Spectral Energy Distribution Fitting Techniques

Spectral Energy Distribution

The Spectral Energy Distribution (SED) is the energy emitted by an object as a function of the wavelength

- The flux detected by an observer on the ground can be altered because of
 - 1. The medium around the object (circumstellar material)
 - 2. The Interstellar Medium (ISM)
 - 3. The earth's atmosphere

Spectral Energy Distribution

Overview about SED fitting of Galaxies

http://www.sedfitting.org/

- ARIADNE (spectrAl eneRgy distribution bAyesian moDel averagiNg fittEr): https://github.com/jvines/astroARIADNE
- sedkit: https://github.com/hover2pi/SEDkit
- VO SED Analyzer: http://svo2.cab.inta-csic.es/theory/vosa/

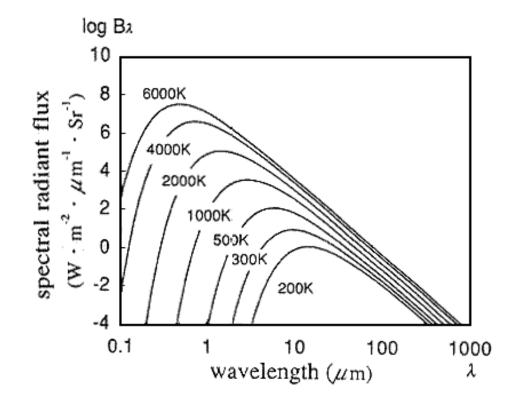
- To build the SED, we need fluxes, but we observe, normally magnitudes in a certain filter
- We need to transform the magnitudes to fluxes
- Our standard stars in this respect are the Sun, Vega and Sirius
- Review: Hayes, 1985, IAUS, 111, 225
- Cookbook: Gray, 1998, AJ, 116, 482S
- Also needed for Gaia: Altavilla et al., 2021, MNRAS, 501, 2848

Black Body Radiation

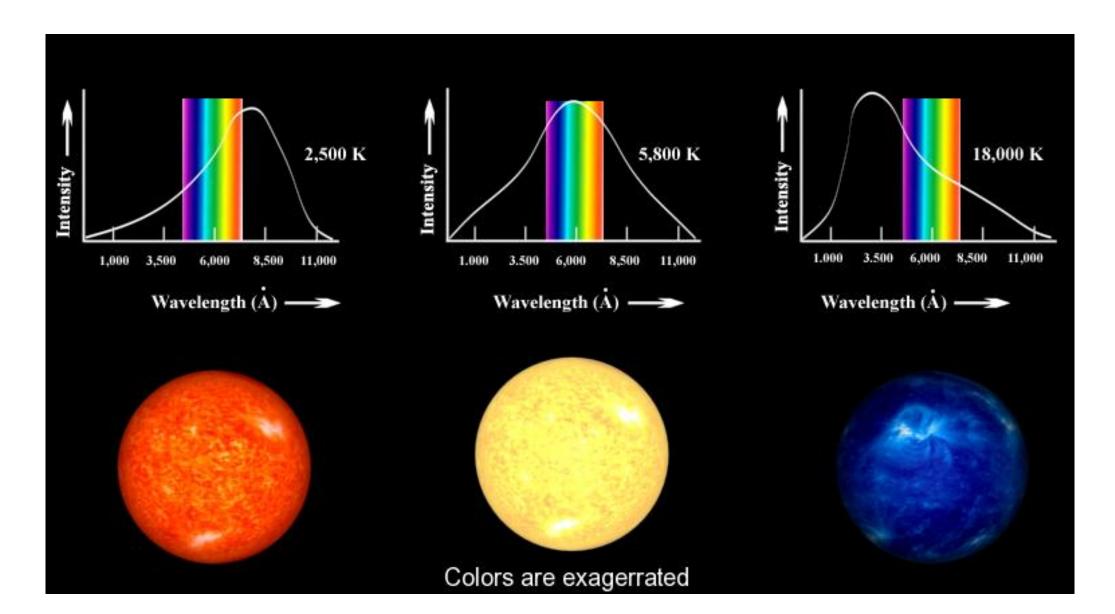
spectral radiance of black body $B\lambda$ is given as follows.

$$B\lambda = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{exp(hc/k\lambda T) - 1}$$

