( N + 1 - l r o p , l 2 )

gave a gain of 8.36 dB.
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FIGURE 11.9 Circuit design for the transistor amplifier of Example 11.5. (a) Constant gain and
noise figure circles. (b) RF circuit.

BROADBAND TRANSISTOR AMPLIFIER DESIGN

The ideal microwave amplifier would have constant gain and good input matching over the
desired frequency bandwidth. As the examples of the last section have shown, conjugate
matching will give maximum gain only over a relatively narrow bandwidth, while designing
for less than maximum gain will improve the gain bandwidth, but the input and output ports
of the amplifier will be poorly matched. These problems zrre primarily a result of the fact

(a)

0.25 i

11.4
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that microwave transistors typically are not well matched to 50 Q, and large impedance
mismatches are governed by the Bode-Fano gain-bandwidth criterion discussed in Section
5.9. Another factor is that lSzrl decreases with frequency at the rate of 6 dB/octave. For
these reasons, special consideration must be given to the problem of designing broadband
amplifiers. Some of the common approaches to this problem are listed below; note in each
case that an improvement in bandwidth is achieved only at the expense of gain, complexity,
or similar factors.

o Compensated matching networks: Input aad output matching sections can be de-
signed to compensate for the gain rolloff in I S21 l, but generally at the expense of the
input and output match.

o Resistive matching networks: Good input and output matching caa be obtained by
using resistive matching networks, with a corresponding loss in gain and increase in
noise figure.

o Negative feedback: Negative feedback can be used to flatten the gain response of
the transistor, improve the input and output match, and improve the stability of the
device. Amplifier bandwidths in excess of a decade are possible with this method,
at the expense of gain and noise figure.

o Balanced amplifiers: Two amplifiers having 90' couplers at their input and output
can provide good matching over an octave bandwidth, or more. The gain is equal to
that of a single amplifier, however, and the design requires two transistors and twice
the DC power.

o Distributed ampliflers: Several transistors are cascaded together along a transmission
line, giving good gain, matching, and noise figure over a wide bandwidth. The circuit
is large, and does not give as much gain as a cascade amplifier with the same number
of stages.

Below we discuss in detail the operation of balanced and distributed amplifiers.

Balanced Amplifiers

As we saw in Example 11.4, a fairly flat gain response can be obtained if the amplifier is
designed for less than maximum gain, but the input and output matching will be poor. The
balaaced amplifier circuit solves this problem by using two 90' couplers to cancel input and
output reflections from two identical amplifiers. The basic circuit of a balanced amplifier
is shown in Figure 11.10. The first 90'hybrid coupler divides the input signal into two
equal-amplitude components with a 90" phase difference, which drive the two amplifiers.
The second coupler recombines the amplifier outputs. Because of the phasing properties of
the hybrid coupler, reflections from the amplifier inputs cancel at the input to the hybrid,

y,. flllf*

v,- <-{lll J
t

GB
+ 1

FIGURE 11.10 A balanced amplifier using 90' hybrid couplers.
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resulting in an improved impedance match; a similar effect occurs at the output of the
balanced amplifier. The gain bandwidth is not improved over that of the single amplifier
sections. This type of circuit is more complex than a single-stage amplifier since it requires
two hybrid couplers and two separate amplifier sections, but it has a nurnber of interesting
advantages:

o The individual amplifier stages can be optimized for gain flatness or noise figure,
without concern for input and output matching.

o Reflections are absorbed in the coupler terminations, improving input/output match-
ing as well as the stability of the individual amplifiers.

o Thecircuitprovidesagracefuldegradationofa-6dBlossingainifasingleamplifier
section fails.

r Bandwidth can be an octave or more, primarily limited by the bandwidth of the
coupler.

In practice, balanced MMIC amplifiers often use Lange couplers, which are broadband and
very compact, but quadrafure hybrids and Wilkinson power dividers (with an extra 90' line
on one arm) can also be used.

If we assume ideal hybrid couplers, then with reference to Figure 11.10 the voltages
incident at the amplifiers can be written as

r t t  -  I  , r+' A t  -  
A ' t  

,

r r *  
- j  

' , *
' B l -  

E ' l '
! L

where V,r is the incident input voltage. Then the output voltage can be found as

- i  I  1  - i
vl : 

--* 
v ̂t, + J=v [, : 

--I 
c ov [, + ]^ c B v i, : 7 v I G e * c a )

la la\ / z  l z  Vz  \ /Z  .  
0 r . 6 r \

where (11.61) was used. Then we can write S21 as

v^- - i
s z r  :  

f  
:  

t ' ( G e * G p ) ,

(11 .61a)

(11 .61b)

(1 1.63)

(11.6s)

which shows that the overall gain of the balanced amplifier is the average of the individual
amplifier voltage gains.

The total reflected voltage at the input can be written as

I  - i  I  i  I
V t -  :  o V t t +  * V i , :  o l e v ; r +  + l B V [ t : ; V 1 - ( f a  

-  f a ) .  ( 1 1 . 6 4 )
\ /Z  \ / z  \ / Z  \ / Z  L

Then we can write S11 as

s , , : f i : | r ro- r r ) .
Iftheamplif iersareidentical,thenGa : GnandfA : fB,and(11.65)showsthatSrr :0,
and (11.63) shows that the gain of the balanced amplifier will be the same as the gain of
an individual amplifier. If one amplifier fails, the overall gain will drop by 6 dB, with the
remaining power lost in the coupler terminations. It can also be shown that the noise figure
of the balanced amplifier is F : (Fe -f Fa)/2, where F6 and Fs are the noise figures of
the individual amplifiers.
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EXAMPLE 11.6 PERFORMANCE AND OPTIMIZATION
OF A BALANCED AMPLIFIER

Use the amplifier of Example Il.4 in a balanced amplifier configuration operating
from 3 to 5 GHz. Use quadrature hybrids, and plot the gain and return loss over
this frequency range. Using microwave CAD software, optimize the amplifier
matching networks to give l0 dB gain over this band.

Solution
The amplifier of Example 11.4 was designed for a gain of 11 dB at 4 GHz As seen
from Figure 11.8c, the gain varies by a few dB from 3 to 5 GHz, and the return
loss is no better than 5 dB. We can design a quadrature hybrid, according to the
discussion in Section 7.5, to have a center frequency of 4 GHz. Then the balanced
amplifier configuration of Figure 11.10 can be modeled using a microwave CAD
package, with the results shown in Figure 11.11. Note the dramatic improvement
in return loss over the band, as compared with the result for the original amplifier
in Figure 11.8c. The input matching is best at 4 GHz since this was the design
frequency of the coupler; a coupler with better bandwidth will give improved
results at the band edges. Also observe that the gain at 4 GHz is still 11 dB, and
that it drops by a few dB at the band edges.

Most modern microwave CAD software packages have an optimization fea-
ture with which a small set of design variables can be adjusted to optimize a
particular performance variable. In the present example, we will reduce the gain
specification to 10 dB, and allow the CAD software to adjust the four transmis-
sion line stub and line lengths in the amplifier circuit of Figure 11.8b to give
the best fit to this gain over the frequency range 3 to 5 GHz. Both amplifiers in
the balanced circuit remain identical, so we should still see the improved input
matching.

The results of this optimization are shown in Figure 1 1.1 1, where it can be
seen that the gain response is much flatter over the operating band. The input match
is still very good in the vicinity of the center frequency, with a slightly worse result

-30 L
3 .0 3.s 4.0 4.5 5.0

Frequency (GHz)

FIGURE 11.11 Gain and return loss, before and after optimization, for the balanced amplifier of
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Example 11.6.
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at the low-frequency end. The optimized stub and line lengths for the amplifier
matchins networks are listed below:

Matching Network

Parameter

Before After

Optimization Optimization

Input section stub length

Input section line length

Output section line length

Output section stub length

0.1001
o.t79L
0.0451
0.43D.

0.109).

0.113) ,
0.134,
0.461L

These represent fairly small deviations from the lengths in the original matching
networks. I

Distributed Amplif iers

The concept of rhe distributed amplifier dates back to the 1940s, when it was used in the
design of broadband vacuumtube amplifiers. With recent advances inmicrowave integrated
circuit and device processing technology, the distributed amplifier has found new applica-
tions in broadband microwave amplifiers. Bandwidths in excess of a decade are possible,
with good input and output matching. Distributed amplifiers are not capable of very high
gains or very low noise figure, however, and generally are larger in size thaa an amplifier
having comparable gain over a narrower bandwidth.

The basic configuration of a microwave distributed amplifier is shown in Figure 1 1.12.
A cascade of N identical FETs have their gates connected to a transmission line having
a characteristic impedance Z ,, with a spacing of l, , while the drains are connected to a
ffansmission line of characteristic impedance Za, with a spacing la. The operation of the
distributed amplifier is very similar to that of the multihole waveguide coupler discussed in
Section 7.4. The input signal propagates down the gate line, with each FET tapping off some
of the input power. The amplified output signals from the FETs form a traveling wave on
the drain line. The propagation constants and lengths ofthe gate and drain lines are chosen
for constructive phasing of the output signals, and the termination impedances on the lines
serve to absorb waves fiaveling in the reverse directions. The gate and drain capacitances
of the FET effectively become part of the gate and drain transmission lines, while the gate
and drain resistances inffoduce loss on these lines. This type of circuit is also known as a
ffaveling wave amplifier.

Here we will analyze the distributed amplifier in terms of the loaded gate and drain
transmission lines [8], although it is also possible to apply the concept of image parameters

[9], or to simply use CAD software. An analytical treatmenthas the advantage of illustrating

2", I"

FIGURE 11.12 Configuration of an N-stage distributed amplifier.
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2", I , zy lr

(b)

FIGURE 11.13 (a) Transmission line circuit forthe gate line of the distributed amplifier; (b) equiv-
alent ci-rcuit of a sinele unit cell of the sate line.

the underlying principles of operation of the amplifier, while the numerical CAD approach
is recommended for better accuracy and optimization capabilities.

The first step in the analysis of the distributed amplifier is to employ the unilateral
(Ced:0) version of the FET equivalent circuit to decompose the circuit of Figure 11.12
into separate loaded transmission lines for the gate and drain terminals. These are shown in
Figures 11.13 and 11.14. The gate and drain transmission lines are typically microstrip; the
ground conductors are not shown in Figure 1 1.12, but they are in Figures 1 1.13 and 1 1.14.
The gate and drain lines are isolated except for the coupling through the dependent cunent
sources, where I1n : BmVrn, and are matched at both ends. Figures 11.13b and 11.14b
show the equivalent circuits for a single unit cell from the gate and drain lines, respectively.

(b)

FIGURE 11.14 (a) Transmission line circuit for the drain line of the distributed amplifier; (b) equiv-

(a)

(a)

alent circuit of a sinsle unit cell of the drain line.
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L r and C, are the inductance and capacitance per unit length of the gate transmission line,
while R;1, and C g,lls represent the equivalent per unit length loading due to the FET input
resistance R; and gate-to-source capacitance Cr,. Similar definitions apply to the quantities
La, Ca, Ra,la, andC6lQ for the drain line. Thus we have taken the lumped loading
of each FET and distributed its circuit parameters over the transmission lines of each unit
cell. This approximation is generally valid when the electrical lengths of the unit cells
are small.

We can now use basic transmission line theory to find the effective characteristic
impedance and propagation constants of the gate and drain lines. For the gate line, the
series impedance and shunt admittance per unit length can be written as

If we assume that loss can be neglected for the calculation of characteristic impedance, as
discussed i- lection 2.7 . then we have

(r1.67)

For the calculation of the propagation constant we retain the resistive term, since this will
lead to attenuation:

, - - mye: dg-t izs: ' /ZY : 
I iatsl laCs 

* n;1*,

If we assume small loss, such that coRiCr, << 1, then the above result can be simplified as
follows:

Ts: ds -t ifls = ,l-r,trlC, + Cr, (t - ian;cr) /Ls)

Z - jaL*

\ ,  : , . ^  i<oCgt l (gr : J @ L s - '  
r +  j ; & c s , '

T d : a d - t i f l a : t m :

v

=  
f f i *  

j oJL4(Ca  *  ca , l r i .

For the drain line, the series impedance and shunt admittance per unit length are

Z -  jaLa,

y : -]- + j@(cd * ca,/t.a\.
Ra,la "

The characteristic impedance of the drain line can be written as

(1 1.66a)

(11.66b)

(11 .68)

(1 1.69a)

(11.6eb)

(r 1.70)

and the propagation constant can be simplified using the small loss approximation as

l z l r ou a - Y Y - V C a t C a , l [ a '

(11 .71)
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For an incident input voltage , Vi, the voltage on the gate-to-source capacitance of the
nth FET can be written as

(11.72)

for a phase reference at the first FET. The factor in parentheses in (11.72) accounts for
voltage division between R; and Cr"; for typical FET parameters @R;Cg5 ( 1, so this
factor can be approximated as unity over the bandwidth of the amplifier. The output current
on the drain line can be found by recognizing that each current generator conffibutes waves
of the form -)ITrsLvo' in each direction. Since 1,7, : g*V,n, the total output current at the
Nth terminal of the drain line is

v,n: v ie-(n-"rrr ,  ( ,  *  r .*- f*)

l n o v .

Io :  -  )1. Iont-t*-n\vd(d - -"^-" '  "-rro(o evttt  Y r-n(vr(r-t ' , t(a).
: " " L-  

n : \  
-  

n = I

G : 
Pout

Pin

The terms in the summation will add in phase only when f c{e : p1[..a, so that the phase
delays on the gate and drain lines are synchronized. There is also a backward traveling wave
component on the drain line, but the individual contributions to this wave will not be in
phase; the residual will be absorbed in the termination 26. Using the summation formula
that

$ * ' :  
x N + l  - x

f r  " r - l

allows (11.73) to be simplified as follows:

I o -
gmV; sYau le-Nrtrt 

- e-Nvolol g,V; e-Nyete - e-Nvara

(11 .73)

(1r.74)

(11.7s)

2 s-\rstt-vara) - I 2 e-Yctt - g-tala

For matched input and output ports, the amplifier gain can then be calculated as

Applying the synchronization condition that Fsls : Bal6 allows this result to be further
simplified to

(e-N"ers -  r -Naata)z
(1r.16)s2^Zaze

( t : -

4 (e-dets - e-"oto)z

If the losses are small, the denominator in (11.76) can be approximated as (urlr - qali.

Several interesting aspects of the distributed amplifier can be deduced from the gain
expression of ( 1 1 .76). For the ideal case of a lossless amplifier, the gain reduces to

G _
g2^zazrNz

showing that gain increases as Nz. This is in contrast to the gain of a cascade of N amplifier
stages, which increases as (Ge)N. When loss is present, (71.76) shows that the gain of a
distributed amplifier approaches zero as N -+ oo. This surprising behavior is explained
by the fact that the input voltage on the gate line decays exponentially, so the FETs at the
end of the amplifier receive no input signal; similarly, the amplified signals from the FETs
near the beginning of the amplifier are attenuated along the drain line. The multiplicative
increase in gain with N is not enough to compensate for an exponential decay for large
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N. This implies that, for a given set of FET parameters, there will be an optimum value of
N that maximizes the gain of a distributed amplifier. This can be found by differentiating
(11.76) with respect to N, and setting the result to zero to obtain

^/lvopt  -
ln(ar(g/aala) (r1.77)
arl, - a7f4

This result depends on frequency, the parameters of the FETs, and the line lengths through
tle attenuation constants given in (11.68) and (11.71).

EXAMPLE 11.7 DISTRIBUTED AMPLIFIER PERT'ORMANCE

Use (11.76) to calculate the gain of a distributed amplifier from 1 to 18 GHz,
for N : 2,4,8, and 16 stages. Assume Za : Zs : Z0 :50 Q, and the following
FETparameters:  R;  :  10O, R7" :300O, Cr, :O.27PF,andg^:35mS.Find
the optimum value of N that will give maximum gain at 16 GHz.

Solution
We use (11.68) and (11.71) to evaluate the attenuation constants a, and d4, &rrd
thencompute the gainversus frequency and N using (11.76). Notethattheproducts
url, and u4[..4 aro independent of I, and 11:

. a2 R;c|,Zs
d g L g :  - - - ; - ,

L

" Z o
aaLa:  

TFa,

The results are shown in Figure 11.15. Observe that the gain drops off with fre-
quency faster for larger N, and that at high frequencies the gain for N = 16 is less
than the gain for smaller N. The optimum size for maximum gain at 16 GHz can
be calculated using (11.77). At 16 GHz we have ur{, : 0.184 andaflt : 0.083.

0 2 4 6 8 1 0 1 2 t 4 1 6 1 8
Frequency (GHz)

FIGURE 1l.f 5 Gain versus frequency for the distributed amplifier of Example I 1.7.
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The optimum size is then

r, ln(arlrlaala)
lYopt : ---;----- 

.'  q " ( "  -  q , t (n

ln (0.184/0.083)
- 7 ( )

0.184 - 0.083

or eight stages. Finally, note that arR; Cr" : 0.3 1 at 18 GHz, justifying the approx-
imation of unity for the voltage divider factor of (ll;72). I

POWER AMPLIFIERS

Power amplifiers are used in the final stages of radar and radio transmitters to increase the
radiated power level. Typical output powers may be on the order of 100-500 mW for mobile
voice or data communications systems, or in the range of 1-100 W for radar or fixed point
radio systems. Important considerations for RF and microwave power ampliflers are effi-
ciency, gain, intermodulation products, and thermal effects. Single transistors can provide
output powers of 10 to 100 W at UHF frequencies, while devices athigher frequencies are
generally limited to output powers less than 1 W. Various power combining techniques can
be used in conjunction with multiple transistors if higher output powers are required.

So far we have considered only small-signal amplifiers, where the input signal power
is small enough that the transistor can be assumed to operate as a linear device. The
S parameters of linear devices are well-defined and do not depend on the input power
level or output load impedance, a fact that greatly simplifies the design of fixed-gain and
low-noise amplifiers. For high input powers (in the range of the 1 dB compression point or
third order intercept point, for example), transistors do not behave linearly. In this case the
impedances seen at the input and output of the transistor will depend on the input power
level, and this greatly complicates the design of power amplifiers.

Characteristics of Power Amplifiers and Amplifier Classes

The power amplifier is usually the primary consumer of DC power in most hand-held
wireless devices, so amplifier efficiency is a very important consideration. One measure of
amplifier efficiency is the ratio of RF output power to DC input power:

(11 .78)

One drawback of this definition is that it does not account for the RF power delivered at the
input to the amplifier. Since most power ampliflers have relatively low gains, the efficiency
of ( 1 1 .78) tends to overrate the actual efficiency. A better measure that includes the effect
of input power is the power added fficiency, defined as

\PAE : PAE:
Poo, - 4n (11 .79)

where G is the power gain of the amplifier. Silicon transistor amplifiers in the cellular
telephone band of 800-900 MHz band have power added efficiencies on the order of 8OVo,
but efficiency drops quickly with increasing frequency. Power amplifiers are often designed
to provide the best efficiency, even if this means that the resulting gain is less than the
maximum possible.

Another useful parameter for power amplifiers is the compressed gain, G1, defined
as the gain of the amplifier at the 1dB compression point. Thus, if Gs is the small-signal

Dr out
n - _' 

Poc

:  ( ' -;) ;T: (' - A,Poc
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(linear) power gain, we have

Gl(dB):  Go(dB) -  l . (1 1.80)

As we have seen in Chapter 10, nonlinearities can lead to the generation of spurious fre-
quencies and intermodulation distortion, This can be a serious issue in wireless transmitters,
especially in a multicarrier system, where spurious signals may appear in adjacent channels.
Linearity is also critical for nonconstant envelope modulations, such as amplitude shift key-
ing and higher quadrature amplitude modulation methods.

Class A amplifiers are inherently linear circuits, where the transistor is biased to con-

duct over the entire range ofthe input signal cycle. Because ofthis, class A amplifiers have

a theoretical maximum efficiency of 5OVo. Most small-signal and low-noise amplifiers op-
erate as class A circuits. In contrast, the transistor in a class B amplifier is biased to conduct
only during one-half of the input signal cycle. Usually two complementary transistors are
operated in a class B push-pull amplifier to provide amplification over the entire cycle. The
theoretical efficiency of a class B amplifier is 78Vo. Class C amplifiers are operated with
the transistor near cutoff for more thaa half of the input signal cycle, and generally use
a resonant circuit in the output stage to recover the fundamental. Class C amplifiers can
achieve efficiencies near 100Vo, but can only be used with constant envelope modulations.
Higher classes, such as class D, E, F, and S, use the transistor as a switch to pump a highly
resonant tank circuit, and may achieve very high efficiencies. The majority of communica-
tions transmitters operating at UHF frequencies or above rely on class A, AB, or B power

amplifiers because of the need for low distortion products.

Large-Signal Characterization of Transistors

A transistor behaves linearly for signal powers well below the 1dB compression point (P1),

and so the small-signal S-parameters should not depend on either the input power level or
the output termination impedance. But for power levels comparable to or greater than P1,
where the nonlinearity of the transistor becomes apparent, the measured S parameters will
depend on input power level and the output termination impedance (as well as frequency,
bias conditionso and temperature). Thus large-signal S parameters are not uniquely defined
and do not satisfy linearity, and cannot be used in place of small-signal parameters. (For

device stability calculations, however, small-signal S parameters can generally be used with
good results.)

A more useful way to chnacteize transistors under large-signal operating conditions
is to measure the gain and output power as a function of source and load impedaaces. One
way of doing this is to determine the large-signal source and load reflection coefficients,
f 5p and f p, that maximize power gain for a particular output power (often chosen as Pl),
and versus frequency. Table 11.1 shows typical large-signal source and load reflection
coefficients for a typical NPN silicon bipolar power transistor, along with the small-signal
S parameters.

TABLE 11.1 Small-Signal S Parameters and Large-Signal Reflection Coefficients (Silicon
Bipolar Power Tfansistor)

/(MHz) Srr Srz Szz fsp I Lp GP(dB)Szr

800 0.76t176"
900 0:761172"

1000 9.7611,69"

4.10tlf 0.065r49"
3.42t12" o.on/52"
3.0869' 0.079/53"

035/-163" 0.856/-167" 0.455t129" 13.5

035 /-167' 0.747 /-177" 0.478/161" 12.0

036/-169" 0.79j /-187" 9.4911185" 10.0
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FIGURE 11.16 Constant output power contours versus load impedance for a typical power FET.

Another way of characterizing the large-signalbehaviorof affansistoris to plot contours
of constant power output on a Smith chart as a function of the load reflection coefficient, f;p,
with the transistor conjugately matched at its input. These are called load-pull contours,
and can be obtained using an automated measurement set-up with computer-controlled
electromechaaical stub tuners. A typical set of load-pull contours is shown in Figure 1 1 . 1 6.
Load-pull contours are similar in function to the constant gain contours of Section 1 1.3, but
are not perfect circles due to the nonlinearities ofthe device.

Nonlinear equivalent circuit models can also be developed and used to predict the
large-signal performance of FETs and BJTs [10]. The dominant nonlinear parameters for a
microwave FET are Cg,, g*, Cga, and R7r. An important consideration in modeling large-
signal transistors is the fact that most parameters are dependent on temperature, which of
course increases with output power. Equivalent circuit models can be very useful when
combined with computer-aided design software.

Design of Glass A Power Amplifiers

In this section we will discuss the use of large-signal parameters for the design of class A
amplifiers. Since class A amplifiers are ideally linear, it is sometimes possible to use small-
signal S parameters for design, but better results are usually obtained if large-signal parame-
ters are available. As with small-signal amplifier design, the first step is to check the stability
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of the device. Since instabilities begin at low signal levels, small-signal S parameters can be
used for this purpose. Stability is especially important for power amplifiers, as high-power
oscillations can easily damage active devices and related circuitry.

The transistor should be chosen on the basis of frequency range and power output,
ideally with about 20Vo more power capacity than is required by the design. Silicon bipo-
lar transistors have higher power outputs than GaAs FETs at frequencies up to a few
GHz, and are generally cheaper. Good thermal contact of the transistor package to a heat
sink is essential for any amplifier with more than a few tenths of a watt power output.
Input matching networks are generally designed for maximum power transfer (conju-
gate matching), while output matching networks are designed for maximum output power
(as derived from frr).The optimum values ofsource and loadreflection coefficients are dif-
ferent from those obtained from small-signal S parameters via (11.40). Low-loss matching
elements are important for good efficiency, particularly in the output stage, where currents
are highest. Internally matched chip transistors are sometimes available, and have the ad-
vantage ofreducing the effect ofparasitic package reactances, thus improving efficiency and
bandwidth.

EXAMPLE 11.8 DESIGN OF A CLASS A POWER AMPLIFIER

Design a power amplifier at 900 MHz using a Motorola MRF858S NPN silicon
bipolar transistor with an output power of 3 W. Design input and output impedance
matching sections for the amplifier, find the required input power, and compute
the power added efficiency. Use the given S parameters to compute the source
and load reflection coefficients for conjugate matching, and compare to the actual
large-signal values for f;p and fsp.

The small-signal S parameters of the MRF858S transistor at 900 MHz are:
Srr : 0.940 /164", 5rr: 0.031 69o , 521 : 1.222143', Szz :0.570 /-165'. For
an emitter-collector voltage VcB :24 V and a collector current of 1c' * 0.5 A,
the output power at the 1 dB compression point is 3.6 W and the power gain
is 12 dB. The source and load impedances are Zin:1.2* j3.5Q, and 2o6:
9.0 + j14.5 s2.

Solution
We begin by establishing the stability of the device. Using the small-signal S
parameters in (11.28) and (11.29) gives

lAl  :  lS11S2z- S1gfSnl

: l(0.940 /164\(0.570 r-165"1- (0.031 E9"11t.zzz &")l : o.5+6

I  -  ls r r12 - lszz lz  + la l2  1-e.94qz -e.57qz +e.s4qzv _  " "  ' - -

2ls2s21l 
- 

2(o.o3r)(1.222)

showing that the device is unconditionally stable.
Converting the large-signal input and output impedances to reflection coeffi-

cients gives

l in :0.953 /172",

foot : 0.716 /-147" .
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f s :

f z :

FIGURE 11.17 RF circuit for the amplifier of Example 11.8.

Using the small-signal S parameters in ( 1 1 .40) to find the source and load reflection
coefficients for conjugate matching gives

B r *

2Ct

B,+ J 4:4tc,p

:0.963 /-166' ,

:0.712 t I34" .
2Cz

Note that these values approximately satisfy the relationships of (11.36), that
fs : fl and f1 : fo1o,, but not exactly, due to the fact that the S parameters used
to calculate f5 and f1 do not apply for large power levels. Thus we should use
the given large-signal reflection coefficients, and let

fs  :  f [  :0 .953 / - I72" ,

fr : fJut :0.716 /147" .

Then the input and output matching networks can be designed as usual. The com-
plete AC amplifier circuit is shown in Figure 11.17.

For an output power of 3 W, the required input drive power is

4'(dBm) : Pout(dBm) - Gp(dB) : 10log(3000) - 12:22.8 dBm : 189mW.

Then the power added ef8ciency of the amplifier can be found from (i 1.79) to be

%u, -  4n  3 .0  -  0 .189
, t p A h :  :  - :  

L J . a t u .

Puc (24)(0.5) I
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PROBLEMS

1L.l Consider the microwave network shown below, consisting of a 50 Q source, a 50 f,2, 3 dB matched
attenuator, and a 50 Q load. (a) Compute the available power gain, the transducer power gain, and the
actual power gain. (b) How do these gains change if the load is changedto25 Q? (c) How do these
gains change ifthe source impedance is changed to 25 Q?

4=50f2 '25c:

11.2 An amplifier uses a transistor having the following S parameters (Zo : 50Q): Srr : 0.61 l=Ug,
Srz:0.06 n-9", S2t:23l!0", Szz:0.72t-25".711" input of the transistor is connected to a
source with V, :2Y (peak) and Zs :25 Q, and the output of the transistor is connected to a load
of Zt:100f,2. (a) What is the power gain, the available gain, the transducer power gain, and the
unilateral transducer power gain? (b) Compute the available power from the source, and the power
delivered to the load.

11.3 A microwave transistor has the following .S parameters: St :0.341=JJ9', Sr, : 43d0" , Sp:
0.06m" , and 522 : 0.45 t -25" . Determine the stability, and plot the stability circles if the device is
potentially unstable.

11.4 Repeat Problem 11.3 for the following transistor S parameters: Srr :0.82-90o, ,Szr :5.1dQ',
Sn :03t70" ,  and 522 : 0.62/-40" .

11.5 Use the p-parameter test to determine which of the following devices are unconditionally stable, and
of those, which has the greatest stability:

Device SzzSzrSrzSrr

z,= 5o {)

A
B

C

0.45/-25"
0.51l60 '
0|10r-65"

11.6 Showthatforaunilateraldevice,whereSrz:0,thep-parametertestof( l1.30)impliesthatlJrr l<1
and lS22l < 1 for unconditional stability.

11.7 Prove that the condition for a positive discriminant in (11.40a), that is, Bf > 4lCl2, is equivalent to
the condition that K2 > l.

034/-170"
0.75t-60"
0.65r-140'

0.06t70"
O.2t70"
0.04t60"

n/80"
s.oD0"
2.4D0"
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11.8 Design an amplifier for maximum gain at 5.0 GHz with a GaAs FET that has the following ,S para-
meters (2226 : 50 O) : S11 : 0.65/-140" ,  Sn :2.480" ,  So :0.04t60" ,  Sr, :0.70/-65" .De-
sign matching sections using open-circuited shunt stubs.

11.9 Design an amplifier with maximum G7y using a transistor with the following S parameters (.26 :
50Q)  a t  6 .0  GHz:  Sr l :0 .61 l -170 ' ,  Szr :2 .24&" ,  Srz :0 ,  Szz :0 .72 t -83 ' .  Des ign
I-section matching sections using lumped elements.

11.10 Design an amplifier to have a gain of 10 dB at 6.0 GHz, using a transistor with the following S para
m e t e r s ( 2 6 : 5 0 ( - , ) : S r r : 0 . 6 1 2 - 1 7 0 o , . S r , : 2 . 2 4 & ,  S r z : 0 ,  S z z : 0 . 7 2 t - 8 3 " . P l o t ( a n c
use) constant gain circles for G5 : 1 dB and G r : 2 dB. Use matching sections with open-circuitec
shunt stubs.

11.11 Compute the unilateral figure of merit for the transistor of Problem 11.3. What is the maximum error
in the transducer gain if an amplifier is designed assuming the device is unilateral?

11.12 Show that the 0 dB gain circle for Gs (Gs : 1), defined by (11.51), will pass through the center of
the Smith chart.

11.13 A GaAs FET has the following scattering and noise parameters at 8 GHz (Zo:50 Q): S11 :
o . i / -110" ,  Sn:0 .02 /60o,  Szr  :  3 .5&" ,  Szz :o .B t -70" ,  F - in :2 .5  dB,  foo ,  -  Q. le l120 ' ,
Rn : 15 O. Design an amplifier with minimum noise figure, and maximum possible gain. Use open-
circuited shunt stubs in the matching sections.

11.14 A GaAs FET has the following scattering and noise parameters at 6 GHz (Zo:50O): Srr -

0 .6 t -60" ,  Sn:2 .08L" ,  Srz  :0 ,  Szz :0 .7  l=60" ,  Fmin  :2 .0d8,  fop t  :0 .621100" ,  Rrv  :20Q.
Design an amplifier to have a gain of 6 dB, and the minimum noise figure possible with this gain. Use
open-circuited shunt stubs in the matching sections.

11.15 Repeat Problem 1 1. 14, but design the amplifier for a noise figure of 2.5 dB, and the maximum possible
gain that can be achieved with this noise figure.

11..1.6 Repeat the analysis of the balanced amptfier of Example I 1.6 using a 3 dB coupled line hybrid
coupler. Use CAD software to optimize the input and output matching networks of the amplifiers to
obtain a flat l0 dB gain response from 3 to 5 GHz, and compare the results with those obtained using
the quadrature hybrid.

11..17 If theindividualamplifierstagesinabalancedamplifierhavemismatchesof fa andI.6 attheiroutput
ports,showthattheoutputmismatchof thebalancedamplif ier is,Sz: - ( f 'A-f B)/2.

11.18 Derive the result for the optimum size of a distributed amplifier given in (11.77).

1.1.1.9 Consider a distributed amplifier using FETs having the following parameters: R; :5O, ft7, :
200 Q, Cs, : 0.35 pR and g. - 40 mS. Calculate and plot the gain from 2 to 20 GHz, for N : 4
and N : 16 sections. Find the optimum value of N that will give maximum gain at 18 GHz.

11.20 Use the transistor data given in Table I 1.1 to design a power amplifier at I GHz with a power output of
1 W. Design the input and output matching circuits using the given large-signal reflection coefficients.
Compute the required input power level.



Oscillators and Mixers

RF and microwave oscillators are universally found in all modern radar and wireless com-

munications systems to provide signal sources for frequency conversion and carrier generation.

A solid-state oscillator uses an active nonlinear device, such as a diode or transistor, in conjunc-

tion with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor

oscillator circuits can generally be used at low frequencies, often with crystal resonators to pro-

vide improved frequency stability and low noise performance. At higher frequencies, diodes or

transistors biased to a negative resistance operating point can be used with cavity, transmission

line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz.

Alternatively, frequency multipliers can be used to produce power at millimeter wave frequen-

cies. Because of the requirement of a nonlinear active device, the rigorous analysis and design

of oscillator circuits is very difficult, and usually carried out today with sophisticated CAD

tools.
In this chapter we begin with an overview of low-frequency transistor oscillator circuits,

including the well-known Hartley and Colpitts configurationso as well as crystal controlled

oscillators. Next we consider oscillators for use at microwave frequencies, which differ from

their lower frequency counterparts primarily due to different transistor characteristics and the

ability to make practical use of negative resistance devices and high- Q microwave resonators. We

also discuss the important topic of oscillator phase noise. Finally, an introduction to frequency

multiplication techniques is given. A related topic is that of frequency conversion, or mixing,

so we also discuss in this chapter the fundamental operations of frequency up-conversion and

down-conversion. Detectors and single-ended mixers using both diodes and FETs are discussed,

along with some specialized mixer circuits.
Important considerations for oscillators used in RF and microwave systems include the

following:

. tuning range (specifled in MHzN for voltage tuned oscillators)
o frequency stability (specified in PPIW"C)
o AM and FM noise (specified in dBclHz below carrier, offset from carrier)
o harmonics (specified in dBc below carrier)

577



578 Chapter 12: Oscillators and Mixers

Typical frequency stability requirements can range from2 PPM/'C to 0.5 PPIW'C, while phase
noise requirements may range from -80 dBclHz to -110 dBc/Hz at a I0 kHz offset from the
carrier.

12.1 RF OSCILLATORS

In the most general sense, an oscillator is a nonlinear circuit that converts DC power to an
AC waveform. Most RF oscillators provide sinusoidal outputs, which minimizes undesired
harmonics and noise sidebands. The basic conceptual operation of a sinusoidal oscillator
can be described with the linear feedback circuit shown in Figure L2.1. Ai amplifier with
voltage gain A has an output voltage V". This voltage passes through a feedback network
with a frequency dependent transfer function H(ot), and is added to the input V; of the
circuit. Thus the output voltage can be expressed as

Vo(a): AVi@) -l H(ro)AV"(a),

which can be solved to yield the output voltage in terms of the input voltage as

(r2.r)

vo(a) - 
1 _ff-vt{a>. (r2.2)

If the denominatot of (72.2) becomes zero at a particular frequency, it is possible to achieve a
non-zero output voltage for a zero input voltage, thus forming an oscillator. This is known as
the Nyquist criterion, or the Barkhausen criterion In contrast to the design of an amplifier,
where we design to achieve maximum stability, oscillator design depends on an unstable
circuit.

The oscillator circuit of Figure l2.l is useful conceptually, but provides little helpful
information for the design ofpractical transistor oscillators. Thus we consider next a general
analysis of transistor oscillator circuits.

GeneralAnalysis

There are a large number of possible RF oscillator circuits using bipolar or field-effect
ffansistors in either cornmon emitter/source, base/gate, or collector/drain confi.gurations.
Various types of feedback networks lead to the well-known Hartley, Colpitts, Clapp, and
Pierce oscillator circuits t1l-t31. All of these variations can be represented by the general
oscillator circuit shown inFin)re 12.2.

Block diagram of a sinusoidal oscillator using an amplifier with a frequency-
dependent feedback path.

