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Abstract. The effective Hamiltonian of strongly  correlated electrons on a square 
lattice is replaced by  a renormalised Hamiltonian and the factors that renormalise 
the kinetic energy of holes and the Heisenberg spin-spin  coupling are calculated 
using a Gutzwiller approximation scheme.  The accuracy of this  renormalisation 
procedure is tested numerically and found to  be  qualitatively excellent. Within the 
scheme a resonant valence bond (RVB) wavefunction is found at half-filling to be 
lower in energy than the antiferromagnetic state. If the wavefunction is expressed in 
fermion operators, local SU(2) and U( l )  invariance leads to a redundancy in the 
representation. The introduction of holes removes these local invariances and we 
find that a d-wave RVB state is lowest in energy. This state has a superconducting 
order parameter whose amplitude is linear in the density of holes. 

1. Introduction 

Very soon after the discovery of high-T, superconduc- 
tivity Anderson [l] proposed that it was caused by a 
cooperative  condensation of carriers moving in a reson- 
ant valence bond (RVB) state of spins. Since then this 
proposal  has been studied extensively and  the best 
account is in Anderson's recent lecture notes [2]. Many 
other  proposals have been made (for a Review see [3]), 
and  there have been questions raised about  the use of 
the simplified  effective Hamiltonian derived from a 
single-band Hubbard model in the  atomic limit that 
forms the  starting  point of Anderson's treatment. We 
shall not go into these questions here but just point out 
that two of us (Zhang  and Rice [4]) recently gave an 
explicit demonstration that a two-band model describ- 
ing hybridised copper 3d and oxygen 2p  states  can  also 
be reduced to  the same effective Hamiltonian in an 
appropriate limit. 

The effective Hamiltonian  contains  the  strict local 
constraint which forbids  double  occupancy of any site. 
This  constraint is  very  difficult to handle analytically. 
One of the  most physically transparent  methods to treat 
this type of problem analytically has been the Gutzwil- 
ler approximation which introduces a renormalisation 
of the  quantum mechanical expectation values by a 
classical weighting factor [S]. Such renormalisation  can 
then be incorporated into a Hamiltonian which may be 
treated by conventional methods. This  approach was 
used for the heavy fermion problem by  Rice and Ueda 
[6] and was shown to be equivalent to  an optimal 
slave-boson formulation by Kotliar and Ruckenstein 
[7]. In  this  paper we  will consider this renormilisation 

Hamiltonian method for the effective Hamiltonian. 
Unlike the renormalised Anderson Hamiltonian studied 
by  Rice and Ueda [6], in the present case the  renorma- 
lised Hamiltonian  cannot be simply diagonalised and 
we must resort to a further mean-field approximation. 
Mean-field approaches have been considered by many 
authors [8-lo]. Here we choose to formulate  the 
problem in terms of a variational wavefunction. This 
has several advantages. First it shows us that a consis- 
tent mean-field theory  must be formulated in terms of 
two expectation values i.e. one must include particle- 
hole amplitudes of the form (c+c) in addition  to 
particleparticle amplitudes of the form (c+c+). This 
point has been recently realised by others  as well [l l]$. 
The coupled equations to minimise the energy have a 
wide class of degenerate solutions at half-filling.  Sec- 
ondly a wavefunction formulation is suited to examin- 
ing the role of the redundancy in the fermion 
representation which  is not present in the spin represen- 
tation. At  half-filling, this redundancy which has its 
origin in the reduction from 4 to 2 degrees of freedom 
per site as  one goes from fermion to spin representation, 
appears as a local particle-hole (SU(2)) and gauge (U( 1)) 
invariance. The large degeneracy of the mean-field 
description arises from this redundancy and it can be 
shown that it corresponds to the same state in the spin 
representation. Further  the  appearance of coherence in 
the fermion representation is illusory so that there can 
be no  true phase coherence as stressed by Baskaran and 
Anderson [ 123. Thirdly, this formulation allows a direct 
comparison with the variational Monte  Carlo (WC) 
results. This allows us on  the one  hand to check the 

t Permanent  Address:  Institute for Solid State Physics,  University of : In [8], Baskaran  and  co-workers  considered  the  term (c+c) as well. 
Tokyo,  Roppongi,  Tokyo 106, Japan. However  they set it equal  to  zero in their  calculations. 
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validity of the renormalised mean-field theory and  on 
the  other  hand it gives us more insight into  the  numeri- 
cal VMC results. Both qualitatively and even quantitat- 
ively good agreement is found; for example both  point 
to  a d-wave paired  state  as  the  most  stable and a  true 
superconductivity  order  parameter which vanishes at 
half-filling and grows linearly in the  deviation from half- 
filling. The largest discrepancy occurs for the  anti- 
ferromagnetic  state which, within this scheme is higher 
in energy than  the RVB state,  contrary  to  the VMC 
results. 

Our treatment is essentially limited to zero tem- 
perature  and the extension to finite temperature will be 
non-trivial.  Some discussion of the  problems of calcu- 
lating  excitation energies is  given. In  particular  there  are 
two energy scales of excitations given  by the gauge 
coherence energy (determined by the kinetic energy) and 
the  magnetic coherence energy respectively. Anderson 
C23 has emphasised this splitting of the  charged excita- 
tions  (holons) and spin excitations (spinons). 

