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Preface to the second edition

I was very encouraged with the reception of the first edition, from both staff and
students. Correspondence eliminated a number of errors and helped me to improve
clarity. Some of the new sections are in response to communications I received.

The book has retained its basic structure, but there have been extensive revisions
to the text. Part I, containing the mathematical background, has been considerably
enhanced in all chapters. All chapters contain new material. This new material is
largely in terms of the mathematical content, but there are some new economic
examples to illustrate the mathematics. Chapter 1 contains a new section on di-
mensionality in economics, a much-neglected topic in my view. Chapter 3 on
discrete systems has been extensively revised, with a more thorough discussion of
the stability of discrete dynamical systems and an extended discussion of solving
second-order difference equations. Chapter 5 also contains a more extensive dis-
cussion of discrete systems of equations, including a more thorough discussion of
solving such systems. Direct solution methods using Mathematica and Maple are
now provided in the main body of the text. Indirect solution methods using the
Jordan form are new to this edition. There is also a more thorough treatment of the
stability of discrete systems.

The two topics covered in chapter 6 of the first edition have now been given a
chapter each. This has allowed topics to be covered in more depth. Chapter 6 on
control theory now includes the use of Excel’s Solver for solving discrete control
problems. Chapter 7 on chaos theory has also been extended, with a discussion
of Sarkovskii’s theorem. It also contains a much more extended discussion of
bifurcations and strange attractors.

Changes to part II, although less extensive, are quite significant. The mathemat-
ical treatment of cobwebs in chapter 8 has been extended and there is now a new
section on stock models and another on chaotic demand and supply. Chapter 9 on
dynamic oligopoly is totally new to this edition. It deals with both discrete and
continuous dynamic oligopoly and goes beyond the typical duopoly model. There
is also a discussion of an R&D dynamic model of duopoly and a brief introduction
to Schumpeterian dynamics. Chapter 11 now includes a discussion of deflationary
‘death spirals’ which have been prominent in discussions of Japan’s downturn.
Cagan’s model of hyperinflations is also a new introduction to this chapter.

The open economy was covered quite extensively in the first edition, so these
chapters contain only minor changes. Population models now include a consid-
eration of age classes and Leslie projection matrices. This material is employed



xii Preface to the second edition

in chapter 15 to discuss culling policy. The chapter on overlapping generations
modelling has been dropped in this edition to make way for the new material.
Part of the reason for this is that, as presented, it contained little by the way of
dynamics. It had much more to say about nonlinearity.

Two additional changes have been made throughout. Mathematica and Maple
routines are now generally introduced into the main body of the text rather than
as appendices. The purpose of doing this is to show that these programmes are
‘natural’ tools for the economist. Finally, there has been an increase in the number
of questions attached to almost all chapters. As in the first edition, the full solution
to all these questions is provided on the Cambridge University website, which is
attached to this book: one set of solutions provided in Mathematica notebooks and
an alternative set of solutions provided in Maple worksheets.

Writing a book of this nature, involving as it does a number of software pack-
ages, has become problematic with constant upgrades. This is especially true with
Mathematica and Maple. Some of the routines provided in the first edition no
longer work in the upgrade versions. Even in the final stages of preparing this edi-
tion, new upgrades were occurring. I had to make a decision, therefore, at which
upgrade I would conclude. All routines and all solutions on the web site are carried
out with Mathematica 4 and Maple 6.

I would like to thank all those individuals who wrote or emailed me on material
in the first edition. I would especially like to thank Mary E. Edwards, Yee-Tien Fu,
Christian Groth, Cars Hommes, Alkis Karabalis, Julio Lopez-Gallardo, Johannes
Ludsteck and Yanghoon Song. I would also like to thank Simon Whitby for in-
formation and clarification on new material in chapter 9. I would like to thank
Ashwin Rattan for his continued support of this project and Barbara Docherty for
an excellent job of copy-editing, which not only eliminated a number of errors but
improved the final project considerably.

The author and publishers wish to thank the following for permission to use
copyright material: Springer-Verlag for the programme listing on p. 192 of A First
Course in Discrete Dynamic Systems and the use of the Visual D Solve software
package from Visual D Solve; Cambridge University Press for table 3 from British
Economic Growth 1688–1959, p. 8.

The publisher has used its best endeavours to ensure that the URLs for external
websites referred to in this book are correct and active at the time of going to
press. However, the publisher has no responsibility for the websites and can make
no guarantee that a site will remain live or that the content is or will remain
appropriate.

March 2002



Preface to the first edition

The conception of this book began in the autumn semester of 1990 when I under-
took a course in Advanced Economic Theory for undergraduates at the University
of Stirling. In this course we attempted to introduce students to dynamics and
some of the more recent advances in economic theory. In looking at this material it
was quite clear that phase diagrams, and what mathematicians would call qualita-
tive differential equations, were becoming widespread in the economics literature.
There is little doubt that in large part this was a result of the rational expectations
revolution going on in economics. With a more explicit introduction of expec-
tations into economic modelling, adjustment processes became the mainstay of
many economic models. As such, there was a movement away from models just
depicting comparative statics. The result was a more explicit statement of a model’s
dynamics, along with its comparative statics. A model’s dynamics were explicitly
spelled out, and in particular, vectors of forces indicating movements when the
system was not in equilibrium. This led the way to solving dynamic systems by
employing the theory of differential equations. Saddle paths soon entered many
papers in economic theory. However, students found this material hard to follow,
and it did not often use the type of mathematics they were taught in their quan-
titative courses. Furthermore, the material that was available was very scattered
indeed.

But there was another change taking place in Universities which has a bearing
on the way the present book took shape. As the academic audit was about to
be imposed on Universities, there was a strong incentive to make course work
assessment quite different from examination assessment. Stirling has always had a
long tradition of course work assessment. In the earlier period there was a tendency
to make course work assessment the same as examination assessment: the only
real difference being that examinations could set questions which required greater
links between material since the course was by then complete. In undertaking this
new course, I decided from the very outset that the course work assessment would
be quite different from the examination assessment. In particular, I conceived the
course work to be very ‘problem oriented’. It was my belief that students come to
a better understanding of the economics, and its relation to mathematics, if they
carry out problems which require them to explicitly solve models, and to go on to
discuss the implications of their analysis.

This provided me with a challenge. There was no material available of this type.
Furthermore, many economics textbooks of an advanced nature, and certainly the
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published articles, involved setting up models in general form and carrying out very
tedious algebraic manipulations. This is quite understandable. But such algebraic
manipulation does not give students the same insight it may provide the research
academic. A compromise is to set out models with specific numerical coefficients.
This has at least four advantages.

It allowed the models to be solved explicitly. This means that students can
get to grips with the models themselves fairly quickly and easily.

Generalisation can always be achieved by replacing the numerical coef-
ficients by unspecified parameters. Or alternatively, the models can be
solved for different values, and students can be alerted to the fact that
a model’s solution is quite dependent on the value (sign) of a particular
parameter.

The dynamic nature of the models can more readily be illustrated. Ac-
cordingly concentration can be centred on the economics and not on the
mathematics.

Explicit solutions to saddle paths can be obtained and so students can
explicitly graph these solutions. Since it was the nature of saddle paths
which gave students the greatest conceptual difficulty, this approach soon
provided students with the insight into their nature that was lacking from
a much more formal approach. Furthermore, they acquired this insight
by explicitly dealing with an economic model.

I was much encouraged by the students’ attitude to this ‘problem oriented’
approach. The course work assignments that I set were far too long and required far
more preparation than could possibly be available under examination conditions.
However, the students approached them with vigour during their course work
period. Furthermore, it led to greater exchanges between students and a positive
externality resulted.

This book is an attempt to bring this material together, to extend it, and make
it more widely available. It is suitable for core courses in economic theory, and
reading for students undertaking postgraduate courses and to researchers who
require to acquaint themselves with the phase diagram technique. In addition, it
can also be part of courses in quantitative economics. Outside of economics, it is
also applicable to courses in mathematical modelling.

Finally, I would like to thank Cambridge University Press and the department of
economics at Stirling for supplying the two mathematical software programmes;
the copy editor, Anne Rix, for an excellent job on a complex manuscript; and my
wife, Anne Thomson, for her tolerance in bringing this book about.

January 1997
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Dynamic modelling





CHAPTER 1

Introduction

1.1 What this book is about

This is not a book on mathematics, nor is it a book on economics. It is true that
the over-riding emphasis is on the economics, but the economics under review is
specified very much in mathematical form. Our main concern is with dynamics and,
most especially with phase diagrams, which have entered the economics literature
in a major way since 1990. By their very nature, phase diagrams are a feature of
dynamic systems.

But why have phase diagrams so dominated modern economics? Quite clearly
it is because more emphasis is now placed on dynamics than in the past. Com-
parative statics dominated economics for a long time, and much of the teaching is
still concerned with comparative statics. But the breakdown of many economies,
especially under the pressure of high inflation, and the major influence of in-
flationary expectations, has directed attention to dynamics. By its very nature,
dynamics involves time derivatives, dx/dt, where x is a continuous function of
time, or difference equations, xt − xt−1 where time is considered in discrete units.
This does not imply that these have not been considered or developed in the past.
What has been the case is that they have been given only cursory treatment. The
most distinguishing feature today is that dynamics is now taking a more central
position.

In order to reveal this emphasis and to bring the material within the bounds
of undergraduate (and postgraduate) courses, it has been necessary to consider
dynamic modelling, in both its continuous and discrete forms. But in doing this
the over-riding concern has been with the economic applications. It is easy to
write a text on the formal mathematics, but what has always been demonstrated in
teaching economics is the difficulty students have in relating the mathematics to
the economics. This is as true at the postgraduate level as it is at the undergraduate
level. This linking of the two disciplines is an art rather than a science. In addi-
tion, many books on dynamics are mathematical texts that often choose simple
and brief examples from economics. Most often than not, these reduce down to
a single differential equation or a single difference equation. Emphasis is on the
mathematics. We do this too in part I. Even so, the concentration is on the math-
ematical concepts that have the widest use in the study of dynamic economics. In
part II this emphasis is reversed. The mathematics is chosen in order to enhance the
economics. The mathematics is applied to the economic problem rather than the
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(simple) economic problem being applied to the mathematics. We take a number
of major economic areas and consider various aspects of their dynamics.

Because this book is intended to be self-contained, then it has been necessary
to provide the mathematical background. By ‘background’ we, of course, mean
that this must be mastered before the economic problem is reviewed. Accordingly,
part I supplies this mathematical background. However, in order not to make part I
totally mathematical we have discussed a number of economic applications. These
are set out in part I for the first time, but the emphasis here is in illustrating the
type of mathematics they involve so that we know what mathematical techniques
are required in order to investigate them. Thus, the Malthusian population growth
model is shown to be just a particular differential equation, if population growth
is assumed to vary continuously over time. But equally, population growth can be
considered in terms of a discrete time-period model. Hence, part I covers not only
differential equations but also difference equations.

Mathematical specification can indicate that topics such as A, B and C should
be covered. However, A, B and C are not always relevant to the economic prob-
lem under review. Our choice of material to include in part I, and the emphasis
of this material, has been dictated by what mathematics is required to understand
certain features of dynamic economic systems. It is quite clear when considering
mathematical models of differential equations that the emphasis has been, and
still is, with models from the physical sciences. This is not surprising given the
development of science. In this text, however, we shall concentrate on economics
as the raison d’être of the mathematics. In a nutshell, we have taken a number
of economic dynamic models and asked: ‘What mathematics is necessary to un-
derstand these?’ This is the emphasis of part I. The content of part I has been
dictated by the models developed in part II. Of course, if more economic models
are considered then the mathematical background will inevitably expand. What we
are attempting in this text is dynamic modelling that should be within the compass
of an undergraduate with appropriate training in both economics and quantitative
economics.

Not all dynamic questions are dealt with in this book. The over-riding concern
has been to explain phase diagrams. Such phase diagrams have entered many
academic research papers over the past decade, and the number is likely to increase.
Azariades (1993) has gone as far as saying that

Dynamical systems have spread so widely into macroeconomics that vector fields
and phase diagrams are on the verge of displacing the familiar supply–demand
schedules and Hicksian crosses of static macroeconomics. (p. xii)

The emphasis is therefore justified. Courses in quantitative economics generally
provide inadequate training to master this material. They provide the basics in
differentiation, integration and optimisation. But dynamic considerations get less
emphasis – most usually because of a resource constraint. But this is a most un-
fortunate deficiency in undergraduate teaching that simply does not equip students
to understand the articles dealing with dynamic systems. The present book is one
attempt to bridge this gap.

I have assumed some basic knowledge of differentiation and integration, along
with some basic knowledge of difference equations. However, I have made great
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pains to spell out the modelling specifications and procedures. This should enable a
student to follow how the mathematics and economics interrelate. Such knowledge
can be imparted only by demonstration. I have always been disheartened by the
idea that you can teach the mathematics and statistics in quantitative courses,
and you can teach the economics in economics courses, and by some unspecified
osmosis the two areas are supposed to fuse together in the minds of the student.
For some, this is true. But I suspect that for the bulk of students this is simply not
true. Students require knowledge and experience in how to relate the mathematics
and the economics.

As I said earlier, this is more of an art than a science. But more importantly, it
shows how a problem excites the economist, how to then specify the problem in a
formal (usually mathematical) way, and how to solve it. At each stage ingenuity is
required. Economics at the moment is very much in the mould of problem solving.
It appears that the procedure the investigator goes through1 is:

(1) Specify the problem
(2) Mathematise the problem
(3) See if the problem’s solution conforms to standard mathematical solutions
(4) Investigate the properties of the solution.

It is not always possible to mathematise a problem and so steps (2)–(4) cannot
be undertaken. However, in many such cases a verbal discussion is carried out in
which a ‘story’ is told about the situation. This is no more than a heuristic model,
but a model just the same. In such models the dynamics are part of the ‘story’ –
about how adjustment takes place over time. It has long been argued by some
economists that only those problems that can be mathematised get investigated.
There are advantages to formal modelling, of going beyond heuristics. In this book
we concentrate only on the formal modelling process.

1.2 The rise in economic dynamics

Economic dynamics has recently become more prominent in mainstream eco-
nomics. This influence has been quite pervasive and has influenced both micro-
economics and macroeconomics. Its influence in macroeconomics, however, has
been much greater. In this section we outline some of the main areas where eco-
nomic dynamics has become more prominent and the possible reasons for this rise
in the subject.

1.2.1 Macroeconomic dynamics

Economists have always known that the world is a dynamic one, and yet a scan of
the books and articles over the past twenty years or so would make one wonder if
they really believed it. With a few exceptions, dynamics has been notably absent
from published works. This began to change in the 1970s. The 1970s became a
watershed in both economic analysis and economic policy. It was a turbulent time.

1 For an extended discussion of the modelling process, see Mooney and Swift (1999, chapter 0).
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Economic relationships broke down, stagflation became typical of many West-
ern economies, and Conservative policies became prominent. Theories, especially
macroeconomic theories, were breaking down, or at best becoming poor predictors
of economic changes. The most conspicuous change was the rapid (and acceler-
ating) rise in inflation that occurred with rising unemployment. This became a
feature of most Western economies. Individuals began to expect price rises and to
build this into their decision-making. If such behaviour was to be modelled, and it
was essential to do so, then it inevitably involved a dynamic model of the macro-
economy. More and more, therefore, articles postulated dynamic models that often
involved inflationary expectations.

Inflation, however, was not the only issue. As inflation increased, as OPEC
changed its oil price and as countries discovered major resource deposits, so
there were major changes to countries’ balance of payments situations. Macro-
economists had for a long time considered their models in the context of a closed
economy. But with such changes, the fixed exchange rate system that operated
from 1945 until 1973 had to give way to floating. Generalised floating began in
1973. This would not have been a problem if economies had been substantially
closed. But trade in goods and services was growing for most countries. Even more
significant was the increase in capital flows between countries. Earlier trade theo-
ries concentrated on the current account. But with the growth of capital flows, such
models became quite unrealistic. The combination of major structural changes and
the increased flows of capital meant that exchange rates had substantial impacts
on many economies. It was no longer possible to model the macroeconomy as a
closed economy. But with the advent of generalised floating changes in the ex-
change rate needed to be modelled. Also, like inflation, market participants began
to formulate expectations about exchange rate movements and act accordingly. It
became essential, then, to model exchange rate expectations. This modelling was
inevitably dynamic. More and more articles considered dynamic models, and are
still doing so.

One feature of significance that grew out of both the closed economy modelling
and the open economy modelling was the stock-flow aspects of the models. Key-
nesian economics had emphasised a flow theory. This was because Keynes himself
was very much interested in the short run – as he aptly put it: ‘In the long run we
are all dead.’ Even growth theories allowed investment to take place (a flow) but
assumed the stock of capital constant, even though such investment added to the
capital stock! If considering only one or two periods, this may be a reasonable
approximation. However, economists were being asked to predict over a period of
five or more years. More importantly, the change in the bond issue (a flow) altered
the National Debt (a stock), and also the interest payment on this debt. It is one
thing to consider a change in government spending and the impact this has on the
budget balance; but the budget, or more significantly the National Debt, gives a
stock dimension to the long-run forces. Governments are not unconcerned with
the size of the National Debt.

The same was true of the open economy. The balance of payments is a flow. The
early models, especially those ignoring the capital account, were concerned only
with the impact of the difference between the exports and imports of goods and
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services. In other words, the inflow and outflow of goods and services to and from
an economy. This was the emphasis of modelling under fixed exchange rates. But
a deficit leads to a reduction in the level of a country’s stock of reserves. A surplus
does the opposite. Repeated deficits lead to a repeated decline in a country’s level
of reserves and to the money stock. Printing more money could, of course, offset
the latter (sterilisation), but this simply complicates the adjustment process. At
best it delays the adjustment that is necessary. Even so, the adjustment requires
both a change in the flows and a change in stocks.

What has all this to do with dynamics? Flows usually (although not always)
take place in the same time period, say over a year. Stocks are at points in time. To
change stock levels, however, to some desired amount would often take a number
of periods to achieve. There would be stock-adjustment flows. These are inherently
dynamic. Such stock-adjustment flows became highly significant in the 1970s and
needed to be included in the modelling process. Models had to become more
dynamic if they were to become more realistic or better predictors.

These general remarks about why economists need to consider dynamics, how-
ever, hide an important distinction in the way dynamics enters economics. It enters
in two quite different and fundamental ways (Farmer 1999). The first, which has
its counterpart in the natural sciences, is from the fact that the present depends
upon the past. Such models typically are of the form

yt = f ( yt−1) (1.1)

where we consider just a one-period lag. The second way dynamics enters macro-
economics, which has no counterpart in the natural sciences, arises from the fact
that economic agents in the present have expectations (or beliefs) about the future.
Again taking a one-period analysis, and denoting the present expectation about
the variable y one period from now by Eyt+1, then

yt = g(Eyt+1) (1.2)

Let us refer to the first lag as a past lag and the second a future lag. There is
certainly no reason to suppose modelling past lags is the same as modelling future
lags. Furthermore, a given model can incorporate both past lags and future lags.

The natural sciences provide the mathematics for handling past lags but has
nothing to say about how to handle future lags. It is the future lag that gained most
attention in the 1970s, most especially with the rise in rational expectations. Once
a future lag enters a model it becomes absolutely essential to model expectations,
and at the moment there is no generally accepted way of doing this. This does not
mean that we should not model expectations, rather it means that at the present
time there are a variety of ways of modelling expectations, each with its strengths
and weaknesses. This is an area for future research.

1.2.2 Environmental issues

Another change was taking place in the 1970s. Environmental issues were becom-
ing, and are becoming, more prominent. Environmental economics as a subject
began to have a clear delineation from other areas of economics. It is true that
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environmental economics already had a body of literature. What happened in the
1970s and 1980s was that it became a recognised sub-discipline.

Economists who had considered questions in the area had largely confined
themselves to the static questions, most especially the questions of welfare and
cost–benefit analysis. But environmental issues are about resources. Resources
have a stock and there is a rate of depletion and replenishment. In other words,
there is the inevitable stock-flow dimension to the issue. Environmentalists have
always known this, but economists have only recently considered such issues.
Why? Because the issues are dynamic. Biological species, such as fish, grow and
decline, and decline most especially when harvested by humans. Forests decline
and take a long time to replace. Fossil fuels simply get used up. These aspects
have led to a number of dynamic models – some discrete and some continuous.
Such modelling has been influenced most particularly by control theory. We shall
briefly cover some of this material in chapters 6 and 15.

1.2.3 The implication for economics

All the changes highlighted have meant a significant move towards economic dy-
namics. But the quantitative courses have in large part not kept abreast of these
developments. The bulk of the mathematical analysis is still concerned with equi-
librium and comparative statics. Little consideration is given to dynamics – with
the exception of the cobweb in microeconomics and the multiplier–accelerator
model in macroeconomics.

Now that more attention has been paid to economic dynamics, more and more
articles are highlighting the problems that arise from nonlinearity which typify
many of the dynamic models we shall be considering in this book. It is the presence
of nonlinearity that often leads to more than one equilibrium; and given more than
one equilibrium then only local stability properties can be considered. We discuss
these issues briefly in section 1.4.

1.3 Stocks, flows and dimensionality

Nearly all variables and parameters – whether they occur in physics, biology,
sociology or economics – have units in which they are defined and measured.
Typical units in physics are weight and length. Weight can be measured in pounds
or kilograms, while length can be measured in inches or centimetres. We can add
together length and we can add together weight, but what we cannot do is add
length to weight. This makes no sense. Put simply, we can add only things that
have the same dimension.

DEFINITION
Any set of additive quantities is a dimension. A primary dimension is
not expressible in terms of any other dimension; a secondary dimension
is defined in terms of primary dimensions.2

2 An elementary discussion of dimensionality in economics can be found in Neal and Shone (1976,
chapter 3). The definitive source remains De Jong (1967).
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To clarify these ideas, and other to follow, we list the following set of primary
dimensions used in economics:

(1) Money [M ]
(2) Resources or quantity [Q]
(3) Time [T ]
(4) Utility or satisfaction [S]

Apples has, say, dimension [Q1] and bananas [Q2]. We cannot add an apple to
a banana (we can of course add the number of objects, but that is not the same
thing). The value of an apple has dimension [M ] and the value of a banana has
dimension [M ], so we can add the value of an apple to the value of a banana. They
have the same dimension. Our reference to [Q1] and [Q2] immediately highlights a
problem, especially for macroeconomics. Since we cannot add apples and bananas,
it is sometimes assumed in macroeconomics that there is a single aggregate good,
which then involves dimension [Q].

For any set of primary dimensions, and we shall use money [M ] and time [T ]
to illustrate, we have the following three propositions:

(1) If a ∈ [M] and b ∈ [M] then a ± b ∈ [M]
(2) If a ∈ [M] and b ∈ [T] then ab ∈ [MT] and a/b ∈ [MT−1]
(3) If y = f (x) and y ∈ [M] then f (x) ∈ [M].

Proposition (1) says that we can add or subtract only things that have the same
dimension. Proposition (2) illustrates what is meant by secondary dimensions, e.g.,
[MT−1] is a secondary or derived dimension. Proposition (3) refers to equations
and states that an equation must be dimensionally consistent. Not only must the
two sides of an equation have the same value, but it must also have the same
dimension, i.e., the equation must be dimensionally homogeneous.

The use of time as a primary dimension helps us to clarify most particularly the
difference between stocks and flows. A stock is something that occurs at a point in
time. Thus, the money supply, Ms, has a certain value on 31 December 2001. Ms is
a stock with dimension [M], i.e., Ms ∈ [M]. A stock variable is independent of the
dimension [T]. A flow, on the other hand, is something that occurs over a period
of time. A flow variable must involve the dimension [T−1]. In demand and supply
analysis we usually consider demand and supply per period of time. Thus, qd and
qs are the quantities demanded and supplied per period of time. More specifically,
qd ∈ [QT−1] and qs ∈ [QT−1]. In fact, all flow variables involve dimension [T−1].
The nominal rate of interest, i, for example, is a per cent per period, so i ∈ [T−1]
and is a flow variable. Inflation, π, is the percentage change in prices per period,
say a year. Thus, π ∈ [T−1]. The real rate of interest, defined as r = i − π, is
dimensionally consistent since r ∈ [T−1], being the difference of two variables
each with dimension [T−1].

Continuous variables, such as x(t), can be a stock or a flow but are still defined
for a point in time. In dealing with discrete variables we need to be a little more
careful. Let xt denote a stock variable. We define this as the value at the end of
period t.3 Figure 1.1 uses three time periods to clarify our discussion: t − 1, t and

3 We use this convention throughout this book.
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Figure 1.1.

period t+ 1. Thus xt−1 is the stock at the end of period t − 1 and xt is the stock
at the end of period t. Now let zt be a flow variable over period t, and involving
dimension [T−1]. Of course, there is also zt−1 and zt+1. Now return to variable x.
It is possible to consider the change in x over period t, which we write as

�xt = xt − xt−1

This immediately shows up a problem. Let xt have dimension [Q], then by propo-
sition (1) so would �xt. But this cannot be correct! �xt is the change over period
t and must involve dimension [T−1]. So how can this be? The correct formulation
is, in fact,

�xt
�t

= xt − xt−1

t − (t − 1)
∈ [QT−1](1.3)

Implicit is that �t = 1 and so �xt = xt − xt−1. But this ‘hides’ the dimension
[T−1]. This is because �t ∈ [T], even though it has a value of unity, �xt/�t ∈
[QT−1].

Keeping with the convention �xt = xt − xt−1, then �xt ∈ [QT−1] is referred to
as a stock-flow variable. �xt must be kept quite distinct from zt. The variable zt is
a flow variable and has no stock dimension. �xt, on the other hand, is a difference
of two stocks defined over period t.

Example 1.1

Consider the quantity equationMV = Py.M is the stock of money, with dimension
[M]. The variable y is the level of real output. To make dimensional sense of this
equation, we need to assume a single-good economy. It is usual to consider y as
real GDP over a period of time, say one year. So, with a single-good economy with
goods having dimension [Q], then y ∈ [QT−1]. If we have a single-good economy,
thenP is the money per unit of the good and has dimension [MQ−1].V is the income
velocity of circulation of money, and indicates the average number of times a unit
of money circulates over a period of time. Hence V ∈ [T−1]. Having considered
the dimensions of the variables separately, do we have dimensional consistency?

MV ∈ [M][T−1] = [MT−1]

Py ∈ [MQ−1][QT−1] = [MT−1]

and so we do have dimensional consistency. Notice in saying this that we have
utilised the feature that dimensions ‘act like algebra’ and so dimensions cancel, as
with [QQ−1]. Thus

Py ∈ [MQ−1][QT−1] = [MQ−1QT−1] = [MT−1]
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Example 1.2

Consider again the nominal rate of interest, denoted i. This can more accurately
be defined as the amount of money received over some interval of time divided by
the capital outlay. Hence,

i ∈ [MT−1]

[M]
= [T−1]

Example 1.3

Consider the linear static model of demand and supply, given by the following
equations.

qd = a − bp a, b > 0
qs = c + dp d > 0
qd = qs = q

(1.4)

with equilibrium price and quantity

p∗ = a − c

b + d
, q∗ = ad + bc

b + d

and with dimensions

qd, qs ∈ [QT−1], p ∈ [MQ−1]

The model is a flow model since qd and qs are defined as quantities per period of
time.4 It is still, however, a static model because all variables refer to time period t.
Because of this we conventionally do not include a time subscript.

Now turn to the parameters of the model. If the demand and supply equations
are to be dimensionally consistent, then

a, c ∈ [QT−1] and b, d ∈ [Q2T−1M−1]

Then

a − c ∈ [QT−1]

b + d ∈ [Q2T−1M−1]

p∗ ∈ [QT−1]

[Q2T−1M−1]
= [MQ−1]

Also

ad ∈ [QT−1][Q2T−1M−1] = [Q3T−2M−1]

bc ∈ [Q2T−1M−1][QT−1] = [Q3T−2M−1]

q∗ ∈ [Q3T−2M−1]

[Q2T−1M−1]
= [QT−1]

Where a problem sometimes occurs in writing formulas is when parameters
have values of unity. Consider just the demand equation and suppose it takes the

4 We could have considered a stock demand and supply model, in which case qd and qs would have
dimension [Q]. Such a model would apply to a particular point in time.
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form qd = a − p. On the face of it this is dimensionally inconsistent. a ∈ [QT−1]
and p ∈ [MQ−1] and so cannot be subtracted! The point is that the coefficient of p
is unity with dimension [Q2T−1M−1], and this dimension gets ‘hidden’.

Example 1.4

A typically dynamic version of example 1.3 is the cobweb model

qdt = a − bpt a, b > 0

qst = c + dpt−1 d > 0

qdt = qst = qt

(1.5)

Here we do subscript the variables since now two time periods are involved. Al-
though qdt and qst are quantities per period to time with dimension [QT−1], they
both refer to period t. However, p ∈ [MQ−1] is for period t in demand but period
t − 1 for supply. A model that is specified over more than one time period is a
dynamic model.

We have laboured dimensionality because it is still a much-neglected topic in
economics. Yet much confusion can be avoided with a proper understanding of
this topic. Furthermore, it lies at the foundations of economic dynamics.

1.4 Nonlinearities, multiple equilibria and local stability

Nonlinearities, multiple equilibria and local stability/instability are all interlinked.
Consider the following simple nonlinear difference equation

xt = f (xt−1)(1.6)

An equilibrium (a fixed point) exists, as we shall investigate fully later in the
book, if x∗ = f (x∗). Suppose the situation is that indicated in figure 1.2(a), then
an equilibrium point is where f (xt−1) cuts the 45◦-line. But in this example three
such fixed points satisfy this condition: x∗

1, x
∗
2 and x∗

3. A linear system, by contrast,
can cross the 45◦-line at only one point (we exclude here the function coinciding
with the 45◦-line), as illustrated in figures 1.2(b) and 1.2(c). It is the presence of
the nonlinearity that leads to multiple equilibria.

If we consider a sequence of points {xt} beginning at x0, and if for a small
neighbourhood of a fixed point x∗ the sequence {xt} converges on x∗, then x∗

is said to be locally asymptotically stable. We shall explain this in more detail
later in the book. Now consider the sequence in the neighbourhood of each fixed
point in figure 1.2(a). We do this for each point in terms of figure 1.3. In the case
of x∗

1, for any initial point x0 (or x′
0) in the neighbourhood of x∗

1, the sequence
{xt} will converge on x∗

1. This is also true for the fixed point x∗
3. However, it is

not true for the fixed point x∗
2, represented by point b. The fixed point x∗

2 is locally
asymptotically unstable. On the other hand both x∗

1 and x∗
3 are locally asymptotically

stable.
Suppose we approximate the nonlinear system in the neighbourhood of each

of the fixed points. This can be done by means of a Taylor expansion about the
appropriate fixed point. These are shown by each of the dotted lines in figure 1.3.
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xt=(f(xt−1))

Figure 1.2.

Observation of these lines indicates that for equilibrium points x∗
1 and x∗

3 the linear
approximation has a slope less than unity. On the other hand, the linear approxi-
mation about x∗

2 has a slope greater than unity. It is this feature that allows us to
deal with the dynamics of a nonlinear system – so long as we keep within a small
neighbourhood of a fixed point.
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Figure 1.3.

Although a great deal of attention has been given to linear difference and dif-
ferential equations, far less attention has been given to nonlinear relationships.
This is now changing. Some of the most recent researches in economics are
considering nonlinearities. Since, however, there is likely to be no general solutions
for nonlinear relationships, both mathematicians and economists have, with minor
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exceptions, been content to investigate the local stability of the fixed points to a
nonlinear system.

The fact that a linear approximation can be taken in the neighbourhood of a
fixed point in no way removes the fact that there can be more than one fixed
point, more than one equilibrium point. Even where we confine ourselves only
to stable equilibria, there is likely to be more than one. This leads to some new
and interesting policy implications. In simple terms, and using figure 1.2(a) for
illustrative purposes, the welfare attached to point x∗

1 will be different from that
attached to x∗

3. If this is so, then it is possible for governments to choose between
the two equilibrium points. Or, it may be that after investigation one of the stable
equilibria is found to be always superior. With linear systems in which only one
equilibrium exists, such questions are meaningless.

Multiple equilibria of this nature create a problem for models involving per-
fect foresight. If, as such models predict, agents act knowing the system will
converge on equilibrium, will agents assume the system converges on the same
equilibrium? Or, even with perfect foresight, can agents switch from one (sta-
ble) equilibrium to another (stable) equilibrium? As we shall investigate in this
book, many of the rational expectations solutions involve saddle paths. In other
words, the path to equilibrium will arise only if the system ‘jumps’ to the saddle
path and then traverses this path to equilibrium. There is something unsatisfactory
about this modelling process and its justification largely rests on the view that the
world is inherently stable. Since points off the saddle path tend the system ever
further away from equilibrium, then the only possible (rational) solution is that
on the saddle path. Even if we accept this argument, it does not help in analysing
systems with multiple equilibrium in which more than one stable saddle path ex-
its. Given some initial point off the saddle path, to which saddle path will the
system ‘jump’? Economists are only just beginning to investigate these difficult
questions.

1.5 Nonlinearity and chaos

Aperiodic behaviour had usually been considered to be the result of either ex-
ogenous shocks or complex systems. However, nonlinear systems that are simple
and deterministic can give rise to aperiodic, or chaotic, behaviour. The crucial
element leading to this behaviour is the fact that the system is nonlinear. For a
linear system a small change in a parameter value does not affect the qualitative
nature of the system. For nonlinear systems this is far from true. For some small
change (even very small) both the quantitative and qualitative behaviour of the
system can dramatically change. Strangely, nonlinearity is the norm. But in both
the physical sciences and economics linearity has been the dominant mode of
study for over 300 years. Nonlinearity is the most commonly found characteris-
tic of systems and it is therefore necessary for the scientist, including the social
scientist, to take note of this. The fact that nonlinear systems can lead to aperi-
odic or chaotic behaviour has meant a new branch of study has arisen – chaos
theory.

It may be useful to point out that in studying any deterministic system three
characteristics of the system must be known (Hilborn 1994, p. 7):
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(1) the time-evolution values,
(2) the parameter values, and
(3) the initial conditions.

A system for which all three are known is said to be deterministic. If such a de-
terministic system exhibits chaos, then it is very sensitive to initial conditions.
Given very small differences in initial conditions, then the system will after time
behave very differently. But this essentially means that the system is unpredictable
since there is always some imprecision in specifying initial conditions,5 and there-
fore the future path of the system cannot be known in advance. In this instance
the future path of the system is said to be indeterminable even though the system
itself is deterministic.

The presence of chaos raises the question of whether economic fluctuations
are generated by the ‘endogenous propagation mechanism’ (Brock and Malliaris
1989, p. 305) or from exogenous shocks to the system. The authors go on,

Theories that support the existence of endogenous propagation mechanisms typ-
ically suggest strong government stabilization policies. Theories that argue that
business cycles are, in the main, caused by exogenous shocks suggest that gov-
ernment stabilization policies are, at best, an exercise in futility and, at worst,
harmful. (pp. 306–7)

This is important. New classical economics assumes that the macroeconomy is
asymptotically stable so long as there are no exogenous shocks. If chaos is present
then this is not true. On the other hand, new Keynesian economics assumes that
the economic system is inherently unstable. What is not clear, however, is whether
this instability arises from random shocks or from the presence of chaos. As Day
and Shafer (1992) illustrate, in the presence of nonlinearity a simple Keynesian
model can exhibit chaos. In the presence of chaos, prediction is either hazardous
or possibly useless – and this is more true the longer the prediction period.

Nonlinearity and chaos is quite pervasive in economics. Azariadis (1993) has
argued that much of macroeconomics is (presently) concerned with three rela-
tionships: the Solow growth model, optimal growth, and overlapping generations
models. The three models can be captured in the following discrete versions:

(i) kt+1 = (1 − δ)kt + sf (kt)

1 + n

(ii) kt+1 = f (kt) + (1 − δ)kt − ct
u′(ct) = ρu′(ct+1)[ f ′(kt+1) + (1 − δ)]

(iii) (1 + n)kt+1 = z[ f ′(kt+1) + (1 − δ),w(kt)]

(1.7)

The explanation of these equations will occur later in the book. Suffice it to say
here that Azariadis considers that

the business of mainstream macroeconomics amounts to ‘complicating’ one of
[these] dynamical systems . . . and exploring what happens as new features are
added. (p. 5)

5 As we shall see in chapter 7, even a change in only the third or fourth decimal place can lead to
very different time paths. Given the poor quality of economic data, not to mention knowledge of
the system, this will always be present. The literature refers to this as the butterfly effect.
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All these major concerns involve dynamical systems that require investigation.
Some have found to involve chaotic behaviour while others involve multiple equi-
libria. All three involve nonlinear equations. How do we represent these systems?
How do we solve these systems? Why do multiple equilibria arise? How can we
handle the analysis in the presence of nonlinearity? These and many more ques-
tions have been addressed in the literature and will be discussed in this book. They
all involve an understanding of dynamical systems, both in continuous time and in
discrete time. The present book considers these issues, but also considers dynamic
issues relevant to microeconomics. The present book also tries to make the point
that even in the area of macroeconomics, these three systems do not constitute the
whole of the subject matter. As one moves into the realms of policy questions,
open economy issues begin to dominate. For this reason, the present book covers
much more of the open economy when discussing macroeconomic issues. Of im-
portance here is the differential speeds of adjustment in the various sectors of the
economy. Such asymmetry, however, is also relevant to closed economy models,
as we shall see.

1.6 Computer software and economic dynamics

Economic dynamics has not been investigated for a long time because of the math-
ematical and computational requirements. But with the development of computers,
especially ready-made software packages, economists can now fairly easily handle
complex dynamic systems.

Each software package has its comparative advantage. This is not surprising.
But for this reason I would not use one package to do everything. Spreadsheets –
whether Excel, QuattroPro, Lotus 1-2-3, etc. – are all good at manipulating data
and are particularly good at displaying sequential data. For this reason they are
especially useful at computing and displaying difference equations. This should
not be surprising. Difference equations involve recursive formulae, but recursion
is the basis of the copy command in spreadsheets, where entries in the cells
being copied have relative (and possibly absolute) cell addresses. If we have a
difference equation of the form xt = f (xt−1), then so long as we have a start-
ing value x0, it is possible to compute the next cell down as f (x0). If we copy
down n−1 times, then xn is no more than f (xn−1). Equally important is the fact
that f (xt−1) need not be linear. There is inherently no more difficulty in copy-
ing f (xt−1) = a + bxt−1 than in copying f (xt−1) = a + bxt−1 + cx2

t−1 or f (xt−1) =
a + b sin(xt−1). The results may be dramatically different, but the principle is the
same.

Nonlinear equations are becoming more important in economics, as we indicated
in the previous section, and nonlinear difference equations have been at the heart
of chaos. The most famous is the logistic recursive equation

xt = f (xt−1, λ) = λxt−1(1 − xt−1) (1.8)

It is very easy to place the value of λ in a cell that can then be referred to using
an absolute address reference. In the data column all one does is specify x0 and
then x1 is computed from f (x0, λ), which refers to the relative address of x0 and



18 Economic Dynamics

Figure 1.4.

the absolute address of λ. This is then copied down as many times as one likes, as
illustrated in figure 1.4.6

This procedure allows two things to be investigated:

(1) different values for λ

(2) different initial values (different values for x0).

Equally important, xt can be plotted against t and the implications of changing λ

and/or x0 can immediately be observed. This is one of the real benefits of the Win-
dows spreadsheets. There is no substitute for interactive learning. In writing this

6 In this edition, all spreadsheets are created in Microsoft Excel.
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book there were a number of occasions when I set up spreadsheets and investigated
the property of some system and was quite surprised by the plot of the data. Some-
times this led me to reinvestigate the theory to establish why I saw what I did. The
whole process, sometimes frustrating, was a most satisfying learning experience.

The scope of using spreadsheets for investigating recursive equations cannot be
emphasised enough. But they can also be used to investigate recursive systems.
Often this is no more difficult than a single equation, it just means copying down
more than one column. For example, suppose we have the system

xt = axt−1 + byt−1

yt = cxt−1 + dyt−1
(1.9)

Then on a spreadsheet all that needs to be specified is the values for a, b, c and d
and the initial values for x and y, i.e., x0 and y0. Then x1 and y1 can be computed
with relative addresses to x0 and y0 and absolute addresses to a, b, c and d. Given
these solutions then all that needs to be done is to copy the cells down. Using
this procedure it is possible to investigate some sophisticated systems. It is also
possible to plot trajectories. The above system is autonomous (it does not involve t
explicitly) and so {x(t), y(t)} can be plotted using the spreadsheet’s x-y plot. Doing
this allows the display of some intriguing trajectories – and all without any intricate
mathematical knowledge.7

Having said this, I would not use a spreadsheet to do econometrics, nor would I
use Mathematica or Maple to do so – not even regression. Economists have many
econometrics packages that specialise in regression and related techniques. They
are largely (although not wholly) for parameter estimation and diagnostic testing.
Mathematica and Maple (see the next section) can be used for statistical work, and
each comes with a statistical package that accompanies the main programme, but
they are inefficient and unsuitable for the economist. But the choice is not always
obvious. Consider, for example, the logistic equation

xt = f (xt−1) = 3.5xt−1(1 − xt−1) (1.10)

It is possible to compute a sequence {xt} beginning at x0 = 0.1 and to print the
10th through to the 20th iteration using the following commands in Mathematica8

clear[f]

f[x-]:=3.5x(1-x);

StartingValue:.1;

FirstIteration=10:

LastIteration=20;

i=0;

y=N[StartingValue];

While[i<=LastIteration,

If[i>=FirstIteration, Print[i, `̀ `̀ , N[y,8] ] ];

y = f[y];

i =i+1]

7 See Shone (2001) for an introductory treatment of economic dynamics using spreadsheets.
8 Taken from Holmgren (1994, appendix A1).
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which would undoubtedly appeal to a mathematician or computer programmer.
The same result, however, can be achieved much simpler by means of a spreadsheet
by inputting 0.1 in the first cell and then obtaining 3.5x0(1 − x0) in the second cell
and copying down the next 18 cells. Nothing more is required than knowing how
to enter a formula and copying down.9

There are advantages, however, to each approach. The spreadsheet approach
is simple and requires no knowledge of Mathematica or programming. However,
there is not the same control over precision (it is just as acceptable to write N[y,99]
for precision to 99 significant digits in the above instructions). Also what about
the iteration from the 1000th through to 1020th? Use of the spreadsheet means
accepting its precision; while establishing the iterations from 1000 onwards still
requires copying down the first 998 entries!

For the economist who just wants to see the dynamic path of a sequence {xt},
then a spreadsheet may be all that is required. Not only can the sequence be
derived, but also it can readily be graphed. Furthermore, if the formula is entered
as f (x) = rx(1 − x), then the value of r can be given by an absolute address and
then changed.10 Similarly, it is a simple matter of changing x0 to some value other
than 0.1. Doing such manipulations immediately shows the implications on a plot
of {xt}, most especially its convergence or divergence. Such interactive learning is
quick, simple and very rewarding.

The message is a simple one. Know your tools and use the most suitable. A
hammer can put a nail in a plank of wood. It is possible to use a pair of pliers and
hit the nail, but no tradesman would do this. Use the tool designed for the task.

I will not be dealing with econometrics in this book, but the message is general
across software: use the software for which it is ‘best’ suited. This does beg the
question of what a particular software package is best suited to handle. In this
book we intend to answer this by illustration. Sometimes we employ one software
package rather than another. But even here there are classes of packages. It is
this that we concentrate on. Which package in any particular class is often less
important: they are close substitutes. Thus, we have four basic classes of software:

(1) Spreadsheets Excel, QuattroPro, Lotus 1-2-3, etc.
(2) Mathematics Mathematica, Maple, MatLab, MathCad, DERIVE, etc.
(3) Statistical SPSS, Systat, Statgraphics, etc.
(4) Econometrics Shazam, TSP, Microfit, etc.

1.7 Mathematica and Maple

An important feature of the present book is the ready use of both Mathematica and
Maple.11 These packages for mathematics are much more than glorified calculators
because each of them can also be applied to symbolic manipulation: they can
expand the expression (x + y)2 into x2 + y2 + 2xy, they can carry out differentiation
and integration and they can solve standard differential equations – and much

9 Occam’s razor would suggest the use of the spreadsheet in this instance.
10 We use r rather than λ to avoid Greek symbols in the spreadsheet.
11 There are other similar software packages on the market, such as DERIVE and MathCad, but these

are either more specialised or not as extensive as Mathematica or Maple.
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Figure 1.5.

more. Of course, computer algebra requires some getting used to. But so did the
calculator (and the slide rule even more so!). But the gains are extensive. Once the
basic syntax is mastered and a core set of commands, much can be accomplished.
Furthermore, it is not necessary to learn everything in these software packages.
They are meant to be tools for a variety of disciplines. The present book illustrates
the type of tools they provide which are useful for the economist. By allowing
computer software to carry out the tedious manipulations – whether algebraic or
numeric – allows concentration to be directed towards the problem in hand.

BothMathematica andMaple have the same basic structure. They are composed
of three parts:

(1) a kernel, which does all the computational work,
(2) a front end, which displays the input/output and interacts with the user,

and
(3) a set of libraries of specialist routines.

This basic structure is illustrated in figure 1.5. What each programme can do de-
pends very much on which version of the programme that is being used. Both
programmes have gone through many upgrades. In this second edition we use
Mathematica for Windows version 4 and Maple 6 (upgrade 6.01).12 Each pro-
gramme is provided for a different platform. The three basic platforms are DOS,
Windows and UNIX. In the case of each programme, the kernel, which is the heart
of the programme, is identical for the different platforms. It is the front end that
differs across the three platforms. In this book it is the Windows platform that is
being referred to in the case of both programmes.

The front end of Maple is more user friendly to that of Mathematica, but Math-
ematica’s kernel is far more comprehensive than that of Maple.13 Both have ex-
tensive specialist library packages. For the economist, it is probably ease of use

12 Mathematica for Windows has been frequently upgraded, with a major change occurring with
Mathematica 3. Maple was Maple V up to release 5, and then become Maple 6. Both packages now
provide student editions.

13 Mathematica’s palettes are far more extensive than those of Maple (see Shone 2001).
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that matters most, and Maple’s front end is far more user friendly and far more
intuitive than that of Mathematica. Having said this, each has its strengths and in
this book we shall highlight these in the light of applicability to economics. The
choice is not always obvious. For instance, although the front end ofMaple is more
user friendly, I found Mathematica’s way of handling differential equations easier
and more intuitive, and with greater control over the graphical output. Certainly
both are comprehensive and will handle all the types of mathematics encountered
in economics. Accordingly, the choice between the two packages will reduce to
cost and ease of use.

Having mentioned the front end, what do these look like for the two packages?
Figure 1.6 illustrates the front end for a very simple function, namely y = x3,
where each programme is simply required to plot the function over the interval
−3 < x < 3 and differentiate it. Both programmes now contain the graphical
output in the same window.14 In Mathematica (figure 1.6a) a postscript rendering
of the graph is displayed in the body of the page. This can be resized and copied
to the clipboard. It can also be saved as an Encapsulated Postscript (EPS), Bitmap
(BMP), Enhanced Metafile (EMF) and a Windows Metafile. However, many more
graphical formats are available using the Export command of Mathematica. To
use this the graphic needs to have a name. For instance, the plot shown in figure 1.6
could be called plot16, i.e., the input line would now be

plot16=Plot [(x^3,{x,-3,3}]

Suppose we wish to export this with a file name Fig01 06. Furthermore, we wish to
export it as an Encapsulated Postscript File (EPS), then the next instruction would
be

Export[`̀ Fig01-06.eps’’,plot16, `̀ EPS’’]

In the case ofMaple (figure 1.6b) the plot can be copied to the clipboard and pasted
or can be exported as an Encapsulated Postscript (EPS), Graphics Interchange For-
mat (GIF), JPEG Interchange Format (JPG), Windows Bitmap (BMP) and Win-
dows Metafile (WMF). For instance, to export the Maple plot in figure 1.6, simply
right click the plot, choose ‘Export As’, then choose ‘Encapsulated Postscript
(EPS) . . .’ and then simply give it a name, e.g., Fig01 06. The ‘eps’ file extension
is automatically added.

Moving plots into other programmes can be problematic. This would be nec-
essary, for example, if a certain degree of annotation is required to the diagram.
This is certainly the case in many of the phase diagrams constructed in this book.
In many instances, diagrams were transported into CorelDraw for annotation.15

When importing postscript files it is necessary to use CorelDraw’s ‘.eps,*.ps
(interpreted)’ import filter.

In this book we often provide detailed instructions on deriving solutions, espe-
cially graphical solutions, to a number of problems. Sometimes these are provided
in the appendices. Since the reader is likely to be using either Mathematica or
Maple, then instructions for each of these programmes are given in full in the body

14 This was not always the case with Maple. In earlier versions, the graphical output was placed in
separate windows.

15 CorelDraw has also gone through a number of incarnations. This book uses CorelDraw 9.0.
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Figure 1.6.

of the text for the most important features useful to the economist. This allows the
reader to choose whichever programme they wish without having to follow instruc-
tions on the use of the alternative one, with which they are probably not familiar.
Although this does involve some repeat of the text, it seems the most sensible ap-
proach to take. The routines contained here may not always be the most efficient – at
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least in the eyes of a computer programmer – but they are straightforward and can
readily be reproduced without any knowledge of computer programming. Further-
more, they have been written in such a way that they can easily be adapted for any
similar investigation by the reader.

1.8 Structure and features

This book takes a problem solving, learning by doing approach to economic dy-
namics. Chapters 2–5 set out the basic mathematics for continuous and discrete
dynamical systems with some references to economics. Chapter 2 covers continu-
ous single-equation dynamics, while chapter 3 deals with discrete single-equation
dynamics. Chapter 4 covers continuous dynamical systems of equations and chap-
ter 5 deals with discrete dynamical systems of equations. Chapters 6 and 7 cover
two quite distinct dynamical topics that do not fit into the continuous/discrete cat-
egorisation so neatly. Chapter 6 deals with control theory and chapter 7 with chaos
theory. Both these topics are more advanced, but can be taken up at any stage.
Each deals with both continuous and discrete modelling. Chapters 1–7 constitute
part I and set out the mathematical foundation for the economic topics covered in
part II.

Part II contains chapters 8–15, and deals with problems and problem solv-
ing. Each subject intermingles continuous and discrete modelling according to
the problem being discussed and the approach taken to solving it. We begin with
demand and supply in chapter 8. Chapter 9 also deals with a topic in microeco-
nomics, namely the dynamics of oligopoly. This chapter is new to this edition.
We then introduce the basic modelling of macroeconomics in terms of closed
economy dynamics, emphasising the underlying dynamics of the IS–LM model
and extending this to the Tobin–Blanchard model. Next we consider the important
topics of inflation and unemployment. Here we are more restrictive, considering
just certain dynamic aspects of these interrelated topics. Chapters 12 and 13 deal
with open economy dynamics, a much-neglected topic in macroeconomics until
recently. Chapter 12 deals with the open economy under the assumption of a fixed
price level, while Chapter 13 deals with open economy dynamics under the as-
sumption of flexible prices. It will be seen that the modelling approach between
these two differs quite considerably. In chapter 14 we consider population models,
which can be considered a microeconomic topic. Not only does it deal with single
populations, but it also considers the interaction between two populations. Finally,
chapter 15 on fisheries economics also deals with a microeconomic topic that is a
central model in the theory of environmental economics.

All the topics covered in part II are contained in core courses in economic theory.
The main difference here is the concentration on the dynamics of these topics and
the techniques necessary to investigate them.

All chapters, with the exception of this one, contain exercises. These not only en-
hance the understanding of the material in the chapter, but also extend the analysis.
Many of these questions, especially in part II, are problem solving type exercises.
They require the use of computer software to carry them out. Sometimes this is no
more than using a spreadsheet. However, for some problems the power of a math-
ematical programme is required. It is in carrying out the exercises that one learns
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by doing. In a number of the exercises the answers are provided in the question.
When this is not the case, answers to a number of the questions are supplied at the
end of the book.

The present book has a number of features. The coverage is both up-to-date and
deals with discrete as well as continuous models. The book is fairly self-contained,
with part I supplying all the mathematical background for discussing dynamic
economic models, which is the content of part II. Many recent books on dynamic
economics deal largely with macroeconomics only. In this book we have attempted
a more balanced coverage between microeconomics and macroeconomics. Part I
in large part treats continuous models and discrete models separately. In part II,
however, the economics dictates to a large extent whether a particular model is
discrete or continuous – or even both. A feature of both part I and part II is a
discussion of the phase diagram for analysing dynamic models.

A major emphasis is problem solving, and to this end we supply copious solved
problems in the text. These range from simple undergraduate economic models
to more sophisticated ones. In accomplishing this task ready use has been made
of three software packages: Mathematica, Maple and Excel. The text has detailed
instructions on using bothMathematica andMaple, allowing the reader to duplicate
the models in the text and then to go beyond these. In order to reinforce the
learning process, the book contains copious exercises. Detailed solutions using
both Mathematica and Maple are provided on the Cambridge University website.

Additional reading

Additional material on the economic content of this chapter can be found in
Azariades (1993), Brock and Malliaris (1989), Bullard and Butler (1993), Day
and Shafer (1992), De Jong (1967), Farmer (1999), Mizrach (1992), Mooney and
Swift (1999), Mullineux and Peng (1993), Neal and Shone (1976) and Scheinkman
(1990).

Additional material onMathematica can be found in, Abell and Braselton (1992,
1997a, 1997b), Blachman (1992), Brown, Porta and Uhl (1991), Burbulla and
Dodson (1992), Coombes et al. (1998), Crandall (1991), Don (2001), Gray and
Glynn (1991), Huang and Crooke (1997), Ruskeepaa (1999), Schwalbe and Wagon
(1996), Shaw and Tigg (1994), Shone (2001), Skeel and Keiper (1993), Varian et al.
(1993), Wagon (1991) and Wolfram (1999).

Additional material on Maple can be found in Abell and Braselton (1994a,
1994b, 1999), Devitt (1993), Ellis et al. (1992), Gander and Hrebicek (1991),
Heck (1993), Kofler (1997), Kreyszig and Norminton (1994) and Nicolaides and
Walkington (1996).



CHAPTER 2

Continuous dynamic systems

2.1 Some definitions

A differential equation is an equation relating:

(a) the derivatives of an unknown function,
(b) the function itself,
(c) the variables in terms of which the function is defined, and
(d) constants.

More briefly, a differential equation is an equation that relates an unknown function
and any of its derivatives. Thus

dy

dx
+ 3xy = ex

is a differential equation. In general

dy

dx
= f (x, y)

is a general form of a differential equation.
In this chapterwe shall consider continuousdynamic systemsof a single variable.

In other words, we assume a variable x is a continuous function of time, t. A
differential equation for a dynamic equation is a relationship between a function
of time and its derivatives. One typical general form of a differential equation is

dx

dt
= f (t, x)(2.1)

Examples of differential equations are:

(i)
dx

dt
+ 3x = 4 + e−t

(ii)
d2x

dt2
+ 4t

dx

dt
− 3(1 − t2)x = 0

(iii)
dx

dt
= kx

(iv)
∂u

∂t
+ ∂v

dt
+ 4u = 0
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In each of the first three examples there is only one variable other than time,
namely x. They are therefore referred to as ordinary differential equations. When
functions of several variables are involved, such as u and v in example (iv), such
equations are referred to as partial differential equations. In this book we shall
be concerned only with ordinary differential equations.

Ordinary differential equations are classified according to their order. The order
of a differential equation is the order of the highest derivative to appear in the
equation. In the examples above (i) and (iii) are first-order differential equations,
while (ii) is a second-order differential equation. Of particular interest is the linear
differential equation, whose general form is

a0(t)
dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ . . . + an(t)x = g(t) (2.2)

If a0(t), a1(t), . . . , an(t) are absolute constants, and so independent of t, then
equation (2.2) is a constant-coefficient nth-order differential equation. Any
differential equation not conforming to equation (2.2) is referred to as a non-
linear differential equation. The nth-order differential equation (2.2) is said
to be homogeneous if g(t) ≡ 0 and nonhomogeneous if g(t) is not identically
equal to zero. Employing these categories, the examples given above are as
follows:

(i) a linear constant-coefficient differential equation with nonhomogeneous
term g(t) = 4 + e−t

(ii) a second-order linear homogeneous differential equation
(iii) a linear constant-coefficient homogeneous differential equation.

In the present book particular attention will be directed to first-order linear
differential equations which can be expressed in the general form

h(t)
dx

dt
+ k(t)x = g(t)

by dividing throughout by h(t) we have the simpler form

dx

dt
+ a(t)x = b(t) (2.3)

The problem is to find all functions x(t) which satisfy equation (2.3). However,
in general equation (2.3) is hard to solve. In only a few cases can equation (2.1)
or (2.3) be solved explicitly. One category that is sometimes capable of solution
is autonomous or time-invariant differential equations, especially if they are
linear. Equation (2.1) would be autonomous if ∂f/∂t = 0 and nonautonomous if
∂f/∂t 
= 0. In the examples of ordinary differential equations given above only
(iii) is an autonomous differential equation.

A solution to a nth-order differential equation is an n-times differential function

x = φ(t)

which when substituted into the equation satisfies it exactly in some interval a <

t < b.
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Example 2.1

Consider (iii) above. This is an autonomous first-order homogeneous differential
equation. Rearranging the equation we have

dx

dt

1

x
= k

Integrating both sides with respect to t yields∫
dx

dt

1

x
dt =

∫
k dt

ln x(t) = kt + c0

where c0 is the constant of integration. Taking exponentials of both sides yields

x(t) = cekt

where c = ec0 . It is readily verified that this is indeed a solution by differentiating
it and substituting. Thus

kcekt = kx = kcekt

which holds identically for any a < t < b.

Example 2.2

To check whether x(t) = 1 + t + cet is a solution of dx/dt = x − t, we can differ-
entiate xwith respect to t and check whether the differential equation holds exactly.
Thus

dx

dt
= 1 + cet

... 1 + cet = 1 + t + cet − t

Hence x(t) = 1 + t + cet is indeed a solution.

Example 2.3

Check whether

p(t) = ap0

bp0 + (a − bp0)e−at

is a solution to the differential equation

dp

dt
= p(a − bp)

Differentiating the solution function with respect to t we obtain

dp

dt
= −ap0[bp0 + (a − bp0)e−at]−2(−a(a − bp0)e−at)

= a2p0(a − bp0)e−at

[bp0 + (a − bp0)e−at]2
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while substituting for p we obtain

ap − bp2 = a2p0

bp0 + (a − bp0)e−at
− b

(
ap0

bp0 + (a − bp0)e−at

)2

= a2p0(a − bp0)e−at

[bp0 + (a − bp0)e−at]2

which is identically true for all values of t.
Equation x(t) = cekt is an explicit solution to example (iii) because we can

solve directly x(t) as a function of t. On occasions it is not possible to solve x(t)
directly in terms of t, and solutions arise in the implicit form

F(x, t) = 0 (2.4)

Solutions of this type are referred to as implicit solutions.
A graphical solution to a first-order differential equation is a curve whose slope

at any point is the value of the derivative at that point as given by the differential
equation. The graph may be known precisely, in which case it is a quantitative
graphical representation. On the other hand, the graph may be imprecise, as far as
the numerical values are concerned; yet we have some knowledge of the solution
curve’s general shape and features. This is a graph giving a qualitative solution.

The graph of a solution, whether quantitative or qualitative, can supply con-
siderable information about the nature of the solution. For example, maxima and
minima or other turning points, when the solution is zero, when the solution is
increasing and when decreasing, etc. Consider, for example, dx/dt = t2 whose
solution is

x(t) = t3

3
+ c

where c is the constant of integration. There are a whole series of solution curves
depending on the value of c. Four such curves are illustrated in figure 2.1, with
solutions

x(t) = t3

3
+ 8, x(t) = t3

3
+ 2, x(t) = t3

3
, x(t) = t3

3
− 3

Figure 2.1.
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A general solution to a differential equation is a solution, whether expressed
explicitly or implicitly, which contains all possible solutions over an open in-
terval. In the present example, all solutions are involved for all possible values
of c. A particular solution involves no arbitrary constants. Thus, if c = 2 then
x(t) = (t3/3) + 2 represents a particular solution. It is apparent that a second-order
differential equation would involve integrating twice and so would involve two
arbitrary constants of integration. In general the solution to an nth-order differen-
tial equation will involve n arbitrary constants. It follows from this discussion that
general solutions are graphically represented by families of solution curves, while
a particular solution is just one solution curve.

Consider further the general solution in the above example. If we require that
x= 0 when t = 0, then this is the same as specifying c= 0. Similarly if x= 2 when
t = 0, then this is the same as specifying that c= 2. It is clear, then, that a particular
solution curve to a first-order differential equation is equivalent to specifying a
point (x0, t0) through which the solution curve must pass (where t0 need not be
zero). In other words, we wish to find a solution x = x(t) satisfying x(t0) = x0.
The condition x(t0) = x0 is called the initial condition of a first-order differential
equation. A first-order differential equation, together with an initial condition, is
called a first-order initial value problem.

In many applications we find that we need to impose an initial condition on the
solution. Consider the following first-order initial value problem

dx

dt
= kx x(t0) = x0(2.5)

Rearranging and integrating over the interval t0 to t1 we obtain∫ t1

t0

dx

dt

1

x
dt =

∫ t1

t0

k dt

[ln x]tt0 = [k t]tt0

ln

(
x(t)

x0

)
= k(t − t0)

x(t) = x0ek(t−t0)

This is a particular solution that satisfies the initial condition.
We shall conclude this section with some applications taken from economics and

some noneconomic examples. At this stage our aim is simply to set out the problem
so as to highlight the type of ordinary differential equations that are involved, the
general or specific nature of the solution and whether the solution satisfies some
initial value.

Example 2.4

A simple continuous price-adjustment demand and supply model takes the form:

qd = a + bp b < 0

qs = c + dp d > 0

dp

dt
= α(qd − qs) α > 0

(2.6)
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Figure 2.2.

where quantities, qd and qs and price, p, are assumed to be continuous functions
of time. Substituting the demand and supply equations into the price adjustment
equation we derive the following

dp

dt
− α(b − d) = α(a − c)

which is a first-order linear nonhomogeneous differential equation.
Using a typical software programme for solving differential equations, the so-

lution path is readily found to be

p(t) = c − a

b − d
+
[
p0 −

(
c − a

b − d

)]
e−α(d−b)t

which satisfies the initial condition. For d – b > 0 the solution path for different
initial prices is illustrated in figure 2.2

Example 2.5

Suppose we have the same basic demand and supply model as in example 2.4 but
now assume that demand responds not only to the price of the good but also to
the change in the price of the good. In other words, we assume that if the price of
the good is changing, then this shifts the demand curve. We shall leave open the
question at this stage of whether the demand curve shifts to the right or the left as
a result of the price change. The model now takes the form

qd = a + bp + f
dp

dt
b < 0, f 
= 0

qs = c + dp d > 0

dp

dt
= α(qd − qs) α > 0

(2.7)
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This is effectively a stock-adjustment model. Stocks (inventories) change accord-
ing to the difference between supply and demand, and price adjusts according
to the accumulation–decumulation of stocks. Thus, if i(t) denotes the inventory
holding of stocks at time t, then

di

dt
= qs − qd

i = i0 +
∫ t

0
(qs − qd)dt

and prices adjust according to

dp

dt
= −α

di

dt
= −α(qs − qd)

= α(qd − qs) α > 0

which is the third equation in the model. Substituting the demand and supply
equations into the price-adjustment equation results in the following first-order
linear nonhomogeneous differential equation

dp

dt
−
[
α(b − d)

1 − α f

]
p = α(a − c)

1 − α f

with solution

p(t) =
(
c − a

b − d

)
+
[
p0 −

(
c − a

b − d

)]
e

−α(d−b)t
1−αf

which satisfies the initial condition p(0) = p0. For this model there are far more
varieties of solution paths, depending on the values of the various parameters. Some
typical solution paths are illustrated in figure 2.3. We shall discuss the stability of
such systems later.

Figure 2.3.
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Figure 2.4.

Example 2.6

Assume population, p, grows at a constant rate k, where we assume that p is
a continuous function of time, t. This means that the percentage change in the
population is a constant k. Hence

dp

dt

1

p
= k (2.8)

which immediately gives the first-order linear homogeneous differential equation

dp

dt
− kp = 0

with solution

p(t) = p0e
kt

which satisfies the initial condition p(0) = p0. Typical solution paths for this
Malthusian population growth are illustrated in figure 2.4.

Example 2.7

In many scientific problems use is made of radioactive decay. Certain radioactive
elements are unstable and within a certain period the atoms degenerate to form
another element. However, in a specified time period the decay is quite specific.
In the early twentieth century the famous physicist Ernest Rutherford showed that
the radioactivity of a substance is directly proportional to the number of atoms
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present at time t. If dn/dt denotes the number of atoms that degenerate per unit of
time, then according to Rutherford

dn

dt
= −λn λ > 0(2.9)

where λ is the decay constant of the substance concerned and n is a continuous
function of time. This is a first-order linear homogeneous differential equation and
is identical in form to the exponential population growth specified in example 2.6
above. We shall return to this example later when we consider its solution and how
the solution is used for calculating the half-life of a radioactive substance and how
this is used to authenticate paintings and such items as the Turin shroud.

Example 2.8

In this example we consider a continuous form of the Harrod–Domar growth
model. In this model savings, S, is assumed to be proportional to income, Y;
investment, I, i.e., the change in the capital stock, is proportional to the change in
income over time; and in equilibrium investment is equal to savings. If s denotes
the average (here equal to the marginal) propensity to save, and v the coefficient
for the investment relationship, then the model can be captured by the following
set of equations

S = sY

I = K̇ = vẎ

I = S

(2.10)

where a dot above a variable denotes the first-time derivate, i.e.,dx/dt. Substituting,
we immediately derive the following homogeneous differential equation

vẎ = sY

Ẏ −
( s
v

)
Y = 0

with initial condition

I0 = S0 = sY0

It also follows from the homogeneous equation that the rate of growth of income
is equal to s/v, which Harrod called the ‘warranted rate of growth’. The solution
path satisfying the initial condition is readily established to be

Y(t) = Y0e
(s/v)t

Example 2.91

It is well known that the Solow growth model reduces down to a simple au-
tonomous differential equation. We begin with a continuous production function

1 We develop this model in detail here because it has once again become of interest and is the basis
of new classical growth models and real business cycle models. A discrete version of the model is
developed in chapter 3.
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Y = F(K, L), which is twice differentiable and homogeneous of degree one (i.e.
constant returns to scale). Let k = K/L denote the capital/labour ratio and y = Y/L
the output/labour ratio. Then

Y

L
= F(K, L)

L
= F

(
K

L
, 1

)
= F(k, 1) = f (k)

i.e. y = f (k)

with f (0) = 0, f ′(k) > 0, f ′′(k) < 0, k > 0

We make two further assumptions:

1. The labour force grows at a constant rate n, and is independent of any
economic variables in the system. Hence

L̇ = nL L(0) = L0

2. Savings is undertaken as a constant fraction of output (S= sY ) and savings
equal investment, which is simply the change in the capital stock plus
replacement investment, hence

I =K̇ + δK

S = sY

K̇ + δK = sY

K(0) = K0

Now differentiate the variable k with respect to time, i.e., derive dk/dt,

dk

dt
= k̇ =

L
dK

dt
− K

dL

dt
L2

k̇ =
(

1

L

)
dK

dt
−
(
K

L

)(
1

L

)
dL

dt

=
(
K

L

)(
1

K

)
dK

dt
−
(
K

L

)(
1

L

)
dL

dt

= k

(
K̇

K
− L̇

L

)

But

K̇

K
= sY − δK

K
= sY

L

(
L

K

)
− δ = sf (k)

k
− δ

and

L̇

L
= nL

L
= n

Hence

k̇ = sf (k) − δk − nk
= sf (k) − (n + δ)k

(2.11)
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with initial conditions

k(0) = K0

L0
= k0

We cannot solve equation (2.11) because the production function is not explicitly
defined. Suppose we assume that the production function F(K, L) conforms to a
Cobb–Douglas, i.e., we assume

Y = aKαL1−α 0 < α < 1

Y

L
= a

(
K

L

)α

or

y = f (k) = akα(2.12)

In this instance the capital/labour ratio grows according to

k̇ = sakα − (n + δ)k(2.13)

The Solow growth model with a Cobb–Douglas production function therefore
conforms to the following differential equation

k̇ + (n + δ)k = sakα

This is a Bernoulli equation,2 and can accordingly be solved by performing a
transformation that results in a linear differential equation that is readily solvable.
Given such a solution, then a solution can be found for the original variable.

To verify this, define the following transformation:

v = k1−α

...
dv

dt
= (1 − α)k−α dk

dt

or k̇ = kα

(1 − α)

dv

dt

Using these results we can derive the following

k−αk̇ + (n + δ)kk−α = sa

k−αk̇ + (n + δ)k1−α = sa(
k−αkα

1 − α

)
dv

dt
+ (n + δ)v = sa

i.e.
dv

dt
+ (1 − α)(n + δ)v = (1 − α)sa

which is a linear differential equation in v with solution

v(t) = as

n + δ
+
(
v0 − as

n + δ

)
e−(1−α)(n+δ)t

2 A Bernoulli equation takes the general form

dy

dt
+ f (t)x = h(t)xα

See Giordano and Weir (1991, pp. 95–6).
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Figure 2.5.

which satisfies the initial condition

v0 = k1−α
0

This allows us to solve for k(t) as follows

k1−α = as

n + δ
+
(
k1−α

0 − as

n + δ

)
e−(1−α)(n+δ)t

i.e. k(t) =
[

as

n + δ
+ e−(1−α)(n+δ)t

(
k1−α

0 − as

n + δ

)] 1
1−α

The solution path for different initial values of k is illustrated in figure 2.5.

2.2 Solutions to first-order linear differential equations

Solutions to first-order linear differential equations are well discussed in the math-
ematical texts on differential equations (see Boyce and DiPrima 1997; Giordano
and Weir 1991). Here our intention is simply to provide the steps in obtaining a
solution. In doing this we shall suppose y is a function of t. This is useful since
most economic examples are of this type. The general form for a first-order linear
differential equation is then

dy

dt
+ p(t)y = g(t)

Notice that in this formulation both p and g are functions of time. This also allows
for the case where p(t) and g(t) are constants, in which case we have

dy

dt
+ by = a

The four-step procedure is as follows.