FIGURE 12.1
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Collectori
drain

\-\r____J
feedback network

FIGURE 12.2 General circuit for a transistor oscillator. The transistor may be either a bipolar
junction transistor or a field effect transistor. This circuit can be used for common

emitter/source, base/gate, or collector/drain configurations by grounding either Vz,

V1, ot Va, respectively. Feedback is provided by connecting node V3 to Va.

The equivalent circuit on the right-hand side of Figure L2.2 is used to model either
a bipolar or a field-effect transistor. As discussed in Chapter 10, we have assumed here a
unilateral transistor, which is usually a good approximation in practice. We can simplify
the analysis by assuming real input and output admittances of the transistor, defined as Gi
and Go, respectively, with a transistor transconductance gm. The feedback network on the
left side of the circuit is formed from three admittances in a bridged-T configuration. These

components are usually reactive elements (capacitors or inductors) in order to provide a
frequency selective transfer function with high Q. A common emitter/source configuration
can be obtained by setting Vz : O,while common base/gate or common collector/drain con-
figurations can be modeled by setting either Vr : 0 or Vq :0, respectively. As shown, the
circuit of Figure 12.2 does not include a feedback path-this can be achieved by connecting
node V3 to node Va.

Writing Kirchhoff's equation for the four voltage nodes of the circuit of Figure I2.2
gives the following matrix equation:

BJT or FET

( Y r * Y z | - G i )
-(Yr + Gi * s) (Yt

-Y3

8^

-(rr + C,) -Y3
- l Y z * G i * G o l g )  - Y 2

-Y2 (Yz t Yz)
-(Go I s) o il [']- 0

(12.3)

Recall from circuit analysis that if the ith node of the circuit is grounded, so that Vi : O,

the matrix of (12.3) will be modified by eliminating the lth row and column, reducing the

order of the matrix by one. Additionally, if two nodes are connected together, the matrix is
modified by adding the corresponding rows and columns.

Oscillators Using a Common Emitter BJT

As a specific example, consider an oscillator using a bipolar junction transistor in a com-
mon emitter configuration. In this case we have Vz: 0, with feedback provided from the

collector, so that Vz : Vq.In addition, the output admittance of the transistor is negligible,
so we set Go : O. These conditions serye to reduce the matrix of (12.3) to the following:

l ( t t * Y z * G i )
L  @ ^ - Y z ) o,lo,)[]] : o'

w h e r e V : V z : V + .

(12.4)
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If the circuit is to operate as an oscillator, then (12.4) must be satisfied for nonzero
values of Vr and V, so the determinant of the matrix must be zero. If the feedback network
consists only of lossless capacitors and inductors, then Y1, Yz, and 13 must be imaginary,
so we let Yl : jB1, Y2 : jB2, and Y3 - jB3. Also, recall that the transconductance Bm and
transistor input conductance G; are real. Then the determinant of (12.4) simplifies to

(12.s)

Separately equating the real and imaginary parts of the determinant to zero gives two
equations:

l G i * j @ t + B z )  
- j B t  

l : n
I g^ - jBt i(Bz + Bt)l

r 1 1 -- + - + - - 0 .
81 Bz Bz

|  * ( r * q a \  I
8 3  \ ^  G , / B z

- 0 .

(12.6a)

(r2.6b)

(r2.7b)

If we convertsusceptancestoreactances, andlet Xt: l lBr,Xz:1lBz, aad X3 = l lBz,
then (12.6a) can be written as

Xt * Xz * X3 : Q. (I2'7a)

Using (12.6a) to eliminate ̂ B3 from (12.6b) reduces that equation to the following:

Sinceg.  andGi areposi t ive,  (12.7b)  impl iesthatXl  andX2 havethesamesign,and
therefore are either both capacitors, or both inductors. Equation (I2.7a) then shows that X3
must be opposite in sign from X1 and X2, and therefore the opposite type of component.
This conclusion leads to two of the most commonly used oscillator circuits.

If X1 and X2 ure capacitors and X3 is an inductor, we have a Colpitts oscillator. Let
X r : - | / aoC r, X z : - | I aoC z, and X3 : oo L3. Then (72.7 a) becomes

- l / 1  l \

a (,a * e)* aoLz - o'

which can be solved for the frequency of oscillation, @0, as

(12.8)

Using these same substitutions in (12.7b) gives a necessary condition for oscillation of the
Colpitts circuit as

C z  _ 8 ^
C1 Gi

(12.e)

The resulting common-emitter Colpitts oscillator circuit is shown in Figure 12.3a.
Alternatively, if we choose X1 aad X2 to be inductors, and X3 to be a capacitor, then we

have a Hartley oscillator. Let Xr : oyLt, Xz - ayLz, and X3 : -1 /aoCz.Then (12.7a)
becomes

t ' to (L r * t r1  - -J - � :g .
@01'3

*H*)
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(a) (b)

FIGURE 12.3 Transistor oscillator circuits using a common-emitter BJT. (a) colpitts oscillator.
(b) Hartley oscillator.

which can be solved for ar6 to give

(12.10)

These same substitutions used in (12.7b) gives a necessary condition for oscillation of the
Hartley circuit as

L1 8^
L2 Gi

(r2.r1)

The resulting common-emitter Hafiley oscillator circuit is shown in Figure 12.3b.

Oscillators Using a Common Gate FET

Next consider an oscillator using an FET in a common gate configuration. In this case
Vr : O, and again Vz : Vq provides the feedback path. For an FET the input admittance
can be neglected, so we set Gt : 0. Then the matrix of (12.T reduces to

V""

(12.12)

where v : % : va. Again we assume the feedback network is composed of lossless
reactive elements, so that Yr, Yz, and Y3 can be replaced with their susceptances. Setting
the determinant of (12.12) to zero then gives

l(h +Yz ,+ r^ ,*.1.') ,..(:,,: ol .l f Yll : o,
L  - (G ' *  g^ *Yz )  (Yz - tY t+C, ) l  LY I

lG' + G')-r i(h * B) -Go - iBz | - ^
| -(c" * g.) - jBz G" * j(Bz+ nr)l  

- " '

Equating the real and imaginary pafrs to zero gives two equations:

1 1 1- + - + -
Bt Bz Bz

G o r S ^ , G o

B r -  B t -  h

(r2.13)

(12.14a)

(12.14b)

- 0 ,
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As before, let Xt, X2, and X3 be the reciprocals of the corresponding susceptances. Then
(12.14a) can be rewritten as

X t * X z * X : : 0 .

Using (12.14a) to eliminate 83 from (12.14b) reduces that equation to

(12.r5a)

X2

X1
8m

Go
(r2.r5b)

(r2.17)

Since g. and Go are positive, (12.15b) shows that X1 and X2 must have the same sign,
while ( 12. 15a) indicates that X3 must have the opposite sign. If Xr and X2 are chosen to be
negative, then these elements will be capacitive and X3 will be inductive. This corresponds
to a Colpitts oscillator. Since ( 12. 15a) is identical to (12.7 a), its solution gives the result for
the resonant frequency for the common gate Colpitts oscillator as

(r2.16)

which is identical to the result obtained in (12.8) for the common emitter Colpitts oscillator.
This is because the resonant frequency is determined by the feedback network, which is
identical in both cases. The further condition for oscillation given by (12.15b) reduces to

C1

C2

8^
Go

If we choose X1 and X2tobe positive (inductive), then X3 will be capacitive, and we have
a Hartley oscillator. The resonant frequency of the common gate Hartley oscillator is given
by

(12.18)

which is identical to the result of (12.10) for the common emitter Hartley oscillator. Equa-
tion (12.15b) reduces to

The circuits for common gate Colpitts and Hartley oscillators are
shown in Figure 12.3, if the BJT is replaced with an FET device.

(r2.re)

similar to the circuits

Practical Gonsiderations

It must be emphasized that the above analysis is based on very idealized assumptions, and
in practice successful oscillator design requires attention to factors such as the reactances
associated with the input and output transistor ports, the variation of transistor properties
with temperafure, transistor bias and decoupling circuitry and the effect ofinductor losses.
For these purposes computer-aided design software can be very helpful [3].

The above analysis can be extended to account for more realistic feedback network
inductors having series resistance, which invariably occurs in practice. For example, con-
sider the case of a common emitter BJT Colpitts oscillator, with the impedance of the in-
ductor given by Zz - 1lY3 : R t j a\. Substituting into (12.4) and setting the real and

L2

L 1
6 m

a

(Ct  +  Cz\

\  c'c, ) '

Cz(Lt
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imaginary parts of the determinant to zero gives the following result for resonant frequency:

(r2.20)

This equation is similar to the result of (12.8) for the lossless inductor, except that Ci is
defined as

*G-;)
Ct

C r :  
t  +  n G , '

The corresponding condition for oscillation is

(r2.21)

(r2.22)R  l * g ^ / G i  L 3

Gi o(C{2 L1

This result sets the maximum value of the series resistance R; the left side of (12.22) should
generally be chosen to be less than the right hand side to ensure oscillation-

EXAMPLE 12.1 COLPITTS OSCILLATORDESIGN

Design a 50 MHz Colpitts oscillator using a transistor in a cofllmon emitter config-
uration with B : B^lGi: 30, and a transistor input resistance of R; : l/Gi :

1200 O. Use an inductor with 13 : 0.10 pH, with a Q of 100. What is the mini-
mum Q of the inductor for which oscillation will be sustained?

Solution
From (12.20) the series combination of Ci and C2 is found to be

C'rC, - J-
Cl- fC2 ,TLz-  Qn)2(50 x 106)2(0.1 x 10-6)

This value can be obtained in several ways, but here we will choose Ci : C2 -

200 pF.
From Chapter 6 we know that the Q of an inductor is related to its series

resistance by Q : aL I R, so the series resistance of the 0. I pH inductor is

^ cooLt (2rrX50 x l06x0.l x 10-6)
R - -_:__-

o 100
Then(12.21) gives C1 as

/  0 . 3 1  \
Cr :  Ci(r  + RCi) :  (200 nnl I  

t  *  
IZOO- /  

= 200 nF.

which we see is essentially unchanged from the value found by neglecting the
inductor loss. Using (12.22) with the above values gives

R  l + p  L 3
Gi a(C{2 Ct

1 + 3 0 0.1 x 10-6

200 " ]tr_"
(0.31X1200) <

(2tr)2(50 x 106)2(200 x10-12)2

372 < 7852 - 5OO :7352.

which indicates that the condition for oscillation will be satisfied. This condition
can be used to find the minimum inductor Q by first solving for the maximum
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(a) (b)

FIGURE 12.4 (a) Equivalent circuit of a crystal. (b) Input reactance of a crystal resonator.

value of series resistance R:

R - * :

So the minimum Q is

' ; ) : m : 6  1 3  aI
Rt

(  r + p
\4c'cb

o  - @ o L z  -
vmn - 

R-"*

(2n)(5ox 106X0.1 x 10-6)
6 . 1 3

- 5 1

T

Crystal Oscillators

As we have seen from the above analysis, the resonant frequency of an oscillator is deter-
mined from the condition that a 180' phase shift occurs between the input and output of
the transistor. If the resonant feedback circuit has a lttgh Q, so that there is a very rapid
change in the phase shift with frequency, the oscillator will have good frequency stability.

Quartz crystals are useful for this purpose, especially at frequencies below a few hundred
MHz, where lC resonators seldom have Qs greater than a few hundred. Quartz crystals
may have unloaded Qs as high as 100,000 and temperature drift less than O.O0lVo/C".
Crystal-controlled oscillators therefore find extensive use as stable frequency sources in
RF systems. Further stability can be obtained by controlling the temperature of the quartz
crystal.

A quartz crystal resonator consists of a small slab of quartz mounted between two
metallic plates. Mechanical oscillations can be excited in the crystal through the piezoelec-
tric effect. The equivalent circuit of a quartz crystal near its lowest resonant mode is shown
in Figure I2.4a.This circuit has series and parallel resonant frequencies, @" and @p, given
bv

(12.23a)

(12.23b)

The reactance of the circuit of Figure lZ. ais plotted in Figwe 12.4b, where we see that the
reactarce is inductive in the frequency range between the series and parallel resonances.
This is the usual operating point of the crystal, so that the crystal may be used in place of
the inductor in a Colpitts or Pierce oscillator. A typical crystal oscillator circuit is shown in
Fisure 12.5.

I

'/ LC

'(#f.)
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RF choke ,V,

FIGURE 12.5 Pierce crystal oscillator circuit.

12'2 MrcRowAVE oscrLLAToRs
In this section we focus on circuits that are useful for microwave frequency oscillators,
primarily in terms of negative resistance devices.

Figure 12.6 shows the canonical RF circuit for a one-port negative-resistance oscillator,
where Zin : Rin * j X6 is the input impedance of the active device (e. g., a biased diode). In
generaT, this impedance is current (or voltage) dependent, as well as frequency dependent,
which we can indicate by writing Zi"Q, jco): Rio(I, j.ul)* jX;"(l, jco).The device is
terminatedwithapassiveloadimpedance,Zp: Rr* jXuApplyingKirchhoff'svoltage
law gives

(Zr -t Zi)I (12.24)

If oscillation is occurring, such that the RF current 1 is nonzero, then the following conditions
must be satisfled:

Rz * Rio

Xr * Xio - 0 .
(12.25a)

(12.zsb)

Sincetheloadispassive, Rz > 0 and(I2.25a) indicatesthat Rio < 0.Thus, while apositive
resistance implies energy dissipation, a negative resistance implies an energy source. The
condition of (12.25b) controls the frequency of oscillation. The condition in (12.24), that

Rin 
tl

fin
(Zi")

XinXL

RL

fr
(ZL)

.-.1-----\

t I
z'1

/ ' l
t l
t l
; l
r L f
l l
\ <

\ <\ -1i

FIGURE 12.6 Circuit for a one-port negative-resistance oscillator.
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Zr : -Zin for steady-state oscillation, implies that the reflection coefficients f1 and fi1
are related as

Z r - Z o  - Z i n - Z o  Z i n * Z o  L
(r2.26)f l :

Zr * Zo -Z;" -l Zo Zin - Zo fin

The process of oscillation depends on the nonlinear beh avior of Zin, as follows. Initially,
it is necessary for the overall circuit to be unstable at a certain frequency, that is, Ri"U , j ut) *
Rr < 0. Then any transient excitation or noise will cause an oscillation to build up at the
frequency, ar. As 1 increases, Rin(I, jor) must become less negative until the current 16
is reached such that Rin(10, jail + Rr : 0, and Xh(1s, jati + Xiljan):0. Then the
oscillator is running in a stable state. The final frequenc!, o)0, generally differs from the
startup frequency because X6 is cunent dependent, so that Xi"Q, j a) * XnUo, j ati.

Thus we see that the conditions of (12.25) are not enough to guarantee a stable state
ofoscillation. In particular, stability requires that any perturbation in current or frequency
will be damped out, allowing the oscillator to return to its original state. This condition can
be quantified by considering the effect of a small change, 61, in the current and a small
change, 6s, in the complex frequency s : s * j a>.If we let ZrQ , s) : Zin{I , s) * Zils),
then we can write a Taylor series for ZrQ , s) about the operating point 16, are as

Zr(r,  s) :  zr(ro, si  + Yl u, * 93 |  61 :  0. (12.27)
0s l "n, rn 01 l * , r "

since Z7(I , s) must still equal zerc 1f oscillation is occurring. In (12.27), r0 : j@0 is the
complex frequency at the original operating point. Now use the fact that ZrQo, so) : 0,

and that W : -iffi,b solve (12.27) for 6s : 6a I i6r;r:

ds : dq * isat : 
-!=t' l-! ' |  

,t - 
-i@zr laI)GZ\laa)

oZ7/os l,o,1o ffit' 
(12'28)

Now if the transient caused by 61 and 3ro is to decay, we must have 6a < 0 when E1 > 0.
Equation (12.28) then implies that

I^ [YYI\  .o," ' [  a 1  3 ,  I
aRr axr \Xr 3Rr
a r i -  a r  a r ' o '

For a passive load,3Ryl3I - 3Xr/01 : 3Rr/}at: 0, so (L2.29) reduces to

(12.29)

(12.30)* 3 , " , * x i n ) - * | b ' odl  d<o AI  Ea

As discussed above, we usually have that ARin/AI > 0 [4]. So (12.30) can be satisfied if
3(Xr -l Xi)l0a )) 0, whichimplies that ahigh-Q circuit willresultin maximum oscillator
stability. Cavity and dielectric resonators are often used for this purpose.

Effective oscillator design requires the consideration of several other issues, such as the
selection of an operating point for stable operation and maximum power output, frequency-
pulling, large-signal effects, aad noise characteristics. But we must leave these topics to
more advanced texts [5].



FIGURE 12.7

12.2 Microwave Oscillators 587

f  L  l i "  =7 .25140"
(Z) (Zi")

Load matching circuit for the one-port oscillator of Example 12.2.

EXAMPLE 12.2 NEGATIVE-R"ESISTANCEOSCILLATORDESIGN

A one-port oscillator uses a negative-resistance diode having lin:7.25140o
(Zo : 50 Q) at its desired operating point, for f = 6 GHz. Design a load matching
network for a 50 O load impedance.

Solution
From either the Smith chart (see Problem 12.6), or by direct calculation, we find '

the input impedance as

Zin:  -44 + j I23 {2.

Then, by (12.25), the load impedance must be

Z r : 4 4  -  j I n  A .

A shunt stub and series section of line can be used to convert 50 I to Z 7, as shown
in the circuit of Figure I2.7. I

Transistor Oscillators

In a transistor oscillator, a negative-resistance one-port network is effectively created by
terminating a potentially unstable transistor with an impedance designed to drive the device
in an unstable region. The circuit model is shown in Figure 12.8; the actual power output
port can be on either side of the transistor. In the case of an amplifier, we preferred a device
with a high degree of stability-ideally, an unconditionally stable device. For an oscillator,
we require a device with a high degree of instability.',fypically, cornmon source or common
gate FET conflgurations are used (common emitter or common base for bipolar devices),

Negative
I resistance
l---,->
I

Load
network
(tuning)

--l t*
Transistor

t^tl
--l r Terminating

network

lou, f?
(Zo) (Zr)

f. fin
(Z) (zi")

0.254 A

FIGURE 12.8 Circuit for a two-port transistor oscillator.
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often with positive feedback to enhance the instability of the device. After the transistor
configuration is selected, the output stability circle can be drawn in the f7 plane, and f7
selected to produce a large value ofnegative resistance at the input to the transistor. Then the
load impedance Z L canbe chosen to match Zin. Because such a design uses the small-signal
^9 parameters, and because R11 will become less negative as the oscillator power builds up,
it is necessary to choose R; so that Rr * Rin < 0. Otherwise, oscillation will cease when
the increasing power increases Rin to the point where R1 * Rio > 0. In practice, a value of

X t :  - X i n . (12.3rb)

When oscillation occurs between the load network and the transistor, oscillation will
simultaneously occur at the output port, which we can show as follows. For steady-state
oscillation at the input port, we must have flfin : 1, as derived in(12.26). Then from
(1 i.3a) (after replacing f 1 with l7), we have

- -Rn
R t :  

1

is typically used. The reactive part of Z1 is chosen to resonate the circuit,

1  -  S12S21f7 Srr  -  Afr

f ,  
: ' i n  :  J l l  - f  

l  - s 2 2 f r  
:  

t  - 5 r r * '

where A : ,SrrSzz - SrzSzt. Solving for f7 gives

r  1 -  S r r f r
' r : J t ; - a f z '

Then from (11.3b) (after replacing f5 with f;), we have that

. S12S21 f1 S22 - Afl
f -L o t t - v z z  ' l - S 1 1 f ;  *  

l - S r r f r '

( r2.3la)

(12.32)

(12.33)

(r2.34)

which shows that flfou1 : 1, and hence 27 - -Zou. Thus, the condition for oscillation
of the terminating network is satisfied. Note that the appropriate S parameters to use in the
above development are generally the large-signal parameters ofthe transistor.

/By
H-{>+- EXAMPLEl2.3 TRANSISTOROSCILLATORDESIGN
\ t Y /
\+-1,-/ Design a transistoroscillatorat4GHzusing aGaAs FETinacommon gate configu-

I tution, with a 5 nH inductor in series with the gate to increase the instability. Choose
a terminating network to match to a 50 g load, and an appropriate tuning network.
The S parameters of the ffansistor in a common source configuration ne (Zs =

50 O): Str : 0.72/-116o, S21 : 2.60/76" , Sn : O.O3/57o , Szz - O.73 /-54" .

Solution
The first step is to convert the common source S parameters to the S parameters
that apply to the transistor in a common gate configuration with a series inductor.
(See Figure 12.9a.) This is most easily done using a microwave CAD package.
The new S parameters are

S'1,  :2 .1$/-35"  ,

S'2r : 2.lJ /96" ,

S \ z :  1 .26 /18 "  ,

SLz: o'52t155' '



\
I

(b)

FIGURE 12.9 Circuit design for the transistor oscillator of Example 12.3. (a) Oscillator circuit

(b) Smith chart for determining f 7.

Note that lSi, I is significantly greater than lS11l, which suggests that the config-
uration of Figure 12.9a is more unstable than the common source configuration.
Calculating the output stability circle (f 1 plane) parameters ftom (11.25) gives

C r :
(si2 - a,sii).

= LO8/33",

:0 .665.

lsi7lz - l ! , l2

I si.si, In ' : lsm:Al
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Since lSi, | : 2.18 > 1, the stable region is inside this circle, as shown in the Smith
chart in Figure 12.9b.

There is a great amount of freedom in our choice for f1, but one objective is
to make lf 6 | large. Thus we try several values of 17 located on the opposite side
of the chart from the stability circle, and select f r : 0.59 t -104o. Then we can
design a single-stub matching network to convert a 50 g load to Z r : 20 - j 35 O,
as shown in Figure 12.9a.

For the given value of f 1, we calculate f6 as

fin : sl, + .si,s=il!t - 3.96/-2.4"," I - Si2l7

or Zin - -84 - jI.9 A. Then, from (11.86), wefind Zl as

-  j X i " : 2 8  t  j 1 . 9  9 .

Using R6/3 should ensure enough instability for the startup of oscillation. The
easiest way to implement the impedance Z 2 istouse a90 O load with a short length
of line, as shown in the figure. It is likely that the steady-state oscillation frequency
will differ from 4 GHz because of the nonlinearity of the fransistor parameters. I

Dielectric Resonator Oscillators

As we saw from the result of (12.30), oscillator stability is enhanced with the use of a
high-Q tuning network. The Q of a resonant network using lumped elements or microstrip
lines ard stubs is typically limited to a few hundred. (see Examples 6.1 and 6.2), and
while waveguide cavity resonators can have Qs of 10u or more, they are not well-suited
for integration in miniature microwave integrated circuitry. Another disadvantage of metal
cavities is the significant frequency drift caused by dimensional expansion due to a variation
in temperature. The dielectric cavity resonator discussed in Section 6.5 overcomes most of
these disadvantages, as it can have an unloaded Q as high as several thousand, is compact
and easily integrated with planar circuitry and can be made from ceramic materials that have
excellent temperature stability. For these reasons, transistor dielectric resonator oscillators
(DROs) are becoming increasingly common over the entire microwave and millimeter wave
frequency range.

A dielectric resonator is usually coupled to an oscillator circuit by positioning it in
close proximity to a microstrip line, as shown in Figure l2.70a. The resonator operates

Microstrip
line

(a) (b)

FIGURE 12.10 (a) Geometry of a dielectric resonator coupled to a microstripline; (b) equivalent

-Rin
L r : -

J

t--.*l
15,

#
za J 

LZ 
zo

circuit.
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in the TEs15 mode, and couples to the fringing magnetic field of the microsffip line. The
strength of coupling is determined by the spacing, d, between the resonator and microstrip
line. Because coupling is via the magnetic field, the resonator appears as a series load on
the microstrip line, as shown in the equivalent circuit of Figure IZ.IOb. The resonator is
modeled as a parallel RLC circuit, and the coupling to the feedline is modeled by the turns
ratio, N, of the transformer. Using the result of (6.19) for the impedance of a parallel RIC
resonator, we can express the equivalent series impedance, Z, seenby the microstrip line as

N2R
Z _

I t  j2QLa/@s'
(r2.3s)

where Q: R/aoL is the unloaded resonator Q, @o = 1l\/LC is the resonant frequency,
and Aa; : e) - ros. The coupling factor, defined in (6.76), between the resonator and the
feedline is the ratio of the unloaded to external O. and can be found as

O RlasL N2R
5  -  

& -  n r t N r r r t *  2 h '

where R1 - 2Zo is the load resistance for a feedline with source and termination resistances
Zs. In some cases the feedline is terminated with an open-circuit ),/4 ftom the resonator to
maximize the magnetic field at that point; in this case Rr : Zo and the coupling factor is
twice the value given in(12.36).

The reflection coefficient seen on the terminated microstrip line looking toward the
resonator can be written as

(r2.36)

(r2.37)- (zo + N2R) -  zo N2R
-  

(Zo+ N2R)  +  zo  2zo*  NzR

o

1 + g -

This allows the coupling coefficient to be found from g :l/(l - f) after the simple
procedure of measuring f at resonance; the resonant frequency and Q can also be found by
measurement. Alternatively, these quantities can be calculated using approximate analytical
solutions [6]. Note that this procedure leaves a degree of freedom between N and R, since
only the product N2R is uniquely determined.

There are maay oscillator configurations using common source (emitter), common
gate (base), or common drain (collector) connections of either FET or bipolar transistors,
in addition to the optional use of series or shunt elements to increase the instability of
the device t4l-t51. A dielectric resonator can be incorporated into the circuit to provide
frequency stability using either the parallel feedback arrangement of Figure l2.Ila, or
the series feedback technique shown in Figure 12.11b. The parallel configuration uses a

FIGURE 12.11

(a) (b)

(a) Dielectric resonator oscillator using parallel feedback; (b) dielectric resonator
oscillator usine series feedback.
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resonator coupled to two microstrip lines, functioning as ahrgh-Q bandpass filter that
couples a portion of the transistor output back to its input. The amount of coupling is
controlled by the spacing between the resonator and the lines, and the phase is controlled
by the length of the lines. The series feedback configuration is simpler, using only a single
microstrip feedline, but typically does not have a tuning range as wide as that obtained with
parallel feedback. Design of an oscillator using parallel feedback is most conveniently done
using a microwave CAD package, but a dielectric resonator oscillator using series feedback
can be designed using the same procedure that was discussed in the previous section on
two-port oscillators.

EXAMPLE 12.4 DMLECTRIC RESONATOR OSCILLATOR DESIGN

A wireless local area network application requires a local oscillator operating
at 2.4 GHz. Design a dielectric resonator oscillator using the series feedback
circuit of Figure 12.1 lb with a bipolar transistor having the following S parameters
(Zo : 5o Q) : S11 : 1.84-3Q', Sn: o.4A5", S21 : 3.885' , Szz : o.7 /-63' .
Determine the required coupling coefficient for the dielectric resonator, and a
microstrip matching network for the termination network. The termination network
should include the output load impedance. Plot the magnitude of f out versus A///6,
for small variations in frequency RlCabout the design value, assuming an unloaded
resonator Q of 1000.

Solutian
The DRO circuit is shown in Figure l2.l2a. The dielectric resonator is placed
),14 from the open end of the microstrip line; the line length l, can be adjusted
to match the phase of the required value of f1. In contrast to the oscillator of
the previous example, the output load impedance for this circuit is part of the
terminating network.

The stability circles for the load and termination sides of the transistor can
be plotted if desired, but are not necessary to the designo since we will begin by
choosing f 1 to provide a large value of lfool l. From (12.34) we have

S12521f1
r o u r : J 2 2 +  

= r r r r r .

which indicates that we can maximize fool by making 1 - S11 f I close to zero. Thus
we choose f r : 0.6/-130o, which gives fous : lO.7 A32' . This corresponds to
an impedance

I  *  four  -^ I  *  lo . l  t l32o , .Zot : Zoi:T"* : SO._ 
*7@t 

: -43'7 + i6. l  A'

t, = Ilui rI
_;

;

FIGURE 12.12 (a) Circuit for the dielectric resonator of Example 12.4.
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FIGURE 12.12 Continued. (b) lf*,1 vs. frequency in Example 12.4

Applying the analogous startup condition of (12.31) for the termination side gives
the required termination impedance as

-Roo,
Z r : -  j X o , r : 5 . 5  -  j 6 . 1  C 2 .

The termination matching network can now be designed using a Smith chart. The
shortest transmission line length for matching 27 to the load impedance Zg is

& :0.48D', and the required open-circuit stub length is l, : 0.307,1,.
Next we match f1 to the resonator network. From (12.35) we know that

the equivalent impedance of the resonator seen by the microstrip line is real at the
resonant frequency, so the phase angle ofthe reflection coeffrcient at this point, fi,
must be either zero or 180'. For an undercoupled parallel RLC resonator, R < Zs,
so the proper phase will be I 80', which can be achieved by transformation through
the line length {.,. The magnitude of the reflection coefficient is unchanged, so we
have the relation

ll : l rszi?t' : (0.6 /-130")s2l|t' - 0.6480',

which gives l, :0.431).. The equivalent impedance of the resonator at resonance
is then

.  1 + f ' ,z ' r :  zof i :12.5f : l .

The coupling coefficientcanbe found using (12.36), with a factorof two to account
for the ),/4 stub termination, as

n  :  
" ^  -  l 2 ' 5  

: 0 .25 ." Z � s 5 0

The variation of lfou,l with frequency will give an indication of the frequency sta-
bility of the oscillator. We can calculate foul from (12.34), after first using Q2.35)
to compute Z'1,1'7, and then transforming down the line of length I' to obtain fz.

0.04
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The electrical line length can be approximated as constant for the small changes
in frequency associated with this calculation. A short computer program or a mi-
crowave CAD package can be used to generate data for -0.01 < Lf /f0 < O.OL
which is shown in the graph of Figure 12.12b. Observe that lfooll decreases rapidly
with a change in frequency as small as a few hundredths of a percent, demonstrating
the sharp selectivity that can be obtained with a dielectric resonator. I

OSCILLATOR PHASE NOISE

The noise produced by an oscillator or other signal source is important in practice because
it may severely degrade the performance of a radar or communication receiver system.
Besides adding to the noise level of the receiver, a noisy local oscillator will lead to down-
conversion of undesired nearby signals, thus limiting the selectivity of the receiver and
how closely adjacent channels may be spaced. Phase noise refers to the short-term random
fluctuation in the frequency (or phase) of an oscillator signal. Phase noise also introduces
uncertainty during the detection of digitally modulated signals.

An ideal oscillator would have a frequency spectrum consisting ofa single delta function
at its operating frequency, but a realistic oscillator will have a spectrum more like that shown
in Figure 12.13. Spurious signals due to oscillator harmonics or intermodulation products
appetlr as discrete spikes in the spectrum. Phase noise, due to random fluctuations caused by
thermal and other noise sources, appears as a broad continuous distribution localized about
the output signal. Phase noise is defined as the ratio of power in one phase modulation
sideband to the total signal power per unit bandwidth (one Hertz) at a particular offset,

f^, from the signal frequency, and is denoted as L(f^).It is usually expressed in decibels
relative to the carrier power per Hertz of bandwidth (dBc/Hz). A typical oscillator phase
noise specification for an FM cellular radio, for example, may be -lIO dBcfflz at25Wlz
from the carrier. In the following sections we show how phase noise may be represented,
and present a widely used model for characterizingthe phase noise of an oscillator.

Representation of Phase Noise

In general, the output voltage of an oscillator or synthesizer can be written as

uo(t) : v"[I + A(t)] cos[<oot + e(t)], (12.38)

where A(r) represents the amplitude fluctuations of the output, and 0(t) represents the
phase variation of the output waveform. Of these, amplitude variations can usually be well-
controlled, and generally have less impact on system performance. Phase variations may be
discrete (due to spurious mixer products or harmonics), or random in nature (due to thermal
or other random noise sources). Note from (12.38) that an instantaneous phase variation is
indistinguishable from a variation in frequency.

Random ohase
variation

Discrete spurious
signal

fo

FIGURE 12.13 Output spectrum of a typical RF oscillator.
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Small changes in the oscillator frequency can be represented as a frequency modulation
of the carrier by letting

L f
0 ( t ) :  

f  
s i na . t  : 0 r s i n to^ t . (12.39)

(r2.42)

wherc f^ : @* lZn is the modulating frequency. The peak phase deviation is 0 o : Lf I f*
(also called the modulation index). Substituting (12.39) into (12.38) and expanding gives

uo(t): Vofcostoot cos(d, sinal.t) - sinruoot sin(9, sinrrl-r)], (r2.40)

where we set A(/) : 0 to ignore amplitude fluctuations. Assuming the phase deviations are
small, so that9o << 1, the small argument expressions that sinx = x and cosx I 1 can be
used to simplify (12.40) to

voQ): Volcosroot - 0rsinat^t sina4tl

:  v o f " o " r o t  - e J l c o s { . o *  a * ) t -  c o s ( r r . r ,  -  a * ) t l } , , r . 0 , ,
l z l

This expression shows that small phase or frequency deviations in the output of an oscillator
resultinmodulationsidebands atoota*,locatedoneithersideof thecarriersignalata.ro.
When these deviations are due to random changes in temperature or device noise, the output
spectrum of the oscillator will take the form shown in Figure 12.13.

,{ccording to the definition of phase noise as the ratio of noise powerin a single sideband
to the carrier power, the waveform of (12.4I) has a corresponding phase noise of

L t f t : P - ! :
Pe

.  ' - ,  ̂  ,  )r  I v o a p \ -
t \  )  |  e ?  6 2-  \  -  /  _  p  _  

- m s

l .  4  ,_ V :

where 0r^, : 0p/\/2 is the rms value of the phase deviation. The two-sided power spectral
density associated with phase noise includes power in both sidebands:

S e $ ) : 2 L ( f ^ ) : (r2.43)

White noise generated by passive or active devices can be interpreted in terms of phase
noise by using the same definition. From Chapter 10 we know that the noise power at the
output of a noisy two-port network is kTgBFG, where Is : 290 K, B is the measurement
bandwidth, F is the noise figure of the network, and G is the gain of the network. For a
1Hertz bandwidth, the ratio of output noise power density to output signal power gives the
power spectral density as

g 2

z

where P. is the input signal (carrier) power. Note that the gain of the
this expression.

(12.44)

network cancels in

Leeson's Modelfor Oscillator Phase Noise

In this section we present Leeson's model for characterizing the power spectral density of
oscillatorphase noise t21,l7l.As in Section 12.1, we will model the oscillator as an amplifier
withafeedbackpath,asshowninFigure I2.l4.Ifthevoltagegainoftheamplifierisincluded

Se(f^):ry
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Noise-free
amplifier

FIGURE 12.14 Feedback amplifier model for chancteizing oscillator phase nolse.

in the feedback transfer function H(ot), then the voltage transfer function for the oscillator
circuit is

If we consider oscillators that use a htgh-Q resonant circuit in the feedback loop (e.g.,
Colpitts, Hartley, Clapp, and similar oscillators), then .F/(co) can be represented as the
voltage transfer function of a parallel RIC resonator:

:16l',,,,,:\ffiff,,<,1

(r2.4s)

(r2.46)

where @os is the resonant fiequency of the oscillator, and L,a : at- rr,l0 is the fiequency
offset relative to the resonant frequency.

Since the input and output power spectral densities are related by the square of the
magnitude of the voltage transfer function [8], we can use (12.45)-(12.46) to write

S4(ar) :

(r2.47)

where Se(rrr) is the input power spectral density, and S6(ar) is the output power spectral
density. In (L2.4T ) we have also defined ah : a4l2Q as the half-power (3 dB) bandwidth
of the resonator.

The noise spectrum of a typical transistor amplifier with an applied sinusoidal signal
at /s is shown in Figure 12.15. Besides /rZB thermal noise, transistors generate additional
noise that varies as llf atfrequencies below the frequency /*. This llf,orflicker, noise
is likely caused by random flucfuations ofthe carrier density in the active device. Due to
the nonlinearity of the transistor, the 1lf noise will modulate the applied signal at fo, and

: ('* ,fu) ss@,): (, * ffi)',r,>

vi@')

S^ (ro)

o
B

o

z

FIGURE 12.15 Noise power versus frequency for an amplifier with an applied input signal.