2. The model and  the renormalised  Hamlltonlan 

We study  the Hubbard model on a  square lattice. In  the 
limit of large on-site Coulomb repulsion U and  at one- 
half, or, slightly less,  filling the Hubbard Hamiltonian 
can be transformed to  the form 

H = H, + H, 

H, = J c Si * Si 
< i ,  i> 

with the local constraint  the  number of electrons on  any 
site 1.  This  transformation  has  a  long  history, and has 
been used  by [13], amongst  others.  In (1) H, and H, are 
the  kinetic and magnetic energies respectively and ( i ,  j )  
represent the  nearest-neighbour pairs. Si are  the spin = 

operators  and J = 4 t2 /U .  We  neglect terms which are 
higher order in the small parameters t/U and  the hole 
concentration 6 (= 1 - n ;  where n is the electron 
concentration). 

Since the high-T, superconducting  materials show 
strong  antiferromagnetic (M) spin correlations [l41 it is 
believed that this model contains  the essential physics 
for the high-T, superconductivity [2,4]. 

To study  the  ground  state  and  the excited states of 
(l), we use a projected BCS trial wavefunction as sug- 
gested by Anderson [l] for a RVB state: 

Icp) =P,Icpo) (2) 

I c p O ) = n ( u k + u k C Z r C ' - ~ l r ) l O >  (3) 
k 

where the Gutzwiller projection  operator P, = 
Hi (1 - nit n i J  and I 0) is the  vacuum  state. u k  and L)k 

are  the variational  parameters satisfying the  normal- 
isation  condition for I cp,) : I u k  )' + 1 uk 1' = 1.  

Some special forms of (2) have recently been studied 
numerically. Using the VMC technique, which treats  the 

projection operator exactly [15-191, the energies of 
these states have been numerically calculated. It is 
found  that in the  square lattice, the projected Fermi 
liquid state (i.e. the  state with u k u z  = 0) is unstable 
against d-wave pairing [16]. At half-filling the energy of 
the d-wave state is found [l71 to be  very close to the 
ground-state energy extrapolated from the exact small 
system calculations [20]. In contrast  to the  extrapolated 
exact small system calculations,  the d-wave trial wave- 
function has no long range  antiferromagnetic  order [l71 
and may therefore be viewed as  an example of a 
quantum  spin liquid. A VMC study of superconductivity 
has been made independently by Yokoyama  and Shiba 
[19]. They also concluded a possibility of a d-wave 
superconductivity. 

The projected BCS wavefunction is a  natural gener- 
alisation of the usual BCS state  to strongly correlated 
systems. The projection operator, however, makes dim- 
culties for an analytic  approach.  In this paper we shall 
use a renormalised Hamiltonian  approach  to  treat  the 
projection operator,  and systematically investigate the 
state (2), carrying out explicitly the  variational  pro- 
cedure. In this approach following Gutzwiller [S] the 
effect of the projection operator  on  the  doubly occupied 
sites is taken  into  account by a classical statistical 
weighting factor which multiplies the quantum coherent 
result calculated with I p,). A clear description of the 
method  has been given by Vollhardt [21]. The  hopping 
energy and the spin-spin correlation of the nearest- 
neighbour sites in the state I cp) are related to those in 
the  state I p,) by 

<C!aCja) = gt(c!acja)o 

(Si e = g,(Si Si) ,  

where ( A ) ,  and ( A )  are  the  expectation values in the 
states 1 cp), and 1 cp) respectively. The  renormalisation 
factors gt and gs are determined by the  ratios of the 
probabilities of the  corresponding physical processes in 
the  states I p) and I v,). In figure 1 we illustrate  the 
possible hopping processes in these two  states. The 
probability of such  a process in the  state I cp) is 

CnjT(1 - nJnit(1 - ni)11'2 

la)  

J i 

Figure 1. The possible hopping processes (e) in the 
non-projected pairing state (3) and (b) in the projected BCS 
state (2). The spins with broken arrows are optional in the 
(a) configurations. 
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while that in the state I cp,) is 

[njT(l - niT)niT(l - njt)]"'. 

ni, are  the average electron  occupation  numbers, (ni = 
C, n,,) which are  the  same in the  states I cp) and I cpo), 
because of the spin symmetry of the wavefunctions. This 
leads to the result [21] 

g1 = 26/(1 + 6). (44  

To determine gs, we consider  the  spin exchange 
process shown in figure 2. The spin-spin interaction 
occurs only when both sites are singly occupied. The 
probability for such  a process in the  state I cp) is 
(njT ni l   n j l  nit)"', while in the  state I cpo) it is 

The  same result is obtained for the z component  inter- 
action Sf Sf. Thus  one  findst 

gs = 4/(1 + S)'. (4b) 

It is important  to realise that the  projection operator 
greatly enhances  the spin-spin correlations. To further 
illustrate  this  point, we list in table  1 all the possible 
two-site states  together with their weights and  the  con- 
tributions to the spin-spin correlation in the half-filled 
case. 

Having  determined  the  renormalisation  factors, we 
can define a  renormalised  Hamiltonian given  by 

H' = g l H ,  + g,H,.  ( 5 )  

The energy of the system in the  state 1 cp) can be evalu- 
ated  as  the  expectation value of H' in the  state I v,) 

W = ( H ' ) O .  (6) 

Equations (4H6) form the basis of our renormalised 
Hamiltonian  approach, which is analogous to the 
approach used  by  Rice and  Ueda [6] for the  periodic 
Anderson  model with the difference that here we make 
a  further mean-field approximation.  This is because in 
the  context of the  periodic  Anderson  Hamiltonian  the 
most important physical effect  is the  renormalisation  of 
the f-level to the  Fermi surface and  not  the spin  inter- 
action, which would make  an exact treatment of the 
effective Hamiltonian impossible. 

