Searching for Periodic Signals in Time
Series Data

Least Squares Sine Fitting
Discrete Fourier Transform

1.
2.
3. Lomb-Scargle Periodogram
4. Pre-whitening of Data

5. Other techniques

* Phase Dispersion Minimization
* String Length

« Wavelets



Period Analysis

How do you know if you have a periodic signal in your data?
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What 1s the period?



Try 16.3 minutes:

Radial Velocity (m/s)
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1. Least-squares Sine fitting

Fit a sine wave of the form:
V(t) = A-sin(wt + ¢) + Constant
Where o = 27/P, ¢ = phase shift
Best fit minimizes the 2

x> =2 (d—g)*N

d. = data, g. = fit
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Advantages of Least Sqaures sine fitting:

e Good for finding periods in relatively sparse data

Disadvantages of Least Sgaures sine fitting:
e Signal may not always be a sine wave (e.g. eccentric orbits)
e No assessement of false alarm probability (more later)

e Don‘t always trust your results
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This is fake data of pure random noise with a o = 30 m/s. Lesson: poorly sampled noise
almost always can give you a period, but it it not signficant



2. The Discrete Fourier Transform

Any function can be fit as a sum of sine and cosines

NO
FT(0) =X X; (t) e Recall et = cos ot + i sinot
j=1
X(t) 1s the time series
1 :
Power: P ()= — | FTy(®)? N, = number of points

0
F(®)= |\1|o [(Z X; cos o)tj)2 +(Z X; sin (Dtj)z]

A DFT gives you as a function of frequency the amplitude
(power) of each sine wave that 1s in the data



The continous form of the Fourier transform:
F(s) = | f(x) e7*s dx
f(x)= 1/2n ] F(s) e*s ds
es = cos(xs) + i sin (Xs)

This is only done on paper, in the real world (computers) you always use
a discrete Fourier transform (DFT)



The Fourier transform tells you the amplitude of sine
(cosine) components to a data (time, pixel, Xx,y, etc) string

Goal: Find what structure (peaks) are real, and what
are artifacts of sampling, or due to the presence of
noise
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A pure sine wave is a delta function in Fourier space
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A constant value is a delta function with zero frequency in Fourier space:
Always subtract off ,,dc* level.



Useful concept: Convolution

| fw)dp(x—u)du = £ * ¢

N /\

d(x): f\




Useful concept: Convolution
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Convolution is a smoothing function



Convolution

In Fourier space the convolution 1s just the product of
the two transforms:

Normal Space Fourier Space
fxg F -G



DFT of a pure sine wave:
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So why isn‘t it a 0-function?



It would be if we measured the blue line out to infinity:
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But we measure the red points. Our sampling degrades the delta function and
introduces sidelobes



In time space In Fourier Space
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16 min period sampled regularly for 3 hours



The longer the data window, the narrower is the width of the sinc function
window:
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Error in the period (frequency) of a peak in DFT:

3TC

OV = 2 NV2T A

o = error of measurement
T = time span of your observations
A = amplitude of your signal

N = number of data points



A more realistic window

And data
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Alias periods:
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Alias periods:

-1 -1 -1
Ff)alse = alias true
Common Alias Periods:
-1 -1 -1
false = (1 day ) ¥ true
Eals_el = (2'9'53 d)_l ¥ tru_el
P =(36525d)" *+ P’

day

month

year



Nyquist Frequency

If Tis your sampling rate which corresponds to a frequency of f,, then
signals with frequencies up to f,/2 can be unambiguously reconstructed.
This is the Nyquist frequency, N:

N<f/2

e.g. Suppose you observe a variable star once per night. Then the
highest frequency you can determine in your data is 0.5 ¢/d = 2
days



Power

When you do a DFT on a sine wave with a period = 10,
sampling = 1: v,=0.1, 1/At =1
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The effects of noise:
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3. Lomb-Scargle Periodograms

2 2
[ 2. X cos oo(tj—r)] | [ ,2 X; sin (o(tj—r)]
Z X cos® o(t—1) " 2 > X; sin* o(t—1)

P (o) =
tan(2ot) = (Zsin 2ot)/(Xcos 2ot)

Power 1s a measure of the statistical significance of that
frequency (period):

Scargle, Astrophysical Journal, 263, 835, 1982



Power: DFT versus Scargle
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DFTs give you the amplitude of a periodic signal in the data. This does not change with more data.
The Lomb-Scargle power gives you the statistical significance of a period. The more data you have
the more significant the detection is, thus the higher power with more data