12.3 Oscillator Phase Noise 597

J U  J d

FIGURE 12.16 Idealized power spectral density of amplifler noise, including l/f and thermal
components.

appear as I/f noise sidebands around /e. Since the I/f noise component dominates the
phase noise power at frequencies close to the carrier, it is important to include it in our model.
Thus we consider an input power spectral density as shown in Figure 12.16, where K I Lf
represents the I /f noise component around the carrier, and kToF I Po represents thermal
noise. Thus the power spectral density applied to the input of the oscillator can be written as

(12.48)

where K is a constant accounting for the strength of the I lf noise, and ao : 2n fo is the
comer frequency of the I // noise. The corner frequency depends primarily on the type of
transistor used in the oscillator. Silicon junction FETs, for example, typically have corner
frequencies ranging from 50 Hz to 100 Hz, while GaAs FETs have corner frequencies rang-
ing from 2 to IO MHz. Bipolar transistors have corner frequencies that range from 5 kHz
to 50 kHz.

Using (12.48) in (12.47) gives the power spectral density of the output phase noise as

se(a. , ) :T(*#),

s4(ro): ry(ff i.&+ff+r)
:ry(w.#+ff+) (r2.4e)

This result is sketched in Figure I2.I7. There are two cases, depending on which of the
middle two terms of (12.49) is more significant. In either case, for frequencies close to the
carrier at fs, the noise power decreases as llf3, or -18 dB/octave. If the resonator has a
relatively low Q, so that its 3 dB bandwidth fn > f", then for frequencies between fo and

f
J A

(b)

Power spectral density of phase noise at the ou@ut of an oscillator. (a) Response
for fy > /. (low Q). (b) Response for fi > f" (high Q).

(a)

56 (<o)

FIGURE 12.17



598 Chapter 12: Oscillators and Mixers

fi the noise power drops as I lf2, or -12 dB/octave. If the resonator has a relatively high

Q, so that fn < fo, then for frequencies between f n and /, the noise power drops as 1 / f ,
or -6 dB/octave.

At higher frequencies the noise is predominantly thermal, constant with frequency,
and proportional to the noise f,gure of the amplifi.er. A noiseless amplifier with F : I
(0 dB) would produce a minimum noise floor of kTs : -174 dBmlHz. In accordance with
Figure I2.I3, the noise power is greatest at frequencies closest to the carrier frequency,
but (12.49) shows that the llf3 component is proportionalto I/Qz, so that befter phase
noise characteristics close to the carrier are achieved with a high-Q resonator. Finally,
recall from (L2.43) that the single-sideband phase noise will be one-half of the power
spectral density of (12.49). These results give a reasonably good model for oscillator phase
noise, and quantitatively explain the roll-off of noise power with frequency offset from the
carrier.

The effect of phase noise in a receiver is to degrade both the signal-to-noise ratio (or bit
error rate) and the selectivity tgl. Of these, the impact on selectivity is usually the most
severe. Phase noise degrades receiver selectivity by causing down conversion of signals
located nearby the desired signal frequency. The process is shown in Figure 12.18. A local
oscillator at frequency /s is used to down convert a desired signal to an IF frequency. Due
to phase noise, however, an adjacent undesired signal can be down converted to the same
IF frequency due to the phase noise spectrum of the local oscillator. The phase noise that
leads to this conversion is located at an offset from the carrier equal to the IF frequency
from the undesired signal. This process is called reciprocal mixing. From this diagram, it is
easy to see that the maximum allowable phase noise is order to achieve an adjacent channel
rejection (or selectivity) of S dB (S > 0) is given by

L(f*) :  C (dBm)- s(dB)- 1(dBm)- l0log(B),  (dBclHz), (12.s0)

where C is the desired signal level (in dBm), ,I is the undesired (interference) signal level
(in dBm), and B is the bandwidth of the IF filter (in Hz).

EXAMPLE 12.5 GSM RECEIVER PHASE NOISE REQUIREMENTS

The GSM cellular standard requires a minimum of 9 dB rejection of interfering
signal levels of -23 dBm at 3 NIHz from the carrier, -33 dBm at 1.6 MHz
from the carrier, and -43 dBm at 0.6 MHz from the carrier, for a carrier level
of -99 dBm. Determine the required local oscillator phase noise at these carrier
frequency offsets. The channel bandwidth is 200 kHz.

*- IF -+l
0

F-IF-+l
F- Ir --l fo

FIGURE 12.18 Illustrating how local oscillator phase noise can lead to the reception ofundesired
signals adjacent to the desired signal.
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Solution
From (12.50) we have

L(f*) : C (dBm) - s (dB) - 1 (dBm) - 10log(B)

: *99 dBm - 9 dB - / (dBm) - 101og(2 x 105).

The table below lists the required LO phase noise as computed from the above

expression:

frequency offset

f* (MHz)
interfering signal

level (dBm)
L(f*)

dBclHz

3.0
r.6
0.6

-23
_ J J

-43

-  138
-128
-  1 1 8

12.4

This level of phase noise requires a phase-locked synthesizer. Bit errors in GSM

systems are usually dominated by the reciprocal mixing effect, while errors due to

thermal antenna and receiver noise are generally negligible' I

FREQUENCY MULTIPLIERS

As frequency increases into the millimeter wave range it becomes increasingly difficult to

build fundamental frequency oscillators with good power, stability, and noise characteristics.

An alternative approach is to generate a harmonic of a lower frequency oscillator through

the use of afrequency multiplier. As we have seen in Section 10.2, a nonlinear element

may generate many harmonics of an input sinusoidal signal, so frequency multiplication is

a natural occurrence in circuits containing diodes and transistors. Designing a good quality

frequency multiplier, however, is a difficult task that generally requires nonlinear analysis,

matching at multiple frequencies, stability analysis, and thermal considerations. We will

discuss some of the general operational principles and properties of diode and transistor

frequency multipliers, and refer the reader to the literature for more practical details [10].
Frequency multiplier circuits can be categorized as reactive diode multipliers, resistive

diode multipliers, or transistor multipliers. A reactive diode multiplier uses either a varactor

or a step-recovery diode biased to present a nonlinear junction capacitance. Since losses

in such diodes are small, conversion efficiencies (the fraction of RF input power that is

converted to the desired harmonic) can be relatively high. In fact, as we will show, ideal

(lossless) reactive multipliers can achieve a theoretical conversion efficiency of lOOVo.

Varactor multipliers are most useful for low harmonic conversion (multiplier factors of

2 to 4\, while step-recovery diodes are able to generate more power at higher harmonics.

Resistive multipliers exploit the nonlinear I-V characteistic of a forward biased Schottky

barrier detector diode. We will show that resistive multipliers have conversion efficiencies

that decrease as the square of the harmonic number, and so these multipliers are only

useful for low multiplication factors. Transistor multipliers can use both bipolar and FET

devices, and can provide conversion gains. Transistor multipliers are limited by their cutoff

frequency, however, and therefore are generally not useful at very high frequencies.

A disadvantage of frequency multipliers is that noise levels are increased by the multi-

plication factor. This is because frequency multiplication is effectively a phase multiplication
process as well, so phase noise variations get multiplied in the same way that frequency is

multiplied. The increase in noise level is given by 2}logn, where n is the multiplication
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FIGURE 12.19 Conceptual circuit for the derivation of the Manley-Rowe relations.

factor. Thus a frequency doubler will increase the fundamental oscillator noise level by at
least 6 dB, while a frequency tripler will lead to an increase of at least 9.5 dB. Reactive
diode multipliers typically add little additional noise of their own, since varactors and step-
recovery diodes have very low series resistances, but resistive diode multipliers can generate
signifi cant additional noise power.

Reactive Diode Multipliers (Manley-Rowe Relations)

We begin our discussionwiththe Manley-Rowe relations, which result from a very general
analysis of power conservation associated with frequency conversion in a nonlinear reactive
element [11]. Consider the circuit of Figure 12.19, wherc two sources at frequencies ar1
and ro2 drive a nonlinear capacitor, C. The circuit also shows ideal bandpass filters to
conceptually isolate powers in all harmonics of the formncol * matz. Since the capacitor is
nonlinear, its charge Q canbe expressed as a power series in terms of the capacitor voltage,
U :

Q : a o * a p I a 2 u 2 * a s u 3 * " '

As in Section I0.2, this nonlinear relationship implies the generation of all frequency
products of the form n@t I ma2. Thus we can write the capacitor voltage as a Fourier
series of the form

, (,) :,\ 
^D_, 

n^ r ""' '  *^ -"

Similarly, the capacitor charge aad current can be written as

e(t) :"1.i_ e,^sj(no*m0')t ,

)/-t  OO m

i { t 1 : lE :  I  I  i u r r+m@2\enne i (n@t+m@2t t :  I  D  In^ r i t n ' t tmo2 \ t .
d t

n : - @ m = - @  n : - ( n m : - 6

(12.53)

Since u(r) and t(/) are real functions, we must have that V-n,-- : Vi^ and Q-r,-* : Qir*.
No real power can be dissipated in the lossless capacitor. If o1 and a2 are not multiples

of each other, there is no average power due to interacting harmonics. Then the average

(12.sr)

(r2.s2)
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power (ignoring a factor of 4) aL frequency tlnal -f mat2l is given as

Pn :2P.e{Vr*I}^} : Vn^Ii* + V;^Ir^ : V,^II^ * V-n.-^ll-n,-^ : P*r,-^'

(r2.s4)

Conservation of power can then be expressed as

oo

D P ' * :o '
m=-&

oo

/-t
= - @

Now multiply (12.5s) ,t 
##rto 

obtain

o o o o n P , ^ S 1 3 f f i P " n- ' L  L  - - - '
u,ing r r z s + lni 

^7;" 
^^! i3:,,,:,:,-;^^;7 ^': ^' ;:,: 

-

't D D "ejv"^Ql^ - jv-' '-*Q\n,-*),T_* *
+ r ,  

, \ * \m(- iVn*Q:*  

-  iV- , , - *Q\n,-* )  :0  (12.57)

The double summation factors in (12.57) do not depend on c,.r1 or zo2, since we can always

adjust the external circuitry so that all Vr* remain constant, and the Q,*wilkemain constant

as well since the capacitor charge depends directly on the voltage. Thus each summation in
(12.56') must be identically zero:

S$ S nPn^
/  /  - - o .

H  u  n a ) t  + m @ )
n = - @ m = - @

i  f  mP'^ :0.
n: ' *^=*n@t  +m@2

(r2.ss)

(r2.s6)

(12.58a)

(r2.s8b)

(12.59a)

(12.seb)

Some simplification canbe carried outby eliminating thenegative indices of one summation

by using the fact that P-n,-^ : Pnm. For example, from (12.58a),

@
n

/-/
n = - @

i '",- :i i nP,^ -i i 
-nP-,.-^

^?* nr, I maz fr ^-"* ncol + m@z fr .=* -tta1 - ttl(D2

: 2 i  f  
n P n ^  : 0 .

7:o-?*nat + ma2

This results in the usual form for the Manlev-Rowe relations:

SS SS nPn^
)  )  

"  - 0 .
7:o ̂ ?*n@r + maz

\  \  -  - A

n?*u_on@t +  m@2

The Manley-Rowe relations express power conservation for any lossless nonlinear reac-

tance, and can be useful for harmonic generation, parametric amplifiers, and frequency

converters at RF, microwave, and optical frequencies to predict the maximum possible

power gain and conversion efficiency.
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FIGURE 12.20 Block diagram of a diode frequency multiplier.

Reactive frequency multipliers involve a special case of the Manley-Rowe relations,
since only a single source is used. If we assume a source at frequency ro1, then setting m : 0
in (12.59a) gives

- 0 ,

-Prc, (12.60)

where Pns represents the power associated with the nth harmonic (the DC term for n : 0 is
zero). In practice, Pro > 0 because this represents power delivered by the source, while the
summation in (12.60) represents the total power contained in all the harmonics of the input
signal, as generated by the nonlinear capacitor. If all harmonics but the nth are terminated
with lossless reactive loads, the power balance of (12.60) reduces to,

I ao
n : l

m

Dr ,o :

(12.61)

indicating that it is theoretically possible to achieve 1007o conversion efficiency for any
harmonic. Of course, in practice, losses in the diode and matching circuitry serve to reduce
the achievable efficiency substantially.

A block diagram of a diode frequency multiplier is shown in Figure 12.20. An input
signal of frequency fg is applied to the diode, which is terminated with reactive loads at all
frequencies exceptnfs, the desired harmonic. Ifthe diodejunction capacitance has a square-
law I-V characteristic, it is often necessary to terminate unwanted harmonics with short
circuits if harmonics higher than the second are to be generated. This is because voltages
at higher harmonics may not be generated unless lower harmonic currents are allowed to
flow. These currents are commonly referred to as idler currents. For example, a varactor
tripler will generally require terminations to allow idler currents at2fs.Typicalconversion
efficiencies for varactor multipliers range from 50-807o for doublers and triplers at 50 GHz.
The upper frequency limit is controlled mainly by f,, the cutoff frequency of the diode,
which depends on the series resistance and dynamic junction capacitance. Typical varactor
cutoff frequencies can exceed 1000 GHz, but efficient frequency multiplication requires
thatnfo 41 f,.

Resistive Diode Multipliers

Resistive multipliers generally use forward-biased Schottky-barrier detector diodes to pro-
vide a nonlinear I-V characteristic. Resistive multipliers are less popular than reactive
multipliers because their efficiencies are lower, especially for higher harmonic numbers.
But resistive multipliers offer better bandwidths, and more stable operation, than reactive

l le l  :  t .
l & o  I
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FIGURE 12.21 Conceptual circuit for the derivation of power relations in a resistive frequency
multiplier.

multipliers. In addition, at high millimeter wave frequencies even the best varactor diodes
begin to exhibit resistive properties. Since a resistive frequency multiplier is not lossless,
the Manley-Rowe relations do not apply. But we can derive a similar set of relations for
a nonlinear resistor, and demonstrate an important result for frequency conversion using
nonlinear resistors.

Consider the resistive multiplier circuit shown in Figure I2.2I. We have simplified
the analysis by specializing to the frequency multiplier case by considering only a single
source frequency-the more general case of two frequency sources is treated in [12]. For
a source frequency ar, the nonlinear resistor generates harmonics of the form nro, so the
resistor voltage and current can be written as a Fourier series:

m\ - -
u ( t ) -  ) '  V ^ r t ^ ' '' u

m : - &

&\-i ( l ) :  >  I ^s rmat .
^?*

The Fourier coefficients are determined as

(r2.63a)

(t2.63b)

i=0

Since u(r) and i(r) are real functions, we must have V* - Vi^ and I* - Ii*. The power
associated with the ruth harmonic is (ignoring a factor of 4)

P* :ZRelV^Ifil : V^I; + V;I*.

Now multiply V* of (12.63a1 by -mz I fi and sum:

I

1 r
V- :  =  |  u ( t )e -J^ ' Id t ,, , ,  T J  "

t:0

I" l f
In :  i  I  i ( t \e- r* ' 'd t .

I J

(r2.62a)

(12.62b)

(12.64)

@

-  I  m ? v ^ I ; :
m=-&

Next, use the result that

-Jm@t 
dt ,

@

- 
I *2r2 1*r*lmat

m = - @

I
oo- t  ,  --  

I  u ( t \  ) '  m ' I l e
T | " / - r

m : - 6

u '="! :- i  ^zr2r^e,^-,-
A t z  u

m : - @

(12.65)
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to write (12.65) as

-  i  mzv^I; :  +
^?* 

'' (o'l
ur t t t f fat

l P ^ l  I
t - t < _
I  p r l -  ^ z '

I

1  . . } i ( t ) l r  I
:  - o t i t - - l - - r  -  -

2na 0t l ,=o Zra #Tt, e2.66)
,:0

Since u(r) and l(r) are periodic functions (period T), we have u(0) : u(Z) and i(0) : ;17;.
Derivatives of i(l) have the same periodicity, so the second to last term in (12.66) vanishes.
In addition, we can write

3u(t)  \ i ( t )
0t  0t

Equation (L2.66) then reduces to

}u(t)  0i  \u(t)
A t  0u  0 t

:x(+)'
@

S a  i . , . *

L  m - V m l m
m:-(x

1

2n at
t

D*',^,
m:0

a i
ô u

I

I
-n

T

-n

(#) '  at  : i* ' tv^I ;+ v; I^):

or m

m:0\ * ' r ^ : * l ; l #
I *(ry)", (12.67)

(12.68)

t

For positive nonlinear resistors (defined as having an I-V curve whose slope is always
positive), the integrand of (12.67) will always be positive. Thus (12.67) can be reduced to

m

\-r2P- t  o.
m=0

If all harmonics are terminated in reactive loads except for ro (the fundamental) and za; (the
desired harmonic), (12.68) reduces to & + mz P^ > 0. The power P1 > 0 is delivered by
the source, while P. < 0 represents harmonic power supplied by the device. The maximum
theoretical conversion efficiency is then given as

(r2.69)

This result indicates that the efficiency of a resistive frequency multiplier drops as the square
of the multiplication factor.

The performance of diode frequency multipliers can often be improved by using two
diodes in a balanced configuration. This can lead to increased output power, improved input
impedance characteristics, and the rejection of certain (all even or all odd) harmonics. Two
diodes can be fed using a quadrature hybrid, or two diodes can be configured in an antipar-
allel anangement (back-to-back with reversed polarities). The antiparallel configuration
will reject all even harmonics of the input frequency.

Transistor Multipliers

Compared to diode frequency multipliers, transistor multipliers offer better bandwidth
and the possibility of conversion efficiencies greater than 1007o (conversion gain). FET
multipliers also require less input and DC power than diode multipliers. In the past, before
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solid-state amplifiers were available at millimeter wave frequencies, high power diode mul-
tipliers were one of the few ways of generating millimeter wave power. Today, however, it
is possible to generate the required frequency at low power, then amplify that signal to the
desired power level using transistor amplifiers. This approach results in better efficiency,
lower DC power requirements, and allows the separate optimization of signal generation
and amplification functions. Transistor multipliers are well-suited for this application.

There are several nonlinearities that exist in a FET device that can be used for harmonic
generation: the transconductance near pinch-off, the output conductance near pinch-off, the
rectifying properties of the Schottlry gate, and the varactor-like capacitances at the gate
and drain. For frequency doubler operation, the most useful of these is the rectification
property, where the FET is biased to conduct only during the positive half of the input signal
waveform. This results in operation similar to a class B amplifieq and provides a multiplier
circuit that is useful for low-power output (typically less than l0 dBm) at frequencies up to
60 to 100 GHz. Bipolar transistors can also be used for frequency multiplication, with the
capacitance of the collector-base junction providing the necessary nonlinearity.

The basic circuit of a class B FET frequency multiplier is shown in Figwe 12.22.
A unilateral device is assumed here to simplify the analysis. The source is a generator of
frequency @s, with period T : 2tr /ato, and matched to the FET with the source impedance
R, + jX,. The drain of the FET is terminated with a load impedance Rr I jXr, which is
chosen to form a parallel RLC resonator with C7, at the desired harmonic frequency, zlars.
The gate is biased at a DC voltage of Vr, < 0, while the drain is biased at Vaa > O.

The operation of the FET multiplier can be understood with the help of the waveforms
shown in Figure 12.23. As seen inFigure l2.23a,theFET is biasedbelow the tum-on voltage,
Vr, so the transistor does not conduct until the gate voltage exceeds V1.The resulting drain
current is shown in Figure I2.23b, and is seen to be similar in form to a half-wave rectified
version of the gate voltage. This waveform is rich in harmonics, so the drain resonator can
be designed to present a short circuit at the fundamental and all undesired harmonics, and
an open circuit at the desired harmonic frequency. The resulting drain voltage for n :2 is
shown in Figure 12.23c.

We can make an approximate analysis of the FET multiplier by representing the drain
current in terms of a Fourier series. If we assume that the drain current waveform is a
half-cosine function of the form

i a Q ) :
for ltl < c/2

f o r r / 2 < l t l < T / 2 ,
(r2.70)

where z is the duration of the drain current pulse, the Fourier series can be found as

{;--'*T
g 2nnt

ia f t ) :  l l ncos  ,  . (12.71)

Circuit diagram of an FET frequency multiplier. The transistor is modeled using
a unilateral equivalent circuit.

FIGURE 12.22
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FIGURE 12.23

Vd^u"

Vd^in

o l ( c ) z t

Voltage and currents in the FET multiplier (doubler) circuit of Figrre 12.22.
(a) Gate voltage when the transistor is biased just below pinch-off. (b) Drain
curent, which conducts when the gate voltage is above the tireshold voltage.
(c) Drain voltage when the load resonator is tuned to the second harmonic.

vdd

with the Fourier coefficients given by

and

2 t
Io: I^ --;

7 f t

,  r 4r cos(nttt lT\
r n : r n a x n f r - e n i l r v ' forn > 0.

(r2.72a)

(12.72b)

The coefftcient 1, represents the drain current of harmonic frequency n@s, so maximizing
multiplier efficiency involves maximizing 1,. Since (12.72b) clearly shows that the maxi-
mum value of 1, decreases with n, circuits of this type are generally limited to frequency
doublers or triplers. For a given value of n, the maximum value of In/I^ depends on the
ratio t f T: for n : 2 the optimum occurs at t /T : 0.35, while for n - 3 the optimum
occurs at t lT :0.22. Because of device and biasing constraints, however, the designer
usually has very little control of the pulse width r, and practical values of r f T are usu-
ally greater than optimum. Examination of Figure 12.23a shows that the normalized pulse
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duration is related to the gate voltages V1, Vgrnno and Vrrn* as

Vgg:(Vg^ -Vs*") /2, (12.74)

and the peak value of the AC component of the gate voltage (frequency are) is given by

V r : V g ^ u  - V r r .

Then the input power delivered to the FET can be expressed as

\r2.7s)

- - - 7 t r  2 V 1  - V g m a *  -  V g * n
cosT: yr.*  -  yr-"  '

The gate bias voltage satisfies the relation that

e,,:lvr,n,: *ffiep

Vr: InRr:  (Va^ -  Va^) /2,

assuming resonance of X2 and C7". This gives the optimal load resistance as

rl .  _ Vdr i ,
R ,  :  3y r ,  '

Then the output power at the harmonic zals is

1
r^  :  

) l t , l2  
Rt .

Finally, the conversion gain is given as

G - :  
P '

Pavail

(r2.73)

(r2.76)

(r2.77)

(r2.'78)

(12.7e)

(12.80)

If the source is conjugately matched to the transistor, the input power will be equal to the
available power, Poro;1.

On the load side, the peak value of the AC component of the drain voltage (frequency
nare) is given by

EXAMPLE 12.6 FETFREQUENCYDOUBLERDESIGN

A 12--24 GHz frequency doubler is designed using an FET with the following
parameters: Vt : -2.0 V Ri : 10 O, C8" :0.20 PF, Ca, : 0.15 pR and R7" :

40 Q. Assume the operating point of the transistor is chosen so thatVgma\ : 0.2Y,
Vrmin: -6.0 V Vd^a*:5.0 V Va*in - 1.0 Y and I-u":80 rnA. Find the
conversion gain of the multiplier.

Solution
We first use (12.74) and (12.75) to find the peak value of the AC input voltage.
The gate bias voltage is

Vsg :  (Vs^* -  Vs^)12:  (0.2 -  6.0)12:  -2.9Y,

and the peak AC input voltage is

Vg :  Vg^* -  Ves :0.2 + 2.9 :  3 .1 V.
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Then the input power is given by (12.76):

p  _  l v r l2  R,  _"n* 2lR,- j / to()Cg, lz

: 10.7 mW.

(3.1F( lo)
2l(10)z -l (ll2n(12 x 10e)(0.2 x i0-12))21

The pulse width is found from (12.73) as

2 ( -2 .0 ) -0 .2+6 .0:0 .29 ,
0.2 + 6.0

Then the load current for the second harmonic is given by (12.72b):

rr: r^^2:.*(?:'l:) - o.26zrma*: 2l.o nrA.
7 t t  t - \ + r / t r

The load resistance required to match the transistor is found from (12.78):

^ _ _ V a ^  
- V a * n _  5 - 1

t =  
f f :  ^ o . o 2 D : 9 5 ' 2 Q '

The output power at 24 GHz is given by (12.79):

r., : lrltri n, : !ro.ozD2e5.2): 2l.o mw.
L '

Finally, the conversion gain is, assuming the input is conjugately matched,

G . :  
P '  - 2 1 ' o  : 2 . 9 d 8 .

Pauait 10.7

The load reactance required to resonate the second harmonic is X1 : I l2aoC a, :

44.2 {2, which corresponds to an inductance of 0.293 nH. I

OVERVIEW OF MICROWAVE SOURCES

A source of microwave power is essential for any microwave system. Communication and
radar systems generally use a relatively high-power source for the transmitter, and one or
more low-power sources for local oscillator and down conversion functions in the receiver.
Radar transmitters are often operated in a pulsed mode, and peak powers that are much
greater than the continuous power rating of the source can then be attained. Electronic
warfare systems use sources in much the same way as a radar system, with the additional
requirement for tunability over a wide bandwidth. Radiometer and radio astronomy receiver
systems require low-power sources for local oscillators (although it can be argued that the
primary source of microwave power for such systems is the radiation emitted from the
hot body under observation). Test and measurement systems usually require a low-power
microwave source, often tunable over a wide bandwidth. And the microwave oven, that
most common of all microwave systems, requires a single-frequency high-power source.

At present, these requirements are met with a variety of solid-state and microwave
tube sources. Generally the division is between solid-state sources for low power and low
frequencies, and tubes for high power and/or high frequencies. Figure 12.24 illustrates the
power versus frequency performance for these two types of sources. Solid-state sources
have the advantages of small size, ruggedness, low cost, and compatability with microwave

^^,7TT 2V1 - Vg^* - Vgmtn

T Vgmax - Vgr n

for I :0.406.
T

12.5
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FIGURE 12.24 Power versus frequency perfonnance of solid-state sources and microwave tubes.

integrated circuits, and so are usually preferred whenever they can meet the necessary
power and frequency requirements. But very high power applications are dominated by
microwave tubes, and even though the power and frequency performance of solid-state
sources is steadily improving, it appears that the need for microwave tubes will not be
eliminated any time soon. Here we will briefly describe and summarize the performance of
several of the most common types of solid-state and microwave tube sources.

Solid-State Sources

Solid-state microwave sources can be categoized as two-terminal devices (diodes), or
three-terminal devices (transistor oscillators). The most common diode sources are the
Gunn diode and the IMPATT diode, both of which directly convert a DC bias to RF power
in the frequency range of about 2 to 100 GHz. The Gunn diode is a transferred-electron
device that uses a bulk semiconductor (usually GaAs or InP), as opposed to a pn junction

[13]. This effect leads to a negative-resistance characteristic that can be employed with
an external resonator to produce a stable oscillator. DC to RF efficiencies are generally
less than l0%o.Figwe 12.25 shows the power (continuous and pulsed) versus frequency
performance for a variety of commercially available Gunn sources. Gunn diodes can also
be used as negative-resistance reflection-type amplifiers. Figwe 12.26 shows a photograph
of two commercially available Gunn diode sources.

The IMPATT diode uses a reverse-biased pn junction to generate microwave power [ 1 3] .
The material is usually silicon or gallium arsenide, and the diode is operated with a relatively
high voltage (70-100 V) to achieve a reverse-biased avalanche breakdown current. When
coupled with a high-Q resonator and biased at an appropriate operating point, a negative-
resistance effect can be achieved at the RF operating frequency, and oscillation will occur.
IMPATT sources are generally more noisy than sources using Gunn diodes, but are capable
of higher powers and higher DC to RF conversion efficiencies. IMPATTs also have better
temperafure stability than Gunn diodes. Figure 12.27 shows the power versus frequency
performance for typical commercial IMPATT sources. IMPATT diodes can also be used as
negative-resistance amplifi ers.

Transistor oscillators generally have lower frequency and power capabilities compared
to Gunn or IMPAIT sources, but offer several advantages over diodes. First, oscillators using
GaAs FETs are readily compatible with MIC or MMIC circuitry, allowing easy integration
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FIGURE 12.25 Power versus frequency performance of Gunn diodes. o pulsed; o continuous.
MA: Microwave Associates; BTL: Bell Telephone Labs; CA: Cayuga.

with FET amplifiers and mixers, while diode devices are less compatible. Also, a transistor
oscillator circuit is much more flexible than a diode source. This is because the negative-
resistance oscillation mechanism of a diode is determined and limited by the physical
characteristics of the device itself, while the operating characteristics of a transistor source
can be adjusted to a greater degree by the oscillator circuitry. Thus, transistor oscillators
allow more control of the frequency of oscillation, temperature stability, and output noise
than do diode sources. Transistor oscillator circuits also lend themselves well to frequency
tuning, phase or injection locking, and to various modulation requirements. Transistor
sources are relatively efficient, but presently not capable of very high power outputs.

Tunable sources are necessary in many types of electronic warfare systems, frequency-
hopping radar and communications systems, and test systems. Transistor oscillators can be
made tunable by using an adjustable element in the resonant load, such as a varactor diode or
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FIGURE 12.26 Two Gunn diode sources. The unit on the left is a mechanically tunable E-band
source, while the unit on the right is a varactor-tuned V-band source.

Photograph courtesy of Miilitech Corporation, Northampton, Mass.
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a magnetically-biased YIG sphere. Thus, a voltage-controlled oscillator (VCO) can be made

by using a reverse-biased varactor diode in the tank circuit of a transistor oscillator. In a
YlG-tuned oscillator (YTO), a single-crystal YIG sphere is used to control the inductance of
a coil in the tank circuit of the oscillator. Since YIG is a ferrimagnetic material, its effective
permeability can be controlled with an external DC magnetic bias field, thus controlling
the oscillator frequency. YIG oscillators can be made to tune over a decade or more of
bandwidth, while varactor-tuned oscillators are limited to a tuning range of about an octave.
YlG-tuned oscillators, however, cannot be tuned as fast as varactor oscillators.

In many applications the RF power requirement exceeds the power capacity of a single

solid-state source. But because of the many advantages offered by solid-state sources, sub-

stantial effort has been directed toward increasing output power through the use of various
power combining techniques. Thus, the outputs of two or more sources are combined in
phase, effectively multiplying the output power of a single source by the number of indi-
vidual sources being used. In principle, an unlimited amount of RF power can be generated

in this manner; in practice, however, factors such as high-order modes and combiner losses
limit the multiplication factor to about 10-20 dB.

Power combining can be done by combining powers at the device level or at the
circuit level. In some applications, power can be combined spatially by using an array of
antennas, where each element is fed with a separate source. At the device level, several
diode or transistorjunctions are essentially connected in parallel over an electrically small
region, and used as a single device. This technique is thus limited to a relatively few device
junctions. At the circuit level, the power output from N devices can be combined with
an N-way combiner. The combining circuit may be an N-way Wilkinson-type network,
or a similar type of planar combining network. Resonant cavities can also be used for this
purpose. These various techniques all have their own advantages and disadvantages in terms
of efficiency, bandwidth, isolation between sources, and circuit complexity.

Microwave Tubes

The first truly practical microwave source was the magnetron tube, developed in England in
the 1930s, and later providing the impetus for the development of microwave radar during
World War II. Since then, a large variety of microwave tubes have been designed for the
generation and amplification of microwave power. In recent years, solid-state devices have
been progressively filling the roles that were once reserved for microwave tubes, generally

with a multitude of advantages. But tubes are still essential for the generation of very high
powers (10 kW to 10 MW), and for the higher millimeter wave frequencies (100 GHz and
higher). Here we will provide a brief overview of some of the most common microwave
tubes, and their basic characteristics. Several of these tubes are not actually sources by
themselves, but are high-power amplifiers. Such tubes are used in conjunction with lower
power sources (often solid-state sources) in transmitter systems.

There is a wide variety of tube geometries, as well as a wide variety of principles on
which tube operation is based, but all tubes have several common features. First, all tubes
involve the interaction of an electron beam with an elecffomagnetic field, inside a glass or
metal vacuum envelope. Thus, a way must be provided for RF energy to be coupled outside
the envelope; this is usually accomplished with transparent windows or coaxial coupling
probes or loops. Next, a hot cathode is used to generate a stream of electrons by thermionic
emission. Cathodes are usually fabricated from a barium oxide-coated metal surface, or an
impregnated tungsten surface. The electron sffeam is then focused into a narrow beam by
a focusing anode with a high voltage bias. Altematively, a solenoidal electromagnet can
be used to focus the electron beam. For pulsed operation, a beam modulating electrode is
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used between the cathode and anode. A positive bias voltage will attract electrons from
the cathode, and turn the beam on, while a negative bias will turn the beam off. After
the electron beam leaves the region of the tube where the desired interaction with the RF
field takes place, a collector element is used to provide a complete current path back to
the cathode power supply. The assembly of the cathode, focusing anode, and modulating
electrode is called the electron gun. Because of the requirement for a high vacuum, and
the need to dissipate large amounts of heat, microwave tubes are generally very large and
bulky. In addition, tubes often require large, heavy biasing magnets, and high voltage power
supplies. Factors to consider when choosing a particular type oftube include power ouq)ut,
frequency, bandwidth, tuning range, and noise.

Microwave tubes can be grouped into two categories, depending on the type of electron
beam-field interaction. In linear-beam, or "Ol' type tubes the electron beam traverses the
length of the tube, and is parallel to the electric field. In the crossed-field, ot "m," type tube
the focusing field is perpendicular to the accelerating electric field. Microwave tubes can
also be classified as either oscillators or amplifiers.

The klystron is a linear-beam tube that is widely used as both an amplifier and an
oscillator. In a klystron amplifier, the electron beam passes through two or more resonant
cavities. The first cavity accepts an RF input and modulates the electron beam by bunching
it into high-density and low-density regions. The bunched beam then travels to the next
cavity, which accentuates the bunching effect. At the flnal cavity the RF power is extracted,
at a highly amplified level. Two cavities can produce up to about 20 dB of gain, while using
four cavities (about the practical limit) can give 80-90 dB gain. Klystrons are capable of
peak powers in the megawatt range, with RF output/DC input power conversion efficiencies
of30-5OVo.

The reflex klystron is a single-cavity klystron tube which operates as an oscillator by
using a reflector electrode after the cavity to prgy{e positive feedback via the electron
beam. It can be tuned by mechanically adjusting the cavity size. The major disadvantage
of klystrons is their narrow bandwidth, which is a result of the high- Q cavities required for
electron bunching. Klystrons have very low AM and FM noise levels.

The narrow bandwidth of the klystron amplifier is overcome in the traveling wave tube
(TWT). The TWT is a linear-beam amplifier that uses an electron gun and a focusing mag-
net to accelerate a beam of electrons through an interaction region. Usually the interaction
region consists of a slow-wave helix structure, with an RF input at the electron gun end,
and an RF output at the collector end. The helical structure slows down the propagating RF
wave so that it travels at the same velocity as the wave and beam travel along the interaction
region, and amplification is effected. Then the amplified signal is coupled from the end of
the helix. The TWT has the highest bandwidth of any amplifier tube, ranging from 30 to
l2OVo; this makes it very useful for electronic warfare systems, which require high power
over broad bandwidths. It has a power rating of several hundred watts (typically), but this
can be increased to several kilowatts by using an interaction region consisting of a set of
coupled cavities; the bandwidth will be reduced, however. The effrciency of the TWT is
relatively small, typically ranging fuom20 to 40Vo.

Avariationof the TWTis thebackwardwave oscillator GWO). The differencebetween
a TWT and the BWO is that in the BWO, the RF wave travels along the helix from the
collector toward the electron gun. Thus the signal for amplification is provided by the
bunched electron beam itself, and oscillation occurs. A very useful feature of the BWO
is that its output frequency can be tuned by varying the DC voltage between the cathode
and the helix; tuning ranges of an octave or more can be achieved. The power output of
the BWO, however, is relatively low (typically less than 1 W), so these tubes are generally
being replaced with solid-state sources.
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Another type of linear-beam oscillator tub e is the extended interaction oscillator (EIO).

The EIO is very similar to a klystron, and uses an interaction region consisting of several
cavities coupled together, with positive feedback to support oscillation. It has a narrow
tuning bandwidth, and a moderate efficiency, but it can supply high powers at frequencies
up to several hundred GHz. Only the gyratron can deliver more power.

Crossed-field tubes include the magnetron,the crossed-field amplifi.er, andthe gyratron.