To justify  this  approach, we have carried out  Monte 
Carlo calculations.  Figures 3-5 show the  comparisons 
between the  renormalised mean-field theory and the 
essentially exact MC results for these wavefunctions. The 

I l J I 

Figure 2. The spin exchange process in the states (2) and 
(3). 

t In a  systematic  series  expansion on 6 and J j t ,  the  higher-order 
terms of 6 in (4) should be dropped  away to be consistent with  the 
effective  Hamiltonian (l), where  the  higher-order  terms  are not 
included.  This,  however, does not change  the  qualitative  physics  dis- 
cussed  in  this  paper. 

Table 1. This table  illustrates the enhancement of the 
spin-spin Correlation in the projected BSC state rp, equation 
(2), over that in the BCS state 'po, (3), at half-filling. The 
weight of the configurations actually  contributing to Si  Si 
increases by a factor of four due to the projection. The 
configurations at each site are denoted by 0 (empty state), 

(doubly occupied state), and Q (singly occupied state 
with spin Q). 
~~~~ ~ ~~ ~ 

Two-site 
configurations Weight 

No of Contribution to 
i i configurations 'po 'p StS; or S;S,?? 

1'6 0 - 
Q 0 4 i o -  

tl  0 2 0 -  

0 0 1 

Q Q 2 
Q -a 2 

- 

tl  Q 4 8 , -  
tl  tl  1 L o  - 

quantitative  agreement is within 5-15%,  while the 
qualitative  agreement is excellent for the wavefunction 
(2). 

After replacing the  projection  operator,  the energy 
of the system can be evaluated analytically. The varia- 
tional  task is to minimise W in (6). This  leads to 
coupled gap equations, which we  will derive and solve 
in the following sections. 

N, = 16 

0 0.01 0.10 1.00 10.00 

Figure 3. A comparison between the renormalised 
mean-field theory (RMF) (see (4)-(6)) and the Monte Carlo 
(MC) result for the kinetic energy ( T )  per hole in the 
projected BCS state (2). Both were calculated with a total 
number of sites N, = 82 and a number of holes N ,  = 8,16. 
The variational parameter A is  related to the parameters of 
the state (2) by 

-3.0 l l I 

A" -~ 

"k 

uk &k - p0 + CA: + (&k - p0)211'z 
" - 

where p. is  a parameter, and is given by (86). In the 
d-wave pairing state, Ak = A (cos k ,  - cos k y )  and in the 
s-wave state, Ak A. The full circles and squares are the 
MC results for the S- and d-waves respectively. The dotted 
and broken curves through the MC results are guides for the 
eyes. The second pair of dotted and broken curves are the 
results from RMF for S- and d-waves respectively. 
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1 I I I 
0 0.01 0.10 1 .oo 10.00 

A 

Figure 4. A comparison between the renormalised 
mean-field theory ((4)-(6)) (RMF) and Monte Carlo (MC) 
results  for the nearest neighbour spin-spin correlation 
(S, Si) in the projected BCS state (2). Both were  calculated 
with  a  total number of sites N, = 82 and a number of holes 
N, = 0, 8, 16. The variational parameter A is  related to the 
parameters at the state (2) by 

” “k Ak 

uk &k - PO + CA: + (&k - fiO)zll’z 
- 

where p. is  a  parameter and ck is given by (M). In the 
d-wave pairing state, Ak = A(cos k,  - cos k y )  and in the 
S-wave state A, = A. The full circles and squares are the MC 
results for the S- and d-waves respectively. The dotted and 
broken curves through them are guides for the eyes. The 
second pair of dotted and broken curves are the results 
from RMF for the S- and d-waves respectively. 

3. Gap equations 

In this section we derive the gap  equations for the pro- 
jected BCS wavefunction within the renormalised Hamil- 
tonian scheme described in 52. We consider only the 
even-parity case, i.e., u - k  v*_, = u k  u t ,  and 1 U - k  1’ = 
10, 1 2 *  

Evaluating (6), we obtain 

where N ,  is the total number of sites, and 

n 

Figure 5. The nearest neighbour spin-spin correlation 
function (S, - Si) as a function of electron filling  in the 
projected Fermi liquid state (uk v, = 0 in (2)). The 
renormalised mean-field theory ((4)-(6)) (RMF), broken 
curve, agrees well with the Monte Carlo (MC), full circles, 
result in the entire filling region. 

Note  that &k and have the same functional form, 
since H, is derived by kinetic exchange. The electron 
number operator N = &, c lu  C k u  has expectation value 

Let p be the chemical potential of the system, the 
( N )  = 2 x k  I v k  1’. 

quantity we want to minimise is 

W =  ( H ’  - P N ) ~ .  

While  minimising W with  respect to u k  and v k  for fixed 
p, one must remember that H is also a function of 6 
due to the renormalisation factors, and hence a function 
also of v k  . Carrying out this procedure, we find that 

1 uk12 = !dl + < k / E k )  (94 

I vk 1’ = - r k / E k )  (94 

and 

u k  0; = b&Ek (94 

where 

(94 

The parameters b k  and t k  are dimensionless, and 
they are related to the particle-particle and particle- 
hole pairing amplitudes respectively 

where 

;k = (st &k - fi)/(ags J) 

and fi is related to the chemical potential p by 
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In (10) 

with z = x and y ,  i + 7 denotes the NN of i in the 7 
direction. Since we consider the even-parity case, 5, is 
real, but 8, can be complex. 8 k  and 5, satisfy the follow- 
ing coupled gap equations : 

a, = N ;  1 7, &J(2Ekt) 
L' 

5 k  = ;k + N;' c yk-k' tkp/(2Ek')* (14) 
h' 

The first one is the same as the usual BCS gap  equation. 
The second one originates from the particlehole correl- 
ation.  From (12), it is clear that is related to the 