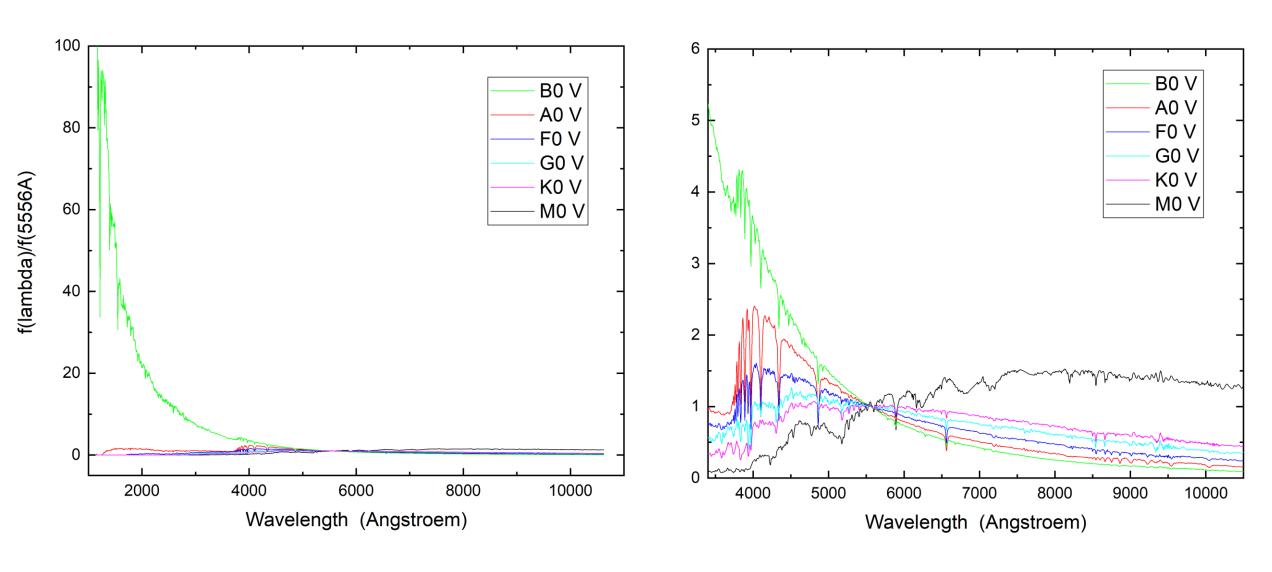
 $B\lambda$: black body spectral radiance ($W \cdot m^{-2} \cdot sr^{-1} \cdot \mu m^{-1}$)

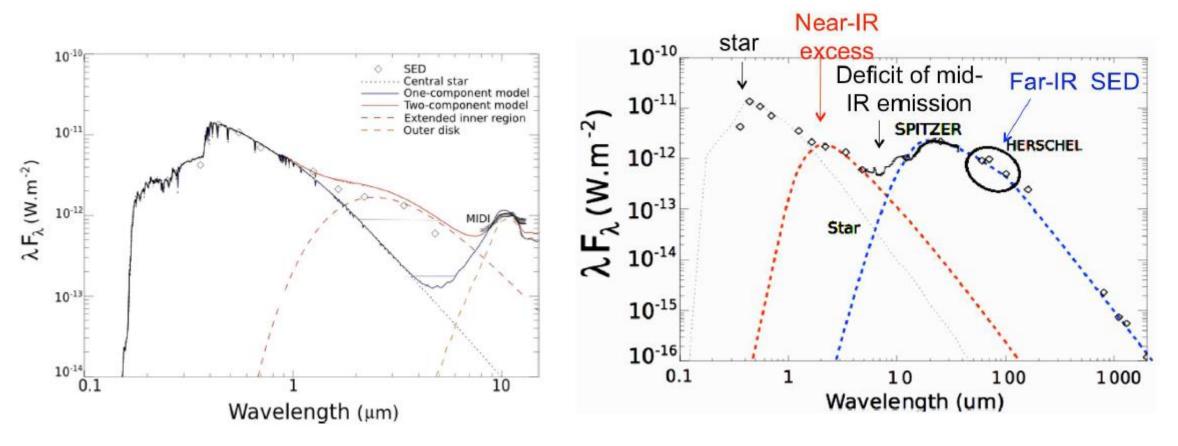

absolute temperature of Black body (K)

wavelength (μ m)

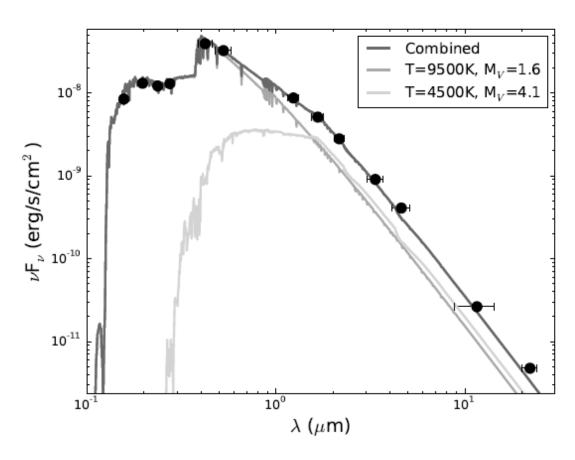

 2.998×10^8 (m·s⁻¹) velocity of light

plank's constant 6.626×10^{-34} (J·s)