As previously mentioned, the magnetron was the first high-power microwave source. It
consists of a cylindrical cathode surrounded by a cylindrical anode with several cavity
resonators along the inside of its periphery. A magnetic bias fleld is applied parallel to the
cathode-anode axis. In operation, a cloud of electrons is formed which rotates around the
cathode in the interaction region. As with linear-beam devices, eleclron bunching occurs,
and energy is transferred from the electron beam to the RF wave. RF power can be coupled
out of the tube with a probe, loop, or aperture window.

Magnetrons are capable of very high power outputs-on the order of several kilowatts.
And the magnetron has an efficiency of SOVo or more. A significant disadvantage, however,
is that they are very noisy, and cannot maintain frequency orphase coherency when operated
in a pulsed mode. These factors are important for high-perfornance pulsed radars, where
processing techniques operate on a sequence of returned pulses. (Modern radars of this type
today generally use a stable low-noise solid-state source, followed by a TWT for power

amplification.) The application of magnetrons is now primarily for microwave cooking.
The crossed-field amplifier (CFA) has a geometry similar to a TW'T, but employs a

crossed-field interaction that is similar to that of the magnetron. The RF input is applied
to a slow-wave structure in the interaction region of the CFA, but the electron beam is
deflected by a negatively biased electrode to force the beam perpendicular to the slow-
wave structure. In addition, a magnetic bias field is applied perpendicular to this electric
field, and perpendicular to the electron beam direction. The magnetic field exerts a force
on the electron beam that counteracts the field from the sole. In the absence of an RF
input, the electric and magnetic fields are adjusted so that their effects on the electron
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FIGURE 12.28 Power versus frequency performance of microwave oscillator tubes.
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FIGURE 12.29 Power versus frequency performance of microwave amplifier tubes.

beam canceT, Teaving the beam to travel parallel to the slow-wave strucfure. Applying an
RF field causes velocity modulation of the beam, and bunching occurs. The beam is also
periodically deflected toward the slow-wave circuit, producing an amplified signal. Crossed-
field amplifiers have very good efficiencies-up to 807o, but the gain is limited to 10-15 dB.
Also, the CFA has a noisier output than either a klystron amplifier or TWT. Its bandwidth
can be up to 407o.

Another crossed-field tube is the gyratron, which can be used as an amplifier or an
oscillator. This tube consists of an electron gun with input and output cavities along the
axis of the electron beam, similar to a klystron amplifier. But the gyratron also has a
solenoidal bias magnet that provides an axial magnetic field. This field forces the electrons
to travel in tight spirals down the length of the tube. The electron velocity is high enough
so that relativistic effects are important. Bunching occurs, and energy from the ffansverse
component of the electron velocity is coupled to the RF field.

A significant feature of the gyratron is that the frequency of operation is determined
by the bias field strength and the electron velocity, as opposed to the dimensions of the tube
itself. This makes the gyratron especially useful for millimeter wave frequencies; it offers
the highest output power (10-100 kW) of any tube in this frequency range. It also has a
high efficiency for tubes in the millimeter wave range. The gyratron is a relatively new type
of tube, but it is rapidly replacing tubes such as reflex klystrons and EIOs as sowces of
millimeter wave power.

Figures 12.28 and 12.29 summarize the power versus frequency performance of micro-
wave tube oscillators and amplifiers.

12'6 MrxERs
A mixer is a three-port device that uses a nonlinear or time-varying element to achieve
frequency conversion. As inffoduced in Section 10.3, an ideal mixer produces an output
consisting of the sum and difference frequencies of its two input signals. Operation of
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practical RF and microwave mixers is usually based on the nonlinearity provided by either
a diode or a ffansistor. As we have seen, a nonlinear component can generate a wide variety
of harmonics and other products of input frequencies, so filtering must be used to select the
desired frequency components. Modern microwave systems typically use several mixers and
filters to perform the functions of frequency up-conversion and down-conversion between
baseband signal frequencies and RF carrier frequencies.

We begin by discussing some of the important characteristics of mixers, such as image
frequency, conversion loss, noise effects, and intermodulation distortion. Next we discuss
the operation of single-ended mixers, using either a single diode or a FET as the nonlinear
element. The balanced diode mixer circuit is then described, followed by a brief description
of more specialized mixer circuits.

Mixer Gharacteristics

The symbol and functional diagram for a mixer are shown in Figure 12.30. The mixer
symbol is intended to imply that the output is proportional to the product of the two input
signals. We will see that this is an idealized view of mixer operation, which in acfuality
produces alarge variety of harmonics and other undesired products of the input signals.
Figure l2.30aillustrates the operationof frequency up-conversion, as occurs in atransmitter.
A local oscillator (LO) signal at the relatively high frequency fip is connected to one of
the input ports of the mixer. The LO signal can be represented as

up(t) : cos2n fpst. (12 .81)

A lower frequency baseband or intermediate frequency (IF) signal is applied to the other
mixer input. This signal typically contains the information or data to be transmitted, and
can be expressed for our pu4)oses as

urcQ) : cos2TTfnt. (L2.82)

The output of the idealized mixer is given by the product of the LO and IF signals:

uap(/) : Kuls(t)uy(t): K cos2nfy6t cos2tf6t

K
: - [cos 2z ( f rc - fn) t -l cos2n (flo -f fd tl,

z
(12.83)

where K is a constant accounting for the voltage convenion loss of the mixer. The RF
output is seen to consist ofthe sum and differences ofthe input signal frequencies:

fn r : f rcL f rc . (r2.84)

The spectra of the input and output signals are shown in Figure I2.30a, where we see
that the mixer has the effect of modulating the LO signal with the IF signal. The sum and
difference frequencies at f1s L fir are called the sidebands of the carrier freqtency frc,
with frc * /7r being the upper sideband (USB), and fp - fipbeingthe lower sideband
(LSB). A double-sideband (DSB) signal contains both upper and lower sidebands, as in
(12.83), while a single-sideband (SSB) signal can be produced by filtering or by using a
single- sideband mixer.

Conversely, Figure 12.30b shows the process of frequency down-converslon, as used
in a receiver. In this case an RF input signal of the form

unr(t) - cos2nfppt, (12.8s)
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FIGURE 12.30 Frequency conversion using a mixer. (a) Up-conversion. (b) Down-conversion.

is applied to the input of the mixer, along with the local oscillator signal of (12.81). The
output of the mixer is

vp(t) : K upv(t)u26(t) : K cos2n fppt cos2n fpst
K- -[cos 2r( fnr - frc)/ + cos 2n(fne * fLdt].

(a)

(12.86)

Thus the mixer output consists of the sum and difference of the input signal frequencies. The
spectrum for these signals is shown in Figure 12.30b. In practice, the RF and LO frequencies
are relatively close together, so the sum frequency is approximately twice the RF frequency,
while the difference is much smaller than fpp. The desired IF output in a receiver is fhe
difference frequency, fnr - frc, which is easily selected by low-pass filtering:

fip: fnr - fm. (r2.87)

Note that the above discussion only considers the sum and difference outputs as generated
by multiplication of the input signals, whereas in a realistic mixer many more products will
be generated due to the more complicated nonlinear behavior of the diode or transistor.
These products are usually undesirable, and removed by filtering.

Image frequency. In a receiver the RF input signal at frequency /ap is typically delivered
from the antenna, which may receive RF signals over a relatively wide band of frequencies.
For a receiver with a local oscillator frequency f1s and intermediate frequency fn, {12.87)
gives the RF input frequency that will be down-converted to the IF frequency as

fnr: fLo* frc, (12.88a)

since the insertion of (12.88a) into (12.87) yields /7p (afterlow-pass filtering). Now consider
the RF input frequency given by

fiu: frc - frc' (12.88b)

Insenion of (12.88b) into (12.87) yields -fp (after low-pass filtering). Mathematically, this
frequency is identical to /2o because the Fourier spectrum of any real signal is symmetric

Mixer



618 Chapter 12: Oscillators and Mixers

about zero frequency, and thus contains negative frequencies as well as positive. The RF
frequency defined in (12.88b) is called the image response. The image response is important
in receiver design because a received RF signal at the image frequency of (12.88b) is
indistinguishable at the IF stage from the desired RF signal of frequency (12.88a), unless
steps are taken in the RF stages of the receiver to preselect signals only within the desired
RF frequency band.

The choice of which RF frequency in (12.88) is the desired and which is the image
response is arbitrary, depending on whether the LO frequency is above or below the desired
RF frequency. Another way of viewing this difference is to note that fip in (12.88) may

be negative. Observe that the desired and image frequencies of (12.88a) and (12.88b) are
separated by Zfir.

Another implication of (12.87) and the fact that fir may be negative is that there are
two local oscillator frequencies that can be used for a given RF and IF frequency:

fn: fnr* f ir , (r2.89)

since taking the difference frequency of fnr with these two LO frequencies gives Af6.
These two frequencies correspond to the upper and lower sidebands when a mixer is operated
as an upconverter. In practice, most receivers use a local oscillator set at the upper sideband,

frc : fnr * /rr, because this requires a smaller LO tuning ratio when the receiver must
select RF signals over a given band.

Conversion loss. Mixer design requires impedance matching at three ports, complicated
by the fact that several frequencies and their harmonics are involved. Ideal$, each mixer
port would be matched at its particular frequency (RF, LO, or IF), and undesired frequency
products would be absorbed with resistive loads, or blocked with reactive terminations.
Resistive loads increase mixer losses, however, and reactive loads can be very frequency
sensitive. In addition, there are inherent losses in the frequency conversion process because
of the generation of undesired harmonics and other frequency products. An important figure
of merit for a mixer is therefore the conversion /oss, which is defined as the ratio of available
RF input power to the available IF output power, expressed in dB:

L. : l0log
available RF input power

>  0dB . (r2.e0)
available IF output power

Conversion loss accounts for resistive losses in a mixer as well as loss in the frequency
conversion process from RF to IF ports. Conversion loss applies to both up-conversion and
down-conversion, even though the context ofthe above definition is for the latter case. Since
the RF stages of receivers operate atmuchlowerpowerlevels than do transmitters, minimum
conversion loss is more critical for receivers because of the importance of minimizing losses
in the RF stages to maximize receiver noise figure.

Practical diode mixers typically have conversion losses between 4 and 7 dB in the 1-
10 GHz range. Transistor mixers have lower conversion loss, and may even have conversion
gain of afew dB. One factor that strongly affects conversion loss is the local oscillator power

level; minimum conversion loss often occurs for LO powers between 0 and 10 dBm. This
power level is large enough that the accurate characteization of mixer performance often
requires nonlinear anal ysis.

Noise figure. Noise is generated in mixers by the diode or transistor elements, and by
thermal sources due to resistive losses. Noise figures of practical mixers range from l-5 dB,
with diode mixers generally achieving lower noise figures than transistor mixers. The noise
figure of a mixer depends on whether its input is a single sideband signal or a double sideband
signal. This is because the mixer will down-convert noise at both sideband frequencies (since
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these have the same IF), but the power of a SSB signal is one-half that of a DSB signal (for
the same amplitude). To derive the relation between the noise figure for these two cases,
first consider a DSB input signal of the form

uoss(t) : Alcos(arc - an)t * cos(ays * an)tl. 0291)

Upon mixing with an LO signal cos{Dy6t and low-pass filtering, the down-converted IF
signal will be

AK AK
urFQ) : 

2 
cas(@rFt) * 

, 
cos(-a4pl) : AK cos an t, (r2.92)

where Kis a constant accounting for the conversion loss for each sideband. The power of
the DSB input signal of (12.91) is

S r - : ,42

and the power of the output IF signal is

A2 K2
S o :  

2  
.

For noise figure, the input noise power is defined as Nr - kTsB, where To :290 K and
B is the IF bandwidth. The output noise power is equal to the input noise plus Na66s6, the
noise power added by the mixer, divided by the conversion loss (assuming a reference at
the mixer input):

r, (KTyB * Nuoo"o)
, r o :  

I u  
,

Then using the definition of noise figure gives the DSB noise figure of the mixer as

4tz 4z

T -  z

(12.e3)

The corresponding analysis for the SSB case begins with a SSB input signal of the form

ussr(/) : Acos(arc - an)t. (r2.94)

Upon mixing with the LO signal cosr.;oy6t and low-pass filtering, the down-converted IF
signal will be

AK
u6\t): 

Z 
cos\@rFt).

The power of the SSB input signal of (12.94) is

S , : t ., 2

and the power of the output IF signal is

, " :  
O ' { '  

.
IJ

The input and output noise powers are the same as for the DSB case, so the noise figure for
an SSB input signal is

F D S . : # - ; r ( t . H )

Fssa:#:  i r ( .HT)

(r2.es)

(12.e6)
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Comparison with (12.93) shows that the noise figure of the SSB case is twice that of the
DSB case:

Fssa : 2Fosn. (r2.97)

Other mixer characteristics. Since mixers involve nonlinearity, they will produce inter-
modulation products. Typical values of P3 for mixers range from 15-30 dBm. Another
important characteristic of a mixer is the isolation between the RF and LO ports. Ideally,
the LO and RF ports would be decoupled, but internal impedance mismatches and limi-
tations of coupler performance often result in some LO power being coupled out of the
RF port. This is a potential problem for receivers that drive the RF port directly from the
antenna, because LO power coupled through the mixer to the RF port will be radiated by
the antenna. Because such signals will likely interfere with other services or users, the
FCC sets stringent limits on the power radiated by receivers. This problem can be largely
alleviated by using a bandpass filter between the antenna and mixer, or by using an RF
amplifier ahead of the mixer. Isolation between the LO and RF ports is highly dependent
on the type of coupler used for diplexing these two inputs, but typical values range from
2040 dB.

EXAMPLE 12.7 IMAGE FREQUENCY

The IS-54 digital cellular telephone system uses a receive frequency baad of 869-
894 MHz, with a first IF frequency of 87 MHz, and a channel bandwidth of 30 kHz.
What are the two possible ranges for the LO frequency? If the upper LO frequency
range is used, determine the image frequency range. Does the image frequency
fall within the receive passband?

Solution
By (12.89), the two possible LO frequency ranges are

f  956 to981MHz
frc : .fnr t frc : (869 to 894) + tt : 

t 782 ro 807 MHz.

Using the 956-981 MHz LO, (12.87) gives the IF frequency as

fir : fnr - fro : (869to894) - (956to981) : *87 MHz,

so from (12.88b) the RF image frequency range is

fiu : fLo - f,, : (956to981) * 87 : 1043 to 1068 MHz,

which is well outside the receive passband. I

The above treatment of mixers is idealized because of the assumption that the output
was proportional to the product ofthe input signals, thus producing only sum and difference
frequencies (for sinusoidal inputs). We now discuss more realistic mixers, and show that
the output does indeed contain a term proportional to the product of the inputs, but many
higher order products as well.

Single-Ended Diode Mixer

A basic diode mixer circuit is shown in Figure l2.3la. This type of mixer is called a single-
ended mixer because it uses a single diode element. The RF and LO inputs are combined
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FIGURE 12.31 (a) Circuit for a single-ended diode mixer. (b) Idealized equivalent circuit,

in a diplexer, which superimposes the two input voltages to drive the diode. The diplexing
function can be implemented using a directional coupler or hybrid junction to provide
combining as well as isolation between the two inputs. The diode may be biased with a DC
bias voltage, which must be decoupled from the RF signal paths. This is done by using DC
blocking capacitors on either side ofthe diode, and an RF choke between the diode and the
bias voltage source. The AC output ofthe diode is passed through a low-pass filter to provide
the desired IF output voltage. This description is for application as a down-converter, but
the same mixer can be used for up-conversion since each port may be used interchangeably
as an input or output port.

The AC equivalent circuit of the mixer is shown in Figure 12.3Ib, where the RF and
LO input voltages are represented as two series-connected voltage sources. Let the RF input
voltage be a cosine wave of frequenc! @pp:

upv(t) - Vpp cos @ppt ,

and let the LO input voltage be a cosine wave of frequenc! api

(r2.e8)

vp(t): Vyscos@pot. (12.99)

Using the small-signal approximation of (10.60) gives the total diode current as

(a)

(12.100)

The first term in (12.100) is the DC bias current, which will be blocked from the IF output
by the DC blocking capacitors. The second term is a replication of the RF and LO input
signals, which will be filtered out by the low-pass IF filter. This leaves the third term, which
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FIGURE 12.32 Variation ofFET transconductance versus qate-to-source voltage,
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can be rewritten using trigonometric identities as

Gt-
iQ): +lVR5cosrdppt * Vrocos torctl2

r l
: YllV|rcos2 t.tvvt | 2VppVrceos@ppt cos{D1st + Vlscos2 a1stl

* cos2a4pt) + V:oG -f cos2@pst) lZVppVyscos(rr.rap - arc)t

* 2VnnVrccos(arap * a2dtl.

This result is seen to contain several new signal components, only one of which produces
the desired IF difference product. The two DC terms again will be blocked by the blocking
capacitors, and the 2opp, 2ays, and app * aye terms will be blocked by the low-pass filter.
This leaves the IF output current as

i6g) : 
! 

v*rVrocoS rdTpr.

: ffrw,a

(12.101)

where a1p : aRF - ay6 is the IF frequency. The specffum of the down-converting single-
ended mixer is thus identical to that of the idealized mixer shown in Fisure l2.30b.

Single-Ended FET Mixer

There are several FET parameters that offer nonlinearities that can be used for mixing, but
the strongest is the transconductance, g., when the FET is operated in a common source
configuration with anegativegatebias. Figure72.32shows thevariationof transconductance
with gate bias for a typical FET. When used as an amplifier, the gate bias voltage is chosen
near zero, or slightly positive, so the transconductance is near its maximum value, and the
transistor operates as a linear device. When the gate bias is near the plnch-of region, where
the transconductance approaches zero, a small positive variation ofgate voltage can cause a
large change in ffansconductance, leading to a nonlinear response. Thus the LO voltage can
be applied to the gate of the FET to pump the transconductance to switch the FET between
high and low transconductance states, thus providing the desired mixing function.

The circuit for a single-ended FET mixer is shown in Fi glure 12.33. A diplexing coupler
is again used to combine the RF and LO signals at the gate of the FET. An impedance
matching network is also usually required between the inputs and the FET, which typically
presents a very low input impedance. RF chokes are used to bias the gate at anegative
voltage near pinch-off, and to provide a positive bias for the drain of the FET. A bypass
capacitor at the drain provides a return path for the LO signal, and a low-pass filter provides
the final IF output signal.

Pinch
off
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FIGURE 12.33 Circuit for a sinele-ended FET mixer.

Our analysis of the mixer of Figure 12.33 follows the original work described in
reference [14]. The simplified equivalent circuit is shown in Figure 12.34, and is based
on the unilateral equivalent circuit of a FET introduced in Section 10.4. The RF and LO
input voltages are given in (12.98) and(12.99).Let Z, : Rs * 7X, be the Thevenin source
impedancefortheRFinputport,and Zt: Rr-l jXr betheTheveninsourceimpedance
at the IF output pofi. These impedances are complex to allow a conjugate match at the input
and output ports for maximum power transfer. The LO port has a real generator impedance
of Zs, since we are not concerned with maximum power transfer for the LO signal.

Since the FET transconductance is driven by the LO signal, its time variation can be
expressed as a Fourier series in terms of harmonics of the LO:

T
LO

bypass

-DC
bias

oo^ \ -
8 ( t )  :  80  +  z  )  .g2cosnast .

n = 1

Because we do not have an explicit formula for the transconductance, we cannot calculate
directly the Fouriercoefficients of (12.102), butmust rely on measurements for these values.
As we will see, the desired down-conversion result is due solely to the n: 1 term of the
Fourier series, so we only need the gl coef0cient. Measurements typically give a value in
the range of 10 mS for 91.

The conversion gain of the FET mixer can be found as

(r2.ro2)

(r2.103)

VAoPn'
P'-avail 

-IZ;a 
4R.RL lv{ f_ _

PRF-auai t  lVnr l '  lZ t l t  lVar l
4Rt

where Vjr is the IF drain voltage, and the impedances Z, and Zy are chosen for maximum
power transfer at the RF and IF ports. The RF frequency component of the phasor voltage
across the gate-to*source capacitance is given in terms of the voltage divider between Z , , Ri,

Yo.

FIGURE 12.34 Equivalent circuit for the FET rnixer of Figure
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and Cr,:

VnrVnr
v . o . : T , 1 :  r +  j a ) ; E . t R J z J '  r l l ' l o - l r

jappCg,l  tnr + zs) -  - t  ^ |"  
L  

"  
a o r L . g r )

Multiplyingthetransconductance of (12.102)byulF(t) = V.RFcosa.,Rpfgivestermsof the
form

g^1t1ufF(t) - g6V"trcos rDppt l2g1Vf;F cosa.pvt coslovst 1" " (12.105)

The down-converted IF frequency component can be extracted from the second term of
(12.105) using the usual trigonometric identity:

g*1t1vfF 1t11,,, : g1Vf;F cos a1vt, (12.106)

where co6 - @RF - als.Then the IF component of the drain voltage is, in phasor form,

v f  : - s , t , : o (=Ro ,zL  ) : '  '  ,  
- *u l l  

,  r ,  ( - j ' , t ' - \ .  ( t z . t07 )
\Ra * Zr / | * japeCg,(Ri + ZB) \Ra -l Zt /

where ( I 2. 104) has been used. Using this result in ( 12. I 03) gives the conversion gain (before

conjugate matching) as

^ l  ( 2 g 1 R o : . ' 2o'l*"i"n.o: (ffi)
R8 R1

[,o, 
* Rs)2 + (", _ 

",#)'] 
[{na + R)2 * xzr)

We now conjugately match the RF and IF ports to maximize the conversion gain. Thus we
let  R,  -  Ri ,Xs:7/ ronpCc, ,  Rr :  Rd,andXl :0,  whichreduces the aboveresul t to

slRa
( J . : . " . " - _- 

4ro"ppC!,Ri
(12 .108)

The quantities 91 , Rd, R;, and C ,, are all parameters of the FET. Practical mixer circuits
generally use matching circuits to transform the FET impedance to 50 C2 for the RF, LO,
and IF ports.

EXAMPLE 12.8 MIXER CONVERSION GAIN

A single-ended FET mixer is to be designed for a wireless local area network
receiver operating at 2.4 GHz. The parameters of the FET are: Ra : 300 Q, R; -

l0 Q, Cs" : 0.3 pR md gr - 10 mS. Calculate the maximum possible conversion
gain.

Solution
This is a straightforward application of the formula for conversion gain given in

02.108):

s?Ra f lo x lo-3)2(3oot
( r : -  : 3 6 . 6 : l - 5 . 6 d B .

 a iFc?,Ri  4(2n\2(2.4 x l0e)2(10)

Note that this value does not include losses due to the necessary impedance match-
ing networks. I
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FIGURE f235 Balanced mixer circuits. (a) Using a 90' hybrid. (b) Using a 180' hybrid

Balanced Mixer

RF input matching and RF-LO isolation can be improved through the use of a balanced
mixer, which consists of two single-ended mixers combined with a hybrid junction.
Figure 12.35 shows the basic configuration, with either a 90" hybrid (Figure I2.35a), or a
180' hybrid (Figure I2.35b). As we will see, a balanced mixer using a 90' hybrid junction
will ideally lead to a perfect input match at the RF port over a wide frequency range, while
the use of a 180' hybrid will ideally lead to perfect RF-LO isolation over a wide frequency
range. In addition, both mixers will reject all even order intermodulation products. Fig-
are 12.36 shows a photograph of a microstrip circuit that contains several balanced mixers.

We can analyze the performance of a balanced mixer using the small-signal approach
that was used for the single-ended diode mixer. Here we will concentrate on the balanced
mixer with a 90" hybrid, shown in Figure I2.35a, and leave the 180' hybrid case as a
problem. As usual, let the RF and LO voltages be defined as

(a)

and

From Section 7.5, the scattering matrix for the 90" hybrid iunction is

lst : (r2.r1r)

where the ports are numbered as shown in Figure 72.35a. The total RF and LO voltages
applied to the two diodes can then be written as

vpp(t):  Vppcos{Dppt,

urc(t)V1s cos tt)16,t .

(r2.roe)

(12. r 10)

rlil il
u1Q) - 

ftrroo"o"ronrt 
-90') + Vy6aos(topst - 180')l

:  
f t fr*sin,ppt 

- vylcosa1stl, (12.112a)
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FIGURE 12.36 Photograph of a 35 GHz microstrip monopulse radar receiver circuit. Three bal-
anced mixers using ring hybrids are shown, along with three stepped-impedance
low-pass filters, and six quadrature hybrids. Eight feedlines are apertiure coupled
to microstrip antennas on the reverse side. The circuit also contains a Gunn diode
source for the local oscillator.

Courtesy of Millitech Corporation, Northampton, Mass.

1
u2Q) : 

6lVnr 
cos(@nrt - 180") + Vrc cos(a1st - 90')l

:  j t-r*coscd4pr *

Using only the quadratic term from the small-signal diode approximation of (10.60) gives
the diode approximation of (10.60) gives the diode currents as

I'

i {t ) : K vl : ;1Vrt, sinz @npt * 2VnrVrc sin a;4p cos a.rr st * V}6 cosz aptl,

(12.I13a)

" - K
i2Q) : -Ku|: 

f lVfi"otz a.,nrt - ZVffVyscoSalqp sincopt * V]6sinz ,totf,

(12.113b)

Vrcsina1stl. (r2.1rzb)
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where the negative sign on i2 accounts for the reversed diode polarity, and K is a constant
for the quadratic term of the diode response. Adding these two currents at the input to the
low-pass filter gives

tr (r) * i2Q) : { ;u; .o, 2a47 t I 2vppvps sin u4vt - v}o cos2o,rs tl,

where the usual trigonometric identities have been used, and a1v - @nr - crlp is the IF
frequency. Note that the DC components of the diode currents cancel upon combining.
After low-pass flltering, the IF output is

i1p$) : -KVppVvs sin arTp /, (r2.114)

as desired.
We can also calculate the input match at the RF port, and the coupling between the

RF and LO ports. If we assume the diodes are matched, and that each exhibits a voltage
reflection coefficient I at the RF frequency, then the phasor expression for the reflected RF
voltases at the diodes will be

' i !  Vr, :  lVt -
- jf Vnr (r2.r15a)

(12.1 lsb)

6

and

These reflected voltages appear at ports 2 and 3 of the hybrid, respectively, and combine to
form the following ouQuts at the RF and LO ports:

- lVoo
Vrr :  lVz:  - t .

vfo : + - 3 : -)rv* + )rv^, : o,
V L  \ I L

- v - v - 1 1
v r to :  

^ ;  
-  i + :  , i r vu+ ; i r vRF-  

j rVp r .
\ / L  V a

(I2.II6a)

(r2.116b)

Thus we see that the phase characteristics ofthe 90' hybrid lead to perfect cancellation of
reflections at the RF port. The isolation between the RF and LO ports, however, is dependent
on the matching of the diodes, which may be diffrcult to maintain over a reasonable frequency
range.

lmage Reject Mixer

We have already discussed the fact that two distinct RF input signals at frequencies @p6 :

a1p * a1p will down-convert to the same IF frequency when mixed with a1s. These two
frequencies are the upper and lower sidebands of a double-sideband signal. The desired
response can be arbitrarily selected as either the LSB (roro - au) or the USB (aLo * an),
assuming a positive IF frequency. The image reject mixer, shown in Figure 12.37 , can be
used to isolate these two responses into separate output signals. The same circuit can also
be used for up-conversion, in which case it is usually called a single-sideband modulator.
In this case, the IF input signal is delivered to either the LSB or the USB port of the IF
hybrid, and the associated single sideband signal is produced at the RF port of the mixer.

We can analyze the image reject mixer using the small-signal approximation. Let the
RF input signal be expressed as

upv(t) : Vu cos(aLo -l <orit * Vtcos(aus - arc)t, (r2.rr7)
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FIGURE 12.37 Circuit for an image reject mixer.

where Vu and V7 represent the amplitudes of the upper and lower sidebands, respectively.
Using the S-matrix given in ( 12.1 1 1) for the 90' hybrid gives the RF voltages at the diodes as

1
ueQ) : olVu cos(alst * anrt - 90') * V2cos(aLst - a4pt - 90')l

\ / Z

I
: 

ntvu 
sin(arc I ary)t * Vrsin(arp - oritl,

I
va1) : ^lVu cos(otrct -l otnt - 180') * Vp cos(o46t - rolpt - 180')l

\/Z

- 1
: --7lVu cos(arc * ary)t -f Vpcos(a76 - an)tf.

(12.1 18a)

(12.1 18b)

(12.119a)

(12.119b)

The phasor

(I2.I2oa)

(r2.r20b)

(L2.r2ra)

(12.rzrb)

After mixing with the LO signal of (12.110) and low-pass filtering, the IF inputs to the IF
hybrid are

ufo1r1: Y9,r, - v2)sina1pt.
2J2

uf,1t1: 
-*:o 

rr, t vDcoscorrt,
2Jz

where K is the mixer constant for the squared term of the diode response.
representation of the IF signals of (12.1 19) is

r tA - jwrc,
v rF : --;-tVu - V),"  

2J2
: I/'T /

V,uo: 
-#(Vu 

* V).
L V L

Combining these voltages in the IF hybrid gives the following outputs:

v , : - i# -H:Y*  GsB) ,

, , : -#-r#:ry gsB),
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which we see are the separate sidebands of the down-converted input signal of (l2.ll7).
These outputs can be expressed in time-domain form as

KV,nV,
ur(1) - ---- eoS,oolp t,

z

Wy6Vu
uz(t ) :  

2  
srr r@1pt ,

(r2.122a)

(12.r22b)

which clearly shows the presence of a 90' phase shift between the two sidebands. Also
note that the image rejection mixer does not incur any additional losses beyond the usual
conversion losses of the single rejection mixer. A practical difficulty with image rejection
mixers is in fabricating a good hybrid at the relatively low IF frequency. Losses, and hence
noise figure, are also usually greater than for a simpler mixer.

Other Mixers

There are a number of other mixer circuits that provide various advantages in terms of
bandwidth, harmonic generation, and intermodulationproducts. The double-balancedmixer
of Figure 12.38 uses two hybrid junctions or transformers, and provides good isolation
between all three ports, as well as rejection of all even harmonics of the RF and LO signals.
This leads to very good conversion loss, but less than ideal input matching at the RF port.
The double-balanced mixer also provides a higher third-order intercept point than either a
single-ended mixer or a balanced mixer.

The mixer shown inFigure 12.39 uses two FETs in adifferential amplifierconfiguration.
The balun (balanced-to-unbalanced) networks on the LO and IF ports provide a transition
between a two-wire line that is balanced with respect to ground and a single line that is
unbalanced relative to ground. Baluns may be implemented with center-tapped transformers,
or with 1 80' hybrid junctions. The differential mixer operates as an alternating switch, with
the LO turning the top two FETs on and off with alternate half-cycles of the LO. These
FETs are biased slightly above pinch-off, so each FET will be conducting for slightly more
than half of each LO cycle. Thus, one of the upper FETs is always conducting, and the
lower FET will remain in saturation. The RF and LO ports require impedance matching,
and the IF output circuit must provide a return path to ground for the LO signal.

Figure 12.40 shows the circuit for an antiparallel diode mixer, which is often used for
subharmonically pumped millimeter wave frequency conversion. The back-to-back diodes
function as a frequency doubler, thus requiring an LO frequency of one-half the usual value.
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FIGURE 12.39 A differential FET mixer.
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FIGURE 12.40 Subharmonically pumped mixer using an antiparallel diode pair.

The diode nonlinearity operates as a resistive frequency multiplier to generate the second
harmonic of the LO to mix with the RF input to produce the desired output frequency. The
antiparallel diode pair has a symmetric I-V characteristic that suppresses the fundamental
mixing product of the RF and LO input signals, leading to better conversion loss.

Table 12.1 summarizes the characteristics of several of the mixers that we have
discussed.

TABLE 12.1 Mixer Characteristics

Mixer Wpe Number of diodes RF input match RF-LO isolation Conversion loss Third-order intercept

LL R-
aO

R_
{i;

Bandpass Lowpass \ .\
filter filter \\b lO input

for RF for LO \
and IF \ .^  = 1 r ,

Single-ended
Balanced (90")

Balanced (180')

Double balanced

Image reject

I
2

2

2 o r 4

Poor

Good

Fair

Poor

Good

Fair

Poor
Excellent
Excellent
Good

Good

Good

Good

Excellent

Good

Fair

Fair

Fair

Excellent

Good

IF
Balun

LO
Balun

ln
IF
put
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PROBLEMS

12.1 Derive the admittance matrix representation of the transistor oscillator circuit given in (12.3).

12.2 Deive the results in (12.20)-(12.22) for a Colpitts oscillator using a common emitter transistor with
an inductor having a series resistance R.

12.3 Design a common emitter Colpitts oscillator operating at 30 MHz, using a transistor with B :40
and Rr : 800 O. Select reasonable values for the inductor and the two capacitors. Determine the
minimum value of the inductor Q in order to sustain oscillations.

12.4 Apartrcularquartzcrystaloperatingatl0MHzhasequivalentcircuitparametersof R :304, C :27
fF, and Co : 5.5 pF (1 fF : 10-1s F). What is the value of the inductance in the equivalent circuit?
What is the Q of this crystal? What is the percentage difference between the series and parallel resonant
frequencies?

12.5 Foreithertheone-portnegativeresistanceoscillatorofFigure12.6,orthetwo-porttransistoroscillator
ofFigure 12.8, show that f1f1n : I for steady-state oscillation.

12.6 Prove that the standard Smith chart can be used for negative resistances by plotting 1/ f* (instead
of I'). Then the resistance circle values are read as negative, while the reactance circles are unchanged.

12.7 Design a transistor oscillator at 6 GHz using an FET in a corlmon source configuration driving a 50 Q
load on the drain side. The S parameters are (20 :50 Q): S11 : O.gu -150', 521 : ).5fi9" , gr., -

0.2/-15", Szz:0.51=J05'. Calculate and plot the output stability circle, and choose f7 for

lf*l )) 1. Design load and terminating networks.

12.8 Repeat the oscillator design of Example 12.4 by replacing the dielectric resonator and microstrip
feedline with a single-stub tuner to match f1 to a 50 Q load. Find the p of the tuner and 50 Q load,
then compute and plot lfou, I versus A///s. Compare with the result in Figure 12.12b for the dielectric
resonator case.

12.9 Repeat the dielectric oscillator design of Example 12.4 using a GaAs FET having the following
,S parameters: Srr :  7.21150", Srz : 0.2/120' ,  St :3.7 t-72" ,  S.r:  13/-67" .

l2JA An oscillator uses an amplifier with a noise figure of 6 dB and a resonator having a Q of 500, and
produces a 100 MHz output at a power level of 10 dBm. If the measured f" is 50 kHz, plot the
spectral density of the output noise power, and determine the phase noise (in dBc/Hz) at the following
frequencies: (a) at 1 MHz from the carrier; (b) at 10 kHz from the carrier (assume K : l).

12.11 Repeat Problem 12.10 for f" : 200WIz.

12.12 Deive Equation (12.50) giving the required phase noise for a specified receiver selectivity.

12.13 Find the necessary local oscillator phase noise specification if an 860 MHz cellular receiver with a
30 kHz channel spacing is required to have an adjacent channel rejection of 80 dB, assuming the
interfering channel is at the same level as the desired channel. The final IF voice bandwidth is 12 kHz.
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12.14 Apply the Manley-Rowe relations to an up-converting mixer. Assume a nonlinear reactance is excited
at frequencies "fr (RF) and f2 (LO), and terminated with open circuits at all other frequencies except

h: fi * /2. Show thatthemaximumpossibleconversion gainis givenby -Pn/Prc: I I oz/at.

12.15 Derive the relation between pulse duration and gate voltages given in (12.73) for the FET frequency
multiplier.

12.16 A double-sideband signal of the form unr(r) : Vnr[cos(aro - an)t * cos(a.r1p * ton)tl is applied
to a mixer with an LO voltage given by (12.99). Derive the output of the mixer after low-pass filtering.

t2.17 Adiodehasanl-Vcharacterist icgivenbyi(r):  I ,( f ' r t)  -1).Letu(r):0.1coSa,r1/ l0.1cosia,2t,

and expand i(t) in a power series in u, retaining only the u, u2, and u3 terms. For 1, - I A, find the
magnitudes of the current at each frequency.

12.18 An RF input signal at 900 MHz is down-converted in a mixer to an IF frequency of 80 MHz. What
are the two possible LO frequencies, and the corresponding image frequencies?