pairing in the unprojected state I q0). It describes the 
'smearing' of the pseudo-Fermi surface. However, a, is 
not the superconducting order parameter in the project- 
ed state 1 p) in our theory. E, turns  out to be the 
quasi-particle excitation energy (in units of jg, J) in the 
pairing state as we  will show  in $5. 

The coupled gap  equations (14) are the basic equa- 
tions in our  approach. They can also be written in the x 
and y component form : 

t r  = - N ,  C cos(kr)5JE, * (1 5 )  
k 

The gap  equations must be solved simultaneously with 
the hole concentration equation, 6 = N ;  X, tk/Ek. 

Before we discuss the non-trivial solutions, we note 
that A, = 0 is a trivial solution of the gap equations. 
This corresponds to the projected Fermi-liquid state. In 
this  case, 5, changes sign at the Fermi surface. The 
parameters 5, = 5, (= 5 )  are given by 

5 = Ns" 1 COS (k,) + COS (k,). 

The volume of the Fer1:li sea  is determined by the 
number of electrons. The energy  per  site is 

c1180 

W = -49, t r  - $9, Jt2.  

In particular, W = -48/n4J N -0.495 in the half-filled 
case. It will  be shown in the next section that this trivial 
solution is unstable against the pairing states with 
8, # 0. 

4. Solutions of the gap equations-haif-fliied case 

At the half-filling, 6 = 0, ,G = 0, and there is no kinetic 
energy. We are interested in the possible  lowest  energy 
states of the solution of (14). The  total energy of the 
system has a simple form in this case by  use of (7) and 
(14) 

W =  - $gs J c E , .  
k 

Therefore the lowest  energy states correspond to the 
maximum  value of &E,.  For this reason, we use an 
ansafz for E ,  to examine the solutions of the gap 
equationst 

E ,  = C(cos2(k,) + cos2(k,))'i2 (16) 
where C is a parameter to be determined. Note  that 
such a choice gives only four point zeros for E,. The 
gap equations then reduce to a single equation, and we 
get 

which has numerical value C N 0.479. The energy per 
site is 

W = - i g s J C 2  = -0.6885. 

This energy is much lower (about 20%) than  that of the 
projected Fermi-liquid state found above. The para- 
meter & describes the pairing correlation in the renor- 
malised Hamiltonian. Finite values of a, indicate the 
binding of the electron pairs in the pairing states (3). 

We  now determine the parameters and 5, 
required for the choice of E ,  in (16). Using (96) and (lo), 
we find that they should satisfy the following simulta- 
neous equations : 

There is a wide  class of parameters which  satisfy the 
conditions (17). All the states in this class give the same 
expectation value of the renormalised Hamiltonian H' 
in (5).  Therefore at the half-filling, H' has a large degen- 
eracy of ground states. For real A, and ay, these states 
can be illustrated diagrammatically as shown in  figure 
qa) .  A few examples of these states are 

d-wave pairing : 

d-wave density matrix: 

chiral state: 

anisotropic state: 

8, = 5, = c 8, = 5, = 0. 

We remark that the d-wave density matrix state is  dif- 
ferent  from the extended s-wave state proposed by Bas- 
karan, Zou and Anderson [8]. In their theory, the 
particle-hole amplitude ( C ' C ) ~  is not included, i.e. 
5, = 5, = 0. Therefore their state has the same energy 
as the projected Fermi-liquid state. The d-wave pairing 
state was studied numerically  in C171 and [ 181, and the 
chiral state was  discussed  in [lo]. They belong to the 
solutions of the same gap equations in the present 
approach. 
t There might be other solutions for the gap equations. We believe 
that the form of the energy given by (16) gives the lowest energy. 
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Figure 6. (a)  Diagrammatic illustration of the degenerate 
ground states for the renormalised Hamiltonian (5) at 
half-filling. 5 = <,R + <,g, A = h,R + &9, with a, given 
by (12) and (13). The full arrows represent the d-wave 
pairing state with 6 l A, and 151 = [ A  1 .  All the states in (17) 
with the real parameters & may be obtained by rotating 5 
and A simultaneously by angles 0, or reflecting the two 
vectors about the9 axis. (b)  An illustration of the SU(2) 
gauge transformation. A state described by (c, A') in (a) 
can be obtained by a local SU(2) from the state (6, A),  under 
which c; at the four sites of the plaquette transform 
according to (19), with ( a i ,  pi )  as denoted. The minus sign  in 
front of the parentheses corresponds to the states in (a) 
after a reflection about the x axis. The transformation 
operator cia at other lattice sites is determined by a 
translation. 

The degeneracy of the ground states of H may  be 
explained using the local SU(2) symmetry of the Heisen- 
berg Hamiltonian H,. This symmetry has been pointed 
out by Anderson [2].  Very recently Ameck and 
co-workers C221 have studied the invariance under a 
time-dependent SU(2) gauge transformation, and dis- 
cussed the equivalence of some different  mean-field 
theories. Here we wish to show that the symmetry 
described in (17) is a  sub-group of the local SU(2), 
which  preserves translational invariance and even parity 
that we imposed in deriving the gap  equations. 

Consider a local SU(2) gauge transformation, under 
which electron operators  at site i transform as 

+ ai + p i  c i l  

+ - B : c ! ~  + .:cil (19) 

where ai a: + p i  p: = 1. These are the particle-hole 
transformations with spin conservation. H,, hence H at 
half-filling is invariant under these transformations. 
Therefore all the states related by (19) are degenerate. A 