Step 1 Write the linear first-order equation in the standard form

dy

dt
+ p(t)y = g(t)
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Step 2 Calculate the integrating factor

µ(t) = e
∫
p(t)dt

Step 3 Multiply throughout by the integrating factor, integrate both sides and add
a constant of integration to the right-hand side

(a) µ(t)

(
dy

dt
+ p(t)y

)
= µ(t)g(t)

or

d

dt
[µ(t)y] = µ(t)g(t)

(b)
∫

d

dt
[µ(t)y]dt =

∫
µ(t)g(t)dt + c

Step 4 Write the general result

µ(t)y =
∫

µ(t)g(t) + c

Example 2.10

As an example, let us apply this four-step procedure to the equation

dy

dt
= a + by

Step 1 We can write this in the standard form

dy

dt
− by = a

Step 2 Calculate the integrating factor

µ(t) = e
∫

(−b)dt = e−bt

Step 3 Multiply throughout by the integrating factor, integrate both sides and add
a constant of integration to the right-hand side

(a) e−bt

(
dy

dt
− by

)
= ae−bt or

d

dt
(e−bty) = ae−bt

(b)
∫

d

dt
(e−bty)dt =

∫
ae−btdt + c

Step 4 e−bty =
∫

ae−btdt + c

or

e−bty = −ae−bt

b
+ c

y = −a

b
+ cebt
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Furthermore, if we have the initial condition that y(0) = y0, then we can
solve for c

y0 = −a

b
+ c

c = y0 + a

b

Hence, we have the solution to the initial value problem of

y(t) = −a

b
+
(
y0 + a

b

)
ebt

Example 2.11

Suppose we have the initial value problem

dy

dt
= 2y + 4t y(0) = 1

Applying the four-step procedure we have

Step 1
dy

dt
− 2y = 4t

Step 2 µ(t) = e
∫−2dt = e−2t

Step 3 e−2ty =
∫

4te−2tdt + c

Step 4 e−2ty = −2te−2t − e−2t + c

Or

y = −2t − 1 + ce2t

Since y(0) = 1, then

1 = −1 + c
c = 2

Hence,

y(t) = −2t − 1 + 2e2t

2.3 Compound interest

If an amount A is compounded annually at a market interest rate of r for a given
number of years t, then the payment received at time t, Pt is given by

Pt = A(1 + r)t (2.14)

On the other hand if the same amount is compounded m times each year, then the
payment received is given by

Pt = A
(
1 + r

m

)mt
(2.15)

If compounded continuously, then m → ∞ and

P(t) = A lim
x→∞

(
1 + r

m

)mt
= Aert (2.16)
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Looked at from the point of view of a differential equation, we can readily establish
that

dP

dt
= rP

with solution

P(t) = P0e
rt

Since P0 is the initial payment, then P0 = A in this formulation of the problem.
We know that an initial deposit, P0, compounded continuously at a rate of r

per cent per period will grow to

P(t) = P0e
rt

Now assume that in addition to the interest received, rP, there is a constant rate of
deposit, d. Thus

dP

dt
= rP + d

The solution to this differential equation can be found as follows3

dP

dt
= r[P + (d/r)]

dP/dt

P + (d/r)
= r

then
d

dt
ln |P + (d/r)| = r

Integrating both sides∫
d

dt
ln |P + (d/r)|dt =

∫
rdt

which leads to

ln |P + (d/r)| = rt + c0

P + (d/r) = cert c = ec0

Therefore

P(t) = cert − (d/r)

If P(0) = P0, then

P0 = c − (d/r)

and

P(t) = [P0 + (d/r)]ert − (d/r)

= P0ert + (d/r)(ert − 1)
(2.17)

We know that P0ert is the interest paid on the initial deposit of P0, so (d/r)(ert − 1)
is the interest paid on the additional deposit rate, d.

3 An alternative solution method is to use the one outlined in section 2.2.
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2.4 First-order equations and isoclines

For many problems, especially in economics where fairly general equations are
used in model construction, it may not be possible to find the explicit solution to
a differential equation. Even if we can derive an implicit form, it still may not be
possible to solve its explicit form. This does not mean that we can say nothing
about the solution. On the contrary, it is possible to investigate information about
the solution, i.e., we can investigate the qualitative properties of the solution. These
properties can be obtained by studying features of the differential equation.

As an introduction to the study of the qualitative properties of differential equa-
tions let us begin by simply investigating the following differential equation. We
shall use this example to define a number of terms that we shall use throughout
this book

dy

dx
= ax − by y(0) = a

b
a, b > 0

With no more information we cannot solve this equation. Suppose, then, that

y = f (x)

and f ′(x) = ax − bf (x) f (0) = a

b

Since, by assumption, f (x) is differentiable, then so is f ′(x). Thus

f ′′(x) = a − bf ′(x)

= a − b[ax − bf (x)] = a − [abx − b2f (x)]

Since each derivative can be reduced to functions of x and f (x), then so long as
f (x) is differentiable, all order differentials exist.

But why consider the existence of such differentials? The reason is that they
give information about f (x), the domain of x.

Now consider y = f (x) for the range x ≥ 0. Since f (0) = a/b

f ′(0) = a.0 − ba

b
= −a < 0

Then we know that f (x) crosses the y-axis at a/b and for x near zero the function
is decreasing. This decrease will continue until a turning point occurs. A turning
point requires that f ′(x) = 0. Let x∗ denote the value of x at the turning point, then

f ′(x∗) = ax∗ − bf (x∗) = 0

or
ax∗

b
= f (x∗)

i.e. where f (x) cuts the line y = ax/b.
To establish whether the turning point at x = x∗ is a minimum or a maximum

we turn to

f ′′(x∗) = a − [abx∗ − b2f (x∗)]

= a −
[
abx∗ − b2ax∗

b

]
= a − [abx∗ − abx∗]

= a > 0
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Figure 2.6.

Hence, f (x) reaches a minimum at x = x∗ where f (x) cuts the line y = ax/b. It
must follow, then, that for x > x∗, f (x) is positively sloped. This can be verified
immediately

f ′(x) = ax − bf (x)

x > x∗ implying
ax

b
> f (x) or ax > bf (x)

... f ′(x) > 0

All the analysis so far allows us to graph the properties, as shown in figure 2.6.
The curve f (x) cuts the y-axis at a/b, declines and reaches a minimum where f (x)
cuts the line y = ax/b, and then turns up.

Although we cannot identify f (x) or the solution value of x∗, we do know that
x∗ is nonzero. But can we obtain additional information about the shape of f (x)?
Yes – if we consider isoclines.

Isoclines and direction fields

Given

dy

dx
= ax − by

then for every (x,y)-combination this equation specifies the slope at that point.
A plot of all such slopes gives the direction field for the differential equation,
and gives the ‘flow of solutions’. (The slopes at given points can be considered
as small lines, like iron filings, and if many of these are drawn the direction
field is revealed – just like iron filings reveal magnetic forces.) However, it is
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Figure 2.7.

not possible to consider all points in the (x,y)-plane. One procedure is to con-
sider the points in the (x,y)-plane associated with a fixed slope. If m denotes
a fixed slope, then f (x, y) = m denotes all combinations of x and y for which
the slope is equal to m. f (x, y) = m is referred to as an isocline. The purpose
of constructing these isoclines is so that a more accurate sketch of f (x) can be
obtained.

For dy/dx = ax − by = m the isoclines are the curves (lines)

ax − by = m

or y = ax

b
− m

b

These are shown in figure 2.7. Of course, the slope of f(x, y) at each point along
an isocline is simply the value of m. Thus, along y = ax/b the slope is zero or
inclination arctan0 = 0◦. Along y = (ax/b) − (1/b) the slope is unity or inclination
arc tan1 = 45◦; while along y = (ax/b) − (2/b) the slope is 2 or inclination arc
tan2 = 63◦. Hence, for values of m rising the slope rises towards infinity (but never
reaching it). We have already established that along y = ax/b the slope is zero and
so there are turning points all along this isocline. For m negative and increasing,
the slope becomes greater in absolute terms. Consider finally m = a/b. Then the
isocline is

y = ax

b
−
(
a

b

)(
1

b

)
= ax

b
−
(
a

b2

)

with intercept −a/b2. Then along this isocline the slope of the directional field
is identical to the slope of the isocline. Hence, the direction fields look quite
different either side of this isocline. Above it the solution approaches this isocline
asymptotically from above. Hence, the function f (x) takes the shape of the heavy
curve in figure 2.7. In general we do not know the intercept or the turning point. In
this instance we consider the approximate integral curves, which are the continuous
lines drawn in figure 2.7. Such integral curves can take a variety of shapes.
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We can summarise the method of isoclines as follows:

(1) From the differential equation

dy

dx
= φ(x, y)

determine the family of isoclines

φ(x, y) = m

and construct several members of this family.
(2) Consider a particular isocline φ(x, y) = m0. All points (x, y) on this iso-

cline have the same slope m0. Obtain the inclination

α0 = arctanm0 0 ≤ α0 ≤ 180◦

Along the isocline φ(x, y) = m0 construct line elements with inclination
α0. (This establishes part of the direction field.)

(3) Repeat step 2 for each isocline.
(4) Draw smooth curves to represent the approximate integral curves indi-

cated by the line elements of step 3.

It is apparent that this is a very tedious procedure. Luckily, a number of mathe-
matical software packages now compute direction fields and can be used to con-
struct isoclines (see appendices 2.1 and 2.2).

Example 2.12

dy

dx
= 2x − y

In sections 2.11 and 2.12 we give the instructions on using software pack-
ages to solve this differential equation explicitly, and in appendices 2.1 and
2.2 we provide Mathematica and Maple instructions, respectively, for plot-
ting solution curves along with the direction field. The result is shown in
figure 2.8

Throughout this book we shall provide a number of direction field diagrams
of differential equation systems. In some cases we can readily obtain the solu-
tion explicitly, as shown in figure 2.9(a) for the Malthusian population and figure
2.9(b) for the logistic growth curve,4 which features prominently in the present
text.

In the previous section we derived a differential equation for the Solow growth
model under the assumption that production conformed to a Cobb–Douglas pro-
duction function. Although we explicitly solved this using the Bernoulli equation,
its solution was not at all obvious. In such cases we can obtain considerable insight
into the solution paths by considering the direction field. Thus, in figure 2.10 we
illustrate this feature of the Solow growth model for three initial values of k, the

4 See example 2.15 in section 2.5.
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Figure 2.8.

capital/labour ratio: one below the equilibrium level, another equal to the equi-
librium level and a third above the equilibrium level. It is quite clear from the
solution paths and the direction field that the equilibrium k∗ is locally stable (see
exercise 14).

Direction fields can usefully be employed for two further areas of study. First,
when considering nonlinear differential equations whose solution may not be avail-
able. In this case the qualitative features of the solution can be observed from the
direction field. Second, in the case of simultaneous equation systems, the exam-
ples given so far refer to only one variable along with time. But suppose we are
investigating a system of two variables, say x and y, both of which are related
to time. In these cases we can observe much about the solution trajectories from
considering the direction field in the plane of x and y – which later we shall refer
to as the phase plane. We shall investigate such differential equation systems in
detail in chapter 4.

2.5 Separable functions

Earlier we solved for the first-order linear homogeneous differential equation

dx

dt
− kx = 0 (2.18)

for the initial condition x(0) = x0 (see equation (2.5)). We did this by first re-writing
equation (2.18) in the form

dx

dt

1

x
= k
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Figure 2.9.

Hence integrating both sides with respect to t gives∫
dx

dt

1

x
dt =

∫
k dt + c0

ln x = kt + c0

x(t) = cekt

which gives the solution

x(t) = x0e
kt

In other words, we could solve x(t) explicitly in terms of t.
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Figure 2.10.

But equation (2.18) is just a particular example of a more general differential
equation

dx

dt
= g(t)

f (x)
(2.19)

Any differential equation which can be written in terms of two distinct functions
f (x) and g(t) is said to be a separable differential equation. Some examples are the
following:

(i)
dx

dt
= 1

x2

(ii)
dx

dt
= x(2 − x)

(iii)
dx

dt
=
√

1

2xt

Our interest in these particular differential equations is because they are often
possible to solve fairly readily since we can write one side in terms of x and the
other in terms of t. Thus, writing (2.19) in the form

f (x)
dx

dt
= g(t)

we can then integrate both sides with respect to t∫
f (x)

dx

dt
dt =

∫
g(t)dt + c0

or F[x(t)] =
∫
g(t)dt + c0
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where

F[x(t)] =
∫
f (x)dx

Using this equation we can solve for x = x(t) which gives the general solution to
equation (2.19).

Example 2.13 Radioactive decay and half-life

Equation (2.9) specified the differential equation that represented the radioactive
decay of atomic particles. We can employ the feature of separability to solve this
equation. Thus, if

dn

dt
= −λn λ > 0

then we can re-write this equation

dn

n
= −λ dt

Integrating both sides, and letting c0 denote the coefficient of integration, then∫
dn

n
= −

∫
λ dt + c0

ln n = −λt + c0

n = e−λt+c0 = ce−λt c = ec0

At t = t0, n = n0. From this initial condition we can establish the value of c

n0 = ce−λt0

c = n0eλt0

n = n0e−λteλt0 = n0e−λ(t−t0)

The half-life of a radioactive substance is the time necessary for the number
of nuclei to reduce to half the original level. Since n0 denotes the original level
then half this number is n0/2. The point in time when this occurs we denote t1/2.

Hence

n0

2
= n0e

−λ(t1/2−t0)

1

2
= e−λ(t1/2−t0)

− ln 2 = −λ(t1/2 − t0)

... t1/2 = t0 + ln 2

λ
= t0 + 0.693

λ

Usually, t0 = 0 and so

t1/2 = 0.693

λ

These results are illustrated in figure 2.11.
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Figure 2.11.

Example 2.14 Testing for art forgeries5

All paintings contain small amounts of the radioactive element lead-210 and a
smaller amount of radium-226. These elements are contained in white lead which
is a pigment used by artists. Because of the smelting process from which the
pigment comes, lead-210 gets transferred to the pigment. On the other hand, over
90 per cent of the radium is removed. The result of the smelting process is that
lead-210 loses its radioactivity very rapidly, having a half-life of about 22 years;
radium-226 on the other hand has a half-life of 1,600 years (see example 2.7). For
most practical purposes we can treat radium-226 emissions as constant. Let l(t)
denote the amount of lead-210 per gram of white lead at time t, and l0 the amount
present at the time of manufacture, which we take to be t0. The disintegration of
radium-226 we assume constant at r. If λ is the decay constant of lead-210, then

dl

dt
= −λl + r l(t0) = l0

with solution

l(t) = r

λ

(
1 − e−λ(t−t0)

)+ l0e
−λ(t−t0)

Although l(t) and r can readily be measured, this is not true of l0, and therefore we
cannot determine t − t0.

We can, however, approach the problem from a different perspective. Assume
that the painting of interest, if authentic, is 300 years old and if new is at the present
time t. Then t − t0 = 300. If we substitute this into the previous result and simplify
we obtain

λl0 = λl(t)e300λ − r(e300λ − 1)

5 This is based on the analysis presented in Braun (1983, pp. 11–17).
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It is possible to estimate λl0 for an authentic painting. It is also possible to estimate
λl0 for the lead in the painting under investigation. If the latter is absurdly large rel-
ative to the former, then we can conclude that it is a forgery. A very conservative
estimate would indicate that any value for λl0 in excess of 30,000 disintegra-
tions per minute per gram of white lead is absurd for an authentic painting aged
300 years. Using 22 years for the half-life of lead-210, then the value ofλ is (ln2/22)
and

e300λ = e(300/22) ln 2 = 2(150/11)

To estimate the present disintegration rate of lead-210 the disintegration rate of
polonium-210 is used instead because it has the same disintegration rate as lead-
210 and because it is easier to measure.

In order, then, to authenticate the ‘Disciples at Emmaus’, purported to be a
Vermeer, it is established that the disintegration rate of polonium-210 per minute
per gram of white lead in this particular painting is 8.5 and that of radium-226 is 0.8.
Using all this information then we can estimate the value of λl0 for the‘Disciples
at Emmaus’ as follows:

λl0 = (8.5)2150/11 − 0.8(2150/11 − 1)

= 98,050

which is considerably in excess of 30,000. We, therefore, conclude that the ‘Dis-
ciples at Emmaus’ is not an authentic Vermeer.

Example 2.15 The logistic curve

In this example we shall consider the logistic equation in some detail. Not only does
this illustrate a separable differential equation, but also it is an equation that occurs
in a number of areas of economics. It occurs in population growth models, which
we shall consider in part II, and in product diffusion models. It is the characteristic
equation to represent learning, and hence occurs in a number of learning models.
We shall justify the specification of the equation in part II; here we are concerned
only with solving the following growth equation for the variable x

dx

dt
= kx(a − x)(2.20)

The differential equation is first separated

dx

(a − x)x
= k dt

Integrating both sides, and including the constant of integration, denoted c0∫
dx

(a − x)x
=
∫
k dt + c0

However

1

(a − x)x
= 1

a

[
1

x
+ 1

a − x

]
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Hence

1

a

[∫
dx

x
+
∫

dx

a − x

]
=
∫
k dt + c0

1

a
[ln x − ln |a − x|] = kt + c0

1

a
ln

∣∣∣∣ x

a − x

∣∣∣∣ = kt + c0

ln

∣∣∣∣ x

a − x

∣∣∣∣ = akt + ac0

Taking anti-logs, we have

x

a − x
= eakt+ac0 = eac0eakt = ceakt

where c = eac0 . Substituting for the initial condition, i.e., t = t0 then x = x0, we
can solve for the constant c, as follows

x0

a − x0
= ceakt0

c =
(

x0

a − x0

)
e−akt0

Substituting, then

x

a − x
=
(

x0

a − x0

)
e−akt0eakt

=
(

x0

a − x0

)
eak(t−t0)

Solving for x

x =
a

(
x0

a − x0

)
eak(t−t0)

[
1 +

(
x0

a − x0

)
eak(t−t0)

]

Which can be further expressed6

x = ax0

(a − x0)e−ak(t−t0) + x0
(2.21)

From the logistic equation (2.21) we can readily establish the following results,
assuming that x0 is less than a:

1. For t = t0 then x = x0

2. As t → ∞ then x → a

6 The logistic growth equation is a particular example of the Bernoulli function and can be solved in
a totally different way using a simple transformation. See n. 2 and exercise 6.
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Figure 2.12.

3. An inflexion occurs at the point

t = t0 + 1

ak
ln

(
a − x0

x0

)

x = a

2

The logistic curve is shown in figure 2.12.

Example 2.16 Constant elasticity of demand

Let a commodity x be related to price p with a constant elasticity of demand ε,
then

dx

dp

p

x
= −ε ε > 0

We can rearrange this as

dx

x
= −ε

dp

p

Integrating both sides and adding a constant of integration, then∫
dx

x
= −ε

∫
dp

p

ln x = −ε ln p + c0

= −ε ln p + ln c where c0 = ln c

= ln cp−ε

Therefore

x = cp−ε

which is the general expression for a demand curve with constant elasticity of
demand.
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2.6 Diffusion models

In recent years we have seen the widespread use of desktop computers, and more
recently the increased use of the mobile phone. The process by which such in-
novations are communicated through society and the rate at which they are taken
up is called diffusion. Innovations need not be products. They can just as easily
be an idea or some contagious disease. Although a variety of models have been
discussed in the literature (e.g. Davies 1979; Mahajan and Peterson 1985), the time
path of the diffusion process most typically takes the form of the S-shaped (sig-
moid) curve. Considering the mobile phone, we would expect only a few adoptions
in the early stages, possibly business people. The adoption begins to accelerate,
diffusing to the public at large and even to youngsters. But then it begins to tail
off as saturation of the market becomes closer. At the upper limit the market is
saturated.

Although this is a verbal description of the diffusion process, and suggests an
S-shaped mathematical formulation of the process, it supplies no exact information
about the functional form. In particular, the slope, which indicates the speed of the
diffusion; or the asymptote, which indicates the level of saturation. Furthermore,
such diffusion processes may differ between products.

The typical diffusion model can be expressed

dN(t)

dt
= g(t)(m − N(t)) (2.22)

where N(t) is the cumulative number of adopters at time t, m is the maximum
number of potential adopters and g(t) is the coefficient of diffusion. dN(t)/dt then
represents the rate of diffusion at time t. Although we refer to the number of
adopters, the model is assumed to hold for continuous time t. It is possible to think
of g(t) as the probability of adoption at time t, and so g(t)(m − N(t)) is the expected
number of adopters at time t.

Although a number of specifications of g(t) have been suggested, most are a
special case of

g(t) = a + bN(t)

So the diffusion equation generally used is

dN(t)

dt
= (a/m + bN(t))(m − N(t)) (2.23)

If we divide (2.23) throughout bym and defineF(t) = N(t)/m, with Ḟ(t) = Ṅ(t)/m,
then

dF(t)

dt
= (a + bF(t))(1 − F(t)) (2.24)

This is still a logistic equation that is separable, and we can re-arrange and integrate
by parts (see example 2.15) to solve for F(t)

F(t) = 1 − e−(a+b)t

1 + (b/a)e−(a+b)t
(2.25)

This specification, however, is not the only possibility. The Gompertz function
also exhibits the typical S-shaped curve (see exercise 2), and using this we can
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express the diffusion process as

dN(t)

dt
= bN(t)(lnm − lnN(t))(2.26)

or
dF(t)

dt
= bF(t)(− lnF(t))

Suppressing the time variable for convenience, then the two models are

Ḟ = (a + bF)(1 − F)

and

Ḟ = bF(− lnF)

Pursuing the logistic equation, we can graph Ḟ against F. When F = 0 then
Ḟ = a and when Ḟ = 0 then (a + bF)(1 − F) = 0 with solutions

F1 = −b/a and F2 = 1

Since Ḟ denotes the rate of diffusion, then the diffusion rate is at a maximum
(penetration is at its maximum rate) when F̈ = 0, i.e., when d2F/dt2 = 0. Differ-
entiating and solving for F, which we denote Fp (for maximum penetration rate),
we obtain

Fp = 1

2
− a

2b
implying Np = m · Fp = m

(
1

2
− a

2b

)
= m

2
− am

2b

In order to find the time tp when F(tp) is at a maximum penetration rate, we must
first solve for F(t). This we indicated above. Since we need to find the value of t
satisfying F(t) = Fp, then we need to solve

1 − e−(a+b)t

1 + (b/a)e−(a+b)t
= 1

2
− a

2b

for t, which we can do using a software package. This gives the time for the
maximum penetration of

tp =
ln

(
b

a

)
a + b

(2.27)

Since d2F/dt2 = 0 at Fp, then this must denote the inflexion point of F(t).
The stylised information is shown in figure 2.13. Notice that the time for the

maximum penetration is the same for both F(t) and N(t). Also note that F(t)
involves only the two parameters a and b; while N(t) involves the three parameters
a, b and m.

2.7 Phase portrait of a single variable

This book is particularly concerned with phase diagrams. These diagrams help
to convey the dynamic properties of differential and difference equations – either
single equations or simultaneous equations. To introduce this topic and to lay
down some terminology, we shall consider here just a single variable. Let x denote
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Figure 2.13.

a variable which is a continuous function of time, t. Let x′(t) denote an autonomous
differential equation, so that x′(t) is just a function of x and independent of t.
Assume that we can solve for x′(t) for any point in time t. Then at any point in time
we have a value for x′(t). The path of solutions as t varies is called a trajectory,
path or orbit. The x-axis containing the trajectory is called the phase line.

If x′(t) = 0 then the system is at rest. This must occur at some particular point in
time, say t0. The solution value would then be x(t0) = x∗. The point x∗ is referred
to variedly as a rest point, fixed point, critical point, equilibrium point or
steady-state solution. For the Malthusian population equation p′(t) = kp, there is
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Figure 2.14.

only one fixed point, namely p∗ = 0. In the case of the logistic growth equation
x′(t) = kx(a − x) there are two fixed points, one at x∗

1 = 0 and the other at x∗
2 = a.

In example 2.4 on demand and supply the fixed point, the equilibrium point, is
given by

p∗ = c − a

b − d

which is also the fixed point for example 2.5. For the Harrod–Domar growth model
(example 2.8) there is only one stationary point, only one equilibrium point, and
that is Y∗ = 0. For the Solow growth model, in which the production function
conforms to a Cobb–Douglas (example 2.9), there are two stationary values, one
at k∗

1 = 0 and the other at

k∗
2 =

(
sa

n + δ

)−( 1
α−1 )

Whether a system is moving towards a fixed point or away from a fixed point
is of major importance. A trajectory is said to approach a fixed point if x(t) → x∗

as t → ∞, in this case the fixed point is said to be an attractor. On the other
hand, if x(t) moves away from x∗ as t increases, then x∗ is said to be a repellor.
Fixed points, attractors and repellors are illustrated in figure 2.14. Also illustrated
in figure 2.14 is the intermediate case where the trajectory moves first towards
the fixed point and then away from the fixed point. Since this can occur from two
different directions, they are illustrated separately, but both appear as a shunting
motion, and the fixed point is accordingly referred to as a shunt.

Consider once again the logistic growth equation x′(t) = kx(a − x), as illustrated
in figure 2.15. Figure 2.15(a) illustrates the differential equation, figure 2.15(b) il-
lustrates the phase line7 and figure 2.15(c) denotes the path of x(t) against time.
The stationary points on the phase line are enclosed in small circles to iden-
tify them. The arrows marked on the phase line, as in figure 2.15(b), indicate
the direction of change in x(t) as t increases. In general, x∗ = 0 is uninterest-
ing, and for any initial value of x not equal to zero, the system moves towards
x∗ = a, as illustrated in figure 2.15(c). Even if x initially begins above the level
x∗ = a, the system moves over time towards x∗ = a. In other words, x∗ = a is an
attractor.

7 Some textbooks in economics confusingly refer to figure 2.15(b) as a phase diagram.
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Figure 2.15.

If any trajectory starting ‘close to’ a fixed point8 stays close to it for all future
time, then the fixed point is said to be stable. A fixed point is asymptotically
stable if it is stable as just defined, and also if any trajectory that starts close to the
fixed point approaches the fixed point as t→ ∞. Considering the logistic equation
as shown in figure 2.15, it is clear that x∗ = a is an asymptotically stable rest point.

Figure 2.15 also illustrates another feature of the characteristics of a fixed point.
The origin, x∗ = 0, is a repellor while x∗ = a is an attractor. In the neighbourhood
of the origin, the differential equation has a positive slope. In the neighbourhood

8 We shall be more explicit about the meaning of ‘close to’ in section 4.2.
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of the attractor, the differential equation has a negative slope. In fact, this is a
typical feature of instability/stability. A fixed point is unstable if the slope of the
differential equation in the neighbourhood of this point is positive; it is stable if the
slope of the differential equation in the neighbourhood of this point is negative. If
there is only one fixed point in a dynamic system, then such a fixed point is either
globally stable or globally unstable. In the case of a globally stable system, for
any initial value not equal to the fixed point, then the system will converge on the
fixed point. For a globally unstable system, for any initial value not equal to the
fixed point, then the system will move away from it.

Consider example 2.4, a simple continuous price-adjustment demand and supply
model with the differential equation

dp

dt
= α(a − c) + α(b − d)p α > 0

For a solution (a fixed point, an equilibrium point) to exist in the positive quadrant
then a > c and so the intercept is positive. With conventional shaped demand and
supply curves, then b< 0 and d> 0, respectively, so that the slope of the differential
equation is negative. The situation is illustrated in figure 2.16(a).

Figure 2.16.
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Given linear demand and supply then there is only one fixed point. The system
is either globally stable or globally unstable. It is apparent from figure 2.16 that the
fixed point is an attractor, as illustrated in figure 2.16(b). Furthermore, the differ-
ential equation is negatively sloped for all values of p. In other words, whenever
the price is different from the equilibrium price (whether above or below), it will
converge on the fixed point (the equilibrium price) over time. The same qualita-
tive characteristics hold for example 2.5, although other possibilities are possible
depending on the value/sign of the parameter f .

Example 2.6 on population growth, and example 2.7 on radioactive decay, also
exhibit linear differential equations and are globally stable/unstable only for p =
0 and n = 0, respectively. Whether they are globally stable or globally unstable
depends on the sign of critical parameters. For example, in the case of Malthusian
population, if the population is growing, k > 0, then for any initial positive popula-
tion will mean continuously increased population over time. If k < 0, then for any
initial positive population will mean continuously declining population over time.
In the case of radioactive decay, λ is positive, and so there will be a continuous
decrease in the radioactivity of a substance over time.

The Harrod–Domar growth model, example 2.8, is qualitatively similar to the
Malthusian population growth model, with the ‘knife-edge’ simply indicating the
unstable nature of the fixed point. The Solow growth model, example 2.9, on
the other hand, exhibits multiple equilibria. There cannot be global stability or
instability because such statements have meaning only with reference to a single
fixed point system. In the case of multiple fixed points, statements about stability or
instability must be made in relation to a particular fixed point. Hence, with systems
containing multiple equilibria we refer to local stability or local instability, i.e.,
reference is made only to the characteristics of the system in the neighbourhood
of a fixed point. For instance, for the Solow growth model with a Cobb–Douglas
production function homogeneous of degree one there are two fixed points

k∗
1 = 0 and k∗

2 =
(

sa

n + δ

)( 1
1−α )

The first is locally unstable while the second is locally stable, as we observed
in figure 2.10. The first fixed point is a repellor while the second fixed point is
an attractor. The slope of the differential equation in the neighbourhood of the
origin has a positive slope, which is characteristic of a repellor; while the slope
of the differential equation in the neighbourhood of the second fixed point is
negative, which is characteristic of an attractor. These characteristics of the slope
of the differential equation in the neighbourhood of a system’s fixed points and
the features of the phase line are illustrated in figure 2.17.

2.8 Second-order linear homogeneous equations

A general second-order linear homogeneous differential equation with constant
coefficients is

a
d2y

dt2
+ b

dy

dt
+ cy = 0 (2.28)
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Figure 2.17.

Or

ay′′(t) + by′(t) + cy(t) = 0

If we can find two linearly independent solutions9 y1 and y2 then the general
solution is of the form

y = c1y1 + c2y2

where c1 and c2 are arbitrary constants. Suppose y = ext. Substituting we obtain

ax2ext + bxext + cext = 0

ext(ax 2 + bx + c) = 0

Hence, y = ext is a solution if and only if

ax2 + bx + c = 0

9 See exercises 9 and 10 for a discussion of linear dependence and independence.
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which is referred to as the auxiliary equation of the homogeneous equation. The
quadratic has two solutions

r = −b + √
b2 − 4ac

2a
, s = −b − √

b2 − 4ac

2a

If b2 > 4ac the roots r and s are real and distinct; if b2 = 4ac the roots are real
and equal; while if b2 < 4ac the roots are complex conjugate. There are, therefore,
three types of solutions. Here we shall summarise them.

2.8.1 Real and distinct (b2 > 4ac)

If the auxiliary equation has distinct real roots r and s, then ert and est are linearly
independent solutions to the second-order linear homogeneous equation. The gen-
eral solution is

y(t) = c1e
rt + c2e

st

where c1 and c2 are arbitrary constants.
If y(0) and y′(0) are the initial conditions when t = 0, then we can solve for c1

and c2

y(0) = c1er(0) + c2es(0) = c1 + c2

y′(t) = rc1ert + sc2est

y′(0) = rc1er(0) + sc2es(0) = rc1 + sc2

Hence

c1 = y′(0) − sy(0)

r − s
, c2 = y′(0) − ry(0)

s − r

and the particular solution is

y(t) =
(
y′(0) − sy(0)

r − s

)
ert +

(
y′(0) − ry(0)

s − r

)
est

which satisfies the initial conditions y(0) and y′(0).

Example 2.17

Suppose

d2y

dt2
+ 4

dy

dt
− 5y = 0

Then the auxiliary equation is

x2 + 4x − 5 = 0

(x + 5)(x − 1) = 0

Hence, r = −5 and s = 1, with the general solution

y(t) = c1e
−5t + c2e

t
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If y(0) = 0 and y′(0) = 1, then

c1 = 1

−5 − 1
= −1

6

c2 = 1

1 − (−5)
= 1

6

So the particular solution is

y(t) = −
(

1

6

)
e−5t +

(
1

6

)
et

2.8.2 Real and equal roots (b2 = 4ac)

If r is a repeated real root to the differential equation

ay′′(t) + by′(t) + c = 0

then a general solution is

y(t) = c1e
rt + c2te

rt

where c1 and c2 are arbitrary constants (see exercise 9). If y(0) and y′(0) are the
two initial conditions, then

y(0) = c1 + c2(0) = c1

y′(t) = rc1ert + rc2tert + c2ert

y′(0) = rc1 + c2

Hence

c1 = y(0), c2 = y′(0) − ry(0)

So the particular solution is

y(t) = y(0)ert + [y′(0) − ry(0)]tert

Example 2.18

y′′(t) + 4y′(t) + 4y(t) = 0

Then the auxiliary equation is

x2 + 4x + 4 = 0

(x + 2)2 = 0

Hence, r = −2 and the general solution is

y(t) = c1e
−2t + c2te

−2t

If y(0) = 3 and y′(0) = 7, then

c1 = y(0) = 3

c2 = y′(0) − ry(0) = 7 − (−2)(3) = 13
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so the particular solution is

y(t) = 3e−2t + 13te−2t

= (3 + 13t)e−2t

2.8.3 Complex conjugate (b2 < 4ac)

If the auxiliary equation has complex conjugate roots r and s where r = α + iβ
and s = α − iβ then

eαt cos(βt) and eαt sin(βt)

are linearly independent solutions to the second-order homogeneous equation (see
exercise 10). The general solution is

y(t) = c1e
αt cos(βt) + c2e

αt sin(βt)

where c1 and c2 are arbitrary constants.
If y(0) and y′(0) are the initial conditions when t = 0, then we can solve for c1

and c2

y(0) = c1 cos(0) + c2 sin(0) = c1

y′(t) = (αc1 + βc2)eαt cos(βt) + (αc2 − βc1)eαt sin(βt)

y′(0) = (αc1 + βc2)e0 cos(0) + (αc2 − βc1)e0 sin(0)

= αc1 + βc2

i.e.

c1 = y(0) and c2 = y′(0) − αy(0)

β

Hence, the particular solution is

y(t) = y(0)eαt cos(βt) +
(
y′(0) − αy(0)

β

)
eαt sin(βt)

Example 2.19

y′′(t) + 2y′(t) + 2y(t) = 0, y(0) = 2 and y′(0) = 1

The auxiliary equation is

x2 + 2x + 2 = 0

with complex conjugate roots

r = −2 + √
4 − 4(2)

2
= −1 + i

s = −2 − √
4 − 4(2)

2
= −1 − i

The general solution is

y(t) = c1e
−t cos(t) + c2e

−t sin(t)
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The coefficients are

c1 = y(0) = 2

c2 = y′(0) − αy(0)

β
= 3

Hence the particular solution is

y(t) = 2e−t cos(t) + 3e−t sin(t)

2.9 Second-order linear nonhomogeneous equations

A second-order linear nonhomogeneous equation with constant coefficients takes
the form

a
d2y

dt2
+ b

dy

dt
+ cy = g(t)(2.29)

or

ay′′(t) + by′(t) + cy(t) = g(t)

Let L(y) = ay′′(t) + by′(t) + cy(t) then equation (2.29) can be expressed as L(y) =
g(t). The solution to equation (2.29) can be thought of in two parts. First, there
is the homogeneous component, L(y) = 0. As we demonstrated in the previous
section, if the roots are real and distinct then

yc = c1e
rt + c2e

st

The reason for denoting this solution as yc will become clear in a moment.
Second, it is possible to come up with a particular solution, denoted yp, which
satisfies L(yp) = g(t). yc is referred to as the complementary solution satisfying
L(y) = 0, while yp is the particular solution satisfying L(yp) = g(t). If both yc
and yp are solutions, then so is their sum, y = yc + yp, which is referred to as
the general solution to a linear nonhomogeneous differential equation. Hence,
the general solution to equation (2.29) if the roots are real and distinct takes the
form

y(t) = yc + yp = c1e
rt + c2e

st + yp

The general solution y(t) = yc + yp holds even when the roots are not real or
distinct. The point is that the complementary solution arises from the solution to
L(y) = 0. As in the previous section there are three possible cases:

(1) Real and distinct roots

yc = c1e
rt + c2e

st

(2) Real and equal roots

yc = c1e
rt + c2te

rt
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(3) Complex conjugate roots

yc = c1e
αt cos(βt) + c2e

αt sin(βt)

In finding a solution to a linear nonhomogeneous equation, four steps need to
be followed:

Step 1 Find the complementary solution yc.
Step 2 Find the general solution yh by solving the higher-order equation

Lh(yh) = 0

where yh is determined from L(y) and g(t).
Step 3 Obtain yq = yh − yc.
Step 4 Determine the unknown constant, the undetermined coefficients, in the

solution yq by requiring

L(yq) = g(t)

and substituting these into yq, giving the particular solution yp.

Example 2.20

Suppose

y′′(t) + y′(t) = t

Step 1 This has the complementary solution yc, which is the solution to the aux-
iliary equation

x2 + x = 0

x(x + 1) = 0

with solutions r = 0 and s = −1 and

yc = c1e0t + c2e−t

= c1 + c2e−t

Step 2 The differential equation needs to be differentiated twice to obtain
Lh(yh) = 0. Thus, differentiating twice

y(4)(t) + y(3)(t) = 0

with auxiliary equation

x4 + x3 = 0

with roots 0, −1, 0, 0. Hence10

yh = c1e0t + c2e−t + c3te0t + c4t2e0t

= c1 + c2e−t + c3t + c4t2

10 We have here used the property that ert, tert and t2ert are linearly independent and need to be
combined with a root repeating itself three times (see exercise 9(ii)).
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Step 3 Obtain yq = yh − yc. Thus

yq = (c1 + c2e−t + c3t + c4t2) − (c1 + c2e−t)

= c3t + c4t2

Step 4 To find c3 and c4, the undetermined coefficients, we need L(yq) = t. Hence

y′′
q(t) + y′

q(t) = t

But from step 3 we can derive

y′
q = c3 + 2c4t

y′′
q = 2c4

Hence

2c4 + c3 + 2c4t = t

Since the solution must satisfy the differential equation identically for
all t, then the result just derived must be an identity for all t and so
the coefficients of like terms must be equal. Hence, we have the two
simultaneous equations

2c4 + c3 = 0

2c4 = 1

with solutions c4 = 1/2 and c3 = −1. Thus

yp = −t + 1
2 t

2

and the solution is

y(t) = c1 + c2e
−t − t + 1

2 t
2

It is also possible to solve for c1 and c2 if we know y(0) and y′(0).

Although we have presented the method of solution, many software pack-
ages have routines built into them, and will readily supply solutions if they
exist. The economist can use such programmes to solve the mathematics and
so concentrate on model formulation and model features. This we shall do in
part II.

2.10 Linear approximations to nonlinear
differential equations

Consider the differential equation

ẋ = f (x)

here f is nonlinear and continuously differentiable. In general we cannot solve such
equations explicitly. We may be able to establish the fixed points of the system
by solving the equation f (x) = 0, since a fixed point is characterised by ẋ = 0.
Depending on the nonlinearity there may be more than one fixed point.
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If f is continuously differentiable in an open interval containing x = x∗, then we
approximate f using the Taylor expansion

f (x) = f (x∗) + f ′(x∗)(x − x∗)

+ f ′′(x∗)(x − x∗)

2!
+ . . . + f n(x∗)(x − x∗)

n!
+ Rn(x, x

∗)

where Rn(x, x∗) is the remainder. In particular, a first-order approximation takes
the form

f (x) = f (x∗) + f ′(x∗)(x − x∗) + R2(x, x∗)

If the initial point x0 is sufficiently close to x∗, then R2(x, x∗) � 0. Furthermore, if
we choose x∗ as being a fixed point, then f (x∗) = 0. Hence we can approximate
f (x) about a fixed point x∗ with

f (x) = f ′(x∗)(x − x∗) (2.30)

Example 2.21

Although we could solve the Solow growth model explicitly if the production
function was a Cobb–Douglas by using a transformation suggested by Bernoulli,
it provides a good example of a typical nonlinear differential equation problem.
Our equation is

k̇ = f (k) = sakα − (n + δ)k

This function has two fixed points obtained from solving

k[sakα−1 − (n + δ)] = 0

namely

k∗
1 = 0 and k∗

2 =
(

sa

n + δ

)−( 1
α−1 )

Taking a first-order Taylor expansion about point k∗, we have

f (k) = f (k∗) + f ′(k∗)(k − k∗)

where

f ′(k∗) = αsa(k∗)α−1 − (n + δ)

and f (k∗) = 0

Consider first k∗ = k∗
1 = 0, then

f ′(k∗
1) = lim

k→0
f ′(k) = lim

k→0
[αsakα−1 − (n + δ)] = ∞

Next consider k = k∗
2 > 0, then f (k∗

2) = 0 and

f ′(k∗
2) = αsa(k∗

2)α−1 − (n + δ) = αsa

[(
sa

n + δ

)−( 1
α−1 )
]α−1

− (n + δ)

= α(n + δ) − (n + δ)

= −(n + δ)(1 − α)
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Figure 2.18.

Hence

f (k) = −(n + δ)(1 − α)(k − k∗)

Since 0 < α < 1 and n and δ are both positive, then this has a negative slope
about k∗

2 and hence k∗
2 is a locally stable equilibrium. The situation is shown in

figure 2.18.
The first-order linear approximation about the non-zero equilibrium is then

k̇ = f (k) = −(n + δ)(1 − α)(k − k∗)

with the linear approximate solution

k(t) = k∗
2 + (k(0) − k∗

2)e−(n+δ)(1−α)t

As t → ∞ then k(t) → k∗
2.

What we are invoking here is the following theorem attributed to Liapunov

THEOREM 2.1
If ẋ = f (x) is a nonlinear equation with a linear approximation

f (x) = f (x∗) + f ′(x∗)(x − x∗)

about the equilibrium point x∗, and if x∗ is (globally) stable for the linear
approximation, then x∗ is asymptotically stable for the original nonlinear
equation.

Care must be exercised in using this theorem. The converse of the theorem is
generally not true. In other words, it is possible for x∗ to be stable for the nonlinear
system but asymptotically unstable for its linear approximation.
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Figure 2.19.

Example 2.22

Consider

ẋ = f (x) = a(x − x∗)3 − ∞ < x < ∞, a > 0

There is a unique equilibrium at x = x∗ = 0 which is globally stable. This is readily
seen in terms of figure 2.19, which also displays the phase line.

Now consider its linear approximation at x = x∗

f ′(x) = 3a(x − x∗)2

f ′(x∗) = 0

and so

ẋ = f (x) = f (x∗) + f ′(x∗)(x − x∗) = 0

which does not exhibit global stability. This is because for any x0 
= x∗ then x = x0

for all t since ẋ = 0. Consequently, x0 does not approach x∗ in the limit, and so
x∗ = 0 cannot be asymptotically stable.
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We shall return to linear approximations in chapter 3 when considering differ-
ence equations, and then again in chapters 4 and 5 when we deal with nonlinear
systems of differential and difference equations. These investigations will allow
us to use linear approximation methods when we consider economic models in
part II.

2.11 Solving differential equations with Mathematica

2.11.1 First-order equations

Mathematica has two built in commands for dealing with differential equations,
which are the DSolve command and the NDSolve command. The first is used to
find a symbolic solution to a differential equation; the second finds a numerical
approximation. Consider the following first-order differential equation

dy

dt
= f (y, t)

In particular, we are assuming that y is a function of t, y(t). Then we employ the
DSolve command by using

DSolve[y’[t]==f[y[t],t],y[t],t]

Note a number of aspects of this instruction:

(1) The equation utilises the single apostrophe, so y′(t) denotes dy/dt
(2) The function f (y(t), t) may or may not be independent of t
(3) y(t) is written in the equation rather than simply y
(4) The second term, y(t), is indicating what is being solved for, and t denotes

the independent variable.

It is possible to first define the differential equation and use the designation in the
DSolve command. Thus

Eq = y’[t]==f[y[t],t]

DSolve[Eq,y[t],t]

If Mathematica can solve the differential equation then this is provided in the
output. Sometimes warnings are provided, especially if inverse functions are being
used. If Mathematica can find no solution, then the programme simply repeats the
input. The user does not need to know what algorithm is being used to solve the
differential equation. What matters is whether a solution can be found. What is
important to understand, however, is that a first-order differential equation (as we
are discussing here) involves one unknown constant of integration. The output
will, therefore, involve an unknown constant, which is denoted C[1].

Consider the examples of first-order differential equations used in various places
throughout this chapter shown in table 2.1.
Mathematica has no difficulty solving all these problems, but it does provide

a warning with the last stating: ‘The equations appear to involve transcendental
functions of the variables in an essentially non-algebraic way.’ What is also illus-
trated by these solutions is that the output may not, and usually is not, provided in
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Table 2.1 First-order differential equations with Mathematica

Problem Input instructions

(i) dx

dt
= kx DSolve[x’[t]==kx[t],x[t],t]

(ii) dx

dt
= 1 + cet DSolve[x’[t]==1+cExp[t],x[t],t]

(iii) dp

dt
− α(b − d)p = α(a − c) DSolve[p’[t]-α (b-d)p[t]==α(a-c),p[t],t]

(iv) dx

dt
= kx(a − x) DSolve[x’[t]==kx[t](a-x[t]),x[t],t]

(v) k̇ = sakα−(n + δ)k DSolve[k’[t]==sak[t]α-(n+δ)k[t],k[t],t]

Table 2.2 Mathematica input instructions for initial value problems

Problem Input instructions

(i) dp

dt
= p(a − bp), p(0) = p0 DSolve[{p’[t]==p[t](a-bp[t]),p[0]==p0},

p[t],t]

(ii) dn

dt
= −λn, n(0) = n0 DSolve[{n’[t]==-λn[t],n[0]==n0},n[t],t]

(iii) dy

dx
= x2 − 2x + 1, y(0) = 1 DSolve[{y’[x]==x2-2x+1,y[0]==1},y[x],x]

a way useful for economic interpretation. So some manipulation of the output is
often necessary.

It will be noted that none of the above examples involve initial conditions, which
is why all outputs involve the unknown constant C[1]. Initial value problems are
treated in a similar manner. If we have the initial value problem,

dy

dt
= f (y, t) y(0) = y0

then the input instruction is

DSolve[{y’[t]==f[y[t],t],y[0]==y0},y[t],t]

For example, look at table 2.2.

2.11.2 Second-order equations

Second-order differential equations are treated in fundamentally the same way. If
we have the homogeneous second-order differential equation

a
d2y

dt2
+ b

dy

dt
+ cy = 0
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Table 2.3 Mathematica input instructions for second-order differential equations

Problem Input Instructions

(i) d2y

dt2
+ 4

dy

dt
− 5y = 0 DSolve[y’’[t]+4y’[t]-5y[t]==0,y[t],t]

(ii) y′′(t) + 4y′(t) + 4y(t) = 0 DSolve[y’’[t]+4y’[t]+4y[t]==0,y[t],t]
(iii) y′′(t) + 2y′(t) + 2y(t) = 0 DSolve[y’’[t]+2y’[t]+2y[t]==0,y[t],t]
(iv) y′′(t) + y′(t) = t DSolve[y’’[t]+y’[t]==t,y[t],t]

Table 2.4 Mathematica input instructions for initial value problems

Problem Input instructions

(i) d2y

dt2
+ 4

dy

dt
− 5y = 0, DSolve[{y’’[t]+4y’[t]-5y[t]==0,y[0]==0,

y(0) = 0, y′(0) = 1
y’[0]==1},y[t],t]

(ii) y′′(t) + 4y′(t) + 4y(t) = 0, DSolve[{y’’[t]+4y’[t]+4y[t]==0,y[0]==3,
y(0) = 3, y′(0) = 7 y’[0]==7},y[t],t]

then the input instruction is11

DSolve[ay’’[t]+by’[t]+cy[t]==0,y[t],t]

If we have the nonhomogeneous second-order differential equation

a
d2y

dt2
+ b

dy

dt
+ cy = g(t)

then the input instruction is

DSolve[ay’’[t]+by’[t]+cy[t]==g[t],y[t],t]

Of course, the solutions are far more complex because they can involve real and
distinct roots, real and equal roots and complex conjugate roots. But the solution
algorithms that are built into Mathematica handle all these. Furthermore, second-
order differential equations involve two unknowns, which are denoted C[1] and
C[2] in Mathematica’s output.

The Mathematica input instructions for some examples used in this chapter are
shown in table 2.3.

Initial value problems follow the same structure as before (table 2.4).

2.11.3 NDSolve

Many differential equations, especially nonlinear and nonautonomous differential
equations, cannot be solved by any of the known solution methods. In such cases a
numerical approximation can be provided using the NDSolve command. In using
NDSolve it is necessary, however, to provide initial conditions and the range for

11 Do not use the double quotes in these equations; rather input the single quote twice.
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the independent variable. Given the following initial value problem

dy

dt
= f (y(t), t) y(0) = y0

the input instruction is

NDSolve[{y’[t]==f[y[t],t],y[0]==y0},

y[t],{t,tmin,tmax}]

Mathematica provides output in the form of an InterpolatingFunction that rep-
resents an approximate function obtained using interpolation. This Interpolating-
Function can then be plotted. Since it is usual to plot an InterpolatingFunction,
then it is useful to give the output a name. For example, given the problem

dy

dt
= sin(3t − y) y(0) = 0.5, t ∈ [0, 10]

the instruction is

sol=NDSolve[{y’[t]==Sin[3t-y[t]],y[0]==0.5},

y[t],{t,0,10}]

Although the output is named ‘sol’, the solution is still for the variable y(t). So the
plot would involve the input

Plot[y[t] /. sol, {t,0,10}]

Note that the range for t in the plot is identical to the range given in the NDSolve
command.

Higher-order ordinary differential equations are treated in the same way. For
example, given the initial value problem

d2y

dt2
+ 0.5

dy

dt
+ sin(y) = 0, y(0) = −1, y′(0) = 0, t ∈ [0, 15]

the input instruction is

sol=NDSolve[{y’’[t]+0.5y’[t]+Sin[y[t]]==0,

y[0]==-1,y’[0]==0}, y[t],{t,0,15}]

with plot

Plot[y[t] /. sol, {t,0,15}]

2.12 Solving differential equations with Maple

2.12.1 First-order equations

Maple has a built in command for dealing with differential equations, which is the
dsolve command. This command is used to find a symbolic solution to a differential
equation. The command dsolve(. . . , numeric) finds a numerical approximation.
Consider the following first-order differential equation

dy

dt
= f (y, t)
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In particular, we are assuming that y is a function of t, y(t). Then we employ the
dsolve command by using

dsolve(diff(y(t),t)=f(y(t),t),y(t));

Note a number of aspects of this instruction:

(1) The equation utilises diff(y(t), t) to denote dy/dt
(2) The function f (y(t), t) may or may not be independent of t
(3) y(t) is written in the equation rather than simply y
(4) The second term, y(t), is indicating what is being solved for and that t is

the independent variable.

It is possible to first define the differential equation and use the designation in the
dsolve command. Thus

Eq:=diff(y(t),t);

dsolve(Eq,y(t));

If Maple can solve the differential equation then this is provided in the output. If
Maple can find no solution, then the programme simply gives a blank output. The
user does not need to know what algorithm is being used to solve the differential
equation. What matters is whether a solution can be found. What is important to
understand, however, is that a first-order differential equation (as we are discussing
here) involves one unknown constant of integration. The output will, therefore,
involve an unknown constant, which is denoted C1.

Consider the following examples of first-order differential equations used in
various places throughout this chapter (table 2.5). Maple has no difficulty solving
all these problems. What is illustrated by these solutions is that the output may
not, and usually is not, provided in a way useful for economic interpretation. So
some manipulation of the output is often necessary.

It will be noted that none of the above examples involves initial conditions,
which is why all outputs involve the unknown constant C1. Initial value problems

Table 2.5 Maple input instructions for first-order differential equations

Problem Input instructions

(i) dx

dt
= kx dsolve(diff(x(t),t)=k*x(t),x(t));

(ii) dx

dt
= 1 + cet dsolve(diff(x(t),t)=1+c*exp(t),x(t));

(iii) dp

dt
− α(b − d)p = α(a − c) dsolve(diff(p(t),t)-alpha*(b-d)*p(t)=

alpha*(a-c),p(t));
(iv) dx

dt
= kx(a − x) dsolve(diff(x(t),t)=

k*x(t)*(a-x(t)),x(t));
(v) k̇ = sak α − (n + δ)k dsolve(diff(k(t),t)=s*a*k(t)^alpha-

(n+delta)*k(t),k(t));
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Table 2.6 Maple input instructions for first-order initial value problems

Problem Input instructions

(i) dp

dt
= p(a − bp), p(0) = p0 dsolve({diff(p(t),t)=

p(t)*(a-b*p(t)),p(0)=p0},p(t));
(ii) dn

dt
= −λn, n(0) = n0 dsolve({diff(n(t),t)=

-lambda*n(t),n(0)=n0},n(t));
(iii) dy

dx
= x2 − 2x + 1, y(0) = 1 dsolve({diff(y(x),x)=

x^2-2*x+1,y(0)=1},y(x));

are treated in a similar manner. If we have the initial value problem,

dy

dt
= f (y, t) y(0) = y0

then the input instruction is

dsolve({diff(y(t),t)=f(y(t),t),y(0)=y0},y(t));

For example, look at table 2.6.

2.12.2 Second-order equations

Second-order differential equations are treated in fundamentally the same way. If
we have the homogeneous second-order differential equation

a
d2y

dt2
+ b

dy

dt
+ cy = 0

then the input instruction is

dsolve(a*diff(y(t),t$2)+b*diff(y(t),t)+c*y(t)=0,y(t));

If we have the nonhomogeneous second-order differential equation

a
d2y

dt2
+ b

dy

dt
+ cy = g(t)

then the input instruction is

dsolve(a*diff(y(t),t$2)+b*diff(y(t),t)+c*y(t)

=g(t),y(t));

Of course, the solutions are far more complex because they can involve real and
distinct roots, real and equal roots and complex conjugate roots. But the solution
algorithms that are built into Maple handle all these. Furthermore, second-order
differential equations involve two unknowns, which are denoted C1 and C2 in
Maple’s output.

The input instructions for some examples used in this chapter are shown in
table 2.7.

Initial value problems follow the same structure as before (table 2.8).
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Table 2.7 Maple input instructions for second-order differential equations

Problem Input instructions

(i) d2y

dt2
+ 4

dy

dt
− 5y = 0 dsolve(diff(y(t),t$2)+4*diff(y(t),t)-

5*y(t)=0,y(t));
(ii) y′′(t) + 4y′(t) + 4y(t) = 0 dsolve(diff(y(t),t$2)+4*diff(y(t),t)+

4*y(t)=0,y(t));
(iii) y′′(t) + 2y′(t) + 2y(t) = 0 dsolve(diff(y(t),t$2)+2*diff(y(t),t)+

2*y(t)=0,y(t));
(iv) y′′(t) + y′(t) = t dsolve(diff(y(t),t$2)+diff(y(t),t)=

t,y(t));

Table 2.8 Maple input instructions for second-order initial value problems

Problem Input instructions

(i) d2y

dt2
+ 4

dy

dt
− 5y = 0, dsolve({diff(y(t),t$2)+4*diff(y(t),t)-

y(0) = 0, y′(0) = 1 5*y(t)=0,y(0)=0,D(y)(0)=1},y(t));

(ii) y′′(t) + 4y′(t) + 4y(t) = 0, dsolve({diff(y(t),t$2)+4*diff(y(t),t)+
y(0) = 3, y′(0) = 7 4*y(t)=0,y(0)=3,D(y)(0)=7},y(t));

2.12.3 dsolve(. . . , numeric)

Many differential equations, especially nonlinear and nonautonomous differential
equations, cannot be solved by any of the known solution methods. In such cases
a numerical approximation can be provided using the dsolve(. . . , numeric) com-
mand. In using the numerical version of the dsolve command, it is necessary to
provide also the initial condition. Given the following initial value problem,

dy

dt
= f (y(t), t) y(0) = y0

the input instruction is

dsolve({diff(y(t),t)=f(y(t),t),y(0)=y0},y(t),numeric);

Maple provides output in the form of a proc function (i.e. a procedural function)
that represents an approximate function obtained using interpolation. This proce-
dure can then be plotted. Since it is usual to plot such a procedural function, it is
useful to give the output a name. Furthermore, since the plot is of a procedural
function, it is necessary to use the odeplot rather than simply the plot command.
In order to do this, however, it is first necessary to load the plots subroutine with
the following instruction.

with(plots):

For example, given the problem

dy

dt
= sin(3t − y) y(0) = 0.5, t ∈ [0,10]
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the instruction for solving this is

Sol1=dsolve({diff(y(t),t)=sin(3*t-y(t)),y(0)=0.5},

y(t),numeric);

Although the output is named ‘Sol’, the solution is still for the variable y(t). So the
plot would involve the input

odeplot(Sol1,[t,y(t)],0..10);

Note that the range for t is given only in the odeplot instruction.
Higher-order ordinary differential equations are treated in the same way. For

example, given the initial value problem,

d2y

dt2
+ 0.5

dy

dt
+ sin(y) = 0, y(0) = −1, y′(0) = 0, t ∈ [0,15]

the input instruction is

Sol2=dsolve({diff(y(t),t$2)+0.5*diff(y(t),

t)+sin(y(t))=0, y(0)=-1,D(y)(0)=0},y(t),numeric);

with plot

odeplot(Sol2,[t,y(t)],0..15);

Appendix 2.1 Plotting direction fields for a single equation
with Mathematica

Figure 2.8 (p. 45)

Given the differential equation

dy

dx
= 2x − y

the direction field and isoclines can be obtained using Mathematica as follows:

Step 1 Load the PlotField subroutine with the instruction

<< Graphics`PlotField`

Note the use of the back-sloped apostrophe.
Step 2 Obtain the direction field by using the PlotVectorField command as

follows

arrows=PlotVectorField[{1,2x-y},{x,-2,2},{y,-2,2}]

Note the following:
(a) ‘arrows’ is a name (with lower case a) which will be used later in the

routine
(b) the first element in the first bracket is unity, which represents the time

derivative with respect to itself
(c) if memory is scarce, the plot can be suppressed by inserting a semi-

colon at the end of the line.
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Step 3 Solve the differential equation using the DSolve command (not available
prior to version 2.0)

sol=DSolve[ y’[x]+y[x]==2x, y[x], x]

Note the double equal sign in the equation.
Step 4 Derive an arbitrary path by extracting out the second term in the previous

result. This is accomplished with the line

path=sol[[1,1,2]]

Step 5 Derive a series of trajectories in the form of a table using the Table
command.

trajectories=Table[sol[[1,1,2]]/.C[1]->a,{a,-2,2,.5}]

Note the following:
(a) the solution to the differential equation is evaluated by letting C[1],

the constant of integration, take the value of a. This is accomplished
by adding the term ‘/. C[1]->a’

(b) a is then given values between −2 and 2 in increments of 0.5.
Step 6 Plot the trajectories using the Plot and Evaluate commands

plottraj=Plot[ Evaluate[trajectories], {x,-2,2} ]

Note that it is important to give the domain for x the same as in the direction
field plot.

Step 7 Combine the direction field plot and the trajectories plot using the Show
command (not available prior to version 2.0)

Show[arrows,plottraj]

This final result is shown in figure 2.8.

Figure 2.9(a) (p. 46)

This follows similar steps as for figure 2.8, and so here we shall simply list the
input lines, followed by a few notes.

(1) Input <<Graphics`PlotField`

(2) Input malthus[t-, k-,p0-]=p0 E^(k t)

(3) Input malthus[0,0.01,13]

(4) Input malthus[150,0.01,13]

(5) Input pop1=Plot[ malthus t,0.01,13 ], {t,0,150} ]

(6) Input arrows=PlotVectorField[{1, 0.01p},

{t,0,150}, {p,0,60}]

(7) Input Show[pop1,arrows,

AxesOrigin->{0,0},

AxesLabel->{"t","p"} ]

Input (2) and (3) are simply to check the initial population size and the final
population size. Input (6) has {1, kp} (with k = 0.01) as the first element in the
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PlotVectorField. Input (7) indicates some options that can be used with the Show
command. These too could be employed in (a) above.

Figure 2.9(b) (p. 46)

Before we can plot the logistic function we need to solve it. In this example we
shall employ the figures for a and b we derive in chapter 14 for the UK population
over the period 1781–1931.

a = 0.02 and b = 0.000436

and with p0 = 13.

(1) Input <<Graphics`PlotField`

(2) Input DSolve[{p’[t]==(0.02-0.000436p[t])p[t],

p[0]==13}, p[t], t ]

(3) Input logistic=%[[1,1,2]]

(4) Input logplot=Plot[logistic, {t,0,150} ]

(5) Input arrows=PlotVectorField[{1,0.02p-0.000436p^2},

{t,0,150}, {p,0,50} ]

(6) Input Show[logplot, arrows,

AxesOrigin->{0,0},

AxesLabel->{"t","p"} ]

Note again that the PlotVectorField has the first element in the form {1, (a − bp)p}
(with a = 0.02 and b = 0.000436).

Appendix 2.2 Plotting direction fields for a single
equation with Maple

Figure 2.8 (p. 45)

Given the differential equation

dy

dx
= 2x − y

the direction field and isoclines can be obtained using Maple as follows:

Step 1 Load the DEtools subroutine with the instruction

with(DEtools):

Note the colon after the instruction.
Step 2 Define the differential equation and a set of points for the isoclines.

Eq:= diff(y(x),x)=2*x-y

Points:={[-2,2],[-1,1],[-1,0.5],[-0.5,-2],

[0,-2],[0.5,-1.5],[0.5,-1],[1,-1],[1.5,-0.5]};

Step 3 Obtain the direction field and the integral curves with the instruction

DEplot(Eq,y(x),x=-2..2,Points,y=-2..2, arrows=slim,

linecolour=blue);
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Note that the direction field has six elements:

(i) the differential equation
(ii) y(x) indicates that x is the independent variable and y the dependent

variable
(iii) the range for the x-axis
(iv) the initial points
(v) the range for the y-axis
(vi) a set of options; here we have two options:

(a) arrows are to be drawn slim (the default is thin)
(b) the colour of the lines is to be blue (the default is yellow).

Figure 2.9(a) (p. 46)

This follows similar steps as figure 2.8 and so we shall be brief. We assume a new
session. Input the following:

(1) with(DEtools):

(2) equ:=p0*exp(k*t);

(3) newequ:=subs(p0=13,k=0.01,equ);

(4) inisol:=evalf(subs(t=0,newequ));

(5) finsol:=evalf(subs(t=150,newequ));

(6) DEplot(diff(p(t),t)=0.01*p,p(t),t=0..150,{[0,13]},

p=0..60, arrows=slim,linecolour=blue);

Instructions (2), (3), (4) and (5) input the equation and evaluate it for the initial
point (time t = 0) and at t = 150. The remaining instruction plots the direction
field and one integral curve through the point (0, 13).

Figure 2.9(b) (p. 46)

The logistic equation uses the values a = 0.02 and b = 0.000436 and p0 = 13.
The input instructions are the following, where again we assume a new session:

(1) with(DEtools):

(2) DEplot(diff(p(t),t)=(0.02-0.000436*p)*p,p(t),

t=0..150,{[0,13]},p=0..50,arrows=slim,

linecolour=blue);

Exercises

1. Show the following are solutions to their respective differential equations

(i)
dy

dx
= ky y = cekx

(ii)
dy

dx
= −x

y
y = x2 + y2 = c

(iii)
dy

dx
= −2y

x
y = a

x2
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2. Analyse the qualitative and quantitative properties of the Gompertz
equation for population growth

ṗ = p′(t) = kp(a − ln p)

3. Solve the following separable differential equations

(i)
dy

dx
= x(1 − y2) − 1 < y < 1

(ii)
dy

dx
= 1 − 2y + y2

(iii)
dy

dx
= y2

x2

4. Solve the following initial value problems

(i)
dy

dx
= x2 − 2x + 1 y = 1 when x = 0

(ii)
dy

dx
= (3x2 + 4x + 2)

2(y − 1)
y = −1 when x = 0

5. Solve the following Bernoulli differential equations

(i)
dy

dx
− y = −y2

(ii)
dy

dx
− y = xy2

(iii)
dy

dx
= 2y − exy2

6. Show that the logistic equation

dp

dt
= p(a − bp)

can be represented as a Bernoulli function. Using a suitable transfor-
mation, solve the resulting linear differential equation; and hence show
that

p(t) = ap0

(a − bp0)e−at + bp0
where p(0) = p0

7. In the Great Hall in Winchester hangs a round table on the wall that was
purported to be King Arthur’s famous original round table top. Wood con-
tains carbon-14 with a decay-constant of 1.245 × 10−4 per year. Living
wood has a rate of disintegration of 6.68 per minute per gram of sample.
When the tabletop was inspected in 1977 the rate of disintegration was
found to be 6.08 per minute per gram of sample. Given King Arthur was
on the throne in the fifth century AD, demonstrate that the tabletop at
Winchester was not that of King Arthur.

8. (Use information in exercise 7.) In 1950 the Babylonian city of Nippur
was excavated. In this excavation there was charcoal from a wooden roof
beam which gave off a carbon-14 disintegration count of 4.09 per minute
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per gram. If this charcoal was formed during the reign of Hammurabi,
what is the likely time of Hammurabi’s succession?

9. (i) f1(x) and f2(x) are linearly dependent if and only if there exists con-
stants b1 and b2 not all zero such that

b1 f1(x) + b2 f2(x) = 0

for every x. Suppose b1 
= 0, then f1(x) = −(b2/b1) f2(x) and so
f1(x) is a multiple of f2(x) and therefore the functions are linearly
dependent. If the set of functions is not linearly dependent, then f1(x)
and f2(x) are linearly independent. Show that y1 = ert and y2 = tert

are linearly independent.
(ii) f1(x), f2(x) and f3(x) are linearly dependent if and only if there exist

constants b1, b2 and b3 not all zero such that

b1 f1(x) + b2 f2(x) + b3 f3(x) = 0

for every x. If the set of functions is not linearly dependent, then f1(x),
f2(x) and f3(x) are linearly independent. Show that y1 = ert, y2 = tert

and y3 = t2ert are linearly independent.
10. For the second-order linear differential equation with complex conjugate

roots r = α + βi and s = α − βi, show that

y(t) = c1e
rt + c2e

st

is equivalent to

y(t) = c1e
αi cos(βt) + c2e

αi sin(βt)

by using Euler’s identity that for the complex number iβ

eiβ = cos β + i sin β

11. A principal P is compounded continuously with interest rate r.
(i) What is the rate of change of P?

(ii) Solve for P at time t, i.e., P(t), given P(0) = P0.
(iii) If P0 = £2,000 and r = 7.5% annually, what is P after 5 years?

12. If £1,000 is invested at a compound interest of 5%, how long before the
investment has doubled in size, to the nearest whole year?

13. If ẋ = x2 + 2x − 15
(i) establish the fixed points

(ii) determine whether the fixed points are attracting or repelling.
14. Given the following parameters for the Solow growth model

a = 4, α = 0.25, s = 0.1, δ = 0.4, n = 0.03

(i) use a software program to plot the graph of k(t)
(ii) plot the function

k̇ = sakα − (n + δ)k

(iii) Linearise k̇ about the equilibrium in (ii) and establish whether it is
stable or unstable.
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15. Given the differential equation

Ẏ −
( s
v

)
Y = 0

for the Harrod–Domar growth model:
(i) construct a diagram of Ẏ against Y and establish the phase line for

this model
(ii) establish Y(t) given Y(0) = Y0.

16. From Domar (1944), assume income Y(t) grows at a constant rate r. In
order to maintain full employment the budget deficit, D(t), changes in
proportion k to Y(t), i.e.,

Ḋ(t) = kY(t)

Show that

D(t)

Y(t)
=
(
D0

Y0
− k

r

)
e−rt + k

r

17. At what nominal interest rate will it take to double a real initial investment
ofA over 25 years, assuming a constant rate of inflation of 5% per annum?

18. Table 2A.1 provides annual GDP growth rates for a number of countries
based on the period 1960–1990 (Jones 1998, table 1.1).
(a) In each case, calculate the number of years required for a doubling

of GDP.
(b) Interpret the negative numbers in the ‘years to double’ when the

growth rate is negative.
19. In 1960 China’s population was 667,073,000 and by 1992 it was

1,162,000,000.
(a) What is China’s annual population growth over this period?
(b) How many years will it take for China’s population to double?
(c) Given China’s population in 1992, and assuming the same annual:

growth rate in population, what was the predicted size of China’s
population at the beginning of the new millennium (2000)?

20. An individual opens up a retirement pension at age 25 of an amount
£5,000. He contributes £2,000 per annum each year up to his retirement
at age 65. Interest is 5% compounded continuously. What payment will
he receive on his retirement?

Table 2A.1 GDP growth rates, selected countries, 1960–1990

‘Rich’ Growth Years to ‘Poor’ Growth Years to
countries rate double countries rate double

France 2.7 China 2.4
Japan 5.0 India 2.0
West Germany 2.5 Uganda −0.2
UK 2.0 Zimbabwe 0.2
USA 1.4

Source: Jones (1998, table 1.1).
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Additional reading

For additional material on the contents of the present chapter the reader can consult:
Arrowsmith and Place (1992), Berry (1996), Borrelli et al. (1992), Boyce and
DiPrima (1997), Braun (1983), Burmeister and Dobell (1970), Davies (1979),
Giordano and Weir (1991), Griffiths and Oldknow (1993), Jeffrey (1990), Lynch
(2001), Mahajan and Peterson (1985), Percival and Richards (1982), Takayama
(1994) and Tu (1994).



CHAPTER 3

Discrete dynamic systems

3.1 Classifying discrete dynamic systems

A discrete dynamic system is a sequence of numbers, yt, that are defined recursively,
i.e., there is a rule relating each number in the sequence to previous numbers in
the sequence; we denote such a sequence {yt}.

A first-order discrete dynamic system is a sequence of numbers yt for t =
0, 1, 2 . . . such that each number after the first is related to the previous num-
ber by the relationship

yt+1 = f (yt) (3.1)

We shall refer to (3.1) as a recursive equation. The sequence of numbers given
by the relationship

�yt+1 ≡ yt+1 − yt = g(yt) (3.2)

we shall refer to as a first-order difference equation.1 Examples are

(i) yt+1 = 2 + yt implies yt+1 − yt = 2
(ii) yt+1 = 2yt implies yt+1 − yt = yt

Given the discrete dynamic system yt+1 = f (yt), then if f (yt) is linear, the system
is said to be linear; if f (yt) is nonlinear then the system is said to be nonlinear.
Examples

(i) yt+1 = 2 + 3yt linear
(ii) yt+2 − 2yt+1 − 3yt = 5 linear

(iii) yt+1 = 3.2yt(1 − yt) nonlinear
(iv) yt+1 = ryt ln(k/yt) nonlinear

Consider the general discrete dynamic system

yt+1 = f (t, yt) (3.3)

For example

yt+1 = th(yt)

1 Often equation (3.1) and equation (3.2) are each referred to as a difference equation.
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As in the case of differential equations, if the dynamic system depends not only
on h(yt) but also on t itself, then the system is said to be nonautonomous. If,
however, the dynamic system is independent of t, then it is said to be autonomous.
Hence, yt+1 = t + 2yt is a nonautonomous dynamic system, while yt+1 = 2yt is
autonomous.

Suppose we consider a linear first-order difference equation with all y-terms on
the left-hand side, for example

yt+1 + ayt = g(t)

If g(t) ≡ 0 for all t, then these equations are said to be homogeneous, otherwise
they are nonhomogeneous. They are referred to as homogeneous difference equa-
tions because if a series {yt} satisfies the equation, then so does the series {kyt}.

Of particular importance is the order of a dynamic system. The dynamic system
(3.1) is a first-order system in which each number in the sequence depends only
on the previous number. In general, an mth-order discrete dynamic system takes
the form

yt+m = f (yt+m−1, yt+m−2, . . . , yt)(3.4)

For instance, a second-order linear discrete dynamic system takes the general form

yt+2 + ayt+1 + byt = g(t)

This would be a second-order linear homogeneous dynamic system if g(t) ≡ 0 for
all t.
Examples are:

(i) yt+1 − 2yt = 0 is first-order linear homogeneous
(ii) yt+2 − 4yt+1 − 4yt = 0 is second-order linear homogeneous

(iii) yt+1 − 2yt = 5 is first-order linear nonhomogeneous
(iv) yt+2 − 4yt+1 − 4yt = 6 is second-order linear nonhomogeneous

All are also examples of autonomous systems. In this book we shall consider only
autonomous systems.

3.2 The initial value problem

The initial value problem is the requirement of knowing certain initial values in
order to solve the sequence of numbers. Thus, for yt+1 = f (yt)

yt+2 = f (yt+1) = f ( f (yt)) = f 2(yt)

Hence, the sequence of numbers is defined only given some initial value for yt. In
the case of a second-order sequence, then we require to know two initial values.
This is because, if

yt+2 = f (yt+1, yt)

then

yt+3 = f (yt+2, yt+1) = f ( f (yt+1, yt), yt+1)
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and so on. Hence, each number in the sequence ultimately depends on two initial
values, yt+1 and yt. This requirement generalises. For an m-order dynamic system
m-initial values are generally required for its solution.

Let

yt+1 = f (yt) y0 at t = 0

This represents a recursive equation and we can generate a sequence starting
from the value y0. The sequence would be

y0, f (y0), f ( f (y0)), f ( f ( f (y0))), . . .

Letting f n(y0) denote the nth iterate of y0 under f , then the sequence can be ex-
pressed

y0, f (y0), f 2(y0), f 3(y0), . . .