12.L9 Consider a diode mixer with a conversion loss of 5 dB and a noise figure of 4 dB, and a FET mixer
with conversion gain of 3 dB and a noise figure of 8 dB. If each of these mixers is followed by an IF
amplifier having a gain of 30 dB and a noise figure F,a, as shown beloq calculate and plot the overall
noise figure for both amplifier-mixer configurations for Fa : 0 to 10 dB.

Amp

Lc= 5  dB
F u = 4 d B

G = 3 0 d 8
FA = o-10 dB

G c = 3 d B  G = 3 0 d 8
F u = 8 d B  F e = 0 _ l 0 d B

L2,20 Let ?556 be the equivalent noise temperature of a mixer receiving a SSB signal, and Tpss be the
temperature when it receives a DSB signal. Compute the ouput noise powers in each case, and show
that 2556 : 2Tosn, and that therefore Fssn : 2Frxn. Assume that the conversion gains for the signal
and its image are identical.

12.21 lf the noise power Ni : kTB is applied at the RF input port of a mixer having noise figure F (DSB)
and conversion loss 1", what is the available output noise power at the IF port? Assume the mixer is
at a physical temperature To.

L2.22 A phase detector produces an output signal proportional to the phase difference between two RF input
signals. Let these input signals be expressed as

u l :  u o c o s r 0 f '

u2 : uo cos(a;r * 0).

If these two signals are applied to a single-balanced mixer using a 90' hybrid, show that the IF output
signal, after low-pass filtering, is given by

i :  kud sind.

where k is a constant. If the mixer uses a 180' hybrid, show that the corresponding output signal is
given by

i  :  kv icos?.

12.23 Analyze a balanced mixer using a I 80' hybrid junction. Find the output IF current, and the input re-
flections at the RF and LO ports. Show that this mixer suppresses even harmonics of the L0. Assume
that the RF signal is applied to the sum port of the hybrid, and that the LO signal is applied to the
difference port.

12.24 For an image rejection mixer, let the RF hybrid have a dissipative insertion loss of Lp, and the IF
hybrid have a dissipative insertion loss of 17. If the component single-ended mixers each have a
conversion loss 1-" and noise figure F, derive expressions for the overall conversion loss and noise
figure of the image rejection mixer.



perform a useful function. Probably the two most important examples are microwave radar

r t e

Introduction to
Microwave Systems

A microwave system consists of passive and active microwave components arranged to

systems and microwave communication systems, but there are many others. In this chapter
we will describe the basic operation of several types of microwave systems to give a general

overview of the application of microwave technology, and to show how many of the subjects of
earlier chapters fit into the overall scheme of complete microwave systems.

An important component in any radar or communication system is the antenna, so we will
discuss some of the basic properties of antennas in Section 13.1. Then communication, radar, and
radiometry systems are treated as important applications of microwave technology. Propagation
effects, biological effects, and other miscellaneous applications are also briefly discussed.

A11 of the above topics are of sufficient depth that many books have been written for each.
Thus our purpose here is not to give a complete and thorough treatment of these subjects, but
instead to introduce these topics as a way of placing the other material in this book in the larger
systems context. The interested reader is referred to the references at the end of the chapter for
more complete treatrnents.

13 .1 SYSTEM ASPECTS OF ANTENNAS

In this section we describe some of the basic characteristics of antennas that will be needed
for our study of microwave radar, communications, and remote sensing systems. We are
interested here not in the detailed electromagnetic theory of antenna operation, but rather the
systems aspect of the operation of an antenna in terms of its radiation patterns, directivity,
gain, efficiency, and noise characteristics. References l1l-l2l can be reviewed for a more
in-depth treatment of the fascinating subject of antenna theory and design. Figure 13.1
shows some of the different types of antennas that have been developed for commercial
wireless systems.

633
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FIGURE 13.1 Photograph of various millimeter wave antennas. Clockwise from top: a high-

gain 38 GHz reflector antenna with radome, a prime-focus parabolic antenna, a

comrgated conical horn antenna, a 38 GHz planar microstrip array, a pyramidal

hom antenna with a Gunn diode module, and a multibeam reflector antenna.

Courtesy of H. Syrigos, Alpha Industries, Inc., Wobum, Mass.

An antenna can be viewed as a device that converts a guided electromagnetic wave on
a transmission line to a plane wave propagating in free space. Thus, one side of an antenna

appears as an electrical circuit element, while the other side provides an interface with a
propagating plane wave. Antennas are inherently bi-directional, in that they can be used for

both transmit and receive functions. Figure 13.2 illusvates the basic operation of transmit

and receive antennas. The transmitter can be modeled as a Thevenin source consisting of
a voltage generator and series impedance, delivering a transmit power Pr to the transmit

antenna. The transmit antenna radiates a spherical wave which, at large distances, approx-
imates a plane wave, at least over a localized area. The receive antenna intercepts a portion

of the propagating wave, and delivers a receive power P, to the receiver load impedance.
A wide variety of antennas have been developed for different applications, as summa-

izedin the following categories:

o Wire antennas include dipoles, monopoles, loops, sleeve dipoles, Yagi-Uda anays,
and related structures. Wire antennas generally have low gains, and are most often
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FIGURE 13.2 Basic operation of transmit and receive antennas.

used at lower frequencies (HF to UHF). They have the advantages of light weight,
low cost, and simple design.
Aperture antennas include open-ended waveguides, rectangular or circular horns,
reflectors, and lenses. Aperture antennas are most cornnonly used at microwave and
millimeter wave frequencies, and have moderate to high gains.
Printed antennas include printed slots, printed dipoles, and microstrip patch an-
tennas. These antennas can be made with photolithographic methods, with both
radiating elements and associated feed circuitry fabricated on dielectric substrates.
Printed antennas are most often used at microwave and millimeter wave frequencies,
and can be easily arayed for high gain.
Array antennas consist of a regular arrangement of antenna elements with a feed
network. Pattern characteristics such as beam pointing angle and sidelobe levels can
be controlledby adjusting the amplitude andphase distribution of the array elements.
An important type of array antenna is the phased array, where variable phase shifters
are used to electronically scan the main beam of the antenna.

Fields and Power Radiated by an Antenna

While we do not require detailed solutions to Maxwell's equations for our pu{poses, we
do need to be familiar with the far-zote electromagnetic fields radiated by an antenna. We
consider an antenna located at the origin of a spherical coordinate system. At large distances,
where the localized near-zone fields are negligible, the radiated electric field of an arbitrary
antenna can be expressed as

( r3 .  r )

where E is the electric field vector, A and 6 are unit vectors in the spherical coordinate
system, r is the radial distance from the origin, and ks - 2n /)'is the free-space propagation
constant,withwavelength),: c//.Alsodefinedin(13.1)are(hepatternfunctions,Fe(0,Q)
and Fa(O, rf). The interpretation of (13.1) is that this electric field propagates in the radial
direction, with a phase variation of e-ikor and an amplitude variation of 1/r. The electric
f,eld may be polarized in either the d or f directions, but not in the radial direction, since
this is a TEM wave. The masnetic fields associated with the electric field of (13.1) can be
found from (1.76) as

E g, e, O) : li.Fo(e, O) + 6F6@, 611' 
t*o' 

vt*,
r

Ho

H e :

Es

\o
-Ea

,1,

(13.2a)

(r3.2b)
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where 4s : 377 {2, the wave impedance of free-space. Note that the magnetic field vector is
also polarized only in the transverse directions. The Poynting vector for this wave is given
by (1.90) as:

S - E x E * w l m z .

and the time-average Poynting vector is

So,e : jne1S1 : jnelE x F1*1 wm2.

We mentioned earlier that at large distances the near fields of an antenna are negligible,
andthe radiatedelectric field canbe written as in (13.1). We can give amore precise meaning
to this concept by defining the far-field distance as the distance where the spherical wave
front radiated by an antenna becomes a close approximation to the ideal planar phase front
of a plane wave. This approximation applies over the aperture area of the antenna, and so
depends on the maximum dimension of the anterna. If we call this dimension D, thenthe
far-field distance is defined as

2D2
Rn: 

), 
-'

This result is derived from the condition that the actual spherical wave front radiated by
the antenna departs less than n l8 :22.5" from a true plane wave front over the maximum
extent of the antenna. For elecffically small antennas, such as short dipoles and small loops,
this result may give a far-field distance that is too small; in this case, a minimum value of
Rtr : 2)' should be used.

EXAMPLE 13.1 FAR.FIELD DISTANCE OF AN ANTENNA

A parabolic reflector antenna used for reception with the Direct Broadcast System
(DBS) is 18" in diameteq and operates at 12.4 GHz. Find the operating wavelength,
and the far-field distance for this antenna.

Solution
The operating wavelength at I2.4 GHz is

c  3 x 1 0 8
' : 7 :  

r 2 A r w - 2 ' 4 2 c m '

The far-field distance is found from (13.5), after converting 18" to 0.457 m:

P  _ 2 D '  _ 2 ( 0 . 4 5 7 1 2l n :  
x  

:  
0 . 0 2 4 2 : 1 7 ' 3 m '

The actual distance from a DBS satellite to earth is about 36.000 km. so it is safe
to say that the receive antenna is in the far-field of the transmitter. I

Next we define the radiation intensity of the radiated electromagnetic field as,

(13 .3)

(13.4)

u(e, il : r2lS*el : 
f,n"1nr| x n$6 + Eo6 x nf||

1 2  1:  
6 |E t3  

+  lEo l2 l :  
^ l lFe l '  

+  l ro f lw ,

(13.s)

(13.6)

where (13.1), (I3.2), and (13.4) were used. The units of the radiation intensity a.re watts,
or watts per unit solid angle, since the radial dependence has been removed. The radiation
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intensity gives the variation in radiated power versus position around the antenna. We can
find the total power radiated by the antenna by integrating the Poynting vector over the
surface of a sphere of radius r that encloses the antenna. This is equivalent to integrating
the radiation intensity over a unit sphere:

p  , -' r a a - Sour .?rz sinodod$ : U@.0)s in0d0dQ.  03 .7)

Antenna Pattern Characteristics

The radiation pattern of an antenna is a plot of the magnitude of the far-zone field strength
versus position around the antenna, at a fixed distance from the antenna. Thus the radiation
pattern can be plotted from the pattern functions Fe@,il or F6(0, @), versus either the
angle 0 (for an elevation plane pattern) or the angle Q (for an azimuthal plane pattern). The
choice of plotting either Fs or Fp is dependent on the polarization of the antenna.

A typical antenna pattem is shown in Figure 13.3. This pattern is plotted in polar form,
versus the elevation angle,0, for a small horn antenna oriented in the vertical direction. The
plot shows the relative variation of the radiated power of the antenna in dB, notmalized to
the maximum value. Since the pattern functions are proportional to voltage, the radial scale
of the plot is computed as 20log V(e, ill; alternatively, the plot could be computed in
terms of the radiation intensity as 10log V (e , il\. The pattern may exhibit several distinct
lobes, with different maxima in different directions. The lobe having the maximum value
is called the main beam, while those lobes at lower levels are called sidetobes. The pattern
of Figure 13.3 has one main beam at 0 : 0, and several sidelobes, the largest of which are
located at9 : 116 . The level of these sidelobes is 13 dB below the level of the main beam.

A fundamental properfy of an antenna is its ability to focus power in a given direction,
to the exclusion of other direcfions. Thus an antenna with a broad main beam can transmit

The E-plane radiation pattem of a small horn antenna. The pattern is n ormalized to
0 dB at the beam maximum, with 10 dB per radial division.
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(or receive) power over a wide angular region, while an antenna having a narrow main beam
will transmit (or receive) power over a small angular region. A measure of this focusing
effect is the 3 dB beamwidth of the antenna, defined as the angular width of the main beam
at which the power level has dropped 3 dB from its maximum value (its half-powerpoints).
The 3 dB beamwidth of the pattern of Figure 13.3 is 10'. Antennas having a constant
pattern in the azimuthal direction are called omnidirectional, and are useful for applications
such as broadcasting or for handheld cellular phones, where it is desired to transmit or
receive equally in all directions. Patterns that have relatively n,urow main beams in both
planes are knownas pencil beam antennas, and are useful in applications such as radar and
point-to-point radio links.

Another measure of the focusing ability of an antenna is the directivi4r, defined as the
ratio of the maximum radiation intensity in the main beam to the average radiation intensity
over all space:

p : ! Y :
Uavg

4nU^u, 4nU^*
(13 .8)

(13.e)

Prad
U(0 ,0)s in9d9dQ

where (13.7) has been used for the radiated power. Directivity is a dimensionless ratio of
power, and is usually expressed in dB as D(dB) : 10log (D).

An antenna that radiates equally in all directions is calle d anisotropic antenna. Applying
the integral identity that

s in0d0d6:4n

to the denominator of (13.8) for U{e,il:1 shows that the directivity of an isotropic
element is D : 7, or 0 dB. Since the minimum directivity of any antenna is unity, directivity
is sometimes stated as relative to the directivity of an isotropic radiator, and written as dBi.
Directivities of some typical antennas are 2.2 dB for a wire dipole, 7.0 dB for a microstrip
patch antenna,23 dB for a waveguide horn antenna, and 35 dB for a parabolic reflector
antenna.

Beamwidth and directivity are both measures of the focusing ability of an antenna:
an antenna pattern with a narrow main beam will have a high directivity, while a pattern
with a wide beam will have a lower directivity. We might therefore expect a direct relation
between beamwidth and directivity, but in fact there is not an exact relationship between
these two quantities. This is because beamwidth is only dependent on the size and shape
of the main beam, whereas directivity involves integration of the entire radiation pattern.
Thus it is possible for many different antenna patterns to have the same beamwidth, but
quite different directivities due to differences in sidelobes or the presence of more than one
main beam. With this qualification in mind, however, it is possible to develop approximate
relations between beamwidth and directivity that apply with reasonable accuracy to a large
number of practical antennas. One such approximation that works well for antennas with
pencil beam patterns is the following:

p = 32'+oo
0t0z

where 01 and 02 are the beamwidths in two orthogonal planes of the main beam, in degrees.
This approximation does not work well for omnidirectional patterns because there is a
well-defined main beam in only one plane for such patterns.

r 2 n

I I
0:0 Q:0

t l

J J
e:0 o:0
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EXAMPLE 13.2 PATTERN CHARACTERISTICS OF A DIPOLE ANTENNA

The far-zone electric field radiated by an electrically small wire dipole antenna on

the z-axis is given by

Ee?, 0, Q) : Vo'in|'-ioo' V/^'

E4(r ,0,  Q) :  0 .  
r

Find the main beam position of the dipole, its beamwidth, and its directivity.

Solution
The radiation intensity for the above far-field is

u ( e , i l : c s i n z 0 ,

where the constant C : V& l2qo. The radiation pattern is seen to be independent
of the azimuth angle Q, and so is omnidirectional in the azimuth plane. The pattern

has a "donut" shape, with nulls at 0:0 and 0:180o (on the z-axis), and a
beam maximum at 0 : 90" (the horizontal plane). The angles where the radiation
intensity has dropped by 3 dB are given by the solutions to

sin2 o : 0.5,

thus the 3 dB, or half-power, beamwidth is 135' - 45" : 90o.
The directivity is calculated using (13.8). The denominator of this expression

is

U@, O)sin9d9dQ sit3 ode :
8rC: -

J

where the required integral identity is listed in Appendix D. Since U^ : C,the
directivity reduces to

:  l .76dB.

Antenna Gain and Efficiency

Resistive losses, due to non-perfect metals and dielectric materials, exist in all antennas.
Such losses result in a difference between the power delivered to the input of an altenna
and the power radiated by that antenna. As with other electrical components, we can define
the radiation fficiency of an antenna as the ratio of the desired output power to the supplied
input power:

n 2 r
f f

J J
0:0 0:0

fr
?

: 2 r C  I
I

0:0

* ,  ( : )

I
J

D - -
2

Plo..-  
P . '

p  p .  - p .r r o a  t m  r t o s s

D. D.r l n  r t n
(13 .10)

where ProT is the power radiated by the antenna, P1n is the power supplied to the input of
the antenna, imd 4o.. is the power lost in the antenna. Note that there are other factors
that can contribute to the effective loss of transmit power, such as impedance mismatch
at the input to the antenna, or polarization mismatch with the receive antenna. But these
losses are external to the antenna, and could be eliminated by the proper use of matching
networks, or the proper choice and positioning of the receive antenna. Therefore losses of



640 Chapter 13: Introduction to Microwave Systems

this type should not be attributed to the antenna itself, as are dissipative losses due to metal
conductivity or dielectric loss within the antenna.

Recall that artenna directivity is a function only of the shape of the radiation pattern
(the radiated fields) of an antenna, and is not affected by losses in the antenna. In order to
account for the fact that an antenna with radiation efficiency less than unity will not radiate
all of its input power, we define (tntenna gain as the product of directivity and efficiency:

G :4roaD. ( 1 3 . 1  l )

Thus, gain is always less than or equal to directivity. Gain can also be computed directly,
by replacing P,o6 in the denominator of (13.8) with P1n, since by the definition of radiation
efficiency in (13.10) we have Prad: q,adPin. Gain is usually expressed in dB, as G(dB) :

10 log (G).

Aperture Efficiency and Effective Area

Many types of antennas can be classified as aperture antennas, meaning that the antenna
has a well-defined aperfure area from which radiation occurs. Examples include reflector
antennas, horn antennas, lens antennas, and array antennas. For such antennas, it can be
shown that the maximum directivity that can be obtained from an aperture of area A is given
AS

4rA
D, / m A X -  1 ,  '

L '

For example, a rectangular horn antenna having an aperture 2). x 3.1. could have a maximum
directivity of 24n .Inpractice, there are several factors that can serve to reduce the maximum
directivity, such as non-ideal amplitude orphase characteristics ofthe aperture field, aperture
blockages or, in the case ofreflector antennas, spillover ofthe feed pattern. For this reason
we can define an dperture fficiency as the ratio of the actual directivity of an aperture
antenna to the maximum directivity given by (13.12). Then we can write the directivity of
an apernrre artenna as

4rA
D:  eop  Lz

( 1 3 . 1 3 )

Aperture efficiency is always less than or equal to unity.
The above definitions of antenna directivity, effrciency, and gain were stated in terms of

a transmitting antennas, but apply to receiving antennas as well. For a receiving antenna it
is also of interest to determine the received power for a given incident plane wave field. This
is the converse problem to finding the power density radiated by a transmitting antenna, as
given in (13.4). Finding received power is important for the derivation of the Friis radio
system link equation, to be discussed in the following section. We expect that received power
will be proportional to the power density, or Poynting vector, of the incident wave. Since
the Poynting vector has dimensions of Wm2, and the received power P, has dimensions of

W the proportionality constant must have units of area. Thus we write

P, :  A"Sorr ' (13 .14)

where A, is defined as the effective aperture area of the receive antenna. The effective
aperture area has dimensions of m2, and can be interpreted as the "capture area" of a receive
antenna, intercepting part ofthe incident power density radiated towards the receive antenna.

& in (13.1a) is the power available at the terminals of the receive antenna, as delivered to
a matched load.

(r3.12)
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The maximum effective aperture area of an antenna can be shown to be related to the
directivity of the antenna as [], [2]

D)'2
A _^e - --i--,

+7t
(13.1s)

where I is the operating wavelength of the antenna. For electrically large aperture antennas
the effective aperture area is often close to the actual physical aperfirre area. But for many
other types of antennas, such as dipoles and loops, there is no simple relation between the
physical cross-sectional area of the antenna and its effective aperture area. The maximum
effective apeffure area as defined above does not include the effect oflosses in the antenna,
which can be accounted for by replacing D in (13.15) with G, the gain, of the antenna.

Background and Brightness Temperature

We have seen how noise is generated in a receiver due to lossy components and active
devices, but noise can also be delivered to the input of a receiver by the antenna. Antenna
noise may be received from the external environment, or generated internally as thermal
noise due to losses in the antenna itself. While noise produced within a receiver is con-
trollable to some extent (by judicious design and component selection), the noise received
from the environment by a receiving antenna is generally not controllable, and may exceed
the noise level of the receiver itself. Thus it is important to characterize the noise power
delivered to a receiver by its antenna.

Consider the three situations shown in Figure 13.4.In Figure 13.4a we have the simple
case of a resistor at temperature Z, producing an available output noise power

No : kTB, (13 .16)

where B is the system bandwidth, and k is Boltzmann's constant. In Figure 13.4b we have an
antenna enclosed by an anechoic chamber at temperature T .The anechoic chamber appears
as a perfectly absorbing enclosure, and is in thermal equilibrium with the antenna. Thus the
terminals of the antenna are indistinguishable from the resistor terminals of Figure 13.4a
(assuming an impedance-matched antenna), and therefore produces the same output noise
power as the resistor of Figure 13.4a. Lastly, Figure 13.4c shows the same antenna directed
at the sky. If the main beam of the antenna is niurow enough so that it sees a uniform region
at physical temperature Z, then the antenna again appears as a resistor at temperature f,
and produces the output noise power given in (13.16). This is true regardless ofthe radiation
efficiency of the antenna, as long as the physical temperature of the antenna is 7.
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Illustrating the concept ofbackground temperature. (a) A resistor at temperature T.

O) An antenna in an anechoic chamber at temperature T. (c) An antenna viewing
a uniform sky background at temperature T.
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FIGURE 13.5 Natural and manmade sources of backsround noise.

In actuality an antenna typically sees a much more complex environment than the
cases depicted in Figure 13.4. Ageneral scenario of both naturally occurring and manmade
noise sources is shown in Figure 13.5, where we see that an antenna with a relatively broad
main beam may pick up noise power from a variety of origins. In addition, noise may be
received through the sidelobes of the antenna pattern, or via reflections from the ground
or other large objects. As in Chapter 10, where the noise power from an arbitrary white
noise source was represented as an equivalent noise temperature, we define the background
noise temperature,76, as the equivalent temperature of a resistor required to produce the
same noise power as the actual environment seen by the antenna. Some typical background
noise temperatures that are relevant at low microwave frequencies are:

. sky (toward zenith) 3-5 K

. sky (toward horizon) 50-100 K
o ground 290*300 K

The overhead sky background temperafure of 3-5 K is the cosmic background radiation
believed to be a remnant of the big bang at the creation of the universe. This would be the
noise temperature seen by an antenna with a narrow beam and high radiation efficiency
pointed overhead, away from "hot" sources such as the sun or stellar radio objects. The
background noise temperature increases as the antenna is pointed toward the horizon because
of the greater thickness of the atmosphere, so that the antenna sees an effective background
closer to that of the anechoic chamber of Figure 13.4b. Pointing the antenna toward the
ground further increases the effective loss, and hence the noise temperature.

Figure 13.6 gives a more complete picture of the background noise temperature, show-
ing the variation of 7B versus frequency, and for several elevation angles [3]. Note that the
noise temperature shown in the graph follows the trends listed above, in that it is lowest
for the overhead sky (0 * 90"), and greatest for angles near the horizon (0 : 0'). Also note
the sharp peaks in noise temperature that occur at 22 GHz and 60 GHz. The first is due
to the resonance of molecular wateq while the second is caused by resonance of molecular
oxygen. Both of these resonances lead to increased atmospheric loss, and hence increased
noise temperature. The loss is great enough at 60 GHz that a high gain antenna pointing
through the atmosphere effectively appears as a matched load at 290 K. While loss in general
is undesirable, these particular resonances can be useful for remote sensing applications,
or for using the inherent attenuation of the atmosphere to limit propagation distances for
radio communications over small distances.

When the antenna beamwidth is broad enough that different parts of the antenna pattern
see different background temperatures, the effective brightness temperature seen by the
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antenna can be found by weighting the spatial distribution of background temperature by

the pattern function of the antenna. Mathematically we can writethe brightness temperature

T6 seen by the antenna as

TB(e, ilD(e , Q) sin9d0dQ

T 6 -

where T6(0, @) is the distribution of the background temperature, and D(0, il is the di-

rectivity (or the power pattern function) of the antenna. Antenna brightness temperature is

referenced at the terminals of the antenna. Observe that when Z6 is a constanto Q3.I7) re-

duces to Tt : Tn, which is essentially the case of a uniform background temperature shown

in Figure 13.3b or 13.4c. Also note that this definition of antenna brightness temperature

does not involve the gain or efficiency ofthe antenna, and so does not include thermal noise

due to losses in the antenna.

Antenna Noise Temperature and GIT

If areceiving antennahas dissipativeloss, sothatitsradiationefficiency 4,,7 is less thanunity,

then the power available at the terminals of the antenna is reduced by the factor rlros from

that intercepted by the antenna (the definition ofradiation efficiency is the ratio ofoutput to

input power). This applies to received noise poweq as well as received signal power, so the

noise temperature of the antenna will be reduced from the brightness temperature given in
(13.17) by the factor 4,o7.In addition, thermal noise will be generated internally by resistive

2 n r

I I
6:0 0=o (r3.r1)

2 r n

I I
O:0 0:0

D(e ,0)s in9d9dQ
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FIGURE 13.7 Idealized antenna pattern and background noise temperature for Example 13.3.

losses in the antenna, and this will increase the noise temperature of the antenna. In terms of
noise power, a lossy antenna can be modeled as a lossless antenna and an attenuator having a
powerlossfactorofl,: l l4,oa.Then,using(10.15)fortheequivalentnoisetemperatureof
an attenuator, the resulting noise temperature seen at the antenna terminals can be found as

ro = 
? * ?r, 

: tt,adTb+ (1 - 4,oa)Tp. (  13 .18)

The equivalent temperature Ia is called th e antenna noise temperature, and is a combination
of the external brightness temperature seen by the antenna and the thermal noise generated
by the antenna. As with other equivalent noise temperatures, the proper interpretation of
7a is that a matched load at this temperature will produce the same available noise power

as does the antenna. Note that this temperature is referenced at the output terminals of the
antenna; since an antenna is not a two-port circuit element, it does not make sense to refer
the equivalent noise temperature to its "input."

Observe that (13.18) reduces to TA - T6 for a lossless antenna with 4,o6: 1. If the
radiation effrciency is zero, meaning that the antenna appears as a matched load and does not
see any external background noise, then ( 1 3. 1 8) reduces to T1 : Zo, due to the thermal noise
generated by the losses. If an antenna is pointed toward a known background temperature
different than Ze, (13.18) can be used to measure its radiation efficiency.

EXAMPLE 13.3 ANTENNA NOISE TEMPERATURE

A high-gain antenna has the idealized hemispherical elevation plane pattern shown
in Figure 13.7, and is rotationally symmetric in the azimuth plane. If the antenna is
facing a region having a background temperature ?6 approximated as given beloq
find the antenna noise temperature. Assume the radiation efficiency of the antenna
is l jo%o.

Solution
Since r7ro7: 1, (13.18) reduces to T1 * T6.TIte brightness temperature can be
computed from (13.17), after normalizing the directivity to a maximum value of
unity:

T B(e, 0) D(0, Q) sin 0 de dd l0stn0d0 + 0.1s in9d9 + sin0d0
90"

J
O:30"

30.
rl '

I
2 r n

f I
@:0 a:0

7-,

I  I  oO,Q)s in?d9dQ
Q:0 e:0

- l0cos glj '  - 0.1 cos gll0' - cos gllff i- @

r" 90"

!  s in1d9+ I  0.O1sin0d0
A - i  a - t a

0.00152 +0.0134 +0.866
= 86.4 K

0.0102

In this example most of the noise power is collected through the sidelobe region
ofthe antenna. I
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FIGURE I3.8 A receiving antenna connected to a receiver through a lossy transmission line. An

impedance mismatch exists between the antenna and the line.

The more general problem of a receiver with a lossy transmission line and an antenna

viewing a background noise temperature distribution T6 can be represented by the system

shown in Figure 13.8. The antenna is assumed to have a radiation efficiency qrad, arrdthe

line a power loss factor of I > 1, with both at physical temperature Zo . We also include the

effect of an impedance mismatch between the antenna and the transmission line, represented

by the reflection coefficient f . The equivalent noise temperature seen at the output terminals

of the transmission line consists of three contributions: noise power from the antenna due

to internal noise and the background brightness temperature, noise power generated from

the lossy line in the forward direction, and noise power generated by the lossy line in the

backward direction and reflected from the antenna mismatch toward the receiver. The noise

due to the antenna is given by (13.1S), but reduced by the loss factor ofthe line,1lL, and

the reflection mismatch factor, (1 - lf l2). The forward noise power from the lossy line is

given by (10.15), after reduction by the loss factor, IlL.The contribution from the lossy

line reflected from the mismatched antenna is given by (10.15), after reduction by the power

reflection coefficient I f 12 and the loss factor, I f L2 (since the reference point for the back-

directed noise power from the lossy line given by (10.15) is at the output terminals of the

line). Thus the overall system noise temperature seen at the input to the receiver is given

by

T o . T . T " . 1
Z s  :  * ( l  -  l r l ' l + ( L  -  I ) *  + ( r  -  l ) ; + l r l '.  

L '  L  L Z '

- ( l --lr l2) 
lr,oaru+ (l - r1,oltrpl* t ' ; t) 

f t * #lt, (13.19)
L  L  L  L . J

Observe that for a lossless line (t : 1) the effect of an antenna mismatch is to reduce the

systemnoisetemperaturebythefactor(l - lf l2).Ofcourse,thereceivedsignalpowerwill
be reduced by the same amount. Also note that for the case of a matched antenna (f : 0),
(13.19) reduces to

rs : 
ltn-aTa+ 

(1 - 4*a)Tp1*

as expected for a cascade of two noisy components.

(r3.20)

Finally, it is importantto realize the difference between radiation efficiency and aper-

ture efficiency, and their effects on antenna noise temperafure. While radiation efficiency

accounts for resistive losses, and thus involves the generation of thermal noise, aperture ef-

ficiency does not. Aperture efficiency applies to the loss of directivity in aperture antennas,

such as reflectors, lenses, orhorns, due to feed spillover or suboptimum aperhrre excitation,
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and by itself does not lead to any additional effect on noise temperature that would not be
included through the pattern of the antenna.

The antenna noise temperature defined above is a useful figure of merit for a teceive
antenna because it characterizes the total noise power delivered by the antenna to the input
of a receiver. Another useful figure of merit for receive antennas is the G/T ratio, defined as

(t3.zr)

where G is the gain of the antenn a, and Ta is the antenna noise temperature. This quantity
is important because, as we will see in Section 13.2, the signal-to-noise ratio at the input
to a receiver is proportional to GlTs. GIT can often be maximized by increasing the gain
of the antenna, since this increases the numerator and usually minimizes reception of noise
from hot sources at low elevation angles. Ofcourse, higher gain requires a larger and more
expensive antenna, and high gain may not be desirable for applications requiring omnidirec-
tional coverage (e.g., cellular telephones or mobile data networks), so often a compromise
must be made. Finally, note that the dimensions given in (13.21) for l0log(G/Z) are not
actually decibels per degree Kelvin, but this is the nomenclature that is commonly used for
this quantity.

WIRELESS COMMUNICATION SYSTEMS

Wireless communications involves the transfer of information between two points without
direct connection. While this may be accomplished using sound, infrared, optical, or radio
frequency energy, most modem wireless systems rely on RF or microwave signals, usually
in the UHF to millimeter wave frequency range. Because of spectrum crowding, and the
need for higher data rates, the trend is to higher frequencies, so that the majority of wireless
systems today operate at frequencies ranging from about 800 MHz to a few gigahertz. RF
and microwave signals offer wide bandwidths, and have the added advantage of being able
to penetrate fog, dust, foliage, and even buildings and vehicles to some extent. Historically,
wireless communication using RF energy began with the theoretical work of Maxwell,
followed by the experimental verification by Hertz of electromagnetic wave propagation,
and the commercial development of practical radio systems by Marconi in the early part of
the 20th century. Today, wireless systems include broadcast radio and television, cellular
telephone systems, Direct Broadcast Satellite (DBS) television service, Wireless Local Area
Networks (WLANs), paging systems, Global Positioning Satellite (GPS) service, and Radio
Frequency Identification (RFID) systems. These systems promise to provide, for the first
time in history worldwide connectivity for voice, video, and data communications.

One way to categoize wireless systems is according to the nature and placement of
the users. Ifi a point-to-point radio system a single transmitter communicates with a single
receiver. Such systems generally use high-gain antennas in fixed positions to maximize
received power and minimize interference with other radios that may be operating nearby
in the same frequency range. Point-to-point radios are generally used for dedicated data
communications by utility companies and for connection of cellular phone sites to a central
switching office. Point-to-multipoint systems connect a central station to a large number
of possible receivers. The most common examples are commercial AM and FM radio
and broadcast television, where a central ffansmitter uses an antenna with a broad beam
to reach many listeners aad viewers. Multipointlo-rnultipoint systems allow simultaneous
communication between individual users (who may not be in fixed locations). Such systems
generally do not connect two users directly, but instead rely on a grid of base stations to
provide the desired interconnections between users. Cellular telephone systems and some
types of wireless local area networks (WLANs) are examples of this type of application.

Gtr(dB): 10los fr u"x,

13.2
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Another way to characterize wireless systems is in terms of the directionality of com-
munication. In a simplex system, communication occurs only in one direction, from the
transmitter to the receiver. Examples of simplex systems include broadcast radio, television,
and paging systems. ln a half-duplex system, communication may occur in two directions,
but not simultaneously. Early mobile radios and citizens band radio are examples of duplex
systems, and generally rely on a "push-to-tallc" function so that a single channel can be
used for both transmitting and receiving at different intervals. Full-duplex systems allow
simultaneous two-way transmission and reception. Examples include cellular telephone and
point-to-point radio systems. Full-duplex transmission clearly requires a duplexing tech-
nique to avoid interference between transmitted and received signals. This can be done by
using separate frequency bands for transmit and receive (frequency division duplexing), or
by allowing users to transmit and receive only in certain predefined time intervals (time
division duplexing).

While most wireless systems are ground based, there is also interesf in the use of satellite
systems for voice, video, and data communications. Satellite systems offer the possibility of
communication with a large number of users over wide areas, perhaps including the entire
planet. Satellites in a geosynchronous earth orbit (GEO) are positioned approximately
36,000 km above the Earth, and remain in a fixed position relative to the surface. Such
satellites are useful for point-to-point radio links between widely separated stations, and are
commonly used for television and data communications throughout the world. At one time
ffanscontinental telephone service relied on such satellites, but undersea fiber optics cables
have largely replaced satellites for transoceanic connections as being more economical, and
avoiding the annoying delay caused by the very long round trip path between the satellite
and the Earth. Another drawback of GEO satellites is that their high altitude greatly reduces
the received signal strength, making it impractical for two-way communication with very
small transceivers. Low earth orbit (LEO) satellites orbit much closer to the Earth, typically
inthe range of 500 to 2000 km. The shorterpathlength allows communicationbetweenLEO
satellites and handheld radios, but satellites in LEO orbits are visible from a given point
on the ground for only a short time, typically between a few minutes to about 20 minutes.
Effective coverage therefore requires a large number of satellites in different orbital planes.

The Friis Formula

A general radio system link is shown in Figure 13.9, where the transmit power is P,, the
transmit antenna gainis Gr, thereceive antennagainis Gr, andthereceivedpower (delivered
to a matched load) is Pr. The transmit and receive antennas are separated by the distance R.

From(13.6)-(13.7),thepowerdensityradiatedbyanisoffopicantenna(D: 1 :0dB)

at a distance R is given by

sav.: ffi *,^'. (13.22)

This result reflects the fact that we must be able to recover all of the radiated power by
integrating over a sphere ofradius R surrounding the antenna; since the power is distributed

Gt-<
FIGURE 13.9 A basic radio system.
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isotropically, and the area of a sphere is 4n R2, (13.22) follows. If the transmit antenna has
a directivity greater than 0 dB, we can find the radiated power density by multiplying by the
directivity, since directivity is defined as the ratio ofthe actual radiation intensity to the equiv-
alent isotropic radiation intensity. Also, if the transmit antenna has losses, we car include
the radiation efficiency factor, which has the effect of converting directivity to gain. Thus,
the general expression for the power density radiated by an arbitrary transmit antenna is

(13.23)

If this power density is incident on the receive antenna, we can use the concept of effective
aperfure area, as defined in (13.14), to find the received power:

P, : A"Sorr: 
O:' ' !" 

*.
4n R2

Next, (13.15) can be used to relate the effective area to the directivity ofthe receive artenna.
Again, the possibility of losses in the receive antenna can be accounted for by using the gain
(rather than the directivity) of the receive antenna. So the final result for the received power is

&uc: ff iwm'.