set of the parameters & and 5, in our  gap  equations 
transforms to another set of the parameters under (19). 
The transformations corresponding to the degenerate 
state (17) derived from the gap  equations  are represent- 
ed  in  figure 6(b), for real values of &. There is also one 
to one correspondence to transformations of the d-wave 
pairing state  to  a  state with complex & such as the 
chiral state (1  8c)  with a  and /? complex. 

Local U(1) gauge symmetry is a  sub-group of the 
local SU(2) symmetry since it is  of the form 

cio + Zi, = cia exp(iei). 

A general choice of Bi transforms the BCS pairing state 
(3) to a non-acs-type state, which has  the same energy 

as the former. Since under such a transformation the 
Bloch coherence is lost, i.e. a  state of the form 

Z k . a  = c exp(ik - Rj)Zj,o = c exp(ik * R j  + iOj)cj,o 
j i 

is no longer a coherent superposition of the original 
states. Yet  we can equally well pair ZkT with Z + k 1 ,  and 
the energy  would be the same as if  we pair c& with 
c + k l .  Thus the apparent coherent k-space pairing in the 
BCS wavefunction (3) is illusory. The absence of a coher- 
ent pairing order parameter at half-filling as a conse- 
quence of the U(1) gauge invariance has been stressed 
by Baskaran and Anderson [12]. 

It is important to realise that the states that  are 
degenerate due  to the SU(2) gauge symmetry are the 
unprojected states I v,) of (3), rather  than the  physical 
states I cp) which  obey the strict local constraint. How 
does a projected state change under SU(2)? According 
to (19), a vacuum state (empty state)  at site i must trans- 
form under SU(2) as 

I O ) i  -, eiei(a: - B T C ! ~  c t l )  I O ) i .  

This ensures that the vanishing of the state cial O ) i  
remains unchanged under the transformation as 
required physically.  However a singly  occupied electron 
state transforms under SU(2) as 

cjo I -, I O ) i .  

At half-filling, each site is  singly occupied. Therefore 
any half-filled state I cp) transforms into itself except  for 
an overall phase factor under the SU(2) operator 0 :  

Although$ does not commute with the projection 
operator P,, we observe for the half-filled state I cp,) 

OPdI~O)=pdOIcpO)* 
One way to see this is to notice that there is no empty 
site state also in P, I &). Thus we can rewrite 

I cpO> = n ( n i t  - n i J ) 2  I VO) 
i 

The SU(2) transformations all commute with the 
operator (nit - Let I cp) = P, I do), and 1 cpb) = 
0 l cpo>, then 

P d I ( P b ) = P d O I ~ O ) = O I ( P ) = e i e I ~ ) = e i e p d I c P O ) .  

This proves explicitly that the two states I q0) and I cpb) 
related by any local SU(2) gauge transformation corre- 
spond to the same state I cp) except  for a phase factor. 
Therefore all the states in (17) correspond to the same 
physical state.  The R V B  ground state is non-degradable. 

There are also redundancies in the higher  energy 
states in the fermion representation. For instance, the 
state of Baskaran, Zou and Anderson [S] at half-filled  is 
identical to the projected Fermi liquid state, because the 
former transforms to the latter under (19) with a = 1, 
B = 0 in one sublattice, and a = 0, = 1 in the other. 
This equivalence was also pointed out by Yokoyama 
and Shiba [ 181 in a different  way. 
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We now comment  on the local gauge  symmetry in 
the  original Hubbard model, which in terms of the  orig- 
inal fermion operator is 

This  Hamiltonian is not  invariant  under local gauge 
transformations with respect to the  operators diu. 
However, up  to  any finite order in t /U there exists a 
canonical  transformation, which eliminates the  doubly 
occupied sites [ 131 

H, -+ Heff = eiSH, e-  is. 

At half-filling, all the odd  order terms  in t / U  vanish. 
The  Hamiltonian is locally gauge  invariant with respect 
to the  electron  operators in the new representation, i.e. 
the ciu of (1 )  are  Wannier  operators of the  old  represen- 
tation, d i u .  Therefore  the local gauge  symmetry  holds to 
any finite order in perturbation  theory in t /U.  This is 
the  same as saying that the system has  undergone  a 
transition to a Mott  insulator [ 131. 

We have so far only examined  the  projected 
Bcs-type trial wavefunctions. It is likely that  the  true 
ground  state of the  model  Hamiltonian (1) at half-filled 
is the AF state [19]. Recently, Yokoyama  and Shiba [18, 
191 have studied  a projected Hartree-Fock-type AF 
state. Using VMC they found  the energy per site at 
half-filled to be -0.6425, slightly lower than -0.6365, 
the value found by Gros [l71 in  the d-wave pairing 
state by using a similar technique. However we may 
argue  that the holes favour  the  pairing  state away from 
half-filled because of the gain in kinetic energy. We have 
also  applied  the  renormalised  Hamiltonian approach  to 
the AF states.  Within  this  approximation, we find that  at 
the half-filled, the AF state  has higher energy than the 
RVB state (2), in contrast with the VMC results. We 
present the  derivation  and  the results in Appendix 1. 

5. Non-half-fllled case 

5.1. Ground state 

Firstly we examine  the energy needed to create propa- 
gating Bloch states. The simplest states for holes have 
the form 

I @ i u )  = c i u  l V >  

which destroys  a real electron at site i. We may  also 
make  a  propagating Bloch state for the hole of the  form 

I @ p )  = Cpu l v) .  (20) 
A rigorous  calculation is possible at  half-filling. 