The set of all (positive) iterates { f n(y0), n ≥ 0} is called the (positive) orbit of y0.

3.3 The cobweb model: an introduction

To highlight the features so far outlined, and others to follow, consider the following
typical cobweb model in which demand at time t, qdt , depends on the price now
ruling on the market, pt, while the supply at time t, qst , depends on planting, which
in turn was governed by what the price the farmer received in the last period, pt−1.
The market is cleared in any period, and so qdt = qst . Assuming linear demand and
supply curves for simplicity, the model is, then,

qdt = a − bpt a, b > 0

qst = c + dpt−1 d > 0

qdt = qst

(3.5)

Substituting, we obtain

a − bpt = c + dpt−1

or

pt =
(
a − c

b

)
−
(
d

b

)
pt−1 (3.6)

which is a first-order nonhomogeneous dynamic system. It is also an autonomous
dynamic system since it does not depend explicitly on t.

This model is illustrated in figure 3.1. The demand and supply curves are indi-
cated by D and S, respectively. Because we have a first-order system, we need one
initial starting price. Suppose this is p0. This gives a quantity supplied in the next
period of q1, read off the supply curve, and indicated by point a. But since demand
equals supply in any one period, this gives a demand of also q1, while this demand
implies a price of p1 in period 1. This in turn means that supply in period 2 is q2.
And so the sequence continues.

We shall refer to this model frequently in this chapter.
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Figure 3.1.

3.4 Equilibrium and stability of discrete dynamic
systems

If yt+1 = f (yt) is a discrete dynamic system, then y∗ is a fixed point or equilibrium
point of the system if

f (yt) = y∗ for all t(3.7)

A useful implication of this definition is that y∗ is an equilibrium value of the
system yt+1 = f (yt) if and only if

y∗ = f (y∗)

For example, in the cobweb model (3.6) we have,

p∗ = a − c

b
−
(
d

b

)
p∗

Hence

p∗ = a − c

b + d
where p∗ ≥ 0 if a ≥ c

With linear demand and supply curves, therefore, there is only one fixed point,
one equilibrium point. However, such a fixed point makes economic sense (i.e. for
price to be nonnegative) only if the additional condition a ≥ c is also satisfied.

As with fixed points in continuous dynamic systems, a particularly important
consideration is the stability/instability of a fixed point. Let y∗ denote a fixed point
for the discrete dynamic system yt+1 = f (yt). Then (Elaydi 1996, p. 11)



Discrete dynamic systems 89

(i) The equilibrium point y∗ is stable if given ε > 0 there exists δ > 0 such
that∣∣y0 − y∗∣∣ < δ implies

∣∣ f n(y0) − y∗∣∣ < ε

for all n > 0. If y∗ is not stable then it is unstable.
(ii) The equilibrium point y∗ is a repelling fixed point if there exists ε > 0

such that

0 <
∣∣y0 − y∗∣∣ < ε implies

∣∣ f (y0) − y∗∣∣ >
∣∣y0 − y∗∣∣

(iii) The point y∗ is an asymptotically stable (attracting) equilibrium point2

if it is stable and there exists η > 0 such that∣∣y0 − y∗∣∣ < η implies lim
t→∞ yt = y∗

If η = ∞ then y∗ is globally asymptotically stable.

All these are illustrated in figure 3.2(a)–(e).
In utilising these concepts we employ the following theorem (Elaydi 1996,

section 1.4).

THEOREM 3.1
Let y∗ be an equilibrium point of the dynamical system

yt+1 = f (yt)

where f is continuously differentiable at y∗. Then

(i) if
∣∣ f ′(y∗)

∣∣ < 1 then y∗ is an asymptotically stable (attracting)
fixed point

(ii) if
∣∣ f ′(y∗)

∣∣ > 1 then y∗ is unstable and is a repelling fixed point

(iii) if
∣∣ f ′(y∗)

∣∣ = 1 and
(a) if f ′′(y∗) 
= 0, then y∗ is unstable
(b) if f ′′(y∗) = 0 and f ′′′(y∗) > 0, then y∗ is unstable
(c) if f ′′(y∗) = 0 and f ′′′(y∗) < 0, then y∗ is asymptotically

stable
(iv) if f ′(y∗) = −1 and

(a) if −2f ′′′(y∗) − 3[ f ′′(y∗)]2 < 0, then y∗ is asymptotically
stable

(b) if −2f ′′′(y∗) − 3[ f ′′(y∗)]2 > 0 , then y∗ is unstable.

The attraction and repulsion of a fixed point can readily be illustrated for a
first-order system. Suppose f (yt) is linear for the first-order system yt+1 = f (yt).
This is represented by the lines denoted L in figures 3.3(a) and (b), where yt+1 is
marked on the vertical axis and yt on the horizontal axis. The equilibrium condition
requires yt+1 = yt for all t, hence this denotes a 45◦-line, denoted by E in figures
3.3(a) and (b). The fixed point in each case, therefore, is y∗.

2 Sometimes an asymptotically stable (attracting) equilibrium point is called a sink.
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Figure 3.2.

Consider first figure 3.3(a). We require an initial value for y to start the sequence,
which is denoted y0. Given y0 in period 0, then we have y1 in period 1, as read off
from the line L. In terms of the horizontal axis, this gives a value of y1 as read off
the 45◦-line (i.e. the horizontal movement across). But this means that in period 2
the value of y is y2, once again read off from the line L. In terms of the horizontal
axis this also gives a value y2, read horizontally across. Regardless of the initial
value y0, the sequence converges on y∗, and this is true whether y0 is below y∗, as in
the figure, or is above y∗. Using the same analysis, it is clear that in figure 3.3(b),
starting from an initial value of y of y0, the sequence diverges from y∗. If y0 is
below y∗ then the system creates smaller values of y and moves away from y∗

in the negative direction. On the other hand, if y0 is above y∗, then the sequence
diverges from y∗ with the sequence diverging in the positive direction. Only if
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Figure 3.3.

y0 = y∗ will the system remain at rest. Hence, y∗ in figure 3.3(a) is an attractor
while y∗ in figure 3.3(b) is a repellor.

It is apparent from figure 3.2 that the essential difference between the two
situations is that the line in figure 3.3(a) has a (positive) slope less than 45◦, while
in figure 3.3(b) the slope is greater than 45◦.

Another feature can be illustrated in a similar diagram. Consider the following
simple linear dynamic system

yt+1 = −yt + k
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Given this system, the first few terms in the sequence are readily found to be:

yt+1 = −yt + k

yt+2 = −yt+1 + k = −(−yt + k) + k = yt

yt+3 = −yt+2 + k = −yt + k

yt+4 = −yt+3 + k = −(−yt + k) + k = yt

It is apparent that this is a repeating pattern. If y0 denotes the initial value, then we
have

y0 = y2 = y4 = . . . and y1 = y3 = y5 = . . .

We have here an example of a two-cycle system that oscillates between −y0 + k
and y0. There is still a fixed point to the system, namely

y∗ = −y∗ + k

y∗ = k

2

but it is neither an attractor nor a repellor. The situation is illustrated in figure 3.4,
where again the line L denotes the difference equation and the line E gives the
equilibrium condition. The two-cycle situation is readily revealed by the fact that
the system cycles around a rectangle.

Return to the linear cobweb model given above, equation (3.5). Suppose the
slope of the (linear) demand curve is the same as the slope of the (linear) supply

Figure 3.4.
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curve but with opposite sign. Then b = d and

pt = a − c

d
−
(
b

d

)
pt−1

=
(
a − c

d

)
− pt−1

or

pt+1 = −pt + k where k = a − c

d

which is identical to the situation shown in figure 3.4, and must produce a two-cycle
result.

In general, a solution yn is periodic if

yn+m = yn

for some fixed integer m and all n. The smallest integer for m is called the period
of the solution. For example, given the linear cobweb system

qdt = 10 − 2pt

qst = 4 + 2pt−1

qdt = qst

it is readily established that the price cycles between p0 and 3–p0, while the quantity
cycles between 4 + 2p0 and 10 − 2p0 (see exercise 12). In other words

p0 = p2 = p4 = . . . and p1 = p3 = p5 = . . .

so that yn+2 = yn for all n and hence we have a two-cycle solution.
More formally:

DEFINITION
If a sequence {yt} has (say) two repeating values y1 and y2, then y1 and
y2 are called period points, and the set {y1,y2} is called a periodic orbit.

Geometrically, a k-periodic point for the discrete system yt+1 = f (yt) is the
y-coordinate of the point where the graph of f k(y) meets the diagonal line yt+1 = yt.
Thus, a three-period cycle is where f 3(y) meets the line yt+1 = yt.

In establishing the stability/instability of period points we utilise the following
theorem.

THEOREM 3.2
Let b be a k-period point of f. Then b is

(i) stable if it is a stable fixed point of f k

(ii) asymptotically stable (attracting) if it is an attracting fixed point
of f k

(iii) repelling if it is a repelling fixed point of f k.
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In deriving the stability of a periodic point we require, then, to compute [ f k(y)]′,
and to do this we utilise the chain rule

[ f k(y)]′ = f ′(y∗
1)f ′(y∗

2) . . . f ′(y∗
n)

where y∗
1, y

∗
2, . . . , y

∗
k are the k-periodic points. For example, if y∗

1 and y∗
2 are two

periodic points of f 2(y), then∣∣[ f 2(y)]′
∣∣ = ∣∣ f ′(y∗

1)f ′(y∗
2)
∣∣

and is asymptotically stable if∣∣ f ′(y∗
1)f ′(y∗

2)
∣∣ < 1

All other stability theorems hold in a similar fashion.
Although it is fairly easy to determine the stability/instability of linear dynamic

systems, this is not true for nonlinear systems. In particular, such systems can
create complex cycle phenomena. To illustrate, and no more than illustrate, the
more complex nature of systems that arise from nonlinearity, consider the following
quadratic equation

yt+1 = ayt − by2
t

First we need to establish any fixed points. It is readily established that two fixed
points arise since

y∗ = ay∗ − by∗2 = ay∗
(

1 − by∗

a

)
which gives two fixed points

y∗ = 0 and y∗ = a − 1

b
The situation is illustrated in figure 3.5, where the quadratic is denoted by the graph
G, and the line E as before denotes the equilibrium condition. The two equilibrium
points, the two fixed points of the system, are where the graph G intersects the
line E.

Depending on the values for a and b, it is of course possible for the graph G
to be totally below the line E, in which case only one equilibrium point exists,
namely y∗ = 0. Whether one or more equilibria exist, the question of interest is
whether such a fixed point is stable or unstable. Suppose we attempt to establish
which by means of a numerical example

yt+1 = 2yt − y2
t

The situation is illustrated in figure 3.6, where G denotes the graph of the difference
equation, and the line E the equilibrium condition. The two equilibrium values are
readily found to be y∗ = 0 and y∗ = 1.

As in the linear system, we need to consider a starting value, which we denote
y0, then y1 = 2y0 − y2

0. But this is no more than the value as read off the graph G.
In terms of the horizontal axis, this value is read off by moving horizontally across
to the E-line, as shown more clearly in figure 3.7. Given y1 then y2 = 2y1 − y2

1 as
read off the graph G, which gives y2 on the horizontal axis when read horizontally
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Figure 3.5.

Figure 3.6.

off the E-line. And so on. It would appear, therefore, that y∗ = 1 is an attractor.
Even if y0 is above y∗ = 1, the system appears to converge on y∗ = 1. Similarly,
y∗ = 0 appears to be a repellor.

It is useful to use a spreadsheet not only to establish the sequence {yn}, but also
to graph the situation. A spreadsheet is ideal for recursive equations because the
relation gives the next element in the sequence, and for given initial values, the
sequence is simply copied to all future cells. A typical spreadsheet for the present
example is illustrated in figure 3.8, where we have identified the formulas in the
initial cells.
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Figure 3.7.

Figure 3.8.
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Given such a spreadsheet, it is possible to change the initial value y0 and see
the result in the sequence and on the various graphs that can be constructed.3 For
instance, considering

yt+1 = 3.2yt − 0.8y2
t

readily establishes that the equilibrium value is y∗ = 2.75, but that this is not
reached for any initial value not equal to it. For any initial value not equal to the
equilibrium value, then the system will tend towards a two-cycle with values 2.05
and 3.20, as can readily be established by means of a spreadsheet. It is also easy
to establish that for any value slightly above or slightly below 2.75, i.e., in the
neighbourhood of the equilibrium point, then the system diverges further from
the equilibrium. In other words, the equilibrium is locally unstable. What is not
apparent, however, is why the system will tend towards a two-cycle result. We
shall explain why in section 3.7.

Nor should it be assumed that only a two-cycle result can arise from the logistic
equation. For instance, the logistic equation

yt+1 = 3.84yt(1 − yt)

has a three-cycle (see exercise 13).
We can approach stability/instability from a slightly different perspective. Con-

sider the first-order difference equation yt+1 = f (yt) with fixed points satisfying
a = f (a). Let y denote yt+1 and x denote yt, then the difference equation is of
the form y = f (x). Expanding this equation around an equilibrium point (a, a) we
have

y − a = f ′(a)(x − a)

or

y = a[1 − f ′(a)] + f ′(a)x

which is simply a linear equation with slope f ′(a). The situation is illustrated in
figure 3.9.

This procedure reduces the problem of stability down to that of our linear
model. There we noted that if the absolute slope of f (x) was less than the
45◦-line, as in figure 3.9, then the situation was stable, otherwise it was un-
stable. To summarise,

If
∣∣ f ′(a)

∣∣ < 1 then a is an attractor or stable

If
∣∣ f ′(a)

∣∣ > 1 then a is a repellor or unstable

If
∣∣ f ′(a)

∣∣ = 1 then the situation is inconclusive.4

We can use such a condition for each fixed point.

3 Many spreadsheets now allow graphics to be displayed within the spreadsheet, as shown here – espe-
cially those using the Windows environment. Hence, any change in initial values or parameter values
results in an immediate change in the displayed graph. This is a very interactive experimentation.

4 However, it is possible to utilise higher derivatives to obtain more information about the fixed point
a, as pointed out in theorem 3.1 (p. 89).
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Figure 3.9.

Example 3.1

yt+1 = 2yt − y2
t

The fixed points can be found from

a = 2a − a2

a2 − a = 0

a(a − 1) = 0

a = 0 and a = 1

To establish stability, let

y = f (x) = 2x − x2

then

f ′(x) = 2 − 2x

f ′(0) = 2 and f ′(1) = 0

Since ∣∣ f ′(0)
∣∣ > 1 then a = 0 is unstable

Since ∣∣ f ′(1)
∣∣ < 1 then a = 1 is stable

Example 3.2

yt+1 = 3.2yt − 0.8y2
t
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The fixed points can be found from

a = 3.2a − 0.8a2

0.8a2 − 2.2a = 0

a(0.8a − 2.2) = 0

a = 0 and a = 2.75

To establish stability let

y = f (x) = 3.2x − 0.8x2

then

f ′(x) = 3.2 − 1.6x

f ′(0) = 3.2 and f ′(2.75) = −1.2

Since ∣∣ f ′(0)
∣∣ > 1 then a = 0 is unstable

Since ∣∣ f ′(2.75)
∣∣ > 1 then a = 2.75 is unstable.

Although a = 2.75 is unstable, knowledge about f ′(x) does not give sufficient
information to determine what is happening to the sequence {yn} around the point
a = 2.75.

3.5 Solving first-order difference equations

For some relatively simple difference equations it is possible to find analytical
solutions. The simplest difference equation is a first-order linear homogeneous
equation of the form

yt+1 = ayt (3.8)

If we consider the recursive nature of this system, beginning with the initial value
y0, we have

y1 = ay0

y2 = ay1 = a(ay0) = a2y0

y3 = ay2 = a(a2y0) = a3y0

...
yn = any0

The analytical solution is, therefore,

yn = any0 (3.9)

satisfying the initial value y0. The properties of this system depend only on the
value and sign of the parameter a. There is only one fixed point to such a system,
y∗ = 0. For positive y0, if a exceeds unity, then the series gets larger and larger
over time, tending to infinity in the limit. If 0 < a < 1, then the series gets smaller
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Figure 3.10.

and smaller over time, tending to zero in the limit. If a is negative, then the series
will alternate between positive and negative numbers. However, if −1 < a < 0
the values of the alternating series becomes smaller and smaller, tending to zero
in the limit. While if a < −1, then the series alternates but tends to explode over
time. The various solution paths are plotted in figure 3.10.

Example 3.3

A number of systems satisfy this general form. Consider the Malthusian population
discussed in chapter 2, but now specified in discrete form. Between time t and t + 1
the change in the population is proportional to the population size. If pt denotes
the population size in period t, then �pt+1 = pt+1 − pt is proportional to pt. If k
denotes the proportionality factor, then

�pt+1 = kpt

Or

pt+1 = (1 + k)pt

which has the analytical solution

pt = (1 + k)tp0
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where p0 is the initial population size. If population is growing at all, k > 0, then this
population will grow over time becoming ever larger. We shall discuss population
more fully in chapter 14.

Example 3.4

As a second example, consider the Harrod–Domar growth model in discrete time

St = sYt

It = v(Yt − Yt−1)

St = It

This gives a first-order homogeneous difference equation of the form

Yt =
(

v

v − s

)
Yt−1

with solution

Yt =
(

v

v − s

)t

Y0

If v > 0 and v > s then v/(v − s) > 1 and the solution is explosive and nonoscil-
latory. On the other hand, even if v > 0 if s > v then the solution oscillates, being
damped if s < 2v, explosive if s > 2v or constant if s = 2v.

The analytical solution to the first-order linear homogeneous equation is use-
ful because it also helps to solve first-order linear nonhomogeneous equations.
Consider the following general first-order linear nonhomogeneous equation

yt+1 = ayt + c (3.10)

A simple way to solve such equations, and one particularly useful for the economist,
is to transform the system into deviations from its fixed point, deviations from
equilibrium. Let y∗ denote the fixed point of the system, then

y∗ = ay∗ + c

y∗ = c

1 − a

Subtracting the equilibrium equation from the recursive equation gives

yt+1 − y∗ = a(yt − y∗)

Letting xt+1 = yt+1 − y∗ and xt = yt − y∗ then this is no more than a simple ho-
mogeneous difference equation in x

xt+1 = axt

with solution

xt = atx0

Hence,

yt − y∗ = at(y0 − y∗)
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or

yt = c

1 − a
+ at

(
y0 − c

1 − a

)
(3.11)

which clearly satisfies the initial condition.

Example 3.5

Consider, for example, the cobweb model we developed earlier in the chapter,
equation (3.5), with the resulting recursive equation

pt = a − c

b
−
(
d

b

)
pt−1

and with equilibrium

p∗ = a − c

b + d

Taking deviations from the equilibrium, we have

pt − p∗ = −d

b
(pt−1 − p∗)

which is a first-order linear homogeneous difference equation, with solution

pt − p∗ =
(

−d

b

)t

(p0 − p∗)

or

pt =
(
a − c

b + d

)
+
(

−d

b

)t [
p0 −

(
a − c

b + d

)]
(3.12)

With the usual shaped demand and supply curves, i.e., b > 0 and d > 0, then
d/b > 0, hence (−d/b)t will alternate in sign, being positive for even numbers of t
and negative for odd numbers of t. Furthermore, if 0 < |−d/b| < 1 then the series
will become damped, and in the limit tend towards the equilibrium price. On the
other hand, if |−d/b| > 1 then the system will diverge from the equilibrium price.
These results are verified by means of a simple numerical example and solved by
means of a spreadsheet, as shown in figure 3.11.

The examples we have just discussed can be considered as special cases of the
following recursive equation:

yn+1 = anyn y0 at n = 0(3.13)

The solution to this more general case can be derived as follows:

y1 = a0y0

y2 = a1y1 = a1a0y0

y3 = a2y2 = a2a1a0y0
...

yn = an−1an−2 . . . a1a0y0
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Figure 3.11.

or

yn =
[
n−1∏
k=0

ak

]
y0 (3.14)

Hence, if ak = a for all k, then[
n−1∏
k=0

ak

]
= an and yn = any0

Consider an even more general case: that of the nonhomogeneous first-order
equation given by

yn+1 = anyn + gn a0, g0, y0 at n = 0 (3.15)

Then

y1 = a0y0 + g0

y2 = a1y1 + g1 = a1(a0y0 + g0) + g1

= a1a0y0 + a1g0 + g1

y3 = a2y2 + g2 = a2(a1a0y0 + a1g0 + g1) + g2

= a2a1a0y0 + a2a1g0 + a2g1 + g2
...

with solution for yn of

yn =
[
n−1∏
k=0

ak

]
y0 +

n−1∑
i=0

[
n−1∏

k=i+1

ak

]
gi (3.16)
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We can consider two special cases:

Case A : ak = a for all k

Case B : ak = a and gk = b for all k

Case A ak = a for all k
In this case we have

yn+1 = ayn + gn g0, y0 at n = 0

Using the general result above, then

n−1∏
k=0

ak = an and
n−1∏

k=i+1

ak = an−i−1

Hence,

yn = any0 +
n−1∑
i=0

an−i−1gi(3.17)

Case B ak = a and gk = b for all k
In this case we have

yn+1 = ayn + b y0 at n = 0

We already know that if ak = a for all k then

n−1∏
k=0

ak = an and
n−1∏

k=i+1

ak = an−i−1

and so

yn = any0 + b
n−1∑
i=0

an−i−1

This case itself, however, can be divided into two sub-categories: (i) where a = 1
and (ii) where a 
= 1.

Case (i) a = 1
If a = 1 then

n−1∑
i=0

an−i−1 = n

and so

yn = y0 + bn

Case (ii) a 
= 1
Let

S =
n−1∑
i=0

an−i−1
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then

aS =
n−1∑
i=0

an−i

S − aS = (1 − a)S = 1 − an

S = 1 − an

1 − a

and

yn = any0 + b

(
1 − an

1 − a

)
Combining these two we can summarise case B as follows

yn =


y0 + bn a = 1

any0 + b

(
1 − an

1 − a

)
a 
= 1

(3.18)

These particular formulas are useful in dealing with recursive equations in the
area of finance. We take these up in the exercises.

These special cases can be derived immediately using either Mathematica or
Maple with the following input instructions5:

Mathematica
RSolve[{y[n+1]==y[n]+b, y[0]==y0},y[n],n]

RSolve[{y[n+1]==a y[n]+b, y[0]==y0},y[n],n]

Maple
rsolve({y(n+1)=y(n)+b, y(0)=y0},y(n));

rsolve({y(n+1)=a*y(n)+b, y(0)=y0},y(n));

3.6 Compound interest

If an amount A is compounded annually at a market interest rate of r for a given
number of years, t, then the payment received at time t, Pt, is given by

Pt = A(1 + r)t

On the other hand, if it is compoundedm times each year, then the payment received
is

Pt = A
(
1 + r

m

)mt
If compounding is done more frequently over the year, then the amount received
is larger. The actual interest rate being paid, once allowance is made for the com-
pounding, is called the effective interest rate, which we denote re. The relationship
between re and (r,m) is developed as follows

A(1 + re) = A
(
1 + r

m

)m
i.e. re =

(
1 + r

m

)m
− 1

It follows that re ≥ r.

5 See section 3.13 on solving recursive equations with Mathematica and Maple.
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Figure 3.12.

Example 3.6

A bank is offering a savings account paying 7% interest per annum, compounded
quarterly. What is the effective interest rate?

re =
(

1 + 0.07

4

)4

− 1 = 0.072

or 7.2%.
If we assume that m is a continuous variable, then given an interest rate of say,

7%, we can graph the relationship between re and m. A higher market interest rate
leads to a curve wholly above that of the lower interest rate, as shown in figure 3.12.

Returning to the compounding result, if an amount is compounded at an annual
interest rate r, then at time t we have the relationship Yt = (1 + r)Yt−1. If we
generalise this further and assume an additional deposit (or withdrawal) in each
period, at, then the resulting recursive equation is

Yt = (1 + r)Yt−1 + at−1

Or more generally, we have the recursive equation

Yt = at−1 + bYt−1

Many problems reduce to this kind of relationship. For example, population of a
species at time tmay be proportional to its size in the previous period, but predation
may take place each period. Or, human populations may grow proportionally but
immigration and emigration occurs in each period.

Solving the recursive equation can be achieved by iteration. Let the initial values
be Y0 and a0, respectively, then

Y1 = a0 + bY0

Y2 = a1 + bY1 = a1 + b(a0 + bY0) = a1 + ba0 + b2Y0

Y3 = a2 + bY2 = a2 + b(a1 + ba0 + b2Y0) = a2 + ba1 + b2a0 + b3Y0

Y4 = a3 + bY3 = a3 + b(a2 + ba1 + b2a0 + b3Y0)

= a3 + ba2 + b2a1 + b3a0 + b4Y0
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and so on. The general result emerging is

Yt = at−1 + bat−2 + b2at−3 + · · · + bt−1a0 + btY0

or

Yt =
t−1∑
k=0

bt−1−kak + btY0

Having derived the general result two cases are of interest. The first is where
ak = a for all k; the second is where ak = a and b = 1 for all k.

Case (i) ak = a for all k
In this case we have

Yt = a + bYt−1

with the general result

Yt = a
t−1∑
k=0

bt−1−k + btY0

or

Yt = a

(
1 − bt

1 − b

)
+ btY0

It is useful for the economist to see this result from a different perspective. In
equilibrium Yt = Y for all t. So

Y = a + bY

Y = a

1 − b

Re-arranging the result for case (i), we have

Yt = a

1 − b
− abt

1 − b
+ btY0

Yt = bt
(
Y0 − a

1 − b

)
+ a

1 − b

It is clear from this result that if |b| < 1 then the series converges on the equilibrium.
If 0 < b < 1, there is steady convergence; while if −1 < b < 0, the convergence
oscillates. If |b| > 1, the system is unstable.

Case (ii) ak = a and b = 1 for all k
In this case

Yt = a + Yt−1

with result

Yt = a
t−1∑
k=0

(1)t−1−k + Y0

i.e.

Yt = at + Y0
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Example 3.7

An investor makes an initial deposit of £10,000 and an additional £250 each
year. The market interest rate is 5% per annum. What are his accumulated savings
after five years? For this problem, Y0 = £10,000, ak = £250 for all k and b =
(1 + r) = 1.05. Hence

Y5 = 250

(
1 − (1.05)5

1 − 1.05

)
+ (1.05)5(10000) = £14,144.20

3.7 Discounting, present value and internal rates
of return

Since the future payment when interest is compounded is Pt = P0(1 + r)t, then it
follows that the present value, PV, of an amount Pt received in the future is

PV = Pt

(1 + r)t

and r is now referred to as the discount rate.
Consider an annuity. An annuity consists of a series of payments of an amount

A made at constant intervals of time for n periods. Each payment receives interest
from the date it is made until the end of the nth-period. The last payment receives
no interest. The future value, FV , is then

FV = A(1 + r)n−1 + A(1 + r)n−2 + · · · + (1 + r)A + A

Utilising a software package, the solution is readily found to be

FV = A

[
(1 + r)n − 1

r

]

On the other hand, the present value of an annuity requires each future payment
to be discounted by the appropriate discount factor. Thus the payment A received
at the end of the first period is worth A/(1 + r) today, while a payment A at the
end of the second period is worth A/(1 + r)2 today. So the present value of the
annuity is

PV = A

(1 + r)
+ A

(1 + r)2
+ · · · + A

(1 + r)n−1
+ A

(1 + r)n

with solution

PV = A

[
1 − (1 + r)−n

r

]

Example 3.8

£1,000 is deposited at the end of each year in a savings account that earns 6.5%
interest compounded annually.

(a) At the end of ten years, how much is the account worth?
(b) What is the present value of the payments stream?
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(a) FV = A

[
(1 + r)n − 1

r

]
= 1000

[
(1 + 0.065)10 − 1

0.065

]
= £13494.40

(b) PV = A

[
1 − (1 + r)−n

r

]
= 1000

[
1 − (1 + 0.065)−10

0.065

]
= £7188.83

Discounting is readily used in investment appraisal and cost–benefit analysis.
Suppose Bt and Ct denote the benefits and costs, respectively, at time t. Then
the present value of such flows are Bt/(1 + r)t and Ct/(1 + r)t, respectively. It
follows, then, that the net present value,NPV, of a project with financial flows over
n-periods is

NPV =
n∑

t=0

Bt

(1 + r)t
−

n∑
t=0

Ct

(1 + r)t
=

n∑
t=0

Bt − Ct

(1 + r)t

Notice that for t = 0 the benefits B0 and the costs C0 involve no discounting. In
many projects no benefits accrue in early years only costs. If NPV > 0 then a
project (or investment) should be undertaken.

Example 3.9

Bramwell plc is considering buying a new welding machine to increase its output.
The machine would cost £40,000 but would lead to increased revenue of £7,500
each year for the next ten years. Half way through the machine’s lifespan, in year 5,
there is a one-off maintenance expense of £5,000. Bramwell plc consider that the
appropriate discount rate is 8%. Should they buy the machine?

NPV = −40000 +
10∑
t=1

7500

(1 + r)t
− 5000

(1 + r)5

The second term is simply the present value of an annuity of £7,500 received for
ten years and discounted at 8%. The present value of this is

PV = A

[
1 − (1 + r)−n

r

]
= 7500

[
1 − (1 + 0.08)−10

0.08

]

Hence

NPV = −40000 + 7500

[
1 − (1.08)−10

0.08

]
− 5000

(1.08)5
= £6922.69

Since NPV > 0, then Bramwell plc should go ahead with the investment.
Net present value is just one method for determining projects. One difficulty,

as the above example illustrates, is that it is necessary to make an assumption
about the appropriate discount rate. Since there is often uncertainty about this,
computations are often carried out for different discount rates. An alternative is to
use the internal rate of return (IRR). The internal rate of return is the discount
rate that leads to a zero net present value. Thus, the internal rate of return is the
value of r satisfying

n∑
t=0

Bt − Ct

(1 + r)t
= 0
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Although software programmes can readily solve for the internal rate of return,
there is a problem in the choice of r.

n∑
t=0

Bt − Ct

(1 + r)t

is a polynomial with the highest power of n, and so theoretically there are n
possible roots to this equation. Of course, we can rule out negative values and
complex values. For example, the choice problem for Bramwell plc involves r10

as the highest term and so there are ten possible solutions to the equation

−40000 + 7500

[
1 − (1 + r)−10

r

]
− 5000

(1 + r)5
= 0

Eight solutions, however, are complex and another is negative. This leaves only
one positive real-valued solution, namely r = 0.1172 or r = 11.72%. Since such
a return is well above the typical market interest rate, then the investment should
be undertaken. The point is, however, that multiple positive real-valued solutions
are possible.

3.8 Solving second-order difference equations

3.8.1 Homogeneous

Consider the following general second-order linear homogeneous equation

yn+2 = ayn+1 + byn(3.19)

Similar to the solution for a first-order linear homogeneous equation, we can
suppose the solution takes the form

yn = c1r
n + c2s

n

for some constants r and s and where c1 and c2 depend on the initial conditions y0

and y1. If this indeed is correct, then

c1r
n+2 + c2s

n+2 = a(c1r
n+1 + c2s

n+1) + b(c1r
n + c2s

n)

Re-arranging and factorising, we obtain

c1r
n(r2 − ar − b) + c2s

n(s2 − as − b) = 0

So long as r and s are chosen to be the solution values to the general quadratic
equation

x2 − ax − b = 0

i.e. x = r and x = s, where r 
= s, then yn = c1rn + c2sn is a solution to the dynamic
system. This quadratic equation is referred to as the characteristic equation of the
dynamical system. If r > s, then we call y1 = c1rn the dominant solution and r the
dominant characteristic root.

Furthermore, given we have obtained the solution values r and s, and given the
initial conditions, y0 and y1, then we can solve for the two unknown coefficients,
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c1 and c2. Since

y0 = c1r0 + c2s0 = c1 + c2

y1 = c1r + c2s

then

c1 = y1 − sy0

r − s
and c2 = y1 − ry0

s − r

The solution values r and s to the characteristic equation of the dynamic system
are the solutions to a quadratic. As in all quadratics, three possibilities can occur:

(i) distinct real roots
(ii) identical real roots
(iii) complex conjugate roots

Since the solution values to the quadratic equation are

r, s = −a ± √
a2 + 4b

2

then we have distinct real roots if a2 > −4b, identical roots if a2 = −4b, and
complex conjugate roots if a2 < −4b.

Example 3.10 (real distinct roots)

Suppose

yn+2 = yn+1 + 2yn

The characteristic equation is given by

x2 − x − 2 = 0
i.e. (x − 2)(x + 1) = 0

Hence, we have two real distinct roots, x = 2 and x = −1, and the general solution
is

yn = c1(2)n + c2(−1)n

If we know y0 = 5 and y1 = 4, then

c1 = y1 − sy0

r − s
= 4 − (−1)(5)

2 − (−1)
= 3

c2 = y1 − ry0

s − r
= 4 − (2)(5)

(−1) − 2
= 2

Hence, the particular solution satisfying these initial conditions is given by

yn = 3(2)n + 2(−1)n

As figure 3.13 makes clear, this is an explosive system that tends to infinity over
time.

The limiting behaviour of the general solution yn = c1rn + c2sn is determined
by the behaviour of the dominant solution. If, for example, r is the dominant
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Figure 3.13.

characteristic root and |r| > |s|, then

yn = rn
[
c1 + c2

( s
r

)n]
Since |s/r| < 1, then (s/r)n → 0 as n → ∞. Therefore,

lim
n→∞ yn = lim

n→∞ c1r
n

There are six different situations that can arise depending on the value of r.

(1) r > 1, then the sequence {c1rn} diverges to infinity and the system is
unstable

(2) r = 1, then the sequence {c1rn} is a constant sequence
(3) 0 ≤ r < 1, then the sequence {c1rn} is monotonically decreasing to zero

and the system is stable
(4) −1 < r ≤ 0, then the sequence {c1rn} is oscillating around zero and con-

verging on zero, so the system is stable
(5) r = −1, then the sequence {c1rn} is oscillating between two values
(6) r < −1, then the sequence {c1rn} is oscillating but increasing in magni-

tude.

Identical real roots

If the roots are real and equal, i.e., r = s, then the solution becomes

yn = (c1 + c2)rn = c3r
n

But if c3rn is a solution, then so is c4nrn (see Chiang 1992, p. 580 or Goldberg
1961, p. 136 and exercise 14), hence the general solution when the roots are equal
is given by

yn = c3r
n + c4nr

n

We can now solve for c3 and c4 given the two initial conditions y0 and y1

y0 = c3r0 + c4(0)r0 = c3

y1 = c3r + c4(1)r = (c3 + c4)r
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Hence

c3 = y0

c4 = y1

r
− c3 =

(
y1 − ry0

r

)
Therefore, the general solution satisfying the two initial conditions, is

yn = y0r
n +

(
y1 − ry0

r

)
nrn

Example 3.11 (equal real roots)

Let

yn+2 = 4yn+1 − 4yn

This has the characteristic equation

x2 − 4x + 4 = (x − 2)2 = 0

Hence, r = 2.

yn = c3(2)n + c4n(2)n

Suppose y0 = 6 and y1 = 4, then

c3 = y0 = 6

c4 = y1 − ry0

r
= 4 − (2)(6)

2
= −4

Hence, the particular solution is

yn = 6(2)n − 4n(2)n

which tends to minus infinity as n increases, as shown in figure 3.14.
In the case of the general solution yn = (c3 + c4n)rn

(1) If |r| ≥ 1, then yn diverges monotonically
(2) If r ≤ −1, then the solution oscillates
(3) If |r| < 1, then the solution converges to zero

Figure 3.14.
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Complex conjugate roots6

If the roots are complex conjugate then r = α + βi and s = α − βi and

Rn cos(βt) and Rn sin(βt)

are solutions and the general solution is

yn = c1R
n cos(θn) + c2R

n sin(θn)

where

R =
√

α2 + β2,

cos θ = α

R
and sin θ = β

R

or tan θ = sin θ

cos θ
= β

α

Example 3.12 (complex conjugate)

Consider

yn+2 − 4yn+1 + 16yn = 0

The characteristic equation is

x2 − 4x + 16 = 0

with roots

r, s = 4 ± √
16 − 64

2
= 2 ±

(√
48

2

)
i

i.e.

r = 2 + 1
2

√
48i α = 2

s = 2 − 1
2

√
48i β = 1

2

√
48

and polar coordinates

R =
√

22 + ( 1
2

√
48)2 = √

4 + 12 = 4

cos θ = α

R
= 2

4
= 1

2
and sin θ = β

R
=

1
2

√
48

4
=

√
3

2

Implying θ = π/3. Hence

yn = c14n cos
(nπ

3

)
+ c24n sin

(nπ
3

)

6 In this section the complex roots are expressed in polar coordinate form (see Allen 1965 or Chiang
1984).
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Given y0 and y1, it is possible to solve for c1 and c2. Specifically

c1 = y0

c2 =
y1 − y04 cos

(π

3

)
4 sin

(π

3

)
If r and s are complex conjugate, then yn oscillates because the cosine function
oscillates. There are, however, three different types of oscillation:

(1) R > 1. In this instance the characteristic roots r and s lie outside the unit
circle, shown in figure 3.15(a). Hence yn is oscillating, but increasing in
magnitude. The system is unstable.

(2) R = 1. In this instance the characteristic roots r and s lie on the unit circle,
and the system oscillates with a constant magnitude, figure 3.15(b).

(3) R < 1. In this instance the characteristic roots r and s lie inside the
unit circle and the system oscillates but converges to zero as n → ∞,
figure 3.15(c). The system is stable.

Figure 3.15.
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3.8.2 Nonhomogeneous

A constant coefficient nonhomogeneous second-order difference equation takes
the general form

yn+2 + ayn+1 + byn = g(n)(3.20)

If g(n) = c, a constant, then

yn+2 + ayn+1 + byn = c

which is the form we shall consider here. As with second-order differential equa-
tions considered in chapter 2, we can break the solution down into a complementary
component, yc, and a particular component, yp, i.e., the general solution yn, can
be expressed

yn = yc + yp

The complementary component is the solution to the homogeneous part of the
recursive equation, i.e., yc is the solution to

yn+2 + ayn+1 + byn = 0

which we have already outlined in the previous section.
Since yn = y∗ is a fixed point for alln, then this will satisfy the particular solution.

Thus

y∗ + ay∗ + by∗ = c

y∗ = c

1 + a + b

so long as 1 + a + b 
= 0.

Example 3.13

yn+2 − 4yn+1 + 16yn = 26

Then

y∗ − 4y∗ + 16y∗ = 26

y∗ = 2

Hence, yp = 2. The general solution is, then

yn = c14n cos
(πn

3

)
+ c24n

(πn

3

)
+ 2

Example 3.14

yn+2 − 5yn+1 + 4yn = 4
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In this example, 1 + a + b = 0 and so it is not possible to use y∗ as a solution. In
this instance we try a moving fixed point, ny∗. Thus

(n + 2)y∗ − 5(n + 1)y∗ + 4ny∗ = 4

−3y∗ = 4

y∗ = −4

3

... ny∗ = −4n

3

For the complementary component we need to solve the homogeneous equation

yn+2 − 5yn+1 + 4yn = 0

whose characteristic equation is

x2 − 5x + 4 = 0

with solutions

r, s = 5 ± √
25 − 16

2
= 5 ± 3

2

i.e. r = 4 and s = 1. Hence

yn = c14n + c21n − (4n/3) = c14n + c2 − (4n/3)

Example 3.15

yn+2 + yn+1 − 2yn = 12 y0 = 4 and y1 = 5

The particular solution cannot be solved for y∗ (since 1 + a + b = 0) and so we
employ ny∗

(n + 2)y∗ + (n + 1)y∗ − 2ny∗ = 12

(n + 2 + n + 1 − 2n)y∗ = 12

y∗ = 12

3
= 4

Hence, ny∗ = 4n = yp.
The complementary component is derived by solving the characteristic equation

x2 + x − 2 = 0

(x + 2)(x − 1) = 0

giving r = 1 and s = −2. Giving the complementary component of

yc = c1rn + c2sn

= c1(1)n + c2(−2)n

= c1 + c2(−2)n

Hence, the general solution is

yn = yc + yp = c1 + c2(−2)n + 4n
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Given y0 = 4 and y1 = 5, then

y0 = c1 + c2 = 4

y1 = c1 − 2c2 + 4 = 5

with solutions

c1 = 3 and c2 = 1

Hence, the general solution satisfying the given conditions is

yn = 3 + (−2)n + 4n

For the nonhomogeneous second-order linear difference equation

yn+2 + ayn+1 + byn = c

yn → y∗,where y∗ is the fixed point, if and only if the complementary solution, yc,
tends to zero as n tends to infinity; while yn will oscillate about y∗ if and only if the
complementary solution oscillates about zero. Since the complementary solution
is the solution to the homogeneous part, we have already indicated the stability of
these in section 3.8.1.

In the case of the second-order linear difference equations, both homogeneous
and nonhomogeneous, it is possible to have explicit criteria on the parameters a
and b for stability. These are contained in the following theorem (Elaydi 1996,
pp. 87–8).

THEOREM 3.3
The conditions

1 + a + b > 0, 1 − a + b > 0, 1 − b > 0

are necessary and sufficient for the equilibrium point of both homo-
geneous and nonhomogeneous second-order difference equations to be
asymptotically stable.

3.9 The logistic equation: discrete version

Suppose

�yt+1 = ayt − by2
t(3.21)

where b is the competition coefficient.7 Then

yt+1 = (1 + a)yt − by2
t

This is a nonlinear recursive equation and cannot be solved analytically as it stands.
However, with a slight change we can solve the model.8 Let

y2
t � ytyt+1

7 We shall discuss this coefficient more fully in chapter 14.
8 This approximate solution is taken from Griffiths and Oldknow (1993, p. 16).
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then

yt+1 = (1 + a)yt − bytyt+1

Solving we obtain

yt+1 = (1 + a)yt
1 + byt

This can be transformed by dividing both sides by yt+1yt

1

yt
= 1

yt+1

1 + a

1 + byt

i.e.
1

yt+1
= 1 + byt

(1 + a)yt
= 1

(1 + a)

1

yt
+ b

1 + a

Let xt = 1/yt, then

xt+1 =
(

1

1 + a

)
xt + b

1 + a

In equilibrium xt+1 = xt = . . . = x∗, hence

x∗ =
(

1

1 + a

)
x∗ + b

1 + a

Solving for x∗ we obtain the fixed point

x∗ = b

a
Subtracting the equilibrium equation from the recursive equation we obtain

xt+1 − x∗ = 1

1 + a
(xt − x∗)

which has the general solution

xt − x∗ =
(

1

1 + a

)t

(x0 − x∗)

or

xt = b

a
+ (1 + a)−t

(
x0 − b

a

)
Substituting back xt = 1/yt for all t

1

yt
= b

a
+ (1 + a)−t

(
1

y0
− b

a

)
Hence,

yt = 1(
b

a

)
+ (1 + a)−t

(
1

y0
− b

a

)
or

yt = ay0

by0 + (1 + a)−t(a − by0)
(3.22)
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Figure 3.16.

It is readily established that

lim
t→∞ yt = a

b

Three typical plots are shown in figure 3.16, for y0 < a/b, y0 = a/b and y0 > a/b.
Return to the original formulation

yt+1 − yt = ayt − by2
t

i.e.

yt+1 = (1 + a)yt − by2
t

It is not possible to solve this nonlinear equation, although our approximation
is quite good (see exercise 6). But the equation has been much investigated by
mathematicians because of its possible chaotic behaviour.9 In carrying out this
investigation it is normal to respecify the equation in its generic form

xt+1 = λxt(1 − xt)(3.23)

It is this simple recursive formulation that is often employed for investigation
because it involves only a single parameter, λ.

The reader is encouraged to set up this equation on a spreadsheet, which is
very straightforward. If λ = 3.2 it is readily established that the series will, after
a sufficient time period, oscillate between two values: a1 = 0.799455 and a2 =
0.513045. This two-cycle is typical of the logistic equation for a certain range of λ.
To establish the range of λ is straightforward but algebraically tedious. Here we
shall give the gist of the solution, and leave appendices 3.1 and 3.2 to illustrate
how Mathematica and Maple, respectively, can be employed to solve the tedious
algebra.

Let

f (x) = λx(1 − x)

then a two-cycle result will occur if

a = f ( f (a))

9 We shall investigate chaos in chapter 7.
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where a is a fixed point. Hence

a = f [λa(1 − a)] = λ[λa(1 − a)][1 − λa(1 − a)]

= λ2a(1 − a)[1 − λa(1 − a)]

It is at this point where Mathematica or Maple is used to solve this equation.
The range for a stable two-cycle is established by solving10

−1 < f ′(a1)f ′(a2) < 1

where a1 and a2 are the two relevant solutions. Since

f ′(x) = λ(1 − x) − λx

then we can compute f ′(a1) f ′(a2), which is a surprisingly simple equation of the
form

4 + 2λ − λ2

Hence, we have a stable two-cycle if

−1 < 4 + 2λ − λ2 < 1

Discarding negative values forλ, we establish the range to be 3 < λ < 3.449. Given
we have already a1 and a2 solved for any particular value of λ, then we can find
these two stable solutions for any λ in the range just established. Thus, for λ = 3.2
it is readily established using Mathematica or Maple, that a1 = 0.799455 and
a2 = 0.513045, which are the same results as those established using a spreadsheet.
For λ < 3 we have a single fixed point which is stable, which again can readily
be established by means of the same spreadsheet. Finally, if λ = 3.84 the system
converges on a three-cycle result with a1 = 0.149407, a2 = 0.488044 and a3 =
0.959447 (see exercise 13).

Example 3.16

As an application of the logistic equation, different from its normal application in
population models (see chapter 14), we turn to the issue of productivity growth
discussed by Baumol and Wolff (1991). Let qt denote the rate of growth of pro-
ductivity outside of the research development industries; yt the activity level of the
information producing industry (the R&D industries); and pt the price of informa-
tion. The authors now assume three relationships:

(1) Information contributes to productivity growth according to:

(i) yt+1 = a + byt

(2) The price of information grows in proportion to productivity in the sector
outside of the R&D industries, so:

(ii)
pt+1 − pt

pt
= νqt+1

10 See theorem 3.2, p. 93 and Sandefur (1990, chapter 4).
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(3) Information demand has a constant elasticity, so:

(iii)
yt+1 − yt

yt
= −ε

(
pt+1 − pt

pt

)

Substituting (i) into (ii) and the result into (iii), we obtain

yt+1 − yt
yt

= −εν(a + byt)

Assume εν = k > 0 then
yt+1 − yt

yt
= −k(a + byt)

i.e. yt+1 = (1 − ak)yt − kby2
t

which is no more than a logistic equation.
In equilibrium yt = y∗ for all t, hence

y∗ = (1 − ak)y∗ − kby∗2

y∗(ak + kby∗) = 0

and

y∗ = 0 or y∗ = −a

b

It is possible to consider the stability in the locality of the equilibrium. Since

yt+1 = (1 − ak)yt − kby2
t

let yt+1 = y and yt = x, then

y = (1 − ak)x − kbx2 = f (x)

f ′(x) = (1 − ak) − 2kbx

and

dy

dx

∣∣∣∣
y∗=−a/b

= dyt+1

dyt

∣∣∣∣
y∗=−a/b

= (1 − ak) − 2kb(−a/b)

= 1 + ak

Hence the stability is very dependent on the sign/value of ak.
Letting

yt+1 = Ayt − By2
t , A = (1 − ak),B = kb

then using our earlier approximation (equation (3.22)) we have

yt = Ay0

By0 + (1 + A)−t(A − By0)

i.e.

yt = (1 − ak)y0

kby0 + (2 − ak)−t(1 − ak − kby0)

Various paths for this solution are possible depending on the values of v and ε.
For instance, if v = 1 and ε ≤ 2, then k = εν ≤ 2, and if a < 1 then ak < 2, which
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is highly probable. Even with ak < 1, two possibilities arise:

(i) if a < 0 then ak < 2
(ii) if 0 < a < 1 then 0 < ak < 2

with various paths for yt. This should not be surprising because we have already
established that the discrete logistic equation has a variety of paths and possible
cycles.

3.10 The multiplier–accelerator model

A good example that illustrates the use of recursive equations, and the variety of
solution paths for income in an economy, is that of the multiplier–accelerator model
first outlined by Samuelson (1939). Consumption is related to lagged income while
investment at time t is related to the difference between income at time t − 1 and
income at time t − 2.11 In our formulation we shall treat government spending as
constant, and equal to G in all periods. The model is then

Ct = a + bYt−1

It = v(Yt−1 − Yt−2)

Gt = G for all t

Et = Ct + It + Gt

Yt = Et

which on straight substitution gives rise to the second-order nonhomogeneous
recursive equation

Yt − (b + v)Yt−1 + vYt−2 = a + G

The particular solution is found by letting Yt = Y∗ for all t. Hence

Y∗ − (b + v)Y∗ + vY∗ = a + G

i.e. Y∗ = a + G

1 − b

In other words, in equilibrium, income equals the simple multiplier result.
The complementary result, Yc, is obtained by solving the homogeneous compo-

nent

Yt − (b + v)Yt−1 + vYt−2 = 0

which has the characteristic equation

x2 − (b + v)x + v = 0

with solutions

r, s = (b + v) ±
√

(b + v)2 − 4v

2

11 Samuelson originally related investment to lagged consumption rather than lagged income.
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Example 3.17

Determine the path of income for the equations

Ct = 50 + 0.75Yt−1

It = 4(Yt−1 − Yt−2)

G = 100

The equilibrium is readily found to be Y∗ = 600, which is the particular solution.
The complementary solution is found by solving the quadratic

x2 − (19/4)x + 4 = 0

i.e. r = 3.6559 and s = 1.0941

Since r and s are real and distinct, then the solution is

Yt = c1(3.6559)t + c2(1.0941)t + 600

and c1 and c2 can be obtained if we know Y0 and Y1.
Of more interest is the fact that the model can give rise to a whole variety of

paths for Yt depending on the various parameter values for b and v. It is to this
issue that we now turn.

From the roots of the characteristic equation given above we have three possible
outcomes:

(i) real distinct roots (b + v)2 > 4v
(ii) real equal roots (b + v)2 = 4v

(iii) complex roots (b + v)2 < 4v

In determining the implications of these possible outcomes we use the two prop-
erties of roots

r + s = b + v
rs = v

It also follows using these two results that

(1 − r)(1 − s) = 1 − (r + s) + rs

= 1 − (b + v) + v

= 1 − b

and since 0 < b < 1, then 0 < (1 − r)(1 − s) < 1.
With both roots real and distinct, the general solution is

Yt = c1r
t + c2s

t + Y∗

where r is the larger of the two roots. The path ofYt is determined by the largest root,
r > s. Since b > 0 and v > 0, then rs = v > 0 and so the roots must have the same
sign. Furthermore, since r + s = b + v > 0, then both r and s must be positive.
The path of income cannot oscillate. However, it will be damped if the largest root
lies between zero and unity. Thus, a damped path occurs if 0 < s < r < 1, which
arises if 0 < b < 1 and v < 1. Similarly, the path is explosive if the largest root
exceeds unity, i.e., if r > s > 1, which implies 0 < b < 1 and rs = v > 1.
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With only one real root, r, the same conditions hold. Hence, in the case of real
roots with 0 < b < 1, the path of income is damped for 0 < v < 1 and explosive
for v > 1.

If the solution is complex conjugate then r = α + βi and s = α − βi and the
general solution

Yt = c1R
t cos(tθ ) + c2R

t sin(θ t) + Y∗

exhibits oscillations, whose damped or explosive nature depends on the ampli-
tude, R.

From our earlier analysis we know R =
√

α2 + β2. But

α = b + v

2
and β = +

√
4v − (b + v)2

2
Hence

R =
√(

b + v

2

)2

+ 4v − (b + v)2

4
= √

v

For damped oscillations,R < 1, i.e., v < 1; while for explosive oscillations,R > 1,
i.e., v > 1.

All cases are drawn in figure 3.17. The dividing line between real and complex
roots is the curve (b + v)2 = 4v, which was drawn using Mathematica’s Implicit-
Plot command and annotated in CorelDraw. A similar result can be derived using
Maple. The instructions for each software are:

Mathematica
<<Graphics`ImplicitPlot`

ImplicitPlot [(b+v)^2==4v, {v,0,5}, {b,0,1}]

Maple
with(plots):

implicitplot ((b+v)^2=4v, v=0..5, b=0..1);

On the other hand, the division between damped and explosive paths (given 0 <

b < 1) is determined by v < 1 and v > 1, respectively.
The accelerator model just outlined was utilised by Hicks (1950) in his dis-

cussion of the trade cycle. The major change was introducing an autonomous
component to investment, I0, which grows exogenously at a rate g. So at time t,

Figure 3.17.
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the autonomous component of investment is I0(1 + g)t. Hicks’ model can then be
expressed

Ct = bYt−1

It = I0(1 + g)t + v(Yt−1 − Yt−2)

Yt = Ct + It

(3.24)

Substituting, we get

Yt = bYt−1 + I0(1 + g)t + v(Yt−1 − Yt−2)

= (b + v)Yt−1 − vYt−2 + I0(1 + g)t

Since the model involves a moving equilibrium, then assume equilibrium income
at time t is Y(1 + g)t and at time t − 1 it is Y(1 + g)t−1, etc. Then in equilibrium

Y(1 + g)t − (b + v)Y(1 + g)t−1 + vY(1 + g)t−2 = I0(1 + g)t(3.25)

Dividing throughout by (1 + g)t−2, then

Y(1 + g)2 − (b + v)Y(1 + g) + vY = I0(1 + g)2

i.e.

Y = I0(1 + g)2

(1 + g)2 − (b + v)(1 + g) + v
(3.26)

Note that in the static case where g = 0, that this reduces down to the simple result
Y = I0/(1 − b).

The particular solution to equation (3.25) is then

Yp = Y(1 + g)t = I0(1 + g)t+2

(1 + g)2 − (b + v)(1 + g) + v

Since the homogeneous component is

Y(1 + g)t − (b + v)Y(1 + g)t−1 + vY(1 + g)t−2 = 0

then the complementary function, Yc is

Yc = c1r
t + c2s

t

where

r, s = −(b + v) ±
√

(b + v)2 − 4v

2
The complete solution to equation (3.25) is then

Yt = c1rt + c2st + I0(1 + g)t+2

(1 + g)2 − (b + v)(1 + g) + v

r = −(b + v) +
√

(b + v)2 − 4v

2

s = −(b + v) −
√

(b + v)2 − 4v

2

(3.27)

Once again the stability of (3.27) depends on the sign of (b + v)2 − 4v, and the
various possibilities we have already investigated.
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3.11 Linear approximation to discrete nonlinear
difference equations

In chapter 2, section 2.7, we considered linear approximations to nonlinear differ-
ential equations. In this section we do the same for nonlinear difference equations.
A typical nonlinear difference equation for a one-period lag is

xt − xt−1 = g(xt−1)

�xt = g(xt−1)

However, it is useful to consider the problem in the recursive form

xt = g(xt−1) + xt−1

i.e. xt = f (xt−1)

because this allows a graphical representation. In this section we shall consider
only autonomous nonlinear difference equations and so f (xt−1) does not depend
explicitly on time.

We have already established that a fixed point, an equilibrium point, exists if

x∗ = f (x∗) for all t

and that we can represent this on a diagram with xt−1 on the horizontal axis and xt
on the vertical axis. A fixed point occurs where f (xt−1) cuts the 45◦-line, as shown
in figure 3.18, where we have three such fixed points. Since f (x) = x3 then y = f (y)
and satisfies y = y3 or y(y2 − 1) = 0. This results in three values for y, y = 0, −1
and 1. It is to be noted that we have drawn xt = f (xt−1) as a continuous function,
which we also assume to be differentiable.

We have also established that x∗ is an attractor, a stable point, if there exists a
number ε such that when |x0 − x∗| < ε then xt approaches x∗ in the limit, otherwise
it is unstable. In the present illustration we can consider only local stability or

Figure 3.18.
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instability, and so we take ε to be some ‘small’ distance either side of x∗
1 or x∗

2
or x∗

3.
In order to establish the stability properties of each of the equilibrium points, we

take a Taylor expansion of f about x∗. Thus for a first-order linear approximation
we have

f (xt−1) = f (x∗) + f ′(x∗)(xt−1 − x∗) + R2(xt−1x
∗)

Ignoring the remainder term, then our linear approximation is

xt = f (x∗) + f ′(x∗)(xt−1 − x∗)

Furthermore, we have established that:

if
∣∣ f ′(x∗)

∣∣< 1 then x∗ is an attractor or stable

if
∣∣ f ′(x∗)

∣∣> 1 then x∗ is a repellor or unstable

if
∣∣ f ′(x∗)

∣∣= 1 then the stability of x∗ is inconclusive.

Example 3.18

Consider

xt =
√

4xt−1 − 3

This has two equilibria found by solving x2 − 4x + 3 = 0, i.e., x∗
1 = 1 and x∗

2 = 3,
and shown by the points a and b in figure 3.19.

The linear approximation is

xt = f (x∗) + f ′(x∗)(xt−1 − x∗)

Figure 3.19.
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Take first x∗
1 = 1, then

f (x∗
1) = 1

f ′(x∗
1) = 2(4x∗

1 − 3)−1/2 = 2

Hence

xt = 1 + 2(xt−1 − 1) = −1 + 2xt−1

which is unstable since f ′(x∗
1) = 2 > 1.

Next consider x∗
2 = 3

f (x∗
2) = 3

f ′(x∗
2) = 2(4x∗

2 − 3)−1/2 = 2

3

Hence

xt = 3 +
(

2

3

)
(xt−1 − 3)

= 1 + 2

3
xt−1

which is stable since f ′(x∗
2) = 2/3 < 1.

Example 3.19

yt+1 = f (yt) = 3.2yt − 0.8y2
t

Letting yt = y∗ for all t we can readily establish two equilibria: y∗
1 = 0 and y∗

2 =
2.75. Considering the nonzero equilibrium, then

f (y∗
2) = 2.75

f ′(y∗
2) = 3.2 − 1.6y∗

2 = −1.2

Hence, the linear approximation is

yt+1 = 2.75 − 1.2(yt − 2.75)

= 6.05 − 1.2yt

The situation is shown in figure 3.20. The solution to this model is

yt+1 = 2.75 + (−1.2)t(y0 − 2.75)

which is oscillatory and explosive.
Although the linear approximation leads to an explosive oscillatory equilibrium,

the system in its nonlinear form exhibits a two-cycle with values 2.0522 and
3.1978.12 What the linear approximation reveals is the movement away from y∗ =
2.75. What it cannot show is that it will converge on a two-cycle. This example,
therefore, illustrates the care required in interpreting the stability of nonlinear
difference equations using their linear approximations.

12 This can be established quite readily with a spreadsheet or as explained in appendices 3.1 and 3.2.
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Figure 3.20.

3.12 Solow growth model in discrete time

We have already established in chapter 2, example 2.9, that a homogeneous of
degree one production function can be written y = f (k), where y is the output/labour
ratio and k is the capital/labour ratio. In discrete time we have13

yt = f (kt−1)

where yt = Yt/Lt−1 and kt−1 = Kt−1/Lt−1. Given the same assumptions as example
2.9, savings is given by St = sYt and investment as It = Kt − Kt−1 + δKt−1, where
δ is the rate of depreciation. Assuming saving is equal to investment in period t,
then

sYt = Kt − Kt−1 + δKt−1 = Kt − (1 − δ)Kt−1

Dividing both sides by Lt−1, then

sYt
Lt−1

= Kt

Lt−1
− (1 − δ)Kt−1

Lt−1

= Kt

Lt

(
Lt
Lt−1

)
− (1 − δ)

Kt−1

Lt−1

But if population is growing at a constant rate n, as is assumed in this model, then

Lt − Lt−1

Lt−1
= n

i.e.
Lt
Lt−1

= 1 + n

13 A little care is required in discrete models in terms of stocks and flows (see section 1.3). Capital and
labour are stocks and are defined at the end of the period. Hence, Kt and Lt are capital and labour at
the end of period t. Flows, such as income, investment and savings are flows over a period of time.
Thus, Yt , It and St are flows over period t.
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Hence

syt = kt(1 + n) − (1 − δ)kt−1

or

(1 + n)kt − (1 − δ)kt−1 = sf (kt−1)

which can be expressed

kt = (1 − δ)kt−1 + sf (kt−1)

1 + n

i.e. kt = h(kt−1)

With constant returns to scale and assuming a Cobb–Douglas production function,
then

yt = f (kt−1) = akα
t−1 a > 0, 0 < α < 1

Example 3.20

This can be investigated by means of a spreadsheet, where we assume

a = 5, α = 0.25, s = 0.1, n = 0.02, δ = 0

and let k0 = 20.
Alternatively, using a Taylor expansion about k∗ > 0, then

kt = h(k∗) + (1 − δ)(kt−1 − k∗) + αsa(k∗)α−1(kt−1 − k∗)

1 + n

= h(k∗) +
[

(1 − δ) + αsa(k∗)α−1

1 + n

]
(kt−1 − k∗)

= k∗ +
[

(1 − δ) + αsa(k∗)α−1

1 + n

]
(kt−1 − k∗)

The situation is illustrated in figure 3.21.

3.13 Solving recursive equations with Mathematica
and Maple

Both Mathematica and Maple come with a solver for solving recursive equations.
RSolve in Mathematica and rsolve in Maple. They both operate in fundamentally
the same way, and both can solve only linear recursive equations. While rsolve
is built into the main kernel of Maple, the RSolve command of Mathematica
is contained in the DiscreteMath package, and so must first be loaded with the
following command.

Needs[`̀ DiscreteMath`RSolve`’’]

(Note the back single-quote on RSolve.) These solvers are particularly useful for
solving many difference equations. There are, however, some differences in the two
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Figure 3.21.

solvers. One difference is shown immediately by attempting to solve the recursive
equation xt = axt−1. The input and output from each programme is as follows.

Mathematica
RSolve[x[t]==ax[t-1],x[t],t]

{{x[t]->a1+tC[1]

Maple
rsolve(x(t)=a*x(t-1),x(t));

x(0)at

While Maple’s output looks quite familiar, Mathematica’s looks decidedly odd.
The reason for this is that Mathematica is solving for a ‘future’ variable. If the
input had been

RSolve[x[t+1]== ax[t],x[t],t]

Then the solution would be

{{x[t]->atC[1]}}

which is what we would expect. Note also that whileMathematica leaves unsolved
the unknown constant, which it labels C[1], Maple assumes the initial condition is
x(0) for t = 0. If attempting to solve yt = ayt−1 + byy−2 for example, then when
using Mathematica, this should be thought of as yt+2 = ayt+1 + byt when solving
for yt. With this caveat in mind, we can explore the RSolve and rsolve commands
in more detail.
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When an initial condition is supplied the caveat just alluded to is of no conse-
quence. Thus, if we wish to solve

xt = axt−1 x0 = 2

then the instructions are:

Mathematica
RSolve[{x[t]==ax[t-1],x[0]==2},x[t],t]

with result
{{x[t]->2at}}

Maple
rsolve({x(t)=a*x(t-1),x(0)=2},x(t));

with result
2at

So no difference arises when initial conditions are supplied.
Using either the RSolve command of Mathematica or the rsolve command of

Maple, we can readily check the following equations used in this chapter:

(i) yt+1 = ayt

(ii) pt+1 = (1 + k)pt

(iii) Yt =
(

v

v + s

)
Yt−1

(iv) yt+1 = ayt + c

(v) pt =
(
a − c

b

)
−
(
d

b

)
pt−1

The following observations, however, should be borne in mind.

(1) When using both Mathematica and Maple to solve the Harrod–Domar
model, problem (iii), the recursive equation should be thought of asYt+1 =
(v/(v + s))Yt and solved accordingly.

(2) On some occasions it is necessary to use additional commands, especially
the Simplify command (Mathematica) or the simplify command (Maple).

(3) Mathematica sometimes supplies ‘If’ conditions in the solutions, usually
to do with t ≥ −1 for example. This partly arises from the caveat men-
tioned above. Many of these can be avoided by writing the equations in
terms of future lags, as in the case of the Harrod–Domar model.

(4) A number of solutions involve complex output that is not always meaning-
ful. This is especially true of general algebraic problems, such as solving
yt+2 = ayt+1 + byt.

(5) Even when results have been simplified, it is not always possible to in-
terpret the results in an economically meaningful way. For instance, in
problem (v), it is impossible for a computer software package to ‘know’
that (a − c)/(b + d) is the equilibrium price and that it is more economi-
cally meaningful to take the difference (p0 − (a − c)/(b + d)). Economic
insight is still a vital element.
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Problems (i)–(v) are all recursive equations of the first-order. The same basic form
is used to solve higher-order recursive equations. Given the recursive equation

yt+2 = ayt+1 + byt

then this can be solved with the instructions:

Mathematica
RSolve[y[t+2]==ay[t+1]+by[t],y[t],t]

Maple
rsolve(y(t+2)=a*y(t+1)+b*y(t),y(t));

But because this is a general recursive equation the output in each case is quite in-
volved. Mathematica’s output even more so, since it involves Binomial equations!
What is revealed by the output is the need to know two initial conditions to solve
such second-order recursive equations:

Solving yt+2 = yt+1 + 2yt with initial conditions y(0) = 5 and y(1) = 4, we have

Mathematica
RSolve[{y[t+2]==y[t+1]+2y[t],y[0]==5,y[1]==4},y[t],t]

with output
{{y[t]->2(-1)t + 3 2t}}

Maple
rsolve({r(t+2)=y(t+1)+2*y(t),y(0)=5,y(1)=4},y(t));

with output
2(-1)t + 3 2t

Furthermore, there is no difficulty with repeated roots, which occur in solving
yt+2 = 4yt+1 − 4yt. For initial conditions y(0) = 6 and y(1) = 4, we have solutions

Mathematica : {{y[t]->-21+t (-3 + 2t)}}

Maple : (-4t-4)2t + 10 2t

Here we see that output in the two packages need not look the same, and often
does not, yet both are identical; and identical to 6(2)t – 4t(2)t which we derived in
the text.

Complex roots, on the other hand, are solved by giving solutions in their complex
form rather than in trigonometric form.

The RSolve and rsolve commands, therefore, allow a check of the following
equations in this chapter.

(i) yt+2 = ayt+1 + byt
(ii) yt+2 = yt+1 + 2yt y(0) = 5, y(1) = 4
(iii) yt+2 = 4yt+1 − 4yt
(iv) yt+2 = 4yt+1 − 4yt y(0) = 6, y(1) = 4
(v) yt+2 = 4yt+1 − 16yt

(vi) yt+2 = ayt+1 − byt + c
(vii) yt+2 = 4yt+1 − 16yt + 26
(viii) yt+2 = 5yt+1 − 4yt + 4
(ix) yt+2 = −yt+1 + 2yt + 12 y(0) = 4, y(1) = 5
(x) Yt = (b + v)Yt−1 − vYt−2 + (a + G)

(xi) Yt = 4.75Yt−1 + 4Yt−2 + 150
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Neither Mathematica nor Maple, however, can solve directly the logistic equation

yt+1 = (1 + a)yt
1 + byt

This is readily accomplished using the substitution provided in section 3.9.
It is worth pointing out that in the case of numerical examples, if all that is

required is a plot of the sequence of points, then there is no need to solve the
recursive (or difference) equation. We conclude this section, therefore, with simple
instructions for doing this.14

The equation we use as an example is

pt = 5.6 − 0.4pt−1 p0 = 1

Mathematica
Clear[p];

p[0]=1;

p[t-]:=p[t]=5.6-0.4p[t-1];

data=Table[{t,p[t]},{t,0,20}];

ListPlot[data,PlotJoined->True,PlotRange->All];

Maple
t:=’t’:

p:=’p’:

p:=proc(t)option remember; 5.6-0.4*p(t-1)end:

p(0):=1:

data:=seq([t,p(t)],t=0..20)];

plot(data,colour=black,thickness=2);

Notice that the instructions inMaple require a ‘small’ procedural function. It is im-
portant in using this to include the option remember, which allows the programme
to remember values already computed.

Higher-order recursive equations and nonlinear recursive equations are dealt
with in exactly the same way. With discrete dynamic models, however, it is often
easier and quicker to set the model up on a spreadsheet (see Shone 2001).

Appendix 3.1 Two-cycle logistic equation using
Mathematica

THEOREM
The number a satisfies the equation

a = f ( f (a))

if a is either a fixed point or is part of a two-cycle for the dynamical
system

xn+1 = f (xn)

14 I am grateful to Johannes Ludsteck, Centre for European Economic Research (ZEW), for the method
of computing tables from recursive equations in Mathematica, which is more efficient than the one
I provided in the first edition.
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Example (the generic logistic equation)

xn+1= rxn(1 − xn)

In[1]:= f[x-]=rx(1-x)

Out[1]= r (1-x) x

In[2]:= eq1=f[f[x]]

Out[2]= r2 (1-x) x (1-r (1-x)x)

In[3]:= soll=Solve[eq1==x,x]

Out[3]= {{x - >- 0}, {x - >- -1+rr },{x - >- r+r
2-r √-3-2r+r2

2r2
},

{x - >- r+r
2+r √-3-2r+r2

2r2
}}

In[4]:= a1=so11[[3, 1, 2]]

Out[4]= r+r2-r √-3-2r+r2
2r2

In[5]:= a2=soll[[4, 1, 2]]

Out[5]= r+r2+r √-3-2r+r2
2r2

In[6]:= g[x-]=∂xf[x]

Out[6]= r(1-x)-rx

In[7]:= eq2=Simplify[g[a1]g[a2]]

Out[7]= 4+2r-r2

In[8]:= sol2=Nsolve[eq2==0,r]

Out[8]= {{r - >- -1.23607}, {r - >- 3.23607}}

In[9]:= rstar=sol2[[2, 1, 2]]

Out[9]= 3.23607

In[10]:= a1/.r --> rstar

Out[10]= 0.5

In[11]:= a2/.r --> rstar

Out[11]= 0.809017

In[12]:= a1/.r --> 3.2

Out[12]= 0.513045

In[13]:= a2/.r --> 3.2

Out[13]= 0.799455

In[14]:= Nsolve[-1==4+2r-r2,r]

Out[14]= {{r - >- -1.44949}, {r - >- 3.44949}}

In[15]:= Nsolve[4+2r-r2==1, r]

Out[15]= {{r - >- -1.}, {r - >- 3.}}

Considering only positive roots, we have:

r = 3 and r = 3.44949
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Appendix 3.2 Two-cycle logistic equation using Maple

> f:=x->r* x* (1-x);

f := x → rx(1 − x)

>

> eq1:=f(f(x));

eq1 := r2x(1 − x)(1 − rx(1 − x))

> sol1:=solve(eq1=x,x);

Sol1 := 0,
−1 + r

r
,

1

2
r + 1

2
+ 1

2

√
−3 − 2r + r2

r
,

1

2
r + 1

2
− 1

2

√
−3 − 2r + r2

r

> a1:=sol1[3];

a1 :=
1

2
r + 1

2
+ 1

2

√
−3 − 2r + r2

r

> a2:=sol1[4];

a2 :=
1

2
r + 1

2
− 1

2

√
−3 − 2r + r2

r

> g:=diff(f(x),x);

g := r(1 − x) − rx

> eq2:=expand(subs(x=a1,g)*subs(x=a2,g));

eq2 := 4 + 2r − r2

> sol2:=solve(eq2=0,r);

sol2 := 1 − √
5, 1 + √

5

> rstar:=sol2[2];

rstar := 1 + √
5

> evalf(subs(r=rstar,a1));

.8090169946

> evalf(subs(r=rstar,a2));

.4999999997

> evalf(subs(r=3.2,a1));

.7994554906

> evalf(subs(r=3.2,a2));

.5130445094
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> solve(eq2=-1,r);

1 − √
6, 1 + √

6

> evalf(%);

−1.449489743, 3.449489743

> solve(eq2=1,r);
−1, 3

Exercises

1. Classify the following difference equations:
(i) yt+2 = yt+1 − 0.5yt + 1

(ii) yt+2 = 2yt + 3

(iii)
yt+1 − yt

yt
= 4

(iv) yt+2 − 2yt+1 + 3yt = t
2. Suppose you borrow an amount P0, the principal, but you repay a fixed

amount, R, each period. Formulate the general amount, Pt+1, owing in
period t + 1, with interest payment r%. Solve for Pn.