 1.380×10^{-23} (J·K⁻¹) Boltzmann's constant


Black Body Radiation

Spectral Energy Distribution - Stars



Spectral Energy Distribution - Stars

Young star with a disk

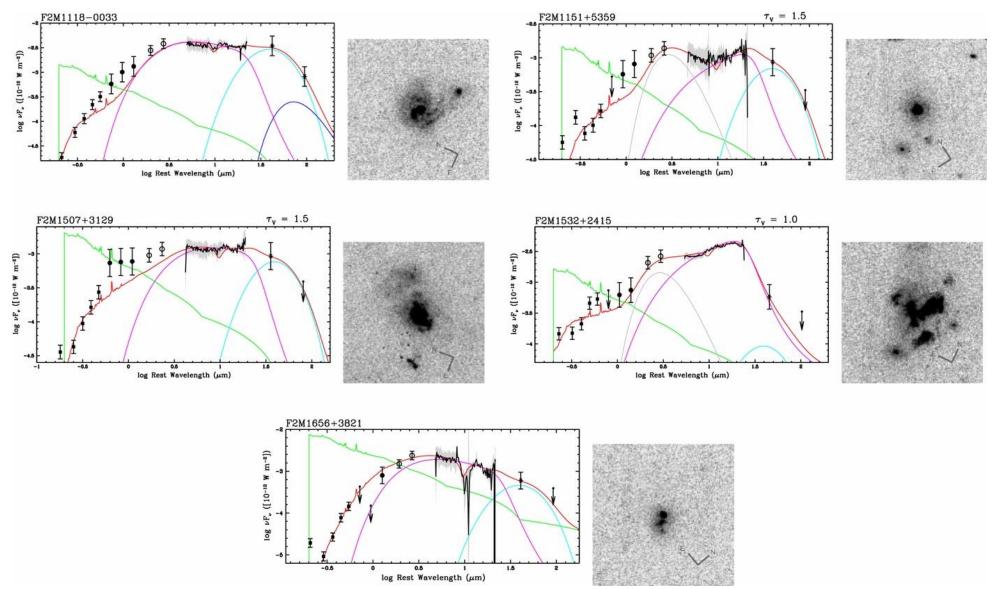
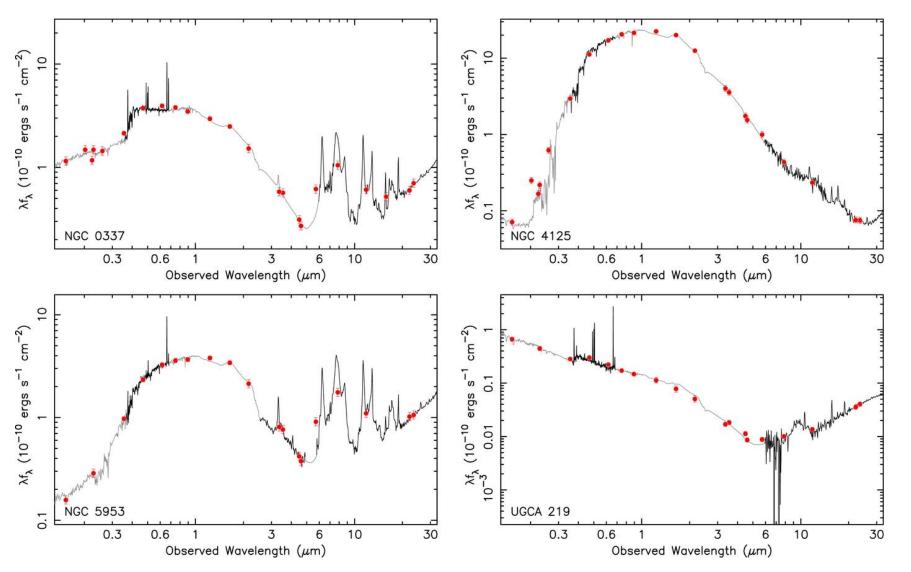

Spectral Energy Distribution - Stars

Figure 8. Spectral energy distribution (SED) for HD 63021 with model spectra co-added and matched in flux to the V-band.