We consider  any  translationally  invariant  spin 
singlet state 1 rp) at half-filling. Let  us  denote by a the 
NN spin-spin correlation in I v) ,  a = (S, Sj) ,  . Then 
the  magnetic energy loss of a hole in the  state miU is 
-4aJ, because the  four  bonds  connecting  the site i are 
mixing. Since the  matrix of H ,  in (2) between any  states 
1 Q i U )  and 1 Q j U )  is diagonal,  the moving hole state of 
(20) has  the  same  magnetic energy as in I (Diu). 

The kinetic energy of the hole in (20) is given by 

(HJP = 2t c (niunju + S'S,:), exp(ip 0 Rji )  + HC 

where ( )p denotes  the  expectation value in the half- 
filled state. Using the fact that (ni n j ) ,  = 1, we get 

< W  

(HJP = t(1 + 4a)(cos (p,) + cos ( p y ) ) .  (21) 

Since U 5 -0.33 for the  ground  state, (21) gives a  band 
width for a Bloch hole of 0.64 I t I .  The minimum energy 
to remove an electron  and  create  such  a Bloch hole is 
-0.32 t - 4aJ. 

The Bloch states  are  not  the lowest energy states of 
the holes however. We now apply  the gap  equations  to 
study  a system with a few pair  of holes. The energy to 
create  a  pair of holes is -2p by the definition of 
the chemical potential. Since the  parameter B = 0 at  
the half-filled, (1  1) gives the energy per hole to be 
N,"(aH/as),,  a  quantity related to the  unprojected 
state I v,) at half-filling. In  the presence of holes, the 
kinetic part of the Hamiltonian explicitly breaks  the 
SU(2) and U(l)  gauge symmetries, while the Heisenberg 
spin part remains  invariant  under these symmetries. 

Using (4) and (5),  for the  states I v,) described by 
(17), the  magnetic energy per hole is 

a value equivalent to the loss of four  bonds  in  the spin- 
spin  correlations, and it is the  same for all these states 
as a  consequence of the SU(2) gauge invariance of the 
spin part of the  Hamiltonian H,. The kinetic energy per 
hole in this  case is  given by 

( H , ) ~  = -4t(5, + ty). 

5 ,  is the particle-hole correlation in I y o )  as defined in 
(13). When  the holes are  introduced,  a  fraction (g3 of 
this correlation becomes coherent in the  state I v). 
Therefore  the  larger values of 5, correspond  to  the 
lower kinetic energy of the holes. But 5, are subject to 
(17). The kinetic energy can be written in the following 
form by using (1  7) : 

T = -4t(2C2 - I A, + Ay 12)1'2 sgn(5, + ty). 
Different parameters 5, and 5, describe different states 
with different energies upon  doping.  The  above hole 
kinetic energy expression immediately leads to the 
important conclusion that the d-wave pairing  state, 
where A, + Ay = 0 gives the best kinetic energy, which 
is 

= - qJ2)Ct = - 2.71 t .  

Both  the d-wave density  matrix  state (18b) and the 
chiral  state (18c) have zero kinetic energies, and  are  not 
favoured  upon  doping. The kinetic energy for the 
d-wave pairing  state in our analytical approach is quite 
close to the VMC result, where it is found to be -2.55 t 
for systems with 10% holes [17]. It is also  substantially 
below the value found for a Bloch hole. 

42 



The  introduction of some  holes  breaks  the local 
gauge  symmetry and causes the ground  state  to be 
coherent.  The  stable lowest energy state  upon  doping is 
the d-wave pairing  state. 

It is worthwhile  remarking that in a Hubbard model 
it is the  expectation value of the  kinetic energy which 
determines  the  integrated  optical weight associated with 
the  charge  carriers in the  f-sum  rule [23]  and in the 
present  case  this  optical weight is proportional to the 
number of holes with an optical  mass  determined from 
the  proportionality  constant of order at" (where a is 
the  lattice  constant). 

The  gap  equations for the finite hole concentrations 
can be solved numerically. Here we shall consider only 
the  most  stable state-the d-wave  pairing  state. In this 
case, we set dx = - A y  = d, and 5, = 5, = 5. The  four 
equations (13) reduce to  two because of the  symmetry 
between the x and y components. These two  equations 
uniquely determine d and 5 for the fixed values of t ,  J 
and B. The numerical  results of the gap  equations  are 
plotted in figure 7 for d as a  function of the hole con- 
centration. 

We now discuss the  superconducting  order  param- 
eter. As mentioned in 53, d is not  the  order  parameter. 
The  superconducting  order  parameter is 

A s c ( R i j )  = (C!? Cj'l - C!l Cj'r) 

an expectation value in the  projected  state (2) .  This 
quantity describes the  Cooper  pairing in a real space 
representation. We shall adopt the  Gutzwiller  method 
to calculate  this  quantity. In analogy to the  derivation 
for the  hopping energy in 52 we find that the  nearest- 
neighbour sites i a n d j  

( 4 7  41)  = g t (c !y  cJr>o * 

Therefore for nearest-neighbour sites, the  order  para- 
meter is related to the  variational  parameter a in  the 

I I I 

0 0 1  0 2  
6 

Flgure 7. Variational parameter a and superconducting 
order parameter Asc as functions of the hole concentration 
6 for a choice of t/J = 5 in the d-wave pairing state. 

A resonant valence bond wavefunction 

gap  equations by 

Asc = g,A. (22)  

The value of Asc as a  function of 6 is plotted in figure 7 
in comparison with 3. A,, vanishes linearly near 6 = 0. 
ASc found in our  theory is in good  agreement with the 
Monte  Carlo results [17]. The absence of the  supercon- 
ducting  order  parameter at half-filled obtained  from (22)  