3. In question 2, suppose the repayment is also variable, with amount repaid
in period t of Rt. Derive the solution Pn.

4. Establish whether the following are stable or unstable and which are
cyclical.

(i) yt+1 = −0.5yt + 3

(ii) 2yt+1 = −3yt + 4

(iii) yt+1 = −yt + 6

(iv) yt+1 = 0.5yt + 3

(v) 4yt+2 + 4yt+1 − 2 = 0
5. Consider

yt+1 = y3
t − y2

t + 1
(i) Show that a = 1 is a fixed point of this system.
(ii) Illustrate that a = 1 is a shunt by considering points either side of

unity for y0.
6. Use a spreadsheet to compare

yt+1 = (1 + a)yt − by2
t

and

yt+1 = (1 + a)yt
1 + byt

using
(i) a = 1.5 b = 0.1 y0 = 1
(ii) a = 1.5 b = 0.1 y0 = 22

(iii) a = 2.2 b = 0.1 y0 = 1
(iv) a = 2.2 b = 0.1 y0 = 25
(v) a = 1.8 b = 0.15 y0 = 11.5
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7. Derive the cobweb system for the price in each of the following de-
mand and supply systems, and establish whether the equilibrium price is
(i) stable, (ii) unstable, or (iii) oscillatory.

(i) qd
t = 10 − 3 pt
qs
t = 2 + pt−1
qd
t = qs

t

(ii) qd
t = 25 − 4 pt
qs
t = 3 + 4 pt−1
qd
t = qs

t

(iii) qd
t = 45 − 2.5 pt
qs
t = 5 + 7.5 pt−1
qd
t = qs

t

8. Suppose we have the macroeconomic model

Ct = a + bYt−1

Et = Ct + It + Gt

Yt = Et

whereC andY are endogenous and I andG are exogenous. Derive the gen-
eral solution for Yn. Under what conditions is the equilibrium of income,
Y∗, stable?

9. Verify your results of question 8 by using a spreadsheet and letting I = 10,
G = 20, a = 50, Y0 = 20, and b = 0.8 and 1.2, respectively. For what
period does the system converge on Y∗ − Y0 within 1% deviation from
equilibrium? For the same initial value Y0, is the period longer or shorter
in approaching equilibrium the higher the value of b?

10. Given

qdt = a − bpt
qst = c + dpet
pet = pt−1 − e(pt−1 − pt−2)

(i) Show that if in each period demand equals supply, then the model
exhibits a second-order nonhomogeneous difference equation for pt.

(ii) Use a spreadsheet to investigate the path of price and quantity for
the parameter values

a = 10 c = 2 e = 0.5
b = 3 d = 1

11. In the linear cobweb model of demand and supply, demonstrate that the
steeper the demand curve relative to the supply curve, the more damped
the oscillations and the more rapidly equilibrium is reached.

12. Using a spreadsheet, verify for the linear cobweb model of demand and
supply that whenever the absolute slope of the demand curve is equal to
the absolute slope of the supply curve, both price and quantity have a
two-period cycle.

13. Given the following logistic model

yt+1 = 3.84yt(1 − yt)

set this up on a spreadsheet. Set y0 = 0.1 and calculate yn for the first
100 elements in the series. Use the 100th element as the starting value
and then re-compute the next 100 elements in the series. Do the same
again, and verify that this system tends to a three-cycle with

a1 = 0.149407 a2 = 0.488044 a3 = 0.959447
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14. f1(x) and f2(x) are linearly dependent if and only if there exist constants
b1 and b2, not all zero, such that

b1 f1(x) + b2 f2(x) = 0

for every x. If the set of functions is not linearly dependent, then f1(x) and
f2(x) are linearly independent. Show that

y1 = Y∗ and y2 = tY∗

are linearly independent.
15. Given the following version of the Solow model with labour augmenting

technical progress

Yt = F(Kt,AtLt)

Kt+1 = Kt + δKt

St = sYt
It = St
Lt+1 − Lt

Lt
= n

At = γ tA0

(i) show that

k̂t+1 = (1 − δ)k̂t + sf (k̂t)

γ (1 + n)

where k̂ is the capital/labour ratio measured in efficiency units, i.e.,

k̂ = (K/AL).

(ii) Approximate this result around k̂∗ > 0.

16. Given the model

qdt = a − bpt b > 0
qst = c + dpet d > 0
pet = pet−1 − λ(pt−1 − pet−1) 0 < λ < 1

(i) Show that price conforms to a first-order nonhomogeneous differ-
ence equation.

(ii) Obtain the equilibrium price and quantity.
(iii) Show that for a stable cobweb then

0 < λ <
2b

b + d

17. A student takes out a loan of £8,000 to buy a second hand car, at a fixed
interest loan of 7.5% per annum. She intends to pay off the loan in three
years just before she graduates. What is her monthly payment?

18. A bacterial cell divides every minute. A concentration of this bacterium
in excess of 5 million cells becomes contagious. Assuming no cells die,
how long does it take for the bacteria to become contagious?
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19. Show that neither Mathematica nor Maple can solve the following dif-
ference equation

xt+1 = xt
1 + xt

Use either programme to generate the first elements of the series up to
t = 10, and hence show that this indicates a solution.

20. A Fibonacci series takes the form

xn = xn−1 + xn−2 x0 = 1 and x1 = 1

(i) Use a spreadsheet to generate this series, and hence show that the
series is composed of integers.

(ii) Solve the recursive equation with a software package and show that
all of its factors are irrational numbers but that it takes on integer
values for all n, which are identical to those in the spreadsheet.

Additional reading

For additional material on the contents of this chapter the reader can consult
Allen (1965), Baumol (1959), Baumol and Wolff (1991), Chiang (1984), Domar
(1944), Elaydi (1996), Farmer (1999), Gapinski (1982), Goldberg (1961), Griffiths
and Oldknow (1993), Hicks (1950), Holmgren (1994), Jeffrey (1990), Kelley and
Peterson (2001), Samuelson (1939), Sandefur (1990), Shone (2001), Solow (1956)
and Tu (1994).



CHAPTER 4

Systems of first-order
differential equations

4.1 Definitions and autonomous systems

In many economic problems the models reduce down to two or more systems of
differential equations that require to be solved simultaneously. Since most eco-
nomic models reduce down to two such equations, and since only two variables
can easily be drawn, we shall concentrate very much on a system of two equations.
In general, a system of two ordinary first-order differential equations takes the form

dx

dt
= ẋ = f (x, y, t)

dy

dt
= ẏ = g(x, y, t)

(4.1)

Consider the following examples in which x and y are the dependent variables
and t is an independent variable:

(i)
ẋ = ax − by − cet

ẏ = rx + sy − qet

(ii)
ẋ = ax − by
ẏ = rx + sy

(iii)
ẋ = ax − bxy
ẏ = rx − sxy

Examples (i) and (ii) are linear systems of first-order differential equations
because they involve the dependent variables x and y in a linear fashion.
Example (iii), on the other hand, is a nonlinear system of first-order differential
equations because of the term xy occurring on the right-hand side of both equations
in the system. Examples (ii) and (iii) are autonomous systems since the variable
t does not appear explicitly in the system of equations; otherwise a system is said
to be nonautonomous, as in the case of example (i). Furthermore, examples (ii)
and (iii) are homogeneous because there is no additional constant. Example (i)
is nonhomogeneous with a variable term, namely cet.

A solution to system (4.1) is a pair of parametric equations x = x(t) and y =
y(t) which satisfy the system over some open interval. Since, by definition, they
satisfy the differential equation system, then it follows that the solution functions
are differentiable functions of t. As with single differential equations, it is often
necessary to impose initial conditions on system (4.1), which take the form

x0 = x(t0) and y0 = y(t0)
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Our initial value problem is, then

ẋ = f (x, y, t)
ẏ = g(x, y, t)
x(t0) = x0, y(t0) = y0

(4.2)

Economic models invariably involve both linear and nonlinear systems of equa-
tions that are autonomous. It is, therefore, worth exploring the meaning of au-
tonomous systems in more detail because it is this characteristic that allows much
of the graphical analysis we observe in economic theory. In order to elaborate
on the ideas we need to develop, consider an extremely simple set of differential
equations.

Example 4.1

ẋ = 2x
ẏ = y
x(t0) = 2, y(t0) = 3

(4.3)

We can capture the movement of the system in the following way. Construct a
plane in terms of x and y. Then the initial point is (x0, y0) = (2,3). The movement
of the system away from this initial point is indicated by the systems of motion, or
transition functions, x′(t) and y′(t). If we can solve the system for x(t) and y(t), then
we can plot the path of the system in the (x,y)-plane. In the present example this
is easy to do. Here we are not so concerned with solving systems of autonomous
equations, but rather in seeing how such solutions appear in the (x,y)-plane. The
solutions are

x(t) = 2e2t and y(t) = 3et

The path of the system in the (x,y)-plane is readily established by eliminating the
variable t and expressing y as a function of x. Thus

y =
√

9x

2

which is defined for x ≥ 2, y ≥ 3. Over time, x(t) increases beyond the initial
value of x(0) = 2 and y(t) increases beyond the initial value of y(0) = 3. Hence,
the system moves along the trajectory shown in figure 4.1(a) and in the direction
indicated by the arrows. More significantly, for any initial point (x0, y0) there is
only one trajectory through this point. Put another way, no matter when the system
begins to move, it will always move along the same trajectory since there is only
one trajectory through point (x0, y0). In terms of figure 4.1(a), there is only one
trajectory through the point (2,3).

Example 4.2

But now consider a similar system of equations

ẋ = 2x + t
ẏ = y
x(0) = 2, y(0) = 3

(4.4)
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Figure 4.1.

with solutions

x(t) = 9e2t − 1

4
− t

2
y(t) = 3et

which clearly satisfy the initial conditions. Eliminating et, we can express the
relationship between x and y as

y = √
1 + 4x + 2t x ≥ 2, y ≥ 3

which clearly depends on t. This means that where a system is at any point in
time in the (x,y)-plane depends on precisely the moment the system arrives at
that point. For instance, in figure 4.1(b) we draw the system for three points of
time, t = 0, 5, 10. There is no longer a single trajectory in the (x,y)-plane, but
a whole series of trajectories, one for each point in time. The system is clearly
time-dependent.
Autonomous systems are time-independent. One must be careful of the meaning

here of being ‘time-independent’. All that is meant is that the time derivatives
are not changing over time (the transition functions are independent of time);
however, the solution values for the dependent variables x and y will be func-
tions of time, as we clearly saw from the above example. With autonomous
systems there is only a single trajectory in the (x,y)-plane which satisfies the
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initial conditions. Of course, with different initial conditions, there will be differ-
ent trajectories in the (x,y)-plane, but these too will be unique for a given initial
condition.

4.2 The phase plane, fixed points and stability

In chapter 2 we introduced the phase line. This was the plot of x(t) on the
x-line. It is apparent that figure 4.1(a) is a generalisation of this to two variables.
In figure 4.1(a) we have plotted the path of the two variables x and y. At any point
in time we have a point such as (x(t), y(t)), and since the solution path is uniquely
defined for some initial condition (x0, y0), then there is only one path, one function
y = φ(x), which satisfies the condition y0 = φ(x0).

A solution curve for two variables is illustrated in figure 4.2(a), whose coor-
dinates are (x(t), y(t)) as t varies over the solution interval. This curve is called a
trajectory, path or orbit of the system; and the (x,y)-plane containing the trajec-
tory is called the phase plane of the system. The set of all possible trajectories
is called the phase portrait. It should be noted that in the case of autonomous
systems as t varies the system moves along a trajectory (x, y) through the phase
plane which depends only on the coordinates (x, y) and not on the time of its arrival
at that point. As time increases, the arrows show the direction of movement along
the trajectory. The same is true for an autonomous system of three variables, x, y
and z. Figure 4.2(b) illustrates a typical trajectory in a three-dimensional phase
plane which passes through the point (x0, y0, z0). Again the arrows indicate the
movement of this system over time.

Since for autonomous systems the solution curve is uniquely defined for some
initial value, then we can think of y as a function of x, y = φ(x), whose slope is
given by

dy

dx
= dy/dt

dx/dt
(4.5)

and which is uniquely determined so long as dx/dt is not zero. For autonomous
systems, this allows us to eliminate the variable t. To see this, return to example 4.1

dy

dx
= dy/dt

dx/dt
= y

2x

This is a separable equation and so can be solved by the method developed in
chapter 2. Solving, and solving for the constant of integration by letting the ini-
tial conditions be x0 = 2 and y0 = 3, we find again that y = √

9x/2 (see exer-
cise 1).

If (x∗, y∗) is a point in the phase plane for which f (x, y) = 0 and g(x, y) = 0
simultaneously, then it follows that dx/dt = 0 and dy/dt = 0. This means that
neither x nor y is changing over time: the system has a fixed point, or has an
equilibrium point. For example 4.1 it is quite clear that the only fixed point
is (x∗, y∗) = (0, 0). In the case of example 4.2, although y∗ = 0, x∗ = t/2 and
so x∗ depends on the point in time the system arrives at x∗. Consider another
example.



146 Economic Dynamics

Figure 4.2.

Example 4.3

We can establish the fixed point of the following simultaneous equation system

ẋ = x − 3y
ẏ = −2x + y
x0 = 4, y0 = 5

(4.6)

by setting ẋ = 0 and ẏ = 0, which has solution x∗ = 0 and y∗ = 0.



Systems of first-order differential equations 147

It should be quite clear from these examples that independent homogeneous
linear equation systems have a fixed point at the origin. Also, there is only the one
fixed point.

Having established that such a system has a fixed point, an equilibrium point,
the next step is to establish whether such a point is stable or unstable. A trajectory
that seems to approach a fixed point would indicate that the system was stable
while one which moved away from a fixed point would indicate that the system
was unstable. However, we need to be more precise about what we mean when we
say ‘a fixed point (x∗, y∗) is stable or unstable’.

A fixed point (x∗, y∗) which satisfies the condition f (x, y) = 0 and g(x, y) = 0
is stable or attracting if, given some starting value (x0, y0) ‘close to’ (x∗, y∗), i.e.,
within some distance δ, the trajectory stays close to the fixed point, i.e., within some
distance ε > δ. It is clear that this definition requires some measure of ‘distance’.
There are many ways to define distance, but the most common is that of Liapunov.
In simple terms we define a ball around the fixed point (x∗, y∗) with radius δ and ε,
respectively. Thus, define Bδ(x∗, y∗) to be a ball (circle) centred on (x∗, y∗) and with
radius δ. Define a second ball, Bε(x∗, y∗) to be a ball (circle) centred on (x∗, y∗) and
with radius ε > δ. The situation is illustrated in figure 4.3(a) and (b). We have a
starting value (x0, y0) ‘close to’ the fixed point (x∗, y∗), in the sense that (x0, y0) lies
in the ball Bδ(x∗, y∗). The solution value (path) starting from (x0, y0) stays ‘close
to’ the fixed point, in the sense that it stays within the ball Bε(x∗, y∗). The solution
paths in figure 4.3(a) and (b) both satisfy this condition, and so are both stable.

But a careful consideration of the statement of stability will indicate that there
is nothing within the definition that insists that the trajectory has to approach the
fixed point. All that is required is that it stay within the ball Bε(x∗, y∗). A look at
figure 4.3(b) will indicate that this satisfies the definition of stability just outlined.
However, the solution path is periodic, it begins close to the fixed point (i.e. the
starting point lies within the ball Bδ(x∗, y∗)) but cycles around the fixed point while
staying ‘close to’ the fixed point (i.e. stays within the ball Bε(x∗, y∗)). Such a limit
cycle is stable but not asymptotically stable. We shall find examples of this when
we consider competing population models in chapter 14.

A fixed point that is not stable is said to be unstable or repelling.
A fixed point is asymptotically stable if it is stable in the sense just discussed,

but eventually approaches the fixed point as t → ∞. Thus to be asymptotically
stable, it must start close to (x∗, y∗) (i.e. within δ), it must remain close to the
fixed point (i.e. within ε), and must eventually approach (x∗, y∗) as t→ ∞. Hence,
the situation shown in figure 4.3(a) is asymptotically stable. Also notice that the
trajectory can move away from the fixed point so long as it stays within the ball
Bε(x∗, y∗) and approaches the fixed point in the limit.1

Asymptotic stability is a stronger property than stability. This is clear because
to be asymptotically stable then it must be stable. The limit condition on its own
is not sufficient. A system may start ‘close to’ (x∗, y∗) (i.e. within Bδ(x∗, y∗))
and approach the fixed point in the limit, but diverge considerably away from
(go beyond the ball Bε(x∗, y∗)) in the intermediate period.

1 A fixed point that is stable but not asymptotically stable is sometimes referred to as neutrally stable.
Figure 4.3(b) illustrates a periodic trajectory around the fixed point, which is accordingly neutrally
stable. This type of system is typical of competing populations, as we shall illustrate in chapter 14.
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Figure 4.3.

If a system has a fixed point (x∗, y∗) which is asymptotically stable, and if
every trajectory approaches the fixed point (i.e. both points close to the fixed point
and far away from the fixed point), then the fixed point is said to be globally
asymptotically stable. Another way to consider this is to establish the initial
set of conditions for which the given fixed point is asymptotically stable, i.e.,
the largest ball from which any entering trajectory converges asymptotically to
the fixed point. This set of initial conditions is called the basin of attraction. A
fixed point is locally asymptotically stable if there exists a basin of attraction,
Bε(x∗, y∗), within which all trajectories entering this ball eventually approach the
fixed point (x∗, y∗). If the basin of attraction is the whole of the (x,y)-plane, then
the system is globally asymptotically stable about the fixed point (x∗, y∗).
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Mathematicians have demonstrated a number of properties for the trajectories
of autonomous systems. Here we shall simply list them.

(1) There is no more than one trajectory through any point in the phase plane
(2) A trajectory that starts at a point that is not a fixed point will only reach

a fixed point in an infinite time period
(3) No trajectory can cross itself unless it is a closed curve. If it is a closed

curve then the solution is a periodic one.

4.3 Vectors of forces in the phase plane

We established in chapter 2, when considering single autonomous differential
equations, that we could establish the direction of x when t varies from the sign of
ẋ. In the case of a system of two differential equations we can establish the direction
of x from the sign of ẋ and the direction of y from the sign of ẏ. Such movements
in x and y give us insight into the dynamics of the system around the equilibrium.
In this section we shall pursue three very simple examples in some detail in order
to investigate the dynamic properties of each system. Although each can be solved
explicitly, this will not always be the case, and the qualitative dynamics we shall
be developing will be particularly useful in such circumstances.

Example 4.4

This continues example 4.3, equation system (4.6), but we shall repeat it here.
Consider the following first-order autonomous system with initial conditions

ẋ = x − 3y
ẏ = −2x + y
x0 = 4, y0 = 5

(4.7)

The solution to this system, which satisfies the initial values, is the following

x(t) = 8e(1−√
6)t + 5

√
6e(1−√

6)t + 8e(1+√
6)t − 5

√
6e(1+√

6)t

4

y(t) = 15e(1−√
6)t + √

96e(1−√
6)t + 15e(1+√

6)t − √
96e(1+√

6)t

6

(4.8)

For the moment we are not concerned about how to derive these solutions,
which we shall consider later, all we are concerned about here is to show that these
are indeed the solution values that satisfy the initial conditions. We verify this
by differentiating both x and y with respect to t and substituting into the system
of equations. A rather tedious exercise, which can be accomplished with software
packages likeMathematica orMaple.Doing so shows that each equation in the sys-
tem is identically true. Hence the equations are indeed the solutions to the system.

It will be noted that the solution values are not straightforward. We could plot the
solution values for x and y against time, as shown in figure 4.4. Alternatively, and
much more informatively, we can plot the path of points {x(t), y(t)} in the phase
plane as the independent variable t varies over the solution interval. Generally,
this will involve a phase portrait, which again can be done using Mathematica
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Figure 4.4.

Figure 4.5.

or Maple.2 Such a solution path to the system in the (x,y)-plane is illustrated in
figure 4.5. This is a specific solution since it satisfies the initial conditions.

But we want to know what is happening to the path in relation to the fixed
point, the equilibrium point, of the system. We already know that a fixed point is
established by setting ẋ = 0 and ẏ = 0. The fixed point is readily established by
solving the simultaneous equations

0 = x − 3y
0 = −2x + y

which has solution x∗ = 0 and y∗ = 0. Another way to view the fixed point is to note
that 0 = x − 3y is the equilibrium condition for the variable x; while 0 = −2x + y
is the equilibrium condition for the variable y. The fixed point is simply where the
two equilibrium lines intersect. The equilibrium lines are

y = x

3
(ẋ = 0)

y = 2x (ẏ = 0)

2 See section 4.12.
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Figure 4.6.

Consider the first equilibrium line. Along this line we have combinations of x and
y for which ẋ = 0. But this means that for any value of x on this line, x cannot be
changing. This information is shown by the vertical dotted lines in figure 4.6 for
any particular value of x. Similarly, for the line denoted

ẏ = 0 (y = 2x)

the value of y on this line cannot be changing. This information is shown by the
horizontal dotted lines in figure 4.6 for any particular value of y.

Next consider points either side of the equilibrium lines in the phase plane. To
the right of the x-line we have

y <
x

3
implying ẋ > 0

Hence, for any point at which x lies below the x-line, then x is rising. Two are
shown in figure 4.6 by the horizontal arrows that are pointing to the right. By the
same reasoning, to the left of the x-line we have

y >
x

3
implying ẋ < 0

Hence, for any point at which x lies above the x-line, then x is falling. Two are
shown in figure 4.6 by the horizontal arrows pointing to the left.

By the same reasoning we can establish to the right of the y-line

y < 2x implying ẏ < 0, hence y is falling

while to its left

y > 2x implying ẏ > 0, hence y is rising

Again these are shown by the vertical arrows pointing down and up respectively
in figure 4.6. It is clear from figure 4.6 that we have four quadrants, which we have
labelled I, II, III and IV, and that the general direction of force in each quadrant is
shown by the arrow between the vertical and the horizontal.

It can be seen from figure 4.6 that in quadrants I and III forces are directing the
system towards the origin, towards the fixed point. In quadrants II and IV, however,
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the forces are directing the system away from the fixed point. We can immediately
conclude, therefore, that the fixed point cannot be a stable point. Can we conclude
that for any initial value of x and y, positioning the system in quadrants I or III,
that the trajectory will tend over time to the fixed point? No, we cannot make
any such deduction! For instance, if the system began in quadrant I, and began to
move towards the fixed point, it could over time pass into quadrant IV, and once
in quadrant IV would move away from the fixed point. In fact, this is precisely the
trajectory shown in figure 4.5. Although the trajectory shown in figure 4.5 moves
from quadrant I into quadrant IV, this need not be true of all initial points beginning
in quadrant I. Depending on the initial value for x and y, it is quite possible for the
system to move from quadrant I into quadrant II, first moving towards the fixed
point and then away from it once quadrant II has been entered. This would be the
situation, for example, if the initial point was (x0, y0) = (4, 2) (see exercise 2).
This complex nature of the solution paths can be observed by considering the
direction field for the differential equation system. The direction field, along with
the equilibrium lines are shown in figure 4.7. Why the dynamic forces seem to
operate in this way we shall investigate later in this chapter.

Example 4.5

The following system of linear differential equations

ẋ = −3x + y
ẏ = x − 3y

with initial condition x0 = 4 and y0 = 5 has solution equations

x(t) = 9e2t − 1

2e4t
and y(t) = 1 + 9e2t

2e4t

which gives rise to a trajectory which approaches the fixed point (x∗, y∗) = (0, 0),
as shown in figure 4.8. The path of x(t) and y(t), represented by the phase line, as
t increases is shown by the direction of the arrows.

Figure 4.7.
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Figure 4.8.

No matter what the initial point, it will be found that each trajectory approaches
the fixed point (x∗, y∗) = (0, 0). In other words, the fixed point (the equilibrium
point) is globally stable. Considering the vector of forces for this system captures
this feature.

The equilibrium solution lines are

y = 3x for ẋ = 0

y = x

3
for ẏ = 0

with a fixed point at the origin. To the right of the x-line we have

y < 3x or −3x + y < 0 implying ẋ < 0 so x is falling

While to the left of the x-line we have

y > 3x or −3x + y > 0 implying ẋ > 0 so x is rising

Similarly, to the right of the y-line we have

y <
x

3
or 0 < −3y + x implying ẏ > 0 so y is rising

While to the left of the y-line we have

y >
x

3
or 0 > −3y + x implying ẏ < 0 so y is falling

All this information, including the vectors of force implied by the above results,
is illustrated in figure 4.9. It is clear that no matter in which of the four quadrants
the system begins, all the forces push the system towards the fixed point. This
means that even if the trajectory crosses from one quadrant into another, it is still
being directed towards the fixed point. The fixed point must be globally stable.
If the initial point is (x0, y0) = (4, 5), then the trajectory remains in quadrant I
and tends to the fixed point (x∗, y∗) = (0, 0) over time. However, figure 4.9 reveals
much more. If the system should pass from one quadrant into an adjacent quadrant,
then the trajectory is still being directed towards the fixed point, but the movement
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Figure 4.9.

Figure 4.10.

of the system is clockwise.3 This clockwise motion is shown most explicitly by
including the direction field on the equilibrium lines, as shown in figure 4.10.

Example 4.6

The two examples discussed so far both have fixed points at the origin. How-
ever, this need not always be the case. Consider the following system of linear

3 The nature of the trajectory can be established by noting that

x2 + y2 = (9e2t − 1)2

4e8t
+ (1 + 9e2t)2

4e8t

= 81e4t + 1

2e8t

i.e. x2 + y2 = φ(t)

This is a circle at any moment in time whose radius is governed by φ(t). But over time the limit of
φ(t) is zero. Consequently, as time passes the radius must diminish. This means that the trajectory
conforms to a spiralling path of ever-decreasing radius. Furthermore, the vector forces indicate that
the spiral moves in a clockwise direction regardless of the initial value.
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Figure 4.11.

Figure 4.12.

nonhomogeneous autonomous differential equations

ẋ = −2x − y + 9
ẏ = −y + x + 3

The equilibrium lines in the phase plane can readily be found by setting ẋ = 0 and
ẏ = 0. Thus

ẋ = 0 implying y = −2x + 9
ẏ = 0 implying y = x + 3

which can be solved to give a fixed point, an equilibrium point, namely (x∗, y∗) =
(2, 5). The solution equations for this system for initial condition, x0 = 2 and
y0 = 2 are

x(t) = 2 + 2
√

3 sin(
√

3t/2)e−(3t/2)

y(t) = 5 − (3 cos(
√

3t/2)) − √
3 sin(

√
3t/2)e−(3t/2)

The equilibrium lines along with the trajectory are illustrated in figure 4.11.
The analysis of this example is the same as for examples 4.4 and 4.5. In this

case the fixed point is at (x∗, y∗) = (2, 5). The vectors of force are illustrated in
figure 4.12 by the arrows. What is apparent from this figure is that the system is
globally stable, and the dynamic forces are sending the system towards the fixed
point in a counter-clockwise motion. As we illustrated in figure 4.11, if the initial
point is (x0, y0) = (2, 2), then the system begins in quadrant III and tends to the
fixed point over time in a counter-clockwise direction, passing first into quadrant



156 Economic Dynamics

Figure 4.13.

II and then into I as it moves towards the fixed point. A similar behaviour occurs
if the initial point is (x0, y0) = (3, 1) beginning in quadrant III (see exercise 4).

Once again the vector forces can be seen in terms of the direction field, which
we show in figure 4.13, along with the equilibrium lines.

4.4 Matrix specification of autonomous systems

The examples so far discussed illustrate that even with simple linear autonomous
systems, the type of dynamic behaviour is quite varied. In order to pursue the sta-
bility/instability aspects of systems of autonomous equations it is more convenient
to specify the models in terms of matrices and vectors.

Example 4.4 can be written[
ẋ

ẏ

]
=
[

1 −3
−2 1

] [
x

y

]
(4.9)

example 4.5 as[
ẋ

ẏ

]
=
[−3 1

1 −3

] [
x

y

]
(4.10)

while example 4.6 can be written[
ẋ

ẏ

]
=
[−2 −1

1 −1

] [
x

y

]
+
[

9

3

]
(4.11)

In fact, we can readily generalise such linear autonomous systems with constant
coefficients. Although we shall talk here of only two variables, it can readily be
generalised to n.

Define the following vectors and matrices

ẋ =
[
ẋ1

ẋ2

]
, A =

[
a11 a12

a21 a22

]
, x =

[
x1

x2

]
, b =

[
b1

b2

]
(4.12)
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Then systems 4.4 and 4.5 are simply specific examples of the homogeneous linear
system

ẋ = Ax (4.13)

while system 4.6 is a specific example of the nonhomogeneous linear system

ẋ = Ax + b (4.14)

For linear homogeneous systems, if the determinant of A is not zero, then the
only solution, the only fixed point, is x∗ = 0, i.e., (x∗

1 = 0 and x∗
2 = 0). On the

other hand, for nonhomogeneous linear systems, the equilibrium can be found, so
long as A is nonsingular, from

0 = Ax∗ + b
x∗ = −A−1b

(4.15)

When considering the issue of stability/instability it is useful to note that linear
nonhomogeneous systems can always be reduced to linear homogeneous systems
in terms of deviations from equilibrium if an equilibrium exists. For

ẋ = Ax + b
0 = Ax∗ + b

subtracting we immediately have in deviation form

ẋ = A(x − x∗) (4.16)

which is homogeneous in terms of deviations from the fixed point x∗ = (x∗
1, x

∗
2).

There will be no loss of generality, therefore, if we concentrate on linear homoge-
neous systems.

The matrix A is of particular importance in dealing with stability and instability.
Two important properties of such a square matrix are its trace, denoted tr(A), and
its determinant, denoted det(A), where4

tr(A) = a11 + a22

det(A) =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

(4.17)

It should be noted that both the trace and the determinant are scalars. The matrix
A is nonsingular if det(A) 
= 0.

There is another property of the matrix A that arises for special linear systems.
Consider the following general linear system

y = Ax

This can be viewed as a transformation of the vector x into the vector y. But
suppose that x is transformed into a multiple of itself, i.e., y = λx, where λ is a
scalar of proportionality. Then

Ax = λx

or

(A − λI)x = 0 (4.18)

4 See Chiang (1984) or any book on linear algebra.
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But equation (4.18) will have a nonzero solution if and only if λ is chosen such
that

φ(λ) = det(A − λI) = 0(4.19)

The values of λ which satisfy equation (4.19) are called the eigenvalues of the
matrix A, and the solution to the system that are obtained using these values
are called the eigenvectors corresponding to that eigenvalue. Let us clarify these
concepts with a simple example.

Example 4.7

Let

A =
[

1 1
−2 4

]

then

det(A − λI) =
∣∣∣∣1 − λ 1

−2 4 − λ

∣∣∣∣ = λ2 − 5λ + 6 = 0

Let the two roots, the two eigenvalues, of this quadratic be denoted r and s, re-
spectively. Then r = 3 and s = 2. In this example we have two distinct real roots.

To determine the eigenvectors, we must substitute for a particular value of λ in
the equation

(A − λiI)vi = 0 (i = r, s)

With λ = r = 3 then

A − 3I =
[

1 1
−2 4

]
−
[
3 0
0 3

]
=
[−2 1
−2 1

]

whose determinant value is zero as required. Hence[−2 1
−2 1

] [
vr1
vr2

]
=
[
0
0

]

which has the single condition −2vr1 + vr2 = 0, and vr2 is determined in terms of
vr1. Thus, if vr1 = c, then vr2 = 2c. Accordingly, the eigenvector, denoted vr is

vr = c

[
1
2

]

Since c is an arbitrary constant this is usually normalised to unity, and so the
eigenvector is simply denoted

vr =
[
1
2

]

Of course, this eigenvector was derived from the root r = 3, which is why we
have labelled it vr. We also have a second eigenvector associated with the root
λ = s = 2. Following through exactly the same procedure we find that
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Figure 4.14.

−vs1 + vs2 = 0 and hence

vs =
[
1
1

]

Figure 4.14 illustrates the two eigenvectors associated with the two eigenvalues.
Although this illustration had two distinct roots, it is quite clear that for any

system of two dimensions, there will be two roots that correspond to one of the
following possibilities:

(1) real and distinct
(2) real and equal
(3) complex conjugate.

It is possible to relate these three possibilities to conditions imposed on the trace
and determinant of the matrix A. To see this let

A =
[
a b
c d

]

Then

det(A − λI) =
∣∣∣∣a − λ b

c d − λ

∣∣∣∣ = λ2 − (a + d)λ + (ad − bc) = 0

But a + d = tr(A) and ad − bc = det(A). Hence the characteristic equation can
be expressed

λ2 − tr(A)λ + det(A) = 0 (4.20)

with solutions

r = tr(A) +
√

tr(A)2 − 4det(A)

2

s = tr(A) −
√

tr(A)2 − 4det(A)

2
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It follows immediately that the roots are:

(1) real and distinct if tr(A)2 > 4det(A)
(2) real and equal if tr(A)2 = 4det(A)
(3) complex conjugate if tr(A)2 < 4det(A).

4.5 Solutions to the homogeneous differential equation
system: real distinct roots

Suppose we have an n-dimensional dynamic system

ẋ = Ax(4.21)

where

ẋ =



ẋ1

ẋ2
...
ẋn


, A =



a11 a12 · · · a1n
...

...
...

...
an1 an2 · · · ann


, x =



x1

x2
...
xn




and suppose u1, u2, . . . , un are n linearly independent solutions, then a linear
combination of these solutions is also a solution. We can therefore express the
general solution as the linear combination

x = c1u1 + c2u2 + . . . + cnun

where c1, c2, . . . , cn are arbitrary constants. In the case of just two variables, we
are after the general solution

x = c1u1 + c2u2

In chapter 2, where we considered a single variable, we had a solution

x = cert

This would suggest that we try the solution5

x = eλtv

where λ is an unknown constant and v is an unknown vector of constants. If we
do this and substitute into the differential equation system we have

λeλtv = Aeλtv

eliminating the term eλt we have

λv = Av
i.e. (A − λI)v = 0

For a nontrivial solution we require that

det(A − λI) = 0

5 Here u = ertv.
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We investigated this problem in the last section. What we wish to find is the
eigenvalues of A and the associated eigenvectors. Return to the situation with only
two variables, and let the two roots (the two eigenvalues) be real and distinct,
which we shall again label as r and s. Let vr be the eigenvector associated with the
root r and vs be the eigenvector associated with the root s. Then so long as r 
= s

u1 = ertvr and u2 = estvs

are independent solutions, while

x = c1e
rtvr + c2e

stvs (4.22)

is a general solution.

Example 4.8

Find the general solution to the dynamic system

ẋ = x + y
ẏ = −2x + 4y

We can write this in matrix form[
ẋ
ẏ

]
=
[

1 1
−2 4

] [
x
y

]

The matrix A of this system has already been investigated in terms of example 4.7.
Note, however, that det(A) > 0. In example 4.7 we found that the two eigenvalues
were r = 3 and s = 2 and the associated eigenvectors were

vr =
[
1
2

]
, vs =

[
1
1

]

Then the general solution is

x = c1e
3t

[
1
2

]
+ c2e

2t

[
1
1

]

or, in terms of x and y

x(t) = c1e3t + c2e2t

y(t) = 2c1e3t + c2e2t

Given an initial condition, it is possible to solve for c1 and c2. For example, if
x(0) = 1 and y(0) = 3, then

1 = c1 + c2

3 = 2c1 + c2

which gives c1 = 2 and c2 = −1. Leading to our final result

x(t) = 2e3t − e2t

y(t) = 4e3t − e2t
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4.6 Solutions with repeating roots

In chapter 2 we used

ceλt and cteλt

for a repeated root. If λ = r which is a repeated root, then either there are two
independent eigenvectors v1 and v2 which will lead to the general solution

x = c1e
rtv1 + c2e

rtv2

or else there is only one associated eigenvector, say v. In this latter case we use
the result

x = c1e
rtv1 + c2(erttv + ertv2)(4.23)

In this latter case the second solution satisfies erttv + ertv2 and is combined with
the solution ertv1 to obtain the general solution (see Boyce and DiPrima 1997,
pp. 390–6). We shall consider two examples, the first with a repeating root, but
with two linearly independent eigenvectors, and a second with a repeating root but
only one associated eigenvector.

Example 4.9

Consider

ẋ = x
ẏ = y

Then [
ẋ
ẏ

]
=
[
1 0
0 1

] [
x
y

]

where

A =
[
1 0
0 1

]
, det(A) = 1, A − λI =

[
1 − λ 0

0 1 − λ

]

Hence, det(A − λI) = (1 − λ)2 = 0, with root λ = r = 1 (twice).
Using this value of λ then

(A − I) =
[
0 0
0 0

]

Since (A − rI)v = 0 (r = 1) is satisfied for any vector v, then we can choose any
arbitrary set of linearly independent vectors for eigenvectors. Let these be

v1 =
[
1
0

]
and v2 =

[
0
1

]

then the general solution is

x = c1e
rt

[
1
0

]
+ c2e

rt

[
0
1

]
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or

x(t) = c1ert

y(t) = c2ert

Example 4.10

Let

ẋ = x − y
ẏ = x + 3y

Then [
ẋ
ẏ

]
=
[
1 −1
1 3

] [
x
y

]

with

A =
[
1 −1
1 3

]
, det(A) = 4, A − λI =

[
1 − λ −1

1 3 − λ

]

Hence, det(A − λI) = λ2 − 4λ + 4 = (λ − 2)2, with root λ = r = 2 (twice).
Using λ = r = 2

A − rI =
[−1 −1

1 1

]

and

(A − rI)
[
x
y

]
=
[−1 −1

1 1

] [
x
y

]

which implies −x − y = 0. Given we normalise x to x = 1, then y = −1. The first
solution is then

e2t

[
1

−1

]

To obtain the second solution we might think of proceeding as in the single
variable case, but this is not valid (see Boyce and DiPrima 1997, pp. 390–6). What
we need to use is

e2ttv + e2tv2

where we need to find the elements of v2.
Since we know v, then the second solution u2 = (x2, y2) is[

x2

y2

]
= e2tt

[
1

−1

]
+ e2t

[
v1

v2

]

i.e.

x2 = e2t(t + v1)

y2 = e2t(−t + v2)

Hence

ẋ = 2e2t(t + v1) + e2t = e2t(2t + 2v1 + 1)

ẏ = 2e2t(−t + v2) + e2t = e2t(−2t + 2v2 + 1)
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Substituting all these results into the differential equation system we have

e2t(2t + 2v1 + 1) = e2t(t + v1) − e2t(−t + v2)

e2t(−2t + 2v2 − 1) = e2t(t + v1) + 3e2t(−t + v2)

Eliminating e2t and simplifying, we obtain

v1 + v2 = −1
v1 + v2 = −1

which is a dependent system. Since we require only one solution, set v2 = 0, giving
v1 = −1. This means solution x2 is

x2 = e2tt

[
1

−1

]
+ e2t

[−1
0

]

Hence, the general solution is

x = c1e
2t

[
1

−1

]
+ c2

(
e2tt

[
1

−1

]
+ e2t

[−1
0

])
or

x = c1e2t + c2(t − 1)e2t

y = −c1e2t − c2te2t

4.7 Solutions with complex roots

For the system

ẋ = Ax

with characteristic equation det(A−λI) = 0, if tr(A)2 < 4det(A), then we have
complex conjugate roots.

Return to our situation of just two roots, λ = r and λ = s. Then

r = α + βi
s = α − βi

(4.24)

But this implies that the eigenvectors vr and vs associated with r and s, respectively,
are also complex conjugate.

Example 4.11

Consider

ẋ = −3x + 4y
ẏ = −2x + y

Then [
ẋ
ẏ

]
=
[−3 4
−2 1

] [
x
y

]
with

A =
[−3 4
−2 1

]
, det(A) = 5, A − λI =

[−3 − λ 4
−2 1 − λ

]
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and det(A − λI) = λ2 + 2λ + 5, which leads to the roots

r = −2 + √
4 − 20

2
= −1 + 2i and s = −2 − √

4 − 20

2
= −1 − 2i

The associated eigenvectors are

(A − λI)vr =
[−2 − 2i 4

−2 2 − 2i

]
vr =

[
0
0

]
i.e.

−(2 + 2i)v1
r + 4vr2 = 0

−2vr1 + (2 − 2i)vr2 = 0

Let vr1 = 2, then vr2 = 2(2 + 2i)/4 = 1 + i. Thus

u1 = e(−1+2i)t

[
2

1 + i

]
Turning to the second root. With λ = s = −1 − 2i then

(A − λI)vs =
[−2 + 2i 4

−2 2 + 2i

] [
vs1
vs2

]
i.e.

(−2 + 2i)vs1 + 4vs2 = 0

−2vs1 + (2 + 2i)vs2 = 0

Choose vs1 = 2, then vs2 = −(−2 + 2i)(2)/4 = 1 − i. Hence the second solution is

u2 = e−(1+2i)t

[
2

1 − i

]
i.e. vs is the complex conjugate of vr. Hence the general solution is

x = c1e
(−1+2i)t

[
2

1 + i

]
+ c2e

−(1+2i)t

[
2

1 − i

]
These are, however, imaginary solutions. To convert them to real solutions we
employ two results. One is Euler’s identity (see exercise 10 of chapter 2), i.e.

eiθ = cos θ + i sin θ

The other employs the real elements of vr (or vs). Let vr generally be written

vr =
[
u1 + w1i
u2 + w2i

]
and define

b1 =
[
u1

u2

]
and b2 = −

[
w1

w2

]

then the two solutions can be written in the form6

u1 = eαt(b1 cos βt + b2 sin βt)

u2 = eαt(b2 cos βt − b1 sin βt)

6 See Giordano and Weir (1991, pp. 180–1).
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with the general solution

x = c1u1 + c2u2(4.25)

Continuing our example, where λ = −1 + 2i, i.e., α = −1 and β = 2, then

vr =
[

2
1 + i

]
, i.e. b1 =

[
2
1

]
and b2 =

[
0

−1

]

Hence

u1 = e−t

([
2
1

]
cos 2t +

[
0

−1

]
sin 2t

)

u2 = e−t

([
0

−1

]
cos 2t −

[
2
1

]
sin 2t

)

and

x = c1u1 + c2u2

or

x(t) = c1e−t 2 cos 2t − 2c2e−t sin 2t
= 2e−t(c1 cos 2t − c2 sin 2t)

y(t) = c1e−t cos 2t − c1e−t sin 2t − c2e−t cos 2t − c2e−t sin 2t
= e−t[(c1 − c2) cos 2t − (c1 + c2) sin 2t)]

4.8 Nodes, spirals and saddles

Here we shall consider only a two-variable system of the general form

ẋ = Ax

which to have solutions of the form x = eλtv must satisfy

(A − λI)v = 0

and λ must be the eigenvalue and v the eigenvector associated with the matrix A.
We shall denote the two eigenvalues as λ = r and λ = s and the two associated
eigenvectors vr and vs, respectively. We have already discussed the general solution
of the form

x = c1e
rtvr + c2e

stvs

In this section we shall extract some geometric properties from the various
possible solutions. First such a system will have a critical point, denoted x∗, if
Ax = 0. If A is nonsingular, or det(A) 
= 0, then the only solution is x∗= 0. The only
critical point is at the origin. The solution function x = φ(t) satisfies the differential
equations, and this shows the solution path in the phase plane. In terms of vectors,
the situation is illustrated in figure 4.15. The (x,y)-plane denotes the phase plane
and the origin is a critical point, fixed point or equilibrium point. At time t = 0 we
have x(0) = x0 and y(0) = y0. At time t there is a vector with coordinates (x(t), y(t))
and the movement of the system as time increases is indicated by the arrows along
the solution path.
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Figure 4.15.

Case 1 (Real distinct roots of the same sign)

Here we are considering the general solution

x = c1e
rtvr + c2e

stvs

where r and s are real and distinct and are either both positive or both negative.
We shall assume that r is the larger root in absolute value |r| > |s|. Suppose both
roots are negative, then r < s < 0. Further, suppose the associated eigenvectors vr

and vs are as shown in figure 4.16 by the heavy arrows. Thus it is quite clear that
as t → ∞, ert → 0 and est → 0, and so x → 0 regardless of the value of c1 and
c2. Of particular significance is that if the initial point lies on vr, then c2 = 0 and
the system moves down the line through vr and approaches the origin over time.
Similarly, if the initial point lies on vs, then c1 = 0 and the system moves down
the line vs, approaching the origin in the limit. The critical point is called a node.7

In the present case we have a stable node.
If r and s are both positive, then the system will move away from the fixed point

over time. This is because both x and y grow exponentially. In this case we have
an unstable node.

Example 4.12

Let

ẋ = −2x + y
ẏ = x − 2y

with

A =
[−2 1

1 −2

]
, det(A) = 3, A − λI =

[−2 − λ 1
1 −2 − λ

]

7 Sometimes called an improper node.
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Figure 4.16.

Hence det(A − λI) = λ2 + 4λ + 3 = (λ + 3)(λ + 1) = 0, which leads to roots
λ = r = −3 and λ = s = −1. Using these values for the eigenvalues, the eigen-
vectors are

vr =
[

1
−1

]
and vs =

[
1
1

]

which gives the general solution

x = c1e
−3t

[
1

−1

]
+ c2e

−t

[
1
1

]
or

x(t) = c1e−3t + c2e−t

y(t) = −c1e−3t + c2e−t

The solution is illustrated in figure 4.17,8 where the solution paths are revealed by
the direction field, indicating quite clearly that the origin is a stable node.

Case 2 (Real distinct roots of opposite sign)

Consider again

x = c1e
rtvr + c2e

stvs

where r and s are both real but of opposite sign. Let r > 0 and s < 0. Suppose
the eigenvectors are those as shown in figure 4.18. If a solution starts on the line

8 Notice that the solution paths tend towards the eigenvector vs.
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Figure 4.17.

Figure 4.18.

through vr then c2 = 0. The solution will therefore remain on vr. Since r is positive,
then over time the solution moves away from the origin, away from the fixed point.
On the other hand, if the system starts on the line through vs, then c1 = 0, and
since s < 0, then as t → ∞ the system tends towards the fixed point.

For initial points off the lines through the eigenvectors, then the positive root
will dominate the system. Hence for points above vr and vs, the solution path will
veer towards the line through vr. The same is true for any initial point below vr

and above vs. On the other hand, an initial point below the line through vs will
be dominated by the larger root and the system will veer towards minus infinity.
In this case the node is called a saddle point. The line through vr is called the
unstable arm, while the line through vs is called the stable arm.

Saddle path equilibria are common in economics and one should look out for
them in terms of real distinct roots of opposite sign and the fact that det(A) is
negative. It will also be important to establish the stable and unstable arms of
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the saddle point, which are derived from the eigenvectors associated with the
characteristic roots.

Because of the importance of saddle points in economics, we shall consider two
examples here.

Example 4.13

Let

ẋ = x + y
ẏ = 4x + y

then [
ẋ
ẏ

]
=
[
1 1
4 1

] [
x
y

]

with

A =
[
1 1
4 1

]
, det(A) = −3, A − λI =

[
1 − λ 1

4 1 − λ

]

giving det(A − λI) = λ2 − 2λ − 3 = (λ − 3)(λ + 1) = 0. Hence, λ = r = 3 and
λ = s = −1. For λ = r = 3 then

(A − λI)vr =
[−2 1

4 −2

]
vr = 0

i.e.

−2vr1 + vr2 = 0

4vr1 − 2vr2 = 0

Let vr1 = 1, then vr2 = 2. Hence, one solution is

u1 = ert
[
1
2

]
and vr =

[
1
2

]

For λ = s = −1, then

(A − λI)vs =
[
2 1
4 2

]
vs = 0

i.e.

2vs1 + vs2 = 0

4vs1 + 2vs2 = 0

Let vs1 = 1, then vs2 = −2. Hence, a second solution is

u2 = est
[

1
−2

]
and vs =

[
1

−2

]

The situation is illustrated in figure 4.19. The solution paths are revealed by the
direction field. The figure quite clearly shows that the unstable arm of the saddle
is the line through the eigenvector vr, while the stable arm of the saddle is the line
through the eigenvector vs.
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Figure 4.19.

Example 4.14

Let

ẋ = 3x − 2y
ẏ = 2x − 2y

then [
ẋ
ẏ

]
=
[
3 −2
2 −2

] [
x
y

]

with

A =
[
3 −2
2 −2

]
, det(A) = −2, A − λI =

[
3 − λ −2

2 −2 − λ

]

giving det(A − λI) = λ2 − λ − 2 = (λ − 2)(λ + 1) = 0. Hence, λ = r = 2 and
λ = s = −1. For λ = r = 2 then

(A − λI)vr =
[
1 −2
2 −4

]
vr = 0

i.e.

vr1 − 2vr2 = 0

2vr1 − 4vr2 = 0

Let vr1 = 2, then vr2 = 1. Hence, one solution is

u1 = ert
[
2
1

]
and vr =

[
2
1

]

For λ = s = −1, then

(A − λI)vs =
[
4 −2
2 −1

]
vs = 0
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Figure 4.20.

i.e.

4vs1 − 2vs2 = 0

2vs1 − vs2 = 0

Let vs1 = 1, then vs2 = 2. Hence, a second solution is

u2 = est
[
1
2

]
and vs =

[
1
2

]

The situation is illustrated in figure 4.20. The solution paths are revealed by the
direction field. The unstable arm of the saddle is the line through the eigenvector
vr, while the stable arm of the saddle is the line through the eigenvector vs.

Case 3 (Real equal roots)

In this case λ = r = s. Throughout assume the repeated root is negative. (If it is
positive then the argument is identical but the movement of the system is reversed.)
There are two sub-cases to consider in line with our earlier analysis: (a) independent
eigenvectors, and (b) one independent eigenvector. The two situations were found
to be:

(a) x = c1ertv1 + c2ertv2

(b) x = c1ertv + c2[erttv + ertv2]

Consider each case in turn. In example 4.9 we found for two independent eigen-
vectors

x(t) = c1ert

y(t) = c2ert

Hence, x/y = c1/c2 is independent of t and depends only on the components of
vr and vs and the arbitrary constants c1 and c2. This is a general result and so all
solutions lie on straight lines through the origin, as shown in figure 4.21. In this
case the origin is a proper node that is stable. Had the repeated root been positive,
then we would have an unstable proper node. It is this situation we gave an example
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Figure 4.21.

Figure 4.22.

of at the beginning of section 4.6. The direction field, along with the independent
vectors is shown in figure 4.22 for this example.

For the second sub-case, where again r < 0, for large t the dominant term must
be c2erttv, and hence as t → ∞ every trajectory must approach the origin and in
such a manner that it is tangent to the line through the eigenvector v. Certainly,
if c2 = 0 then the solution must lie on the line through the eigenvector v, and
approaches the origin along this line, as shown in figure 4.23. (Had r > 0, then
every trajectory would have moved away from the origin.)

The approach of the trajectories to the origin depends on the eigenvectors v and
v2. One possibility is illustrated in figure 4.23. To see what is happening, express
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Figure 4.23.

the general solution as

x = [c1e
rtv + c2e

rtv2 + c2e
rttv] = [(c1v + c2v2) + c2tv]ert = uert

Then

u = (c1v + c2v2) + c2tv

which is a vector equation of a straight line which passes through the point c1v +
c2v2 and is parallel to v. Two such points are illustrated in figure 4.23, one at point
a (c2 > 0) and one at point b (c2 < 0).

We shall not go further into the mathematics of such a node here. What we can
do, however, is highlight the variety of solution paths by means of two numerical
examples. The first, in figure 4.24, has the orientation of the trajectories as illus-
trated in figure 4.23, while figure 4.25 has the reverse orientation. Whatever the
orientation, the critical point is again an improper node that is stable. Had r > 0,

then the critical point would be an improper node that is unstable.

Case 4 (Complex roots, α 
= 0 and β > 0)

In this case we assume the roots λ = r and λ = s are complex conjugate and with
r = α + βi and s = α − βi, and α 
= 0 and β > 0. Systems having such complex
roots can be expressed

ẋ = αx + βy
ẏ = −βx + αy
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Figure 4.24.

Figure 4.25.

or [
ẋ
ẏ

]
=
[

α β

−β α

] [
x
y

]

Now express the system in terms of polar coordinates with R and θ , where

R2 = x2 + y2 and tan θ = y

x

and Ṙ = αR which results in

R = ceαt where c is a constant

Similarly

θ̇ = −β

giving

θ = −βt + θ0 where θ (0) = θ0

What we have here are parametric equations

R = ceαt

θ = −βt + θ0
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Figure 4.26.

in polar coordinates of the original system. Since β > 0 then θ decreases over
time, and so the motion is clockwise. Furthermore, as t → ∞ then either R → 0 if
α < 0 or R → ∞ if α > 0. Consequently, the trajectories spiral either towards the
origin or away from the origin depending on the value of α. The two possibilities
are illustrated in figure 4.26. The critical point in such situations is called a spiral
point.

Case 5 (Complex roots, α = 0 and β > 0)

In this case we assume the roots λ = r and λ = s are complex conjugate with
r = βi and s = −βi (i.e. α = 0). In line with the analysis in case 4, this means[

ẋ
ẏ

]
=
[

0 β

−β 0

] [
x
y

]

resulting in Ṙ = 0 and θ̇ = −β, giving R = c and θ = −βt + θ0, where c and θ0

are constants. This means that the trajectories are closed curves (circles or ellipses)
with centre at the origin. If β > 0 the movement is clockwise while if β < 0 the
movement is anticlockwise. A complete circuit around the origin denotes the phase
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Figure 4.27.

of the cycle, which is 2π/β. The critical point is called the centre. These situations
are illustrated in figure 4.27.

Summary

From the five cases discussed we arrive at a number of observations.

1. After a sufficient time interval, the trajectory of the system tends towards
three types of behaviour:

(i) the trajectory approaches infinity
(ii) the trajectory approaches the critical point

(iii) the trajectory traverses a closed curve surrounding the critical point.
2. Through each point (x0, y0) in the phase plane there is only one trajectory.
3. Considering the set of all trajectories, then three possibilities arise:

(i) All trajectories approach the critical point. This occurs when
(a) tr(A)2 > 4det(A), r < s < 0
(b) tr(A)2 < 4det(A), r = α + βi, s = α − βi and α < 0.
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(ii) All trajectories remain bounded but do not approach the critical
point as t → ∞. This occurs when tr(A)2 < 4det(A) and r = βi and
s = −βi(α = 0).

(iii) At least one of the trajectories tends to infinity as t → ∞. This occurs
when
(a) tr(A)2 > 4det(A), r > 0 and s > 0 or r < 0 and s > 0
(b) tr(A)2 < 4det(A), r = α + βi, s = α − βi and α > 0.

4.9 Stability/instability and its matrix specification

Having outlined the methods of solution for linear systems of homogeneous au-
tonomous equations, it is quite clear that the characteristic roots play an important
part in these. Here we shall continue to pursue just the two-variable cases.

For the system

ẋ = ax + by
ẏ = cx + dy

where

A =
[
a b
c d

]
and A − λI =

[
a − λ b
c d − λ

]

we have already shown that a unique critical point exists if A is nonsingular, i.e.,
det(A) 
= 0 and that

r, s = tr(A) ±
√

tr(A)2 − 4det(A)

2
(4.26)

Furthermore, if:

(i) tr(A)2 > 4det(A) the roots are real and distinct
(ii) tr(A)2 = 4det(A) the roots are real and equal
(iii) tr(A)2 < 4det(A) the roots are complex conjugate.

This leads to our first distinction.
To illustrate the variety of solutions we plot the tr(A) on the horizontal axis

and the det(A) on the vertical, which is valid because these are scalars. The plane
is then divided by plotting the curve tr(A)2 = 4det(A) (i.e. x2 = 4y), which is a
parabola with minimum at the origin, as shown in figure 4.28.

Below the curve tr(A)2 > 4det(A) and so the roots are real and distinct; above
the curve the roots are complex conjugate; while along the curve the roots are real
and equal.

We can further sub-divide the situations according to the sign/value of the two
roots. Take first real distinct roots that lie strictly below the curve. If both roots are
negative then the tr(A) must be negative, and since det(A) is positive, then we are
in the region below the curve and above the x-axis, labelled region I in figure 4.28.
In this region the critical point is asymptotically stable.

In region II, which is also below the curve and above the x-axis, both roots are
positive and the system is unstable.
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Figure 4.28.

If both roots are opposite in sign, we have found that the det(A) is negative
and the critical point is a saddle. Hence, below the x-axis, marked region III, the
critical point is an unstable saddle point. Notice that this applies whether the trace
is positive or negative.

The complex region is sub-divided into three categories. In region IV the sign of
α in the complex conjugate roots α ± βi is strictly negative and the spiral trajectory
tends towards the critical point in the limit. In region V α is strictly positive and
the critical point is an unstable one with the trajectory spiralling away from it.
Finally in region VI, which is the y-axis above zero, α = 0 and the critical point
has a centre with a closed curve as a trajectory.

It is apparent that the variety of possibilities can be described according to the
tr(A) and det(A) along with the characteristic roots of A. The list with various
nomenclature is given in table 4.1.

4.10 Limit cycles9

A limit cycle is an isolated closed integral curve, which is also called an orbit.
A limit cycle is asymptotically stable if all the nearby cycles tend to the closed
orbit from both sides. It is unstable if the nearby cycles move away from the
closed orbit on either side. It is semi-stable if the nearby cycles move towards
the closed orbit on one side and away from it on the other. Since the limiting
trajectory is a periodic orbit rather than a fixed point, then the stability or instability
is called an orbital stability or instability. There is yet another case, common

9 This section utilises the VisualDSolve package provided by Schwalbe and Wagon (1996). It can
be loaded into Mathematica with the Needs command. This package provides considerable visual
control over the display of phase portraits.
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Table 4.1 Stability properties of linear systems

Matrix and eigenvalues Type of point Type of stability

tr(A) < 0, det(A) > 0, tr(A)2 > 4det(A) Improper node Asymptotically stable
r < s < 0
tr(A) > 0, det(A) > 0, tr(A)2 > 4det(A) Improper node Unstable
r > s > 0
det(A) < 0 Saddle point Unstable saddle
r > 0, s < 0 or r < 0, s > 0
tr(A) < 0, det(A) > 0, tr(A)2 = 4det(A) Star node or proper node Stable
r = s < 0
tr(A) > 0, det(A) > 0, tr(A)2 = 4det(A) Star node or proper node Unstable
r = s > 0
tr(A) < 0, det(A) > 0, tr(A)2 < 4det(A) Spiral node Asymptotically stable
r = α + βi, s = α − βi, α < 0
tr(A) > 0, det(A) > 0, tr(A)2 < 4det(A) Spiral node Unstable
r = α + βi, s = α − βi, α > 0
tr(A) = 0, det(A) > 0 Centre Stable
r = βi, s = −βi

in predatory–prey population models. If a system has closed orbits that other
trajectories neither approach nor diverge from, then the closed orbits are said to
be stable. Geometrically, we have a series of concentric orbits, each one denoting
a closed trajectory.

In answering the question: ‘When do limit cycles occur?’ we draw on the
Poincaré–Bendixson theorem. This theorem is concerned with a bounded re-
gion, which we shall call R, in which the long-term motion of a two-dimensional
system is limited to it. If for region R, any trajectory starting within R stays within
R for all time, then two possibilities arise:

(1) the trajectory approaches a fixed point of the system as t → ∞; or
(2) the trajectory approaches a limit cycle as t → ∞.

When trajectories that start in R remain in R for all time, then the region R is said
to be the invariant set for the system. Trajectories cannot escape such a set.

The following points about limit cycles are worth noting.

(1) Limit cycles are periodic motions and so the system must involve complex
roots.

(2) For a stable limit cycle, the interior nearby paths must diverge from the
singular point (the fixed point). This occurs if the trace of the Jacobian of
the system is positive.

(3) For a stable limit cycle, the outer nearby paths must converge on the
closed orbit, which requires a negative trace.

(4) Points (2) and (3) mean that for a stable limit cycle the trace must change
sign in the region where the limit cycle occurs.

(5) The Poincaré–Bendixson theorem holds only for two-dimensional spaces.
(6) If the Poincaré–Bendixson theorem is satisfied, then it can be shown that

if there is more than one limit cycle they alternate between being stable
and unstable. Furthermore, the outermost one and the innermost one must
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be stable. This means that if there is only one limit cycle satisfying the
theorem, it must be stable.

Example 4.15

The following well-known example has a limit cycle composed of the unit circle
(see Boyce and DiPrima 1997, pp. 523–7):

x′ = y + x − x(x2 + y2)
y′ = −x + y − y(x2 + y2)

Utilising the VisualDSolve package within Mathematica, we can show the limit
cycle and two trajectories: one starting at point (0.5,0.5) and the other at point
(1.5,1.5). The input instructions are:

In[2]:= PhasePlot [{x’[t] == y[t] + x[t] - x[t](x[t]ˆ2 + y[t]ˆ2),
y’ [t] == -x[t] + y[t] - y[t] (x[t]ˆ2 + y[t]ˆ2)},
{x[t], y[t]}, {t, 0, 10}, {x, -2, 2}, {y, -2, 2},
InitialValues ->
{{0.5, 0.5}, {1.5, 1.5}}, ShowInitialValues -> True,
FlowField -> False, FieldLength -> 1.5,
FieldMeshSize -> 25, WindowShade -> White,
FieldColor -> Black, Nullclines -> True,
PlotStyle -> AbsoluteThickness [1.2],
InitialPointStyle -> AbsolutePointSize [3],
ShowEquilibria -> True, DirectionArrow -> True,
AspectRatio -> 1, AxesLabel -> {x, y},
PlotLabel -> ‘‘Unit Limit Cycle”];

which produces figure 4.29 showing a unit limit cycle.

Example 4.16 (Van der Pol equation)

The Van der Pol equation is a good example illustrating an asymptotically stable
limit cycle. It also illustrates that a second-order differential equation can be re-
duced to a system of first-order differential equations that are more convenient for

Figure 4.29.
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Figure 4.30.

solving. The Van der Pol equation takes the form:

ẍ − µ(1 − x2)ẋ + x = 0(4.27)

Let y = ẋ, then ẏ = ẍ, so we have the two equations,

ẋ = y
ẏ = µ(1 − x2)y − x

(4.28)

To illustrate the limit cycle, let µ = 1. The phase portrait that results is shown in
figure 4.30. Here we take two initial points: (a) point (0.5,0.5), which starts inside
the limit cycle; and (b) point (1.5,4), which begins outside the limit cycle.

Example 4.17 Walrasian price and quantity adjustment and limit cycles

The presence of limit cycles is illustrated by a Walrasian model which includes both
price and quantity adjustments (see Flaschel et al. 1997 and Mas-Colell 1986). Let
Y denote output of a one good economy andL labour input.Y = f (L) is a production
function which is twice differentiable and invertible with L = f−1(Y) = φ(Y) and
φ′(Y) > 0. In equilibrium the price, p, is equal to marginal wage cost, where
marginal wage cost is also given by φ′(Y). Thus, p∗ = φ′(Y). For simplicity we
assume that the marginal wage cost is a linear function ofY , withφ′(Y) = c1 + c2Y .
Aggregate demand takes the form D(p, L) and in equilibrium is equal to supply,
i.e., D[p∗, φ(Y∗)] = Y∗. Finally, we have both a price and a quantity adjustment:

ṗ = α[D(p, φ(Y)) − Y] α > 0

Ẏ = β[p − φ′(Y)] β > 0
(4.29)

These establish two differential equations in p and Y .
Consider the following numerical example. Let

φ′(Y) = 0.87 + 0.5Y

D(p) = −0.02p3 + 0.8p2 − 9p + 50

then (p∗, Y∗) = (13, 24.26) with isoclines:

ṗ = 0 Y = −0.02p3 + 0.8p2 − 9p + 50

Ẏ = 0 p = 0.87 + 0.5Y or Y = 1.74 + 2p

Figure 4.31 reproduces the figures derived in Flaschel et al. 1997 using Mathe-
matica, for α = 1 and different values of the parameter β. Not only do the figures
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Figure 4.31.

illustrate a stable limit cycle, but they also illustrate that the limit cycle shrinks as
β increases.

4.11 Euler’s approximation and differential equations
on a spreadsheet10

Although differential equations are for continuous time, if our main interest is the
trajectory of a system over time, sometimes it is convenient to use a spreadsheet
to do this. To accomplish this task we employ Euler’s approximation. For a single
variable the situation is shown in figure 4.32. We have the differential equation

dx

dt
= f (x, t) x(t0) = x0 (4.30)

Let x = φ(t) denote the unknown solution curve. At time t0 we know x0 = φ(t0).
We also know dx/dt at t0, which is simply f (x0, t0). If we knew x = φ(t), then the
value at time t1 would be φ(t1). But if we do not have an explicit form for x = φ(t),
we can still plot φ(t) by noting that at time t0 the slope at point P is f (x0, t0), which
is given by the differential equation. The value of x1 at time t1 (point R) is given
by

x1 = x0 + f (x0, t0)�t �t = t1 − t0

This process can be repeated for as many steps as one wishes. If f is autonomous,
so dx/dt = f (x), then

xn = xn−1 + f (xn−1)�t (4.31)

It is clear from figure 4.32 that point R will deviate from its ‘true’ value at
point Q, the larger the step size, given by �t. If the step size is reduced, then the
approximation is better.

10 See Shone (2001) for a treatment of differential equations with spreadsheets.
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Figure 4.32.

The procedure generalises quite readily to systems of equations. Let

dx

dt
= f (x, y)

dy

dt
= g(x, y)

(4.32)

denote a system of autonomous differential equations and let the initial value of
the system be x(t0) = x0 and y(t0) = y0. Then

x1 = x0 + f (x0, y0)�t

y1 = y0 + g(x0, y0)�t
(4.33)

which can be repeated for further (approximate) values on the solution curve. For
an autonomous system in which y = φ(x), then such a procedure allows us to plot
the trajectory in the phase plane.

Example 4.18

Consider example 4.6 given by the differential equations:

dx

dt
= f (x, y) = −2x − y + 9

dy

dt
= g(x, y) = −y + x + 3

with x(t0) = 2 and y(t0) = 2. Given these values, and letting �t = 0.01, then

f (x0, y0) = −2(2) − 2 + 9 = 3

g(x0, y0) = −2 + 2 + 3 = 3
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Hence,

x1 = x0 + f (x0, y0)�t = 2 + 3(0.01) = 2.03

y1 = y0 + g(x0, y0)�t = 2 + 3(0.01) = 2.03

and

f (x1, y1) = −2(2.03) − 2.03 + 9 = 2.91

g(x1, y1) = −2.03 + 2.03 + 3 = 3

giving

x2 = x1 + f (x1, y1)�t = 2.03 + 2.91(0.01) = 2.0591

y2 = y1 + g(x1, y1)�t = 2.03 + 3(0.01) = 2.06

This process is repeated. But all this can readily be set out on a spreadsheet, as
shown in figure 4.33.

The first two columns are simply the differential equations. Columns (3) and
(4) employ the Euler approximation using relative addresses and the absolute
address for �t. The x-y plot gives the trajectory of the system in the phase
plane, with initial value (x0, y0) = (2, 2). As can be seen from the embedded
graph in the spreadsheet, this trajectory is the same as that shown in figure 4.11
(p. 155)

The advantage of using Euler’s approximation, along with a spreadsheet, is that
no explicit solution need be obtained – assuming that one exists. By reducing the
step size a smoother trajectory results. It is also easy to increase the number of
steps.

Figure 4.33.
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Figure 4.34.

Example 4.19 (The Lorenz curve)

The Lorenz equations are given by:

dx

dt
= σ (y − x)

dy

dt
= rx − y − xz

dz

dt
= xy − bz

(4.34)

with parameter values σ = 10, r = 28, b = 8/3 and we take a step size of �t =
0.01. In this example we take 2,000 steps, however figure 4.34 only shows the first
few steps.

In figure 4.35 we have three generated plots, (i) (x, y), (ii) (x, z) and (iii) (y, z).
These diagrams illustrate what is referred to as strange attractors, a topic we shall
return to when we discuss chaos theory.

4.12 Solving systems of differential equations with
Mathematica and Maple

Chapter 2 sections 2.11 and 2.12 outlined how to utilise Mathematica and Maple
to solve single differential equations. The method for solving systems of such
equations is fundamentally the same. Consider the system,

dx

dt
= f (x, y, t)

dy

dt
= g(x, y, t)

(4.35)
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Figure 4.35.

Then the solution method in each case is:

Mathematica
DSolve[{x’[t]==f[x[t],y[t],t],y’[t]==g[x[t],

y[t],t]}, {x[t],y[t]},t]

Maple
dsolve({diff(x(t),t)=f(x(t),y(t),t),diff(y(t),t)=g(x(t),

y(t),t)}, {x(t),y(t)});

If initial conditions x(0) = x0 and y(0) = y0 are provided, then the input instruc-
tions are:
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Mathematica

DSolve[{x’[t]==f[x[t],y[t],t],y’[t]==g[x[t],y[t],t],

x(0)==x0,y(0)==y0},{x[t],y[t]},t]

Maple

dsolve(({diff(x(t),t)=f(x(t),y(t),t),diff(y(t),t)

=g(x(t),y(t),t), x(0)=x0,y(0)=y0},{x(t),y(t)});

It is often easier to define the equations, variables and initial conditions first.
Not only is it easier to see, but much easier in correcting any mistakes. For instance
in Mathematica define

eq:={x’[t]==f[x[t],y[t],t],y’[t]==g[x[t],y[t],t],

x[0]==x0,y[0]==y0}

var:={x[t],y[t]}

and then solve using

DSolve[eq,var,t]

In Maple define:

eq:=diff(x(t),t)=f(x(t),y(t),t),diff(y(t),t)=

g(x(t),y(t),t);

init:=x(0)=x0,y(0)=y0;

var:={x(t),y(t)};

and then solve using

dsolve({eq,init},var);

Example 4.4 in the text can then be solved in each package as follows

Mathematica

eq:={x’[t]==x[t]-3y[t], y’[t]==-2x[t]+y[t],

x[0]==4,y[0]==5}

var:={x[t],y[t]}

DSolve[eq,var,t]

Maple

eq:=diff(x(t),t)=x(t)-3*y(t), diff(y(t),t)=

-2*x(t)+y(t);

init:=x(0)=4,y(0)=5;

var:={x(t),y(t)};

dsolve({eq,init},var);

Although the output looks different in the two cases, they are equivalent and
identical to that provided in the text.
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So long as solutions exist, then the packages will solve the system of equations.
Thus, the system of three equations with initial values:

x′(t) = x(t)
y′(t) = x(t) + 3y(t) − z(t)
z′(t) = 2y(t) + 3x(t)
x(0) = 1, y(0) = 1, z(0) = 2

(4.36)

can be solved in a similar manner with no difficulty.
In the case of nonlinear systems of differential equations, or where no explicit

solution can be found, then it is possible to use the NDSolve command in Math-
ematica and the dsolve(. . . , numeric) command in Maple to obtain numerical
approximations to the solutions. These can then be plotted. But often more in-
formation can be obtained from direction field diagrams and phase portraits. A
direction field shows a series of small arrows that are tangent vectors to solutions
of the system of differential equations. These highlight possible fixed points and
most especially the flow of the system over the plane. A phase portrait, on the other
hand, is a sample of trajectories (solution curves) for a given system. Figure 4.36(a)
shows a direction field and figure 4.36(b) a phase portrait.

In many instances direction fields and phase portraits are combined on the one
diagram – as we have done in many diagrams in this chapter. The phase portrait
can be derived by solving a system of differential equations, if a solution exists.
Where no known solution exists, trajectories can be obtained by using numerical

Figure 4.36.
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solutions. These are invariably employed for systems of nonlinear differential
equation systems.

4.12.1 Direction fields and phase portraits with Mathematica

Direction fields inMathematica are obtained using the PlotVectorField command.
In order to use this command it is first necessary to load the PlotField package.
There is some skill required in getting the best display of direction fields using the
PlotVectorField command, and the reader should consult the references supplied
on using Mathematica in chapter 1.