Spectroscopic binary system


Spectral Energy Distribution - Quasars

Circles are the observed values

Lines are different components of the models

Tanya Urrutia et al., 2012, ApJ, 757, 125

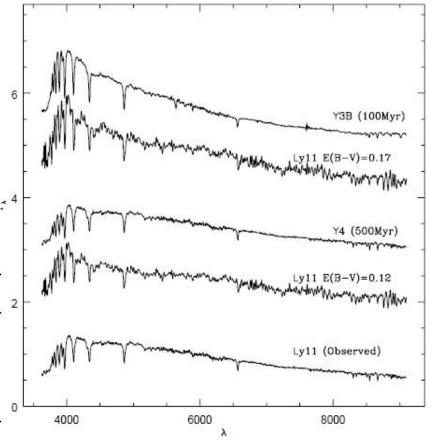
Red circles are the observed values

Black lines are the models

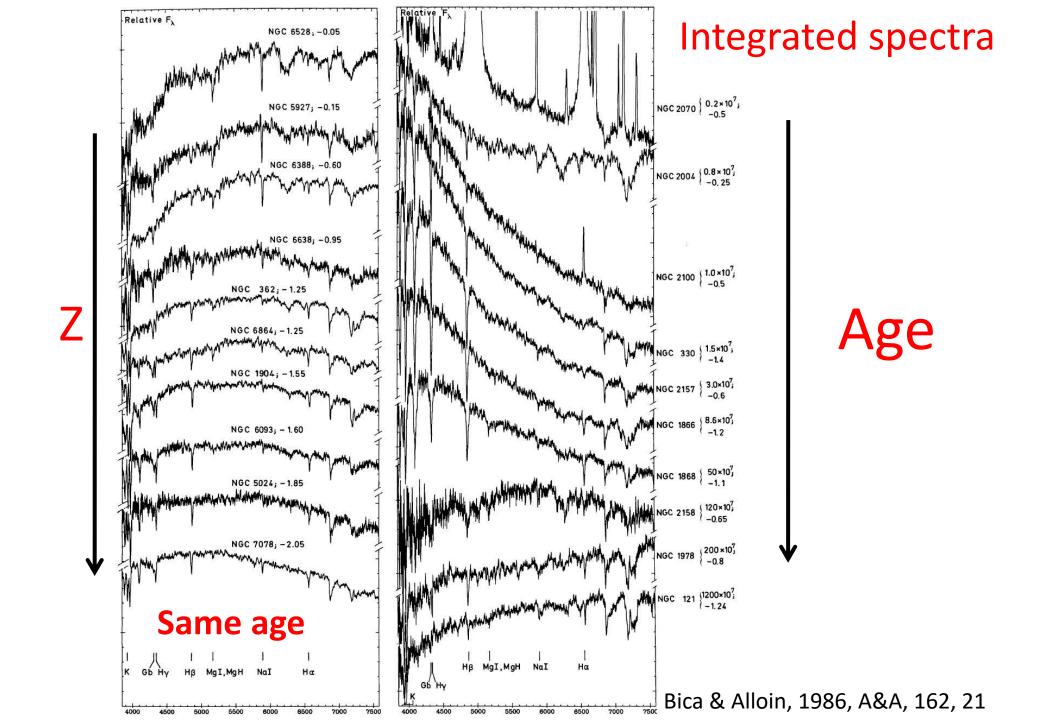
Brown et al., 2014, ApJS, 212, 18

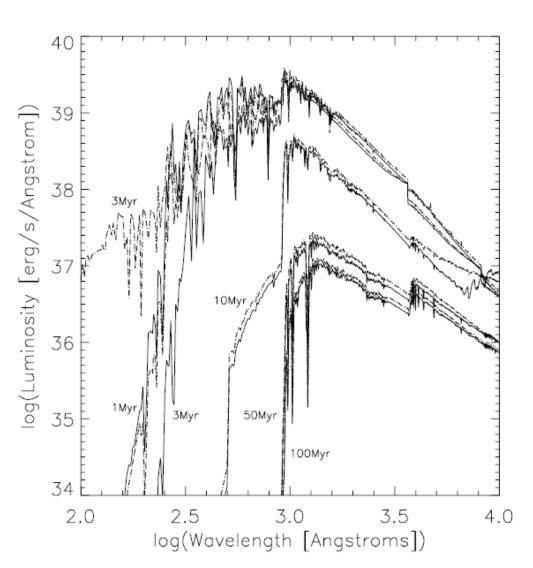
Review articles:

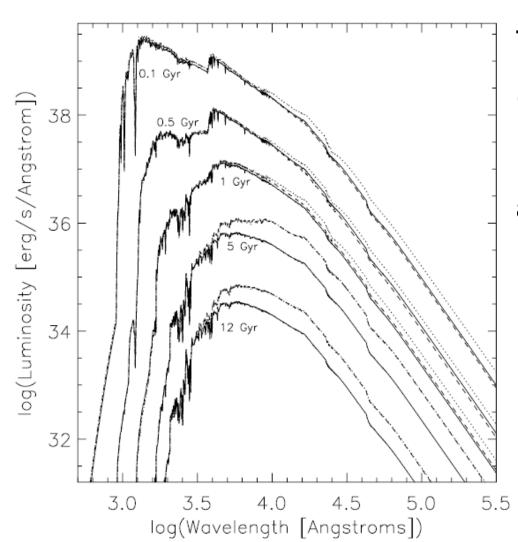
- Baes, 2020, IAUS, 341, 26
- Leitherer, 2005, AIPC, 761, 39
- Walcher et al., 2011, Ap&SS, 331, 1