False Alarm Probability (FAP)

The FAP is the probability that random noise will produce a peak with

Lomb-Scargle Power the same as your observed peak in a certain
frequency range

Unknown period:

Where P = Scargle Power
FAP = 1 — (1—e PV

N = number of independent
frequencies in the frequency
range of interest

Known period:

In this case you have only one
FAP = e7” independent frequency

Scargle Power (significance) is increased by lower level of noise and/or more data points



False Alarm Probability (FAP)

The probability that noise can produce the highest peak over a range =1 — (1-e*)V
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The probability that noise can produce the this peak exactly at this frequency = e



Why is the FAP Impotant?
Example: A transit candidate from BEST

P Depth [%] 1.2
: ] Duration [h] ?
T 1 Orbital period [d]
2 ’ Semi mayor axis[AU]
§11,25;g¥¥¥§ﬁ ki #%ﬁ %E%%#%H%#ﬁ%ﬁ %%_: Number of detections 1
St B ] Target field No. 8
N 1 Host star K...(?)
e ] Magnitude(B.E.S.T.) 11.25
el 1 Radius[Ry,,] 0.65-0.85
e T R Radius of planet ? [R,,] 0.71-0.89?

To confirm you need radial
velocity measurements, but
you do not have a period...

Dss1/Possl



16 one-hour observations made with the 2m coude echelle
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RV (mV/s)

Least Square sine fit yields of 2.69 days
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Published (Dreizler et al. 2003) Radial Velocity Curve of the transiting planet
OGLE 3
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Wrong Phase (by 180 degrees) for a transiting planet!



Radial Velocity (m/s)
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pCrB.

Fel 6165.36

Fel 6165.36

AV (mis)
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Small FAP does not always mean a
real signal

Period = 11.5 min
FAP =0.015

Figure 4. Radial velocity variations of the Fer 6165.36 A and Ca1 6166.44 A lines in the spectrum of # CrB. Left panels show individual RV measurements
(symbols) phased with the period of 11.5 min. The best cosine fit to the RVs of the Fe1 line is shown by the solid curve. Right panels show periodograms for

Scargle Power
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Lesson: Do not believe any
FAP < 0.01

My limit: < 0.001

Better to miss a real period
than to declare a false one



Determining FAP: To use the Scargle formula you need the number of
independent frequencies.

How do you get the number of independent Frequencies?

First Approximation: Use the number of data points N,

Horne & Baliunas (1986, Astrophysical Journal, 302, 757):

N, =—6.362 + 1.193 N, + 0.00098N,? = number of independent frequencies



Use Scargle FAP only as an estimate. A more valid determination of the FAP
requires Monte Carlo Simulations:

Method 1:

1. Create random noise at the same level as your data
2. Sample the random noise in the same manner as your data

3. Calculate Scargle periodogram of noise and determine highest
peak in frequency range of interest

4. Repeat 1.000-100.000 times =N

total

5. Add the number of noise periodograms with power greater than
your data = N

6. FAP=N

noise

/N

noise’ ' Vtotal

Assumes Gaussian noise. What if your noise is not
Gaussian, or has some unknown characteristics?



Use Scargle FAP only as an estimate. A more valid determination of the FAP
requires Monte Carlo Simulations:

Method 2:

1.

5.

Randomly shuffle the measured values (velocity, light, etc)
keeping the times of your observations fixed

Calculate Scargle periodogram of random data and determine
highest peak in frequency range of interest

Reshuffle your data 1.000-100.000 times = N,

Add the number of ,random* periodograms with power greater
than your data = N, ice

FAP = N, is./N

noise’ ' Vtotal

Advantage: Uses the actual noise characteristics of your data



FAP comparisons
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Using formula and number of data points as your independent frequencies may
overestimate FAP, but each case is different.



Amplitude = level of noise

1 2 4 6 8 10 +<——Amplitude/error

150 — —]

100 — —]

Number of points

Amplitude

Number of measurements needed to detect a signal of a certain amplitude. The FAP of
the detection is 0.001. The noise level is 6 =5 m/s. Basically, the larger the
measurement error the more measurements you need to detect a signal.