Given the system of differential equations (4.35), then a direction field can be
obtained with the instructions

Needs[`̀ Graphics`PlotField`’’]

dfield=PlotVectorField[{f(x,y,t),g(x,y,t)},

{x,xmin,xmax}, {y,ymin,ymax},

DisplayFunction->Identity]

Show[dfield, DisplayFunction->$DisplayFunction]

To obtain a ‘good’ display it is often necessary to adjust scaling, change the
arrow lengths and change the aspect ratio. All these, and other refinements, are
accomplished by optional instructions. Thus, figure 4.36(a) can be obtained from
the following input

Needs[`̀ Graphics`PlotField`’’]

dfield=PlotVectorField[{1-y,x2+y2}, {x,-2,2},{y,-1,3},

Frame->True, PlotPoints->20,

DisplayFunction->Identity]

Show[dfield, DisplayFunction->$DisplayFunction]

The phase portrait is not straightforward in Mathematica and requires solving
the differential equations, either with DSolve command, if an explicit solution
can be found, or the NDSolve command for a numerical approximation. If an
explicit solution can be found with the DSolve command, then phase portraits can
be obtained with the ParametricPlot command on supplying different values for
the constants of integration. On the other hand, if a numerical approximation is
required, as is often the case with nonlinear systems, then it is necessary to obtain
a series of solution curves for different initial conditions. In doing this quite a few
other commands of Mathematica are needed.

Consider the Van der Pol model, equation (4.28), a simple set of instructions to
produce a diagram similar to that of figure 4.30 is

eq1:= {x’[t]==y[t],y’[t]==(1-x[t]^2)y[t]-x[t],

x[0]==0.5,y[0]==0.5}

eq2:= {x’[t]==y[t],y’[t]==(1-x[t]^2)y[t]-x[t],

x[0]==0.5,y[0]==4}

var:={x,y}

trange:={t,0,20}
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sol1=NDSolve[eq1,var,trange]

sol2=NDSolve[eq2,var,trange]

graph1=ParametricPlot[Evaluate[{x[t],y[t]} /.sol1],

{t,0,20},PlotPoints->500,

DisplayFunction->Identity];

graph2=ParametricPlot[Evaluate[{x[t],y[t]} /.sol2],

{t,0,20},PlotPoints->500,

DisplayFunction->Identity];

Show[{graph1,graph2},AxesLabel->{`̀ x’’,`̀ y’’},

DisplayFunction->$DisplayFunction];

The more trajectories that are required the more cumbersome these instructions
become. It is then that available packages, such as the one provided by Schwalbe
and Wagon (1996), become useful. For instance, figure 4.36(b) can be produced
using the programme provided by Schwalbe and Wagon with the following set of
instructions:

PhasePlot[{x’[t]==1-y[t],y’[t]==x[t]^2+y[t],^2},

{x[t],y[t]},{t,0,3},{x,-2,2},{y,-1,3},

InitialValues->{{-2,-1},{-1.75,-1},{-1.5,-1},

{-1,0},{-1,-1},{-0.5,-1},{0,-1},{-1.25,0},

{0.5,-1},{1,-1}},

PlotPoints->500,

ShowInitialValues->False,

DirectionArrows->False,

AspectRatio->1,

AxesLabel->{x,y}]

When considering just one trajectory in the phase plane, the simple instructions
given above can suffice. For instance, consider the Lorenz curve, given in equa-
tion (4.34), with parametric values σ = 10, r = 28, and b = 8/3. We can construct
a three-dimensional trajectory from the initial point (x0, y0, z0) = (5, 0, 0) using
the following input instructions:

eqs:={x’[t]==10(y[t]-x[t]),y’[t]==28x[t]-y[t]-x[t]z[t],

z’[t]==x[t]y[t]-(8/3)z[t],

x[0]==5,y[0]==0,z[0]==0}

var:={x,y,z}

lorenzsol=NDSolve[eqs,var,{t,0,30},MaxSteps->3000]

lorenzgraph=ParametricPlot3D[

Evaluate[x[t],y[t],z[t]} /.lorenzsol],

{t,0,30},PlotPoints->2000,PlotRange->All];

The resulting phase line is shown in figure 4.37. This goes beyond the possibil-
ities of a spreadsheet, and figure 4.37 should be compared with the three two-
dimensional plots given in figure 4.35.
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Figure 4.37.

4.12.2 Direction fields and phase portraits with Maple

Direction fields and phase portraits are more straightforward in Maple and use the
same basic input commands. Given the system of differential equations (4.35),
then a direction field can be obtained with the instructions

with(DEtools):

with(plots):

Dfield:=dfieldplot(

[diff(f(x(t),t)=f(x(t),y(t),t),

diff(y(t),t)=g(x(t),y(t),t)],

[x(t),y(t)], t=tmin..tmax,

x=xmin..xmax, y=ymin..ymax);

display(Dfield);

Notice that the instruction ‘with(plots):’ is required for use of the display com-
mand. To obtain a ‘good’ display it is often necessary to add options with respect
to arrows. For example, a Maple version of figure 4.36(a) can be achieved with the
following input

with(DEtools):

with(plots):

Dfield:=dfieldplot(

[diff(x(t),t)=1-y(t),diff(y(t),t)=x(t)^2

+y(t)^2],

[x(t),y(t)], t=0..1, x=-2..2, y=-1..3,

arrows=SLIM):

display(Dfield);

The phase portrait, not surprisingly, uses the phaseportrait command of Maple.
This particular command plots solution curves by means of numerical methods.
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In a two-equation system, the programme will produce a direction field plot by
default if the system is a set of autonomous equations. Since we require only the
solution curves, then we include an option that indicates no arrows.

To illustrate the points just made, consider the Van der Pol model, equa-
tion (4.28), a simple set of instructions to produce aMaple plot similar to figure 4.30
is

phaseportrait(

[D(x)(t)=y(t), D(y)(t)=(1-x(t)^2)*y(t)-x(t)],

[x(t),y(t)], t=0..10,

[ [x(0)=0.5,y(0)=0.5],[x(0)=0.5,y(0)=4] ],

stepsize=.05

linecolour=blue,

arrows=none,

thickness=1);

Producing more solution curves in Maple is just a simple case of specifying more
initial conditions. For instance, a Maple version of figure 4.36(b) can be produced
with the following instructions:

with(DEtools):

phaseportrait(

[D(x)(t)=1-y(t),D(y)(t)=x(t)^2+y(t)^2],

[x(t),y(t)], t=0..3,

[[x(0)=-2,y(0)=-1],[x(0)=-1.75,y(0)=-1],

[x(0)=1.5,y(0)=-1],[x(0)=-1,y(0)=0],

[x(0)=-1,y(0)=-1], [x(0)=-0.5,y(0)=-1],

[x(0)=0,y(0)=-1], [x(0)=-1.25,y(0)=0],

[x(0)=0.5,y(0)=-1, [x(0)=1,y(0)=-1]],

x=-2..2, y=-1..3,

stepsize=.05,

linecolour=blue,

arrows=none,

thickness=1);

Trajectories for three-dimensional plots are also possible with Maple. Consider
once again the Lorenz curve, given in equation (4.34), with parameter values
σ = 10, r = 28 and b = 8/3. We can construct a three-dimensional trajectory from
the initial point (x0, y0, z0) = (5, 0, 0) using the following input instructions:

with(DEtools):

DEplot3d(

[diff(x(t),t)=10*(y(t)-x(t)),

diff(y(t),t)=28*x(t)-y(t)-x(t)*z(t),

diff(z(t),t)=x(t)*y(t)-(8/3)*z(t)],

[x(t),y(t),z(t)], t=0..30,

[[x(0)=5,y(0)=0,z(0)=0]],

stepsize=.01,

linecolour=BLACK,

thickness=1);
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Figure 4.38.

The resulting phase line is shown in figure 4.38. This goes beyond the possibil-
ities of a spreadsheet, and figure 4.38 should be compared with the three two-
dimensional plots given in figure 4.35. It is worth noting that figure 4.38 is the
default plot and the orientation can readily be changed by clicking on the figure
and revolving.

Appendix 4.1 Parametric plots in the phase plane:
continuous variables

A trajectory or orbit is the path of points {x(t), y(t)} in 2-dimensional space and
{x(t), y(t), z(t)} in 3-dimensional space as t varies. Such plots are simply parametric
plots as far as computer programmes are concerned. There are two methods for
deriving the points (x(t), y(t)) or (x(t), y(t), z(t)):

(1) Solve for these values
(2) Derive numerical values by numerical means:

(a) by solving numerically, or
(b) deriving by recursion.

Method 2(a) is used particularly in the case of differential equations, while method
2(b) is used for difference (or recursive) equations. In each of these cases initial
conditions must be supplied.

4A.1 Two-variable case

Consider the solution values for x and y in example 4.1, which are

x(t) = 2e2t and y(t) = 3et

Both x and y are expressed in terms of a common parameter, t, so that when t
varies we can establish how x and y vary. More specifically, if t denotes time, then
(x(t), y(t)) denotes a point at time t in the (x,y)-plane, i.e., a Cartesian representation
of the parametric point at time t. If the differential equation system which generated
x(t) and y(t) is autonomous, then there is only one solution curve, and we can
express this in the form y = φ(x), where y0 = φ(x0) and (x0, y0) is some initial
point, i.e., x(0) = x0 and y(0) = y0 at t = 0. In the present example this is readily
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found since

x

y2
= 2e2t

(3et)2
= 2e2t

9e2t
= 2

9

Hence

y =
√

9x

2

Whether or not it is possible to readily find a Cartesian representation of the
parametric curve, it is a simple matter to plot the parametric curve itself using
software packages.

Example 4.1 with Mathematica

The two commands used in this set of instructions, DSolve and ParametricPlot
are now both contained in the main package:11

Clear[x,y]

sol=DSolve[{x’[t]==2x[t],y’[t]==y[t],x[0]==2,y[0]==3},

{x[t],y[t]},t]

solx=sol[[1,1,2]]

soly=sol[[1,2,2]]

x[t-]:=solx

y[t-]:=soly

traj=ParametricPlot[{x[t],y[t]},{t,0,1}]

If the equations for x(t) and y(t) are already known, then only the last instruction
need be given. For example, if it is known that x(t) = 2e2t and y(t) = 3et then all
that is required is

traj=ParametricPlot[{2e2t,3et},{t,0,1}]

Example 4.1 with Maple

To use Maple’s routine for plotting parametric equations that are solutions to
differential equations it is necessary to load the plots package first. The following
input instructions will produce the trajectory for example 4.1:

restart;

with(plots):

sys:={diff(x(t),t)=2*x(t),diff(y(t),t)=y(t),

x(0)=2,y(0)=3}

vars:={x(t),y(t)}:

sol:=dsolve(sys,vars,numeric);

odeplot(sol,[x(t),y(t)],0..1,labels=[x,y]);

11 In earlier versions, DSolve and ParametricPlot needed to be loaded first since these were con-
tained in the additional packages. This is no longer necessary, since both are contained in the basic
built in functions.
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Notice that we have placed a semi-colon after the ‘sol’ instruction so that you
can observe that Maple produces a procedural output, which is then used in the
odeplot.

If the equations for x(t) and y(t) are already known, then the plot command can
be used. For example, if it is known that x(t) = 2e2t and y(t) = 3et then all that is
required is

plot([2*exp(2*t),3*exp(t),t=0..1],labels=[x,y]);

4A.2 Three-variable case

Plotting trajectories in 3-dimensional phase space is fundamentally the same, with
just a few changes to the commands used.

Equation (4.36) with Mathematica

The input instructions are

Clear[x,y,z]

sol=DSolve[{x’[t]==x[t],y’[t]==x[t]+3y[t]-z[t],

z[t]==2y[t]+3x[t],x[0]==1,y[0]==1,z[0]==2},

{x[t],y[t],z[t]},t]

solx=sol[[1,1,2]]

soly=sol[[1,2,2]]

solz=sol[[1,3,2]]

x[t-]:=solx

y[t-]:=soly

z[t-]:=solz

traj=ParametricPlot3D[{x[t],y[t],z[t]},{t,0,5}]

If the equations for x(t), y(t) and z(t) are already known, then only the last instruc-
tion need be given. For example, if it is known that x(t) = et, y(t) = 2et − e2t + 2tet

and z(t) = 4tet − e2t + 3et then all that is required is

traj=ParametricPlot3D[{et,2et-e2t+2tet,4tet-e2t+3et},

{t,0,5}]

Equation (4.36) with Maple

The input instructions are

restart;

with(plots):

sys:={diff(x(t),t)=x(t),diff(y(t),t)=x(t)+3*y(t)-z(t),

diff(z(t),t)=2*y(t)+3*x(t),x(0)=1,y(0)=1,z(0)=2};

vars:={x(t),y(t),z(t)}:

sol:=dsolve(sys,vars,numeric);

odeplot(sol,[x(t),y(t),z(t)],0..5,labels=[x,y,z]);
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If the equations for x(t), y(t) and z(t) are already known, then we use the spacecurve
command, as illustrated in the following instructions:

traj=spacecurve([exp(t),2*exp(t)-exp(2*t)+2*t*exp(t),

4*t*exp(t)-exp(2*t)+3*exp(t)],

t=0..5,labels=[x,y,z]);

Exercises

1. (i) Show that

y′(x) = y

2x
is a separable function, and solve assuming x(0) = 2 and y(0) = 3.

(ii) Verify your result using either Mathematica or Maple.
2. For the system

ẋ = x − 3y
ẏ = −2x + y

use a software package to derive the trajectories of the system for the
following initial values:

(a) (x0, y0) = (4, 2)
(b) (x0, y0) = (4, 5)
(c) (x0, y0) = (−4, −2)
(d) (x0, y0) = (−4, 5)

3. For the system

ẋ = −3x + y
ẏ = x − 3y

(i) Show that points (x0, y0) = (4, 8) and (x0, y0) = (4, 2) remain in
quadrant I, as in figure 4.9.

(ii) Show that points (x0, y0) = (−4, −8) and (x0, y0) = (−4, −2) re-
main in quadrant III, as in figure 4.9.

(iii) Show that points (x0, y0) = (2, 10) and (x0, y0) = (−2, −10) pass
from one quadrant into another before converging on equilibrium.

(iv) Does the initial point (x0, y0) = (2, −5) have a trajectory which con-
verges on the fixed point without passing into another quadrant?

4. For the system

ẋ = −2x − y + 9
ẏ = −y + x + 3

establish the trajectories for each of the following initial points
(i) (x0, y0) = (1, 3), (ii) (x0, y0) = (2, 8), and (iii) (x0, y0) = (3, 1), show-
ing that all trajectories follow a counter-clockwise spiral towards the fixed
point.

5. Given the dynamic system

ẋ = 2x + 3y
ẏ = 3x + 2y
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(i) Show that the characteristic roots of the system are r = 5 and
s = −1.

(ii) Derive the eigenvectors associated with the eigenvalues obtained in
(i).

(iii) Show that the solution values are:

x(t) = c1e5t + c2e−t

y(t) = c1e5t − c2e−t

and verify that

c1e
5t

[
1
1

]
, c2e

−t

[
1

−1

]

are linearly independent.
(iv) Given x(0) = 1 and y(0) = 0, show that

x(t) = 1
2e

5t + 1
2e

−t

y(t) = 1
2e

5t − 1
2e

−t

6. For the dynamic system

ẋ = x + 3y
ẏ = 5x + 3y

Show:
(i) that the two eigenvalues are r = 6 and s = −2
(ii) that the two eigenvectors are

vr =
[

1
5/3

]
and vs =

[
1

−1

]

(iii) and that the general solution satisfying x(0) = 1 and y(0) = 3 is

x(t) = 3
2e

6t − 1
2e

−2t

y(t) = 5
2e

6t + 1
2e

−2t

7. Let V = [
v1 v2

]
denote a matrix formed from the eigenvectors. Thus, if

v1 =
[

1
−2

]
and v2 =

[
1
2

]

then

V =
[

1 1
−2 2

]

The determinant of this matrix is called the Wronksian, i.e., W(v1, v2) =
det(V). Then v1 and v2 are linearly independent if and only if W(v1, v2)
is nonzero.

Show that for the system

ẋ = x + y
ẏ = −2x + 4y

the Wronksian is nonzero.
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8. Given

ẋ = x
ẏ = 2x + 3y + z
ż = 2y + 4z

(i) Find the eigenvalues and eigenvectors.
(ii) Provide the general solution.

(iii) Show that the Wronksian is nonzero.

9. For each of the following systems
(a) find the eigenvalues and eigenvectors;
(b) solve the system by finding the general solution;
(c) obtain the trajectories for the specified initial points; and
(d) classify the fixed points.

(i)
ẋ = −3x + y
ẏ = x − 3y

initial points = (1, 1), (−1, 1), (−1, −1), (1, −1), (2, 0),
(3, 1), (1, 3)

(ii)
ẋ = 2x − 4y
ẏ = x − 3y

initial points = (1, 1), (−1, 1), (4, 1), (−4, −1), (0, 1),
(0, −1), (3, 2), (−3, −2)

(iii)
ẋ = y
ẏ = −4x

initial points = (0, 1), (0, 2), (0, 3)

(iv)
ẋ = −x + y
ẏ = −x − y

initial points = (1, 0), (2, 0), (3, 0), (−1, 0), (−2, 0), (−3, 0).
10. For the following Holling–Tanner predatory–prey model

ẋ = x
(
1 − x

6

)
− 6xy

(8 + 8x)

ẏ = 0.2y

(
1 − 0.4y

x

)

(i) Find the fixed points.
(ii) Do any of the fixed points exhibit a stable limit cycle?

11. Consider the Rössler attractor

ẋ = −y − z
ẏ = x + 0.2y
ż = 0.2 + z(x − 2.5)

(i) Show that this system has a period-one limit cycle.
(ii) Plot x(t) against t = 200 to 300, and hence show that the system

settles down with x having two distinct amplitudes.
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12. Consider the following Walrasian price and quantity adjustment model

φ′(Y) = 0.5 + 0.25Y
D(p) = −0.025p3 + 0.75p2 − 6p + 40
ṗ = 0.75[D(p, φ(Y)) − Y]
Ẏ = 2[p − φ′(Y)]

(i) What is the economically meaningful fixed point of this system?
(ii) Does this system have a stable limit cycle?

13. Reconsider the system in question 12, but let the quantity adjustment
equation be given by

Ẏ = β[p − φ′(Y)]

Let β = 2, 2.5, 3 and 3.2. What do you conclude about the long-run be-
haviour of this system?

14. Consider the following system

φ′(Y) = 0.5 + 0.25Y
D(p) = −0.025p3 + 0.75p2 − 6p + 40
ṗ = α[D(p, φ(Y)) − Y]
Ẏ = 2[p − φ′(Y)]

Let α = 0.5, 0.75 and 1. What do you conclude about the long-run be-
haviour of this system?

15. Set up the Rössler attractor

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

on a spreadsheet with step size �t = 0.01 and a = 0.4, b = 2 and c = 4.
Plot the system for initial point (x, y, z) = (0.1, 0.1, 0.1) in

(i) (x,y)-plane
(ii) (x,z)-plane
(iii) (y,z)-plane

Additional reading

Additional material on the contents of this chapter can be obtained from Arrow-
smith and Place (1992), Beavis and Dobbs (1990), Borrelli et al. (1992), Boyce and
DiPrima (1997), Braun (1983), Chiang (1984), Flaschel et al. (1997), Giordano
and Weir (1991), Jeffrey (1990), Lynch (2001), Mas-Colell (1986), Percival and
Richards (1982), Schwalbe and Wagon (1996), Shone (2001) and Tu (1994).



CHAPTER 5

Discrete systems of equations

5.1 Introduction

In chapter 3 we considered linear difference equations for a single variable, such
as

xt = 2xt−1, xt = 4xt−1 + 4xt−2, xt = axt−1 + b

Each of these equations is linear and autonomous. But suppose we are interested
in such systems as the following:

(i) xt = axt−1 + byt−1

yt = cxt−1 + dyt−1

(ii) xt = 4xt−1 + 2
yt = −2yt−1 − 3xt−1 + 3

(iii) xt = 2xt−1 + 3yt−1 + 4zt−1

yt = 0.5xt−1

zt = 0.7yt−1

All these are examples of systems of linear autonomous equations of the first order.
As in previous chapters, we shall here consider only autonomous equations (i.e.

independent of the variable t), but we shall also largely restrict ourselves to linear
systems. If all the equations in the system are linear and homogeneous, then we
have a linear homogeneous system. If the system is a set of linear equations and
at least one equation is nonhomogeneous, then we have a linear nonhomogeneous
system. If the equations are homogeneous but at least one equation in the system is
nonlinear, then we have a nonlinear homogeneous system. If at least one equation is
nonlinear and at least one equation in the system is nonhomogeneous, then we have
a nonlinear nonhomogeneous system. In this chapter we shall concentrate on linear
homogeneous equation systems. In terms of the classification just given, systems
(i) and (iii) are linear homogeneous systems, while (ii) is a linear nonhomogeneous
system.

A more convenient way to express linear systems is in matrix form. Hence the
three systems can equally be written in the form:

(i)

[
xt
yt

]
=
[
a b
c d

] [
xt−1

yt−1

]
(or ut = Aut−1)
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(ii)

[
xt
yt

]
=
[

4 0
−3 −2

] [
xt−1

yt−1

]
+
[

0
3

]
(or ut = Aut−1 + b)

(iii)


 xt
yt
zt


 =


 2 3 4

0.5 0 0
0 0.7 0




 xt−1

yt−1

zt−1


 (or ut = Aut−1)

In general, therefore, we can write first-order linear homogeneous systems as

ut = Aut−1(5.1)

and a first-order linear nonhomogeneous system as

ut = Aut−1 + b(5.2)

where u is a n × 1 vector, A a n × n square matrix and b a n × 1 vector.
Consider the system[

xt
yt

]
=
[
a b
c d

] [
xt−1

yt−1

]

Then in equilibrium xt = xt−1 = x∗ for all t and yt = yt−1 = y∗ for all t. Hence[
x∗

y∗

]
=
[
a b
c d

] [
x∗

y∗

]

or

u∗ = Au∗

An equilibrium solution exists, therefore, if

u∗ − Au∗ = 0

i.e. (I − A)u∗ = 0

or u∗ = (I − A)−10 = 0

An equilibrium for a first-order linear homogeneous system is, therefore, u∗ = 0.
This is a general result.

For a first-order linear nonhomogeneous system

ut = Aut−1 + b

an equilibrium requires ut = ut−1 = u∗ for all t, so that

u∗ = Au∗ + b

(I − A)u∗ = b

u∗ = (I − A)−1b

and so an equilibrium exists so long as (I − A)−1 exists. The solution u∗ = (I −
A)−1b is the general equilibrium solution for a first-order linear nonhomogeneous
system.
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Example 5.1

xt = 2xt−1 + 3yt−1

yt = −2xt−1 + yt−1

or [
xt
yt

]
=
[

2 3
−2 1

] [
xt−1

yt−1

]

i.e.

ut = Aut−1

where

I − A =
[−1 −3

2 0

]

and (I − A)u∗ =
[−1 −3

2 0

] [
x∗

y∗

]
=
[

0
0

]

the only values for x and y satisfying this system are x∗ = 0 and y∗ = 0.

Example 5.2

xt = 4xt−1 + 2

yt = −2yt−1 − 3xt−1 + 3

i.e. [
xt
yt

]
=
[

4 0
−3 −2

] [
xt−1

yt−1

]
+
[

2
3

]

Then

u∗ = (I − A)−1b

=
[−3 0

3 3

]−1 [
2
3

]
=
[−2/3

5/3

]

i.e. x∗ = −2/3 and y∗ = 5/3.
Having established that an equilibrium exists, however, our main interest is

establishing the stability of such systems of equations. In establishing this we
need to solve the system. This is fairly straightforward. For the first-order linear
homogeneous equation system we have

ut = Aut−1

= A(Aut−2) = A2ut−2

= A2(Aut−3) = A3ut−3
...
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with solution

ut = Atu0(5.3)

where u0 is the initial values of the vector u. Given u0 and the matrix A, then
we could compute u100 = A100u0, or any such time period. Similarly, with the
first-order nonhomogeneous linear equation system we have

ut = Aut−1 + b

= A(Aut−2 + b) + b = A2ut−2 + Ab + b

= A2(Aut−3 + b) + Ab + b = A3ut−3 + A2b + Ab + b
...

with solution

ut = Atu0 + (I + A + A2 + . . . + At−1)b(5.4)

Although solution (5.3) and (5.4) are possible to solve with powerful computers, it
is not a useful way to proceed. We require to approach the solution from a different
perspective.

It will be recalled from our analysis of differential equation systems in chapter 4
that a linear nonhomogeneous system can be reduced to a linear homogeneous
system by considering deviations from equilibrium. Thus for ut = Aut−1 + b,
with equilibrium vector u∗ we have u∗ = Au∗ + b. Subtracting we obtain

ut − u∗ = A(ut−1 − u∗)

or zt = Azt−1

which is a linear first-order homogeneous system. In what follows, therefore, we
shall concentrate more on linear homogeneous systems with no major loss.

5.2 Basic matrices with Mathematica and Maple

Both Mathematica and Maple have extensive facilities for dealing with matrices
and matrix algebra. The intention in this section is to supply just the briefest
introduction so that the reader can use the packages for the matrix manipulations
required in this book. It is assumed that the reader is familiar with matrix algebra.

Both programmes treat matrices as a list of lists – a vector is just a single
list. While most of the basic matrix manipulations are built into Mathematica, it
is necessary to load one or even two packages in Maple. The two packages are
(1) linalg and (2) LinearAlgebra, and are loaded with the instructions:

with(linalg):

with(LinearAlgebra):

The lists in Mathematica use curly braces, while those in Maple use straight
(table 5.1).

Both programmes have palettes that speed up the entry of vectors and matrices,
although Mathematica’s is far more extensive than that of Maple.
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Table 5.1 Representations of matrices in Mathematica and Maple

Conventional
Mathematica Maple representation

Vector {a, b, c} [a, b, c] [a, b, c] or


 a
b
c




Matrix {{a, b}, {c, d}} [ [a, b], [c, d] ]

[
a b
c d

]

5.2.1 Matrices in Mathematica

To illustrate Mathematica’s package, let

mA =
[

3 2 4
1 −2 −3

]
, mB =

[
0 −1 1
2 3 0

]
, mC =


 2 1

−1 0
2 3




then in Mathematica use:

mA={{3,2,4},{1,-2,-3}}

mB={{0,-1,1},{2,3,0}}

mC={{2,1},{-1,0},{2,3}}

mA+mB (to add)

mA-mB (to subtract)

mA.mC (to multiply)

Notice that mA cannot be multiplied by mB. Any such attempt leads to an error
message indicating that the matrices have incompatible shapes.

Square matrices have special properties. For illustrative purposes, let

mA =

 2 1 −1

3 0 2
−1 2 1




Typical properties are shown in table 5.2.
A special square matrix is the identity matrix. To specify a 3 × 3 identity ma-

trix in Mathematica one uses Identity Matrix[3]. To construct the characteristic
polynomial for the above square matrix, then we use1

mA-λIdentityMatrix[3]

and the characteristic equation is obtained using

Det[mA-λIdentityMatrix[3]]==0

which in turn can be solved using

Solve[Det[mA-λIdentityMatrix[3]]==0]

1 The characteristic polynomial can be obtained directly with the command CharacteristicPolyno-
mial[mA].
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Table 5.2 Properties of matrices and Mathematica input

Property Mathematica input

Trace Tr[mA]
Transpose Transpose[mA]
Inverse Inverse[mA]
Determinant Det[mA]
Eigenvalues Eigenvalues[mA] or Eigenvalues[N[mA]]
Eigenvectors Eigenvectors[mA] or Eigenvectors[N[mA]]
Characteristic polynomial CharacteristicPolynomial[mA,λ]
Matrix Power (power n) MatrixPower[mA,n]

or

Solve[N[Det[mA-λIdentityMatrix[3]]]==0]

As one gets familiar with the package, long strings of instructions can be entered
as a single instruction, as in the final solve.

To verify the results of example 4.12 in chapter 4, input the following, where we
have added the instruction ‘// MatrixForm’ to display the matrix in more familiar
form

mA={{-2,1},{1,-2}}

Det[mA]

mA-λIdentityMatrix[2] //MatrixForm

Eigenvalues[mA]

Eigenvectors[mA]

All results are indeed verified.

5.2.2 Matrices in Maple

To illustrate Maple’s package, let

mA =
[

3 2 4
1 −2 −3

]
, mB =

[
0 −1 1
2 3 0

]
, mC =


 2 1

−1 0
2 3




then in Maple use:

mA:=matrix([[3,2,4],[1,-2,-3]]);

mB:=matrix([[0,-1,1],[2,3,0]]);

mC:=matrix([[2,1],[-1,0],[2,3]]);

evalm(mA+mB) (to add)

evalm(mA-mB) (to subtract)

evalm(mA&*mC) (to multiply)

Notice that mA cannot be multiplied by mB. Any such attempt leads to an error
message indicating that the matrices have non-matching dimensions.
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Table 5.3 Properties of matrices and Maple input

Property Maple input

Trace trace(mA);
Transpose transpose(mA);
Inverse inverse(mA);
Determinant det(mA);
Eigenvalues eigenvals(mA); or evalf(eigenvals(mA));
Eigenvectors eigenvects(mA); or evalf(eigenvects(mA));
Characteristic polynomial charpoly(mA,’lambda’);
Matrix Power (power n) evalm(mA^n)

Square matrices have special properties. For illustrative purposes, let

mA =

 2 1 −1

3 0 2
−1 2 1




Typical properties are shown in table 5.3.
The characteristic polynomial in Maple simply requires the input

charpoly(mA,’lambda’);

which in turn can be solved using

solve(charpoly(mA,’lambda’)=0);

or

fsolve(charpoly(mA,’lambda’)=0,lambda,complex);

As one gets familiar with the package, long strings of instructions can be entered
as a single instruction, as in the final fsolve. Notice too that the final fsolve required
the option ‘complex’ to list all solutions. Using

fsolve(charpoly(mA,’lambda’)=0);

gives only the real solution.
To verify the results of example 4.12 in chapter 4, input the following:

with(linalg):

with(LinearAlgebra):

mA:=matrix([[-2,1],[1,-2]]);

det(mA);

evalm(mA-lambda*IdentityMatrix(2));

eigenvals(mA);

eigenvects(mA);

All results are indeed verified, when it is realised that vr = [ 1 −1 ] is fundamentally
the same as vr = [−1 1 ].
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5.3 Eigenvalues and eigenvectors

Let us concentrate on the first-order linear homogeneous equation system

[
xt
yt

]
=
[
a b
c d

] [
xt−1

yt−1

]

or ut = Aut−1 with solution ut = Atu0. We invoke the following theorem.

THEOREM 5.1
If the eigenvalues of the matrix A are r and s obtained from |A − λI| =
0 such that r 
= s, then there exists a matrix V = [ vr vs ] composed of
the eigenvectors associated with r and s, respectively, such that

D =
[
r 0
0 s

]
= V−1AV

We shall illustrate this theorem by means of an example.

Example 5.3

Let

A =
[

2 1
1 2

]

The characteristic equation is |A − λI| = 0, i.e.

∣∣∣∣ 2 − λ 1
1 2 − λ

∣∣∣∣ = (2 − λ)2 − 1 = λ2 − 4λ + 3 = 0

Hence, λ = r = 1 and λ = s = 3.
For λ = r = 1 we have the equation

(A − rI)vr = 0

or [(
2 1
1 2

)
−
(

1 0
0 1

)][
vr1
vr2

]
=
[

0
0

]

i.e.

[
1 1
1 1

] [
vr1
vr2

]
=
[

0
0

]

Hence vr1 + vr2 = 0. Let vr1 = 1 then vr2 = −vr1 = −1. Thus,

vr =
[

1
−1

]
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For λ = s = 3 we have[(
2 1
1 2

)
−
(

3 0
0 3

)][
vs1
vs2

]
=
[

0
0

]

i.e.

[−1 1
1 −1

] [
vs1
vs2

]
=
[

0
0

]

Hence, −vs1 + vs2 = 0. Let vs1 = 1, then vs2 = vs1 = 1. Thus, the second eigenvector
is

vs =
[

1
1

]

Our matrix, V, is therefore

V = [
vr vs

] =
[

1 1
−1 1

]

From the theorem we have D = V−1AV, i.e.

V−1AV =
[

1 1
−1 1

]−1 [
2 1
1 2

] [
1 1

−1 1

]
=
[

1 0
0 3

]

which is indeed the matrix D formed from the characteristic roots of A.

Since D = V−1AV then

VDV−1 = V(V−1AV)V−1 = A

Furthermore

A2 = (VDV−1)(VDV−1) = VD2V−1

A3 = (VDV−1)(VD2V−1) = VD3V−1

...

At = (VDV−1)(VDt−1V−1) = VDtV−1

Hence

ut = Atu0 = VDtV−1u0 (5.5)

or

ut = V
[
rt 0
0 st

]
V−1u0

We can summarise the procedure as follows:

(1) Given a first-order linear homogeneous equation system ut = Aut−1,
where u is a 2 × 1 vector and A is a 2 × 2 matrix, with solution ut =
Atu0, obtain the eigenvectors r and s (assumed to be distinct).

(2) Derive the eigenvector vr associated with the eigenvalue r and the eigen-
vector vs associated with the eigenvalue s, and form the matrix V =
[vr, vs].

(3) From (2) we have the general solution

ut = artvr + bstvs
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and we can find a and b for t = 0 from

u0 = avr + bvs

where u0 is known. This can either be done by direct substitution, or using
the fact that

avr + bvs = [
vr vs

] [a
b

]
= u0

i.e. V
[
a
b

]
= u0

or

[
a
b

]
= V−1u0

(4) Write the solution

ut = artvr + bstvs

But we can do this whole process in one step. First we note

ut = artvr + bstvs = [
vr vs

] [ rt 0
0 st

] [
a
b

]

= VDt

[
a
b

]

But [
a
b

]
= V−1u0

Hence

ut = VDtV−1u0

which is the result we proved above. The gain, if there is one, in doing the four steps
is the need to solve for a and b. Since this can often be done by direct substitution,
then the four steps involve no inverse matrix computation.

Example 5.4

Let

xt+1 = −8 − xt + yt

yt+1 = 4 − 0.3xt + 0.9yt

setting xt+1 = xt = x∗ and yt+1 = yt = y∗ for all t, the fixed point is readily shown
to be (x∗, y∗) = (6.4, 20.8).

Now consider the system in terms of deviations from equilibrium, then

xt+1 − x∗ = −(xt − x∗) + (yt − y∗)

yt+1 − y∗ = −0.3(xt − x∗) + 0.9(yt − y∗)

or

ut = Aut−1
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where

A =
[ −1 1

−0.3 0.9

]

Solving for the eigenvalues from

A − λI =
[−1 − λ 1

−0.3 0.9 − λ

]

we have

|A − λI| = −(1 + λ)(0.9 − λ) + 0.3 = λ2 + 0.1λ − 0.6 = 0

giving r = 0.7262 and s = −0.8262.
Given r = 0.7262 then (A − 0.7262I)vr = 0 so[−1.7262 1

−0.3 0.1738

] [
vr1
vr2

]
=
[

0
0

]

i.e.

−1.7262vr1 + vr2 = 0

−0.3vr1 + 0.1738vr2 = 0

Let vr2 = 1 then vr1 = 0.5793.
For s = −0.8262[−0.1738 1

−0.3 1.7262

] [
vs1
vs2

]
=
[

0
0

]

i.e.

−0.1738vs1 + vs2 = 0

−0.3vs1 + 1.7262vs2 = 0

Let vs2 = 1 then vs1 = 5.7537. Hence

V = [ vr vs ] =
[

0.5793 5.7537
1 1

]

and

ut = V
[

(0.7262)t 0
0 (−0.8262)t

]
V−1u0

Suppose x0 = 2 and y0 = 8, i.e.

u0 =
[ −4.4

−12.8

]

Then [
xt+1 − x∗

yt+1 − y∗

]
=
[

0.5793 5.7537
1 1

] [
(0.7262)t 0

0 (−0.8262)t

]

[
0.5793 5.7537

1 1

]−1 [ −4.4
−12.8

]
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Figure 5.1.

i.e.

xt+1 − x∗ = −7.7526(0.7262)t + 3.3526(−0.8262)t

yt+1 − y∗ = −13.3827(0.7262)t + 5.827(−0.8262)t

This procedure does give insight into the dynamics and it is possible to plot the
solutions. However, if interest is purely in the dynamics of the trajectory, this can
be obtained immediately using a spreadsheet. Once the equations for xt+1 and yt+1

have been entered in the first cells they are then copied down for as many periods
as is necessary and the {xt,yt} coordinates plotted on the x-y line plot, as shown in
figure 5.1. This simple procedure also allows plots of x(t) and y(t) against time.2

The solution generalises to more than two equations. If A is a 3 × 3 matrix with
distinct roots q, r and s, then the solution is

ut = V


qt 0 0

0 rt 0
0 0 st


V−1u0

here V = [
vq vr vs

]
.

Example 5.53

In this example we shall also illustrate howMathematica orMaple can be employed
as an aid. Let

 xt
yt
zt


 =


 1 2 1

−1 1 0
3 −6 −1




 xt−1

yt−1

zt−1




2 See Shone (2001) and section 5.5 below.
3 Adapted from Sandefur (1990, chapter 6).
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Then

A − λI =

1 − λ 2 1

−1 1 − λ 0
3 −6 −1 − λ




Within Mathematica carry out the following instructions, where we have replaced
λ by a

m = {{1-a,2,1}, {-1,1-a,0}, {3,-6,-1-a}}

sols = Solve[ Det[m]==0, a]

or in Maple

m:=matrix( [ [1-a,2,1], [-1,1-a,0], [3,-6,-1-a] ] );

sols:=solve(det(m)=0,a);

which gives the three eigenvalues4 q = 0, r = −1 and s = 2.
The next task is to obtain the associated eigenvectors. For q = 0, then

(A − 0I)vr =




1 2 1

−1 1 0

3 −6 −1




 vq1
vq2
vq3


 =




0

0

0




which leads to the equations

vq1 + 2vq2 + vq3 = 0

−vq1 + vq2 = 0

3vq1 − 6vq2 − vq3 = 0

We can solve this system within Mathematica with the instruction

Solve[ {x+2y+z==0, -x+y==0, 3x-6y-z==0}, {x,y,z}]

or in Maple with the instruction

solve( {x+2*y+z=0, -x+y=0, 3*x-6*y-z=0}, {x,y,z});

which provides solutions x = 1, y = 1 and z = −3, where x is set arbitrarily at
unity.

Carrying out exactly the procedure for r = −1 and s = 2 we obtain the results

r = −1 implies x = 2, y = 1 and z = −6

s = 2 implies x = 1, y = −1 and z = 3

Hence our three eigenvectors and the matrix V are:

vq =

 1

1
−3


, vr =


 2

1
−6


, vs =


 1

−1
3


, V =


 1 2 1

1 1 −1
−3 −6 3




4 This could be obtained directly using the command Eigenvalues[m] inMathematica or eigenvals(m)
in Maple.
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Hence our solution is

ut = V


 (0)t 0 0

0 (−1)t 0
0 0 (2)t


V−1u0

Suppose

u0 =

 3

−4
3




Then 
 xt
yt
zt


 =


 1 2 1

1 1 −1
−3 −6 3




0t 0 0

0 (−1)t 0
0 0 2t




 1 2 1

1 1 −1
−3 −6 3




−1
 3

−4
3




i.e.

xt = 6(−1)t + 2(2t)

yt = 3(−1)t − 2(2t)

zt = −18(−1)t + 6(2t)

or 
 xt
yt
zt


 = 3(−1)t


 2

1
−6


+ 2t+1


 1

−1
3




5.4 Mathematica andMaple for solving discrete systems

Mathematica and Maple can be used in a variety of ways in helping to solve
systems of discrete equations. Here we consider two:

(i) Solving directly using the RSolve/rsolve command.
(ii) Solving using the Jordan form.

5.4.1 Solving directly

Mathematica’s RSolve command and Maple’s rsolve command can each handle
systems of linear difference equations besides a single difference equation. In each
case the procedure is similar to that outlined in chapter 3, section 3.13. Suppose we
wish to solve example 5.4 with initial condition (x0, y0) = (2, 8), i.e., the system

xt+1 = −8 − xt + yt

yt+1 = 4 − 0.3xt + 0.9yt

x0 = 2, y0 = 8
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then the instructions in each case are:

Mathematica
equ={x[t+1]==-8-x[t]+y[t],

y[t+1]==4-0.3x[t]+0.9y[t],

x[0]==2, y[0]==8}

var={x[t],y[t]}

RSolve[equ,var,t]

Maple
equ:=x(t+1)=-8-x(t)+y(t), y(t+1)=4-0.3*x(t)+0.9*y(t);

init:=x(0)=2, y(0)=8;

var:={x(t),y(t)};

rsolve({equ,init},var);

The output from each programme looks, on the face of it, quite different – even
after using the evalf command in Maple to convert the answer to floating point
arithmetic. Maple gives a single solution to both x(t) and y(t). Mathematica, how-
ever, gives a whole series of possible solutions depending on the value of t being
greater than or equal to 1, 2 and 3, respectively, and further additional conditional
statements. In economics, with t representing time, the value of t must be the same
for all variables. This means we can ignore the additional conditional statements.
What it does mean, however, is that only for t ≥ 3 will the solution for x(t) pro-
vided by Mathematica and Maple coincide; while y(t) will coincide for t ≥ 2. This
should act as a warning to be careful in interpreting the output provided by these
packages.

Turning to the three-equation system (example 5.5) with initial condition
(x0, y0, z0) = (3, −4, 3)

xt = xt−1 + 2yt−1 + zt−1

yt = −xt−1 + yt−1

zt = 3xt−1 − 6yt−1 − zt−1

x0 = 3, y0 = −4, z0 = 3

then we would enter the following commands in each programme:

Mathematica
equ={x[t]==x[t-1]+2y[t-1]+z[t-1],

y[t]==-x[t-1]+y[t-1],

z[t]==3x[t-1]-6y[t-1]-z[t-1]

x[0]==3, y[0]==-4,z[0]==3}

var={x[t],y[t],z[t]}

RSolve[equ,var,t]

Maple
equ:=x(t)=x(t-1)+2*y(t-1)+z(t-1),

y(t)=-x(t-1)+y(t-1),

z(t)=3*x(t-1)-6*y(t-1)-z(t-1);

init:=x(0)=3, y(0)=-4, z(0)=3;

var:={x(t),y(t),z(t)};

rsolve({equ,init},var);
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In this instance the output in both programmes is almost identical. Mathematica,
however, qualifies the solution for z[t] by adding 15 If[t==0,1,0]. If t is time,
then this will not occur, and so this conditional statement can be ignored, in which
case the two programmes give the same solution – which is also the one provided
on p. 214.

5.4.2 Solving using the Jordan form

In section 5.3 we found the eigenvalues of the matrix A and used these to find
the matrix V formed from the set of linearly independent eigenvectors of A. The
diagonal matrix

J = diag(λ1, . . . , λn)(5.6)

is the Jordan form of A and V is the transition matrix, such that

V−1AV = J(5.7)

From this result we have

At = VJtV−1

and since the solution to the system ut = Aut−1 is ut = Atu0, then

ut = VJtV−1u0 where Jt =




λt
1 0 · · · 0

0 λt
2 · · · 0

...
...

...
0 0 · · · λt

n


(5.8)

So our only problem is to find the matrices J and V.
BothMathematica andMaple have commands to supply these matrices directly.

In Mathematica one uses the command JordanDecomposition[mA]; while in
Maple it is necessary to first load the linalg package, and then to use the command
jordan(mA, ''V''), where mA denotes the matrix under investigation and V is the
transition matrix. To illustrate how to use these commands consider example 5.3,
where

mA =
[

2 1
1 2

]
Mathematica
mA={{2,1},{1,2}}

{V,J}=JordanDecomposition[mA]

MatrixForm /@ {V,J}

MatrixForm[[Inverse[V].mA.V]]

Maple
with(linalg):

mA:=matrix( [ [2,1],[1,2] ]);

J:=jordan(mA,’V’);

print(V);

evalm(V^(-1)&*mA&*V);
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In each of these instructions the last line is a check that undertaking the matrix
multiplication does indeed lead to the Jordan form of the matrix. In each package
we get the Jordan form

J =
[

1 0
0 3

]

However, the transition matrix in each package on the face of it looks different.
More specifically,

Mathematica V =
[−1 1

1 1

]

Maple V =
[

1
2

1
2

− 1
2

1
2

]

But these are fundamentally the same. We noted this when deriving the eigenvectors
in the previous section. We arbitrarily chose values for vr1 or vr2 (along with the
values associated with the eigenvalue s). In Maple, consider the first column,
which is the first eigenvector. Setting vr2 = 1, means multiplying the first term by
−2, which gives a value for vr1 = −1. Similarly, setting vs1 = 1 in Maple, converts
vs2 also to the value of unity. Hence, the two matrices are identical. In each case
the last instruction verifies that V−1AV = J.

UsingMaple verifies all the results in section 5.3. However,Mathematica seems
to give inconsistent results for a number of the problems. In particular, it appears
the transition matrices provided by Mathematica for examples 5.4, 5.6 and 5.7
are not correct. This shows up with the last instruction, since for these examples
MatrixForm[Inverse[V].ma.V] does not give the matrix J!

It should be noted that all the examples in section 5.3 involve real and distinct
roots. Even in the case of complex roots, these are distinct. A more general theorem
than Theorem 5.1 is the following:

THEOREM 5.2
If A is a n × n square matrix with distinct eigenvalues λ1, . . . , λn, then
the matrix A is diagonalisable, such that

V−1AV = J

and J = diag(λ1, . . . , λn).

Since λ1, . . . , λn are distinct eigenvalues of the matrix A, then it is possible to find
n linearly independent eigenvectors v1, . . . , vn to form the transition matrix V.

Systems that have repeated roots involve linear dependence. Such systems in-
volve properties of Jordan blocks, which is beyond the scope of this book. However,
a complete study of the stability of discrete systems would require an understanding
of Jordan blocks, see Elaydi (1996) and Simon and Blume (1994).

When the matrix A has repeated roots, then it is not diagonalisable. It is, however,
possible to find an ‘almost diagonalisable’ matrix which helps in solving systems
with repeated roots. As indicated in the previous paragraph, for a general system
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of n equations, this requires knowledge of Jordan blocks. Here we shall simply
state a result for a 2 × 2 system.

THEOREM 5.3
If A is a 2 × 2 matrix, then there is a transition matrix V such that

(a) V−1AV = J1 =
[
r 0
0 s

]
for real distinct roots r and s

(b) V−1AV = J2 =
[

λ 1
0 λ

]
for repeated root λ

(c) V−1AV = J3 =
[

α + βi 0
0 α − βi

]

for complex conjugate roots λ = α ± βi

In each case, Ji is the Jordan form of the particular matrix A. We shall use
theorem 5.3 when discussing the stability of discrete systems in section 5.6.
Section 5.2 dealt with case (a) in detail. Here we shall consider just one example
of cases (b) and (c), using both Mathematica and Maple.

Example 5.6

Consider the matrix in example 4.10, which is

A2 =
[

1 −1
1 3

]

then the instructions in each programme are:

Mathematica
A2={{1,-1},{1,3}}

Eigenvalues[A2]

{V2,J2}=JordanDecomposition[A2]

MatrixForm /@ {V2,J2}

MatrixForm[Inverse[V2].A2.V2]

Maple
with(linalg):

A2:=matrix([[1,-1],[1,3]]);

eigenvals(A2);

J2:=jordan(A2,’V2’);

print(V2);

evalm(V2^(-1)&*A2&*V2);

With each programme we get the Jordan form as

J2 =
[

2 1
0 2

]
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Example 5.7

Next consider the matrix in example 4.11, which is

A3 =
[−3 4

−2 1

]

then the instructions in each programme are:

Mathematica
A3={{-3,4},{-2,1}}

Eigenvalues[A3]

{V3,J3}=JordanDecomposition[A3]

MatrixForm /@ {V3,J3}

MatrixForm[Inverse[V3].A3.V3]

Maple
with(linalg):

A3:=matrix([[-3,4],[-2,1]]);

eigenvals(A3);

J3:=jordan(A3,’V3’);

print(V3);

evalm(V3^(-1)&*A3&*V3);

With each programme we get the Jordan form as

J3 =
[−1 + 2i 0

0 −1 − 2i

]

Verifying the results in theorem 5.3.
When considering the stability of the system

ut = Aut−1 (5.9)

we can approach this from a slightly different perspective, which can provide some
valuable insight into the phase portrait of discrete systems. What we intend to do
is to transform the system using the matrix V. Thus, define

zt = V−1ut (5.10)

This implies ut = Vzt. We can therefore write system (5.9) in the form

Vzt = AVzt−1

premultiplying by the matrix V−1, we have

zt = V−1AVzt−1 = Jzt−1 where J =
[
r 0
0 s

]
(5.11)

System zt = Jzt−1 is referred to as the canonical form of the system ut = Aut−1.
The important point is that the stability properties of (5.11) are the same as those
of (5.9).

The solution to the canonical form is simply

zt = Jtz0 =
[
rt 0
0 st

]
z0 where z0 = V−1u0
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When considering the phase space of this canonical form it is useful to consider
the following:[

z1t

z2t

]
=
[
rt 0
0 st

] [
z10

z20

]

Now take the ratio of z2/z1, then

z2t

z1t
= stz20

rtz10
=
( s
r

)t ( z20

z10

)
and so the path of the system is dominated by the value/sign of s/r.

5.5 Graphing trajectories of discrete systems

The mathematics of solving simultaneous equation systems is not very straightfor-
ward and it is necessary to obtain the eigenvalues and the eigenvectors. However,
it is possible to combine the qualitative nature of the phase plane discussed in
the previous section and obtain trajectories using a spreadsheet or the recursive
features of Mathematica and Maple.

5.5.1 Trajectories with Excel

Example 5.8

Consider the following system of equations

xt = −5 + 0.25xt−1 + 0.4yt−1

yt = 10 − xt−1 + yt−1

x0 = 10, y0 = 5

In cells B8 and C8 we place the initial values for x and y, namely x0 = 10 and
y0 = 5. In cells B9 and C9 we place the formulas. These are

B9 = -5 + 0.25* B8 + 0.4* C8

C8 = 10 - B8 + C8

These cell entries contain only relative addresses. Cells B8 and C8 are then copied
to the clipboard and pasted down in cells B10:C28. Once the computations for
(xt, yt) have been obtained, then it is a simple matter of using the x-y plot to plot
the trajectory. Given the discrete nature of the system the trajectories are not the
regular shapes indicated by the phase plane diagram. They constitute discrete points
that are joined up. Even so, the nature of the system can readily be investigated.

Figure 5.2 shows the initial values of x0 = 10 and y0 = 5. Always a good check
that the equations have been entered correctly is to place the equilibrium values
as the initial values. The equilibrium point is (x∗, y∗) = (10, 31.25). Placing these
values in cells B8 and C8 leads to them being repeated in all periods. One of the
advantages of this approach, besides its simplicity, is the ready investigation of
the system for various initial conditions. The graphics plot can sometimes change
quite dramatically!

This procedure allows quite complex discrete dynamic systems of two equations
to be investigated with the minimum mathematical knowledge. Of course, to fully
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Figure 5.2.

appreciate what is happening requires an understanding of the material in many of
the chapters of this book. Consider the following nonlinear system, which is used
to produce the Hénon map and which we shall investigate more fully in chapter 7.

Example 5.9

The system is

xt = 1 − ax2
t−1 + yt−1

yt = bxt−1

Our purpose here is not to investigate the properties of this system, but rather to
see how we can display trajectories belonging to it. We begin with the spreadsheet,
as shown in figure 5.3. We place the values of a and b in cells E3 and E4, where
a = 1.4 and b = 0.3. In cells B8 and C8 we place the initial values for x and y,
which are x0 = 0.01 and y0 = 0. The formulas for the two equations are placed in
cells B9 and C9, respectively. These take the form

B9 1-$E$3*B8^2+C8

C9 $E$4*B8

The cells with dollar signs indicate absolute addresses, while those without dollar
signs indicate relative addresses. Cells B9 and C9 are then copied to the clipboard
and pasted down. After blocking cells B8:C28 the graph wizard is then invoked
and the resulting trajectory is shown in the inserted graph. The most conspicuous
feature of this trajectory is that it does not have a ‘pattern’. In fact, given the
parameter values there are two equilibrium points: (x∗

1, y
∗
1) = (−1.1314, −0.3394)

and (x∗
2, y

∗
2) = (0.6314, 0.1894), neither of which is approached within the first

twenty periods. Why this is so we shall investigate in chapter 7.
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Figure 5.3.

5.5.2 Trajectories with Mathematica and Maple

The spreadsheet is ideal for displaying recursive systems and the resulting trajecto-
ries. But occasionally it is useful to display these trajectories within Mathematica
or Maple. In doing this care must be exercised in writing the simultaneous equa-
tions for computation so that the programmes remember earlier results and do not
recompute all previous values on each round. This leads to more cumbersome input
instructions – which is why the spreadsheet is so much easier for many problems.
We shall consider once again examples 5.8 and 5.9.

Example 5.8 (cont.)

The input instructions for each programme are

Mathematica
Clear[x,y,t]

x[0]:=10; y[0]:=5;

x[t-]:=x[t]=-5+0.25x[t-1]+0.4y[t-1]

y[t-]:=y[t]=10-x[t-1]+y[t-1]

data:=Table[{x[t],y[t]},{t,0,20}];

ListPlot[data,PlotJoined->True,PlotRange->All]

Maple
t:=’t’: x:=’x’: y:=’y’:

x:=proc(t)option remember;-5+0.25*x(t-1)+0.4*y(t-1)end:

y:=proc(t)option remember; 10-x(t-1)+y(t-1) end:

x(0):=10: y(0):=5:

data:=[seq([x(t),y(t)],t=0..20)];

plot(data);

The Maple instructions join the points by default. If just a plot of points is required
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with Maple, then the last line becomes

plot(data, plotstyle=point);

The resulting trajectories are similar to that shown in the chart in figure 5.2 (p. 221).
As one might expect, both Mathematica and Maple allow more control over the
display of the trajectories than is available within Excel. Furthermore, both these
programmes allow more than one trajectory to be displayed on the same diagram.
This is not possible within spreadsheets. Spreadsheets can display only one (x, y)-
trajectory at a time.

Example 5.9 (cont.)

The input instructions for each programme for producing discrete plot trajectories
are

Mathematica
Clear[x,y,t,a,b]

x[0]:=0.01; y[0]:=0;

a:=1.4; b:=0.3;

x[t-]:=x[t]=1-a x[t-1]^2+y[t-1]

y[t-]:=y[t]=b x[t-1]

data=Table[{x[t],y[t]},{t,0,20}];

ListPlot[data,PlotJoined->True,PlotRange->All]

Maple
t:=’t’: x:=’x’: y:=’y’: a:=’a’: b:=’b’:

x:=proc(t) option remember; 1-a*x(t-1)^2+y(t-1) end:

y:=proc(t) option remember; b*x(t-1) end:

x(0):=0.01: y(0):=0:

a:=1.4: b:=0.3:

data:=[seq([x(t),y(t)],t=0..20)];

plot(data);

The resulting trajectories are similar to that shown in the chart in figure 5.3.
Spreadsheets do not allow three-dimensional plots, but it is very easy to adapt

the instructions just presented for Mathematica and Maple to do this. The only
essential difference is the final line in each programme. Assuming ‘data’ records the
list of points {x(t), y(t), z(t)}, then a three-dimensional plot requires the instruction

Mathematica
ListPlot3D[data,PlotJoined->True]

Maple
plot3d(data);

5.6 The stability of discrete systems

5.6.1 Real distinct roots

For systems with real distinct roots, r and s, which therefore have linearly inde-
pendent eigenvectors, we can establish the stability properties of such systems by
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considering the general solution

ut = artvr + bstvs where ut =
[
xt − x∗

yt − y∗

]

If |r| < 1 and |s| < 1 then artvr → 0 and bstvs → 0 as t → ∞ and so ut → 0 and
consequently the system tends to the fixed point, the equilibrium point.

Return to example 5.4 where r = 0.7262 and s = −0.8262. The absolute value
of both roots is less than unity, and so the system is stable. We showed this in terms
of figure 5.1, where the system converges on the equilibrium, the fixed point. We
pointed out above that the system can be represented in its canonical form, and
the same stability properties should be apparent. To show this our first task is to
compute the vector z0. Since z0 = V−1u0, then

[
z10

z20

]
=
[

0.5793 5.7537
1 1

]−1 [ −4.4
−12.8

]
=
[−13.3827

0.5827

]

and

z1t = (0.7262)t(−13.3827)

z2t = (−0.8262)t(0.5827)

Setting this up on a spreadsheet, we derive figure 5.4. The canonical form has
transformed the system into the (z1, z2)-plane, but once again it converges on the
fixed point, which is now the origin.

Now consider the situation where |r| > 1 and |s| > 1 then ut → ±∞ depending
on the sign of the characteristic roots. But this result occurs so long as at least one
root is greater than unity in absolute value. This must be so. Let |r| > 1 and let
|s| < 1. Then over time bstvs → 0 as t → ∞, while artvr → ±∞ as t → ∞,
which means ut → ±∞ as t → ∞. The system is unstable.

Return to example 5.3 where r = 1 and s = 3. Both roots are distinct, positive
and at least one is greater than unity. It follows from our earlier argument that this
system must be unstable. We have already demonstrated that the diagonal matrix

Figure 5.4.
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(the Jordan form) and the transition matrix are:

J =
[

1 0
0 3

]
, V =

[
1 1

−1 1

]

Suppose for this system (u10, u20) = (5, 2), then[
u1t

u2t

]
=
[

1 1
−1 1

] [
1t 0
0 3t

] [
1 1

−1 1

]−1 [
5
2

]

i.e.

u1t = 3

2
+ 7

2
3t

u2t = −3

2
+ 7

2
3t

Therefore, as t increases u1t → +∞ and u2t → +∞.
Turning to the canonical form, z0 = V−1u0, hence[

z10

z20

]
=
[

3/2
7/2

]

and

z1t = 1t
(

3

2

)
= 3

2

z2t = 3t
(

7

2

)

Furthermore,

z2t

z1t
=
(

3

1

)t 7/2

3/2
= 3t

(
7

3

)

and so for each point in the canonical phase space, the angle from the origin is
increasing, and so the direction of the system is vertically upwards, as illustrated
in figure 5.5(b). Once again, the same instability is shown in the original space,
figure 5.5(a), and in its canonical form, figure 5.5(b). The fact that the trajectory
in figure 5.5(b) is vertical arises from the fact that root r = 1.

Suppose one root is greater than unity in absolute value and the other less than
unity in absolute value. Let these be |r| > 1 and |s| < 1. The system remains
unstable because it will be governed by the root |r| > 1, and the system will be
dominated by the term artvr. This means that for most initial points u0, the system
diverges from the equilibrium, from the steady state (x∗, y∗). But suppose a = 0,
then ut = bstvs and since |s| < 1, then the system will converge on (x∗, y∗). There
exist, therefore some stable trajectories in the phase plane.

Example 5.10

xt+1 = −0.85078xt − yt

yt+1 = xt + 2.35078yt
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Figure 5.5.

The fixed point is at the origin, i.e., x∗ = 0 and y∗ = 0. This system takes the matrix
form [

xt+1

yt+1

]
=
[−0.85078 −1

1 2.35078

]

The eigenvalues of the matrix A of this system are readily found to be r = 2 and
s = −0.5. We therefore satisfy the condition |r| > 1 and |s| < 1. Furthermore, we
can obtain the eigenvectors of this system as follows

(A − 2I)vr = 0

i.e.

[−2.85078 −1
1 0.35078

] [
vr1
vr2

]
=
[

0
0

]



Discrete systems of equations 227

or

−2.85078vr1 − vr2 = 0

vr1 + 0.35078vr2 = 0

Let vr1 = 1 then vr2 = −2.8508.
The second eigenvector is found from

(A − 0.5I)vs = 0

i.e.

[−0.35078 −1
1 2.85078

] [
vs1
vs2

]
=
[

0
0

]
or

−0.35078vs1 − vs2 = 0

vs1 + 2.85078vs2 = 0

Let vs2 = 1 then vs1 = −2.8508. Hence

vr =
[

1
−2.8508

]
, vs =

[−2.8508
1

]

One eigenvector represents the stable arm while the other represents the unstable
arm. But which, then, represents the stable arm? To establish this, convert the
system to its canonical form, with zt+1 = V−1ut+1. Now take a point on the first
eigenvector, i.e., point (1, −2.8508), then

z0 = V−1u0 =
[

1 −2.8508
−2.8508 1

]−1 [
1

−2.8508

]
=
[

1
0

]

Hence,

z1t = 2t(1)

z2t = (−0.5)t(0) = 0

Therefore z1t → +∞ as t → ∞. So the eigenvector vr must represent the unstable
arm.

Now take a point on the eigenvector vs, i.e., the point (−2.8508, 1), then

z0 = V−1u0 =
[

1 −2.8508
−2.8508 1

]−1 [−2.8508
1

]
=
[

0
1

]

Hence,

z1t = 2t(0) = 0

z2t = (−0.5)t(1)

Therefore z2t → 0 as t → ∞. So the eigenvector vs must represent the stable arm
of the saddle point. Figure 5.6 illustrates the trajectory of the original system
starting from point (−2.8508, 1), and shows that it indeed converges on the point
(x∗, y∗) = (0, 0).5

Before leaving this example, notice that when we considered point (1, −2.8508)
on the eigenvector associated with r = 2, the point became (1, 0) in terms of its

5 The system is, however, sensitive. A plot beyond t = 10 has the system moving away from the fixed
point.
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Figure 5.6.

canonical representation. Similarly, point (−2.8508, 1) on the eigenvector associ-
ated with s = −0.5 became point (0, 1) in its canonical representation. In other
words, the arms of the saddle point equilibrium became transformed into the two
rectangular axes in z-space. This is a standard result for systems involving saddle
point solutions.

So long as we have distinct characteristic roots these results hold. Here, however,
we shall confine ourselves to the two-variable case. To summarise, if r and s are
the characteristic roots of the matrix A for the system ut = Aut−1 and derived from
solving |A − λI| = 0, then

(i) if |r| < 1 and |s| < 1 the system is dynamically stable
(ii) if |r| > 1 and |s| > 1 the system is dynamically unstable

(iii) if, say, |r| > 1 and |s| < 1 the system is dynamically unstable.

In the case of (iii) the system will generally be dominated by the largest root and
will tend to plus or minus infinity depending on its sign. But given the fixed point
is a saddle path solution, there are some initial points that will converge on the
fixed point, and these are values that lie on the stable arm of the saddle point.

As we shall see in part II, such possible solution paths are important in ratio-
nal expectations theory. Under such assumed expectations behaviour, the system
‘jumps’ from its initial point to the stable arm and then traverses a path down the
stable arm to equilibrium. Of course, if this initial ‘jump’ did not occur, then the
trajectory would tend to plus or minus infinity and be driven away from equilibrium.

5.6.2 Repeating roots

When there is a repeating root, λ, the system’s dynamics is dominated by the
sign/value of this root. If |λ| < 1, then the system will converge on the equilibrium
value: it is asymptotically stable. If |λ| > 1 then the system is asymptotically
unstable. We can verify this by considering the canonical form. We have already
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showed that the canonical form of ut = Aut−1 is

zt = Jtz0

In the case of a repeated root this is

zt =
[

λt tλt−1

0 λt

]
z0

Hence

z1t = λtz10 + tλt−1z20

z2t = λtz20

Therefore if |λ| < 1, then
∣∣λt
∣∣ → 0 as t → ∞, consequently z1t → 0 and z2t → 0

as t → ∞. The system is asymptotically stable. If, on the other hand, |λ| > 1, then∣∣λt
∣∣ → ∞ as t → ∞, and z1t → ±∞ and z2t → ±∞ as t → ∞. The system is

asymptotically unstable.
We can conclude for repeated roots, therefore, that

(a) if |λ| < 1 the system is asymptotically stable
(b) if |λ| > 1 the system is asymptotically unstable.

Example 5.11

Consider the following system

xt+1 = 4 + xt − yt

yt+1 = −20 + xt + 3yt

Then x∗ = 12 and y∗ = 4. Representing the system as deviations from equilibrium,
we have

xt+1 − x∗ = (xt − x∗) − (yt − y∗)

yt+1 − y∗ = (xt − x∗) + 3(yt − y∗)

This system can be represented in the form ut = Aut−1 and the matrix of the system
is

A =
[

1 −1
1 3

]

We have already considered this in example 5.6 with results

J =
[

2 1
0 2

]
V =

[−1 1
1 0

]

The solution is then

ut = VJtV−1u0 where Jt =
[

2t t2t−1

0 2t

]

Since the stability properties of ut = Aut−1 are the same as those of its canonical
form, let us therefore consider

zt =
[

2t t2t−1

0 2t

]
z0
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Figure 5.7.

i.e.

z1t = 2tz10 + t2t−1z20

z2t = 2tz20

Clearly, z1t → ∞ and z2t → ∞ as t → ∞ regardless of the initial point. This is
illustrated for the original system using a spreadsheet, as shown in figure 5.7 for
the initial point (0.1, 0.1).

Example 5.12

Consider

xt+1 = 8 + 1.5xt − yt

yt+1 = −15 + xt − 0.5yt

Then x∗ = 108 and y∗ = 62. Taking deviations from equilibrium

xt+1 − x∗ = 1.5(xt − x∗) − (yt − y∗)

yt+1 − y∗ = (xt − x∗) − 0.5(yt − y∗)

and so the matrix of this system is

A =
[

1.5 −1
1 −0.5

]

Using either Mathematica or Maple we can establish that the eigenvalues are
λ = 0.5 (repeated twice) and the Jordan form and transition matrices are

J =
[

0.5 1
0 0.5

]
V =

[
1 1
1 0

]
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Figure 5.8.

Hence,

Jt =
[

0.5t t0.5t−1

0 0.5t

]

and the canonical form of the system is

zt =
[

0.5t t0.5t−1

0 0.5t

]
z0

Hence

z1t = 0.5tz10 + t(0.5t−1)z20

z2t = 0.5tz20

Therefore, z1t → 0 and z2t → 0 as t → ∞ regardless of the initial point. This is
illustrated for the original system using a spreadsheet, as shown in figure 5.8 for
the initial point (5, 5).

5.6.3 Complex conjugate roots

Although complex conjugate roots involve distinct roots and independent eigenvec-
tors, it is still necessary to establish the conditions for stability where r = α + βi
and s = α − βi. For the system ut = Aut−1 where A is a 2 × 2 matrix with con-
jugate roots α ± βi, then the Jordan form is

J =
[

α + βi 0
0 α − βi

]
and Jt =

[
(α + βi)t 0

0 (α − βi)t

]
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Considering the canonical form zt = Vzt−1, then

zt = Jtz0 =
[

(α + βi)t 0
0 (α − βi)t

]
z0

To investigate the stability properties of systems with complex conjugate roots,
we employ two results (see Simon and Blume 1994, appendix A3):

(i) α ± iβ = R(cos θ ± i sin θ )
(ii) (α ± iβ)n = Rn[cos(nθ ) ± i sin(nθ )] (De Moivre’s formula)

where

R =
√

α2 + β2 and tan θ = β

α

From the canonical form, and using these two results, we have

z1t = (α + βi)t z10 = Rt[cos(tθ ) + i sin(tθ )]

z2t = (α − βi)t z20 = Rt[cos(tθ ) − i sin(tθ )]

It follows that such a system must oscillate because as t increases, sin(tθ ) and
cos(tθ ) range between +1 and −1. Furthermore, the limit of z1t and z2t as t → ∞
is governed by the term

∣∣Rt
∣∣ = |R|t. If |R| < 1, then the system is an asymptotically

stable focus; if |R| > 1, then the system is an unstable focus; while if |R| = 1, then
we have a centre.6 We now illustrate each of these cases.

Example 5.13 |R| < 1

Consider the system

xt = 0.5xt−1 + 0.3yt−1

yt = −xt−1 + yt−1

Then the matrix of the system is

A =
[

0.5 0.3
−1 1

]

with characteristic roots r = 0.75 + 0.48734i and s = 0.75 − 0.48734i . Hence

R =
√

(0.75)2 + (0.48734)2 = 0.8944

Such a system should therefore have an asymptotically stable focus. We illustrate
this in figure 5.9, where the original system is set up on a spreadsheet and the
initial point is given by (x0, y0) = (10, 5). As can be seen from the inserted graph,
the system tends in the limit to the origin.

6 See section 3.8 for the properties of R in the complex plane, especially figure 3.15.
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Figure 5.9.

Example 5.14 |R| > 1

Consider the system

xt = xt−1 + 2yt−1

yt = −xt−1 + yt−1

Then the matrix of the system is

A =
[

1 2
−1 1

]

with characteristic roots r = 1 + i
√

2 and s = 1 − i
√

2. Hence

R =
√

(1)2 + (
√

2)2 =
√

3 = 1.73205

Such a system should therefore have an unstable focus. We illustrate this in
figure 5.10, where the original system is set up on a spreadsheet and the ini-
tial point is given by (x0, y0) = (0.5, 0.5). As can be seen from the inserted graph,
the system is an unstable focus, spiralling away from the origin.

Example 5.15 |R| = 1

Consider the system

xt = 0.5xt−1 + 0.5yt−1

yt = −xt−1 + yt−1

Then the matrix of the system is

A =
[

0.5 0.5
−1 1

]
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Figure 5.10.

Figure 5.11.

with characteristic roots r = 0.75 + 0.661438i and s = 0.75 − 0.661438i. Hence

R =
√

(0.75)2 + (0.661438)2 = 1

Such a system should oscillate around a centre, where the centre is the origin. We
illustrate this in figure 5.11, where the original system is set up on a spreadsheet
and the initial point is given by (x0, y0) = (5, 5). As can be seen from the inserted
graph the system does indeed oscillate around the origin.
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5.7 The phase plane analysis of discrete systems

Consider the following system outlining discrete changes in x and y.

�xt+1 = a0 + a1xt + a2yt

�yt+1 = b0 + b1xt + b2yt

where�xt+1 = xt+1 − xt and�yt+1 = yt+1 − yt. In equilibrium, assuming it exists,
at x = x∗ and y = y∗, we have

0 = a0 + a1x∗ + a2y∗

0 = b0 + b1x∗ + b2y∗

Hence, the system in terms of deviations from equilibrium can be expressed

�xt+1 = a1(xt − x∗) + a2(yt − y∗)

�yt+1 = b1(xt − x∗) + b2(yt − y∗)

We can approach the problem in terms of the phase plane. As with the continuous
model we first obtain the equilibrium lines �xt+1 = 0 and �yt+1 = 0. Consider
the following system with assumed signs on some of the parameters

�xt+1 = a0 + a1xt + a2yt a1, a2 > 0

�yt+1 = b0 + b1xt + b2yt b1 > 0, b2 < 0

Then

If �xt+1 = 0 then yt =
(−a0

a2

)
−
(
a1

a2

)
xt

If �yt+1 = 0 then yt =
(−b0

b2

)
−
(
b1

b2

)
xt

Consider now points either side of �xt+1 = 0.

If �xt+1 > 0 then yt >

(−a0

a2

)
−
(
a1

a2

)
xt a2 > 0

If �xt+1 < 0 then yt <

(−a0

a2

)
−
(
a1

a2

)
xt a2 > 0

Similarly for points either side of �yt+1 = 0

If �yt+1 > 0 then yt <

(−b0

b2

)
−
(
b1

b2

)
xt b2 < 0

If �yt+1 < 0 then yt >

(−b0

b2

)
−
(
b1

b2

)
xt b2 < 0

The vector forces are illustrated in figures 5.12(a) and (b).
Combining the information we have the phase plane diagram for a discrete

system, illustrated in figure 5.13. The combined vector forces suggest that the
equilibrium is a saddle point.
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Figure 5.12.