• Ingredients:

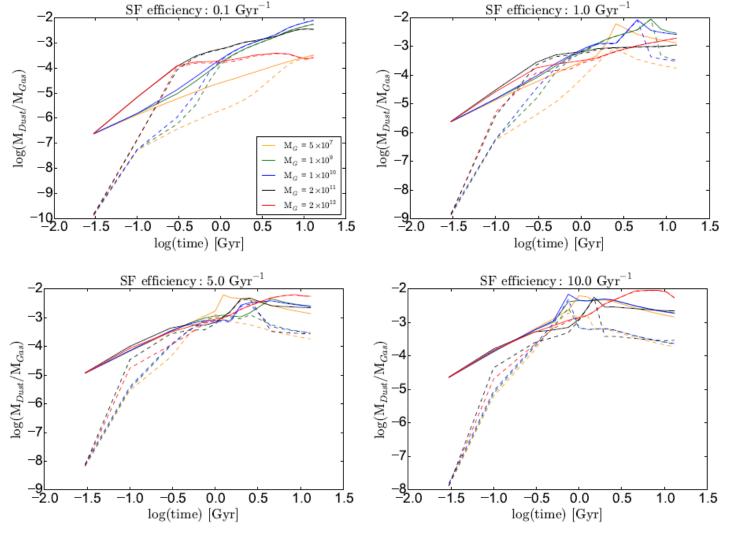
- 1. Stellar Population(s) Initial Mass Function and Stellar Evolution
- ISM dust and gas composition, temperature, amount, emission
- 3. Galaxy evolution
- 4. Redshift


6 Y4 (500Myr) 4 Y3B (100Myr) BH132 E(B-V)=0.60 2 BH132 (Observed) 4000 6000 8000 λ (A)


Open cluster


Ahumada et al., 2000, A&AS, 141, 79

Cluster	E(B-V)	$\begin{array}{c} {\rm Age\; (Balmer)} \\ {\rm (Myr)} \end{array}$	Age (template match) (Myr)	Adopted age (Myr)
Ruprecht 144	0.32 ± 0.02	200	100	150 ± 50
Melotte 105	0.31 ± 0.02	300	100	200 ± 100
BH 132	0.60 ± 0.05	200	100	150 ± 50
$Hogg 15^a$	1.05 ± 0.05	30	3-6	5 ± 2
Pismis 21	1.50 ± 0.03	110	50	80 ± 30
Lyngå 11	0.12 ± 0.03	400	500	450 ± 50
BH 217	0.80 ± 0.03	20	50	35 ± 15



Two
different
isochrone
grids uses

Vazquez & Leitherer, 2005, 621, 695

- Amount of dust in a galaxy regulates star formation
- Dust is also the most important contributor to extinction and reddening in the ISM due to absorption and scattering of the stellar light
- The absorbed light by dust is re-emitted in the infrared (IR) as thermal radiation (modified black body), reshaping the galaxy spectral energy distribution
- Massive star forming regions and starbursts galaxies are often observed in IR, enshrouded in dust cocoons, since the strong UV emission of young stars is reprocessed in dust clouds
- High mass galaxies have most of their star formation obscured by dust, while low mass ones tends to have most of the star formation unobscured
- So we need to know the composition, formation and evolution of the dust component in a galaxy

Change of the dust mass over time for different gas masses and star forming efficiencies

- Some commonly used models:
 - Code for Investigating GALaxy Evolution (CIGALE) https://cigale.lam.fr/
 - GRAphite-SILicate approach (GRASIL)
 https://adlibitum.oats.inaf.it/silva/grasil/grasil.html
 - Multiwavelength Analysis of Galaxy PHYSical properties (MAGPHYS) http://www.iap.fr/magphys/