P, : 
G'Gt- p, w.
(4n R)z

(r3.24)

This result is known as the Friis radio link formula, and it addreses the fundamental question
of how much power is received by a radio antenna. In practice, the value given by (13.24)
should be interpreted as the maximum possible received power, as there are a number of
factors that can serve to reduce the received power in an actual radio system. These in-
clude impedance mismatch at either antenna, polarization mismatch between the antennas,
propagation effects leading to attenuation or depolarization, and multipath effects that may
cause partial cancellation of the received field.

Observe in (13.24) that the received power decreases as I I R2 as the separation between
transmitter and receiver increases. This dependence is a result of conservation of energy.
While it may seem to be prohibitively large for large distances, in fact the space decay
of I lRz is much better than the exponential decrease in power due to losses in a wired
communications link. This is because the attenuation of power on a transmission line
varies as e-zqz (where cy is the attenuation constant of the line), and at large distances the
exponential function decreases faster than an algebraic dependence like 1 / R2 . Thus for long
distance communications, radio links will perform better than wired links. This conclusion
applies to any type of transmission line, including coaxial lines, waveguides, and even fiber
optic lines. (It may not apply, however, if the communications link is land or sea-based, so
that repeaters can be inserted along the link to recover lost signal power.)

As can be seen from the Friis formula, received power is proportional to the product
P,Gr. These two factors, the transmit power and transmit antenna gain, charactenze (he

transmitter, and in the main beam of the antenna the product PlGs can be interpreted
equivalently as the power radiated by an isotropic antenna with input power PrGr. Thus,
this product is defined as the effective isotropic radiated power (EIRP):

EIRP = PtGt W. (13.2s)

For a given frequency, range, and receiver antenna gain, the received power is proportional
to the EIRP of the transmitter, and can only be increased by increasing the EIRP. This can
be done by increasing the transmit power, or the transmit antenna gain, or both.

The derivation of the Friis formula given above assumed that the transmit and receive
antennas were impedence matched to the transmitter and receiver, respectively. As with
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any RF or microwave system, impedance mismatch will reduce the power delivered from
a source to a load by the factor (1 - lf l2). where f is the reflection coefficient between
the source and the load. In a radio link there is the possibility of an impedance mismatch
between the transmitter and the transmit antenna, as well as between the receive antenna
and the receiver. Thus the Friis formula of (13.24) can be multiplied by the impedance
mismatch factor, r1i^r, defined as

r t imp :  (1  -  l f , l 2X1  -  l f , l 2 ) , (r3.26)

to account for the reduction in received power due to impedance mismatch effects at the
transmitter and receiver. In (13.26) f, is the reflection coefficient at the transmitter, and f,
is the reflection coefficient at the rcceiver Note that impedance mismatch is not included
in the definition of antenna gain. This is because mismatch is dependent on the external
source or load impedances to which the antenna is connected, and thus is not a property of
the antenna itself. It is always possible to match an antenna to a given source or load by
using an appropriate external tuning network.

A final consideration to note in connection with the Friis link formula is that maximum
transmission between transmitter and receiver requires that both antennas be polarized in
the same direction. If a transmit antenna is vertically polarized, for example, maximum
power will be delivered to a vertically polarized receiving antenna, while zero power would
be delivered to a horizontally polarized receive antenna. Polarization matching of antennas
is therefore critical for optimum communications system performance.

EXAMPLE 13.4 ANALYSIS OF DBS SYSTEM

The Direct Broadcast System (DBS) operates at 12.2-12.7 GHz, with a transmit
carrier power of 120 W a transmit antenna gain of 34 dB, aa IF bandwidth of
2O MHz, and a worst-case slant angle (30") distance from the geosynchronous
satellite to earth of 39,000 km. The 18" receiving dish antenna has a gain of
33.5 dB and sees an average background brightness temperature of 76 :59 6,
with a receiver low-noise block (LNB) having a noise figure of I .1 dB. The overall
system is shown in Figure 13.10. Find (a) the EIRP of the transmitter, (b) GIT for
the receive antenna and LNB system, (c) the received carrier power at the receive
antenna terminals, and (d) the carrier-to-noise ratio (CNR) at the output of the LNB.

Solution
First we convert quantities in dB to numerical values:

3469 :2512

1. IdB :  L .29

33.5  dB :2239

/ LNB
n | \ lf__---;l cNR

flP*6Ff-
\ G ' - - - " -
\ Z A

DBS receiver

FIGURE 13.10 Diagram of the DBS system for Example 13.4.



650 Chapter 13: lntroduction to Microwave Systems

We will take the operating frequency to be 12.45 GHz, so the wavelength is
0.0241m.
(a) The EIRP of the transmitter is found from (13.25):

E IRP:  P7G7 :020 ; ) (2512 ) :3 .01  x  10sW:54 .8  dBm.

(b) To find G/Z we first find the noise temperature of the antenna and LNB cascade,
referenced at the input of the LNB:

T" : Tt * Tuvs : Tt I (F - l)To : 50 * (I.29 - l)(290) : I34 K.

Thet GlT for the antenna and LNB is

Gtr(dB\: lolos 
2239 - r2.2 dBlK." 134

(c) The received carrier power is found from the Friis formula of (13.24):

ptctc,)"z (3.01 x lO\(2239)(0.024D2
(4tr R)2 (4tt)2(3.9 x 107)2

:1 .63  x  lo - tz  w:  -117.9  dBw.

(d) Then the CNR at the output of the LNB rs

P ,G twn  1 .63  x  10 -12
C.VR:

kT"BGs,16 
- 

(1.38 x10-23)(134)(20x 106)

Note that Gyse, the gain of the LNB module, cancels in the ratio for the output
CNR. A CNR of 16 dB is adequate for good video quality with the error-corrected
digital modulation used in the DBS system. I

Radio Receiver Architectures

The receiver is usually the most critical component of a wireless system, having the over-
all purpose of reliably recovering the desired signal from a wide spectrum of transmitting
sources. interference. and noise. In this section we will describe some of the critical re-
quirements for radio receiver design, and summarize some of the most common types of
receiver architectures.

The well-designed radio receiver must provide several different functions:

o high gain (-10O dB) to restore the low power of the received signal to a level near
its original baseband value.

o selectivity, in order to receive the desired signal while rejecting adjacent channels,
image frequencies, and interference.

o down-conversionftomthe received RF frequency to an IF frequency for processing.
o detection of the received analog or digital information.
o isolation from the transmitter to avoid saturation of the receiver.

Because the typical signal power level from the receive antenna may be as low as -100

to -120 dBm, the receiver may be required to provide gain as high as 100 to 120 dB. This
much gain should be spread over the RF, IF, and baseband stages to avoid instabilities and
possible oscillation; it is generally good practice to avoid more than about 50-60 dB of gain
at any one frequency band. The fact that amplifier cost generally increases with frequency
is a further reason to spread gain over different frequency stages.

In principle, selectivity can be obtained by using a niurow bandpass filter at the RF
stage of the receiver, but the bandwidth and cutoff requirements for such a filter are usually

P,
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mmng

FIGURE 13.11 Block diagram of a tuned radio frequency receiver.

impractical to realize at RF frequencies. It is more effective to achieve selectivity by down-
converting a relatively wide RF bandwidth around the desired signal, and using a sharp-
cutoffbandpass filter at the IF stage to select only the desired frequency band. In addition,
many wireless systems use a number of narrow but closely spaced channels which must
be selected using a tuned local oscillator, while the IF passband is fixed. The alternative of
using an extremely nilrow band electronically tunable RF filter is not practical.

Tuned radio frequency receiver One of the earliest types of receiving circuits to be de-
veloped was the tuned radio frequency (TRF) receiver. As shown in Figure 13.11, a TRF
receiver employs several stages of RF amplification along with tunable bandpass filters to
provide high gain and selectivity. Alternatively, filtering and amplification may be com-
bined by using amplifiers with a tunable bandpass response. At relatively low broadcast
radio frequencies, such filters and amplifiers have historically been tuned using mechani-
cally variable capacitors or inductors. But such tuning is very difficult because of the need
to tune several stages in parallel, and selectivity is poor because the passband of such filters
is fairly broad. In addition, all the gain of the TRF receiver is achieved at the RF frequency,
limiting the amount of gain that can be obtained before oscillation occurs, and increasing the
cost and complexity of the receiver. Because of these drawbacks TRF receivers are seldom
used today, and are an especially bad choice for higher RF or microwave frequencies.

Direct conversion receiver The direct corwersion receiver, shown in Figure 13.12, uses a
mixer and local oscillator to perform frequency down-conversion with a zero IF frequency.
The local oscillator is set to the same frequency as the desired RF signal, which is then
converted directly to baseband. For this reason, the direct conversion receiver is sometimes
called a homodyne receiver. For AM reception the received baseband signal would not
require any further detection. The direct conversion receiver offers several advantages over
the TRF receiver, as selectivity can be controlled with a simple low-pass baseband filter, and
gain may be spread through the RF and baseband stages (although it is difficult to obtain
stable high gain at very low frequencies). Direct conversion receivers are simpler and less
costly than superheterodyne receivers, since there is no IF amplifier, IF bandpass filter,
or IF local oscillator required for final down conversion. Another important advantage of
direct conversion is that there is no image frequency, since the mixer difference frequency

FIGURE 13.12 Block diasram ofa direct-conversion receiver.
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FIGURE 13.13 Block diagram ofa single-conversion superheterodyne receiver

is effectively zero, and the sum frequency is twice the LO and easily filtered. But a serious
disadvantage is that the LO must have a very high degree ofprecision and stability, especially
for high RF frequencies, to avoid drift of the received signal frequency. This type of receiver
is often used with Doppler radars, where the exact LO can be obtained from the transmitter,
but a number of newer wireless systems are being designed with direct conversion receivers.

Superheterodyne receiver. By far the most popular type of receiver used today is the
superheterodyne ctrcuit, shown in Figure 13.13. The block diagram is similar to the direct
conversion receiver, but the IF frequency is now nonzero, and generally selected to be
between the RF frequency and baseband. A midrange IF allows the use of sharper cutoff
filters for improved selectivity, and higher IF gain through the use of an IF amplifier. Tuning
is conveniently accomplished by varying the frequency of the local oscillator so that the
IF frequency remains constant. The superheterodyne receiver represents the culmination of
over 50 years of receiver development, and is used in the majority of broadcast radios and
televisions, radar systems, cellular telephone systems, and data communications systems.

At microwave and millimeter wave frequencies it is often necessary to use two stages
of down conversion to avoid problems due to LO stability. Such a dual-converslon super-
heterodyne receiver employs two local oscillators, two mixers, and two IF frequencies to
achieve down-conversion to baseband.

Noise Characterization of a Microwave Receiver

Let us now analyze the noise characteristics of a complete antenna-transmission line-
receiver front end, as shown in Figure 13.14. In this system the total noise power at the
output of the receiver, N,, will be due to contributions from the antenna pattern, the loss in
the antenna, the loss in the transmission line, and from the receiver components. This noise
power will determine the minimum detectable signal level for the receiver and, for a given
transmitter power, the maximum range of the communication link.

Background

No, S,

Noise analysis of a microwave receiver front end, including antenna and transmis-
sion line contributions.

Th

Gnp LM
znr TM

Gr
ZIF

R F I I F
Amp. Amp.

Receiver

FIGURE 13.14
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The receiver components in Figure 13.14 consist of an RF amplifier with gain Gpp

and noise temperature Zpp, a mixer with an RF-to-IF conversion loss factor I.y and noise

temperature Ty, and an IF amplifier with gain Gn and noise temperature Zu'. The noise

effects of later stages can be ignored, since the overall noise figure is dominated by the

characteristics of the first few stages. The component noise temperatures can be related

to noise figures as Z : (F' - 1)20. From (10.22) the equivalent noise temperature of the

receiver can be found as

, Ty , TvLu
IREC : Iru: -r ;-uRF Gnr'

(r3.27)

The transmission line connecting the antenna to the receiver has a loss 11, and is at a

physical temperature 7o. So from (10.15) its equivalent noise temperature is

Trr:  (Lr -  l )Tp. (13.28)

Againusing ( I0.22),thenoise temperature of theffansmissionline (TL) andreceivercascade

is

Trr-+nBc : Try -l LrTpsr

: (Lr - I)Tp + LrTpnc. (13.2e)

This noise temperature is defined at the antenna terminals (the input to the transmission

line).
As discussed in Section 13.1, the entire antenna pattern can collect noise power. If the

antenna has a reasonably high gain with relatively low sidelobes, we can assume that all

noise power comes via the main beam, so that the noise temperature of the antenna is given

by (13.18) :

Tn: IroaTr + (1 - 4roa)Tp, (13.30)

where qroy is the efficiency of the antenna, 7o is its physical temperature, and Zb is the

equivalent brightness temperature of the background seen by the main beam. (One must be

careful with this approximation, as it is quite possible for the noise power collected by the

sidelobes to exceed the noise power collected by the main beam, if the sidelobes are aimed

at a hot background.) The noise power at the antenna terminals, which is also the noise

power delivered to the transmission line, is

Ni : kBTe: kBlrlroaTo + (1 - rlroa)Tpl, (13.3r)

where B is the system bandwidth. If Si is the received power at the antenna terminals, then

the input signal-to-noise ratio at the antenna terminals is $/Ni.
The output signal power is

5^ : 
$GnrGrn :,siGsys, 03.32)eo  -  

L rLu

where G5y5 has been defined as a system power gain. The output noise power is

N,: [N; *kBZrapsg]Gsy5

: kB(Te * Tn-+nnc)Gsvs

: kBlq,oaTa + (1 - \,oa)Tp * (Lr - DTp + ZrZnnclGsvs

: kBTsysGsys, (13.33)
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where T5ys has been defined as the overall system noise temperatue. The output signal-to-
noise ratio is

s, s;
(13.34)

N, 
: 

/ ,BZr"r 
:  

rn1*,07u a 11- r,*17* 12, - 1o* 
'

It may be possible to improve this signal-to-noise ratio by various signal processing tech-
niques. Note that it may appear to be convenient to use an overall system noise figure to
calculate the degradation in signal-to-noise ratio from input to output for the above system,
but one must be very careful with such an approach because noise figure is defined for
Ni : kToB, which is not the case here. It is often less confusing to work directly with noise
temperatures and powers, as we did above.

EXAMPLE I3.5 SIGNAL-TO.NOISE RATIO OF A MICROWAYE RECEIVER

A microwave receiver like that of Figure 13.14 has the following parameters:

7 : 4.0 GHz, Gnn : 20 dB,

B :1MHz, Fnr. : 3.0 dB,

Ge = 26 dB, lu : 6.0 dB,

\roa : O'90, F r u : 7 . 0 d 8 ,

Tp : 300 K, Gr :30 dB,

T6 :200K, FiF : 1.1 dB.

Lz :  1 .5 dB,

If the received power at the antenna terminals is Si - -80 dBm, calculate the
input and output signal-to-noise ratios.

Solution
We first convert the above dB quantities to numerical values, and noise figures to
noise temperatures:

G m : 1 0 2 0 / 1 0 : 1 0 0 '

G P : l Q 3 o / 1 0 : 1 0 0 0 ,

L 7 - l } r ' s / t o : 1 . 4 1 ,

L y - 1 0 6 / 1 0 : 4 . 0 ,

T1a : (F1a - 1)r0 : (107/ro - 1X290) : 1163 K,

Znr : (Fnn - DTo: (103/10 - 1X290) :289 K,

Trp : (Frn * 1)To : (lOt't/to * 1X290) : 84 K.

Then from (13.21), (13.28), and (13.30) the noise temperatures of the receiver,
transmission line, aad antenna are

Tt- 
*Tn=L' : 289 *9 * ry : 304 K.znrc : fu * 

"*r. Gnr. loo loo

T7y : (L7 - DTp : (7.41 - l)300 : I23 K,

T4 : 4,o476 + (1 - q*)Tp: 0.9(200) + (1 - 0.9X300) : 210 K.

Then the input noise power, from (13.31), is

Ni : kBTe: 1.38 x 10-23(106)(210) :2.9 x lo-ls w : -115 dBm.

St
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So the input signal-to-noise ratio is,

-80 + 115 :  35 dB.

From (13.33) the total system noise temperature is

Tsys : Te * Tw * LTTpsg :2IO + 123 + (I.41)(304) : 762K.

This result clearly shows the noise contributions of the various components. The

output signal-to-noise ratio is found from (13.34) as

S, St

N, 
: 

kBzrtr'

f tBrsys :  1 .38 x 10-231t06;(762)  :1.05 x 10-ra w :  -110 dBm,

s,
N,

# 
:  -ro + 110: 30 dB. I

Wireless Systems

Finally, we conclude this section with short descriptions of some of the wireless systems

in current use. Table 13.1 lists some of the commonly used frequency bands for wireless

systems.

Cellular telephone systems. Cellular telephone systems were proposed in the 1970s in

response to the problem of providing mobile radio service to a large number of users in

urban areas. Early mobile radio systems could handle only a very limited number of users

due to inefficient use of the radio spectrum aad interference between users. The cellular

TABLE 13.1 Wireless System Frequencies (T/R: mobile unit transmiU
receive frequency)

Wireless System Operating Frequency

Advanced Mobile Phone Service ruS AMPS)

Global System Mobile (European GSM)

Personal Communications Services (PCS)

US Paging

Global Positioning Satellite (GPS)

Direct Broadcast Satellite (DBS)

Wireless Local Area Networks (WLANS)

Local Multipoint Distribution Service (LMDS)

US Industrial, Medical, and Scientific bands (ISM)

T: 869-894 MHz

R: 824-849 MHz
T: 880-915 MHz

R: 925-960 MHz

T: 1710-1785 MHz

R: 1805-1880 MHz

931-932MHz
Ll:1575.42MH2
L2:1221 .6OMHz

ll.7-12.5 GHz

902-928MHz
2.400-2.484GH2
5.725-5.850GH2

28GHz

902-928MHz
2.400-2.484GH2

5.725-5.850 GHz
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radio concept solves this problem by dividing a geographical arca into non-overlapping
cells, where each cell has its own transmitter and receiver (base station) to communicate
with the mobile users operating in that cell. Each cell site may allow as many as several
hundred users to simultaneously communicate with other mobile users, or through the land-
based telephone system. Frequency bands assigned to a particular cell can be reused in other
non-adjacent cells.

The first cellular telephone systems were built in Japaa and Europe in 1979 and 1981,
and in the US (he Advanced Mobile Phone System (AMPS) in 1983. These systems used
analog FM modulation and divided their allocated frequency bands into several hundred
channels, each of which could support an individual telephone conversation. These early ser-
vices grew slowly at first, because of the initial costs of developing an infrastructure of base
stations and the initial expense of handsets, but by the 1990s growth became phenomenal.

Because of the rapidly growing consumer demand for wireless telephone service, as
well as advances in wireless technology, several second generation standards have been
implemented in the US, Europe, and Asia. These standards all employ digital modulation
methods and provide better quality service and more efficient use of the radio spectrum
than aaalog systems. Systems in the US use either the 15-136 time division multiple ac-
cess (TDMA) standard, the IS-95 code division multiple access (CDMA) standard, or the
European Global System Mobile (GSM) system. Many of the new personal communica-
tions systems (PCS) in the US have been deployed using the same frequency bands as the
AMPS system to take advantage of existing infrastructure. Additional spectrum has also
been allocated by the Federal Communications Commission (FCC) around 1.8 GHz, and
some of the newerPCS systems use this frequency band. Outside the US, the Global System
Mobile (GSM) TDMA system is the most widespread, being used in over 100 countries.
The uniformity of a single wireless telephone standard throughout Europe and much of
Asia allows travelers to use a single handset throughout these regions.

Satellite systems for wireless voice and data. The key advantage of satellite systems is
that a relatively small number of satellites can provide coverage to users at any location,
including the oceans, deserts, and mountains-areas for which it would otherwise be difficult
to provide service. In principle, as few as three geosynchronous satellites can provide
complete global coverage, but the very high altitude of the geosynchronous orbit makes
it difficult to communicate with hand-held terminals because of very low signal strength.
Satellites in lower orbits can provide usable levels of signal power, but many more satellites
are then needed to provide global coverage.

There are a large number of commercial satellite systems either currently in use, or
in the development stage, for wireless communications. These systems generally operate
at frequencies above I GHz because of available spectrum, the possibility of high data
rates, and the fact that such frequencies easily pass through the atmosphere and ionosphere.
GEO satellite systems, such as INMARSAT and MSAT, provide voice and low-data rate
communications to users with 12" to 18" antennas. These systems are often referred to
as very small aperture terminals (VSATs). Other satellite systems operate in medium- or
low-earth orbits, to provide mobile telephone and data service to users on a worldwide basis.

The Iridium project, financed by a consortium of companies headed by Motorola,
was the flrst commercial satellite system to offer handheld wireless telephone service. It
consisted of 66 LEO satellites in near-polar orbits, and connected mobile phone and paging
subscribers to the public telephone system through a series ofinter-satellite relay links and
land-based gateway terminals. Figure 13.15 shows a photo of one of the Iridium phased
array antennas. The kidium system cost was approximately $3.48, and it began service
in 1998. One drawback of using satellites for telephone service is that weak signal levels
require a line-of-sight path from the mobile user to the satellite, meaning that satellite
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FIGURE 13.15 Photograph of one of the three L-band antenna arrays for a Motorola IRIDIUM
communications satellite. The IRIDIUM system consists of 66 satellites in low
earth orbit to provide global personal satellite TDMA communications services,
including voice. fax. and paging.

Courtesy of Raytheon Company.

telephones generally cannot be used in buildings, automobiles, or even in many wooded
or urban areas. This places satellite phone service at a definite performance disadvantage
relative to land-based cellular and PCS wireless phone service. But an even greaterproblem
with satellite phone service is the expense of deploying and maintaining a large fleet of
LEO satellites, making it very difflcult to compete economically with land-based cellular
or PCS service. For these reasons, it appears that the idea of satellite telephone service has
been a costly mistake. In August 1999 the kidium LLC company declared bankruptcy, and
similar fates have fallen upon other satellite-based phone services.

Global positioning satellite system. The Global Positioning Satellite system (GPS) uses
24 satellites in medium earth orbits to provide accurate position information (latitude,
longitude, and elevation) to users on land, air, or sea. Originally developed as the NAVSTAR
system by the US military, at a cost of about $128, GPS has quickly become one of the most
pervasive applications of wireless technology for consumers and businesses throughout the
world. Today; GPS receivers can be found on commercial and private airplanes, boats and
ships, and ground vehicles. Advances in technology had led to substantial reductions in
size and cost, so that small hand-held GPS receivers can be used by hikers and sportsmen.
With differential GPS, accuracies on the order of 1 cm can be achieved, a capability that
has revolutionized the surveying industry.

The GPS positioning system operates by using triangulation with a minimum of four
satellites. GPS satellites are in orbits 20,200 km above the Earth, with orbital periods of
12 hours. Distances from the user's receiver to these satellites are found by timing the
propagation delay between the satellites and the receiver. The positions of the satellites
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(ephemeis) are known to very high accuracy, and each satellite contains an extremely
accurate clock to provide a unique set of timing pulses. A GPS receiver decodes this timing
information, and performs the necessary calculations to find the position and velocity of
the receiver. The GPS receiver must have a line-of-sight view to at least four satellites in
the GPS constellation, although three satellites are adequate if altitude position is known
(as in the case ofships at sea). Because ofthe low gain antennas required foroperation, the
received signal level from a GPS satellite is very low-typically on the order of - 130 dBm
(for a receiver antenna gain of 0 dB). This signal level is usually below the noise power
at the receiver, but spread spectrum techniques are used to improve the received signal to
noise ratio.

GPS operates at two frequency bands: Ll, aI 1575.42MH2, andL2, at 1227.6OMHz,
transmitting spread spectrum signals with binary phase shift keying modulation. The Ll
frequency is used to transmit ephemeris data for each satellite, as well as timing codes,
which are available to any commercial or public user. This mode of operation is referred to
asthe Course/Acquisition (C/A) code. In contrast, the L2 frequency is reserved for military
use, and uses an encrypted timing code referred to as the Protected (P) code (there is also
a P code signal transmitted at the L1 frequency). The P code offers much higher accuracy
than the C/A code. The typical accuracy that can be achieved with an Ll GPS receiver is
about 100 feet. Accuracy is limited by timing errors in the clocks on the satellites aad the
receive! as well as error in the assumed position of the GPS satellites. The most significant
error is general$ caused by atmospheric and ionospheric effects, which introduce small but
variable delays in signal propagation from the satellite to the receiver.

Wireless local areanetyvorks. Wireless local area networks (WLANs) provide connections
between computers over short distances. Tlpical indoor applications may be in hospitals,
office buildings, and factories, where coverage distances are usually less than a few hundred
feet. Outdoors, in the absence of obstructions and with the use of high gain antennas, ranges
up to a few miles can be obtained. Wireless networks are especially useful when it is
impossible or prohibitively expensive to place wiring in or between buildings, or when only
temporary access is needed between computers. Mobile computer users, of course, can only
be connected to a computer network by a wireless link.

Currently most commercial WLAN products in the US operate in the Industrial, Sci-
entific, and Medical (ISM) frequency bands, and use either frequency-hopping or direct-
sequence spread spectrum techniques in accordance with IEEE Standards 802. 1 1 a, 802. 1 lb,
802. 1 1g, or the Bluetooth standard. Maximum bit rates range from 1-1 1 Mbps.

Direct broedcast sqtellite. The US Direct Broadcast Satellite (DBS) system provides tele-
vision service from geosynchronous satellites directly to home users wifh a relatively small
18" diameter antenna. Previous to this development satellite TV service required an un-
sightly dish antenna as large as 6 feet in diameter. This advancement was made possible
through the use of digital modulation techniques, which reduce the necessary received sig-
nal levels as compared to previous systems which used analog modulation. The DBS system
uses quadrature phase shift keying (QPSK) with digital multiplexing and error cor:rection to
deliver digital dataatarate of 40 Mbps. Two satellites, DBS-l and DBS-2, located at1Ol.2'
and 100.8" longitude, each provide 16 channels with 120 W ofradiated power per channel.
These satellites use opposite circular polarizations to minimize loss due to precipitation,
and to avoid interference with each other (polarization duplexing).

Pointlo-point radio systems. Point-to-point radios are used by businesses to provide ded-
icated data connections between two fixed points. Electric utility companies use point-to-
point radios for transmission of telemetry information for the generation, transmission, and
distribution of electric power between power stations aad substations. Point-to-point radios
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are also used to connectcellular base stations to the public switched telephone network, and
are generally much cheaper than running high-bandwidth coaxial or fiber-optic lines below
ground. Such radios usually operate in the 18, 24, or 38 GHz bands, and use a variety of
digital modulation methods to provide data rates in excess of 10 Mbps. High gain antennas
are typically used to minimize power requirements and avoid interference with other users.

RADAR SYSTEMS

Radar, or Radio Detection And Ranging, is one of the most prevalent applications of mi-
crowave technology. In its basic operation, a transmitter sends out a signal which is partly
reflected by a distant target, and then detected by a sensitive receiver. If a narrow beam
antenna is used, the target's direction can be accurately given by the position ofthe antenna.
The distance to the target is determined by the time required for the signal to travel to the
target and back, and the radial velocity of the target is related to the Doppler shift of the
return signal. Below are listed some of the typical applications of radar systems.

Civilian Applications

o Airport surveillance
o Marine navigation
o Weather radar
r Altimetry
o Airuaftlanding
o Burglar alarms
o Speed measurement (police radar)
o Mapping

Military Applications

o Air and marine navigation
o Detection and tracking of aircraft, missiles, spacecraft
o Missile guidance
o Fire confrol for missiles and artillerv
o Weapon fuses
o Reconnaissance

Scientifi c Applications

. Astronomy
o Mapping and imaging
o Precision distance measurement
o Remote sensing of natural resources

Early radar work in the United States and Britain began in the 1930s using very
high frequency (VHF) sources. A major breakthrough occurred in the early 1940s with
the British invention of the magnetron as a reliable source of high-power microwaves.
Higher frequencies allowed the use of reasonably sized antennas with high gain, allow-
ing mechanical tracking of targets with good angular resolution. Radar was quickly de-
veloped in Great Britain and the United States, and played an important role in World
War II.

Figure 13.16 shows a photograph of the phased array radar for the PATRIOT missile
system. We will now derive the radar equation, which governs the basic operation of most
radarso and then describe some of the more common types of radar systems.
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FIGURE 13.16 Photograph of the PATRIOT phased array radar. This is a C-band multifunction
radar that provides tactical air defense, including target search and tracking, and
missile fire control. The phased array antenna uses 5000 ferrite phase shifters to
electronically scan the antenna beam.

Photo provided by Raytheon Company.

The Radar Equation

Two basic radar systems are illustrated in Figure 13.17 ; in the monostatic radar the same
antenna is used for both transmit and receive, while the bistatic radar uses two separate
antennas for these functions. Most rada$ are of the monostatic type, but in some applications
(such as missile fire conffol) the target is illuminated by a separate transmit aatenna. Separate
antennas are also sometimes used to achieve the necessary isolation between transmitter
and receiver.

Here we will consider the monostatic case, but the bistatic case is very similar. If the
transmitter radiates a power Pr through an antenna of gain G, the power density incident
on the target is, from 13.23,

P,Gc -" ' -  
4 n R 2 '

(13.3s)

where R is the distance to the target. It is assumed that the target is in the main beam
direction of the antenna. The target will scatter the incident power in various directions; the
ratio of the scattered power in a given direction to the incident power density is defined as
the radar cross section o, of the target. Mathematically,

P,
d :  - .

S,
(13.36)

where P" is the total power scattered by the target. The radar cross section thus has the
dimensions of area, and is a property of the target itself. It depends on,the incident and
reflection angles, as well as the polarization of the incident wave.
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FIGURE 13.17 Basic monostatic and bistatic radar systems. (a) Monostatic radar system.
ft) Bistatic radar svstem.

Since the target acts as a finite-sized source, the power density ofthe reradiated field
must decay as ll4nRz away from the target. Thus the power density of the scattered
field back at the receive antenna must be

^ P,Go\  - _' - 
l4t Pzlz'

Then using (13.15) for the effective area of the antenna gives the received power as

o _ P,G2)r2o
" - @ f R 4 '

This is the radar equation.Note that the received power varies as l lRa. which implies that
a high-power transmitter and a sensitive low-noise receiver are needed to detect targets at
long ranges.

Because of noise received by the antenna and generated in the receiver, there will be
some minimum detectable power that can be discriminated by the receiver. If this power is
P.io, then (13.38) can be rewritten to give the maximum range as

(r3.37)

(13 .38)

(13.39)

Signal processing can effectively reduce the minimum detectable signal, and so increase
the usable range. One very common processing technique used with pulse radars is pulse
integration, where a sequence of N received pulses are integrated over time. The effect is to
reduce the noise level, which has a zero mean, relative to the returned pulse level, resulting
in an improvement factor of approximately N [5].

Of course, the above results seldom describe the performance of an actual radar system.
Factors such as propagation effects, the statistical nature of the detection process, and
external interference often serve to reduce the usable range of a radar system.

R_a,:lm)''^
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EXAMPLE 13.6 APPLICATION OF THE RADAR RANGE EQUATION

A pulse radar operating at l0 GHz has an antenna with a gain of 28 dB, and a
transmitter power of 2 kW (pulse power). If it is desired to detect a target with a
cross section of 12 m2, and the minimum detectable signal is P-in : -90 dBm,
what is the maximum ranee of the radar?

Solution
The required numerical values are

G -  1028110 :631,

P-1 : 16-90/to mW : 10-12 W,

). : 0.03 m.

Then the radar range equation of (13.39) gives the maximum range as

^ |  tz x r03X63l)2 (12)(.8)21/4
n m u : L ( 4 ? r ) 3 ( l 0 - l 2 ) l

:  8114 m. I

Pulse Radar

Apulseradardetermines targetrange by measuring the round-trip time of apulsed microwave
signal. Figure 13.18 shows a typical pulse radar system block diagram. The transmitter
portion consists of a single-sidebaad mixer used to frequency offset a microwave oscillator
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FIGURE 13.18 A pulse radar system and timing diagram.

I
I
I

I r l
l n  n  - l

Pulse
generator

Video
amplifier

Display



13.3 Radar Systems 663

of frequency fsby an amount equal to the IF frequency. After power amplification, pulses
of this signal are transmitted by the antenna. The transmit/receive switch is controlled by
the pulse generator to give a transmit pulse width z, with a pulse repetition frequency (PRF)
of f, - 7 / 7,. The transmit pulse thus consists of a short burst of a microwave signal at
the frequency fo * fip. Typical pulse durations range from 100 ms to 50 ns; shorter pulses
give better range resolution, but longer pulses result in a better signal-to-noise ratio after
receiver processing. Typical pulse repetition frequencies range from 100 Hz to 100 kHz;
higher PRFs give more returned pulses per unit time, which improves performance, but
lower PRFs avoid range ambiguities that can occur when R > cT, 12.

In the receive mode, the returned signal is amplified and mixed with the local oscillator
of frequency /s to produce the desired IF signal. The local oscillator is used for both up-
conversion in the transmitter as well as down-conversion in the receiver; this simplifies
the system and avoids the problem of frequency drift, which would be a consideration
if separate oscillators were used. The IF signal is amplified, detected, and fed to a video
amplifier/display. Search radars often use a continuously rotating antenna for 360' azimuthal
coverage; in this case the display shows a polar plot of target range versus angle. Many
modern radars use a computer for the processing ofthe detected signal and display oftarget
information.

The transmit/receive (T/R) switch in the pulse radar actually performs two functions:
forming the transmit pulse train, and switching the antenna between the transmitter and
receiver. This latter function is also known as duplexing.In principle, the duplexing func-
tion could be achieved with a circulator, but an important requirement is that a high degree
of isolation (about 80-100 dB) be provided between the transmitter and receiver, to avoid
transmitter leakage into the receiver which would drown the target return (or possibly dam-
age the receiver). As circulators typically achieve only 20-30 dB of isolation, some type of
switch, with high isolation, is required. If necessary, further isolation can be obtained by
using additional switches along the path of the transmitter circuit.

Doppler Radar

If the target has a velocity component along the line-of-sight of the radar, the returned
signal will be shifted in frequency relative to the transmitted frequency, due to the doppler
effect. Ifthe transmitted frequency is /,, and the radial target velocity is u, then the shift in
frequency, or the doppler frequency, will be

f o : 2 ' f o  ,
c

where c is the velocity of light. The received frequency is then f" t fa, where the plus sign
corresponds to an approaching target and the minus sign corresponds to a receding target.

Figure 13.19 shows a basic doppler radar system. Observe that it is much simpler than
a pulse radar, since a continuous wave signal is used, and the transmit oscillator can also
be used as a local oscillator for the receive mixer, because the received signal is frequency
offset by the doppler frequency. The filter following the mixer should have a passband
corresponding to the expected minimum and maximum target velocities. It is important that
the filter have high attenuation aI zero frequency, to eliminate the effect of clutter return
and transmitter leakage at the frequency /0, as these signals would down-convert to zero
frequency. Then a high degree ofisolation is not necessary between transmitter and receiver,
and a circulator can be used. This type offilter response also helps to reduce the effect of
1// noise.

The above radar cannot distinguish between approaching and receding targets, as the
sign of ft is lost in the detection process. Such information can be recovered, however, by
using a mixer that produces separately the upper and lower sideband products.

(13.40)
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FIGURE 13.19 Doppler radar system.

Since the return of a pulse radar from a moving target will contain a doppler shift, it is
possible to determine both the range and velocity (and position, if a narrow beam antenna
is used) of a target with a single radar. Such andar is known as apulse-doppler radar, and
offers several advantages over pulse or doppler radars. One problem with a pulse radar is
that it is impossible to distinguish between a true target and clutter returns from the ground,
trees, buildings, etc. Such clutter refurns may be picked up from the antenna sidelobes. But
if the target is moving (e.g., as in an airport surveillance radar application), the doppler shift
can be used to separate its return from clutter, which is stationary.

Radar Cross Section

Aradartargetis characterizedbyitsradarcross section, as definedin (13.36), whichgives the
ratio of scattered power to incident power density. The cross section of a target depends on
the frequency and polarization ofthe incident wave, and on the incident and reflected angles
relative to the target. Thus we can define a monostatic cross section (incident and reflected
angles identical), and abistatic cross section (incident andreflected angles different).