agrees with the discussion in §4 from the viewpoint of 
the local gauge  symmetry. 

The kinetic energy of holes in the AF state is found 
to be quite high in our analytic approach (see Appendix 
1). However, the Gutzwiller approximation we adopted 
is too  rough  to determine  whether  a RVB or AF state  has 
lower energy. Numerical results of VMC [17-191 suggest 
both  the spin-spin correlation energy and the kinetic 
energy of the holes between the d-wave pairing  state 
and the AF states  are very close. The  question which 
state is more  favourable in energy remains unresolved. 

5.2. Excited states and finite  temperatures 

We begin by examining  the  spin degrees of freedom in 
half-filled and near half-filled cases. An excited state  can 
be created by applying  the  spin raising operator  to a 
specific site to obtain 

I y i ,  +) = I q O > .  

We can  commute st with P, to  obtain 

I y i , + ) = P d S ! I ( P O )  

= 1 exp[ib -p ' )  ' Ri)IPd c p ' l  I q O > .  
P .  P' 

This  state is therefore a  superposition of two  indepen- 
dent  quasi-particle  states  similar to a  metal where the 
low energy excitations are  made  up of superpositions of 
electron and hole states.  The  quasi-particle  states 
(spinons)  can be defined by 

I y p T >  = ( u k  + u k c f t   c t k l )  10). (23 )  
k + p  

The  quasi-particle energy E ,  is defined to be the differ- 
ence of the  expectation values of K = H - p N  in the 
state I and in the  ground  state I p). We use the 
Gutzwiller  method to calculate  the energy of the  state 
(23). The energy difference between the  two  states  con- 
tains  two  parts. One is due  to the  changes of the  renor- 
malization  factors g1 and g s ,  the  other comes from the 
change of the wavefunction itself. The  former just 
cancels exactly the  second  term in p in (1  1). Using (7) to 
calculate  the energy difference due  to the wavefunction 
change, we get 

E ,  = (1 - 2Ui) g t E p  + N,' 1 vk- , ,U; - f i  ( k 1 
+ 2 u k u k N ; '  c & _ , u ~ ~ k .  

k 

Applying the gap  equations  to simplify the expression, 
we obtain 

E ,  = 2gs J E ,  . (24) 
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Note this energy is independent of the local SU(2) gauge 
and does  not  depend on the  particular fermion repre- 
sentation. At the  pseudo-Fermi surface, where by defini- 
tion 5, = 0, we have E ,  = 15, I. Since the  state ( 2 3 )  
breaks  a  pair of electrons, E ,  describes the  binding 
energy of the pair at the  pseudo-Fermi surface. The 
excitation energy depends on the  particular RVB. For 
the Fermi liquid state (#k  uk = 0) then E ,  = 0 over the 
whole pseudo-Fermi surface. However in the  ground 
RVB state  it vanishes only at  four points, e.g. when 
n = 1, E ,  = E,  = 0, if (p,, p,) = (_+7~/2, _ + n / 2 )  and  the 
density of spinon  states at low energies is 

We turn now to a brief discussion of the system at 
finite temperature.  The extension of the mean-field gap 
equations to finite T is not so straightforward. The exis- 
tence of a finite & is controlled by the energy scale of 

i.e.  by J in (24). On the  other  hand if  we consider  the 
limit 6 6 1  there is a very small energy scale a6t which 
controls  the definition of a  coherent gauge. In  other 
words it is only the kinetic energy which allows us to 
determine  the gauge uniquely and at temperatures 
J B T B 6t ,  the  gauge coherence will be lost. Yet in this 
temperature  range  the  magnetic coherence survives 
since as we have stressed earlier  this is independent of 
the choice of gauge on  each site. The  properties of the 
system in this  temperature region are clearly very differ- 
ent from Fermi liquid behaviour  as  Anderson  has 
stressed and these two energy scales should  correspond 
to his ‘holon’ and ‘spinon’ energy scales respectively. 
The  thermopower  should obey the Heikes formula [ 2 4 ]  
and we can expect only a low mobility of the holes. 
However, a  more detailed study of this regime is 
required. 

energy of order J to break  a  pair.  These pre-existing 
electron  pairs lead to a  non-zero  superconductivity 
amplitude  upon  doping,  and  the  magnitude of this 
superconducting  amplitude or  order  parameter is 
shown to be proportional  to  the hole concentration 6 
when 6 is small. The  elementary  excitations at 
half-filling are the  projected BCS quasi-particle  states or 
spinons, with four  point zeros on the  pseudo-Fermi 
surface. 

Our analytic  approach  can  also be applied to ID 
and systems with dimensionality d 2 3. We find that 
lowest energy state in I D  is the projected Fermi liquid 
RVB without  electron  pairing, as shown in Appendix 2. 
Our theory predicts no superconductivity in a ID RVB. 
For large d, the energy per bond in the RVB pairing  state 
is proportional  to  l/d, reduces relative to  an AF. So the 
pairing  state is particularly  favourable in 2D. The precise 
form of the 2~ phase  diagrams which depends sensiti- 
vely on the relative energies of the AF and  d-wave RVB 
states  as a  function of 6 is too  subtle  a  question  to be 
settled by the  approximation we use here. 

There  are  many  questions  that  require  further inves- 
tigation such as  the exact relationship between the dis- 
cussion here in terms of phase coherence among  the 
paired  electrons  and Anderson’s ‘holon’ C251 concept or 
the nature of the  high-temperature  phase where this 
phase coherence is lost but  strong  magnetic  correlations 
remain and presumably do  not lead to a  Fermi liquid 