Hunt et al., 2019, A&A, 621, A51

Property	CIGALE	GRASIL ^a	MAGPHYS
SFH	SFR(t_{gal}) delayed+truncation (defined by Eq. (2)) with t_{gal} = (8, 10, 12) Gyr; τ = (0.5, 1, 2, 4, 8) Gyr; r_{SFR} = (0.01, 0.05, 0.1, 0.5, 1, 5, 10); age _{trunc} = (10, 100, 1000) Myr ^b .		SFR(t_{gal}) = exp($-\gamma t_{gal}$) with random bursts potentially occurring at all times with amplitude $A = M_{burst}/M_{const}$, the ratio of the stellar masses in the burst and exponentially declining component; $t_{gal} \in [0.1, 13.5]$ Gyr; burst duration $\in [3, 30]$ Myr.
Geometry	None	Two geometries: (NSS) spheroid with King profiles for stars and dust, and (NSD) disk radial+vertical exponential profiles for stars and dust; GMCs are randomly embedded within each of these structural components; stellar radial scalelength (NSS) ^c $R_{\rm gal} = (0.04, 0.14, 0.52, 1.9, 7.2, 26.6)$ kpc; (NSD) inclination angle i such that $\cos(i) = (1, 0.8, 0.6, 0.4, 0.2, 0)$.	None
Stellar populations	Bruzual & Charlot (2003) SSPs with Chabrier (2003) IMF, and solar metallicity ($Z = Z_{\odot}$).	Bruzual & Charlot (2003) SSPs with Chabrier (2003) IMF, and metallicities ranging from $Z = 0.01 Z_{\odot}$ to $Z = 2.5 Z_{\odot}$.	Bruzual & Charlot (2003) SSPs with Chabrier (2003) IMF, and metallicities ranging from $Z = 0.02 Z_{\odot}$ to $Z = 2 Z_{\odot}$.
Ionized gas?	Yes^d	No	No

Dust attenuation	Modified starburst attenuation law with	Attenuation law as a consequence of	Two-component (BC, ambient ISM) dust
	power-law slope	geometry, grain opacities from	attenuation (Charlot & Fall 2000) as in
	$\delta = (-0.5, -0.4, -0.3, -0.2, -0.1, 0.0);$	Laor & Draine (1993) mediated over	Eq. (4) with $\mu \in [0,1]$, drawn from the
	normalization $E(B-V)$ for stars younger	grain size distributions from $0.001 \mu\mathrm{m}$ to	probability density function
	than 10 Myr ∈[0.01,0.60] mag; differential	$10\mu\text{m}$, and radiative transfer of the GMC	$p(\mu) = 1 - \tan h(8\mu - 6);$
	E(B-V) factor	and diffuse dust components. Free	$\hat{\tau}_V$ parametrized according to the
	$E(B-V)_{\text{old}}/E(B-V)_{\text{young}} = (0.25, 0.50,$	parameters are: $R_{gmc} = (6.1, 14.5, 22.2,$	probability density function
	0.75); variable 0.2175 μ m bump with strength		$p(\hat{\tau}_V) = 1 - \tan h(1.5\hat{\tau}_V - 6.7)$. Optical
	of 0.0 (no bump), 1.5, 3.0 (Milky-Way-like).	$f_{\text{mol}} = (0.1, 0.3, 0.5, 0.9);$	depth $\hat{\tau}_V$ is time-dependent as in Eq. (3).
		$t_{\rm esc} = (0.001, 0.005, 0.015, 0.045,$	
		0.105) Gyr.	
Dust emission	Overall dust luminosity defined by	Overall dust luminosity and SED shape	Overall dust luminosity defined by
	energy-balance considerations with SED	governed by geometry, grain opacities	energy-balance considerations with SED
	shape governed by the dust models of	from Laor & Draine (1993) mediated	shape governed by four species of dust
	Draine et al. (2007, 2014). With the exception	over grain size distributions from	emitters in two environments (BC,
	of one ($\alpha \equiv 2.0$), parameters of these models	$0.001 \mu\mathrm{m}$ to $10 \mu\mathrm{m}$, and radiative transfer	ambient ISM), with both having
	are left to vary: $q_{PAH} = (0.47, 2.50, 4.58,$	of the GMC and diffuse dust components.	
	6.62)%; $U_{\min} = (0.10, 0.25, 0.50, 1.0, 2.5, 5.0,$	The dust column is assumed to be	$\xi_{\rm PAH}^{\rm ISM}, \xi_{\rm MIR}^{\rm ISM}, \xi_{\rm W}^{\rm ISM})$, but an additional
	10, 25); $\log \gamma = [-3.0, -0.3]$ in 10 steps. Dust	proportional to the metallicity of the	cold-dust component for the ambient
	emission is assumed to be optically thin; the	given SFH, and the consistent relation	ISM ($\xi_{\rm C}^{\rm ISM}$). In addition to ensuring unity
	DL07 models used in CIGALE have	between extinction and emission ensures	$(\xi_{\text{PAH}}^{\text{BC}} + \xi_{\text{MIR}}^{\text{BC}} + \xi_{\text{W}}^{\text{BC}} = 1,$
	$\kappa_{\rm abs} = 0.38 \rm cm^2 g^{-1}$ at $850 \mu \rm m$.	energy conservation. The same variable	$\xi_{\text{PAH}}^{\text{ISM}} + \xi_{\text{MIR}}^{\text{ISM}} + \xi_{\text{W}}^{\text{ISM}} + \xi_{\text{C}}^{\text{ISM}} = 1$) fixed
		parameters for dust extinction govern	parameters are: $\xi_{\text{PAH}}^{\text{ISM}} = 0.550(1 - \xi_{\text{C}}^{\text{ISM}});$
		dust emission through radiative transfer.	$\xi_{\text{MIR}}^{\text{ISM}} = 0.275(1 - \xi_{\text{C}}^{\text{ISM}}); \text{ and}$
		Dust opacity $\kappa_{abs} = 0.56 \text{ cm}^2 \text{ g}^{-1}$ at	$\xi_{\rm W}^{\rm ISM} = 0.175(1 - \xi_{\rm C}^{\rm ISM})$. Parameters left to
		850 μm (Laor & Draine 1993).	vary are: $\xi_{W}^{BC} \in [0,1]; \xi_{MIR}^{BC} \in [0,1-\xi_{W}^{BC}];$
			$\xi_{\text{C}}^{\text{ISM}} \in [0,1]; T_{\text{W}}^{\text{BC}} \in [30,70] \text{ K};$ $T_{\text{W}}^{\text{ISM}} \in [30,70] \text{ K}; T_{\text{C}}^{\text{ISM}} \in [10,30] \text{ K. Dust}$
			emission is assumed to be optically thin;
			dust opacity $\kappa_{abs} = 0.77 \text{ cm}^2 \text{ g}^{-1}$ at
			850 μm (Dunne et al. 2000).