Example 5.16

Given

�xt+1 = −12 + 0.3xt + 3yt

�yt+1 = 4 + 0.25xt − 1.5yt

Then

�xt+1 = 0 implies yt = 4 − 0.1xt

�yt+1 = 0 implies yt = 2.6667 + 0.1667xt

and we obtain the equilibrium values

x∗ = 5 y∗ = 3.5
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Figure 5.13.

In terms of deviations from the equilibrium we have for x

xt+1 = −12 + 1.3xt + 3yt

x∗ = −12 + 1.3x∗ + 3y∗

(xt+1 − x∗) = 1.3(xt − x∗) + 3(yt − y∗)

and for y we have

yt+1 = 4 + 0.25xt − 0.5yt

y∗ = 4 + 0.25x∗ − 0.5y∗

(yt+1 − y∗) = 0.25(xt − x∗) − 0.5(yt − y∗)

Therefore the system expressed as deviations from equilibrium is

xt+1 − x∗ = 1.3(xt − x∗) + 3(yt − y∗)

yt+1 − y∗ = 0.25(xt − x∗) − 0.5(yt − y∗)

The dynamics of the system in the neighbourhood of (x∗, y∗) is therefore deter-
mined by the properties of

A =
[

1.3 3
0.25 −0.5

]

First we require to obtain the eigenvalues of the matrix A:

|A − λI| =
∣∣∣∣ 1.3 − λ 3

0.25 −(0.5 + λ)

∣∣∣∣ = λ2 − 0.8λ − 1.4 = 0

with distinct eigenvalues r = 1.649 and s = −0.849.
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Next we need to obtain the associated eigenvectors, vr and vs, respectively.
Consider r = 1.649, then

A − rI =
[−0.349 3

0.25 −2.149

]

Then (A − rI)vr = 0 and[−0.349 3
0.25 −2.149

] [
vr1
vr2

]
=
[

0
0

]

then

−0.349vr1 + 3vr2 = 0

0.25vr1 − 2.149vr2 = 0

Let vr2 = 1, then vr1 = 8.596, which arises from either equation.
Similarly, for s = −0.849 then

A − sI =
[

2.149 3
0.25 0.349

]

and

(A − sI)vs =
[

2.149 3
0.25 0.349

] [
vs1
vs2

]

giving

2.149vs1 + 3vs2 = 0

0.25vs1 + 0.349vs2 = 0

Let vs2 = 1, then vs1 = −1.396. Hence the two eigenvectors are

vr =
[

8.596
1

]
, vs =

[−1.396
1

]

with associated matrix

V =
[

8.596 −1.396
1 1

]

Hence, our solution is

ut = V
[

(1.649)t 0
0 (−0.849)t

]
V−1u0

Given some initial values (x0, y0) we could solve explicitly for ut.
But we can gain insight into the dynamics of this system by looking closely at

the phase plane. We have already established that for

�xt+1 = 0 then yt = 4 − 0.1xt

�yt+1 = 0 then yt = 2.6667 + 0.1667xt

These are drawn in figure 5.14.
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Figure 5.14.

We can also readily establish that

if �xt+1 > 0 then yt > 4 − 0.1xt and x is rising

if �xt+1 < 0 then yt < 4 − 0.1xt and x is falling

and

if �yt+1 > 0 then yt > 2.6667 + 0.1667xt and y is rising
if �yt+1 < 0 then yt < 2.6667 + 0.1667xt and y is falling

These vector forces are also illustrated in figure 5.14. The figure also illustrates that
a saddle point equilibrium is present with a stable arm S1S′

1 and an unstable arm
S2S′

2. In general, the system will move away from the equilibrium point, except
for initial values lying on the stable arm S1S′

1.
Although the vector force diagram of discrete systems can provide much in-

formation on the dynamics of the system, the stability properties usually can be
obtained only from its mathematical properties.

5.8 Internal and external balance

We can illustrate the use of the phase plane by considering an important policy issue
that has been discussed in the literature, namely internal and external balance.7

Having set up a macroeconomic model, a fixed target policy is then imposed on
it. Two fixed targets are chosen: the level of real income and the balance on the
balance of payments. Real income is considered set at the full employment level,

7 See Shone (1989, chapter 11) and the seminal article by Mundell (1962).



240 Economic Dynamics

which denotes the condition of internal balance.8 External balance represents a zero
balance on the combined current and capital account of the balance of payments.
Following Tinbergen’s analysis (1956), there are two policy instruments necessary
for achieving the two policy objectives. These are government spending, which
is used to achieve internal balance, and the interest rate, which is used to achieve
external balance (by influencing explicitly net capital flows).

Suppose we set up an adjustment on the part of the two instruments that assumes
that the change in the policy variable is proportional to the discrepancy between
its present level and the level to achieve its target. More formally we have

�gt+1 = gt+1 − gt = k1(gt − g∗
t ) k1 < 0

�rt+1 = rt+1 − rt = k2(rt − r∗t ) k2 < 0

where g∗
t is the target level of government spending in period t, and r∗t is the target

interest rate in period t.

Example 5.17

Following Shone (1989) we have the following two equations relating gt and rt
derived from a macroeconomic model,

IB rt = −3.925 + 0.5gt

XB rt = 7.958 + 0.186gt

where IB denotes internal balance and XB denotes external balance. In the case
of internal balance we require g∗

t which is equal to g∗
t = 7.85 + 2rt, while for

external balance we require r∗t which is equal to r∗t = 7.958 + 0.186gt. Then

�gt+1 = k1(gt − 7.85 − 2rt) k1 < 0

�rt+1 = k2(rt − 7.958 − 0.186gt) k2 < 0

The isoclines are where �gt+1 = 0 and �rt+1 = 0 and the equations of which no
more than represent the internal balance and external balance lines, respectively.
The stationary values of g and r are where the two isoclines intersect, giving
g∗ = 37.84 and r∗ = 15. The situation is illustrated in figure 5.15.

The vectors of force are readily established (noting k1 and k2 are negative):

if �gt+1 > 0 then rt > −3.925 + 0.5gt and gt is rising

if �gt+1 < 0 then rt < −3.925 + 0.5gt and gt is falling

Also

if �rt+1 > 0 then rt < 7.958 + 0.186gt and rt is rising

if �rt+1 < 0 then rt > 7.958 + 0.186gt and rt is falling

which are also illustrated in figure 5.15.
The use of the spreadsheet is convenient in considering this problem. To do this

we need to express gt+1 and rt+1 in terms of gt and rt. We assume that k1 = −0.5

8 Internal balance can also be considered as a suitable income–inflation combination. See Shone
(1979).
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Figure 5.15.

Figure 5.16.

and k2 = −0.75. We then have

gt+1 = 3.925 + 0.5gt + rt

rt+1 = 5.9685 + 0.1395gt + 0.25rt

The quadrant that typified the UK economy for periods in the 1960s is quadrant IV
(figure 5.15), which has the economy with a balance of payments deficit (below
the XB curve) and unemployment (above the IB curve). Suppose, then, that the
economy begins at point (g0, r0) = (20, 9). The trajectory the economy follows is
shown in figure 5.16.

It is very easy to use this spreadsheet to investigate the path of the economy in
any of the four quadrants, and we leave this as an exercise. What can readily be
established is that, regardless of the initial point, the economy moves towards the
equilibrium point where the two isoclines intersect.
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Example 5.18

But we have presupposed that government spending is used to achieve internal
balance and the rate of interest is used to achieve external balance. Suppose we
assume the opposite assignment: set interest rates to achieve internal balance and
government spending to achieve external balance. Then

r∗t = −3.925 + 0.5gt

and

g∗
t = −42.785 + 5.376rt

Then

�rt+1 = k3(rt − r∗t ) = k3(rt + 3.925 − 0.5gt) k3 < 0

�gt+1 = k4(gt − g∗
t ) = k3(gt + 42.785 − 5.376rt) k4 < 0

Setting �rt+1 = 0 and �gt+1 = 0 gives rise to the internal balance isocline and
the external balance isocline, respectively, leading to the same equilibrium point
(g∗, r∗) = (37.85, 15), as shown in figure 5.17. However, the vector forces are now
different:

if �rt+1 > 0 then rt < −3.925 + 0.5gt and rt is rising

if �rt+1 < 0 then rt > −3.925 + 0.5gt and rt is falling

Similarly

if �gt+1 > 0 then rt > 7.958 + 0.186gt and gt is rising

if �gt+1 < 0 then rt < 7.958 + 0.186gt and gt is falling

From figure 5.17 it is apparent that the equilibrium point E is a saddle point. Under
this assignment economies finding themselves in sectors I and III will converge
on the equilibrium only so long as they remain in these sectors, although this is

Figure 5.17.
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Figure 5.18.

not guaranteed (see exercise 9). Any point in sectors II and IV, other than the
equilibrium point, however, will move away from equilibrium (figure 5.17).

Given this alternative assignment, and assuming k3 = −0.75 and k4 = −0.5 we
obtain the two equations

gt+1 = −21.3925 + 0.5gt + 2.688rt

rt+1 = −2.94375 + 0.375gt + 0.25rt

Taking a point once again in quadrant IV, but now close to the equilibrium, point
(37, 14), the spreadsheet calculations quite readily show the economy diverg-
ing from the equilibrium, as illustrated in figure 5.18, where we plot only up to
period 9.9

Again it is very easy to use this spreadsheet to investigate the path of the economy
for any initial point in any of the four quadrants. This we leave as an exercise.

Comparing figures 5.15 and 5.17 leads to an important policy conclusion. It is
not the slopes of the internal and external balance lines per sewhich governs the dy-
namics, but rather the policy assignment. This was Mundell’s conclusion (1962).
He put it differently and claimed that stability requires pairing the instrument with
the target over which it has the greatest relative impact: the principle of effective
market classification. Government spending has the greatest relative impact on
income and hence on achieving internal balance. This immediately implies that
the interest rate has the greatest relative impact on the balance of payments, and
hence on achieving external balance. Consequently, the assignment represented in
figure 5.15 is stable while that in figure 5.17 is unstable.

This approach to dynamics is readily generalised. Consider again internal and
external balance, but now using the two instruments government spending, g, and
the exchange rate, S. The situation is shown in figure 5.19 (Shone 1989, chapter 11).

We can capture this situation with the two linear equations

IB St = a0 − a1gt a1 > 0

XB St = b0 + b1gt b1 > 0

9 Note how sensitive discrete systems can be to initial conditions. Placing the ‘equilibrium’ values
(37.847,14.9985) as the initial conditions, still has the system diverging!
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Figure 5.19.

where a0 > b0. Equilibrium is readily found to be

g∗ = a0 − b0

a1 + b1
S∗ = a0b1 + a1b0

a1 + b1

However, in order to consider the dynamics of this point we need to specify some
assignment. Suppose we assign government spending to internal balance and the
exchange rate to external balance, satisfying

�gt+1 = gt+1 − gt = k1(gt − g∗
t ) k1 < 0

�St+1 = St+1 − St = k2(St − S∗
t ) k2 < 0

The equations for g∗
t and S∗

t are

g∗
t = (a0/a1) − (1/a1)St

S∗
t = b0 + b1gt

Hence

IB �gt+1 = k1[gt − (a0/a1) + (1/a1)St]

XB �St+1 = k2[St − b0 − b1gt]

It is readily established (noting k1 and k2 are negative) that:

if �gt+1 > 0 then St < a0 + a1gt and gt is rising

if �gt+1 < 0 then St > a0 + a1gt and gt is falling

if �St+1 > 0 then St < b0 + b1gt and St is rising

if �St+1 < 0 then St > b0 + b1gt and St is falling
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Figure 5.20.

with resulting forces illustrated in figure 5.19. This quite clearly illustrates an
anticlockwise motion. What we cannot establish is whether the system converges
on the equilibrium or moves away from it.

Example 5.19

To illustrate this suppose we have for internal and external balance the equations

IB St = 20 − 2gt

XB St = −4 + 4gt

with equilibrium g∗ = 2.5 and S∗ = 10. Further, suppose adjustment is of the form

�gt+1 = −0.75(gt − g∗
t )

�St+1 = −0.5(St − S∗
t )

where

g∗
t = −2.5 + 0.5St

S∗
t = 20 − 4gt

then

gt+1 = −1.875 + 0.25gt + 0.375St

St+1 = 10 − 2gt + 0.5St

Given an initial point (g0, S0) = (4, 12), figure 5.20 shows the typical anticlockwise
spiral trajectory that is tending towards the equilibrium.

5.9 Nonlinear discrete systems

Just as we can encounter nonlinear equations of the form xt = f (xt−1), so we can
have nonlinear systems of equations of the form

xt = f (xt−1, yt−1)

yt = g(xt−1, yt−1)
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where we assume just a one-period lag. A steady state (x∗, y∗) exists for this system
if it satisfies

x∗ = f (x∗, y∗)

y∗ = g(x∗, y∗)

It is possible to investigate the stability properties of this nonlinear system in the
neighbourhood of the steady state so long as f and g are continuous and differ-
entiable. Under such conditions we can expand the system in a Taylor expansion
about (x∗, y∗), i.e.

xt − x∗ = ∂ f (x∗, y∗)

∂xt−1
(xt−1 − x∗) + ∂ f (x∗, y∗)

∂yt−1
(yt−1 − y∗)

yt − y∗ = ∂g(x∗, y∗)

∂xt−1
(xt−1 − x∗) + ∂g(x∗, y∗)

∂yt−1
(yt−1 − y∗)

Let

a11 = ∂ f (x∗, y∗)

∂xt−1
, a12 = ∂ f (x∗, y∗)

∂yt−1

a21 = ∂g(x∗, y∗)

∂xt−1
, a22 = ∂g(x∗, y∗)

∂yt−1

then

xt − x∗ = a11(xt−1 − x∗) + a12(yt−1 − y∗)

yt − y∗ = a21(xt−1 − x∗) + a22(yt−1 − y∗)

or [
xt − x∗

yt − y∗

]
=
[
a11 a12

a21 a22

] [
xt−1 − x∗

yt−1 − y∗

]

i.e.

ut = Aut−1

which is no more than a first-order linear system with solution

ut = VDtV−1u0

and where D is the diagonal matrix with distinct eigenvalues r and s on the main
diagonal, V = [ vr vs] is the matrix of eigenvectors associated with r and s, and
u0 is a vector of initial values.

It should be noted that the matrix A is simply the Jacobian matrix, J, of the
nonlinear system evaluated at a fixed point (x∗, y∗). Under certain restrictions on
A (or J), the linear system ‘behaves like’ the nonlinear system. The situation can
be illustrated by means of figure 5.21. The nonlinear system, N, can be mapped
into an equivalent linear system, L, by the mapping F, such that the qualitative
properties of the linear system in the neighbourhood of 0 are the same as that of
the nonlinear system in the neighbourhood of 0.10 In other words, the two systems
are topologically equivalent.

10 F is then said to be a diffeomorphism.
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F

Figure 5.21.

What are these restrictions? We require tr(J) 
= 0 and det(J) 
= 0.11 Since the two
systems are topologically equivalent, then the dynamics of N in the neighbourhood
of 0 can be investigated by means of the linear system in the neighbourhood of 0. We
do this by establishing the eigenvalues and eigenvectors of J. More specifically,
we require conditions to be imposed on the eigenvalues. If r and s are the two
eigenvalues then the systems are topologically equivalent if:

(1) r and s are distinct real roots and |r| < 1 and |s| < 1.
(2) r and s are distinct but complex and lie strictly inside the unit circle.12

If r and s in the neighbourhood of (x∗, y∗) satisfy this second condition, then (x∗, y∗)
is said to be a hyperbolic fixed point.

Exercises

1. Convert example 5.4 into a system of difference equations and establish
the qualitative properties of the system in terms of the isoclines and vector
forces. Does this confirm the stability established in section 5.2?

2. Convert example 5.6 into a system of difference equations and establish
the qualitative properties of the system in terms of the isoclines and
vector forces. Does this illustrate that the equilibrium point is a saddle
path solution?

3. For example 5.4 use a spreadsheet to verify that the system converges
on the fixed point (x∗, y∗) = (6.4, 20.8) for each of the following initial
points: (3,10), (3,30), (10,10), (10,30).

4. Set up example 5.5 on a spreadsheet and investigate its characteristics. In
particular, consider:
(a) different initial values
(b) plot x(t), y(t), and z(t) against t
(c) plot y(t) against x(t)
(d) plot z(t) against x(t)
(e) plot x(t) against z(t).

11 An alternative way to state the condition is that J must be invertible.
12 See sub-section 3.8.1, p. 110.
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5. Use either Mathematica or Maple and do a 3D plot of the solution to
example 5.5 for the initial point u0 = (3, −4.3).

6. Use either Mathematica or Maple and derive a 3D directional field for
example 5.5. Does this give you any more insight into the dynamics of
the system over what you gained from question 4?

7. For each of the following systems:
(a) find the eigenvalues of the system
(b) find the eigenvectors of the system
(c) establish the diagonal matrix of the system.

(i) xt+1 = yt
yt+1 = −xt

(ii) xt+1 = −2xt + yt
yt+1 = xt + 2yt

(iii) xt+1 = 3xt − 4yt
yt+1 = xt − 2yt

8. For the model

IB: rt = −3.925 + 0.5gt

XB: rt = 7.958 + 0.186gt

where

�gt+1 = −0.5(gt − g∗
t )

�rt+1 = −0.75(rt − r∗t )

use a spreadsheet to plot the trajectories for the following initial values:
(a) (g0,r0) = (20,12)
(b) (g0,r0) = (20,20)
(c) (g0,r0) = (50,10)
(d) (g0,r0) = (50,20)

9. For the assignment of interest rates to achieve internal balance and govern-
ment spending to achieve external balance, we have the set of equations

gt+1 = −21.3925 + 0.5gt + 2.688rt

rt+1 = −2.94375 + 0.375gt + 0.25rt

(a) Take four initial points, one in each of the sectors represented in
figure 5.17, and use a spreadsheet to investigate the economy’s tra-
jectory.

(b) Take a variety of points in sectors I and III and establish whether the
trajectories remain in these sectors.

(c) Take a point on the stable arm and, using a spreadsheet, establish that
the trajectory tends to the equilibrium point.

10. For the system

IB: St = 5 + 2gt

XB: St = 20 − 4gt
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where

�gt+1 = −0.75(gt − g∗
t )

�St+1 = −0.5(St − S∗
t )

and

g∗
t = −2.5 + 0.5St

S∗
t = 20 − 4gt

for the target equations, using a spreadsheet establish the trajectories for
the following initial conditions:
(a) (g0,S0) = (2.5,12)
(b) (g0,S0) = (3,10)
(c) (g0,S0) = (1,5)
(d) (g0,S0) = (1,12)

11. Let

mA =
[

2 3
1 −2

]
, mB =

[
4 −2
1 −1

]
, mC =

[
3 2 1

−1 0 3

]

Using any software package, perform the following operations
(i) Trace and determinant of mA × mB
(ii) Transpose of mA × mC

(iii) Inverse of mB
(iv) Eigenvalues and eigenvectors of mA and mB
(v) Characteristic polynomial of mA.

12. Solve the following system using a software package

xt+1 = −5 + xt − 2yt

yt+1 = 4 + xt − yt

x0 = 1, y0 = 2

13. What is the Jordan form, J, and the transition matrix, V, of the following
matrix?

mA =
[

1 −2
1 −1

]

Hence show that V−1.mA.V = J.
14. For the system in question 12, set this up on a spreadsheet.

(i) What is the fixed point of the system?
(ii) Plot the trajectory from the initial point. Does this trajectory converge

on the fixed point?
15. For the following system, establish the Jordan form and the transition

matrix. Represent the original system and its canonical form on a spread-
sheet, and hence show whether the system is asymptotically stable.

xt = 5.6 − 0.4xt−1

yt = 3.5 + 0.4xt−1 − 0.5yt−1

x0 = 2, y0 = 1



250 Economic Dynamics

Additional reading

Discrete systems of equations are discussed less frequently than continuous sys-
tems of equations, but additional material on the mathematical contents of this
chapter can be found in Azariades (1993), Chiang (1984), Elaydi (1996), Goldberg
(1961), Griffiths and Oldknow (1993), Holmgren (1994), Kelley and Peterson
(2001), Lynch (2001), Sandefur (1990), Shone (2001), Simon and Blume (1994)
and Tu (1994). On internal and external balance, references will be found in the
main body of the chapter in section 5.8.



CHAPTER 6

Optimal control theory

6.1 The optimal control problem

Consider a fish stock which has some natural rate of growth and which is harvested.
Too much harvesting could endanger the survival of the fish, too little and profits
are forgone. Of course, harvesting takes place over time. The obvious question is:
‘what is the best harvesting rate, i.e., what is the optimal harvesting?’ The answer
to this question requires an optimal path or trajectory to be identified. ‘Best’ itself
requires us to specify a criterion by which to choose between alternative paths.
Some policy implies there is a means to influence (control) the situation. If we
take it that x(t) represents the state of the situation at time t and u(t) represents the
control at time t, then the optimal control problem is to find a trajectory {x(t)}
by choosing a set {u(t)} of controls so as to maximise or minimise some objective
that has been set. There are a number of ways to solve such a control problem, of
which the literature considers three:

(1) Calculus of variations
(2) Dynamic programming
(3) Maximum principle.

In this chapter we shall deal only with the third, which now is the dominant ap-
proach, especially in economics. This approach is based on the work of Pontryagin
et al. (1962), and is therefore sometimes called the Pontryagin maximum
principle.

Since minimising some objective function is the same as maximising its nega-
tive value, then we shall refer in this chapter only to maximising some objective
function. Second, our control problem can either be in continuous time or in dis-
crete time. To see the difference and to present a formal statement of the optimal
control problem from the maximum principle point of view, consider table 6.1. In
each case, the objective is to maximise J and so find a trajectory {x(t)} by choos-
ing a suitable value {u(t)}. What table 6.1 presents is the most general situation
possible for both the continuous and discrete formulations of the optimal control
problem under the maximisation principle. There are some special cases, the most
important being the distinction between finite and infinite horizon models. In the
latter case the terminal time period is at infinity. All the problems we shall discuss
in this chapter involve autonomous systems, and so t does not enter explicitly into
V, f or F. An important aspect of control problems is that of time preference. The
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Table 6.1 The control problem

Continuous Discrete

max
{u(t)}

J =
∫ t1

t0

V(x, u, t)dt + F(x1, t)

ẋ = f (x, u, t)
x(t0) = x0

x(t1) = x1

{u(t)} ∈ U

max
{ut}

J =
T−1∑
t=0

V(xt, ut, t) + F(xT , t)

xt+1 − xt = f (xt, ut, t)
xt = x0 when t = 0
xt = xT when t = T
ut ∈ U

t0 (or t = 0) is initial time
t1 (or T) is terminal time
x(t) = {x1(t), . . . , xn(t)} or xt = {x1t, . . . , xnt} n-state variables
x(t0) = x0 or xt = x0 for t = 0 is the initial state
x(t1) = x1 or xt = xT for t = T is the final state (or terminal state)
u(t) = {u1(t), . . . , um(t)} or ut = {u1t, . . . , umt} m-control variables
{u(t)} is a continuous control trajectory t0 ≤ t ≤ t1
{ut} is a discrete control trajectory 0 ≤ t ≤ T
U is the set of all admissible control trajectories
ẋ(t) = f (x, u, t) or xt+1 − xt = f (xt, ut, t) denote the equations of motion
J is the objective function
V(x(t), u(t), t) or V(xt, ut, t) is the intermediate function
F(x1, t) or F(xT , t) is the final function

simplest models involve no discounting. It is sometimes easier to consider a model
with no discounting, and then to consider the more realistic case of the same model
with discounting. In many models the terminal value F(xT ) is zero, but this need
not always be so.

A typical continuous optimal control problem incorporating the assumptions of
(1) a finite time horizon, T , (2) only autonomous equations, (3) a zero function in
the terminal state and, (4) only one state variable and one control variable is

max
{u(t)}

J =
∫ T

0
V(x, u)dt

ẋ = f (x, u)

x(0) = x0

x(T) = xT

(6.1)

where the state variable, x and the control variable, u, are both functions of time t.
The situation is illustrated in figure 6.1. The paths u∗ and u∗∗ both constitute so-

lutions to the differential equation ẋ = f (x, u). The problem, however, is to choose
one path that maximises the relation J and that satisfies the terminal condition
x(t∗) = xT and x(t∗∗) = xT .

6.2 The Pontryagin maximum principle:
continuous model

As just pointed out, the objective is to find a control trajectory {u(t)} that maximises
J and takes the system from its present state x0 to its terminal state xT. What is
required, therefore, is a ‘set of weights’ that allows a comparison of the different
trajectories of alternative controls. Also note that the emphasis of this formulation
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xT

Figure 6.1.

of the control problem is to find the optimal control trajectory {u(t)}. Once this
is known the optimal state trajectory {x(t)} can be computed. The ‘weights’ are
achieved by defining a Hamiltonian for the control problem (6.1).

As with Lagrangian multipliers, let λ(t) denote the Lagrangian multiplier for
the constraint ẋ = f (x, u). This is referred to as the costate variable or adjoint
variable. Then

L =
∫ T

0
V(x, u)dt +

∫ T

0
λ[ f (x, u) − ẋ]dt

=
∫ T

0
[V(x, u) + λ f (x, u) − λẋ]dt

The Hamiltonian function is defined as

H(x, u) = V(x, u) + λ f (x, u) (6.2)

Hence

L =
∫ T

0
[H(x, u) − λẋ]dt (6.3)

Equation (6.3) can be further transformed by noting that (see exercise 2)

−
∫ T

0
λdt =

∫ T

0
xλ̇dt − [λ(T )x(T ) − λ(0)x(0)] (6.4)

which allows us to express L as

L =
∫ T

0
[H(x, u) + λ̇x]dt − [λ(T)x(T) − λ(0)x(0)] (6.5)

Consider what happens to the state variable when the control variable changes,
i.e., let {u(t)} change to {u(t) + �u(t)} with the result on the state trajectory from
{x(t)} to {x(t) + �x(t)}. Then the change in the Lagrangian, �L, is

�L =
∫ T

0

[
∂H

∂x
dx + ∂H

∂u
du + λ̇dx

]
dt − λ(T)dxT

=
∫ T

0

[
∂H

∂u
du +

(
∂H

∂x
+ λ̇

)
dx

]
dt − λ(T)dxT
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For a maximum �L = 0. This implies the necessary conditions:

(i)
∂H

∂u
= 0 0 ≤ t ≤ T

(ii) λ̇ = −∂H

∂x
0 ≤ t ≤ T

(iii) λ(T) = 0 (or x(T) = xT if xT is known)

Condition (i) states that the Hamiltonian function is maximised by the choice of
the control variable at each point along the optimum trajectory – where we are
assuming an interior solution and no constraint on the control variable. Condition
(ii) is concerned with the rate of change of the costate variable, λ. It states that the
rate of change of the costate variable is equal to the negative of the Hamiltonian
function with respect to the corresponding state variable.1 Condition (iii) refers
to the costate variable in the terminal state, and indicates that it is zero; or if the
terminal value x(T) = xT is given then dxT = 0.

From the definition of the Hamiltonian function, the differential equation for
the state variable can be expressed in terms of it as follows

ẋ = f (x, u) = ∂H

∂λ

We therefore arrive at the following procedure. Add a costate variable λ to the
problem and define a Hamiltonian functionH(x, u) = V(x, u) + λ f (x, u) and solve
for trajectories {u(t)}, {λ(t)}, and {x(t)} satisfying:

(i)
∂H

∂u
= 0 0 ≤ t ≤ T

(ii) λ̇ = −∂H

∂x
0 ≤ t ≤ T

(iii) ẋ = ∂H

∂λ
= f (x, u)

(iv) x(0) = x0

(v) λ(T) = 0 (or x(T) = xT )

(6.6)

These results can be generalised for x1(t), . . . , xn(t) state variables,
λ1(t), . . . , λn(t) costate variables and u1(t), . . . , um(t) control variables:

(i)
∂H

∂ui
= 0 i = 1, . . . ,m 0 ≤ t ≤ T

(ii) λ̇ = −∂H

∂xi
i = 1, . . . , n 0 ≤ t ≤ T

(iii) ẋ = ∂H

∂λi
= f (x, u) i = 1, . . . , n

(6.7)

1 If there were, for example, two state variables x1 and x2 and two corresponding costate variables λ1
and λ2, then

λ̇1 = −∂H/∂x1 0 ≤ t ≤ T
λ̇2 = −∂H/∂x2 0 ≤ t ≤ T
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(iv) xi(0) = x0
i i = 1, . . . , n

(v) λi(T) = 0 i = 1, . . . , n (or xi(T) = xTi i = 1, . . . n)

We shall now illustrate the continuous control problem by considering three
examples. In each case we have the initial value and the terminal value for the state
variable, i.e., x(0) = x0and x(T) = xT are given, as of course is T .

Example 6.1

In this first example we consider a boundary solution. The control problem is:

max
{u}

∫ 1

0
5x dx

ẋ = x + u
x(0) = 2, x(1) free
u(t) ∈ [0, 3]

The Hamiltonian for this problem is

H(x, u) = V(x, u) + λ f (x, u)
= 5x + λ(x + u)
= (5 + λ)x + λu

With first-order conditions:

(i)
∂H

∂u
= λ

(ii) λ̇ = −∂H

∂x
= −(5 + λ)

(iii) ẋ = x + u

(iv) x(0) = 2

(v) λ(1) = 0

Condition (i) is no help in determining u∗. If λ > 0 then H is a maximum at u = 3
the boundary, hence u∗(t) = 3, as shown in Figure 6.2(a).

From (ii) we have

λ̇ = −λ − 5

λ∗(t) = ke−t − 5

λ∗(1) = ke−1 − 5 = 0

k = 5e1

... λ∗(t) = 5e1−t − 5

Since u∗(t) = 3

ẋ∗ = x∗ + 3

x∗(t) = −3 + ket

x(0) = −3 + ke0 = 2

... k = 5
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Figure 6.2.

Hence

x∗(t) = −3 + 5et

Although the control variable remains constant throughout, the state variable in-
creases from x(0) = 2, as shown in figure 6.2(b).

Example 6.2

The control problem is

max
{u}

∫ 1

0
u2 dt

ẋ = −u

x(0) = 1

x(1) = 0

The Hamiltonian for this problem is

H(x, u) = V(x, u) + λ f (x, u)

= u2 + λ(−u)
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with first-order conditions:

(i)
∂H

∂u
= 2u − λ = 0

(ii) λ̇ = −∂H

∂x
= 0

(iii) ẋ = −u
(iv) x(0) = 1
(v) x(1) = 0

From (i)

2u = λ

u = 1
2λ

Thus

ẋ = −λ

2
λ̇ = 0

Solving these with a software package we obtain

x(t) = c1 − λt

2
λ(t) = c2

But x(0) = 1 so

1 = c1 − 0

2
or c1 = 1

Similarly x(1) = 0

x(1) = 1 − λ

2
= 0

... λ = 2 or c2 = 2

x∗ = 1 − 2t

2
= 1 − t

u∗ = 1
2λ = 1

These optimal paths are illustrated in figure 6.3.

Example 6.3

The control problem is

max
{u}

−
∫ 1

0

1
4 (x2 + u2)dt

ẋ = x + u

x(0) = 2, x(1) = 0
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Figure 6.3.

The Hamiltonian for this problem is

H(x, u) = V(x, u) + λ f (x, u)

= −(x2 + u2)

4
+ λ(x + u)

With first-order conditions

(i)
∂H

∂u
= −u

2
+ λ = 0 implying u = 2λ

(ii) λ̇ = −∂H

∂x
= −

(−x

2
+ λ

)
= 1

2x − λ

(iii) ẋ = x + u implying ẋ = x + 2λ

Substituting (i) into (iii) and eliminating u, we arrive at two differential equations
in terms of x and λ

ẋ = x + 2λ

λ̇ = 1
2x − λ

Although a simple set of differential equations, the solution values are rather
involved, especially when solving for the constants of integration. The general
solution is2

x(t) = c1e
√

2 t + c2e−√
2 t

λ(t) = c1

2
(
√

2 − 1)e
√

2 t − c2

2
(
√

2 + 1)e−√
2 t

However we can solve for c1 and c2 by using the conditions x(0) = 2 and x(1) = 0
as follows

x(0) = c1 + c2 = 2

x(1) = c1e
√

2 t + c2e−√
2 t = 0

2 The software packages give, on the face of it, quite different solutions. They are, however, identical.
The results provided here are a re-arrangement of those provided by Maple.
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Figure 6.4.

Solving we get c1 = −0.1256 and c2 = 2.1256. All this can be done with the help
of computer software programs, with the resulting trajectories for x∗ and u∗ shown
in figure 6.4(a) and (b).

What these examples show is a pattern emerging for solving the control problem.
The steps are:

(1) Specify the Hamiltonian and obtain the maximisation conditions
(2) Use the equation ∂H/∂u to solve for u in terms of the costate variable λ

(3) Obtain two differential equations: one for the state variable, x, and one
for the costate variable, λ

(4) Solve the differential equations deriving general solutions
(5) Use the conditions on x(0) and x(T) to obtain values for the coefficients

of integration
(6) Substitute the optimal path for λ∗ into the equation for u to obtain the

optimal path u∗ for the control variable.

6.3 The Pontryagin maximum principle: discrete model

The discrete time control model based on the maximum principle of Pontryagin
takes a similar approach to the continuous time formulation so we can be brief,
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although some care must be exercised in the use of time periods. Again we let x
denote the only state variable, u the only control variable and λ the costate variable.
Our problem amounts to:

max
{ut}

J =
T−1∑
t=0

V(xt, ut)

xt+1 − xt = f (xt, ut)

x0 = a

(6.8)

The Lagrangian is then

L =
T−1∑
t=0

{V(xt, ut) + λt+1[ f (xt, ut) − (xt+1 − xt)]}(6.9)

Define the discrete form Hamiltonian function

H(xt, ut) = V(xt, ut) + λt+1 f (xt, ut)(6.10)

then

L =
T−1∑
t=0

[H(xt, ut) − λt+1(xt+1 − xt)]

which can be maximised by satisfying the conditions

∂L

∂ut
= ∂H

∂ut
= 0 t = 0, . . . ,T − 1

∂L

∂xt
= ∂H

∂xt
+ λt+1 − λt = 0 t = 1, . . . ,T − 1

∂L

∂λt+1
= ∂H

∂λt+1
− (xt+1 − xt) t = 0, . . . ,T − 1

∂L

∂xT
= −λT = 0

More succinctly:

(i)
∂H

∂ut
= 0 t = 0, . . . ,T − 1

(ii) λt+1 − λt = −∂H

∂xt
t = 1, . . . ,T − 1

(iii) xt−1 − xt = ∂H

∂λt+1
= f (xt, ut) t = 0, . . . ,T − 1

(iv) λT = 0

(v) x0 = a

(6.11)

It is useful to verify these conditions for, say, T = 3, most especially noting the
range for t for condition (ii).

But how do we go about solving such a model? Unlike the continuous time
model it is not simply solving two differential equations. It is true that in each time
period we have two difference equations for the state and costate variables that
require solving simultaneously. One solution method is to program the problem, as
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in Conrad and Clark (1987). A simpler method in the case of numerical examples
is to use a spreadsheet. To illustrate the solution method by means of a spreadsheet,
consider the following example.

Example 6.43

Iron ore sells on the market at a constant price p per period but costs ct = by2t /xt,
where xt denotes the remaining reserves at the beginning of period t and yt is
the production in period t. The mine is to be shut down in period 10. What is
the optimal production schedule {y∗

t } for t = 0, . . . , 9 given p = 3, b = 2 and the
initial reserves x0 = R = 600 tons? (Assume no discounting over the period.)

Let us first set up the model in general terms, replacing ut by yt. The objective
function V(xt, yt) is no more than the (undiscounted) profit, namely

V(xt, yt) = pyt − by2
t

xt
=
(
p − byt

xt

)
yt

Next we note that if xt denotes the remaining reserves at the beginning of period
t, then xt+1 = xt − yt or xt+1 − xt = −yt. Thus, our Hamiltonian function is

H(xt, yt) =
(
p − byt

xt

)
yt − λt+1yt

Our optimality conditions are therefore:

(i)
∂H

∂yt
= p − 2byt

xt
− λt+1 = 0 t = 0, . . . , 9

(ii) λt+1 − λt = −∂H

∂xt
= −

(
by2

t

x2
t

)
t = 1, . . . , 9

(iii) xt−1 − xt = −yt t = 0, . . . , 9

(iv) x0 = R

(v) λT = 0

To solve this problem for a particular numerical example, let p = 3, b = 2 and
R = 600. The computations are set out in detail in figure 6.5. In doing these com-
putations we begin in period 10 and work backwards (see exercise 1 on backward
solving).

Since λ10 = 0 then from (i) we know

3 − 4

(
y9

x9

)
= 0

which allows us to compute y9/x9. Having solved for y9/x9 we can then use
condition (ii) to solve for λ9. We do this repeatedly back to period 0. This gives us
columns 2 and 3 of the spreadsheet. Since x0 = R = 600, we have the first entry
in the x(t) column. Then y0 is equal to x0(y0/x0) and finally x1 = x0 − y0. This
allows us to complete the final two columns.

The optimal production path {y∗
t } is therefore given by the final column in

figure 6.5 and its path, along with that of the reserves, is shown in figure 6.6(a).

3 This is adapted from Conrad and Clark (1987, p. 20).
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Figure 6.5.

Given the computations the trajectory for (λ∗
t , x

∗
t ) can also be plotted, which is

shown in figure 6.6(b), which are direct plottings from a spreadsheet.
In this example we solved the discrete optimisation problem by taking account of

the first-order conditions and the constraints. We employed the spreadsheet merely
as a means of carrying out some of the computations. However, spreadsheets come
with nonlinear programming algorithms built in. To see this in operation, let us
re-do the present example using Excel’s nonlinear programming algorithm, which
is contained in the Solver add-on package.4 The initial layout of the spreadsheet
is illustrated in figure 6.7.

It is important to note that when setting out this initial spreadsheet we place in
cells B7 to B16 some ‘reasonable’ numbers for extraction. Here we simply assume
a constant rate of extraction of 60 throughout the 10 periods t = 0 to t = 9. Doing
this allows us to compute columns D and E. Column D sets λ10 = 0 and then
copies backwards the formula

λt = λt+1 +
(
by2

t

x2
t

)

for cells D16 to D8 (no value is placed in cell D7). The values in column E are
the values for the objective function V(xt, yt). The value for L, which is the sum
of the values in column E for periods t = 0 to t = 9, is placed in cell E19. At the
moment this stands at the value 1448.524.

4 On using Excel’s Solver see Whigham (1998), Conrad (1999) and Judge (2000).
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Figure 6.6.

Figure 6.7.
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Figure 6.8.

Of course it would be most unlikely if L were at a maximum with such arbitrary
numbers for extraction. The maximum control problem is to maximise the value
in cell E19, i.e., maximise L, subject to any constraints and production flows. The
constraints are already set in the spreadsheet, although we do require others on
the sign of variables. First move the cursor to cell E19 and then invoke the solver.
By default this is set to maximise a cell value, namely cell E19. We next need to
inform the programme which is the control variable and hence which values can
be changed, i.e., what cells it can change in searching for a maximum. These are
cells B7 to B16. In specifying the above problem we implicitly assumed xt and yt
were both positive. In particular, we assumed the level of production, the control
variable, was positive. We need to include this additional constraint in the Solver so
that any negative values are excluded from the search process. The Solver window
is shown in figure 6.8.

Once all this information has been included the Solver can do its work. The
result is shown in the spreadsheet in figure 6.9. As can be observed this gives
more or less the same results as figure 6.5, as it should. The value of the objective
function has also increased from 1448.52 to 1471.31.

It should be noted in figure 6.9 that in period 10 we have λ(10) = 0 and at
this value x(10) = 9.9811. We have to assume that the reserves in period 10 are
therefore 9.9811 and that these are simply left in the ground. In other words, x(T) is
free. The shadow price of a free product is zero, hence λ(10) = 0, and this implies
it is not optimal to mine the remaining reserves. Hence F(xT ) = 0 or xT is free.

We have spent some time on this problem because it illustrates the use of spread-
sheets without having to handle algebraically the first-order conditions. It also has
the advantage that it can handle corner solutions.5 Most important of all, it provides
a way of solving real-life problems.

5 Corner solutions would require setting out the Kuhn–Tucker conditions for optimisation. See Chiang
(1984), Simon and Blume (1994) and Huang and Crooke (1997).
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Figure 6.9.

6.4 Optimal control with discounting

We have noted that a major feature of the control problem is to maximise the
objective function V(x, u). However, for many economic problems V(x, u) would
represent such things as profits or net benefits. The economist would not simply
maximise such an income stream without first discounting it to the present. Thus,
if δ were the rate of discount then the aim of the control would be to

max
{u(t)}

J =
∫ T

0
e−δtV(x, u)dt (6.12)

subject to various conditions which are unaffected by the discounting. Thus, the
typical continuous time maximisation principle problem with discounting is the
control problem

max
{u(t)}

J =
∫ T

0
e−δtV(x, u)dt

ẋ = f (x, u)

x(0) = x0

x(T) = xT

(6.13)

while the discrete form is

max
{ut}

J =
T−1∑
t=0

ρ tV(xt, ut)

xt+1 − xt = f (xt, ut)

x0 = a

(6.14)

where ρ = 1/(1 + δ) and ρ is the discount factor while δ is the discount rate.
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Let us first consider the discrete form. The Lagrangian is

L =
T−1∑
t=0

ρ t{V(xt, ut) + ρλt+1[ f (xt, ut) − (xt+1 − xt)]}(6.15)

Notice in this expression that λt+1 is discounted to period t by multiplying it by the
discount factor ρ. But then the whole expression {.} is discounted to the present
by multiplying by the term ρ t.

We now introduce a new concept: the current value Hamiltonian function, de-
noted Hc(x, u). This is defined, for the discrete case, as

Hc(xt, ut) = V(xt, ut) + ρλt+1 f (xt, ut)(6.16)

and in all other respects the optimisation conditions are similar, i.e.

(i)
∂Hc

∂ut
= 0 t = 0, . . . ,T − 1

(ii) ρλt+1 − λt = −∂Hc

∂xt
t = 1, . . . ,T − 1

(iii) xt−1 − xt = ∂Hc

∂ρλt+1
= f (xt, ut) t = 0, . . . ,T − 1

(iv) λT = 0

(v) x0 = a

(6.17)

We can illustrate this with the mine example (example 6.4), but now assume
a discount rate of 10%. With a discount rate of 10% the discount factor ρ =
1/(1 + 0.1) = 0.909091.

Example 6.5

Given p = 3, R = 600 and ρ = 0.909091

max
{yt}

J =
∑

ρ t

(
p − byt

xt

)
yt

xt+1 − xt = −yt

x0 = R

The current value Hamiltonian is

Hc(xt, yt) =
(
p − byt

xt

)
yt − ρλt+1yt

with optimality conditions:

(i)
∂Hc

∂yt
= p − 2byt

xt
− ρλt+1 = 0 t = 0, . . . , 9

(ii) ρλt+1 − λt = −∂Hc

∂xt
= −

(
by2

t

x2
t

)
t = 1, . . . , 9

(iii) xt−1 − xt = ∂Hc

∂ρλt+1
= −yt t = 0, . . . , 9
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Figure 6.10.

(iv) λT = 0

(v) x0 = R = 600

It should be noted that the only difference between this and the undiscounted con-
ditions is in terms of condition (i), where λt+1 is multiplied by the discount factor.
Once again we use Excel’s Solver to handle the computations of this problem, with
the results shown in figure 6.10, which should be compared with figure 6.9.

Notice once again that in period 10 we have λ(10) = 0 and that at this value
x(10) = 2.9362. This level of reserves in period 10 is simply left in the ground,
x(T) is free. The shadow price of a free good is zero, hence λ(10) = 0, and this
implies it is not optimal to mine the remaining reserves. Put another way, it is
cheaper to leave the remaining reserves unmined than incur the costs of mining
them.

What these computations show is a similar trajectory for optimal production
but starting from a much higher level of production. This is understandable. The
future in a discounting model is weighted less significantly than the present. The
comparison is shown in figure 6.11.

Consider now discounting under a continuous time model. Consider the control
problem

max
{u(t)}

J =
∫ T

0
e−δtV(x, u)dt

ẋ = f (x, u)
x(0) = 0
x(T) = xT

(6.18)

The Lagrangian is

L =
∫ T

0
{e−δtV(x, u) + λ[ f (x, u) − ẋ]}dt
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Figure 6.11.

and the Hamiltonian is

H(x, u) = e−δtV(x, u) + λ f (x, u)

Define the current value Hamiltonian function, Hc, by

Hc(x, u) = V(x, u) + µ f (x, u)

then

Hc = Heδt or H = Hce−δt

µ = λeδt or λ = µe−δt

Now reconsider our five optimality conditions. Since eδt is a constant for a
change in the control variable, then condition (i) is simply ∂Hc/∂u = 0. The second
condition is less straightforward. We have

λ̇ = −∂H

∂x
= −∂Hc

∂x
e−δt

From λ = µe−δt

λ̇ = µ̇e−δt − δµe−δt

Equating these we have

−∂Hc

∂x
e−δt = µ̇e−δt − δµe−δt

or µ̇ = −∂Hc

∂x
+ δµ

Condition (iii) is

ẋ = ∂H

∂λ
= ∂Hc

∂λ
e−δt = ∂Hc

∂µ
= f (x, u)

while condition (iv) becomes

λ(T) = µ(T)e−δt = 0

and condition (v) remains unchanged.
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To summarise, define the current value Hamiltonian and current value
Lagrangian multiplier, i.e.

Hc(x, u) = H(x, u)eδt = V(x, u) + µ f (x, u)

where λ = µe−δt. Then the optimality conditions are:

(i)
∂Hc

∂u
= 0 0 ≤ t ≤ T

(ii) µ̇ = −∂Hc

∂x
+ δµ 0 ≤ t ≤ T

(iii) ẋ = ∂Hc

∂µ
= f (x, u)

(iv) x(0) = x0

(v) µ(T)e−δt = 0 (or x(T) = xT )

(6.19)

These optimality conditions allow us to eliminate the control variable u using
condition (i) and to obtain two differential equations: one for the state variable, x,
and the other for the current value costate variable, µ.

Example 6.6

max
{u}

J = −
∫ 10

0
u2e−0.1tdt

ẋ = u
x(0) = 0
x(10) = 1000

and find the optimal path x∗(t).
The current value Hamiltonian is

Hc = −u2 + µu

with optimality conditions

(i)
∂Hc

∂u
= −2u + µ = 0

(ii) µ̇ = 0 + 0.1µ

(iii) ẋ = u

From (i) we have u = 0.5µ, which when substituted into (iii) gives ẋ = 0.5µ. Thus
we have two differential equations

ẋ = 0.5µ

µ̇ = 0.1µ

Solving we obtain

x(t) = c1 + c2e
0.1t

µ(t) = 0.2c2e
0.1t
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Given x(0) = 0 and x(10) = 1000 then we can solve for c1 and c2 by solving

c1 + c2 = 0

0.2c2e = 1000

which gives c1 = −581.9767 and c2 = 581.9767. Hence

x∗(t) = −581.9767 + 581.9767e0.1t

= 581.9767(e0.1t − 1)

6.5 The phase diagram approach to continuous time
control models

First let us reconsider examples 6.1–6.3.

Example 6.1 (cont.)

In example 6.1 we derived the two differential equations

ẋ = x + u

λ̇ = −(5 + λ)

In this instance, ∂H/∂u = λ which is of no help in eliminating u. We did, however,
establish that H is a maximum when u = 3 and that this variable remains constant
throughout. Therefore,

ẋ = x + 3

λ̇ = −5 − λ

and so we have two isoclines. The x-isocline at x = −3 and the λ-isocline at
λ = −5. Furthermore,

ẋ > 0 implies x > −3

λ̇ < 0 implies λ > −5

so we know that the optimal trajectory starting from x(0) = 2 will lead to a rise in the
state variable x and a fall in the costate variable λ. This is verified in figure 6.12. The
system begins from point (x(0), λ(0)) = (2, 8.5914), satisfying the initial condition
on the state variable x; and has a terminal point (x(1), λ(1)) = (10.5914, 0), which
satisfies the terminal condition on the costate variable, λ. Of all possible trajectories
in the phase plane, this is the optimal trajectory.

Example 6.2 (cont.)

In example 6.2 we derived the following two differential equations

ẋ = − 1
2λ

λ̇ = 0

There is only one isocline for this problem. When ẋ = 0 then λ = 0 and so the
x-isocline coincides with the x-axis. Our initial point is (x(0), λ(0)) = (1, 2) and
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Figure 6.12.

Figure 6.13.

for λ > 0 we have ẋ < 0 and so the trajectory is moving to the left. Earlier we
demonstrated that λ remains at the value of 2 throughout the trajectory. When
t = 1 then x(1) = 0, which satisfies the condition on the terminal point, which
in the phase plane is the point (x(1), λ(1)) = (0, 2). As can be seen in terms of
figure 6.13, the optimal trajectory in the phase plane is the horizontal line pointing
to the left.

Example 6.3 (cont.)

The two differential equations we derived for example 6.3 were

ẋ = x + 2λ

λ̇ = 1
2x − λ
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When ẋ = 0 then λ = − 1
2x and when λ̇ = 0 then λ = 1

2x. We have therefore two
distinct isoclines in this example. Furthermore,

if ẋ > 0 then x + 2λ > 0 implying λ > − 1
2x

Hence, above the x-isocline, x is rising while below it is falling. Similarly,

if λ̇ > 0 then 1
2x − λ > 0 implying λ < 1

2x

Hence, below the λ-isocline, λ is rising while above it is falling. This suggests that
we have a saddle-point solution.

This is also readily verified by considering the eigenvalues of the system. The
matrix of the system is

A =
[

1 2
1
2 −1

]

with eigenvalues r = √
2 and s = −√

2. Since these are real and of opposite sign,
then we have a saddle point solution.

When t = 0 we already have x(0) = 2 but we need to solve for λ(0). But

λ(0) = c1

2
(
√

2 − 1) − c2

2
(
√

2 + 1)

and we know that c1 = −0.1256 and c2 = 2.1256. Substituting these values we
get λ(0) = −2.6. The initial point (x(0), λ(0)) = (2, −2.6) therefore begins below
the x-isocline, and so the vector forces are directing the system up and to the left.
The optimal trajectory is shown in figure 6.14.

It is apparent from example 6.3 and 6.6 that the maximisation approach of
Pontryagin gives us first-order conditions in terms of the Hamiltonian which, in
the present simple models, leads to two differential equations in terms of the state
variable x and the costate variable λ (or µ). Control problems, however, pose two
difficulties:

(1) the differential equations are often nonlinear
(2) in economics functional forms are often unspecified.6

Even the most simple control problem can lead to nonlinear differential equations,
and although we have developed techniques elsewhere for dealing with these,7

until the advent of the computer they were largely left to the mathematician. When
the functional forms are not even specified then there are no explicit differential
equations to solve. However, the qualitative properties of the fixed points can still
be investigated by considering the system’s qualitative properties in the phase
plane.

First consider a simple example for which we have an explicit solution.

6 What we often know are certain properties. Thus we may have a production function y = f (k) where
f (k) is unspecified other than being continuous, differentiable and where f ′(k) > 0 and f ′′(k) < 0.

7 See sections 2.7 and 3.9.
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Figure 6.14.

Example 6.78

Our problem is

max
{u}

J =
∫ ∞

0
(20 ln x − 0.1u2)dt

ẋ = u − 0.1x

x(0) = 80

The Hamiltonian for this problem is

H = 20 ln x − 0.1u2 + λ(u − 0.1x)

with first-order conditions
∂H

∂u
= −0.2u + λ = 0

λ̇ = −∂H

∂x
= −

(
20

x
− 0.1λ

)
ẋ = u − 0.1x

which can be reduced to two differential equations in terms of x and λ

ẋ = −0.1x + 5λ

λ̇ = −20

x
+ 0.1λ

The fixed point of this system is readily found by setting ẋ = 0 and λ̇ = 0, giving
x∗ = 100 and λ∗ = 2. Furthermore, the two isoclines are readily found to be

λ = 0.02x (ẋ = 0)

λ = 200

x
(λ̇ = 0)

and illustrated in figure 6.15.

8 Adapted from Conrad and Clark (1987, pp. 46–8).
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Figure 6.15 also shows the vector of forces in the four quadrants, which readily
indicate a saddle point solution. This can be verified by considering a linearisation
about the fixed point (x∗, λ∗) = (100, 2). This gives the linear equations

ẋ = −0.1(x − x∗) + 5(λ − λ∗)

λ̇ = 0.002(x − x∗) + 0.1(λ − λ∗)

The resulting matrix of the linear system is

A =
[ −0.1 5

0.002 0.1

]

with eigenvalues r = 0.14142 and s = −0.14142, confirming a saddle point
solution.

To establish the equations of the arms of the saddle point solution, take first the
eigenvalue r = 0.14142. Then

(A − rI)vr = 0

i.e. ([ −0.1 5
0.002 0.1

]
− 0.14142

[
1 0
0 1

])[
vr1
vr2

]
=
[

0
0

]
or [−0.24142 5

0.002 −0.04142

][
vr1
vr2

]
=
[

0
0

]

Using the first equation,

−0.24142vr1 + 5vr2 = 0

Figure 6.15.
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Let vr1 = 1, then

5vr2 = 0.24142

vr2 = 0.048284

Therefore,

(λ − λ∗) = 0.048284(x − x∗)

(λ − 2) = 0.048284(x − 100)

i.e.

λ = −2.8284 + 0.48284x

and since this is positively sloped it represents the equation of the unstable arm.
Now consider the second eigenvalue, s = −0.14142

(A − rI)vs =
([ −0.1 5

0.002 0.1

]
+ 0.14142

[
1 0
0 1

])[
vs1
vs2

]
=
[

0
0

]
i.e. [

0.04142 5
0.002 0.24142

] [
vs1
vs2

]
=
[

0
0

]
Using again the first equation, then

0.04142vs1 + 5vs2 = 0

Let vs1 = 1, then

5vs2 = −0.04142

vs2 = −0.008284

Therefore,

(λ − λ∗) = −0.008284(x − x∗)

(λ − 2) = −0.008284(x − 100)

i.e.

λ = 2.8284 − 0.00828284x

and since this is negatively sloped it represents the equation of the stable arm.
If x(0) = 80 then the value of λ on the stable arm is λ(0) = 2.16568. The trajec-

tory, along with isoclines and the stable arm, are shown in figure 6.16. Although
the point begins on the stable arm, it gets pulled away before it reaches the equi-
librium! What this diagram reveals is that this system is very sensitive to initial
conditions. But the direction field does show a clear saddle point equilibrium.

Example 6.8 (Ramsey growth model)

In this example we shall consider the Ramsey growth model,9 which is the basis of
much of the optimal growth theory literature. We shall consider the model in terms

9 Ramsey (1928). See also Burmeister and Dobell (1970), Barro and Sala-i-Martin (1995) and Romer
(2001).
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Figure 6.16.

of continuous time. We begin with simple definitions of income and investment,
namely

Y(t) = C(t) + I(t)

I(t) = K̇(t) + δK(t)
(6.20)

Hence

Y(t)

L(t)
= C(t)

L(t)
+ K̇(t)

L(t)
+ δK(t)

L(t)

i.e. y(t) = c(t) + K̇(t)

L(t)
+ δk(t)

But

k̇ = d

dt

(
K

L

)
= LK̇ − KL̇

L2
= K̇

L
−
(
K

L

)
L̇

L

= K̇

L
− k

L̇

L

We assume population grows at a constant rate n, so that L̇/L = n hence

K̇

L
= k̇ + kn

and

y(t) = c(t) + k̇(t) + (n + δ)k(t)

If we have a homogeneous of degree one production function then we can ex-
press output, y, as a function of k. Thus, y = f (k). Dropping the time variable for
convenience, we therefore have the condition

k̇ = f (k) − (n + δ)k − c(6.21)

In order to consider the optimal growth path we require to specify an objective.
Suppose U(c) denotes utility as a function of consumption per head. The aim is
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to maximise the discounted value of utility subject to the equation we have just
derived, i.e.

max
{c}

J =
∫ ∞

0
e−βtU(c)dt

k̇ = f (k) − (n + δ)k − c

k(0) = k0

0 ≤ c ≤ f (k)

The current value Hamiltonian function is

Hc = U(c) + µ[ f (k) − (n + δ)k − c]

with first-order conditions:

(i)
∂Hc

∂c
= U′(c) − µ = 0

(ii) µ̇ = −µ f ′(k) + µ(n + δ) + βµ

(iii) k̇ = f (k) − (n + δ)k − c

or

(i) U′(c) = µ

(ii) µ̇ = −µ f ′(k) + (n + δ + β)µ

(iii) k̇ = f (k) − (n + δ)k − c

As they stand these equations are not easy to interpret or solve. We can, however,
with some rearrangement, derive two differential equations in terms of the state
variable k and the control variable c.

From (i) differentiate with respect to time. Then

d[U′(c)]
dt

= µ̇

U′′(c)
dc

dt
= µ̇ = −µ f ′(k) + (n + δ + β)µ

i.e. U′′(c)ċ = −µ[ f ′(k) − (n + δ + β)]

or

−U′′(c)
U′(c)

ċ = f ′(k) − (n + δ + β) (since µ = U′(c))

Now define Pratt’s measure of relative risk aversion10

σ (c) = −cU′′(c)
U′(c)

then

σ (c)

c
ċ = f ′(k) − (n + δ + β)

10 Pratt (1964), see also Shone (1981, application 2, section A2.4).
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or

ċ = 1

σ (c)
[ f ′(k) − (n + δ + β)]c

We therefore have two differential equations

ċ = 1

σ (c)
[ f ′(k) − (n + δ + β)]c

k̇ = f (k) − (n + δ)k − c

If ċ = 0 then f ′(k∗) = n + δ + β. On the other hand, if k̇ = 0 then c∗ = f (k∗) −
(n + δ)k∗. Furthermore, if ċ > 0 then f (k∗) > (n + δ + β) which implies k < k∗

as seen in terms of the upper diagram of figure 6.17. Hence, to the left of the ċ = 0
isocline, c is rising; to the right of ċ = 0, then c is falling. Similarly, if k̇ > 0 then
f (k∗) − (n + δ)k∗ > c. Thus below the k̇ = 0 isocline k is rising, while above the
k̇ = 0 isocline k is falling. The vector forces clearly indicate that (k∗, c∗) is a saddle
point solution. The only optimal trajectory is that on the stable arm. For any k0

the only viable level of consumption is that represented by the associated point
on the stable arm. Given the initial point on the stable arm, the system is directed
towards the equilibrium. Notice that in equilibrium k is constant and so capital is
growing at the same rate as the labour force. Furthermore, since k is constant in
equilibrium then so is y, and hence Y is also growing at the same rate as the labour
force. We have, therefore, a balanced-growth equilibrium.

Example 6.9 (Ramsey growth model: a numerical example)

Consider the optimal growth problem

max
{c}

J =
∫ ∞

0
e−βtU(c)dt

k̇ = f (k) − (n + δ)k − c

k(0) = k0

0 ≤ c ≤ f (k)

where

β = 0.02, f (k) = k0.25, n = 0.01, δ = 0.05, k(0) = 2

and

U(c) = c1−θ

1 − θ

If θ = 1
2 , then U(c) = 2

√
c.11 Then our maximisation problem is

max
{c}

J =
∫ ∞

0
e−0.02t2

√
c dt

k̇ = k0.25 − 0.06k − c

k(0) = 2

11 Notice that this utility function has a relative measure of risk aversion equal to θ .
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Figure 6.17.

The current value Hamiltonian is

Hc = 2
√
c + µ(k0.25 − 0.06k − c)

with first-order conditions

(i)
∂Hc

∂c
= 2

(
1
2

)
c−1/2 − µ = 0

(ii) µ̇ = −µ(0.25)k−0.75 + 0.08µ

(iii) k̇ = k0.25 − 0.06k − c
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From the first condition we have c−1/2 = µ. Differentiating this with respect to
time, then

− 1
2c

−3/2ċ = µ̇

Using condition (ii) we have

− 1
2c

−3/2ċ = −µ(0.25)k−0.75 + 0.08c−1/2

But µ = c−1/2 hence

− 1
2c

−3/2ċ = −c−1/2(0.25)k−0.75 + 0.08c−1/2

Dividing throughout by c−1/2 we obtain

− 1
2c

−1ċ = −(0.25)k−0.75 + 0.08

i.e.

ċ = 2c(0.25)k−0.75 − 2(0.08)c

= (0.5k−0.75 − 0.16)c

We now have two differential equations for the state variables c and k, which are

ċ = (0.5k−0.75 − 0.16)c

k̇ = k0.25 − 0.06k − c

The first thing to note about these equations is that they are nonlinear and
therefore not easy to solve without some software.12 Using either Mathematica
or Maple (or Excel as indicated in n. 12), the following equilibrium values are
obtained

k∗ = 4.5688, c∗ = 1.1879

Second we note that the consumption-isocline is given by the formula c = k0.75 −
0.06k. Differentiating this with respect to k and setting this equal to zero allows us
to solve for the value of k at which consumption is at a maximum

c = k0.25 − 0.06k

dc

dk
= 0.25k−0.75 − 0.06 = 0

kmax = 6.7048

At this value of k then consumption takes the value cmax = 1.2069.13

12 If you do not have a software package like Mathematica or Maple, you can use Excel’s Solver to
solve for the equilibrium values. Place an arbitrary value of k in one cell; say, our starting value of
2. Suppose this is cell C3. Now place the formula

= (0.5∗$C$3ˆ(−0.75) − 0.16)∗($C$3ˆ0.25 − 0.06∗$C$3)

in the target cell. In the Solver window declare the cell where the formula is located as the target
cell and set this to have a value of zero; allow cell $C$3 to be the cell whose values are changed. In
order to avoid the problem of a zero solution, place a constraint on $C$3 that it should be greater
than or equal to unity. Having calculated the equilibrium value of k in this manner, it is a simple
matter then to solve for the equilibrium value of consumption, c.

13 Note that the c-isocline cuts the k-axis at 0 and the value 42.5727.
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To establish the properties of the equilibrium, we can linearise the system around
the point (k∗, c∗) = (4.5688, 1.1879). Let

ċ = f (c, k) = (0.5k−0.75 − 0.16)c

k̇ = g(c, k) = k0.25 − 0.06k − c

The system can then be written in the linearised form

ċ = fc(c∗, k∗)(c − c∗) + fk(c∗, k∗)(k − k∗)

k̇ = gc(c∗, k∗)(c − c∗) + gk(c∗, k∗)(k − k∗)

with

fc(c∗, k∗) = 0, fk(c∗, k∗) = −0.0312

gc(c∗, k∗) = −1, gk(c∗, k∗) = 0.02

and so the matrix of the system is

A =
[

0 −0.0312
−1 0.02

]

with eigenvalues r = 0.1869 and s = −0.1669. Since these are opposite in sign,
then the equilibrium is a saddle point solution.

Given that we are dealing with a numerical example then we can approximate
the saddle path equations utilising the linear approximation to the system. First
take the eigenvalue r = 0.1869

(A − rI)vr = 0

i.e. [−0.1869 −0.0312
−1 −0.1669

] [
vr1
vr2

]
=
[

0
0

]

then

−vr1 − 0.1669vr2 = 0

vr1 = −0.1669vr2

Let vr2 = 1 then vr1 = −0.1669. This saddle path is therefore negatively sloped and
denotes the unstable arm. Turn next to the eigenvalue s = −0.1669 then[

0.1669 −0.0312
−1 0.1869

] [
vs1
vs2

]
=
[

0
0

]

and

−vs1 + 0.1869vs2 = 0

vs1 = 0.1869vs2

Let vs2 = 1 then vs1 = 0.1869. This saddle path is positively sloped and represents
the stable arm. The equation of the stable arm can be found from

c − c∗ = 0.1869(k − k∗)

c − 1.1879 = 0.1869(k − 4.5688)

c = −0.33399 + 0.1869k
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Figure 6.18.

All these results are illustrated in figure 6.18 in the neighbourhood of the fixed
point. As can be seen from figure 6.18, however, although the trajectory does
begin on the saddle path, the system is extremely sensitive to initial conditions,
and given the initial point (k(0), c(0)) = (2, 0.70779), the trajectory begins to move
away from the saddle path before it reaches the equilibrium! The direction field
shown in figure 6.18 does, however, illustrate the existence of the stable arm with
trajectories tending to the balanced-growth path equilibrium.

What these examples show is that we can eliminate the control variable using
the first-order conditions and derive two differential equations, one for the state
variable and another for the costate variable. These can more generally be expressed

ẋ = R(x, λ)

λ̇ = S(x, λ)

We can then define two isoclines, one for ẋ = 0 (or R = 0), and another for
λ̇ = 0 (or S = 0). As these examples illustrate, however, such isoclines do not
always exist. When they both exist, the state space is separated into four quad-
rants. Each quadrant exerts different dynamic forces on any trajectory beginning
in it. In most of these examples we know the initial point and terminal point.
The derived dynamic equations maximise the objective function, satisfy the equa-
tion of motion and satisfy initial and terminal states. So we know the optimal
trajectory.

When we have two state variables, as in example 6.8 (and its numerical ver-
sion, example 6.9), then we sketch the state-space only and the optimal trajectory
{x(t)}.

If we have a discrete system then

xt+1 − xt = R(xt, λt)

λt+1 − λt = S(xt, λt)

and the isoclines remain R = 0 (�xt+1 = 0) and S = 0 (�λt+1 = 0).
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For many problems we do not have specific functional forms either for the
objective function or for the equations of motion. This was the situation in the
general Ramsey growth model (example 6.8). It is in such circumstances that
deriving isoclines and establishing properties of the state space provides qualitative
insight into the optimal path. For instance, example 6.8 illustrates that the trajectory
of the economy is along the stable arm eventually resulting in a balanced-growth
equilibrium. Such a path will maximise discounted consumption over the infinite
time horizon.

Exercises

1. Given the following stages of production labelled I, II, III and IV, a variety
of possible processes can be followed, as shown in the accompanying
figure, where the cost of transforming from one stage into another is
indicated in the circle while the two states are labelled A, B, C, etc.

(i) Compute all possible solution paths and show which is the minimum.
(ii) ‘Back solve’ by starting at the terminal state J and minimise at each

node arrived at. Is this the same solution path you derived in (i) when
then looked at forward?

(iii) Why is it sensible to ‘back solve’ but not to ‘forward solve’?
2. Prove that

−
∫ t1

t0

λẋdt =
∫ t1

t0

xλ̇dt − [λ(t1)x(t1) − λ(t0)x(t0)]

3. (i) For the model in section 6.2 derive the optimal path for produc-
tion under both no discounting and discounting at 10% under the
following alternative assumptions:
(a) p = 5
(b) b = 3
(c) R = 800

(ii) What conclusions do you draw?
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4. Consider the model in example 6.5. Suppose the manager is unsure of
the discount rate. He decides to choose three rates: 5%, 10% and 15%.
Compare the optimal production schedules under each assumption.

5. Consider examples 6.4 and 6.5 under the assumption that price is expected
to rise at 5% per period (i.e. inflation is 5%), but costs are not subject to
any rise; derive the optimal production schedule in each case assuming
p0 = 3.

6. Consider example 6.4 under the assumption that price is expected to rise
at 10% per period and costs are expected to rise at 15% per period. Derive
the optimal production schedule assuming p0 = 3 and b0 = 2.

7. Set up the following problem as a control problem.
A government has an objective function that indicates it wants to max-
imise votes, v, by pursing policies towards unemployment, u, and infla-
tion π . The party is constrained in its behaviour by the existence of an
augmented Phillips curve of the form

π = −α(u − un) + π e α > 0

and expectations take the form of adaptive expectations, i.e.

π̇ e = β(π − π e) β > 0

The government has just won the election at t = 0 and the next election is
in 5 years’ time. It assumes that voters have poor memories, and weight
more heavily the economic situation the closer it is to the election. It
accordingly assumes a weighting factor of e0.05t.

8. Solve the following control problem

max
{u}

−
∫ 1

0

(
x2

4
− u2

9

)
dt

ẋ = −x + u

x(0) = 5, x(1) = 10

Plot the trajectory in (x, λ)-space.
9. Solve the following control problem

max
{u}

∫ 1

0
(3x2 − u2)dt

ẋ = 2x + u

x(0) = 10, x(1) = 15

Plot the trajectory in (x, λ)-space
10. Solve the equilibrium for the following Ramsey model. Linearise the

system about the equilibrium and establish its stability properties

max
{c}

J =
∫ ∞

0
e−0.03U(c)dt
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k̇ = k0.3 − (n + δ)k − c

k(0) = 1

where U(c) = 4c1/4, n = 0.02, δ = 0.03

Additional reading

Beavis and Dobbs (1990), Blackburn (1987), Bryson, Jr. and Ho (1975), Burmeister
and Dobell (1970), Chiang (1992), Conrad (1999), Conrad and Clark (1987), Fryer
and Greenman (1987), Intriligator (1971), Kirk (1970), Léonard and Long (1992),
Pontryagin et al. (1962), Ramsey (1928), Romer (2001) and Takayama (1994).



CHAPTER 7

Chaos theory

7.1 Introduction

The interest and emphasis in deterministic systems was a product of nineteenth-
century classical determinism, most particularly expressed in the laws of Isaac
Newton and the work of Laplace. As we pointed out in chapter 1, if a set of equations
with specified initial conditions prescribes the evolution of a system uniquely with
no external disturbances, then its behaviour is deterministic and it can describe a
system for the indefinite future. In other words, it is fully predictable. This view has
dominated economic thinking, with its full embodiment in neoclassical economics.
Furthermore, such systems were believed to be ahistoretic. In other words, such
systems were quite reversible and would return to their initial state if the variables
were returned to their initial values. In such systems, history is irrelevant. More
importantly from the point of view of economics, it means that the equilibrium of
an economic system is not time-dependent.

Although the physical sciences could in large part undertake controlled experi-
ments and so eliminate any random disturbances, this was far from true in eco-
nomics. This led to the view that economic systems were subject to random shocks,
which led to indeterminism. Economic systems were much less predictable. The
random nature of time-series data led to the subject of econometrics. The sub-
ject matter of econometrics still adheres to the view that economic systems can
be captured by deterministic components, which are then augmented by either
additive or multiplicative error components. These error components pick up the
stochastic nature of the data series, most especially time-series data. For instance,
the classical linear model takes the form

y = Xβ + ε ε ∼ N(0, σ 2I)(7.1)

Not only is Xβ assumed linear but, more significantly from the point of view
of our present discussion, it is assumed to be deterministic. All randomness is
attributed to the error term. Even where the error term has distributions that are not
normally distributed, the econometric approach effectively partitions the problem
into a deterministic component and a random component. Randomness cannot and
does not arise from the deterministic component in this approach. Such a view of
the world is a ‘shotgun wedding of deterministic theory with “random shocks”’
(Mirowski 1986, p. 298). Mandelbrot (1987), in particular, was an ardent critic of
the way econometrics simply borrowed classical determinism and added a random
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component. The emphasis of econometrics on the Central Limit Theorem was, in
Mandelbrot’s view, flawed. It is not our intention here, however, to expand on
these views. Suffice it to say that the dichotomy between deterministic economic
elements of a system and additive random components is still the mainstay of the
econometric approach.

Three important considerations came out of these early discussions that are
relevant for this chapter.

1. Linearity, far from being the norm, is the exception. Linear economic
models lead to unique equilibrium points, which are either globally sta-
ble or globally unstable. On the other hand, nonlinear systems can lead
to multiple equilibria and hence, local stability and instability. However,
nonlinear systems also tend to lead to complexity. Until the develop-
ment of chaos theory, there was little formal way of handling complex
systems. On a more practical note, the study of complex systems could
not have occurred without the development of computers and computer
software.

2. Many economic time series are generated by discrete processes. The sec-
ond consideration, once again highlighted by Mandelbrot, is that many
economic time series are generated by discrete processes, and therefore
should not be modelled as continuous processes. The emphasis of con-
tinuous processes comes, once again, from the physical sciences. We
already noted in earlier chapters that a discrete equivalent of a continu-
ous system could exhibit instability while its continuous version is stable!
Although this is not always the case, it does highlight the importance of
modelling systems with discrete models if discrete processes generate the
time series.