that is the  usual  description  of  a  normal  state. 
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6. Discussion  Appendix 1 : The  projected  spin-density-wave  state 

We have used a  variational  method to study  a  projected 
BCS trial wavefunction for the  square  lattice effective 
Hamiltonian.  Using  a  Gutzwiller  approximation to 
treat  the effect of the  projection  operator, we obtained  a 
renormalised  Hamiltonian in which the  projection  oper- 
ator is replaced by renormalisation factors. This 
approximation is shown to be in good agreement with 
numerical Monte  Carlo calculations for such  projected 
wavefunctions. In this mean-field approximation  both 
particle-particle and particle-hole pairing  amplitudes 
must be included. The fermion representation for the 
ground  state  at the half-filled band is highly redundant, 
due  to a local SU(2) invariance at exactly half-filling. 
This  redundancy is reflected in an  apparent degeneracy 
of  the BCS trial wavefunction before projection.  Doping 
destroys the local SU(2) invariance  and splits these 
degenerate  states,  and we find that the  stable  state  upon 
doping is the  d-wave  pairing RVB state. In this RVB state, 
electrons  are paired even at half-filling and  it  costs an 

In this Appendix, we use the  renormalised  Hamiltonian 
approach  to study the projected spin-density-wave state 
for effective Hamiltonian (1). That  state was proposed 
and  studied using VMC by Yokoyama  and  Shiba [18]. 
The  generalisation of the  Gutzwiller  method to the  anti- 
ferromagnetic  states for the  hopping process was formu- 
lated by Ogawa  and  co-workers [ 2 6 ] .  

The projected spin-density-wave  state [18, 1 9 1  is 

l$ )  = P d I $ O )  (Al.1) 

I $ o )  = (uk C L  G u k C t + Q ,  u )  Io> (A1.2) 
ku 

where k runs over the  Fermi sea, Q = z/a (1, l), and 

#k = [(l + cos 8 k ) / 2 ] ” 2  

= [( 1 - cos e k ) / 2 ]  

cos 8, = r k / ( A : F  + y l ) 1 ’ 2 .  

AAF is a  variational  parameter, and y k  is given by (84. 
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In a  study of the  expectation value in the  state 
(ALl), we use the  Gutzwiller  approximation to replace 
the  projection operator by renormalisation factors. In 
analogy to the  analysis we discussed in $2,  we find that 

l - n  
9t = 1 - 2nt n,/n 

gs = (1 - 2nT nl/n)-' 

where nT and n1 are  the  spin-up  and spin-down  electron 
occupation  number of state I $,,) in one  sublattice 
respectively. The  renormalisation  factors reduce to (4) in 
the  case nt  = n l  , and  the form for gt agrees with [26]. 

Within  this scheme, we obtain  the energy per site at 
half-filling 

W = -2J(a2 + 6b2)/(1 + U')' 

where 

a = N; 1 AAF/(AiF + $)"' 

b = (8Ns)" 1 yi/ (AiF + yf)"'. 

The spin-spin correlation (Si Si) = *W, and the  stag- 
gered magnetisation is 

k 

k 

M ,  = fit - i i L  = 2 4 1  + U')  

with ii, the  occupation  number in the  state I $). 
(Si Si) and M ,  are  plotted in figure A1 as functions of 
A A F  , Figure A1 also  shows  the VMC calculations [ 181. 
The case A A F  = 0 corresponds  to  the  projected  Fermi 
liquid state, while A A ,  + m corresponds  to  the Nee1 
state. The results agree well for large values of A A F ,  but 
there are  substantial  deviations for small A A F .  

The kinetic energy per hole in  our theory is 

T = - 16tb/(l + U'). 

For the  optimal value of AAF ( 0.9), T = - 2.16t, sub- 
stantially  higher than  that in the  d-wave  pairing  state. 
Note  that this value is also  higher than  that found in 

Figure A l .  Spin-spin correlation and staggered 
magnetisation M, as functions of AnF in the projected 
spin-density-wave state. The full curves are the results of 
the renormalised  Hamiltonian approach, and the broken 
curves are the VMC results (extrapolated to the infinite 
systems) by Yokoyama and Shiba [lS, 191. 

the VMC calculation [18], where the  optimal A A F  is 
found to'be much  smaller. 

Appendix 2. RVB in a ID system 

The  renormalised  Hamiltonian approach can be 
straightforwardly  applied to the model (1) in 1 ~ .  Using 
the  projected BCS wavefunction (2), and the same tech- 
nique for 2 ~ ,  we have found that the RVB ground  state 
at the half-filling is described by an equation between 5, 
and Ax (defined in (1 2)-( 13)) : 

I Ax 12 + 5: = c: (A2.1) 

with 

C ,  = (2Ns)" 1 I  COS(^,) I = 2/n2 

(A2.1)  is parallel to (17) in 2 ~ .  Similar to the 2~ case, 
different parameters in (A2.1) are related to each other 
under  the SU(2) gauge  transformation, and correspond 
to the  same physical state.  This  state is described by the 
projected  Fermi liquid state, where A, = 0, 5, = C , .  
Earlier Monte  Carlo calculations 1271 and  more recent 
exact calculation [28] with this wavefunction have 
shown that the energy of this  state is extremely close to 
the  exact  solution [29]. The energy per site in our 
analytic mean-field approach is -6/n2. This value devi- 
ates by about 37% from the  true result [27,  281. This 
quantitative  discrepancy however is not  surprising, 
because the Gutzwiller approximation is poor in ID. 

In parallel to the discussion in $4, we can  study  the 
system with some holes. We found that the  stable 
lowest-energy state  corresponds  to 5, = 0. Introducing 
the finite value of A,, the system loses kinetic energy. 
Therefore we expect there is no electron  pairing and  no 
superconductivity in this ID RVB. 

k x  
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