Lomb-Scargle Periodogram of 6 data points of a sine
wave:

25

N

Scargle Power
(3]
I L L L L L B

—

[3)

I]II[IIIIII|IIIJIIIII|IIIIII

I

co e e e
05 A 15
Frequency (c/d)

o
N_

Lots of alias periods and false alarm probability
(chance that it 1s due to noise) 1s 40%!

For small number of data points do not use Scargle,
sine fitting 1s best. But be cautious!!



RV (m/s)

Comparison of the 3 Period finding techniques
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Amplitude (m/s)

Scargle Power
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Least squares sine fitting: The best
fit period (frequency) has the
lowest y?

Discrete Fourier Transform: Gives
the power of each frequency that is
present in the data. Power is in
(m/s)? or (m/s) for amplitude

Lomb-Scargle Periodogram: Gives
the power of each frequency that is
present in the data. Power is a
measure of statistical signficance



4. Finding Multiple Periods in Data: Pre-whitening

What if you have multiple periods in your data? How do you find these and make
sure that these are not due to alias effects of your sampling window.

Standard procedure: Pre-whitening. Sequentially remove periods from the data
until you reach the level of the noise



Prewhitening flow diagram:
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Scargle Power
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Scargle Power
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Useful program for pre-whitening of time series data:
http://www.univie.ac.at/tops/Period04/

e Program picks highest peak, but this may be an
alias

e Peaks may be due to noise. A FAP analysis will
tell you this



5. Other Techniques: Phase Dispersion Minimization
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Choose a period and phase the data. Divide phased data into M bins and compute the
standard deviation in each bin. If 62 is the variance of the time series data and s? the total
variance of the M bin samples, the correct period has a minimum value of ® :

O = s2/c?

See Stellingwerf, Astromomical Journal, 224, 953, 1978
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_ Fig. 1.—The @ statistic versus frequency for the two test cases described in the text. (@) Sine-wave transform; (b) sawtooth func-
tion transform.

PDM is suited to cases in which only a few observations are
made of a limited period of time, especially if the light curves
are highly non-sinsuisoidal



PDM Scargle
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data sets.

In most cases PDM gives the same answer as DFT, Scargle periodograms. With
enough data it should give the same answer



5. Other Techniques: String Length Method
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Phase the data to a test period and minimize the distance between adjacent points

Lafler & Kinman, Astrophysical Journal Supplement, 11, 216, 1965
Dworetsky, Monthly Notices Astronomical Society, 203, 917, 1983



5. Other Techniques: Wavelet Analysis

This technique is ideal for finding signals that are aperiodic, noisy,

intermittent, or transient.

Recent interest has been in transit detection in light curves
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1 The secrets of the little wave

A SVEWE
e
e

e N e >
b (8) Wavelets are used to transform a signal
into another representation that presents
signal the information in a more useful form.

Afew common examples of wavelets are
/\K shown here, including the square “Haar”
e 7 »—/\ wavelet. (b) In the wavelet-analysis

” t technique the wavelet function (red) is
e “convoluted” with the signal (green). If the
' wavelet matches the signal well, a large

Y

TN (N

intenaity

number is obtained. If the wavelet matches
the signal poorly, a low number is obtained.
The transform is computed at different
times in the signal, with wavelets of
different frequency used on each occasion.
wavelet The transform value for each position and
i‘éﬂi?;‘t transform frequency of the wavelet function are
fraquency plot usually plotted on a 2D plane. (c) Stretching
and squeezing the wavelet during the
transform process changes its frequency
T eIeE : make up. The height of the wavelet also
location location changes to conserve its signal energy.

quency

fre




2 Forget Fourier

signal amplitude

time

frequency

time

spectral amplitude (log]

frequency

Wavelet transforms are good at picking out features in a signal that occur
only intermittently. This advantage can be seen with a synthetic signal (top),
which contains a number of isolated features. It has been transformed using
awavelet thatis in the form of a “Mexican hat". The four identical
wavegroups all have the same morphology in the wavelet-transform plot
(middle), while the remaining features each have their own unigue
appearance. Although the correlation between features in the signal and
those in the transform can be seen visually in this example, statistical
technigues have to be used for the messier signals that are more likely to be
encountered in real applications. In contrast, the conventional Fourier
transform of the original signal (below) provides no useful information about
the obvious features in the original signal.

(



,You have to be careful that you do not fool
yourself, and unfortunately, you are the easiest
person in the world to fool“

Richard Feynmann



