Exercise sheet 3

- 1. Is the class of ordinals in bijection with the class of cardinals? Prove or confute it.
- 2. Compute the cardinal numbers $\beth_0^{\beth_2^{-1}}$, and $\beth_{\omega} \cdot \aleph_{\omega}$.
- 3. Compute the ordinal numbers $\omega_2^{\omega_3}$ and $(\omega \cdot \omega)^{\omega} \cdot \omega_1$.
- 4. Using Cantor normal forms, decide whether the ordinals $\omega^{\omega_1} \cdot \omega_1$ and $\omega_1^{\omega_1}$ are equal.
- 5. Define the function f from ordinals to cardinals as follows:
 - f(0) = 0;
 - $f(\alpha + 1) = \aleph_{f(\alpha)};$
 - if α is a limit ordinal, $f(\alpha) = \sup_{\beta < \alpha} f(\beta)$.

Show that a cardinal κ is weakly inaccessible if and only if $f(\kappa) = \kappa$.

- 6. Recall the definition of transitive closure of a set X as:
 - $X_0 = X;$
 - $X_{n+1} = \bigcup X_n;$
 - $TC(X) = \bigcup_{n \in \mathbb{N}} X_n$.

Show that this really is the transitive closure of X, i.e. if Y is a transitive set such that $X \subseteq Y$ then $TC(X) \subseteq Y$. Conclude that X is transitive if and only if X = TC(X).

7. Assume that there is a huge cardinal. Can we conclude that Vopěnka's principle is provable in ZFC set theory?