For simple shapes the radar cross section can be calculated as an electromagnetic bound-
ary value problem; more complex targets require numerical techniques, or measurement
to find the cross section. The radar cross section of a conducting sphere can be calculated
exactly; the monostatic result is shown in Figure 13.20, normalized to naz. the physical

1 2  3  5  1 0
2ral)t

FIGURE 13.20 Monostatic radar cross section of a conducting sphere.
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TABLE 13.2 Ilpical Radar Cross Sections

13.4

Target o G#)

Bird

Missile
Person
Small plane
Bicyle

Small boat
Fighter plane

Bomber
Large airliner
Truck

0.01

0.5
l .

1-2
2

2
3-8

30-40
100
200

cross-sectional arca of the sphere. Note that the cross section increases very quickly with
size for electrically small spheres (a 11 A.). This region is called the Rayleigh region, and it
can be shown that o varies as (a l))a in this region. (This strong dependence on frequency
explains why the sky is blue, as the blue component of sunlight scatters more strongly from
atmospheric particles than do the lower frequency red components.)

For electrically large spheres, where a >> l, the radar cross section of the sphere is
equal to its physical cross section, naz.This is the optical region, where geometrical optics
are valid. Many other shapes, such as flat plates at normal incidence, also have cross sections
that approach the physical area for electrically large sizes.

Between the Rayleigh region and the optical region is the resonance region, where
the electrical size of the sphere is on the order of a wavelength. Here the cross section is
oscillating with frequency, due tophase addition and cancellation ofvarious scattered field
components. Of particular note is the fact that the cross section may reach quite high values
in this region.

Complex targets such as aircraft or ships generally have cross sections that vary rapidly
with frequency and aspect angle. In military applications it is often desirable to minimize the
radar cross section ofvehicles, to reduce detectability. This can be accomplished by using
radar absorbing materials (lossy dielectrics) in the construction of the vehicle . Table I3.2
lists the approximate radar cross sections of a variety of different targets.

RADIOMETER SYSTEMS

A radar system obtains information about a target by transmitting a signal and receiving
the echo from the target, and thus can be described as an active remote sensing system.
Radiometry, however, is a passive technique which develops information about a target
solely from the microwave portion of the blackbody radiation (noise) that it either emits
directly orreflects from surrounding bodies. A radiometer is a sensitive receiver specially
designed to measure this noise power.

Theory and Applications of Radiometry

As discussed in Section 70.7, a body in thermodynamic equilibrium at a temperature f
radiates energy according to Planck's radiation law. In the microwave region this result
reduces to P = kTB,wherek is Boltzmann's constant, B is the systembandwidth, and P is
the radiated power. This result strictly applies only to a blackbody, which is defined as an
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idealized material which absorbs all incident energy, and reflects none; a blackbody also
radiates energy at the same rate as it absorbs energy, thus maintaining thermal equilibrium.
A nonideal body will partially reflect incident energy, and so does not radiate as much power
as would a blackbody at the same temperature. A measure of the power radiated by a body
relative to that radiated by an ideal blackbody at the same temperature is the emissivity, e,
defined as

P
" _ 

KTB,

where P is the power radiated by the nonideal body, and kTB is the power that would be
emitted by a perfect blackbody. Thus, 0 < e S I, and e : I for a perfect blackbody.

As we saw in Section 10.1, noise power can also be quantified in terms of equivalent
temperature. Thus for radiometric purposes we can define a brightness temperafure, ZB, as

Tn : eT, (r3.42)

where Z is the physical temperature of the body. This shows that, radiometrically, a body
never looks hotter than its actual temperature, since 0 < e < 1.

Now consider Figure 13.21, which shows the antenna of a radiometer receiving noise
powers from various sources. The antenna is pointed at a region of the earth which has
an apparent brightness temperature T6. The atmosphere emits radiation in all directions;
the component radiated directly toward the antenna is Tap, while the power reflected from
the earth to the antenna is Tap. There may also be noise powers that enter the sidelobes
of the antennas, from the sun or other sources. Thus, we can see that the total brightness
temperature seen by the radiometer is a function of the scene under observation, as well
as the observation angle, frequency, polarization, attenuation of the atmosphere, and the
antenna pattern. The objective of radiometry is to infer information about the scene from
the measured brightness temperature, and an analysis of the radiometric mechanisms that
relate brightness temperature to physical conditions of the scene. For example, the power
reflected from a uniform layer of snow over soil can be treated as plane wave reflection
from a multilayer dielectric region, leading to the development of an algorithm that gives the
thickness of the snow in terms of measured brightness temperature at various frequencies.

Microwave radiometry is a relatively new area of technology, and one which is strongly
interdisciplinary, drawing on results from fields such as electrical engineering, oceanog-
raphy, geophysics, and atmospheric and space sciences, to name a few. On the following
page, some of the more typical applications of microwave radiometry are listed.

Earth

FIGURE 13.2f Noise power sources in a typical radiometer application.

(13 .41)
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Environmental Applications

. Measurement of soil moisture
o Flood mapping
o Snow cover/lce cover mapping
o Ocean surface windspeed
o Atmospheric temperature profile
r Atmospheric humidity profile

Military Applications

. Target detection
o Tirget recognition
o Surveillance
o Mapping

Astronomy Applications

o Planetary mapping
o Solar emission mapping
o Mapping of galactic objects
. Measurement of cosmological background radiation

Figure 13.22 shows a photograph of a radiometer used to measure the water vapor
profile of the atmosphere.

Total Power Radiometer

The aspect of radiometry that is of most interest to the microwave engineer is the design of
the radiometer itself. The basic problem is to build a receiver that can distinguish between the
desired radiometric noise and the inherent noise of the receiver, even though the radiomeffic
power is usually less than the receiver noise power. Although it is not a very practical
insffument, we will first consider the total power radiometer, because it represents a simple
and direct approach to the problem and serves to illustrate the difficulties involved in
radiometer design.

The block diagram of a typical total power radiometer is shown in Figure 13.23. The
front end of the receiver is a standard superheterodyne circuit consisting of an RF amplifier,
a mixer/local oscillator, and an IF stage. The IF filter determines the system bandwidth, B.
The detector is generally a square-law device, so that its output voltage is proportional to
the input power. The integrator is essentially a low-pass filter with a cutoff frequency of
I lr, and serves to smooth out short-term variations in the noise power. For simplicity, we
assume that the antenna is lossless, although in practice antenna loss will affect the apparent
temperature ofthe antenna, as given in (13.18).

If the antenna is pointed at a background scene with a brightness temperature 76, the
antenna power will be P,o, : kTnB; this is the desired signal. The receiver contributes noise
which can be characterized as a power Pa : kTnB at the receiver input, where 7a is the
overall noise temperature of the receiver. Thus the output voltage of the radiometer is

Vo: G(Tn + TilkB, (r3.43)

where G is the overall gain constant of the radiometer. Conceptually, the system is calibrated
by replacing the antenna input with two calibrated noise sources, from which the system
constants GkB and GTRkB can be determined. (This is similar to the I-factor method
for measuring noise temperature.) Then the desired brightness temperature, 76, car'be
measured with the system.
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FIGURE 13.22

+-
l "

Photograph of a multichannel microwave radiometer used to measure the water
vapor profile of the atmosphere. This system has one receiver that operates at
36.5 GHzto sense liquid water in the atmosphere, and a second group of receivers
operating from 16 to 28 GHz to sample the 22 GHz water vapor resonance.

Couftesy of the Microwave Remote Sensing Laboratory University of Massachusetts at
Amherst.
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FIGURE 13.23 Total power radiometer block diagram.
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Two types of errors occur with this radiometer. First is an error, AI1s, in the measured
brightness temperature due to noise fluctuations. Since noise is a random process, the
measured noise power may vary from one integration period to the next. The integrator
(or low-pass filter) acts to smooth out ripples in % with frequency components greater than
I /t . It can be shown that the remaining error is [4]

A,Tr,t : ru Lo-'  
JBr

LT6 : (fu + fo)Lf ,

where AG is the rms change in the system gain, G.

(13.44)

This result shows that if a longer measurement time, r, can be tolerated, the error due to
noise fluctuation can be reduced to a negligible value.

A more serious error is due to random variations in the system gain, G. Such variations
generally occur in the RF amplifier, mixer, or IF amplifier, over a period of one second or
longer. So if the system is calibrated with a certain value of G, which changes by the time
a measurement is made, an effor will occur, as given in reference [4] as

(13.4s)

It will be useful to consider some typical numbers at this time. For example, a 10 GHz
total power radiometer may have a baadwidth of 100 MHz, a receiver temperature of 7a :

500K,anintegratortimeconstantof z :0,01 s,andasystemgainvariation LG/G:0.01.
If the antenna temperature is 7r - 300 K, (13.44) gives the error due to noise fluctuations
as, AZ,,,r : 0.8 K, while (13.45) gives the error due to gain variations as AT6 : 8 K. These
results, which are based on reasonably realistic data, show that gain variation is the most
detrimental factor affecting the accuracy of the total power radiometer.

The Dicke Radiometer

We have seen that the dominant factor affecting the accuracy of the total power radiometer is
the variation of gain of the overall system. Since such gain variations have a relatively long
time constant (> I second), it is conceptually possible to eliminate this error by repeatedly
calibrating the radiometer at rapid rate. This is the principle behind the operation of the
Dicke null-balancing radiometer.

A system diagram is shown in Figure 13.24.The superheterodyne receiver is identical
to the total power radiometer, but the input is periodically switched between the antenna
and a variable power noise source; this switch is called the Dicke switch. The output of the
square-law detector drives a synchronous demodulator, which consists of a switch and a
difference circuit. The demodulator switch operates in synchronism with the Dicke switch,
so that the output of the subtractor is proportional to the difference between the noise powers
from the antenna, 76, and the reference noise source, Zpsp. The output of the subffactor is
then used as an error signal to a feedback control circuit, which controls the power level of
the reference noise source so that V, approaches zero. In this balanced state, Zr : Znsn, and
T6 can be determined from the control voltage, V.. The square-wave sampling frequency,

/,, is chosen to be much faster than the drift time of the system gain, so that this effect is
virtually eliminated. Typical sampling frequencies range from 10 to 1000 Hz.

A typical radiometer would measure the brightness temperature ZB over a range of
about 50-300 K; this then implies that the reference noise source would have to cover this
same range, which is difficult to do in practice. Thus, there are several variations on the
above design, differing essentially in the way that the reference noise power is controlled or
added to the system. One possible method is to use a constant ZnEr which is somewhat hotter



670 Chapter 13: Introduction to Microwave Systems

Variable
power

noise source

2""" I L

r ' lr

A
I T

l , B
Observed scene

FIGURE 13.24 Balanced Dicke radiometer block diagram.

13.5

than the maximum Z6 to be measured. The amount of reference noise power delivered to
the system is then controlled by varying the pulse width of the sampling waveform. Another
approach is to use a constant reference noise power, and vary the gain of the IF stage during
the reference sample time to achieve a null output. Other possibilities, including alternatives
to the Dicke radiometer, are discussed in the literature [4].

MICROWAVE PROPAGATION

In free-space electromagnetic waves propagate in straight lines without attenuation or other
adverse effects. Free-space, however, is an idealization that is only approximated when
microwave energy propagates through the atmosphere or in the presence of the earth. In
practice the performance of a communication, radar, or radiometry system may be seriously
affected by propagation effects such as reflection, refraction, attenuation, or diffraction.
Below we discuss some specific propagation phenomenon that can influence the operation
of microwave systems. It is important to realize that propagation effects generally cannot
be quantified in any exact or rigorous sense, but can only be described in terms of their
statistics.

Atmospheric Effects

The relative permittivity of the atmosphere is close to unity, but is actually a function of
air pressure, temperature, and humidity. An empirical result which is useful at microwave
frequencies is given by [5]

{r3.46)

where P is the barometric pressure in millibars, I is the temperature in kelvin, and V is the
water vapor pressure in millibars. This result shows that permittivity generally decreases
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FIGURE 13.25 Refraction of radio waves by the atmosphere.

(approaches unity) as altitude increasps, since pressure and humidity decrease with height
faster than does temperature. This change in permittivity with altitude causes radio waves
to bend toward the earth, as depicted in Figure 13.25. Such refraction ofradio waves can
sometimes be useful, since it may extend the range of radar and communication systems
beyond the limit imposed by the presence of the earth's horizon.

If an antenna is at a height, h, above the earth, simple geometry gives the line-of-sight
distance to the horizon as

d : JTRh, (r3.47)

where R is the radius of the earth. From Figure 13.25 we see that the effect of refraction
on range can be accounted for by using an effective earth radius kR, where k > 1. A value
commonly used [5] is ft : 4l3,butthis is only an average value which changes with weather
conditions. In a radar system, refraction effects can lead to errors when determining the
elevation of a target close to the horizon.

Weather conditions can sometimes produce a temperature inversion, where the tem-
perature increases with altitude. Equation (13.46) then shows that the atmospheric per-
mittivity will decrease much faster than normal, with increasing altitude. This condition
can sometimes lead to ducting (also called trapping, or anomalous propagation), where
a radio wave can propagate long distances parallel to the earth's surface, via the duct
created by the layer of air along the temperature inversion. The situation is very similar to
propagation in a dielectric waveguide. Such ducts can range in height from 50-500 feet,
and may be near the earth's surface, or higher in altitude.

Another atmospheric effect is attenuation, caused primarily by the absorption of mi-
crowave energy by water vapor and molecular oxygen. Maximum absorption occurs when
the frequency coincides with one of the molecular resonances of water or oxygen, thus
atmospheric attenuation has distinct peaks at these frequencies. Figure 13.26 shows the
atmospheric attenuation vs. frequency. At frequencies below 10 GHz the atmosphere has
very little effect on the strength of a signal. At22.2 and 183.3 GHz, resonance peaks occur
due to water vapor resonances, while resonances ofmolecular oxygen cause peaks at 60 and
L2O GHz. Thus there are "windows" in the millimeter wave band near 35, 94, and 135 GHz
where radar and communication systems can operate with minimum loss. Precipitation
such as rain, snow, or fog will increase the attenuation, especially at higher frequencies.
The effect of atmospheric attenuation can be included in system design when using the Friis
transmission equation or the radar equation.

In some instances the system frequency may be chosen at a point of maximum atmo-
spheric attenuation. Remote sensing of the atmosphere (temperature, water vapor, rain rate)
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FIGURE 13.26 Average atmospheric attenuation versus frequency (horizontal polarization).

is often done with radiometers operating near 20 or 55 GHz, to maximize the sensing of
atmospheric conditions (see Figure 13.22). Another interesting example is spacecraft-to-
spacecraft communication at 60 GHz. This millimeter wave frequency has the advantages
of a large bandwidth and small antennas with high gains and, since the atmosphere is very
lossy at this frequency, the possibilities of interference, jamming, and eavesdropping from
earth are greatly reduced.

Ground Effects

The most obvious effect of the presence of the ground on microwave propagation is reflection
from the earth's surface (land or sea). As shown in Figure 13.27, a radar target (or receiver
antenna) may be illuminated by both a direct wave from the transmitter and a wave reflected
from the ground. The reflected wave is generally smaller in amplitude than the direct
wave, because of the larger distance it travels, the fact that it usually radiates from the
sidelobe region of the transmit antenna, and because the ground is not a perfect reflector.
Nevertheless, the received signal at the target or receiver will be the vector sum of the two
wave components and, depending on the relative phases of the two waves, may be greater or
less than the direct wave alone. Because the distances involved are usually very large in terms
of the electrical wavelength, even a small variation in the permittivity of the atmosphere
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FIGURE 13.27 Direct and reflected waves over the earth's surface.
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can calse fading (long term fluctuations) or scintillation (short term fluctuations) in the
signal strength. These effects can also be caused by reflections from inhomogeneities in the
atmosphere.

In communication systems such fading can sometimes be reduced by making use
of the fact that the fading of two communication channels having different frequencies,
polarizations, or physical locations is essentially independent. Thus a communication link
can reduce fading by combining the outputs of two (or more) such channels; this is called
a diversity system.

Another ground effect is diffroction, whereby a radio wave scataers energy in the vicin-
ity of the line-of-sight boundary at the horizon, thus giving a range slightly beyond the
horizon. This effect is usually very small at microwave frequencies. Of course, when
obstacles such as hills, mountains, or buildings are in the path of propagation, diffraction
effects can be stronger.

In a radar system, unwanted reflections often occur from terrain, vegetation, trees,
buildings, and the surface of the sea. Such clutter echoes generally degrade or mask the
return of a ffue target, or show up as a false target, in the context of a surveillance or tracking
radar. In mapping or remote sensing applications such clutter refurns may actually constitute
the desired signal.

Plasma Effects

Aplasma is a gas consisting of ionized particles. The ionosphere consists of spherical layers
of atmosphere with particles which have been ionized by solar radiation, and thus forms a
plasma region. A very dense plasma is formed on a spacecraft as it reenters the atmosphere,
due to the high temperatures produced by friction. Plasmas are also produced by lightning,
meteor showers, and nuclear explosions.

A plasma is characterized by the number of ions per unit volume; depending on this
density and the frequency, a wave might be reflected, absorbed, or transmitted by the plasma
medium. An effective permittivity can be defined for a uniform plasma region as

where @ p :

(13.48)

(r3.49)

is the plasma frequency. In (13.49), q is the charge of the electron,m is the mass of the
elecffon, and N is the number of ionized particles per unit volume. By studying the solution
of Maxwell's equations for plane wave propagation in such a medium, it can be shown that
wave propagation through a plasma is only possible for a; > ao. Lower frequency waves
will be totally reflected. If a magnetic field is present, the plasma becomes anisotropic,
and the analysis is more complicated. The earth's magnetic field may be strong enough to
produce such an anisotropy in some cases.

The ionosphere consists ofseveral different layers with varying ion densities; in order of
increasing ion density, these layers are referred to as D , E , F1, and F2.The characterisfics of
these layers depends on seasonal weather and solar cycles, but the average plasma frequency
is about 8 MHz. Thus, signals at frequencies less than 8 MHz (e.g., short-wave radio) can
reflect off the ionosphere to travel distances well beyond the horizon. Higher frequency
signals, however, will pass through the ionosphere.

A similar effect occurs with a spacecraft entering the atmosphere. The high velocity of
the spacecraft causes a very dense plasma to form around the vehicle. The electron density

€ e : € o ( t - * )

Nq2
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is high enough so that, from (13.49), the plasma frequency is very high, thus inhibiting
communication with the spacecraft until its velocity has decreased. Besides this blackout
effect, the plasma layer may also cause a large impedance mismatch between the antenna
and its feed line.

OTHER APPLICATIONS AND TOPICS

Microwave Heating

To the average consumer, the term "microwave" connotes a microwave oven, which is
used in many households for heating food; industrial and medical applications also exist
for microwave heating. As shown in Figure 13.28, a microwave oven is a relatively simple
system consisting of a high-power source, a waveguide feed, and the oven cavity. The source
is generally a magnetron tube operating at 2.45 GHz, although 91 5 MHz is sometimes used
when greater penetration is desired. Power output is usually between 500 and 1500 W.
The oven cavity has metallic walls, and is electrically large. To reduce the effect of uneven
heating caused by standing waves in the oven, a "mode stirrer," which is just a metallic fan
blade, is used to perturb the field distribution inside the oven. The food is also rotated with
a motorized platter.

In a conventional oven a gas or charcoal fireo or aa electric heating element, generates
heat outside of the material to be heated. The outside of the material is heated by convection,
and the inside of the material by conduction. In microwave heating, by contrast, the inside
of the material is heated first. The process through which this occurs primarily involves the
conduction losses in materials with large loss tangents [6], [7]. An interesting fact is that
the loss tangents of many foods decrease with increasing temperature, so that microwave
heating is to some extent self-regulating. The result is that microwave cooking generally
gives faster and more uniform heating of food, as compared with conventional cooking.
The efficiency of a microwave oven, when defined as the ratio of power converted to heat
(in the food) to the power supplied to the oven, is generally less than 5OVo; this is usually
greater than the cooking efficiency of a conventional oven, however.

The most critical issue in the design of a microwave oven is safety. Since a very high
power source is used, leakage levels must be very small to avoid exposing the user to harm-
ful radiation. Thus the magnetron, feed waveguide, and oven cavity must all be carefully
shielded. The door of the oven requires particular attention; besides close mechanical tol-
erances, the joint around the door usually employs RF absorbing material and a ),l4 choke
flange to reduce leakage to an acceptable level.

Magnetron

FIGURE 13.28 A microwave oven.



13.6 Other Applications and Topics 675

Power Transfer

Electrical power transmission lines are a very efficient and convenient way to ffansfer energy
from one point to another, as they have relatively low loss and initial costs, and can be easily
routed. Therc are applications, however, where it is inconvenient or impossible to use such
power lines. In such cases it is conceivable that electrical power can be transmitted without
wires by a well-focused microwave beam [8].

One example is the solar satellite power station, where it has been proposed that elec-
tricity be generated in space by a large orbiting array of solar cells, and transmitted to a
receiving station on earth by a microwave beam. We would thus be provided with a virtu-
ally inexhaustible source ofelectricity. Placing the solar arrays in space has the advantage
of power delivery unintemrpted by darkness, clouds, or precipitation, which are problems
encountered with earth-based solar alrays.

To be economically competitive with other sources, the solar power satellite station
would have to be very large. One proposal involves a solar array about 5 x 10 km in size,
feeding a I km diameter phased array antenna. The power output on earth would be on the
order of 5 GW. Such a project is extremely large in terms of cost and complexity. Also of
legitimate concern is the operational safety of such a scheme, both in terms of radiation
hazards associated with the system when it is operating as designed, as well as the risks
involved with a malfunction of the system. These considerations, as well as the political
and philosophical ramifications of such a large, centralized power system, have made the
future of the solar power satellite station doubtful.

Similar in concept, but on a much smaller scale, is the transmission of electrical power
from earth to a vehicle such as a small drone helicopter or airplane. The advantages are
that such an aircraft could run indefinitely, and very quietly, at least over a limited area.
Battlefield surveillance and weather prediction would be some possible applications. The
concept has been demonstrated with several projects involving small pilotless aircraft.

A very high power pulsed microwave source and a high-gain antenna can be used to
deliver an intense burst of energy to a target, and thus used as a weapon. The pulse may be
intense enough to do physical damage to the target, or it may act to overload and destroy
sensitive electronic systems.

Biological Effects and Safety

The proven dangers of exposure to microwave radiation are due to thermal effects. The body
absorbs RF and microwave energy and converts it to heat; as in the case of a microwave oven,
this heating occurs within the body, and may not be felt at low levels. Such heating is most
dangerous in the brain, the eye, the genitals, and the stomach organs. Excessive radiation can
lead to cataracts, sterility, or cancer. Thus it is important to determine a safe radiation level
standard, so that users of microwave equipment will not be exposed to harmful power levels.

The most recent U.S. safety standard for human exposure to electromagnetic fields is
given by IEEE Standard C95.1-1991. In the RF-microwave frequency range of 100 MHz
to 300 GHz, exposure limits are set on the power density (Wcm2) as a function of fre-
quency, as shown in Figure 13.29.The recommended safe power density limit is as low as
0.2 mW/cmz at the lower end of this frequency range, because fields penetrate the body
more deeply at lower frequencies. At frequencies above 15 GHz the power density limit
rises to 10 mWcm2, since most of the power absorption at such frequencies occurs near the
skin surface. By comparison, the sun radiates a power density of about 100 mWcm2 on a
clear day, but the effect ofthis radiation is much less severe than a corresponding level of
lower-frequency microwave radiation because the sun heats the outside of the body, with
much of the generated heat reabsorbed by the air, while microwave power heats from inside
the body. At frequencies below 100 MHz electric and magnetic fields interact with the body
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FIGURE 13.29 IEEE Standard C95.1,-1991recommended power density limits for human expo-
sure to RF and microwave electromasnetic fields.

differently than higher frequency electromagnetic fields, and so separate limits are given
for field components at these lower frequencies.

Other countries have different standards for microwave exposure limits, some of which
are lower than the U.S. limits. Some of these standards are a function of exposure time,
with lower power density limits for prolonged exposure. A separate standard applies to
microwave ovens in the United States: law requires that all ovens be tested to ensure that
the power level at 5 cm from any point on the oven does not exceed 1 mWcm2.

Most experts feel that the above limits represent safe levels, with a reasonable margin.
Some researchers, however, feel that health hazards may occur due to nonthermal effects
of long-term exposure to even low levels of microwave radiation.

EXAMPLE 13.7 POWER DENSITY IN THE VICINITY
OF A MICROWAVE RADIO LINK

A 6 GHz common-carrier microwave communications link uses a tower-mounted
antenna with a gain of 40 dB, and a transmitter power of 5 W. To evaluate the
radiation hazard of this system, calculate the power density at a distance of 20 m
from the antenna. Do this for a position in the main beam of the antenna, and for a
position in the sidelobe region of the antenna. Assume a worst-case sidelobe level
of  -10 dB.

Solution
The numerical gain of the antenna is

G _ Ia10/r0: 104.

Then from (13.23), the power density in the main beam of the antenna at a distance
o f R  : 2 0 m i s
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The worst-case power density in the sidelobe region would be 10 dB below this,
or 0.10 mWcm'.

Thus we see that the power density in the main beam at 20 m is below the
United States standard. The power density in the sidelobe region is well below this
limit. These power densities will diminish rapidly with increasing distance, due to
thellr?dependence.
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PROBLEMS

13.1 An antenna has a radiation pattem function given by Fe(O , Q) : A sin I sin @. Find the main beam
position, the 3 dB beamwidth, and the directivity (in dB) for this antenna.

13.2 A monopole antenna on a large ground plane has a far-field pattern function given by F€@,4) :

As inO, fo r0<0 <90 ' .Therad ia ted f ie ld iszero for90 '<0  <  180 ' .F ind thed i rec t iv i t y ( indB)
of this antenna.

13.3 A DBS reflector antenna operating at 12.4 GHz has a diameter of 18". If the aperture efflciency is
657a, find the directivity.

13.4 A reflector antenna used for a cellular base station backhaul radio link operates at 38 GHz, with a
gain of 39 dB, a radiation efficiency of 90Vo, and adrameter of 12" . (a) Find the aperture efficiency of
this antenna. (b) Find the half-power beamwidth, assuming the beamwidths are identical in the two
principal planes.

13.5 A high gain antenna array operating at2.4 GHz is pointed toward a region of the sky for which the
background can be assumed to be at a uniform temperature of 5 K. A noise temperature of 105 K is
measured for the antenna temperature. If the physical temperature of the antenna is 290 K, what is its
radiation efficiency?

13.6 Derive Equation (13.20) by treating the antenna and lossy line as a cascade of two networks whose
equivalent noise temperatures are given by (13.18) and (10.15).

13.7 Consider the replacement of a DBS dish antenna with a microstrip aray antenna. A rnicrostrip array
offers an aesthetically pleasing flat profile, but suffers from relatively high dissipative loss in its feed
network, which leads to a high noise temperature. If the background noise temperature is Tr : 50 K,
with an antenna gain of 33.5 dB and a receiver LNB noise figure of 1.1 dB, find the overall GIT for
the microstrip array antenna and the LNB, if the array has a total loss of 2.5 dB. Assume the antenna
is at a physical temperature of 290 K.

13.8 At a distance of 300 m from an antenna operating at 5.8 GHz, the radiated power density in the main
beam is measured to be 7.5 x 10-3 Wm2. If the input power to the antenna is known to be 85 W find
the gain of the antenna.
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13.9 A cellular base station is to be connected to its Mobile Telephone Switching Office (MTSO) located
5kmaway.Twopossibi l i t iesaretobeevaluated:1)aradiol inkoperatingat2SGHz,withG,:G,:
25 dB, and 2) a wirod link using coaxial line having an attenuation of 0.05 dB/m, with four 30 dB
repeater amplifiers along the line. If the minimum required received power level for both cases is the
same, which option will require the smallest transmit power?

13.10 The AMPS cellular telephone system operates with a mobile receiver frequency of 882 MHz. If the
base station transmits with an EIRP of 20 W, and the mobile receiver has an antenna with a gain of
I dBi and a noise temperature of 400 K, find the maximum operating range if the minimum SNR at
the output of the receiver is required to be 1 8 dB. The channel bandwidth is 30 kHz, and the receiver
noise figure is 8 dB. Assume the Friis formula applies to this idealized problem.

L3.11 Consider the GPS receiver system shown below. The guaranteed minimum Ll (1575 MHz) carrier
power received by an antenna on Earth having a gain of 0 dBi is S; : - 160 dBW. A GPS receiver is
usually specified as requiring a minimum carrier-to-noise ratio, relative to a I Hz bandwidth, of C/l/
(Hz). If thereceiverantennaactuallyhas agaanGa, andanoisetemperature ZA, deriveanexpression
for the maximum allowable amplifier noise figure, F, assuming an amplifier gain G, and a connecting
line loss, I. Evaluate this expression for ClN :32 dB-Hz, G e : 5 dB, Ta :300 K, G : 10 dB,
and L :25 dB.

s, l' +

13.12 A key premise in many science fiction stories is the idea that radio and TV signals from Earth can
travel through space and be received by listeners in another star system. Show that this is a fallacy by
calculating the maximum distance from Earth where a signal could be received with a signal-to-noise
ratio of 0 dB. Speciflcally, assume TV channel4, broadcastingat67 MHz, with a4 MHzbandwidth, a
transmitter power of 1000 W, transmit and receive antenna gains of 4 dB, a cosmic background noise
temperature of 4 K, and a perfectly noiseless receiver. How much would this distance decrease if an
SNR of 30 dB is required at the receiver? (30 dB is a typical value for good reception of an analog
video signal.) Relate these distances to the nearest planet in our solar system.

13.1.3 Derive the radar equation for the bistatic case, where the transmit and receive antennas have gains of
G, and G,, and are at distances .R, and R. from the target, respectively.

13.14 A pulse radar has a pulse repetition frequency f, : l/7,. Determine the maximum unambiguous
range of the radar. (Range ambiguity occurs when the round-trip time of a return pulse is greater than
the pulse repetition time, so it becomes unclear as to whether a given return pulse belongs to the last
transmitted pulse, or some earlier transmitted pulse.)

f3.15 A doppler radar operating at 12 GHz is intended to detect target velocities ranging from 1 m/sec to
20 m/sec. What is the required passband of the doppler filter?

L3.1.6 Apulseradaroperatesat2GHzandhasaper-pulsepoweroflkW. If i t istobeusedtodetectatarget
with o : 20 m2 at a range of 10 km, what should be the minimum isolation between the transmitter
and receiver, so that the leakage signal from the transmitter is at least 10 dB below the received signal?
Assume an antenna gain of 30 dB.

13.17 An antenna, having a gain G, is shorted at its terminals. What is the minimum monostatic radar cross
section in the direction of the main beam?

13.1E The atmosphere does not have a definite thickness, since it gradually thins with altitude, with a
consequent decrease in attenuation. But if we use a simplified "orange peel" model, and assume
that the atmosphere can be approximated by a uniform layer of fixed thickness, we can estimate the
background noise temperature seen through the atmosphere. Thus, let the thickness ofthe affnosphere
be 4000 m and find the maximum distance I to the edge of the atmosphere along the horizon, as
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shown in the figure below (the radius of the earth is 6400 km). Now assume an average atmospheric
attenuation of 0.005 dB/km, with a background noise temperature beyond the atmosphere of 4 K,
and flnd the noise temperature seen on earth by treating the cascade ofthe background noise with the
aftenuation of the atmosphere. Do this for an ideal antenna pointing toward the zenith, and toward the
horizon.

428 GHz radio link uses a tower-mounted reflector antenna with a gain of 32 dB, and a transmifter
power of 5 W. (a) Find the minimum distance within the main beam of the antenna for which the
U.S-recommended safe power density Iimit of 10 mWcm2 is not exceeded. (b) How does this distance
change for a position within the sidelobe region of the antenna, if we assume a worst-case sidelobe
level of 10 dB below the main beam)? (c) Are these distances in the far-field region of the antenna?
(Assume a circular reflector, with an aperture efficiency of 60Vo.)

On a clear day, with the sun directly overhead, the received power density from sunlight is about
1300 Wm2. If we make the simplifying assumption that this power is transmitted via a single-
frequency plane wave, find the resulting amplitude of the incident electric and magnetic fields.
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Coordi nate Transformations
Re c tan gular t o cy lindric al :

Rectangular to spherical:
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These tables can be used to transform unit vectors as well as vector components; e.9.,
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Vector Differential Operators

Re ctan gular coordinate s :
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ox'  oy '  dz '

yzA: tvzA, + ivzAy + zv2A,

Cy lindric al c o o rdinat e s :

v  r  :  PY +6 !Y  +2Y
o p  p o Q  o z

V . .4 :  ! ! t oo " l+ ! r y+oA '
p A p ' '  " '  p A 0  0 z

v  x  A  - , ^  /  |  3A ,  3Ao \ , , (W_  q&)  a2 ! l a rp -eo>  _Y1' \ t r o  - E ) * t \ *  -  
a p ) * ' o l  a o  

-  
w )

y r f : l a l a / \  r a 2 f  
+ ( 4

i ap\P ap ) 
* p, a6, ' 6r,

y 2 A : v ( v . , , 4 ) - V x V x . 4

Spherical c oordinat e s :

v f  : ?Y*o !Y*  !  u f
Er r 00 r sin? 06

-  1  0 . ,  I  a .  I  a A o
v . A  :  -  ^  ( r ' A , ) *  -  _ ( s i n 9 A e ) + - -

rz 'dr ' 
r sin9 'd0 ' r sin9 0Q

-  i  l a . .  a A l l  e r  I  a A ,v x A : 
, r ine 166{eo 

sind) - 
u; J* ; l" i"o ao 

-

6 r  a  _ u o , l+ _ 
l * { ree) .  ae J

Y' f : :! (,'y) * -l " 3 (,rr9) * -:---=(4- r  
r 2 0 r \ '  0 r )  r z s i n d S 0 \  a 0 /  , z s i n z e A O z

Y z A : V V . A - V x V x , 4

a l
*{rea))
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Vector identities:

A. B : lAllBlcosg, where g is the angle between,4 and B (B.1)

1A x 81: lAllBlsin0, where d is the anglebetween A and B. @.2)
A ' B  x e  :  A x  n . e  : e  x  A . B  ( 8 . 3 )

A x B : - B x A  @ . 4 )
A x @  x  C ; : 6 . q 8  - t A . B l e  ( B . s )

Y( f ) :gv f+ fvg  (8 .6 )
v  ' ( f  A ) :  A ' v  f  +  f v  '  A  ( B . 7 )

V . ( A  x  E ; : 1 v  x  A y . B  - t v  x  r ) . , 4  ( B . 8 )
v x ( / ,4) :  (v, f )  x A+ fY x A G.9)

v x ( , 4 x 8 ) : A v . a - 8 v . , 4 + t B . v 1 , 4 - t , { . v ) E  ( 8 . 1 0 )
v . ( 4 . a 7 : 1 A . v ) E + ( B . v ) , { + A  x 1 v  x  B t * B  x ( v  x  A )  ( B . l l )
V . V  x  A : 0  @ . 1 2 )
V x ( V / ) : Q  ( B . 1 3 )

V x V  x A :  V V . I  - v z A  G . 1 4 )

Note: the termYz A has meaning only for rectangular components of A.