3. The occurrence of bifurcations. A third strand was consideration of a
system’s equilibrium to changes in the value of important parameters.
It became clear that for some systems, their behaviour could suddenly
change dramatically at certain parameter values. This led to the study of
bifurcation.

This chapter is concerned with how deterministic systems can exhibit chaos, and
to all intents and purposes have the characteristics of randomness: a randomness,
however, which does not occur from random shocks to the system. We find that
such behaviour occurs when parameters of the system take certain values. The
parameter value at which the system’s behaviour changes is called a bifurcation
value. We therefore begin our discussion with bifurcation theory.

7.2 Bifurcations: single-variable case

In this and the next section we shall confine ourselves to studying some of the prop-
erties of first-order systems that depend on just one parameter. We shall represent
this with

xt+1 = f (xt, λ) (7.2)
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in which f is nonlinear. Two examples are1:

(i) xt+1 = 1.5xt(1 − xt) − λ

(ii) xt+1 = λxt(1 − xt)

and we shall make great use of these two equations to illustrate bifurcation theory
and chaos.

But what do we mean by the terms ‘bifurcation’ and ‘chaos’? Bifurcation theory
is the study of points in a system at which the qualitative behaviour of the system
changes. In terms of our general representation, f (x∗, λ) denotes an equilibrium
point, a stationary point, whose value depends on the precise value of the pa-
rameter λ. Furthermore, the stability properties of the equilibrium point will also
depend on the value of λ. At certain values of λ the characteristics of the system
change, sometimes quite dramatically. In other words, the qualitative behaviour
of the system either side of such values is quite different. These points are called
bifurcation points. The types of bifurcations encountered in dynamic systems
are often named according to the type of graph they exhibit, e.g., cusp bifurcation
and pitchfork bifurcation, to name just two. But such classifications will become
clearer once we have described how to construct a bifurcation diagram. As we shall
note in a moment when we consider the two examples in detail, for certain values
of the parameter λ a system may settle down to a periodic cycle: cycles of 2, 4,
8, etc. or cycles of odd-numbered periods, like 3. However, there comes a point, a
value of λ beyond which there is no regular cycle of any period. When this happens
the system becomes irregular or chaotic. As we shall see, the bifurcation diagram
is most useful in showing the occurrence of chaotic behaviour of dynamic systems.

Example 7.1

We shall now consider the first example in detail to highlight some points about
bifurcation theory, and consider the logistic equation in detail in the next section.
First, we need to establish the fixed points of the system. These are found by
solving

x∗ = 1.5x∗(1 − x∗) − λ

or solving

15x∗2 − 5x∗ + 10λ = 0

i.e.

x∗ = 1 ± √
1 − 24λ

6
If 1 − 24λ < 0, i.e., λ > 1/24, then no equilibrium exists. If 1 − 24λ > 0, i.e.,
λ < 1/24, then two equilibria exist

x∗
1 = 1 − √

1 − 24λ

6
and x∗

2 = 1 + √
1 − 24λ

6

1 The first example is adapted from Sandefur (1990), while the second example has been widely
investigated by mathematicians. A good starting point, however, is May (1976).
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In order to investigate the stability of these equilibria, we need to consider f ′(x∗).
This is f ′(x∗) = 1.5 − 3x∗. Substituting the lower value we have

f ′(x∗
1) = 1 + 0.5

√
1 − 24λ > 1 for all λ < 1/24

Hence, x∗
1 is unstable or repelling.

Next consider the stability of x∗
2

f ′(x∗
2) = 1 − 0.5

√
1 − 24λ < 1 for all λ < 1/24

The system is stable or attracting if −1 < f ′(x∗
2) < 1, i.e., if −0.625 < λ < 1/24

or −0.625 < λ < 0.041667.
The third and final situation is where λ = 1/24. In this case the two fixed points

are the same with value 1/6. Furthermore, f ′(1/6) = 1, and so the stability of this
fixed point is inconclusive or semistable. The value λ = 1/24 is a bifurcation value.

We can combine all this information about the equilibrium points and their
attraction or repelling on a diagram which has the parameter λ on the horizontal
axis, and the equilibrium point x∗ on the vertical axis. Such a diagram is called a
bifurcation diagram, and such a diagram is shown in figure 7.1 for the present
problem. It is to be noted that the heavy (continuous and dotted) line denoting
the equilibrium values for various values of the parameter λ is a parabola, which
satisfies the equation

(6x∗ − 1)2 = 1 − 24λ

Figure 7.1.
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with vertex (λ, x∗) = (1/24, 1/6) occurring at the bifurcation value λ = 1/24 with
corresponding equilibrium value x∗ = 1/6. The vertical arrows show the stability
properties of the equilibria. Notice that inside the parabola the arrows point up
while outside of the parabola the arrows point down. In particular, for λ > 1/24 the
system will tend to minus infinity; if λ = 1/24 then there is only one equilibrium
value (x∗ = 1/6) which is semistable from above; and if −0.625 < λ < 0.041667
then there are two equilibrium values, the greater one of which is stable and the
lower one unstable.

We can be more precise. Let Nλ denote the number of equilibrium values of the
system when the parameter is equal to λ, then for any interval (λ0 − ε, λ0 + ε) ifNλ

is not constant, λ0 is called a bifurcation value, and the system is said to undergo
a bifurcation as λ passes through λ0. For the example we have been discussing

Nλ =



2, for λ < 1/24
1, for λ = 1/24
0, for λ > 1/24

(7.3)

and so λ = 1/24 is a bifurcation. Furthermore, this is the only value of λ for which
Nλ is not a constant, and so the system has just this one bifurcation value.

Figure 7.1 also illustrates what is called a saddle node bifurcation. It is called
this because at the value λ0 the fixed points of the system form a U-shaped curve
that is opened (in this instance opened to the left).

Example 7.2 (saddle-node bifurcation)

In this example we shall take a similar case, but consider a continuous model. Let

x′(t) = λ − x(t)2(7.4)

For equilibrium we have

0 = λ − x∗2

x∗ = √
λ

If λ < 0 then no equilibrium exists. For λ > 0 there are two fixed points one
for +√

λ and another for −√
λ. In order to consider the stability conditions for

continuous systems we need to consider f ′(x∗) in the neighbourhood of the fixed
point. If f ′(x∗) < 0, then x∗ is locally stable; and if f ′(x∗) > 0, then x∗ is locally
unstable. Since f ′(x∗) = −2x∗, then f ′(x∗

1) = f ′(+√
λ) = −2

√
λ < 0 for λ > 0,

and so x∗
1 = +√

λ is stable. On the other hand, f ′(x∗
2) = f ′(−√

λ) = +2
√

λ > 0
for λ > 0, and so x∗

2 = −√
λ is unstable. At λ = 0 the two fixed points coincide

and the fixed point is stable from above. The situation is shown in figure 7.2.
Summarising in the neighbourhood of the point λ = 0,

Nλ =



2, for λ > 0
1, for λ = 0
0, for λ < 0

(7.5)

and once again we have a saddle node bifurcation occurring this time at λ = 0.



Chaos theory 291

Figure 7.2.

Example 7.3 (transcritical bifurcation)

Consider another example of a continuous nonlinear dynamical system

x′(t) = λx − x2 = x(λ − x) (7.6)

with fixed points

x∗
1 = 0 and x∗

2 = λ

Obviously, the two fixed points become identical if λ = 0. Summarising in the
neighbourhood of λ = 0, we have

Nλ =



2, for λ < 0
1, for λ = 0
2, for λ > 0

(7.7)

and so λ = 0 is a bifurcation value.
Turning to the stability properties, we have f ′(x∗) = λ − 2x∗ and

f ′(0) = λ

{
> 0 for λ > 0 hence unstable
< 0 for λ < 0 hence stable

For the second fixed point we have

f ′(λ) = −λ

{
< 0 for λ > 0 hence stable
> 0 for λ < 0 hence unstable

Another way to view this is to consider x∗
1 = 0 being represented by the horizontal

axis in figure 7.3, and x∗
2 = λ being represented by the 45◦-line. The two branches

intersect at the origin and there takes place an exchange of stability. This is called
a transcritical bifurcation. The characteristic feature of this bifurcation point is
that the fixed points of the system lie on two intersecting curves, neither of which
bends back on themselves (unlike the saddle-node bifurcation).
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Figure 7.3.

Example 7.4 (pitchfork bifurcation)

Consider the following continuous nonlinear dynamical system

x′(t) = λx(t) − x(t)3 = x(t)(λ − x(t)2)(7.8)

This system has three critical points:

x∗
1 = 0, x∗

2 = +
√

λ x∗
3 = −

√
λ

where the second and third fixed points are defined only for positiveλ. Summarising
in the neighbourhood of λ = 0 we have

Nλ =
{

1 for λ ≤ 0
3 for λ > 0

(7.9)

and so λ = 0 is a bifurcation value.
Since f ′(x∗) = λ − 3x∗2, then at each fixed point we have

f ′(0) = λ

{
< 0 for λ < 0 hence stable
> 0 for λ > 0 hence unstable

f ′(+√
λ) = −2λ < 0 for λ > 0 hence stable

f ′(−√
λ) = −2λ < 0 for λ > 0 hence stable

The characteristic feature of this bifurcation is that at the origin we have a U-shaped
curve, which here is open to the right, and another along the horizontal axis that
crosses the vertex of the U. It forms the shape of a pitchfork, as shown in figure 7.4.
It is therefore called a pitchfork bifurcation.2

It is important to recall in all this discussion of bifurcation points that the proper-
ties, especially the stability/instability properties, are defined only for neighbour-
hoods of the bifurcation point. There may be other bifurcation points belonging to
the system with different properties.

2 Example 7.4 illustrates what is sometimes referred to as a ‘supercritical pitchfork’. If we have the
same continuous nonlinear system but with −x3 replaced with +x3, then we have a ‘subcritical
pitchfork’.
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Figure 7.4.

7.3 The logistic equation, periodic-doubling
bifurcations and chaos

Chaos theory is a new and growing branch of mathematics that has some important
implications for economic systems. As an introduction to this subject return to the
generic form of the logistic difference equation

xt+1 = f (xt, λ) = λxt(1 − xt) 0 ≤ λ ≤ 4 (7.10)

For this generic form of the logistic equation x must lie in the closed interval [0,1].
But this places an upper limit on the value of λ. To see this, first establish the value
of x at which f is a maximum. This is

f ′(x) = λ − 2λx = 0

x = 1

2

At this value of x, f ( 1
2 ) = λ/4 and since x cannot exceed 1, then λ cannot exceed 4.

Therefore the generic logistic equation is defined for 0 ≤ λ ≤ 4.
It would appear that this simple nonlinear equation would show an orbit, a time

path {xt}, which would be quite simple. As figure 7.5 shows, however, this is far
from true. In this figure we have drawn the orbit for 100 periods for three different
values of λ, (a) λ = 3.2, (b) λ = 3.85 and (c) λ = 4. In each case the initial value
is x0 = 0.1. In figure 7.5(a) the time path settles down to a two-cycle very quickly.
When λ = 3.85 there is some initial chaotic behaviour, but then the series settles
down to a three-cycle. This is an example of transient chaos (Hommes 1991). In
figure 7.5(c) there is no periodic behaviour shown at all. The series is aperiodic
or chaotic. It is apparent, therefore, that this simple equation can exhibit very
different time paths depending on the value of λ. The question is can we identify
when the system changes from one type of orbit into another? Put another way,
can we identify any bifurcation points for the logistic equation?

In order to do this, first establish the equilibrium points where xt+1 = xt = x∗

for all t. This is where

x∗ = λx∗(1 − x∗)

λx∗2 + (1 − λ)x∗ = 0

x∗[λx∗ + (1 − λ)] = 0



294 Economic Dynamics

Figure 7.5.
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i.e.

x∗ = 0 or x∗ = λ − 1

λ
(7.11)

To investigate the stability of these solutions we shall employ the linear approx-
imation discussed in chapters 2 and 3, namely

xt+1 = f (x∗, λ) + f ′(x∗, λ)(xt − x∗)

But f (x∗, λ) = 0 or f (x∗, λ) = (λ − 1)/λ, and f ′(x∗, λ) = λ − 2λx∗. Thus,

f ′(x∗, λ) =



λ for x∗ = 0

2 − λ for x∗ = λ − 1

λ

Consider x∗ = 0. Then we have

xt+1 = λxt

with solution

xt = λtx0

which is stable if 0 < λ < 1. Next consider x∗ = (λ − 1)/λ, then

xt+1 = x∗ + (2 − λ)(xt − x∗)
or ut+1 = (2 − λ)ut

where ut+1 = xt+1 − x∗ and ut = xt − x∗. This has the solution

ut = (2 − λ)tu0

which is stable so long as |2 − λ| < 1 or −1 < 2 − λ < 1, giving a range for λ of
1 < λ < 3.

What we observe is that for 0 ≤ λ < 1 the only solution is x∗ = 0 and this is
locally stable. For 1 < λ < 3 we have an equilibrium solution x∗ = (λ − 1)/λ,
which varies with λ. The situation is shown in figure 7.6. At λ = 1, where the two
solution curves intersect, there is an exchange of stability from one equilibrium
solution to the other.

Figure 7.6.
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Figure 7.7.

Of course, λ is not necessarily restricted to a range below 3. The question is:
What happens to the solution values asλ is allowed to increase? We began to answer
this question in chapter 3. In section 3.9 we investigated the range for λ that led to a
two-cycle result. This range we established as 3 < λ < 3.449. In other words, at
λ = 3 the solution becomes unstable but gives rise to a stable two-cycle result, as
shown in figure 7.6. Consequently, the value λ = 3 is a dividing value between a
unique solution (other than zero) and a two-cycle solution. The value λ = 3 is a
pitchfork bifurcation.3 Again, the actual values of the two limit points depend on
the precise value of λ. For example, in section 3.9 we established the two limit
values of 0.799455 and 0.513045 for λ = 3.2 (see also appendices 3.1 and 3.2).

The reason for this apparent instability of one solution and the occurrence of
a stable two-cycle is illustrated in figure 7.7(a)–(d), where f (x) = λx(1 − x) and
f 2(x) = f ( f (x)). In figure 7.7(a) λ = 0.8 and so the only solution is x∗ = 0. Any
(positive) value x0 ‘close to’ zero will be attracted to x∗ = 0. Also note that the two-
cycle curve f 2(x) lies wholly below the 45◦-line and so no two-cycles occur. For this
solution, f ′(x∗ = 0, λ = 0.8) = 0.8 < 1, and so x∗ = 0 is stable. In figure 7.7(b)
λ = 2.5 and we have solution x∗ = (λ − 1)/λ = 0.6 and f ′(x∗ = 0.6, λ = 2.5) =
2 − 2.5 = −0.5, with | f ′(x∗ = 0.6, λ = 2.5)| < 1 and so x∗ = 0.6 is stable. Also
note that f 2(x) cuts the 45◦-line just the once, at E0 and so no two-cycles occur. The
situation begins to change in figure 7.7(c) where λ = 3. Here x∗ = (λ − 1)/λ =
2/3 and f ′(x∗ = 2/3, λ = 3) = 2 − 3 = −1, and so x∗ = 2/3 is semistable. The
fact that f ′(x∗ = 2/3, λ = 3) = −1 is semistable is shown in figure 7.7(c) by the
feature that the two-cycle f 2(x) is tangent to the 45◦-line at point E0. Because

3 It is sometimes called a period-doubling bifurcation, since it denotes the value of λ at which a
stable two-period cycle occurs.
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Figure 7.8.

x∗ = 2/3 lies on f (x) where this intersects the 45◦-line, then it is stable for λ < 3.
However if λ > 3 then f 2(x) begins to intersect the 45◦-line in three places. The
instability of the single solution and the stability of the two-cycle is more clearly
shown in figure 7.7(d), where λ = 3.4. A number of features should be noted
about this figure. First, f (x) and f 2(x) intersect at the common point E0 = 0.70588.
This is unstable. We can establish this by computing f 2′

(x∗
0), which has a value

of 1.96, and since f 2′
(x∗

0) > 1, x∗
0 = 0.70588 is unstable. Second, there are two

stable equilibrium points E1 and E2 with the following characteristics

E1 : x∗
1 = 0.451963 f ′(x∗, λ) = −0.76

E2 : x∗
2 = 0.842154 f ′(x∗, λ) = −0.76

since f 2′
(x∗

1) = f 2′
(x∗

2) = −0.76, then both E1 and E2 are stable. However, at
λ = 3.449 the two-cycle becomes unstable.

But what occurs at and beyond the point where λ = 3.449? What occurs is
two period-doubling bifurcation points, i.e., each of the two solutions themselves
become unstable but divide into two stable solutions, leading to a total of four
solutions. In other words, we have a four-cycle solution. The range for a four-
cycle result can be found in a similar manner to the range for a two-cycle result,
i.e., by finding the values of a which satisfy the equation

a = f ( f ( f ( f (a)))) or a = f 4(a) (7.12)

and whose stability is established by solving4

−1 < f ′(a1) f ′(a2) f ′(a3) f ′(a4) < 1 (7.13)

This is even more tedious than the two-cycle result, and can only sensibly be
solved with the help of a computer. However, we illustrate the result over the range
3.44 < λ < 3.55 in figure 7.8.

Figure 7.8 shows that the four-cycle itself becomes unstable and bifurcates into
an eight-cycle. What is more surprising, however, is that the value of λ at which

4 See theorem 3.2, p. 93 and appendices 3.1 and 3.2.
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Figure 7.9.

further bifurcations occur approaches a limit of approximately λ = 3.57. After
this value, the system exhibits chaotic behaviour, i.e., behaviour that, although
generated by a deterministic system, has all the characteristics of random be-
haviour. There are no regular cycles. A typical situation is illustrated in figure 7.9
for λ = 3.65. In this figure we plot the series

xt+1 = 3.65xt(1 − xt)(7.14)

for two different starting values: x0 = 0.1 and x0 = 0.105. These starting values
are very close to one another, however, the two systems diverge from one another
after about ten periods. This is because of the chaotic nature of the system. With
chaotic systems we have sensitive dependence to initial conditions.

But another characteristic arises in the case of a series entering the chaotic region
for its parameter value. Consider the following example provided by Baumol and
Benhabib (1989):

xt+1 = 3.94xt(1 − xt) x0 = 0.99(7.15)

whose graph is derived using a spreadsheet, and shown in figure 7.10. Although
the series is chaotic, it is not purely random, and in particular exhibits sudden
changes. In figure 7.10 the series suddenly changes from showing an oscillatory
behaviour to one that is almost horizontal (which it does for about ten periods) and
then just as suddenly, and for no obvious reason, begins to oscillate once again.

For the logistic curve the characteristics listed in table 7.1 have been established.
It should be noted that a three-period cycle is also present, and first shows itself
at the point λ = 3.8284. In fact, we derived a three-period cycle in chapter 3
(p. 97). Just as there are repeating even-numbered cycles, so there are repeated odd-
numbered cycles. Two- and three-period cycles (and even a four-period cycle) can
be shown quite clearly using the cobweb diagram we will develop in chapter 8. On
the vertical axis we have xt+1 and on the horizontal axis xt. The 45◦-line represents
the equilibrium condition with xt+1 = xt. The curve is f (xt) = λxt(1 − xt). If λ =
3.2 and x0 = 0.513045 a two-cycle results, as shown in figure 7.11(a). On the other
hand, if λ = 3.839 and x0 = 0.48912 then a stable three-cycle results, as shown in
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Figure 7.10.

Table 7.1 Properties of the logistic curve

Description Value of λ Comments

Exchange of stability 1 First bifurcation point
Fixed point becomes unstable (2-cycles appear) 3 Second bifurcation point

e.g. λ = 3.2, section 3.9, p. 118
2-cycle becomes unstable (4-cycles appear) 3.44949 Established in section 3.9
4-cycle becomes unstable (8-cycles appear) 3.54409
Upper limit value on 2-cycles (chaos begins) 3.57
First odd-cycle appears 3.6786
Cycles with period 3 appear 3.8284 e.g. λ = 3.84, section 3.9, p. 118
Chaotic regions ends 4

figure 7.11(b). When λ = 3.59 and x0 = 0.4 many periods occur (figure 7.11(c)),
but the values that x takes are bounded. When λ = 4 and x0 = 0.2 then the series
is chaotic. This is revealed in figure 7.11(d) by the fact that all values of x in the
closed interval [0,1] occur, i.e., the web covers the whole possible graph.

What we observe, then, is that from a very simple deterministic equation a whole
spectrum of patterns emerge, and in particular an apparent random series arises
for a parameter value of λ > 3.57.

With such a diversity of equilibrium solutions depending on the value of λ, it
would be interesting to know what the bifurcation diagram for the logistic equation
would look like over the range 0 ≤ λ ≤ 4. We need to plot the relationship between
x∗ and λ between the values of 0 and 4. Before the advent of computers, this
would be virtually impossible, but now it is relatively easy. The result is shown in
figure 7.12,5 while a closer look at the range 3 ≤ λ ≤ 4 is shown in figure 7.13.
Notice in figure 7.13 the ‘windows’ occurring. Three are marked on the diagram.
The first window marked is for the occurrence of a six-period cycle; the second is
the occurrence of a five-period cycle, while the third is for a three-period cycle.

5 The bifurcation diagram plots only stable equilibrium points, so in the range 3 < λ < 3.449 only
two curves are plotted. The bifurcation point λ = 3 is not a saddle node bifurcation but rather a
pitchfork bifurcation, as shown in figure 7.6. It is therefore more useful to think of this point as a
period-doubling bifurcation.
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Figure 7.11.

Figure 7.12.

Such windows represent stable periodic orbits that are surrounded by chaotic
behaviour (the dark regions).

These two diagrams show an amazing diversity of equilibria for such a simple
deterministic equation. Such results direct attention to three observations:

(1) the presence of nonlinearity can give rise to deterministic chaos,
(2) in the presence of chaos there exists the sensitive dependence to initial

conditions, and
(3) in the presence of chaos prediction, even for a simple deterministic sys-

tem, is virtually impossible.

Bifurcation diagrams require a considerable amount of routine computations
and there are now a growing supply of such routines written by mathematicians
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Figure 7.13.

and computer programmers, both in Mathematica and Maple. This is also true of
strange attractors, such as the Hénon map and the Lorenz strange attractor, which
we discuss in section 7.7. The interested reader should consult the various sources
at the end of this chapter. In general for the present text, the bifurcation diagrams in
Mathematica utilise the routine provided by Gray and Glynn (1991), while a num-
ber of the chaos diagrams in Maple utilise the routines provided by Lynch (2001).6

7.4 Feigenbaum’s universal constant

In discussing the logistic equation we noted that the first bifurcation occurred at
value 3, the second at value 1 + √

6 = 3.44949, while a third occurs at value
3.54409. We can think of these values as representing the point at which a 2k-cycle
first appears. Thus

for k = 0 a 20-cycle occurs at λ0 = 3

for k = 1 a 21-cycle occurs at λ1 = 1 + √
6 = 3.44949

for k = 2 a 22-cycle occurs at λ2 = 3.54409

and so on. If λk denotes such occurrences of a 2k-cycle, then three results have
been shown to hold for large k:

(i) λk+1 ≈ 1 + √
3 + λk k = 2, 3, . . .

(ii) lim
k→∞

λk = 3.57

(iii) If dk = λk − λk−1

λk+1 − λk
k = 2, 3, 4, . . .

then lim
k→∞

dk = δ = 4.669202

6 The printing of such diagrams can be problematic and will certainly depend on the internal RAM
of the printer.
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Table 7.2 Approximations for the occurrence of the 2k-cycle

k 0 1 2 3 4 5 6

λk 3 3.44949 3.54409 3.56441 3.56876 3.56969 3.56989
dk 4.75148 4.655512 4.671264 4.677419 4.65

δ is called the Feigenbaum constant after its discoverer, and is important because
it is a universal constant.

The first result is only approximate, and there are a number of ways of approx-
imating the value of λk+1 (see exercise 2). Although these approximations are
supposed to hold only for large k, they are reasonable even for small k. Using a
procedure provided by Gray and Glynn (1991, p. 125) we derive a more accurate
estimate of the two-cycle bifurcation points. In particular, table 7.2 provides the
first seven points and computes λk and dk. As can be seen, λk is rapidly approaching
the limit of 3.57, while dk approaches the limit of 4.6692, although not so rapidly
and not uniformly.

7.5 Sarkovskii theorem

In this section we have a very limited objective. Our intention is to present the
background concepts necessary to understand the significance of the Sarkovskii
theorem, which is central to periodic orbits of nonlinear systems. The ideas and
concepts are explained by means of the logistic equation, most of the properties
of which we have already outlined.

In table 7.3 we list the first 30 positive integers, where we have expressed some
of the numbers in a way useful for interpreting a Sarkovskii ordering.

Using the numbers in table 7.3 as a guide, we can identify the following series,
where a � b means a precedes b in the order and ‘odd number’ means the odd
numbers except unity (table 7.4).

Every possibly positive integer is accounted for only once by all series taken
together.

A Sarkovskii ordering is then

S0 � S1 � S2 � . . . � Sk � . . . � 24 � 23 � 22 � 2 � 1

We are now in a position to state the theorem.

THEOREM 7.1 (Sarkovskii)
Let f be a continuous function defined over a closed interval [a,b] which
has a periodic point with prime period n. If n � m in a Sarkovskii order-
ing, then f also has a periodic point with prime period m.

Another theorem occurring just over a decade later is the following.7

7 Sarkovskii’s paper of 1964 was not known to Western mathematicians until the publication of Li
and Yorke’s paper in 1975.
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Table 7.3 Expressing the first 30 integers for a
Sarkovskii ordering

1 11 21
2 12 22.3 22 2.11
3 13 23
4 22 14 2.7 24 23.3
5 15 25
6 2.3 16 24 26 2.13
7 17 27
8 23 18 2.9 28 22.7
9 19 29
10 2.5 20 22.5 30 2.15

Table 7.4 The series of a Sarkovskii ordering

Series Numbers in the series Description of the series

S0 3 � 5 � 7 � . . . odd numbers
S1 2.3 � 2.5 � 2.7 � . . . 2.(odd numbers)
S2 22.3 � 22.5 � 22.7 � . . . 22.(odd numbers)
...

...
...

Sk 2k.3 � 2k.5 � 2k.7 � . . . 2k .(odd numbers)
– � 24 � 23 � 22 � 2 � 1 Powers of 2 in descending order∗

Note: *Recall 21 = 2 and 20 = 1.

THEOREM 7.2 (Li–Yorke)
If a one-dimensional system can generate a three-cycle then it can gen-
erate cycles of every length along with chaotic behaviour.

The Li–Yorke theorem is a corollary of the Sarkovskii theorem. If m = 3 in the
Sarkovskii theorem, then n = 5, say (n � m) also has a periodic point. Therefore
for all n � m f will have a periodic point. Hence, if a one-dimensional system can
generate a three-cycle, it must be capable of generating a cycle of any length.

The windows in figure 7.13 represent period-6, period-5 and period-3 cycles,
respectively. The period-5 lies to the left of period-3, with period-3 being the
highest ordering. But why is period-6 to the left of period-5? Period-6 is equivalent
to period-2.3 in the Sarkovskii ordering and so belongs to the series S1. All periods
in S1 are to the left of all periods in S0. Hence, period-6 is to the left of period-5,
which in turn is to the left of period-3.

Suppose a continuous function f over the closed interval [a,b] has a period-5
cycle, then according to the Sarkovskii theorem it has cycles of all periods with the
possible exception of period-3. Notice that the possibility of a period-3 is not ruled
out. Similarly, if f has no point of period-2, then there do not exist higher-order
periodicities, including chaos.

The Sarkovskii theorem, and to some extent the Li–Yorke theorem, demonstrates
that even systems that exhibit chaotic behaviour still have a structure. The word
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‘chaos’ conjures up purely unsystematic patterns and unpredictability. Although
the movement of an individual series may be aperiodic, chaotic systems themselves
have structural characteristics that can be identified.

7.6 Van der Pol equation and Hopf bifurcations

We met the Van der Pol equation in chapter 4 when we considered limit points. In
this section our interest is in the Van der Pol equation and its bifurcation features.
The nonlinear equation is a second-order differential equation of the form

ẍ = µ(1 − x2)ẋ − x(7.16)

Second-order differential equations can be expressed in the form of a system
of first-order differential equations with suitable transformations. Let ẋ = y then
ẏ = ẍ, hence we have the system of first-order equations:

ẋ = y

ẏ = µ(1 − x2)y − x
(7.17)

and the only unknown parameter is µ. The fixed points of the system are established
by setting ẋ = 0 and ẏ = 0, which is the singular point P = (0, 0). Furthermore,
the linearisation of the system can be expressed as[

ẋ
ẏ

]
=
[

1 0
−(1 + 2µxy) µ(1 − x2)

] [
x
y

]

Expanding the system around the fixed-point, P = (0, 0), we have[
ẋ
ẏ

]
=
[

1 0
−1 µ

] [
x
y

]

Hence the matrix of the linearised system is

A =
[

1 0
−1 µ

]

whose eigenvalues are

λ1 = µ −
√

µ2 − 4

2
and λ2 = µ +

√
µ2 − 4

2
(7.18)

Using these eigenvalues we can identify five cases, as shown in table 7.5.
Figure 7.14 illustrates each of these cases.

If we concentrate on the equilibrium values for x and y, say x∗ and y∗, then for
µ < 0, x∗ = 0 and y∗ = 0 and the system moves along the µ-axis. At µ = 0 the
system changes dramatically taking on the shape of a circle at this value. Then,
as µ continues in the positive direction the system takes on a limit cycle in the
x-y plane for any particular positive value of µ, the shape of which is no longer a
circle. All of these are schematically illustrated in figure 7.15, which also shows
the movement of the system by means of arrows. Clearly the system exhibits a
bifurcation at the value µ = 0. This is an example of a Hopf bifurcation.
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Table 7.5 Properties of the Van der Pol equation

Cases Parameter values Properties

I µ ≤ −2 both eigenvalues are real and negative, P is a stable node
II −2 < µ < 0 eigenvalues are complex with negative real parts, P is a stable focus
III µ = 0 eigenvalues are purely imaginary, P is a centre
IV 0 < µ < 2 eigenvalues are complex, with positive real parts, P is an

unstable focus
V µ ≥ 2 both eigenvalues are real and positive, P is an unstable node

Figure 7.14.
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Figure 7.15.

More generally, a Hopf bifurcation occurs when there is a change in the stability
of a fixed point into a limit cycle. Clearly a limit cycle can occur only if the system
is defined for two variables and at least one parameter. All these conditions are
satisfied by the Van der Pol equation. As µ passes through µ = 0, the system
changes from a stable equilibrium at the origin for µ < 0 into a limit cycle for
µ ≥ 0. Hence µ = 0 gives rise to a Hopf bifurcation that occurs at the origin in
the (x,y)-plane.

There are in fact two types of Hopf bifurcations, one in which the limit cycles
are created about a stable point (a subcritical Hopf bifurcation) and one in which
the limit cycles are created around an unstable critical point (a supercritical Hopf
bifurcation).

Limit cycles of finite amplitude may also suddenly appear as the parameter of the
system is varied. In the physical sciences such large-amplitude limit cycles are more
common than supercritical Hopf bifurcations (Lynch 2001). More importantly for
economics, these systems exhibit multiple stable equilibria for which the system
may jump from one stable equilibrium to another as the parameter of the system
is varied. Equally significant for economics is that the existence of multistable
solutions allows for the possibility of hysteresis.

Example 7.5 (Large-amplitude limit cycle bifurcation)8

Consider the system

ẋ = x(λ + x2 − x4)

ẏ = −1
(7.19)

For system (7.19) the only critical point is x∗ = 0. Let f (x) = x(λ + x2 − x4) then
f ′(x) = λ + 3x2 − 5x4 and f ′(x∗ = 0) = λ. Therefore the critical point x∗ = 0 is

8 Lynch (2001).
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Figure 7.16.

stable for λ < 0 and unstable for λ > 0. The system undergoes a subcritical Hopf
bifurcation at λ = 0. However, for a certain range of λ, say λ > λs, the system also
has a stable large-amplitude limit cycle. The bifurcation diagram for this system
is illustrated in figure 7.16.9

As can be seen in figure 7.16, over the range λs < λ < 0, there exist two steady-
state solutions. A number of important implications follow from this feature. First,
which steady state is approached depends on the initial conditions. If the equations
represented some economic system, then in all probability the welfare attached
to one of the stable equilibrium would be quite different from that of the other.
Policy-makers may, therefore, attempt to push the system in the direction of one
particular stable equilibrium by changing the initial conditions. Second, the system
exhibits hysteresis. Suppose the value of λ started at λ0 < λs, figure 7.16. As λ

is increased then x remains at x∗ = 0 until λ = 0. At λ = 0, however, there is
a sudden jump to the large-amplitude limit cycle. This is so because λ = 0 is a
subcritical Hopf bifurcation. As λ continues to increase, the value of x∗ follows the
upper path, along RS. The path traversed is then PQRS. Now suppose the value of
λ is decreased to its former level λ0. The system moves down along the upper path
SRT. Once λ = λs, the system jumps down to x∗ = 0 (point U) and then remains
there as λ is decreased further. The ‘return trip’ is therefore SRTUP, which is quite
different from its outward journey. The system is hysteretic.

7.7 Strange attractors

We noted in the last section how with a two-dimensional system a Hopf bifurcation
could arise. In the Van der Pol equation, once µ ≥ 0 then the system gets attracted
to a limit cycle. But other two- or higher-dimensional systems can have ‘strange’
attractors. We shall discuss the concept of strange attractors by way of examples.
The examples we consider are the Hénon map and the Lorenz attractor.10

9 Part of the bifurcation diagram can be constructed using the implicit plot routines in either Mathe-
matica or Maple. Just do the implicit plot of λ + x2 − x4 = 0 for −1 < λ < 2 and 0 < x < 2, and
the result is as portrayed in figure 7.16.

10 See also the Rössler attractor in exercises 9 and 10.
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7.7.1 The Hénon map

The Hénon map arises from a set of two equations involving two parameters, which
are real numbers

xt+1 = 1 − ax2
t + yt a > 0

yt+1 = bxt |b| < 1
(7.20)

We can think of this as the function

Ha,b(xt, yt) =
[
1 − ax2

t + yt
bxt

]
(7.21)

or simply H. To establish some of the properties of the Hénon map, let

f (x, y) = 1 − ax2 + y
g(x, y) = bx

Then the Jacobian, J, is

J =
[
fx fy
gx gy

]
=
[−2ax 1

b 0

]

whose determinant is −b and eigenvalues

λ = −ax ±
√
a2x2 + b

which is readily obtained using either Mathematica or Maple – in fact all the
mathematical properties we are about to discuss are obtained using either of these
software programmes. Hence, the eigenvalues are real only if

√
a2x2 + b ≥ 0.

Furthermore, the fixed points of the Hénon map are found to be

P1 =



x = 1

2a

(
b − 1 +

√
(1 − b)2 + 4a

)
y = b

2a

(
b − 1 +

√
(1 − b)2 + 4a

) ,

P2 =



x = 1

2a

(
b − 1 −

√
(1 − b)2 + 4a

)
y = b

2a

(
b − 1 −

√
(1 − b)2 + 4a

)
(7.22)

which exist if a ≥ − 1
4 (1 − b)2.

Turning now to the stability properties of the fixed points, we recall that the
fixed point is attracting if the eigenvalue is less than unity in absolute value. It can
be established (Gulick 1992, pp. 171–2) that

(1) If a < − 1
4 (1 − b)2, then H has no fixed points

(2) If − 1
4 (1 − b)2 < a < 3

4 (1 − b)2 and a 
= 0, then H has two fixed points,
P1 and P2, of which P1 is attracting and P2 is a saddle point

If the parameter b is set fixed over the interval [0,1] and a is allowed to vary,
then there will be two bifurcation values for a: one at −(1 − b)2/4 and another at
3(1 − b)2/4, with the system changing from an attracting fixed point to one of a
saddle point.

Figure 7.17 shows the Hénon map with parameters a = 1.4 and b = 0.3 and with
initial point (x0, y0) = (0.1, 0). The two fixed points are P1 = (0.6314, 0.1894)
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Figure 7.17.

Figure 7.18.

and P2 = (−1.1314, −0.3394), and the figure illustrates the existence of a strange
attractor.

Why then is it called a strange attractor? For b = 0.3 the Feigenbaum constant
of a for the Hénon map is 1.0580459 (Gulick 1992, p. 173). One would assume
that for a > 1.06 with chaos present that the iterates would virtually fill the whole
map. But this is not the case. For example, given the parameter values a = 1.4
and b = 0.3, then no matter what the starting values for x and y, the sequence
of points {x(t), y(t)} is attracted to the orbit shown in figure 7.17, and such an
orbit seems rather a ‘strange’ shape. At the same time, however, the trajectory
{x(t), y(t)} is very sensitive to initial conditions. This is illustrated in figure 7.18
in the case of variable x, for the same parameter values and (x0, y0) = (0.001, 0),
where we plot the first 100 observations.11 So although the two sequences converge
on the attractor illustrated in figure 7.17, they approach it quite differently. Because

11 This plot is derived using Excel rather than Mathematica or Maple, since spreadsheets are good for
plotting time-series or discrete trajectories quickly and easily. See section 5.5.
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this attractor is sensitive to initial conditions, then it is called a chaotic attractor.
The word ‘strange’ refers to the geometrical shape of the attractor, while the
word ‘chaotic’ indicates sensitivity to initial conditions and therefore refers to the
dynamics of the attractor (Hommes 1991).

We have already noted that when a series is chaotic then it is very sensitive to
initial conditions. We have also noted in terms of the Hénon map, that regardless
of the initial value, the orbit will settle down to that indicated in figure 7.17 if
a = 1.4 and b = 0.3. Now if two series are chaotic then they will diverge from
one another, and such a divergence will increase exponentially, as illustrated in
figure 7.18. If it is possible to measure the divergence between two series then
we can obtain some measure of chaos. Furthermore, looking at the Hénon map,
if we divide the rectangular box into very tiny rectangles then, by means of a
computer, it is possible to establish how many times points in the attractor are
visited by trajectories of various points. The Lyapunov dimension or Lyapunov
number does just this. For instance, the Lyapunov number for the Hénon map is
1.26. The following theorem has been demonstrated (Gulick 1992).

THEOREM 7.3
(1) If an attractor has a non-integer Lyapunov number then it is a

strange attractor.
(2) If an attractor has sensitive dependence on initial conditions

then it has a Lyapunov number greater than unity.

The Hénon map satisfies (1), so it is a strange attractor; but it also satisfies (2), so
it is also called a chaotic attractor. It is possible to have a strange attractor that
is not chaotic and a chaotic attractor that is not strange. However, most strange
attractors are also chaotic. The Lyapunov dimension is important in the area of
empirical chaos, and is used in the economics literature to detect chaos.12

7.7.2 The Lorenz attractor

The Lorenz attractor was probably the first strange attractor to be discussed in the
literature, and was certainly the origin of the term ‘butterfly effect’.13 The Lorenz
system is composed of three differential equations

ẋ = −σ (x − y)

ẏ = rx − y − xz

ż = xy − bz

(7.23)

Solving for the steady state, we obtain three fixed points

P1 = (0, 0, 0)

P2 = (
√
b(r − 1),

√
b(1 − r), r − 1)

P3 = (−√
b(r − 1), −√

b(1 − r), r − 1)

(7.24)

12 There are other measures of chaos, such as Brock’s residual test (Brock 1986).
13 The title of Lorenz’s address to the American Association for the Advancement of Sciences in 1979

was: ‘Predictability: Does the flap of the butterfly’s wings in Brazil set off a tornado in Texas.’
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Figure 7.19.

The critical point P0 holds for all values of r, while critical points P1 and P2 only
hold for r ≥ 1, where P0 = P1 = P2 for r = 1. There is therefore a bifurcation at
r = 1. As r passes through this value the critical point P0 bifurcates and the critical
points P1 and P2 come into existence. A typical plot of the Lorenz system is shown
in figure 7.19 for σ = 3, r = 26.5 and b = 1. Starting at the value (x0, y0, z0) =
(0, 1, 0) the system first gets drawn to point P2 then after moving around and away
from this point it gets drawn to point P1. This process keeps repeating itself.

In order to consider the stability properties of the Lorenz system we need to
consider the linear approximation. The coefficient matrix of the linearised system
is

A =

 −σ σ 0
r − z −1 −x
y x −b




This leads to a set of cubic characteristic equations, one for each of the three critical
points. There has been much investigation into the properties of these for various
values of the parameters, which is beyond the scope of this book. Asymptotic
stability is assured, however, if the real parts of the eigenvalues are negative. It can
be shown that if 1 < r < rH where

rH = σ (σ + b + 3)

σ − b − 1

then the real parts of the eigenvalues are negative and so the three critical points are
asymptotically stable. Furthermore, if r = rH then two of the roots are imaginary
and there occurs a Hopf bifurcation. When r > rH there is one negative real eigen-
value and two complex eigenvalues with positive real parts and the three critical
points are unstable.

Figure 7.20 shows the paths of two Lorenz systems. Both are drawn for σ = 10
and b = 8/3. With these values then rH = 24.7368. In figure 7.20(a) we have
r = 22.4 with initial point (7,7,20), which is ‘close to’ the strange attractor; and
in figure 7.20(b) we have r = 28. The first shows what an asymptotically stable
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Figure 7.20.

system looks like, with the system being attracted to one of the fixed points. What
is not so clear is what an unstable Lorenz system would look like. Figure 7.20(b)
shows one such possibility, with the system starting from point (5,5,5) constantly
being first attracted to one fixed point and then the other repeatedly.

The Lyapunov dimension for the Lorenz system is 2.07. Then by theorem 7.3
it is a strange attractor (the Lyapunov number is noninteger) and it is also chaotic
(the Lyapunov number exceeds unity).

7.8 Rational choice and erratic behaviour

In this first economic application of chaos theory we consider the situation where
preferences depend on experience, and is based on the paper by Benhabib and
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Day (1981). In such a situation choices can show cyclical patterns or even erratic
(chaotic) patterns. The type of situations envisaged in which preferences depend on
experience is where an individual reads a novel, then sees the movie rather than read
the book a second time, but as a consequence of seeing the movie is stimulated to re-
read the novel. This consumption pattern is intertemporal. Furthermore, although
habit is a strong pattern of human behaviour, so is novelty. So from time to time
we do something quite different. For example, the person who holidays each year
in Majorca, but then suddenly decides a holiday in the Alps is what is required. Or
the individual who alternates between a beach holiday and one in the mountains or
the country. The feature here is a shift in consumption pattern that then shifts back.
Such choice behaviour is ruled out in neoclassical consumer theory. Neoclassical
consumer theory cannot handle novelty in choice behaviour.

The analysis begins with the typical Cobb–Douglas utility function that is max-
imised subject to the budget constraint. Here x and y denote the consumption of
the two goods, p and q their prices, respectively, and m is the individual’s level of
income

maxU = xay1−a

s.t. px + qy = m
(7.25)

Setting up the Lagrangian

L = xay1−a − λ(m − px − qy)

leads to the first-order conditions

∂L/∂x = aU/x − λp = 0

∂L/∂y = (1 − a)U/y − λq = 0

∂L/∂λ = m − px − qy = 0

From these conditions we readily establish the demand curves

x = m

p
a, y = m

q
(1 − a) (7.26)

Now assume that the parameter a in the utility function, which represents a
property of preferences, depends endogenously on past choices. More specifically,
assume

at+1 = bxtyt (7.27)

The parameter b in equation (7.27) denotes an ‘experience-dependent’ parameter.
The greater the value of b the greater the value of the parameter a in the next period
and so the more preferences swing in favour of good x.

Substituting (7.27) into the demand equations (7.26), then

xt+1 = m

p
bxtyt, yt+1 = m

q
(1 − bxtyt) (7.28)

Concentrating on xt+1, then from the budget equation we have

yt = m − pxt
q
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so

xt+1 = mbxt(1 − pxt)

q

Taking the short run and normalising prices at unity, so that p = q = 1, then

xt+1 = bmxt(m − xt)(7.29)

The fixed point of equation (7.29) is found by solving

x∗ = bmx∗(m − x∗)

which is

x∗ = bm2 − 1

bm

So such consumption will only be positive if bm2 > 1. Furthermore, since

xt+1 = f (xt) = bmxt(m − xt)

represents consumption of good x, then this is at a maximum when f ′(x) = 0, i.e.

f ′(x) = bm2 − 2bmx = 0

x = m

2

and maximum consumption is f (m/2) = bm3/4. Since maximum consumption
cannot exceed total income (recall p = 1), then f (m/2) ≤ m, or

bm3

4
≤ m implying bm2 ≤ 4

To summarise, we have established two sets of constraints bm2 > 1 and bm2 ≤ 4.
Putting these together, then

1 < bm2 ≤ 4(7.30)

Benhabib and Day (1981) in considering equation (7.29) and the constraints
(7.30), establish the following results:

(1) A three-period cycle exists and so by the Li–Yorke theorem, period cycles
of every order exist, including chaos.

(2) Chaos begins at a critical value c = 2.57 over the interval x ∈ [0,m]
where c < bm2 ≤ 4.

Benhabib and Day also make the following observation. The smaller the experi-
ence parameter b, the greater the income endowmentmmust be in order to generate
chaotic behaviour. What this suggests is that for individuals with low income, long-
run patterns of consumption tend to be stable. However, as income grows, so does
the possibility of instability, and erratic (chaotic) behaviour becomes more likely
at very high levels of income.14

14 Does this explain the erratic consumption patterns of individuals like the DJ Chris Evans, Sir Elton
John or that of Victoria and David Beckham?
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Figure 7.21.

7.9 Inventory dynamics under rational expectations

This section discusses a disequilibrium inventory model by Hommes (1991), where
a full discussion can be found (1991, chapter 28). In this model the short side of
the market determines market values. We discuss this concept in chapter 8, but the
situation is illustrated in figure 7.21 for both the labour market and the product
market. Labour supply, Lst , is assumed constant at the value of c. Labour demand,
Ldt , is less straightforward and we shall approach a discussion of this by considering
first aggregate supply. For the moment, we assume it is a downward sloping curve,
as shown in figure 7.21.15 Actual labour employed,Lt, is then given by the short side
of the market, so Lt = min{Ldt , Lst }, and is shown by the heavy line in figure 7.21(a).
Figure 7.21(b) shows aggregate demand, ydt , and aggregate supply, yst . It denotes
the level of inventories, and is positive when there is excess demand, otherwise it
is zero, i.e., It = max{0, yst − ydt }.

We denote expected aggregate demand by E(ydt ) and the desired level of in-
ventories by Idt . It is assumed that desired inventories are proportional to expected
aggregate demand, Idt = βE(ydt ). Production is assumed proportional to labour em-
ployed, δLt, and so δ denotes labour productivity. Aggregate supply, therefore, is
inventories over from the last period plus current production, i.e., yst = It−1 + δLt.
On the other hand, aggregate supply is based on expected aggregate demand plus
desired inventories. Thus

yst = It−1 + δLt

ydt = E
(
ydt
)+ Idt = E

(
ydt
)+ βE

(
ydt
)

= (1 + β)E
(
ydt
)

Setting these equal to each other gives

Lt = (1 + β)E
(
ydt
)− It−1

δ
(7.31)

15 Figure 7.21 presents the terms in a more familiar setting, but wages and prices do not enter this
modelling framework.
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Hence labour demand is given by

Ldt = max

{
0,

(1 + β)E
(
ydt
)− It−1

δ

}
(7.32)

Aggregate demand in the economy is assumed to be a linear function of labour
employed, ydt = a + bLt, where b can be thought of as the marginal propensity to
consume, and we assume labour productivity is greater than the marginal propen-
sity to consume, δ > b. The final element of the model is our rational expectations
assumption. We assume E(ydt ) = ydt , i.e., perfect foresight.

The model can therefore be summarised by six equations

(1) Ldt = max

{
0,

(1 + β)E
(
ydt
)− It−1

δ

}

(2) Lst = c where c is a constant

(3) ydt = a + bLt

(4) yst = It−1 + δLt

(5) It = max
{
0, yst − ydt

}
(6) E

(
ydt
) = ydt

(7.33)

Consider now the labour market in terms of figure 7.21(a). At a wage rate, w0,
say, actual labour employed, Lt must be positive and equal to labour demand.
Therefore

Lt = (1 + β)E
(
ydt
)− It−1

δ
= (1 + β)(a + bLt) − It−1

δ
(7.34)

Solving (7.34) for Lt gives

Lt = (1 + β)a − It−1

δ − b(1 + β)
(7.35)

This value must lie between 0 and c. Assume δ − b(1 + β) > 0, then

(1 + β)a − It−1

δ − b(1 + β)
< c

which implies

(1 + β)a − c[δ − b(1 + β)] < It−1

Let γ1 = (1 + β)a − c[δ − b(1 + β)] then It−1 > γ1. Similarly, if Lt > 0 then
It−1 < a(1 + β). Let γ2 = a(1 + β), then putting these together, we have that if Lt
lies between 0 and c, then γ1 < It−1 < γ2.

We need, however, to consider three situations: (i) It−1 ≤ γ1, (ii) γ1 < It−1 < γ2,
and (iii) It−1 ≥ γ2.

(i) It−1 ≤ γ1

If It−1 ≤ γ1 then Lt = c since this is the short side of the market in these circum-
stances. Then

It = yst − ydt
= It−1 + δc − a − bc
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i.e.

It = It−1 + (δ − b)c − a (7.36)

(ii) γ1 < It−1 < γ2

Then

It = yst − ydt

= It−1 + δLt − a − bLt

= It−1 + δ − b

[
(1 + β)a − It−1

δ − b(1 + β)

]
− a

On expanding and simplifying

It = −bβIt−1

δ − b(1 + β)
+ aδβ

δ − b(1 + β)
(7.37)

(iii) It−1 ≥ γ2

Under these circumstances Lt given by equation (7.35) is negative and so Lt =
Ldt = 0. Hence

It = yst − ydt = It−1 − a (7.38)

Combining all three cases, then It = f (It−1) is a piecewise function of the form

It =



It−1 + (δ − b)c − a It−1 ≤ γ1

−bβIt−1

δ − b(1 + β)
+ aδβ

δ − b(1 + β)
γ1 < It−1 < γ2

It−1 − a It−1 ≥ γ2

(7.39)

and describes the inventory dynamics of the present model.
Equilibrium investment is defined only for the range γ1 < It−1 < γ2. In this

instance

I∗ = −bβI∗

δ − b(1 + β)
+ aδβ

δ − b(1 + β)

i.e. I∗ = aδβ

δ − b

and since we have assumed δ > b, then this is positive.
We shall now pursue this model in terms of a numerical example.

Example 7.6

Let

a = 0.2, b = 0.75, c = 1, δ = 1

and for the moment we shall leave β unspecified. If β = 0.2, then γ1 =
0.14 and γ2 = 0.24. Equilibrium investment is given by I∗ = 0.16, which lies be-
tween the two parameter values. The piecewise difference equation is then given
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Figure 7.22.

Figure 7.23.

by

It =



It−1 + 0.05 It−1 ≤ 0.14

−1.5It−1 + 0.4 0.14 < It−1 < 0.24

It−1 − 0.2 It−1 ≥ 0.24

The situation is shown in figure 7.22.
The equation It = f (It−1) is clearly nonlinear, even though it is made up of linear

segments. Although the equilibrium level of investment, I∗ = 0.16, exists and is
identified in terms of figure 7.22 where the diagonal cuts the function f (It−1), it is
not at all obvious that this fixed point will be approached in the present case. In
fact, as figure 7.23 illustrates, the system is chaotic, as shown by the cobweb not
settling down at the fixed point from a starting value of I0 = 0.14.16

In constructing figure 7.23 we assumed that β = 0.2. If, as we just indicated, this
results in chaotic behaviour, then it would be useful to see the bifurcation diagram
for I∗ against β. In doing this we allow β to range over the interval 0 to 1/3, this

16 The procedure for constructing cobwebs for piecewise functions is covered in chapter 8. However,
Mathematica can be used to produce this function with the Which command as follows

f[x-]:=Which[x<=0.14,x+0.05,x>0.14 && x<0.24,0.4-1.5x,
x>=0.24,x-0.2]

Maple’s definition for the piecewise function is
f:=x->piecewise(x<=0.14,x+0.05,x>0.14 and x<0.24,0.4-1.5*x,

x>=0.24,x-0.2);
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Figure 7.24.

latter value comes from setting δ − b(1 + β) = 0 for the values given above. In
constructing the bifurcation diagram it is important to realise that the intervals for
the piecewise function vary with the change in β. Given the values above, we have
the piecewise difference equation

It =



It−1+0.05

−0.75βIt−1

1−0.75(1+β)
+ 0.2β

1−0.75(1+β)
It−1−0.2

It−1 ≤ 0.2(1+β)−[1−0.75(1+β)]

0.2(1+β)−[1−0.75(1+β)]<It−1 < 0.2(1+β)

It−1 ≥ 0.2(1+β)

which we use to construct the bifurcation diagram shown in figure 7.24. It is
apparent from this figure that although the system exhibits chaos over certain
ranges for β, there is regular alternating behaviour. For β = 0.25 the system is
chaotic.

The model offers much more possibilities depending on the values of the param-
eters. All we have done here is illustrate the presence of chaos in such a dynamic
inventory model.

Exercises

1. The logistic equation xt+1 = λ xt(1 − xt) has λ0 = 3 and λ1 = 3.4495.
Given the Feigenbaum constant of δ = 4.669 use this to predict the value
of λ at which k = 2 doubling takes place. Compare it with the value
derived by the computer programme provided in Gray and Glynn (1991,
p. 125).

2. Given λ0, λ1 and the universal Feigenbaum constant δ = 4.669, establish
that

λ2 = λ1 − λ0

δ
+ λ1

λ3 = λ2 − λ1

δ
+ λ2 = (λ1 − λ0)

(
1

δ2
+ 1

δ

)
+ λ1

and find the value for λk. Show that

lim
k→∞

λk = λ1 − λ0

δ − 1
+ λ1

and hence show that if λ0 = 3 and λ1 = 3.4495 then the approximate
value at which chaos begins for the logistic equation is 3.572.
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3. (i) Show that

xn+1 = λxn(1 − xn)

has the same properties as

yn+1 = y2
n + c

if

c = λ(2 − λ)

4
and yn = λ

2
− λxn

(ii) Verify by constructing bifurcation diagrams for each function.
4. Obtain the bifurcation diagram for the following tent function.

T(x) =
{

2x 0 ≤ x ≤ 1
2

2(1 − x) 1
2 < x ≤ 1

5. Construct a bifurcation diagram for the following equation

ẋ = 4x − λx

1 + 4x2

What type of bifurcation results?
6. Consider the equation discussed by Baumol and Benhabib (1989)

xt+1 = 3.94xt(1 − xt)

Establish the series for x0 = 0.99 and x0 = 0.9901 for t = 0, . . . , 100,
and hence establish that the series is sensitive to initial conditions.

7. Set up the Hénon map

xt+1 = 1 − ax2
t + yt

yt+1 = bxt

on a spreadsheet. Let a = 1.4 and b = 0.3. Plot the series xt for initial con-
ditions x0 = 0.1 and x0 = 0.101 for t = 0, . . . , 100 and y0 = 0.1. Does
the series show sensitivity to initial conditions?

8. Consider the Hénon map

xt+1 = 1 − ax2
t + yt

yt+1 = 0.3xt

Let a = 0.3675 x0 = 0.1 and y0 = 0.1. Plot the series xt for t =
200, . . . , 300 and hence show that a two-cycle results. Is the two-cycle
still present when a = 0.9125?

9. The Rössler equations take the form

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

Let a = 0.398, b = 2 and c = 4.

(i) Plot the trajectory for initial point (x(0), y(0), z(0)) = (0.1, 0.1, 0.1),
and hence show this results in a chaotic folded band.



Chaos theory 321

(ii) Does the same chaotic attractor appear for the following parameter
values?

a = 0.2, b = 0.2 and c = 5.7
where (x(0), y(0), z(0)) = (5, 5, 5)

10. Consider the Rössler equations of the form

ẋ = −y − z
ẏ = x + 0.2y
ż = 0.2 + z(x − c)

Show that
(i) a period-one limit cycle occurs when c = 2.3

(ii) a period-two limit cycle occurs when c = 3.3
(iii) a period-three limit cycle occurs when c = 5.3
(iv) chaos occurs when c = 6.3.
In each case assume the initial point is (1, 1, 1) and consider t = 50 to 100

Additional reading

Further material on chaos theory can be found in Baker and Gollub (1990),
Baumol and Benhabib (1989), Benhabib and Day (1981), Brock (1986), Gleick
(1988), Gray and Glynn (1991), Gulick (1992), Hilborn (1994), Holmgren (1994),
Hommes (1991), Kesley (1988), Lynch (2001), May (1976), Mandelbrot (1987),
Medio (1992), Mirowski (1986), Sandefur (1990) and Tu (1994).





PART II

Applied economic dynamics





CHAPTER 8

Demand and supply models

8.1 Introduction

Every student of economics is introduced to demand and supply and from then it
becomes a major tool of analysis, both at the microeconomic and macroeconomic
level. But the treatment is largely static, with the possible exception of the cobweb
model. But even when teaching this subject to first-year students, there is some-
thing unsatisfactory about the textbook analysis. Consider the situation shown in
figure 8.1, where D denotes the demand curve and S the supply curve. We have a
single market and the analysis is partial, i.e., this is the only market under inves-
tigation. For simplicity we also assume that the demand and supply curves have
conventional slopes and are linear.

Suppose the price is presentlyP0. What happens? The typical textbook argument
is that there is excess demand at this price and so suppliers, noting they can sell
all they wish, will raise the price. This process will continue until the market is
in equilibrium and there is no longer excess demand. But what is going on during
this process? At the price P0 do we assume that demand is not satisfied and that the
quantity actually transacted isQ0, but that in the next period the price is higher? Or
do we assume that these curves indicate market wishes on the part of demanders
and suppliers and that such excess demand is a signal to the market that a better
deal can be struck? Under this assumption no transactions take place until point
E is reached where there is no excess demand, and so no pressure for suppliers to
put up the price. This too presupposes adjustment in price is done by suppliers. A
similar story underlies the tâtonnement process, whereby demands and supplies
are matched by some fictitious auctioneer, and once matched then, and only then,
do trades take place. With excess demand, if transactions did take place then some
demand would go unsatisfied. Such individuals would be willing to offer a higher
price in order for their demands to be met. This may be true in some markets. But
do you find yourself going into a shop and offering a higher price? No! In a typical
market economy price is set by producers and adjusted by producers in the light
of circumstances.

You may argue that at price P0 suppliers see their stocks falling. Of course, this
presupposes they satisfy some of the excess demand out of stocks. This means that
the quantity traded is not the same as the quantity supplied – it is not the same
as Q0. The quantity supplied refers to new production. The amount traded is now
argued to be current production plus some stocks. Whether the quantity traded
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Figure 8.1.

is the same as the quantity supplied depends on current production, the level of
stocks, and the quantity supplied from stocks. The suppliers (or more typically the
retailers!) drop in stocks signal to suppliers to raise the price and raise the next
period’s level of production. This will continue until point E is reached and there
is no further adjustment in stock levels. Although a plausible story, it cannot occur
in a market where there are no stocks.

Of course, what we are attempting to describe here is a dynamic adjustment
process: an explanation of how and why the price will move from P0 to P∗. What
these different stories indicate is that there is more than one explanation for the
adjustment process. Often no explanation is given. Elementary textbooks are prone
to say that when there is excess demand price will rise and when there is excess
supply price will fall. This is not an explanation of why the price is adjusting;
it is simply a statement that this is what happens. As such it is consistent with
the different explanations provided above, which are by no means exhaustive. Put
another way, the dynamic process is left implicit rather than explicit.

Given the widespread use of demand and supply by economists then there is
need to consider explicitly the economic dynamics underlying such markets. It
is fitting, therefore, that we begin our application of dynamics with the topic of
demand and supply.

8.2 A simple demand and supply model in
continuous time

Consider a simple continuous price-adjustment demand and supply model of the
form

qd = a − bp b > 0

qs = c + dp d > 0
dp

dt
= α(qd − qs) α > 0

(8.1)
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where quantities demanded and supplied, qd and qs, and price, p, are assumed to
be continuous functions of time.

The fixed point, the equilibrium point, of this system is readily found by setting
dp/dt = 0, which gives

p∗ = a − c

b + d
(8.2)

and equilibrium quantity

q∗ = ad + bc

b + d
(8.3)

For a solution (a fixed point, an equilibrium point) to exist in the positive quadrant,
then a > c and ad + bc > 0.

We can solve for the price path by substituting the demand and supply equations
into the price adjustment equation giving the following first-order linear nonho-
mogeneous differential equation

dp

dt
+ α(b + d)p = α(a − c) (8.4)

with solution

p(t) = a − c

b + d
+
[
p0 −

(
a − c

b + d

)]
e−α(b+d)t (8.5)

which satisfies the initial condition p(0) = p0.

It may be thought that the dynamics of this model are quite explicit, but this is
not in fact the case. To see this consider the movement of the quantity over time.
The first thing we must note is that there are two different quantities qd(t) and qs(t).
So long as the price is not the equilibrium price, then these quantities will differ,
and it is this difference that forces the price to alter. Thus

qd(t) = ad + bc

b + d
+ b

[
p0 −

(
a − c

b + d

)]
e−α(b+d)t (8.6)

and

qs(t) = ad + bc

b + d
+ d

[
p0 −

(
a − c

b + d

)]
e−α(b+d)t (8.7)

The situation is illustrated in figure 8.2 for an initial price below the equilibrium
price.

What this model lacks is a statement about the quantity transacted or traded
on the market. To make a statement about the quantity traded we must make an
additional assumption. Suppose we make the following assumption:

ASSUMPTION 1
In disequilibrium, the short side of the market is transacted.

Let q(t) denote the quantity traded, then this assumption amounts to

q(t) = qs(t) for p0 ≤ p∗

q(t) = qd(t) for p0 ≥ p∗
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Figure 8.2.

or, more succinctly

q(t) = min(qd(t), qs(t))

The logic behind assumption 1 is that the model contains no stocks, and when
the price is below the equilibrium price, the current production is all that can be
supplied onto the market. Some demand will go unsatisfied. If, on the other hand,
the price is above the equilibrium price, and current production is in excess of
demand, suppliers cannot force people to purchase the goods, and so will sell only
what is currently demanded. Although when price is below the equilibrium price
and the quantity traded is what is currently produced, the excess demand gives a
signal to suppliers to increase future production and to raise the price. The model
is less satisfactory when interpreting what is happening when the price is above
the equilibrium price. In this instance there will be unsold goods from current
production. The model has nothing to say about what happens to these goods. All
we can say is that in the future suppliers will decrease their current production and
lower the price.

If stocks were included in the model and the stocks, which accumulated when
the price was above the equilibrium price, could be sold off when there is excess
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demand, then we move away from assumption 1 to a different assumption. By way
of example suppose we make the following assumption:

ASSUMPTION 2
Stocks are sufficiently plentiful to allow all demands to be met at any
price, and price adjusts in proportion to the change in stock levels.

Thus, if i(t) denotes the inventory holding of stocks at time t, then

di

dt
= qs − qd

i = i0 +
∫ t

0
(qs − qd)dt

and price adjusts according to

dp

dt
= −α

di

dt
= −α(qs − qd) = α(qd − qs) α > 0

On the face of it this appears to be the same model, resulting as it does in the same
first-order linear nonhomogeneous differential equation. It is true that the solution
for the price gives exactly the same solution path. The difference in the model arises
in terms of the quantity traded. The time path of the quantity demanded, and the
time path of the quantity supplied, are as before. For a price above the equilibrium
price it is still the case that the quantity traded is equal to the quantity demanded
(the short side of the market), and the unsold production goes into stock holdings.
It is this rise in stocks that gives the impetus for suppliers to drop the price. On the
other hand, when the price is below the equilibrium price, the quantity traded is
equal to the quantity demanded (the long side of the market!). The excess demand
over current production is met out of stocks. The fall in stock holdings is the signal
to producers to raise the price and raise the level of production. Under this second
assumption, therefore, we have

q(t) = qd(t) for all p

What is invariably missing from elementary discussions of demand and supply
is the dynamics of the quantity traded. At any point in time there can be only one
quantity traded, and whether this is equal to the quantity demanded, the quantity
supplied or some other quantity depends on what is assumed about the market
process when in a disequilibrium state.

To illustrate the significance of the arguments just presented let us consider the
labour market. Here we are not concerned with the derivation of the demand for
labour and the supply of labour, we shall simply assume that labour demand, LD,
is negatively related to the real wage rate, w, and labour supply, LS, is positively
related to the real wage rate. Since we are concerned here only with the dynamic
process of market adjustment, we shall assume labour demand and labour supply
are linear functions of the real wage rate, and we set up the model in continuous
time. Thus

LD(t) = a − bw(t) b > 0

LS(t) = c + dw(t) d > 0

LD(t) = LS(t)

(8.8)
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Figure 8.3.

The flexible wage theory asserts that wages are highly flexible and will always
alter to achieve equilibrium in the labour market, i.e., the wage rate will adjust
to establish LD(t) = LS(t). Let us be a little more specific. A typical textbook
version (Parkin and King 1995, chapter 29) is that if the real wage is below the
equilibrium wage (w < w∗), then the demand for labour is above the supply of
labour. Employers will raise the wage rate in order to attract labour, and that this will
continue until a wage rate ofw∗ is established. On the other hand, if the wage rate is
above the equilibrium wage rate, then households will not be able to find jobs and
employers will have many applicants for their vacancies. There will be an incentive
for employers to lower the wage rate, and for labour to accept the lower wage in
order to get employed. This will continue until the wage rate of w∗ is established.

The dynamic adjustment just mentioned is assumed to take place very quickly,
almost instantaneously. For this reason the model is often referred to as a market
clearing model.1 At any point in time the wage rate is equal to the equilibrium
wage rate, and the quantity of employment is equal to labour demand that is equal
to labour supply. Let employment at time t be denoted E(t), then in the flexible
wage theory, the wage will adjust until LD(t) = LS(t) = E(t). A shift in either the
demand curve for labour or the supply curve of labour will alter the equilibrium
wage rate and the level of employment. Thus a rise in the capital stock will increase
the marginal product of labour and shift the labour demand curve to the right. This
will lead to a rise in the real wage rate and a rise in the level of employment, as
illustrated in figure 8.3.

A different wage theory, however, is also prevalent in the literature, called the
sticky wage theory. This asserts that money wage rates are fixed by wage contracts
and adjust only slowly. If this assumption is correct, then it does not follow that
the real wage will adjust to maintain equality between labour demand and labour

1 This is the basic assumption underlying the approach by Barro and Grilli (1994) in their elementary
textbook, European Macroeconomics.
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Figure 8.4.

supply. Suppose at the ruling money wage and price level the real wage is above
the market clearing wage, as shown in figure 8.4 at the real wage rate w1. The
labour market is in disequilibrium and there is no presumption in this theory that
the real wage will fall, at least in the short and (possibly) medium term. At this real
wage rate there is an excess supply of labour. But employment will be determined
by the demand for labour, and the excess supply will simply increase the level of
unemployment. Employment will be at the level E1 and unemployment will be
increased by U1. It is just like our earlier model of stock accumulation. However,
in this model it is not so easy for employers to reduce the wage on offer.

At a real wage rate of w2, which is below the market clearing wage rate of
w∗, there is an excess demand for labour. Employment, however, is no longer
determined by the demand curve of labour. If individuals are not willing to put
themselves on to the labour market at that real wage, then employers will simply
be faced with vacancies. Employment will be at the level E2 and vacancies will
rise by V2. Of course, if such a situation prevails there will be pressure on the part
of firms to increase the nominal wage, and hence increase the real wage, in order
to attract individuals into the labour market. There will be dynamic forces present
which will push up the nominal, and hence the real, wage rate. What we observe,
then, is that the short side of the market determines the level of employment.

But the labour market illustrates another implicit dynamic assumption. When
the real wage is below the market clearing wage then there will be pressure on firms
to raise the nominal wage in order to fill their vacancies. When the real wage is
above the market clearing wage employers may wish to reduce their nominal, and
hence their real, wage but may be prevented from doing so because of contractual
arrangements. In other words, there is anasymmetricmarket adjustment: real wages
may rise quicker when there is excess demand for labour than they will fall when
there is an equivalent excess supply of labour. Such asymmetric market adjustment
takes us yet further into realms of additional assumptions specific to the labour
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market. What appeared to be a straightforward demand and supply model takes on
a rather complex pattern depending on the assumptions of dynamic adjustment.

8.3 The cobweb model

In the previous section we referred to the possibility that price would be altered in
the next period in the light of what happened in this period. Whenever decisions in
one period are based on variables in another period we inherently have a dynamic
model. The simplest of such models is the cobweb model of demand and supply.
This model is also set out most usually in a discrete form. This is understandable.
The model was originally outlined for agriculture (Ezekiel 1938), and concentrated
on the decision-making of the farmer. First we shall consider a simple linear version
of the model.

Demand at time t is related to the price ruling at time t. Letting qdt denote the
quantity demanded at time t and pt the actual price at time t, then we have

qdt = a − bpt b > 0

However, the farmer when making a decision of what to grow or what to produce
will need to make a decision much earlier, and he will make a decision of what
quantity to supply, qst , based on what price he expects to receive at time t, i.e., pet .
Accordingly, the supply equation takes the form

qst = c + dpet d > 0

At any point in time, the market is considered to be in equilibrium and so the
quantity traded, qt, is equal to the quantity demanded, which is equal to the quantity
supplied. The model is, then

qdt = a − bpt

qst = c + dpet
qdt = qst = qt

(8.9)

As the model stands it cannot be solved because of the unobservable variable pet .
We therefore have to make a further assumption about how the supplier forms
his or her expectation or makes a decision about the expected price. The simplest
assumption of all is that he or she expects the price at time t to be what it was in
the previous period. This assumption, of course, amounts to assuming pet = pt−1.
The model now becomes

qdt = a − bpt

qst = c + dpt−1

qdt = qst = qt

(8.10)

Substituting the demand and supply equations into the equilibrium condition we
obtain

a − bpt = c + dpt−1

pt =
(
a − c

b

)
−
(
d

b

)
pt−1

(8.11)
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which is a first-order nonhomogeneous dynamic system. Notice that it is also
an autonomous dynamic system because it does not depend explicitly on the
variable t.

The system is in equilibrium when the price remains constant for all time periods,
i.e., pt = pt−1 = . . . = p∗. Thus

p∗ = a − c

b + d
where p∗ ≥ 0 if a ≥ c (8.12)

With linear demand and supply curves, therefore, there is only one fixed point,
one equilibrium point. However, such a fixed point makes economic sense
(i.e. for price to be nonnegative) only if the additional condition a ≥ c is also
satisfied.

To solve this model, as we indicated in part I, we can reduce the nonhomoge-
neous difference equation to a homogeneous difference equation by taking devia-
tions from the equilibrium. Thus

pt =
(
a − c

b

)
−
(
d

b

)
pt−1

p∗ =
(
a − c

b

)
−
(
d

b

)
p∗

pt − p∗ = −
(
d

b

)
( pt−1 − p∗)

with solution

pt − p∗ =
(

−d

b

)t

( p0 − p∗)

which satisfies the initial condition pt = p0 when t = 0. More fully

pt =
(
a − c

b + d

)
+
(

−d

b

)t [
p0 −

(
a − c

b + d

)]
(8.13)

With the usual shaped demand and supply curves, i.e., b > 0 and d > 0, then
d/b > 0, hence (−d/b)t will alternate in sign, being positive for even numbers of t
and negative for odd numbers of t. Furthermore, if 0 < |−d/b| < 1 then the series
will become damped, and in the limit will tend towards the equilibrium price. On
the other hand, if |−d/b| > 1 then the system will diverge from the equilibrium
price. Finally, if |b| = |d| (or |−d/b| = 1), then the system will neither converge
nor diverge and will exhibit a two-period cycle. These results were verified by
means of a simple numerical example and solved by means of a spreadsheet in
chapter 3, figure 3.11.