Hunt et al., 2019, A&A, 621, A51

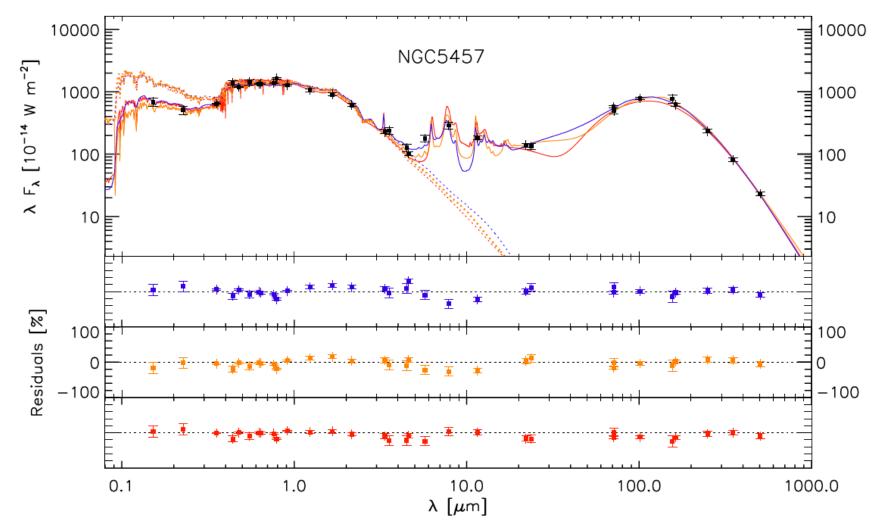
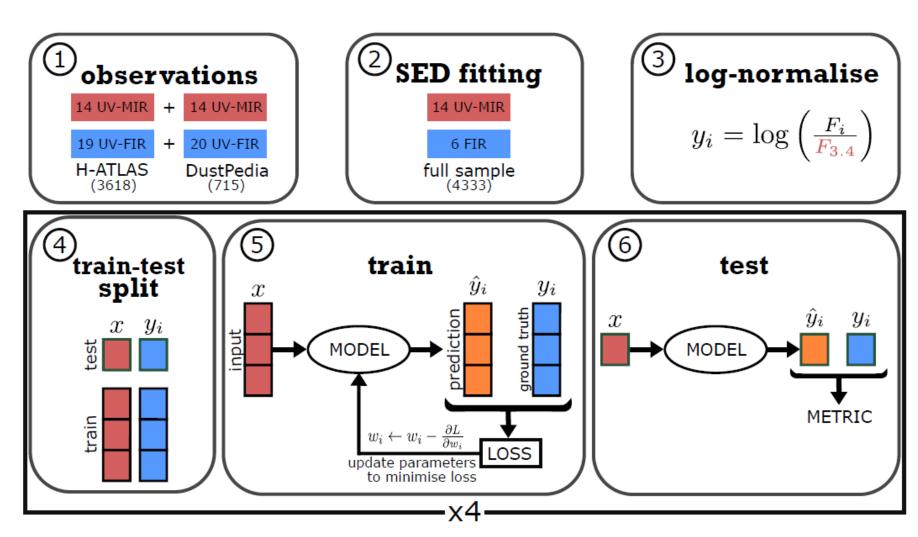
Property	CIGALE	GRASIL ^a	MAGPHYS
Free parameters	11 with SFH ($t_{\rm gal}$, τ , $r_{\rm SFR}$, age _{trunc}); dust attenuation (δ , normalization $E(B-V)$, differential $E(B-V)$, variable 0.2175 μ m bump strength); dust emission ($q_{\rm PAH}$, $U_{\rm min}$, γ).	7 for NSS templates with SFH (t_{gal} , τ_{inf} , ν); geometry (R_{gal}); dust attenuation (R_{gmc} , f_{mol} , t_{esc}); dust emission (same as for dust attenuation). 8 for NSD templates with the addition of galaxy inclination (viewing angle).	12 with SFH (γ , $t_{\rm gal}$, A , $Z_{\rm star}$); dust attenuation (μ , and $\hat{\tau}_V$); dust emission ($\xi_{\rm W}^{\rm BC}$, $\xi_{\rm MIR}^{\rm BC}$, $T_{\rm W}^{\rm BC}$, $\xi_{\rm C}^{\rm ISM}$, $T_{\rm C}^{\rm ISM}$, $T_{\rm W}^{\rm ISM}$).