I, 
uar:f t.as (divergencetheorem)

y s

f _ f _

J 
{V x Al.ds : 

9 
A.dL (Stokes' theorem)

S C

APPENDX C BEssEL FUNcnoNs
Bessel functions are solutions to the differential equation,

;hQ#)*(n ' -#) , :o

fr ?_o ml(n lm)liYn(x ) :  :
T , ) t n \  ) * ;  

k  m l

where /<2 is real and n is an integer. The two independent solutions to this equation are
called ordinary Bessel functions of the first and second kind, written as J"(kp) and Y"(kp),
and so the general solution to (C.1) is

f (p) : AJ,(kp) * BY"(kp) (c.2)

where A and B are arbitrary constants to be determined from boundary conditions.
These functions can be written in series form as

i)"-^ - *

(B.1s)

(B.16)

(c.1)

(c.3)

(-1)m(x //)n+zm

"  ( ' *  ) * l *  +  !  + t + : +  +  h ) (c.4)
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FIGURE C.l Bessel functions of the first and second kind.

where y :0.5772. . . is Euler's constant, and x : /cp. Note that Yn becomes infinite at
.r : 0, due to the ln term. From these series expressions, small argument formulas can be
obtained as

I  r x t n
J , ( x ) - ; l ; l

n !  \ z /

a

Ys@) - a1-*

Y n k t - ] u - r ) ! ( : ) '  n > o
7 (  \ 2 /

Large argument formulas can be derived as

I 2 / 7T nlt\
J , @ ) -  1 / - c o s ( x - - - - -  |"  

\ n x  r  4  2 )

T2  /  7 r  n r \Y , ( x ) -  y ' - ' t ( r - ;  - ; )

Figure C.1 shows graphs of a few of the lowest order Bessel functions of each type.
Recurrence formulas relate Bessel functions of different orders:

2n
Z,+r@):  -Zn(x)  -  Znt@)

x
. - n

Z 'nG) :  
;Z , t x )  

*  Zn - r@)

(c.5)

(c.6)

(c.7)

(c.8)

(c.e)

(c.10)

(c .11)



where Zn : J, or In. The following integral relations involving Bessel functions are useful:

Z',(x) : t*r,r*, - Z,+(x)

z'*(x) : 
)ft,-r{*) 

- zn+r@)l

fo. zk<r,*>*o*:tlr:rno* ('- h) t^ro7
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(c.12)

(c.13)

(c.14)

8.6537
10.t743
11.6198

f r -  x

J0 
Z"(kx)2,( tx)x dx :  

kz _ plkzn(Lx)2,a1(kx) 
-  ( .Zn(kx\Zn+t(x) l  (C.15)

[ ' " l t  
n 2  I  ^ 2

Jo ,  
n '{r)  + - t l t - l ) r  ax :  

!Lt) ' (pn^\ 
(c.16)

rp.*r -2 .  
= g4(r_ 

,  , l_-\J:e,n^\ (c.r7)
J,  l t ) 'ur+_t i tnlxax, 2 \  (p,^)zl

wherc Jn(pn) : 0, and li@',*): 0. The zeros of J"(x) and Ji@) are on the following
two pages.

Zeros of Bessel Functions of First Kind: "I,(r) : 0 for 0 1 x 112

n

0
I

z

3

4

5
6
7

2.4048

3.8317
5.1356
6.3801
7.5883
8.7714

9.936r
l1.0863

5.5200
7.01.55
8.4172
9.7670

11.0647

Extrema of Bessel
f o r 0 ( x 1 1 2

Functions of First Kindz d J,@) / dx : 0

0

I
2
J

4

5
6
7
8
9

10

3.8317
t.8412
3.0542
4.2012

5.3r75
6.4156
7.5013

8.5778
9.6474

10.7114
11.7709

7.0156

5.3314
6.7061
8.0152
9.2824

10.5199
tt.7349

10.1735

8.5363
9.9695

tr.3459



APPENDIX D OTHER MATHEMATIcAL RESULTS

Useful Integrals

fo" "ort ! ! !4*:  fo '  , inrTo-: i .

Taylor Series

f' mTtx nrx , fo nTTX nntx
I  c o s - c o s - d x :  I  s i n - s i n - d x - 0 .  f o r m l n  ( D . 2 )

J o a a J o a a

fo mTTx nrx ,
I cos - sin -dx - 0 (D.3)

Jo a a

fo"  
, in 'ede : :

for lxl < 1

for lxl < 1

forx > 0

fo r  n>  1  (D .1 )

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

(D.e)

(D.10)

(D.11)

f (x)  : l ' (xo)+ @ - rosl l  *  "  =:"  ( t " l  +. . ." 
dx lr :rn 

'  
2t dr2 lr=rn 

'

. x 2 x 3
e ^ : l  * . r - F - + - + . . .

2 !  3 l

I

l - x
I  * x  *  , 2  +  * 3  + . . . ,

x x Z, * r - T + . . . ,\ n + x :

APPENDIX E PHYSICAL CONSTANTS

Permittivity of free-space - €0 - 8.854 x 10-12 F/m
Permeability of free-space : F0:4n x lO-7 Wm
Impedance of free-space : 40 : 316.7 A
Velocity of light in free-space : c : 2.998 x 108 m/s
Charge of electron : q :1.602 x 10-1e C
Mass of electron = m : 9.IOi x 10-31 kg
Boltzmann's constant : ft : 1.380 x 10-23 J/'K
Planck's constant : h :6.626 x 10-34 J-sec
Gyromagnetic ratio : y : 1.759 x 1011 C/I(g (for g :21
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APPENDIX F coNDucrvrnEs FoR soME MATERTALS

Material conductivity S/m (20'c) Material Conductivity S/m (20"C)

Aluminum

Brass

Bronze

Chromium

Copper

Distilled water

Germanium

Gold

Graphite

Iron

Mercury

Lead

3.816 x 107

2.564 x 101
1.00 x 107

3.846 x 107

5.813 x 107
2 x l}-a

2.2 x 106

4.098 x 107
7.0 x lff
1.03 x 107
1.04 x 106
4.56 x 106

Nichrome

Nickel

Platinum

Sea water

Silicon

Silver

Steel (silicon)

Steel (stainless)

Solder

Tungsten

Zinc

1.0 x 106

1.449 x 107
9.52 x 106
3-5
4.4 x l}-a
6.173 x 107
2 x 1 0 6
1.1 x 106
7.0 x 106
L.825 x 101
1.67 x lO7

APPENDIX G DIELECTRIC CONSTANTS AND LOSS TANGENTS
FOR SOME MATERIALS

Material Frequency tan 6 (25'C)

Alumina (99.57o)

Barium tetratitanate

Beeswax

Beryllia

Ceramic (A-35)

Fused quartz

Gallium arsenide

Glass (pyrex)

Glazed ceramic

Lucite

Nylon (610)

Parafin

Plexiglass

Polyethylene

Polystyrene

Porcelain (dry process)

Rexolite (1422)

Silicon

Styrofoam (103.7)

Teflon

Titania (D-100)

Vaseline

Water (distilled)

10 GHz

6GHz
10 GHz

10 GHz
3GHz

l0GHz
10 GHz
3GHz

10 GHz
10 GHz

3GHz
10 GHz
3GHz

10 GHz
TOGHz

100 MHz
3G}fz

10 GHz
3GHz

10 GHz
6GHz

10 GHz
3GHz

9.5-10.
37 t 5Vo
2.35

6.4
5.60
3.78
13.
4.82
7.2
2.56
2.84
) ) a

2.60
2.25
a <A

5.U
2.54
Il.9
1.03
2.08
96 *.57o
2.16
76.7

0.0003
0.0005

0.005
0.0003
0.0041
0.0001
0.006
0.0054
0.008
0.005

0.012
0.0002
0.0057

0.0004
0.00033
0.0078
0.00048
0.004
0.0001

0.0004
0.001
0.001
0.157
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APPENDIX H PROPERTIES OF SOME MICROWAVE FERRTTE MATERIALS

Material
Trans-Tech

Number
4tt Ms

G
AH
Oe

l c

.Ctan,€r

4tr Mr
G

Magnesium ferrite
Magnesium ferrite
Magnesium ferrite
Nickel ferrite
Nickel ferrite
Nickel ferrite
Lithium ferrite
Lithium ferrite
Yurium gamet

Aluminum garnet

TTl-105
TT1-390
TT1-3000
TT2-101
TT2.T13
TT2-t25
TT73-1700
TT73-22W
G-113
G-610

r750
2150
3000
3000
500

2t00
1700
2200
1780
680

225
540
190
3s0
150
460

<400
<450

40

12.2
12.7
t2.9
t2.8
9.0

t2.6
16.1
15.8
15.0
14.5

0.00025
0.00025
0.0005
0.0025
0.0008
0.001
0.0025
0.0025
0.0002
0.0002

1220
1288
2000
1853
140

1426
1 139
1474
1277
5 1 5

225
320
240
585
120
560
460
520
280
185

STANDARD RECTANGULAR WAVEGUIDE DATA

Band"

Recommended
Frequency

Range (GHz)

TElsCutoff
Frequency

(GHz)

EIA
Designation
wR-xx

Inside
Dimensions
Inches (cm)

Outside
Dimensions
lnches (cm)

S

H(G)

C (J)

w(H)

X

Ku (P)

K

Ka (R)

a
U

E

w

F

D

G

1.12-1.70

1.70-2.60

2.60-3.95

3.95-5.85

5.85-8.20

7.05-10.0

8.20-12.4

12.4-t8.0

18.0-26.5

26.540.0

33.0-50.5

40.M0.0

50.0-75.0

60.0-90.0

75.0-110.0

90.0-140.0

110.0-170.0

t40.0-220.0

0.908

1.372

2.078

3.152

4.301

5.259

6.557

9.486

14.o47

21.081

26.342

3r.357

39.863

48.350

59.010

73.840

90.854

1 15.750

wR-650

wR-430

wR-284

wR-187

wR-137

wR-112

wR-90

wR-62

wR-42

wR-28

wR-22

wR-19

wR-15

wR-12

wR-10

wR-8

wR-6

wR-5

6.500 x 3.250
(16.51 x 8.255)
4.3O0 x 2.150

(10.922 x s.46r)
2.840 x 1.340

(7.2r4 x 3.404)
1.872 x 0.872

(4.755 x 2.215)
1.372 x O.622

(3.485 x 1.580)
1.122 x O.497

(2.850 x 1.262)
0.900 x 0.400

(2.286 x r.016)
0.622 x 0.311

(1.580 x 0.790)
0.420 x 0.170
(1.07 x 0.43)
0.280 x 0.140

(0.711 x 0.356)
0.224 x 0.112
(0.57 x 0.28)
0.188 x 0.094
(0.48 x 0.24)
0.148 x 0.074
(0.38 x 0.19)
0.122 x 0.061
(0.31 x 0.015)
0.100 x 0.050

(0.254 x 0.127)
0.080 x 0.040

(0.203 x 0.102)
0.065 x 0.0325
(0.170 x 0.083)
0.051 x 0.0255

(0.130 x 0.0648)

6.660 x 3.410
(16.916 x 8.661)
4.460 x 2.310

(11.328 x 5.867)
3.000 x 1.500

(7.620 x 3.810)
2.000 x 1.000

(5.080 x 2.540)
1.500 x 0.750

(3.810 x 1.905)
1.250 x 0.625

(3.r75 x 1.587)
1.000 x 0.500

(2.540 x 1.270)
0.702 x 0.391

(1.783 x 0.993)
0.500 x 0.250
(1.27 x 0.635)
0.360 x 0.220

(0.914 x 0.559)
0.304 x 0.192

(0.772 x 0.488)
0.268 x 0.174

(0.681 x 0.442)
0.228 x 0.154

(0.579 x 0.391)
O.202 x 0.141

(0.513 x 0.356)
0.180 x 0.130

(0.458 x 0.330)
0.160 x 0.120

(0.406 x 0.305)
0.145 x 0.1125

(0.368 x 0.2858)
0.131 x 0.1055
(0.333 x.2680)

* Letters in parentheses denote alternative desisnations.
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Answers to Selected Problems

1.4 (a) 4 :236 Q, (b) u,  : 106 m./sec, (c) Ad : Il4
1.10 (b) t  :0.017 mm
1. 1 1 (a) Pi : 46.0 W lmz, P, : 0.595 Wm2, (b) 45.6 Wm2

2.1 (a) f  :2.4 GHz, (b) )"  :0.0782 m, (c) e,  :2.55, (d) 1 :  I .2l-80.32
2.6 a :0.38 dB/m
2 . 8  Z i n : 2 O 3 .  -  i 5 . 2 I
2.9 Zo:66.7 Q or 150.0 Q

2.I l  ( .  :2.147 cm, I  :3.324 cm
2.13 Zi" :  19.0 -  i20.6 Q, fr  -  0.62183'
2.15 PL - 0.681 W
2.17 Pin": 0.250 W, Pr"t: 0.010 W, P',onr: 0.240 W
2.I9 Zi"  :24.5 + j20.3 {2,!^n:0.325 L, [^*:  0.075 ),
2.24 ZL :99 -  j46sJ
2.30 P,: 0.600 W, P1,,, : 0.0631 W, Pz : 0.1706 W

3.4 a7 :6.7I dB/m
3 . 5  l -  1 0 . 3 c m
3.8 f, - 5.06 GHz

3.13 f,(TEt|') :7.245 GHz, f,(TEor) : 15.080 GHz
3.15 k"a  -  3 . I2
3.19 W :0.147 cm, .1.8 :6.74 cm
3.20 W :0.142 cm, .1., : 5.656 cm
3.2I !. : 2.0754 cm, Zin : 0.27 - jI2.82 A
3.27 uo :2.37 x 108 m,/sec, ug : 1.83 x 108 m/sec

4.9 vf : r4.1t45",vr : t4.tt-45., z:]) : s0t-90"
4.16 (d) IL :8.0 dB, delay = 60", (e) f : 0.19190'
4.11 IL:6.7 dB, delay -  105'
4.19 ht - Zb. : 2.24 + j52.2 Q, Zn : Zzt : j44.8 Q
4.24 VL: l l -90'
4 . 3 1  A : 0 . 0 8 2 c m

5 . 1  ( a )  b : 0 . 1 0 7 , x : I . 7 8  o r  b :  - 0 . 1 4 7 , x :  - 1 . 7 8
5.3 d :0.227&,I - 0.377$. or d :0.4059,1., .(. :0.122$"
5.6 d : 0.2917 )", | : 0.36$, or d : 0.4583i., l, : 0.136)"
5.9 (.r :0.086),, lz : 0.198L or (.1 : 0.37il,, tz : 0.375)"

690
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5.I4 error :4Vo
5.17  Zr  -  l . lO67Zo,  Zz :  L3554Zo
5.22 Z t  :1 .09520,  Zz :  I .3632o
5.25 RL < 6.4 dB

6.1 fo : 355.9 MHz, Q : 17.9, Qr : I2.4
6 . 5  Q : 1 3 9
6.9 fm : 4.802 GHz, Qs1 : 7,251

6.14 a :2.107 cm, d :2.479 cm, Q :  I ,692
6.18  /o  -7 . l lGHz
6.21 (c) "fo : 93.8 GHz, Q, :92,500

7.2  RL :26  dB,  C :20  dB,  D -  6  dB,  1  :26  dB
7.7 change : 1.2 dB

7.12 s : 5.28 fittn, re :3.77 mm
7.18 s  :0 .24  mm,  u  :2 . Imm
7.21 s : 1.15 rnrn, r, : I.92 rnrn, l. : 6.32 mm
7.32 Vl - Vl : Vo :0, Vl : Vl : - j0.707

8.1  V(z :  ) , /4 ) :  21 .8  V
8.7 R :  2.66,C :  0.685, L :  I .822
8 . 8  N : 5
8.9 Lr : Ls : 2.28 nH, Cz : Cq : 4. 18 PF , Lz : 1.75 nH

8.11 attenuation: 1ldB
8.17 P{4 - Fls - 29.3", Bt2: 0l+ - 29.4', Bt4 : 43.7"
8.19 attenuation: 30 dB
8 . 2 3  N  : 3

9.1 (b) tt. :0.849tt0, rc : -O.540tto
9.4 f, - 3.64GHz
9.6  L  :1 .403 cm
9.8 229. Oe < FIs < 950. Oe

9.12 (a) Ho :2204 Oe, (b) Ho :2857 Oe
9.15 L6 :  180o
9 . I 7  L : 4 4 . 5  c m
9 . 1 8  L : 9 . 2 c m

1 0 . 1  F : 5 . 0 d B
10.5 DR(: 75 dB
10.6 Fror: 4.3 dB
10.9 (a) F : 6dB, (b) F : 1.76 dB,(c) F : 3 dB

10.13 D& :86.7 dB, DRl : 60.5 dB
10.15  ra t io :6dB
10.16 P3 - 20.8 dBm
10.19 ON: IL :0.044 dB, OFF: 1L : 18.6 dB

11.1 (b) Ge :0.5, Gr :0.444, G - 0.457
1I.3 CL :2.56128',  RL :  L37, K :  I .35

r1.1r -0.47 dB < G1 - Gru < 0.5 dB
Ll. lg Nopt :6.33

12.3  Qr6" :3 .9
12.4 L: 9.4 rnll, Q :20,000,0.25Vo

12.10 (a) L : -181 dBc/Hz, (b) L : -I53 dBctHz



Index

A
ABCD parameters, 1 83-1 86

table for basic ci,rcuits, 185
table for conversions, 187

Admittance inverter, 4ll-412
Admittance matix, 17 0 *17 4

table for conversions, 187
AM modulation,5l2
Ampere's law, 7
Amplifier design, 542-57 4

balanced, 562-565
distributed, 565*570
low-noise, 557-56L
maximum gain, 548-553
maximum stable gain, 551
power,570-574
specified gain, 553-557
stability, 542-548

Anisotropic media, 10-1 I
Antenna

aperhre efficiency, 640
directivity, 638
effective aperture area, 640-647
ga;ln,639440
Gn,646
noise temperatur e, 643444
pattern,637438
radiation efficiency, 639
types, 634-635

Aperture coupling, 209 -21 5,
296-298

Aperture efficiency, 640
Attenuation

atmospheric, 671-672
transmission line, 79-86

Attenuation constant for
circular waveguide, 121,

122-124

coaxial line, 81
dielectric loss, 97-98
microstrip lne, 145-146
parallel plate waveguide, 103,

104-105
plane wave in lossy dielectric, 16-19
rectangular waveguide, 111, 115
stripline, 139-l4O

Attenuator, 175-1.76
Available power gain, 537-539

B
Background noise temperature, 642
Balanced amplifi ers, 5 62-5 65
Bandpass filters

coupled line,416-426
coupled resonator, 427 -437

lumped element, 401-405
Bandstop filters

coupled resonat or, 427 -431

lumped element, 4Ol-404
BARITT diode,521-522
Bessel functions, 683-685

zeroes of, 119,122,685
Bethe hole coupler, 324-327
Binomial coeffl cients, 247
Binomial filter response, 390, 394-396
Binomial matching transformer,

246-250
Biological effects, 67 5 47 7
Bipolar transis tors, 522, 525 -526

Black body, 665-666
Bloch impedance, 374
Bode-Fano criterion, 261 -263

Boltzmann's constant, 489
Boundary conditions, I 1-14
Brewster angle, 36
Brightness temperature, 642-643

693



C
Cavity resonators

cylindrical cav ity, 282-287
dielectric resonator, 287 -29 |
rectangular cavity, 27 8-282

Cellular telephone systems, 655-656
Characteristic impedance, 5 1-52

coaxial line, 57
microstrip line, 145
parallel plate 1ine, 100
stripline, 139

Chebyshev
fl lter response, 390 -39 l, 394 -39 6
matchin g transformers, 250 --25 5
polynomials, 251-252

Chip capacitor, resistor, 227-228
Choke

bias,515, 524-525
f lange,117

Circular cavity (see Cavity resonators)
Circular polarizaton, 23-24, 447 -449
Circular waveguide, 1 17 -126

attenuation. 121. 122-lA
cutoff frequency, 120, 122-124
propagation constant, 120, 122, 124
table for, l'24

Circulator
ferrite junction, 47 8-482
general properties, 3 10, 47 6-477

Coaxial connectors, 130
Coaxial line

attenuation constant. 81. 83-84
characteristic impedance, 57
data for standard lines, 689
distributed line parameters, 54-55
field analysis, 55-57, 126-129
higher-order modes, 127 -129
power capacity, 156

Composite filters, 386-389
Compression point, 488, 502
Computer aided design (CAD), 197
Conductivity, 10

table for metals, 687
Conductor loss ,25-27
Conjugate matching, 7 8-:7 9, 548-553
Connectors. coaxial. 130
Constant gain circles, 553-557
Constant-k filters, 380-382, 387
Constant noise figure circles, 557-561
Conversion loss. mixer. 618
Coplanar waveguide, 155-156
Coupled lines, 337-341

characteristic impedance, 338-34 I
couplers, 341-349
ftlterc,416-426

Couplers (see Directional couplers)
Coupling

aperture, 209-215
coefficient,292
critical, 291-292
resonator. 291-298

Cross guide coupler, 361-362
Current

displacement, 7
electric, magnetic, 6, 8-9

Cutofffrequency
circular waveguide, 120, 122-124
parallelplate waveguide, 101, 104
rectangular waveguide, 108, 112

Cutoff wavelength, 101,'1"05, ll3, 124

D
DC block. 515.524-525
Decibel notation, 63-64
Demagaetization factor, 451-453
Detector, 509-513

sensitivity,512
Dicke radiometer, 669 -67 0
Dielectric constant, table, 687
Dielectric loaded waveguide, 115-1 16,

150
Dielectric loss, 25-26
Dielectric loss tangent, table, 687
Dielectric resonator oscillators,

590-594
Dielectric resonators, 287 -29 |
Dielectric strength for ail, 156-157
Dielectric waveguide, 155
Diode

BARITT,521_522
detectors, 509-513
Gunn.521. 609-6ll
IMPATT. 521.609-611
I-V curve, 510-51 I
ntxer,620-622
multipliers, 600-604
PIN,514-515
schouky,509-511
Varactor, 520-521

Directional couplers, 3ll-314
Bethe hole, 324-327
coupled line,34l-349
Latge,349-352
Moreno cross guide, 361-362
multihole waveguide, 327 -332
quadrature, 333-336
Riblet short slot, 362
ring hybrid, 352-357
Schwinger reversed phase, 362
tapered line, 357-360



Directivity
antenna, 638
coupler, 313-315

Discontinuitie s, 197 -204
microstrip, 199, 203-204
waveguide, 198

Dispersion, 81, 151
Distortionless line. 8l-82
Double sideband modulation, 627
Dynamic range, 487, 500-501, 505-507

E
Effective aperture uea, 640-64t
Effective isotropic radiated power (EIRP), 648
Effective permittivity, microstrip, 144
Efficiency

aperlwe,640
power added, 570
radiation, 639

Electric energy,24
Electric field, 6
Electric flux density, 6
Electric polarizability, 21 1
Electric potential, 94-95
Electric susceptibility, 10
Electric wall, 14
Electromagnetic spectrum, 2
Elliptic filter, 391
Emissivity,666
Energy, electric, magnetic, 24
Energy transmission, 675
E-plane T-junction, 315
Equal ripple filter response, 390-391,394-396
Equivalent voltages and currents, 162-166
Even-odd mode characteristic impedance,

338-341
Exponential tapered line, 257-258
Extraordinary wave, 459-460

F
Fabry-Perot resonator, 306
Far field, 636
Faraday rotation, 455-457
Faraday's law, 7
Ferrite devices

circulators, 478-482
gyrator, 475-476
isolators, 465-471
Ioaded waveguide, 460-465
phase shifters, 47 l-47 5

Ferrites,44l
loss in, 449-451
permeability tensor for, 446-447
plane wave propagation irr, 454-460
table of properties, 688
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Field effect transistors, 522-525
Filters

bandpass, 401-405, 420-437
bandstop, 401-404, 427 -431
composite, 386-389
constant-k. 380-382. 387
coupled \ne,416-426
elliptic, 391
high pass, 387, 400
high-Z,1ow-2,412-416
implementatio n, 405 - 412
linear phase, 391, 396-398
low pass, 380-389, 400-401
m-derived, 383-386, 387
scaling, 398-401
transformations, 40 I -405

Flanges, waveguide, 116 -l l7
Flow graph, 189-192
Frequency bands, 2, 655
Frequency multipliers, 599-608
Friis power transmission formula,

647-648

G
Gain (also see Power gain)

amplifier, 540-542
antenna, 639-640
compression, 501-502
two-port powe4537-542

Global Positioning System (GPS),
657-658

Group delay, 391
Group velocity, 15 1-154

for periodic structures, 376
for waveguide,153-154

Gn,646
Gunn diode. 521. 609-6ll
G)'rator 475-476
Gyromagnetic ratio ; 442
Gyrotropic medium (see Ferrites)

H
Helmholtz equations, l4-15
Hertz. H..4
High pass filters

constant-k. 382.387
m-derived,387
transformation to,400

High-Z, low-Z fi lters, 412-416
History of microwave engineering, 3-5
H-plane T-junction, 3 15
Hybrid junctions

coupled line, 341-349
quadrature, 333-336
ring (rat-race), 352-357
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Hybrid junctions (C ontinue d)
scattering matrix, 333
tapered coupled line, 357-360
waveguide magic-T. 361

I
Image frequency, 617 -618
Image impedance, 378-380
Image parameters, filter design using, 378-389
lmagetheory,42-M
IMPATT diode. 521. 609-61 1
Impedance

characteristic, 5 l-52
concept of,166-169
image,378-380
intrinsic, 16
wave,16,  17,95,96

Impedance lnverter, 411-412
Impedance matching, 221-223

Bode-Fano criterion, 261 -263
double stub, 235-240
L-section, 223-227
multisection transformer, 245-255
quarter wave transformer, 7 3-7 6, 240-243
single stub, 228-235
tapered line,255-261

Impedance matrix, l7 O-17 4
table for conversions, 187

Impedance transformers (see Impedance
matching)

Incremental inductance rule. Wheeler. 84-86
Insertion loss, 63
Insertion loss method for filter design,

389-398
Intermodulation distortion, 502-505
Inverters, admittance, impedance, 4ll-412
kis, waveguide, 198
Isolators

fi eld displacement, 469-47 |
resonance, 465-469

J
Junction circulator, 47 8-482

K
Kittel's equation,453
Klopfenstein tapered \ne, 258-261
Klystron. 613-614
Kuroda identities, 406-41 1

L
Lange coupler, 349-352
Line parameters (per unit length), 52-54
Line width, gyromagnetic resonance, 450
Linear dynamic range, 505

Linear phase filter, 391, 396-398
Linearly polarized plane waves, 15-21
Load pull contours, 572
Loaded Q, 271
Loaded waveguide

dielectric loading, 115-116, 150
ferrite loading, 460 -465

Loss (see a/so Attenuation constant)
conductor,25-27
dielectic,25-26
ferite,449-45t
insertion, 63
return,59

Loss tangent, 10
table,687

Lossy transmission lines, 79-86
Low pass filters

constant-k. 380-382. 387
high-Z,low-Z,412-416
m-derived, 383-386, 387
prototype, 400-401

L-section matching, 223:227

M
Magic-!361
Magnetic energy,24
Magnetic field, 6
Magnetic flux density, 6
Magnetic p olaizabllity, 2l I
Magnetic susceptibility, I I
Magnetic wall, 14
Manley-Rowe relations, 600 -602
Matched line, 58
Matching (see Impedance matching)
Material constants

table of conductivities, 687
table of dielectric constants and loss tangents,

68'�1
table of ferrite properties, 688

Maximally flat filter response, 390, 394-396
Maximum power capacity, 156-157
Marimum stable gain, 551
Maxwell. J..4-5
Maxwell's equations, 5-6, 8
m-derived filters, 383-386, 387
MEMs,531
Microstrip, 143-149

approximate analysis, 146-148
attenuation, 145-146
characteristic impedance, 1 45
coupled, 339-340
effective permi ttiY ity, | 44
propagation constant, 144

Microstrip discontinuities, 199, 203-204
Microwave heating, 67 4-67 5



Microwave integrated circuits (MIC),
526-53r

hybrid,527-528
monolithic (MMIC), 528-531

Microwave oven, 67 4-67 5
Microwave sources, 608-615

Gunn diode, 609-61 I
IMPATT diode,609-611
oscillators, 578-594
tubes,612-615

Microwave tubes, 61 2-61 5
backward wave oscillator, 613
crossed-field amplifler, 614-615
extended interaction oscillator, 614
gyratron, 615
klystron, 613-614
magnetron, 612,614
traveling wave tube, 613

Mixers. 510. 615-630
antiparallel diode, 629-630
balanced, 625-627
conversion loss, 618
diode,620-622
double balanced, 629
FET.622-624
image rejection, 627 -629
image response, 617 -618

Modal analysi s, 197 -203
Modes

cavity modes, 27 8-27 9, 282-284
circular waveguide, 1 I 8-125
parallel plate wavegcide, 99-106
rectangular waveguide, 106-1 16

Modulation, 512-513
Multiple reflections, on quarter wave

transformer, 75-76
Multipliers (see Frequency multipliers)

N
Negative resistance oscillators,

585-587
Neper,63-64
Network analy zer, 1 82-l 83
Noise.487-489

figure,493-500
phase, 594-599
soruces. 487-489.491
temperature, 489-493

Noise figure,493-500
circles, 557-561
of cascade. 495-496
of lossy line, 494, 498-499
of mixer,618-620
of passive network, 497-498
of transistor amplifier, 557-561
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o
Ohm's law for fields, 10
Open circuit stub, impedance, 6l-62
Oscillators

crystal, 584-585
dielectric resonator, 590 -594

negative resistance, 585-587
transistor, 578-584, 587-590

P
Parallel plate waveguide, 98-106

attenuation, 103, 104-105
characteristic impedance (TEM), 100
table for, 105

Passive intermodulation (PIM), 509
Periodic structures

analysis, 372-375
k-pdiagram, 375-378
phase and group velocities, 376

Permanent ma gnets, 453-454
Permeability, 6, 11

tensor. for ferrite. 446-447
Permittivity,6, 11

of atmosphere, 670
Perturbation theory for

attenuation, 83-84
cavity resonan ce, 298-303
ferrite loaded waveguide, 463-464

Phase constant (see Propagation constant)
Phase matching, 36
Phase noise, 594-599
Phase shifters

Faraday rotation, 47 4-47 5
loaded line, 518-519
reflection, 519-520
Reggia-Spencer, 475
remanent (latching), 47 l-4'l 4
switched line, 517-518

Phase velocity
plane wave, 15
transmission line,52
waveguide, 100, 101, 105, 109, 128,139

Phasor notation, 7-8
Physical constants, table, 686
PIN diodes, 514-515

phase shifters, 517 -520

switches, 515-517
Plane waves, 15-24

in conducting media, l8-19
in ferrites, 454-460
in lossless dielectric, 15-16
reflection,27-40

Plasma,673-674
Polaizabllity,2ll
Polarization. wave.23
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Power,24-27
Power added efficiency (PAE), 570
Power amplifi ers, 57 0-57 4
Power capacity of transmission line,

156-r57
Power divider (see also Directional coupler)

resistive, 317-318
T-junction, 315-317
Wilkinson, 318-324

Power gain, 537-542
Power loss, 25-27, 32-33, 83
Poynting's theorcm, 24-25
Poynting vector,25
Precession, magnetic dipole,

443-446
Probe coupling, 208-209
Propagation

atmospheric effects, 67 0 -67 2
ground effects,672-673
plasma effects,673-674

Propagation constant for
circular waveguide, 120, L22, 124
coaxial line, 57
microstrip line, 144
parallel plate guide, 99,100,104
plane waves in a good conductor, 17, 19
plane waves in lossless dielectric,

15, 19
rectangular waveguide, 108, I I 1, 1 13
stripline, 139
TEM modes,94
TM or TE modes, 96-97

0
Q,268,271

for circular cavity, 284-286
for dielectric resonator, 290
for rectangular cali.iq, n 9-28I
for RLC circuit, 268, 270-272
for transmission line resonator, 274,

276,277

Quadrature hybrid, 333-336

Quarter- wave transformers
multiple reflection viewpoint, 75-76
multisection, 245-255
single-section, 7 3-7 6, 240 -243

R
Radar cross section, 664-665
Radar systems,659-664
Radiation

condition, 14
efftciency, 639
hazards, 675-677
patterns, 637-638

Radiometer systems, 665-67 0
Rat-race (ring hybrid), 352-357
Receivers, 650-655
Reciprocal networks, 17 l-172, 177 -179
Reciprocity theorem, 40-41
Rectangular cavity (see Cavity resonators)
Rectangular waveguide, 106 -l l7

attenuation, 1 10-1 I l, 112-115
cutoff frequency, 108, I 12
group velocity, 153-154
maximum power capacity, 156-157
phase velocity, 109, 113
propagation constant, 108, 111, 113
table for, 113
table of standard sizes, 688

Rectification, 509-512
Reflection coefficient, 35, 58
Reflectometer, 363-365
Remanent mag netization, 47 2
Resonant circuits, 266 -27 2
Return loss, 59
Richard's transformation, 406
Ridge waveguide. 154-l 55
Root-finding algorithms, 136-137

s
S aturation magnetizaion, 4 4 4
Scattering matrix, l7 4-782

for circulator. 310. 476-477
for directional coupler, 312-314
for gyrator, 475
for quadrature hybrid, 333
for ring hybrid, 352
generalized, 181-182
shift in reference planes, 1 80-1 8 1
table for conversions, 187

Schwinger reversed phase eoupleg 362
Separation of variables, 19-20, 106-108,

1 18-1 19. 126-127.128
Short circuit stub impedance, 60-61
Signal flow graphs, 189-192
Single sideband modulation, 627
Skin depth, 18-19
Slot line, 155-156
Slotted line, 69-73
Small reflection theory 244-246
Smith chart, 64-69
Snell's law, 36
Sources (see Microwave sources)
S parameters (ree Scattering matrix)
Spectrum analyzeg 514
Spurious free dynamic range, 505
Stability

amplifier, 542-548
circles, 543-545



Standing wave ratio (SWR), 59
Stepped impedance filters, 412-416
Stripline, 137-143

approximate analysis, 1 40 -l 43
attenuation, 139-140
characteristic impedance, 1 39
coupled, 339
propagation constant, 139

Surface cunent, 8-9, 12-13
Surface impedance, 32-34
Surface resistance, 27 ,33
Surface waves

at dielectric interface, 38-40
of dielectric slab, 131-136

Switches, PIN diode, 515-517

T
Tapered coupled line hybrid,

357-360
Tapered transmission lines

exponential tap er, 257 -258
Klopfenstein taper, 258-261
triangular tape\,258. .- -.., -""--

Telegrapher equations, 50, 56 i: : , .
TE, TM modes r "'".,..',r

attenuation due todielqctric loss,'9$ : '.,

propagationconstahl,g6-.97 ] 1,.. ..
waveimpedanie,g6-97'-j." . -" - '

TEM waves and modes
attenuation due to dielectric loss,

98
plane waves, 15-22
propagation constant, 94
transmission lines, 55-57
wave impedance, 16, l7,57,95

Terminated transmission line. 57 -63
input impedance, 60
reflection coefficient, 58
voltage maxima and minima, 59

Third-order intercept, 504-505
T-junction, 315-317
Total reflection, plane wave, 38-40
Transducer power gain, 537-539
Transistor

amplifier, 548-574
characteristics, 522-523
nrrxer,622-6'24
models,523-526
multipliers, 604-608
oscillator. 578-584. 587-590
types,522-526

Transmission coeffi cient, 63
Transmission line

equations,50-51
input impedance, 60
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junctions, 63
parameters, 52-54

Transmission line resonators, 272-277
Transmission lines

coaxial. 54-57 . 126-129
microstrip, 143-149
parallel p1ate, 55, 98-106
stripline, 137-143
two-wire,55

Transverse resonance method, 149-150
Traveling wave amplifier (see Amplifler design)
Traveling waves

plane waves, 15
on transmission lines, 51

TRL calibration, 193-196
Two-port networks, equivalent circuits,

186-189
Two-port power gains (see Power gain)

U
Unilateral device,524
Unilateral figure of merit, 554
Unilateral transducer power gain,

' "-- 537*539
Unit element,407
Unit matrix, 177

., UntFrI matrix, 178
-'IJr{oadeil Q,271

v
Varactor diode, 520-521
Velocity (see Wave velocities)
Voltage standing wave ratio (see Standing wave

ratio)

w
Wave equation, 15, 17 , 19
Wave velocities

grotp, l5l-t54,376
phase, 15, 52, 100,101, 105, 109,

376
Waveguide (see Rectangular waveguide;

Circular waveguide; Loaded waveguide;
Parallel plate waveguide)

Waveguide components, 107
directional couplers, 324-332
discontinuities, 198
isolators, 465-471
magic-T,361
phase shifters, 47 I-47 5
T-junctions, 315

Waveguide excitation by
apertures, 209-215
arbitrary sources, 206-:209
current sheets, 204-206
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Waveguide fl anges, 1 16 -ll7

Waveguide imp edanc e, 9 6 -97

Wavelength
in free-space, l5-16
for waveguide, 101, 105, 109, I 13,

r24
on transmission line, 52

Wheeler incremental inductance rule,
84-86

Wilkinson power divider, 318-324
Wireless systems, 646-647, 655-659

Y
YlG-tuned oscillator, 610-612
Y-parameters (see Admittance matrix)

z
Z-parameters (see Impedance matrix)

O. ]11.:,1;t*" oti*i* ;frr
1ffiffiffitrffiffiilffillmmmmffimilm .'ri],<t+|'5twmMffimmnm -
2 2-A--62'"'2 t.r.R.C.




































































































































































































































































































































































































































































































































































