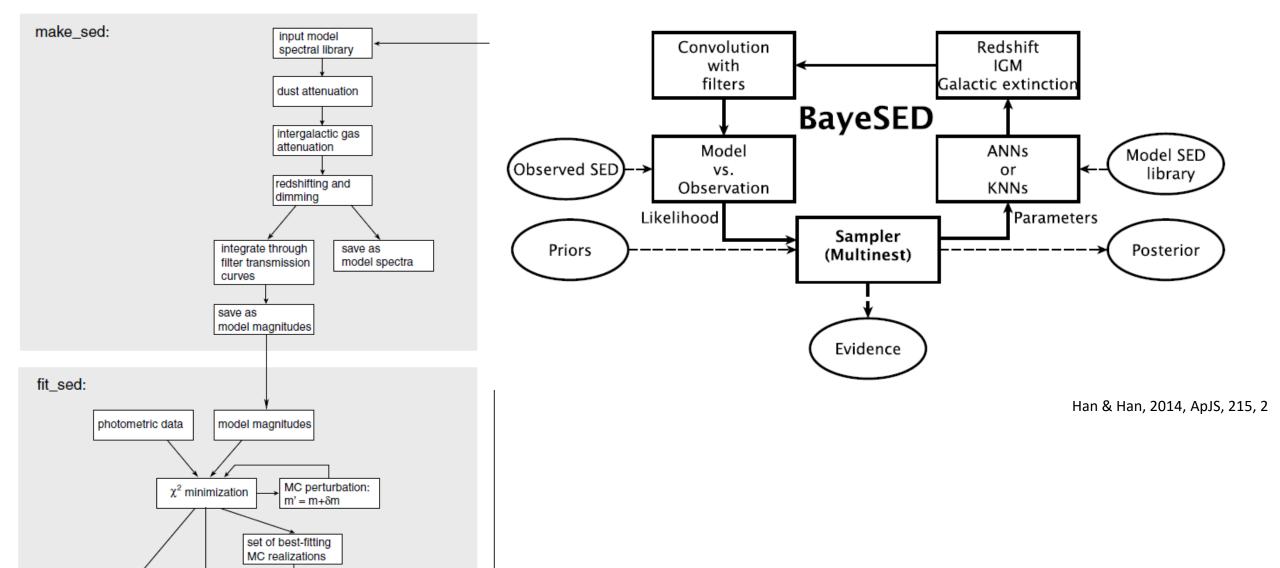
NSD ... New Star-forming Disks

NSS ... New Star-forming Spheroids

SFH ... Star Formation History

SFR ... Star Formation Rate


Fig. 1. Panchromatic SED for NGC 5457 (M 101) based on the photometry measurements from Dale et al. (2017) overlaid with the best-fitting SED model inferred from the SED fitting tools MAGPHYS (red curve), CIGALE (dark-orange curve) and GRASIL (blue curve). The dashed curves represent the (unattenuated) intrinsic model emission for each SED fitting method (using the same color coding). The bottom part of each panel shows the residuals for each of these models compared to the observed fluxes in each waveband.

Spectral Energy Distribution - Methods

Machine Learning algorithm

Fig. 1. Diagram of the pipeline, split into six steps. The red boxes are used for input data, which do not make use of *Herschel*. The blue boxes do require *Herschel* observations and are used to derive the ground truth (i.e. prediction target). The orange boxes are model predictions. Steps 4 to 6 are repeated for the four folds, in order to use the full data set as a test set.

parameters of the

best-fitting model

 $\Delta \chi^2$ confidence intervals

 $\chi^2 \; \text{map}$

parameter

confidence regions