Example 8.1

By way of variation, here we shall solve a numerical version of the system using
Mathematica and Maple (see Eckalbar 1993). The input instructions for each
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package are

Mathematica
{a,b,c,d}={20,4,2,2.5}

A=-b/d

pt1[pt-]:=A*pt

price[t-,p0-]:=ListPlot[NestList[pt1,p0,t],

PlotJoined->True, PlotRange->All,

AxesOrigin->{0,0}]

price[20,1]

Maple
A:=20: b:=4: c:=2: d:=2.5:

A:=-d/b;

sol:=rsolve(p(t)=A*p(t-1),p):

equ:=subs(p(0)=1,sol):

f:=t->equ:

points:=[seq([t,f(t)],t=0..20):

plot(points);

InMathematica, we first set values for the parameters a, b, c and d, namely {a, b, c,
d}= {20, 4, 2, 2.5}. We then define the ratio (−d/b) = A, resulting inA = −0.625,
and define the recursive function pt1[pt ] := A*pt. It now remains to generate the
series of values for the price using the NestList command, and to plot the resulting
series using the ListPlot command. The result is figure 8.5.

Notice that this version of the cobweb allows different periods to be specified
and a different initial price. Thus, price[50,2] would indicate a plot of 50 periods
with an initial price of 2.

Figure 8.5 can also be generated using theMaple commands given above. Again,
we input the values for the four parameters and define A. In Maple we approach
the next part slightly differently. We solve the difference equation, using the rsolve
command. Then define the equation for the initial price being unity, and use this
to define the mapping f . Next we create a series of points using the sequence
command and plot these to create figure 8.5.

It is readily observed from figure 8.5 that this system is dynamically stable, with
the price converging on the equilibrium price – since deviations from equilibrium
converge on zero. Using a software package such as Mathematica or Maple differ-
ent values for the parameters can readily be investigated. For instance, parameter

Figure 8.5.
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Figure 8.6.

values {20, 4, 2, 6} and price [20,1] will readily be shown to exhibit an unsta-
ble system with price diverging from its equilibrium. This stability and instability
is purely dependent on the value of A. In figure 8.5 the system is stable and
A = −0.625 while the alternative parameter values gives A = −1.5 leading to an
unstable system. All this we investigated in chapter 3.

Nothing in the analysis so far would indicate why it is referred to as the ‘cobweb’
model. This is because we have concentrated solely on the time path of price in the
system. There are two ways to exhibit the cobweb. One is to show the sequence of
points on a demand and supply diagram (figure 8.6(a))2 and the other is to plot the
differential equation for price in relation to the 45◦-line (figure 8.6(b)). In many
ways figure 8.6(a) is more revealing because it shows the behaviour of both price
and quantity. Here we have a convergent cobweb. The same convergence pattern is
shown in figure 8.6(b), but here concentration is on the price sequence. The second
approach, however, is more useful for mathematical investigation (especially of
nonlinear systems).

So far we have concentrated on the very simple linear model. A number of
avenues can be explored. Within the confines of the linear model, it is possible to
specify a different behaviour for the expected price. It may be argued that expecting
the price in the current period to be what it was in the previous period is very naı̈ve
and takes no account of the trend in prices. It is possible, therefore, to specify an

2 Notice that quantity is on the vertical axis and price on the horizontal axis.
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adaptive expectation in which the expected price is an adjustment of the forecast
error in the previous guess. More specifically, we can write

pet = pet−1 − λ(pet−1 − pt−1)(8.14)

If λ = 1 then this amounts to our previous model. In other words, the previous
model can be considered as a special case of the present model in which λ = 1.
The model in full is

qdt = a − bpt b > 0

qst = c + dpt−1 d > 0

pet = pet−1 − λ
(
pet−1 − pt−1

)
0 ≤ λ ≤ 1

qdt = qst = qt

(8.15)

We can solve this model by noting

pet = (1 − λ)pet−1 + λpt−1

pet = qst − c

d
= qdt − c

d
= a − bpt − c

d

... pet−1 =
(
a − c

d

)
−
(
b

d

)
pt−1

Hence

a − bpt = c + d(1 − λ)

[(
a − c

d

)
−
(
b

d

)
pt−1

]
+ dλpt−1

i.e. pt = λ

(
a − c

d

)
+
[
1 − λ −

(
λd

b

)]
pt−1

(8.16)

Setting pt = pt−1 = . . . = p∗ for all t readily gives the same equilibrium price,
namely p∗ = (a − c)/(b + d). As in our earlier and simpler model, taking devia-
tions from equilibrium readily gives the solution

pt − p∗ =
[
1 − λ −

(
λd

b

)]t
( p0 − p∗)(8.17)

Let the term in square brackets be denoted B, then for this model to exhibit a
convergent oscillatory solution it is necessary for −1 < B < 0, in other words it
is necessary to satisfy the condition

1

λ
− 1 <

d

b
<

2

λ
− 1(8.18)

Of course, there can be many other specifications for price expectation, each
giving rise to a different model. For instance, we can postulate the following
(Goodwin 1947)

pet = pt−1 + η( pt−1 − pt−2)(8.19)

where η is the coefficient of expectations. If η = 0 then pet = pt−1, which is our
original formulation. If η > 0 then price is expected to move in the same direction
as in the past; while if η < 0, then price is expected to reverse itself. The extent of
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these price movements is very dependent on the magnitude of η. The full model is

qdt = a − bpt b > 0

qst = c + dpt−1 d > 0

pet = pt−1 + η( pt−1 − pt−2)

qdt = qst = qt

(8.20)

The model can be solved algebraically, but it can also be easily investigated
by means of a spreadsheet. To do this we first do some algebraic manipulation.
Substituting the expectations equation into the supply equation, and then equating
this with demand, we find

a − bpt = c + d[pt−1 + η( pt−1 − pt−2)]

i.e. pt =
(
a − c

b

)
−
(
d

b

)
(1 + η)pt−1 +

(
dη

b

)
pt−2

(8.21)

which is a second-order difference equation.

Example 8.2

Suppose we set up the initial spreadsheet with the following parameter values, and
the necessary two initial prices

a = 100 c = −20 η = −1.2
b = 2 d = 1.25
p0 = 20 p1 = 24

The model is illustrated in figure 8.7. Having set up the model, it is quite easy
to change the value of the parameters, but most especially η, and see the result
on the price series. In most spreadsheets the price plot will change interactively
as the parameter values are changed. It is of course possible to solve the model
algebraically and investigate the restrictions on the parameter values (see Gandolfo
1971, pp. 91–6), but any student of economics can investigate the properties of
this model by means of a spreadsheet.

Figure 8.7.
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8.4 Cobwebs with Mathematica and Maple

The intention of this section is to provide routines for creating cobwebs using
Mathematica andMaple. There are many ways to do this and here we shall provide
only one for each package. Mathematica’s routine is based on Gray and Glynn
(1991, chapter 7), whileMaple’s routine is an adaptation of this. TheMaple routine
is written as a procedure, a mini-programme. The reason for this is so many
cobwebs can be then created with the minimum of input instructions. A different
Maple routine can be found in Lynch (2001).3 Both the routines below can handle
linear and nonlinear equations and can also be adapted to deal with stepwise
functions. Since the Mathematica routine is the basis for the two instructions, a
detailed explanation of this is provided in appendix8.1.This appendix alsoprovides
the Maple routine just as a set of input instructions rather than as a procedure.

We consider only the recursive form of the cobweb, as illustrated in figure 8.6(b)
and begin with the linear recursive equation

xt = f (xt−1) = a + bxt−1(8.22)

The instructions for each programme are as follows, where we use the recursive
equation in figure 8.6(b) as an illustration:

Mathematica4

f[x-]:=a+b*x

{a=4.5,b=-0.625}

x0=1

points=Rest[Partition[Flatten[Transpose[

{NestList[f,x0,20],NestList[f,x0,20]}] ],2,1]];

web=ListPlot[points,PlotJoined->True]

lines=Plot[{f[x],x},{x,0,5}]

cobweb=Show[web,lines]

Maple
restart;

with(linalg):

with(plots):

cobweb:=proc(f,x0,n,xmin,xmax)

local fk,list1,list2,list3,list4,web,lines;

fk:=(x,k)->simplify((f@@k)(x));

list1:=transpose(array([[seq(fk(x0,k),k=0..n)],

[seq(fk(x0,k),k=0..n)]])):

list2:=convert(convert(list1,vector),list):

list3:=convert(transpose(array(

[list2[1..nops(list2)-1],

list2[2..nops(list2)]])),listlist):

list4:=[list3[2..nops(list3)]]:

3 See Lynch (2001, pp. 249–50 ). Here Lynch provides a routine for the tent function, which is a
stepwise function, but this is readily adapted for any linear or nonlinear function.

4 Intermediate displays in Mathematica can be suppressed by including the instruction:
DisplayFunction->Identity, then in the final display using the Show command, include
DisplayFunction->$DisplayFunction. See figure 8.8(a) and appendix 8.1.
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web:=plot(list4):

lines:=plot({f(x),x},x=xmin..xmax,colour=blue):

display({web,lines});

end:

f:=x->4.5-0.625*x;

cobweb(f,1,20,0,5);

The cobweb procedure for Maple requires you to first define the function f and
then to supply the values for x0, n, xmin and xmax. The penultimate line therefore
defines the function and then the input instruction cobweb( f ,1,20,0,5) indicates to
use the procedure for the defined function, give x0 a value of unity, n a value of
20, and xmin and xmax values of 0 and 5, respectively. These instructions produce
a similar plot to the Mathematica instructions given above.

Nonlinear equations too are readily handled. If we are considering, for example,
the nonlinear logistic equation

xt = f (xt−1) = rxt−1(1 − xt−1) x0 = 0.1

with r = 3.85, then in Mathematica we replace the first three lines with

f[x-]:=r*x*(1-x)

{r=3.85}

x0=0.1

and we also need to change the range for x in the ‘lines’ input to {x,0,1}. In Maple,
on the other hand, we simply replace the last two lines with

f:=x->3.85*x*(1-x);

cobweb(f,0.1,20,0,1);

Figure 8.8 shows screen shots of the final output for each programme. As can be
seen from the figure, the results are virtually the same. It is, of course, possible to
include instructions for labelling the axes and provide headings, but we have not
done that here.

It is also fairly straightforward to deal with piecewise functions, and we shall
illustrate exactly how in the next section.

8.5 Cobwebs in the phase plane

Return to our linear cobweb model in which supply is based on last period’s price.
The resulting difference equation is

pt =
(
a − c

b

)
−
(
d

b

)
pt−1

or

pt = A − Bpt−1

where A = a − c

b
and B = d

b

Hence, the function pt = f ( pt−1) = A − Bpt−1 is linear in the phase space in which
pt−1 is on the horizontal axis and pt is on the vertical axis. Figure 8.9 illustrates
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Figure 8.8.

two possibilities in which demand and supply have conventional slopes. The linear
mapping is shown by the line denoted L. The 45◦-line, denoted E, satisfies the
condition

pt = pt−1 for all t

and p∗ denotes a fixed point, an equilibrium point.
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Figure 8.9.

Whether such a fixed point is stable, unstable or periodic can be established
from the slope of L. If 0 < |−B| < 1, as in figure 8.9(a), then p∗ is an attractor,
and the price sequence {pt}, starting at p0, converges on p∗. Starting at p0, then,
p1 = A − Bp0, which is read off the line L. This is the same as p1 on the E-line.
At p1, then p2 = A − Bp1, which again is read off the line L. The sequence will
continue until p∗ is reached. On the other hand, the sequence {pt} starting at
p0 in figure 8.9(b), diverges from p∗. This is because |−B| > 1, and so p∗ is a
repellor.

What happens when |−B| = 1, where the slope of the demand curve in absolute
value is equal to the slope of the supply curve? We then have

pt = A − pt−1

The situation is illustrated in figure 8.10. In chapter 3, section 3.4, we defined
a solution yn as periodic if yn+m = yn, and the smallest integer for m is the period
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Figure 8.10.

of the solution. In the present example, beginning at p0, we have

p1 = A − p0

p2 = A − p1 = A − (A − p0) = p0

p3 = A − p2 = A − p0

p4 = A − p3 = A − (A − p0) = p0

If follows, therefore, that

p0 = p2 = p4 = . . . and p1 = p3 = p5 = . . .

We have a two-period cycle solution. In fact, with linear demand and supply, with
equal slopes in absolute value, there can only be a two-period cycle and no higher
one is possible.

Discrete systems have come under increasing investigation in recent years be-
cause of the possibility of chaotic behaviour to which they can give rise (see
chapter 7). By way of introduction to this analysis we shall continue with our
simple linear example and consider how Mathematica can be used to investigate
cobweb models. It will be found that the phase plane plays an important part in
this approach. Although a little repetitive, we shall provide both Mathematica and
Maple instructions for deriving the cobwebs. However, since the Maple procedure
never changes, we shall simply write ‘cobweb procedure’.

Example 8.3

We shall illustrate the technique by means of the following simple cobweb model

qdt = 24 − 5pt

qst = −4 + 2pt−1

qdt = qst = qt
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which has equilibrium valuesp∗ =4 andq∗ =4. The resulting difference equation is

pt = 5.6 − 0.4pt−1

The objective is to plot a sequence of points in the phase plane. Joining up these
points forms the web of the cobweb. Superimposed on this web is the line f (p) =
5.6 − 0.4p and the 45◦-line. A full explanation of the instructions forMathematica
and Maple are given in appendix 8.1.

Mathematica
f[p-]:=5.6-0.4p

p0=1

points=Rest[Partition[Flatten[Transpose[

{NestList[f,p0,20],NestList[f,p0,20]}

] ], 2, 1 ] ];

web=ListPlot[points,PlotJoined->True]

lines=Plot[ {f[p],p}, {p,0,10} ]

cobweb=Show[web,lines,

AxesLabel->{"pt-1","pt"} ]

Maple
`cobweb procedure’

f:p->5.6-0.4*p

cobweb(f,1,20,0,10)

Notice in the Maple instructions that although the procedure defines the function
in terms of the variable x, we define f in terms of p. We can do this, and we do it
repeatedly throughout this chapter, because the variables within the procedure are
defined locally. The result is shown in figure 8.11.

To illustrate the generality of this approach, and to highlight a nonlinear cobweb,
consider the following model.

Example 8.4

qdt = 4 − 3pt

qst = p2
t−1

qdt = qst = qt

Figure 8.11.
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Figure 8.12.

The equilibrium, assuming a positive price, is given by p∗ = 1 and q∗ = 1, and the
difference equation is given by

pt = (4/3) − (1/3)p2
t−1

The question now arises as to whether the solution p∗ = 1 is stable or not. Using
Mathematica we can input the following instructions (where we have included
solving for equilibrium price):

Mathematica
f[p-]:=(4/3)-(1/3)p^2

EquPrice=Solve[p==f[p],p]

p0=1.5

points=Rest[Partition[Flatten[Transpose[

{NestList[f,p0,20],NestList[f,p0,20]}

] ], 2, 1 ] ];

web=ListPlot[points,PlotJoined->True]

lines=Plot[ {f[p],p}, {p,0,2} ]

cobweb=Show[web,lines,

AxesLabel->{"pt-1","pt"} ]

Maple’s instructions are

Maple
`cobweb procedure’

f:=p->(4/3)-(1/3)*p^2

EquPrice:=solve(p=f(p),p);

cobweb(f,1.5,20,0,2);

The resulting cobweb is illustrated in figure 8.12. The model, therefore, has a
locally stable solution for a positive price equilibrium.

It should be noted5 that at the equilibrium point we have

f ′( p∗) = 2(−1/3)p∗ = −2/3

i.e.
∣∣ f ′(p∗)

∣∣ < 1

5 See chapter 3, section 3.4.
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which verifies the local stability of p∗ = 1. Although this particular nonlinearity
leads to a stable solution, some authors (e.g. Waugh 1964) have argued that other
types will lead to a two-period cycle and may well be the norm.

One especially important nonlinearity can arise where there is a price ceiling
set (Waugh, 1964). Consider the following linear demand and supply model.

Example 8.5

qdt = 42 − 4pt

qst = 2 + 6pt−1

qdt = qst = qt

The difference equation from this model is

pt = 10 − 1.5pt−1

with equilibrium values p∗ = 4 and q∗ = 26. Since the slope of the function f (p) =
10 − 1.5p is greater than unity in absolute terms, then the cobweb is unstable. This
is readily verified starting with a price of p0 = 3.5.

Suppose a price ceiling pc = 6 is set, then the price in any period cannot exceed
this ceiling. What we have, then, is a function which is kinked at p = 8/3, the
value where pc = f ( p). This can be expressed as

f (p) =
{

6 p < 8/3
10 − 1.5p p ≥ 8/3

Within Mathematica there is only a slight difference in defining the function. We
define it using the If command, i.e.

f[p-]:=If[ p<8/3,6,10-1.5p]

i.e. if p < 8/3 then f (p) takes the value 6, otherwise it takes the value 10 − 1.5p.
The remaining instructions for creating the cobweb remain unaffected, although
we have added the price ceiling to the lines, i.e.

lines=Plot[ {f[p], p, 6}, {p,0,6}]

In Maple we use a similar instruction using the piecewise function, i.e.

f:p->piecewise(p<8/3,6,10-1.5*p);

which says for p less than 8/3 take the value 6, else take the value 10–1.5p for
p ≥ 8/3. All other instructions remain the same.

The full instructions for both packages, including a plot of f ( p), are:

Mathematica
f[p-]:=If[p<8/3,6,10-1.5p]

Plot[f[p],{p,0,6}]

p0=3.5

points=Rest[Partition[Flatten[Transpose[

{NestList[f,p0,10],NestList[f,p0,10]}

] ], 2, 1 ] ];

web=ListPlot[points,PlotJoined->True]
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Figure 8.13.

lines=Plot[ {f[p],p,6}, {p,0,6} ]

cobweb=Show[web,lines,

AxesLabel->{"pt-1","pt"} ]

Maple
`cobweb procedure’

f:p->piecewise(p<8/3,6,10-1.5*p);

cobweb(f,3.5,10,0,6);

which results in the cobweb shown in figure 8.13.
What figure 8.13 shows is that initially, starting from a price of p0 = 3.5, the

market is unstable, moving away from the equilibrium price p∗ = 4. However,
once the price ceiling is reached, the system settles down to a two-period cycle,
oscillating between p = 1 and p = 6. Although the equilibrium is not attained, the
ceiling does limit the price variation.

8.6 Cobwebs in two interrelated markets6

Interrelated markets with time lags illustrate the application of discrete dynamic
systems. An early example was the corn–hog cycle mentioned by Ezekiel (1938)
and Waugh (1964). The model amounts to two markets:
Corn market

dct = a1 − b1pct b1 > 0

sct = c1 + d1pct−1 d1 > 0

dct = sct

(8.23)

Hog market

dht = a2 − b2pht b2 > 0

sht = c2 + d2pht−1 + epct−1 d1 > 0, e < 0

dht = sht

(8.24)

where

dc = demand for corn dh = demand for hogs
sc = supply of corn sh = supply of hogs
pc = price of corn ph = price of hogs

6 This section requires knowledge of chapter 5.
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The corn market is our typical cobweb with a one-period lag on supply, i.e., farmers
base the supply in period t on the expected price of corn, which they assume is
the same as it was last period. The corn market is independent of the hog market.
However, the hog market besides having a similar time lag on the supply also
depends on what farmers expect the corn price to be – since this is food for the
hogs. It is assumed that farmers expect the price of corn to be what it was last
period. This model can apply to any animal–feed interaction.

The model can be handled by deriving a system of difference equations, which
is accomplished by substituting the respective demand and supply equations into
the equilibrium conditions and suitably re-arranging the results. The results are

pct =
(
a1 − c1

b1

)
−
(
d1

b1

)
pct−1

pht =
(
a2 − c2

b2

)
−
(
d2

b2

)
pht−1 −

(
e

b2

)
pct−1

(8.25)

Let p∗
c and p∗

h denote the equilibrium prices in the corn and hog markets, respec-
tively. Then taking deviations from equilibria, we have

pct − p∗
c = −

(
d1

b1

) (
pct−1 − p∗

c

)

pht − p∗
h = −

(
d2

b2

) (
pht−1 − p∗

h

)−
(

e

b2

) (
pct−1 − p∗

c

)
Let

A1 = −d1/b1 A2 = −d2/b2 B = −e/b2

xt = pct − p∗
c implies xt−1 = pct−1 − p∗

c

yt = pht − p∗
h implies yt−1 = pht−1 − p∗

h

Then the system can be written more succinctly as

xt = A1xt−1

yt = A2yt−1 + Bxt−1

or in matrix notation[
xt
yt

]
=
[
A1 0
B A2

] [
xt−1

yt−1

]

Equilibria in the two markets require xt = xt−1 = x∗ for all t, and yt = yt−1 = y∗

for all t. Using these conditions, the equilibria are readily found to be

p∗
c = a1 − c1

b1 + d1

p∗
h =

(
a2 − c2

b2 + d2

)
− e

b2 + d2

(
a1 − c1

b1 + d1

) (8.26)

We investigated the properties of such systems in chapter 5.
Let A denote the matrix of the system, where

A =
[
A1 0
B A2

]
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with characteristic equation |A − λI| = (A1 − λ)(A2 − λ) = 0, then the character-
istic roots are r = A1 and s = A2. Stability in the corn and hog market is assured if
|r| < 1 and |s| < 1, i.e., |−d1/b1| < 1 and |−d2/b2| < 1. It should be noted that
|−d1/b1| < 1 is the condition for stability in the corn market, while |−d2/b2| < 1
is the condition for stability in the hog market, assuming constant corn prices.

Example 8.6

To pursue the analysis further we shall consider the following numerical example.
For corn we have

dct = 24 − 5pct
sct = −4 + 2pct−1

dct = sct

while for the hog market we have

dht = 20 − 5pht
sht = 2.5 + 2.5pht−1 − 2pct−1

dht = sht

Substituting and solving for pct and pht , respectively, we obtain

pct = 5.6 − 0.4pct−1

pht = 3.5 + 0.4pct−1 − 0.5pht−1

The equilibrium price in each market is readily found to be p∗
c = 4 and p∗

h = 3.4.
The question now arises as to whether this combined equilibrium is stable.

Taking deviations from equilibrium, the system reduces down to[
xt
yt

]
=
[−0.4 0

0.4 −0.5

] [
xt−1

yt−1

]

with characteristic equation

|A − λI| = (−0.4 − λ)(−0.5 − λ) = 0

and characteristic roots r = −0.4 and s = −0.5.

For r = −0.4 we have

(A − rI)vr = 0

so that [−0.4 + 0.4 0
0.4 −0.5 + 0.4

] [
vr1
vr2

]
=
[

0
0

]
or [

0 0
0.4 −0.1

] [
vr1
vr2

]
=
[

0
0

]

then

0.4vr1 − 0.1vr2 = 0
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Let vr1 = 1 then vr2 = 0.4vr1/0.1 = 4. Hence the eigenvector associated with
r = − 0.4 is

vr =
[

1
4

]

For s = −0.5 we have

(A − sI)vs = 0

giving [−0.4 + 0.5 0
0.4 −0.5 + 0.5

] [
vs1
vs2

]
=
[

0
0

]
or [

0.1 0
0.4 0

] [
vs1
vs2

]
=
[

0
0

]

Hence, 0.1vs1 = 0 giving vs1 = 0. vs2 can be anything, so let it be unity. Then

vs =
[

0
1

]

Hence, the matrix composed of both eigenvectors, denoted V, is given by

V = [
vr vs

] =
[
1 0
4 1

]

Hence

ut = VDtV−1u0

or [
xt
yt

]
=
[
1 0
4 1

] [
(−0.4)t 0

0 (−0.5)t

] [
1 0
4 1

]−1 [
x0

y0

]

As t → ∞ then each of the terms (−0.4)t and (−0.5)t tends to zero, and so
xt → 0 and yt → 0, which in turn means pct → p∗

c and pht → p∗
h. The interrelated

market is, therefore, dynamically stable.

8.7 Demand and supply with stocks

In section 8.1 we indicated that suppliers often change prices in response to their
level of stocks. This, of course, applies only to non-perishable goods. It is sur-
prising, therefore, that there are so few demand and supply models with stock
behaviour built in. Here we shall consider just a few simple stock models.

Stocks can be built up only when there is excess supply. Furthermore, stocks
are specified for a point in time. Let Qt denote the level of stocks at the end of
period t. Then the change in stocks over period t is Qt − Qt−1 and this arises from
the excess supply over period t, i.e.

�Qt = Qt − Qt−1 = qst − qdt
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We continue to assume a linear demand and supply model. What happens in such
a model depends on how suppliers alter prices in response to stock changes. We
consider two alternative assumptions

ASSUMPTION 1
Suppliers raise the price if stocks in the previous period fall, and the rise
in price is set proportional to the fall in stocks

pt − pt−1 = −γ1�Qt−1 γ1 > 0

ASSUMPTION 2
Suppliers raise the price if stocks in the previous period fall below a given
level, Q, and the rise in price is set proportional to the deviation of stocks
from the specified level

pt − pt−1 = −γ2(Qt−1 − Q) γ2 > 0

Under assumption 1 we have the model

qdt = a − bpt

qst = c + dpt

pt − pt−1 = −γ1�Qt−1

(8.27)

where �Qt = qst − qdt for any period t. Therefore,

pt − pt−1 = −γ1(qst−1 − qdt−1)

pt = pt−1 − γ1(c + dpt−1 − a + bpt−1)

= pt−1 + γ1(a − c) − γ1(b + d)pt−1

i.e.

pt = γ1(a − c) + [1 − γ1(b + d)]pt−1(8.28)

The fixed point of this system, the equilibrium point, is found by setting pt = p∗

for all t. With result

p∗ = a − c

b + d

the same equilibrium we found in earlier models.
Although the behaviour of suppliers in response to stock changes does not affect

the equilibrium price (and hence also the equilibrium quantity), it does have an
impact on the path to equilibrium. The solution to the difference equation (8.28) is

pt = a − c

b + d
+ [1 − γ1(b + d)]t

(
p0 − a − c

b + d

)
(8.29)

where p0 is the price at time t = 0.

There are three possible time paths for price:

(i) If 0 < 1 − γ1(b + d) < 1 then the system converges steadily on the equi-
librium value. This occurs if 0 < γ1 < 1/(b + d).
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(ii) If −1 < 1 − γ1(b + d) < 0 then the system converges on the equilib-
rium in terms of damped oscillations. This occurs if 1/(b + d) < γ1 <

2/(b + d).
(iii) If 1 − γ1(b + d) < −1 then the system has explosive oscillations. This

occurs if γ1 > 2/(b + d).

Example 8.7

Consider the following model

qdt = 20 − 4pt

qst = 2 + 2.5pt

pt − pt−1 = −0.2�Qt

then

pt = 3.6 − 0.3pt−1

with fixed point p∗ = 2.769 and solution

pt = 2.769 + (−0.3)t(p0 − 2.769)

and the system converges on the equilibrium in terms of damped oscillations.
Turn now to assumption 2. Our model is

qdt = a − bpt

qst = c + dpt

pt − pt−1 = −γ2(Qt−1 − Q)

(8.30)

Substituting, we have

pt = pt−1 − γ2(Qt−1 − Q)

However, we need to establish Qt−1 − Q. Lag this equation by one period, then

pt−1 = pt−2 − γ2(Qt−2 − Q)

Hence,

pt − pt−1 = pt−1 − pt−2 − γ2(Qt−1 − Qt−2)

pt = 2pt−1 − pt−2 − γ2
(
qst−1 − qdt−1

)
= 2pt−1 − pt−2 − γ2(c + dpt−1 − a + bpt−1)

i.e.

pt = γ2(a − c) + [2 − γ2(b + d)]pt−1 − pt−2 (8.31)

which is a second-order difference equation.
First establish the equilibrium, which is obtained by setting pt = p∗ for all t.

This is readily found to be the same, namely p∗ = (a − c)/(b + d). Of course,
the time path to equilibrium is quite different from that under assumption 1. As
we demonstrated in chapter 3, section 3.8, the solution to such a second-order
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difference equation is

pt = a − c

b + d
+ c1r

t + c2s
t(8.32)

where r and s are the characteristic roots of

x2 − [2 − γ2(b + d)]x + 1 = 0(8.33)

The time path of prices, then, is very dependent on the sign/value of the roots r
and s.

Example 8.8

Consider the same basic model as in example 8.7, with γ2 = γ1 = 0.2, then our
model is

qdt = 20 − 4pt

qst = 2 + 2.5pt

pt − pt−1 = −0.2(Qt−1 − Q)

resulting in a difference equation

pt = 3.6 + 0.7pt−1 − pt−2

This has the characteristic equation

x2 − 0.7x + 1 = 0

with characteristic roots r = 0.35 + 0.9367i and s = 0.35 − 0.9367i, with R =√
α2 + β2 = 1 (see chapter 3, section 3.8). This means that price oscillates with

constant amplitude.
So far we have assumed that supply is a function of the current price. What differ-

ence do we have if supply is determined by expected price? Here we shall consider
just the simplest cobweb model that includes stock behaviour under assumption
1. Our model is

qdt = a − bpt

qst = c + dpet
pt − pt−1 = −γ1�Qt−1

pet = pt−1

(8.34)

Then

pt = pt−1 − γ1
(
qst−1 − qdt−1

)
= pt−1 − γ1(c + dpt−2 − a + bpt−1)

i.e.

pt = γ1(a − c) + (1 − γ1b)pt−1 − γ1dpt−2(8.35)

This too is a second-order difference equation that is neither the same as equa-
tion (8.28) nor equation (8.31). It does, however, have the same equilibrium of
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p∗ = (a − c)/(b + d). The general solution to equation (8.35) is

pt = a − c

b + d
+ c1r

t + c2s
t

where r and s are the characteristic roots of

x2 − (1 − γ1b)x + γ1d = 0 (8.36)

Example 8.9

Again we consider the same basic model in example 8.7 with γ1 = 0.2 and pet =
pt−1. Our model is then

qdt = 20 − 4pt

qst = 2 + 2.5pet
pt − pt−1 = −0.2�Qt−1

pet = pt−1

resulting in a difference equation

pt = 3.6 + 0.2pt−1 − 0.5pt−2

This has characteristic equation

x2 − 0.7x + 0.5 = 0

with characteristic roots r = 0.1 + 0.7i and s = 0.1 − 0.7i, with R =√
α2 + β2 = 0.707. Since R < 1 this system oscillates, with the oscillations

becoming smaller over time.
The results of examples 8.7–8.9 can readily be verified by means of a spread-

sheet. In example 8.7 we set the initial price at unity, p(0) = p0 = 1. The price in
period 1 for this series is p(1) = 3.3, and we use this price in examples 8.8 and
8.9 for the price in period 1. Doing this allows all three examples to start with the
same two prices. The only difference between the series, then, is the assumption
about stock behaviour and the assumption about expected prices. The resulting
three price series are illustrated in figure 8.14. This figure shows that the price
path under assumption 1 oscillates with damped oscillations; that the price path
under assumption 2 oscillates with constant amplitude, while the price path under
assumption 1 with a lag on the supply side oscillates with damped oscillations.

What all these examples illustrate is the point we made at the very beginning,
in section 8.1. Namely, the behaviour of the system depends very much on how
suppliers change prices in response to stock levels. The last example illustrates too
that the behaviour of the system also depends on how expectations are modelled.

8.8 Stability of the competitive equilibrium

Consider a competitive market composed of three commodities X0,X1 and X2,
with prices P0,P1 and P2, respectively. If Di and Si denote the demand and supply
functions for each commodity (i = 0, 1, 2), then define Ei = Di − Si as the excess
demand functions. Each excess demand is assumed to be a function of all three
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Figure 8.14.

prices, hence

Ei = Ei(P0,P1,P2) i = 0, 1, 2(8.37)

We assume Ei is homogeneous of degree zero and the market satisfies Walras’
law. The first assumption allows us to choose a commodity as numeraire, say
commodity X0. Then

Ei = Ei
(
1, P1

P0
, P2
P0

) = Ei(1, p1, p2) i = 0, 1, 2(8.38)

where pi = Pi/P0(i = 1, 2). The assumption that Walras’ law holds means

P0E0 + P1E1 + P2E2 ≡ 0

or

E0 + p1E1 + p2E2 ≡ 0(8.39)

When markets 1 and 2 are in equilibrium so thatE1 = E2 = 0, then it automatically
follows from Walras’ law that E0 = 0, which means that this market too is in
equilibrium. This means market equilibrium and its stability can be considered
purely in terms of commodities 1 and 2.

Now describe the dynamic adjustment process as prices changing in proportion
to their excess demand. More formally

ṗi = kiEi ki > 0, i = 1, 2(8.40)

Equilibrium requires ṗ1 = 0 and ṗ2 = 0 (which automatically implies ṗ0 = 0)
and this will lead to equilibrium prices p∗

1 and p∗
2, i.e., E1(1, p∗

1, p
∗
2) = 0 and

E2(1, p∗
1, p

∗
2) = 0. Define the vector p∗ = (p∗

1, p
∗
2). Assume such an equilibrium

exists. Here we are not concerned with existence but rather with the stability of
the competitive equilibrium.

Stability can be considered in terms of the phase plane (p1, p2), obtaining the two
equilibrium lines ṗ1 = 0 and ṗ2 = 0, which divide the phase plane into regions,
and then considering the vector forces in the various regions. This we now do.
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Figure 8.15.

Consider ṗ1 = 0 first. Differentiate E1 with respect to p1 and p2, i.e.

E11dp1 + E12dp2 = 0

Then

dp2

dp1

∣∣∣∣
ṗ1=0

= −E11

E12

Similarly, for ṗ2 = 0 we have

E21dp1 + E22dp2 = 0

and
dp2

dp1

∣∣∣∣
ṗ2=0

= −E21

E22

These results give the slopes of the isoclines in the (p1,p2)-plane, as illustrated in
figure 8.15. However, we have yet to establish the sign of the slopes or the relative
slopes.

We make the assumption that commodities 1 and 2 are gross substitutes.7 This
means

(a) E11 < 0 and E12 > 0
(b) E22 < 0 and E21 > 0

It follows from condition (a) that the slope of the ṗ1 = 0 isocline is positive, and
it follows from condition (b) that the slope of the ṗ2 = 0 isocline is positive. We
further assume that commodities 0 and 1 and 0 and 2 are gross substitutes. This
means E01 > 0 and E02 > 0. But how does this help us? Since Ei are homogeneous
of degree zero, then from Euler’s theorem8 we have

(a) E10 + p1E11 + p2E12 = 0
(b) E20 + p1E21 + p2E22 = 0

7 Gross substitutability refers to the uncompensated demand curve while net substitutability refers to
the compensated demand curve. See Shone (1975, section 4.4).

8 See Chiang (1984, p. 418).
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From condition (a), and taking account of E10 > 0, we have

p1E11 + p2E12 < 0 implying
p2

p1
<

−E11

E12

Similarly, from condition (b), and taking account of E20 > 0, we have

p1E21 + p2E22 < 0 implying
p2

p1
>

−E21

E22
(since E22 < 0)

From these results it follows

−E21

E22
<

p2

p1
<

−E11

E12

i.e.

dp2

dp1

∣∣∣∣
ṗ2=0

<
dp2

dp1

∣∣∣∣
ṗ1=0

as illustrated in figure 8.16.
Now consider the situation each side of the isocline ṗ1 = 0. In figure 8.16(a)

we move from point a to point b. The only price changing is p1, hence we have
E11 < 0 and E21 > 0. Differentiating ṗ1 = k1E1with respect to p1, we obtain

dṗ1

dp1
= k1E11 < 0

or

sign(dṗ1) = sign(k1E11dp1)

Hence, to the right of ṗ1 = 0, ṗ1 < 0 and p1 is falling. To the left of ṗ1 = 0,

where dp1 < 0, then sign(dṗ1) > 0 and so ṗ1 > 0. Carrying out the same logic for
figure 8.16(b) we have ṗ2 = k2E2

dṗ2

dp1
= k2E21 > 0

sign(dṗ2) = sign(k2E21dp1)

Hence, to the right of ṗ2 = 0 we have ṗ2 > 0 and p2 is rising; to the left of ṗ2 = 0,
p2 is falling. Combining all these vector forces, we have the situation shown in
figure 8.17.

A system which begins in region I will either directly converge on p*, or will
move into either quadrants II and IV and then converge on p*. Similarly, any initial
point lying in quadrant III will either converge directly on p* or will move into
either quadrant II and IV and then converge on p*. Points of the system beginning in
region II will remain in that region with a trajectory converging on p*. Similarly,
an initial point in region IV will have a trajectory remaining in this region and
converging on p*.

Example 8.10

The market can be illustrated by means of the following numerical example, where
we postulate only the excess demand curves for commodities 1 and 2. Suppose,
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Figure 8.16.

Figure 8.17.
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Figure 8.18.

then

E1 = 3 − 6p1 + 3p2

E2 = 16 + 4p1 − 8p2

with dynamic adjustments

ṗ1 = 2E1

ṗ2 = 3E2

We first must establish whether an equilibrium exists (and with meaningful prices).
In equilibrium ṗ1 = 0 and ṗ2 = 0 implying E1 = 0 and E2 = 0. Solving the two
linear equations readily reveals p∗ = (p∗

1, p
∗
2) = (2, 3). Furthermore, the two iso-

clines are readily shown to be

ṗ1 = 0 implying p2 = −1 + 2p1

ṗ2 = 0 implying p2 = 2 + 0.5p1

The trajectories can be derived by solving the two dynamic equations

ṗ1 = 2(3 − 6p1 + 3p2) = 6 − 12p1 + 6p2

ṗ2 = 3(16 + 4p1 − 8p2) = 48 + 12p1 − 24p2

as outlined in part I. In figure 8.18, derived using Maple and annotated, we have
four trajectories with starting values

(0.5, 1), (3, 2), (3, 4), (1, 4)

along with the direction field. This figure shows quite clearly the stability of the
competitive equilibrium.

8.9 The housing market and demographic changes

In this section we shall consider a model of Mankiw and Weil (1989) which deals
with the impact of the ‘baby boom’ of earlier years and its impact on the housing
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market and later the ‘baby bust’ and its impact on the housing market. The model
is captured by the following set of equations:

(i) Hd = f (R)N

(ii) R = R(h) R′ > 0 (8.41)

(iii) R(h) = rP − ṗ

(iv) Ḣ + dH = g(P)N g′ > 0

where

H = stock of housing
Hd = demand for housing
R = real rental price
N = adult population
h = H/N = housing per adult
P = real price of a standardised housing unit
rP = operating cost of owning a home (r assumed constant)
d = rate of depreciation
Ḣ = net investment in housing
Ḣ + dH = gross investment in housing
n = Ṅ/N = growth in population

The first equation denotes the demand for housing in which the variable N acts
as a shift parameter, and here attempts to capture demographic changes in the
population. From this equation it follows that the demand for housing per adult is
given by Hd/H = f (R). Consequently the rental associated with such demand is
given by the inverse of f , i.e., Rd = f−1(h) = R(h). The market clearing condition
is that R = Rd, hence R = R(h), which is the second equation in the model. In
interpreting the third equation we note that rP is defined as the operating cost of
owning a home (where r is assumed constant), i.e., the user cost, and this needs to
be adjusted for the change in the price of the house – invariably the capital gain. In
a perfectly functioning housing market, this should be equal to the real rental price.
If this was not the case then there would be a movement out of home ownership
into rented accommodation if R < rP − ṗ and into home ownership if the reverse
inequality was true. Gross investment (net investment, Ḣ, plus depreciation, dH )
is assumed to be an increasing function of the price of housing, g(P) and g′ > 0,
and proportional to the adult population.

Rather than deal with the model in terms of H it is easier to manage by consid-
ering h = H/N. Differentiating h with respect to time, then

ḣ = NḢ − HṄ

N2
= Ḣ

N
−
(
H

N

)
Ṅ

N

= Ḣ

N
− nh

= g(P)N − dH

N
− nh

i.e.

ḣ = g(P) − (d + n)h
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The model can therefore be expressed in terms of two differential equations

Ṗ = rP − R(h)

ḣ = g(P) − (d + n)h
(8.42)

which allows a solution for P and h.
Suppose there exists a fixed point (h∗,P∗) such that Ṗ = 0 and ḣ = 0. Such a

fixed point denotes an equilibrium combination of P and h. In order to see what
is happening in this model we need to investigate it in terms of the phase plane.
Consider the price equation first. In a steady state we have Ṗ = 0, which implies

rP = R(h)

P = R(h)

r
dP

dh
= R′(h)

r
< 0 since R′(h) < 0

Hence the price stability condition gives rise to a downward sloping line in the
phase plane where P is on the vertical axis and h on the horizontal axis, as shown
in figure 8.19.

To the right (and above) this line we have the condition that P > R(h)/r, which
implies Ṗ > 0, and so house prices are rising. Similarly, to the left (and below) the
line shown in figure 8.19 we have P < R(h)/r, which implies Ṗ < 0 and house
prices are falling.

Now consider the second equation. In equilibrium there is no change in the
number of houses per adult of the population, i.e., ḣ = 0. Hence

g(P) = (d + n)h

g′(P)
dP

dh
= d + n

i.e.
dP

dh
= d + n

g′(P)
> 0 since g′(P) > 0

Figure 8.19.
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Figure 8.20.

Figure 8.21.

This stability condition gives rise to an upward sloping line in the phase plane, as
shown in figure 8.20. Above and to the left of the stability condition ḣ > 0 and so
h is rising, while below and to the right of ḣ = 0, h is falling.

We are now in a position to put the information together, as illustrated in
figure 8.21. The phase diagram illustrates the vector of forces in the various quad-
rants. It also illustrates the presence of a saddle point, point E, with SS′ denoting
the stable arm of the saddle point. A market which starts out of equilibrium, such
as point A in figure 8.21, will initially exhibit a rapid rise in house prices, pushing
the system from point A to point B on the saddle path SS′, and then over time the
system will move down the stable arm of the saddle path to the equilibrium point E.

Consider the market in equilibrium and a ‘baby boom’ occurs, resulting in a
rise in the shift parameter n. For the moment let us concentrate solely on the
equilibrium lines. The price equation is independent of n and so this has no effect
on this line. However, the change in n will raise the absolute value of the slope
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Figure 8.22.

(d + n). Consequently there will be a new housing line to the left of the original.
In figure 8.22 we have labelled this ḣ2. There is a saddle path S1S′

1 associated with
the saddle point A, and there is another saddle path associated with the saddle point
D, each denoting stable arms of their respective saddle points.

Suppose it is announced that there is a ‘baby boom’ and that the population
is now growing at 1 per cent higher than previously, but it is also indicated that
this will last for only a short period, say ten years, and then the growth will return
to its previous level. What will be the movement of house prices, P, and housing
per adult, h? The market, having perfect foresight, will know that there will be a
rise in house prices, and so the system will move vertically up from point A to
point B, this movement being purely the announcement effect. At this stage there
is no increase in housing demand (since the babies have not yet become adults),
and so the system is still governed by the dynamic forces associated with point A.
Accordingly, the system will move in the north easterly direction, along a path
like BC. Once the ‘baby boom’ takes place and the increase in population takes
place and becomes part of the housing market, then the market will be governed
by the new saddle path S2S′

2. Accordingly the system will move along this stable
arm of the saddle point towards point D. However, if there is then a reduction in
population growth, which returns to its former level, then the system will move
along the path indicated by the arrows and towards point A. (Notice that point D,
although governing the movement after point C is reached, will not necessarily be
achieved.) This analysis is based on perfect foresight and movements are dominated
by the stable arms of the saddle points.

In comparison the authors consider a naı̈ve model in which house prices are
assumed to remain constant at any moment of time – a very naı̈ve version indeed!
In this instance there are no capital gains (since Ṗ = 0) and so P = R(h)/r. Since
prices cannot be changing at any level of h, then the market is always positioned
along the line Ṗ = 0. In terms of figure 8.22, there would be no movements of
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Figure 8.23.

the system when the announcement was made, it would simply remain at point
A. Once the baby boom became of adult age and entered the housing market,
there would be a shift left in the ḣ1 = 0 line, moving the system towards point D.
The system would move up the Ṗ = 0 line towards point D, reaching point D at
the height of the growth, and then returning down the Ṗ = 0 line towards point
A. The difference in price movement of this naı̈ve version in comparison with the
perfect foresight version is illustrated in figure 8.23.

Two observations can be made in the light of figure 8.23:

(1) A model of perfect foresight would always indicate a rise in house
prices prior to the ‘baby boom’ becoming of adult age. This is a testable
hypothesis.

(2) The range of price movement in the perfect foresight model is less than
it would be in the naı̈ve model. This is not so readily testable since it
depends on a counterfactual question.

8.10 Chaotic demand and supply9

We have pointed out that chaotic behaviour can arise only in the presence of
nonlinearity. Although it is possible to have both nonlinear demand and supply,
the most significant nonlinearity is in supply, most especially when supply involves
a time lag. Take a typical case that at low prices supply increases slowly, say because
of start-up costs and fixed costs of production. Furthermore, suppose at high prices
then again supply increases only slowly, say because of capacity constraints. This
suggests a S-shaped supply curve. The logistic equation exhibits such a S-shape.
An alternative specification, which is frequently employed in modelling, is the
arctan function. One such specification of supply in terms of expected prices is

qst = arctan
(
µpet

)
(8.43)

9 This section draws heavily on Hommes (1991, section 1.5).
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Figure 8.24.

This specification sets the origin at the inflection point, which is unique, and
so prices and quantities can be negative as well as positive. The parameter µ

determines the steepness of the S-shape. For instance, figure 8.24(a) has µ = 1
while figure 8.24(b) has µ = 3. The higher the value of µ the steeper the S-shape.
Note in figure 8.24 that price is on the horizontal axis and quantity is on the vertical
axis – the reverse of conventional economics texts.

For simplicity we assume demand is linear and a function of actual prices, i.e.

qdt = a − bpt b > 0(8.44)

A typical nonlinear cobweb is then

qdt = a − bpt

qst = arctan
(
µpet

)
pet = pet−1 + λ

(
pt−1 − pet−1

)
qdt = qst

(8.45)

The expression for expected prices is a typical adaptive expectations assumption,
which can be written

pet = λpt−1 + (1 − λ)pet−1(8.46)
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From the first, second and fourth equation of (8.45) we have

pt = a − qdt
b

= a − qst
b

= a − arctan
(
µpet

)
b

From (8.46) we have pet+1 = λpt + (1 − λ)pet which on re-arrangement gives

pt = pet+1 − (1 − λ)pet
λ

Hence

pet+1 − (1 − λ)pet
λ

= a − arctan
(
µpet

)
b

i.e.

pet+1 = (1 − λ)pet + λa

b
− λ arctan

(
µpet

)
b

(8.47)

or pet+1 = f ( pet ). Notice that (8.47) is a recursive equation for expected prices.
For given values of the parameters a, b, λ and µ we can establish the fixed

point(s) of equation (8.47). But is this value unique? More specifically, what hap-
pens to the fixed point of expected prices, pe

∗
, when the demand curve shifts? A

shift in the demand curve is captured by a variation in the parameter a. If we allow
the parameter a to vary between –1.25 and +1.25 we can establish the equilibrium
points for pe by plotting the bifurcation diagram of pe

∗
against a.

Example 8.11

Let

λ = 0.3, b = 0.25, µ = 3

then

pet+1 = 0.7pet + 0.3a

0.25
− 0.3 arctan

(
3pet
)

0.25

The resulting bifurcation diagram is shown in figure 8.25.

Figure 8.25.
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Figure 8.26.

For low values of a, there is a unique equilibrium for expected price. Around the
value a = −0.9 a period-doubling bifurcation occurs. The stable two orbit remains
until a reaches about 0.9, and then a period-halving occurs. Thereafter the system
settles down again to a unique stable equilibrium. An important observation to
make about this diagram is that it is symmetrical about the origin.10 This is a
characteristic feature of arctan.

The question now arises: What happens when µ takes on different values?
A most complex set of results can occur. For instance, figure 8.26 sets out three
possibilities: µ = 3.5, µ = 4 and µ = 4.5. In figure 8.26(a)–(c) we have a ranging
over the interval –1.25 to +1.25. In figure 8.26(d) we have µ = 4.5 and a ranging
over a smaller interval, namely 0.4 to 1.25.

Figure 8.26(a) (µ = 3.5) shows a doubling bifurcation turning into a period-four
orbit, which then turns into a period-two orbit and finally to a stable equilibrium. In
Figure 8.26(b) (µ = 4) there is this same basic pattern, but within the period-four
orbit there occurs periods of chaos. Such periods of chaos within the period-four
orbit become larger as µ rises. A closer look at the chaotic region on the right of
figure 8.26(c) (µ = 4.5) shows some unusual patterns within the chaotic region,
as shown in figure 8.26(d).

What is clearly illustrated by this example is that in the presence of nonlinearity
markets can exhibit a variety of price behaviour, including a chaotic one. It is
important, therefore, to have some clear estimation of a system’s parameter values
(including their margin of error!) and to establish the likely equilibria of the system
for such values. If chaos is present, then the system is sensitive to initial conditions.

10 This applies also to the diagrams in figure 8.26.
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In such circumstances regression results, which are often employed in empirical
work, may not be very meaningful.

Appendix 8.1 Obtaining cobwebs using Mathematica
and Maple

8A.1 Mathematica11

To employMathematica to derive linear and nonlinear cobwebs, the main problem
is deriving the sequence of points that make up the web. Here we derive the method
for the linear case, since it is easier to represent and follow through. But once it
has been obtained, it can be used for both linear and nonlinear cases. The example
is from section 8.4.

First we define the price function:

f[p-]:= 5.6-0.4p

It is, of course, possible to be general and input this in the form f[p ]:=a – b p and
then define a = 5.6 and b = 0.4. However, we shall continue with the numerical
example. The next step is to generate a series of prices starting from the initial
price, p0 (in this appendix we shall not subscript the t indicators since this will
not be done within Mathematica). This can be accomplished quite easily with the
NestList command and using the instruction

NestList[f,p0,3]

This will generate a sequence {pt} beginning at p0 and supplying a further three
observations, i.e., it will generate the series {p0,p1,p2,p3}.

For any price p we know that the value on the line is f (p). For instance at p0
the point on the line is p1 = f (p0). Thus, point A in figure 8A.1 is (p0, f (p0)) or
(p0,p1). Point B is the associated point on the 45◦-line, and is therefore represented
by point (p1,p1). PointC, once again, is read off the line and is (p1, f (p1))= (p1,p2).
Point D is (p2,p2) since it is on the 45◦-line; while point E is (p2,p3). The points
emerging, therefore, are:

(p0,p1), (p1,p1), (p1,p2), (p2,p2), (p2,p3), . . .

Since these points consist solely of prices from the series {pt}, then it must
be possible to generate these sequences of points with a suitable transformation
of {pt}. This indeed can be done, but it requires a little manipulation. Consider the
sequence derived using NestList[f,p0,3]. The sequence would be {p0,p1,p2,p3}.
Now form the series

{NestList[f,p0,3], NestList[f,p0,3]}

The result would be:

{{p0,p1,p2,p3}, {p0,p1,p2,p3}}

11 A neater more efficient version is provided in Gray and Glynn (1991, chapter 7). The less efficient
version provided here is more intuitive.



368 Economic Dynamics

Figure 8A.1

This can be considered as a matrix of dimension 2 × 4. Now transpose this matrix
using

Transpose[ {NestList[f,p0,3], NestList[f,p0,3]} ]

which will give the list

{{p0,p0}, {p1,p1}, {p2,p2}, {p3,p3}}
which is a 4 × 2 matrix. Now we need to collapse this list by getting rid of the
inner brackets. We do this using the Flatten command. Thus

Flatten[Transpose[{NestList[f,p0,3],

NestList[f,p0,3]} ]]

gives the series {p0, p0, p1, p1, p2, p2, p3, p3}. The next step is to take groups
of 2 and move along the sequence one element at a time, i.e., we wish to form the
sequence

{{p0,p0}, {p0,p1}, {p1,p1}, {p1,p2}, {p2,p2}, {p2,p3}, {p3,p3}}
We accomplish this using the Partition command. Thus Partition[list,2,1] will take
a ‘list’ and convert it into another list each element composed of two elements, and
moving along ‘list’ one element at a time. Consequently, the sequence just given
would be generated from the instruction

Partition[Flatten[Transpose[

{NestList[f,p0,3], NestList[f,p0,3]} ] ], 2,1 ]

where we have written this over two lines for ease of viewing. The final step is
to remove the first element {p0,p0}, since this is not part of the cobweb. This
is accomplished using the Rest command. Thus, Rest[s] deletes the first element
of the series denoted ‘s’. Our list of points, therefore, is achieved with the rather
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involved instruction

points=Rest[Partition[Flatten[Transpose[

{NestList[f,p0,3], NestList[f,p0,3]}

] ], 2,1 ] ];

where the semicolon at the end of the instruction suppresses the points being listed.
Having obtained the list of points, we need to join them up. Let us refer to

this as ‘web’. Then the web is the plotting of the list of points just derived and
joined together. We do this with the ListPlot command, and qualifying it with
the instruction PlotJoined->True, which instructs the programme to join up the
points. Thus

web=ListPlot[points, PlotJoined->True ]

To complete the picture we need to draw the line f ( p) = 5.6 − 4.0p and the
45◦-line. These can be done together with the instruction

lines=Plot[ {f[p],p}, {p,0,10} ]

Our cobweb is then achieved with the final instruction

Show[web,lines,

AxesLabel->{"pt-1","pt"} ]

which also includes an instruction to label the respective axes.
To summarise, where we have specified p0 to have a value of unity and increased

the run to twenty:

f[p-]:=5.6-0.4p

p0=1

points=Rest[Partition[Flatten[Transpose[

{NestList[f,p0,20],NestList[f,p0,20]}

] ], 2, 1 ] ];

web=ListPlot[points,PlotJoined->True,

DisplayFunction->Identity]

lines=Plot[ {f[p],p}, {p,0,10},

DisplayFunction->Identity ]

cobweb=Show[web,lines,

AxesLabel->{"pt-1","pt"},

DisplayFunction->$DisplayFunction ]

In these final set of instructions we have suppressed the list of points by using the
semicolon and we have suppressed intermediate displays by using the instruction:
DisplayFunction->Identity. The display is turned on again in the final line by
adding, DisplayFunction->$DisplayFunction. The result is shown in figure 8A.2.

This set of instructions can be used for any cobweb, whether linear or nonlinear.
In fact, with only a slight modification, it can be used to investigate any first-order
difference equation model. For instance, we used a variant of it in chapter 7 when
we investigated the properties of the logistic equation.
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Figure 8A.2

8A.2 Maple

The logic and development here is similar to the previous outline but there are
some differences. Since we shall be using linear algebra and plotting routines then
these two libraries need to be called. The first few lines of the programme are
then

with(linalg):

with(plots):

f:=p->5.6-0.4*p;

fn:=(p,n)->simplify( (f@@n)(p) );

where the last line allows us to specify the initial values of p and the number n.
In what follows we take these to be 1 and 20, respectively. Our next task is to
repeat the sequence twice and to transpose it into a 21 × 2 matrix. In the following
instructions this is called list1. Next we convert to an array by converting list1 into
a vector and converting this in turn into a list. This we call list2. The next stage is
to make up two lists from list2, one in which the first element is dropped and the
second in which the last element is dropped. These two lists are combined, made
into an array, then transposed, and finally converted to a list of lists. This we label
list3. The final list, list4, is derived by dropping the first element. The four lists
are

list1:=transpose(array([[seq(fn(1,n),n=0..20)],

[seq(fn(1,n), n=0..20) ] ] ) );

list2:=convert(convert(list1,vector),list);

list3:=convert(transpose(array(

[ list2[1..nops(list2)-1],

list2[2..nops(list2)] ]

) ), listlist);

list4:=[list3[2..nops(list3)] ];

In these instructions the term ‘nops’ denotes the number of elements in the specified
list. Thus, nops(list2) denotes the number of elements in list2.

The web is simply the plot of list4, since by default the points are joined. We
add finally the line f (p) = 5.6 − 4.0p and the 45◦-lines with the instruction

lines:=plot( {f(p),p}, p=0..10):
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(Notice that we suppress the output by using the colon – which we also do with
the web). The full instructions are:

with(linalg):

with(plots):

f:=p->5.6-0.4*p

fn:=(p,n)->simplify( (f@@n)(p) );

list1:=transpose(array([[seq(fn(1,n),n=0..20)],

[seq(fn(1,n), n=0..20) ] ] ) ):

list2:=convert(convert(list1,vector),list):

list3:=convert(transpose(array(

[ list2[1..nops(list2)-1],

list2[2..nops(list2)] ]

) ), listlist):

list4:=[list3[2..nops(list3)] ]:

web:=plot(list4):

lines:=plot( {f(p),p}, p=0..10):

display( {web,lines} );

In these instructions we have suppressed all lists by placing a colon at the end of
the instructions that generate them. In section 8.4 we present these instructions as
a procedural mini-programme. An alternative derivation of a cobweb with Maple
can be found in Lynch (2001, chapter 14).

As withMathematica this routine can be used to derive a cobweb forany function
f ( p), whether it is linear or nonlinear (including the possibility that f (p) is kinked –
as in the case of a price ceiling).

Exercises

1. (i) Show that if b < 0 in qdt = a − bpt and d > 0 in qst = c + dpt−1 then
the cobweb is still convergent if 0 < d/(−b) < 1 and divergent if
d/(−b) > 1.

(ii) Is the behaviour oscillatory?
2. Establish the convergence, divergence, or oscillation of the following

systems.

(i) qdt = 100 − 2pt (ii) qdt = 5 + 2pt
qst = −20 + 3pt−1 qst = 35 + pt−1

p0 = 10 p0 = 10

(iii) qdt = 100 − 2pt (iv) qdt = 18 − 3pt
qst = −20 + 3pt−1 qst = −10 + 4pt−1

p0 = 24 p0 = 1

3. Establish the time path of pt for the following models.

(i) qdt = 100 − 2pt (ii) qdt = 5 + 2pt
qst = −20 + 3pet qst = 35 + pet
pet = pet−1 − 0.5

(
pet−1 − pt−1

)
pet = pet−1 − 0.2

(
pet−1 − pt−1

)
p0 = 10 p0 = 10
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4. Determine the stability of the following systems.

(i) qdt = 250 − 50pt (ii) qdt = 100 − 0.5pt

qst = 25 + 25pt−1 qst = 50 − 0.1pt−1

qdt = qst = qt qdt = qst = qt

5. Determine whether an equilibrium exists for the following models, and
whether they are stable.

(i) qdt = 50 − 4pt (ii) qdt = 50 − 4pt

qst = 10 + 10pt−1 − p2
t−1 qst = 2 + 10pt−1 − p2

t−1

qdt = qst = qt qdt = qst = qt

6. Consider the following market:

qdt = 52 − 9pt

qst = 3 + 5pt−1

qdt = qst = qt

(i) Find the equilibrium price and quantity.
(ii) Assume p0 is 10% below the equilibrium price. Use a spreadsheet

to establish how long it takes for the price to be within 1% of the
equilibrium price.

7. Consider the following model

qdt = 52 − 9pt

qst = 3 + 5pet
pet = pet−1 − λ

(
pet−1 − pt−1

)
qdt = qst = qt

Assuming p0 is 10% below the equilibrium price, how long does it take
for the price to be within 1% of the equilibrium when:

(i) λ = 1
(ii) λ = 0.75
(iii) λ = 0.5
(iv) λ = 0.25

8. Given the system

qd(t) = 250 − 50p(t) − 2p′(t)

qs(t) = 25 + 25p(t)

qd(t) = qs(t) = q(t)

(i) Solve for p(t).
(ii) Is this market stable?

9. The labour market is characterised by the following demand and supply
equations

LDt = 42 − 4wt

LSt = 2 + 6wt−1

LDt = LSt
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(i) Establish the equilibrium real wage.
(ii) Suppose a minimum wage is imposed of wm = 3. Investigate the

result on the dynamic outcome.
10. In the linear cobweb model of demand and supply, demonstrate that the

steeper the demand curve relative to the supply curve, the more damped
the oscillations and the more rapidly equilibrium is reached.

11. Given the following system

qdt = 10 − 2pt

qst = 4 + 2pt−1

qdt = qst

Show that this leads to a difference equation with solution

pt = 1.5 + (−1)t( p0 − 1.5)

which has periodicity of 2 with values p0 and 3 − p0.
12. Use Mathematica or Maple to investigate the stability of p∗ = 1 for the

nonlinear model

qdt = 4 − 3pt

qst = p2
t−1

qdt = qst = qt

by trying initial values for p0 from p0 = 0 to p0 = 2.

13. For the cobweb model

qdt = 24 − 5pt

qst = −4 + 2pet
pet = pet−1 − λ

(
pet−1 − pt−1

)
0 ≤ λ ≤ 1

qdt = qst = qt

using Mathematical or Maple investigate the stability or otherwise of the
equilibrium for different values of λ.

14. Given the nonlinear system

Ṗ = rP − R(h)

ḣ = g(P) − (d + n)h

(i) Derive the linear approximation about (P∗, h∗).
(ii) Assume

R′(h∗) = −0.5 r = 0.05 n = 0.01
g′(P∗) = 1 d = 0.02

and that the system is initially in equilibrium at P∗ = 1 and h∗ = 1.

Show that the two isoclines through this equilibrium are

Ṗ = 0 implying P = 11 − 10h
ḣ = 0 implying P = 0.97 + 0.03h

(iii) Show that the characteristic values of the system are r = 0.7182 and
s = −0.6982 and hence verify that (P∗, h∗) = (1, 1) is a saddle path
equilibrium.
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15. Consider the recursive equation (8.47)

pet+1 = (1 − λ)pet + λa

b
− λ arctan(µpet )

b

Let a = 0.8, b = 0.25 and µ = 4. Construct a bifurcation diagram for pe

against λ for the interval 0.15 ≤ λ ≤ 0.75. Comment on your results.

Additional reading

Further material on the contents of this chapter can be found in Allen (1965),
Barro and Grilli (1994), Baumol (1959), Buchanan (1939), Chiang (1984),
Eckalbar (1993), Ezekiel (1938), Gandolfo (1971), Goodwin (1947), Hommes
(1991), Mankiw and Weil (1989), Nerlov (1958), Parkin and King (1995), Shone
(1975) and Waugh (1964).



CHAPTER 9

Dynamic theory of oligopoly

Very few topics in the theory of the firm have been considered from a dynamic
point of view. There has been some work on the dynamics of advertising and the
topic of diffusion (see Shone 2001). One topic that has been considered is the
stability of the Cournot solution in oligopoly. Even this topic, however, is rarely
treated in intermediate microeconomics textbooks. We shall try to redress this
balance in this chapter and consider in some detail the dynamics of oligopoly, both
discrete and continuous versions.

To highlight a number of the issues discussed in the literature, we concentrate
on a single simple example. We outline first the static result that is found in most
intermediate textbooks. Here, however, we utilise the mathematical packages in
order to derive the results and especially the graphical output. We then turn to
the dynamics. From the very outset it is important to be clear on the dynamic
assumptions made. In the spirit of Cournot (see Friedman 1983, Gandolfo 1997)
in each time period each firm recalls the choices made by itself and other firms in
the industry. Furthermore, each firm assumes that in time period t its rivals will
choose the same output level they chose in time period t − 1, and chooses its own
output so as to maximise its profits at time t. This is by no means the only dynamic
specification. It assumes that output adjusts completely and instantaneously. Other
models assume that output does not adjust completely and instantaneously. We
shall consider all these in turn. Given the assumption of instantaneous adjustment
just outlined, a number of propositions can be found in the literature that we need
to discuss. These are:

(1) with linear demand and constant marginal costs, for the discrete model
(a) if n = 2 (duopoly) the situation is stable
(b) if n = 3 the system gives rise to constant oscillations
(c) if n > 3 the system is unstable.

(2) Increasing marginal costs are a stabilising influence.

9.1 Static model of duopoly

The model we shall consider in this chapter has a very simple linear demand curve
and, at this stage, constant marginal costs. The model is as follows.
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p = 9 − Q
Q = q1 + q2

TC1 = 3q1

TC2 = 3q2

(9.1)

Since our interest is with stability and the impact of increasing the number of
firms in the industry, or changing the specification of marginal cost, we assume
for simplicity that all firms are identical for any size n, where n represents the
number of firms in the industry. Since this model of duopoly is dealt with in most
intermediate microeconomic textbooks, we shall be brief.

Total revenue and profits for each firm are:

Firm 1 TR1 = pq1 = (9 − q1 − q2)q1 π1 = (9 − q1 − q2)q1 − 3q1

Firm 2 TR2 = pq2 = (9 − q1 − q2)q2 π2 = (9 − q1 − q2)q2 − 3q2

Since the conjectural variation is that firm 1 will maximise its profits under the
assumption that firm 2 holds its output constant, then we can differentiate the profit
function of firm 1 with respect to q1, holding q2 constant. The same conjectural
variation holds for firm 2, so it will maximise its profits under the assumption that
firm 1 will hold its output level constant, so here we differentiate the profit function
of firm 2 with respect to q2, holding q1 constant. Doing this we obtain

∂π1

∂q1
= 6 − 2q1 − q2 = 0

∂π2

∂q2
= 6 − q1 − 2q2 = 0

Solving we obtain the two reaction functions

Firm 1 R1 q1 = 3 − 1
2q2

Firm 2 R2 q2 = 3 − 1
2q1

(9.2)

The Cournot solution, then, is where the two reaction curves intersect, i.e., where
(q∗

1, q
∗
2) = (2, 2). The situation is shown in figure 9.1.

Notice that the isoprofit curves for firm 1 are at a maximum, for any given level
of output for firm 2, at the point on the reaction curve for firm 1. Furthermore,
the preference direction is in the direction of the arrow on the reaction curve. The
highest level of profits for firm 1 is at point A, where it is a monopolist. Similarly,
the isoprofit curves for firm 2 are at a maximum, for any given level of output for
firm 1, at the point on the reaction curve for firm 2. Firm 2’s preference direction
is in the direction of the arrow on its reaction curve, and the highest level of profits
it can reach is indicated by point B, where firm 2 is a monopolist.

The reaction functions play an important role in our dynamic analysis. In this
static duopoly model, they have also been interpreted as Nash solutions for each
firm, respectively, and so the Nash solution to the game is where they are consistent:
where they geometrically intersect. Hence, the solution is often called a Cournot–
Nash solution. What figure 9.1 also shows is that the Cournot–Nash solution is
not optimal. This is illustrated by the fact that the isoprofit curves through the
Cournot–Nash solution reveal that higher profits can be achieved, as shown by the
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Figure 9.1.

shaded area, but that this would require some form of cooperation (collusion!) on
the part of the two firms.

But how do we know whether from some arbitrary starting position the Cournot–
Nash solution will be achieved? In other words, is the Cournot–Nash solution
dynamically stable? In order to answer this question we must set up the model
in dynamic terms. Only then can we answer this question. Whatever the answer
happens to be, the same question applies when we increase the number of firms in
the industry. As we do so, we must move away from the diagrammatic formulation
of the model and concentrate on its mathematical specification.

In the next section we consider a discrete model with output adjusting completely
and instantaneously. Our main concern is with the dynamic stability of oligopoly
as the number of firms in the industry increases.

9.2 Discrete oligopoly models with output adjusting
completely and instantaneously

9.2.1 Constant marginal costs

Two-firm case (n = 2)

In the static model the assumption was that firm 1 would maximise its profits
under the assumption that firm 2 would hold its output level constant. A similar
condition applies also to firm 2. Here we assume that in time period t its rivals
will choose the same output level they chose in time period t − 1, and chooses its
own output at time t so as to maximise its profits at time t. More specifically, q1,t

is chosen so as to maximise firm 1’s profits in time period t, under the assumption
that firm 2 has output in time period t the same level it was in time period t − 1, so
that q2,t = q2,t−1. While for firm 2, q2,t is chosen so as to maximise firm 2’s profits
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in time period t, under the assumption that firm 1 has output in time period t the
same level it was in time period t − 1, so that q1,t = q1,t−1.

These dynamic specifications for each firm change the form of the total revenue
function, and hence the profit functions. Total costs are unaffected. The profit
function for each firm is

Firm 1 π1,t = (9 − q1,t − q2,t−1)q1,t − 3q1,t

Firm 2 π2,t = (9 − q1,t−1 − q2,t)q2,t − 3q2,t

Again, in the spirit of Cournot, each firm is maximising its profits under the con-
jectural variation that the other firm is holding its output level constant. Therefore,

∂π1,t

∂q1,t
= 6 − 2q1,t − q2,t−1 = 0

∂π2,t

∂q2,t
= 6 − q1,t−1 − 2q2,t = 0

which results in the following dynamic adjustments

q1,t = 3 − 1
2q2,t−1

q2,t = 3 − 1
2q1,t−1

(9.3)

What we have here is a simultaneous set of difference equations, which can be
solved inMathematica using the RSolve command; and, inMaple, using the rsolve
command. We do this for arbitrary initial values q10 and q20 respectively. With the
instructions,

RSolve[{q1[t]==3-(1/2)q2[t-1],q2[t]==3-(1/2) q1[t-1],

q1[0]==q10, q2[0]==q20},{q1[t],q2[t]},t] //

FullSimplify

for Mathematica we obtain the result

{{q1[t]->2+2−1−t(q10-q20+(-1)t(-4+q10+q20)),
q2[t]->2+2−1−t(-q10+q20+(-1)t(-4+q10+q20))}}

It is useful to do this generalisation first because the result can then readily be set
up on a spreadsheet, which often allows plots of the trajectories much easier than
either Mathematica or Maple. The following instructions using Maple

rsolve({q1(t)=3-(1/2)*q2(t-1),q2(t)=3-(1/2)*q1(t-1),

q1(0)=q10,q2(0)=q20},{q1(t),q2(t)});

gives the result{
q2(t) = −2

(−1

2

)t

+ 2 + 1

2

(
1

2

)t

q20 − 1

2

(
1

2

)t

q10

+ 1

2

(−1

2

)t

q20 + 1

2

(−1

2

)t

q10,

q1(t) = −2

(−1

2

)t

+ 2 − 1

2

(
1

2

)t

q20 + 1

2

(
1

2

)t

q10

+ 1

2

(−1

2

)t

q20 + 1

2

(−1

2

)t

q10

}
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Figure 9.2.

This second result allows us to see more clearly that we can express it in the form

q1,t = 2 − 2

(−1

2

)t

+ 1

2

(−1

2

)t

(q10 + q20) + 1

2

(
1

2

)t

(q10 − q20)

q2,t = 2 − 2

(−1

2

)t

+ 1

2

(−1

2

)t

(q10 + q20) + 1

2

(
1

2

)t

(−q10 + q20)

(9.4)

Since these solutions involve the terms (1/2)tand (−1/2)t, then as t tends to infinity
these terms tend to zero, and so the system converges on the equilibrium point
(q∗

1, q
∗
2) = (2, 2) regardless of the initial values.

Figure 9.2 shows this convergence for four different initial values:

(q10, q20) = (1, 5), i.e., an arbitrary point
(q10, q20) = (3, 0), i.e., where firm 1 begins from a monopoly position
(q10, q20) = (0, 3), i.e., where firm 2 begins from a monopoly position
(q10, q20) = (0, 0), which can be thought of as the position where both
firms are deciding to enter the industry

What is illustrated here is the general result that for linear demand and constant
marginal costs, Cournot duopoly is dynamically stable.

Before leaving this duopoly example, it is useful to consider how the situation
can be investigated by means of a spreadsheet. In setting the problem up on a
spreadsheet, it is useful to include the initial values separately and then write the
formulas in the row for time period 0, using relative and absolute addresses. This
has the advantage of checking the formulas, since at time t = 0 the result should be
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Figure 9.3.

the initial values. Once the formulas have been entered for q1 and q2, respectively,
for time period 0, taking note of absolute and relative addresses, then the results can
be copied down for as many periods as desired. The trajectories are then derived by
plotting (q1(t), q2(t)) using the spreadsheet’s x-y plot. The situation is illustrated
in figure 9.3 for the initial point (q10, q20) = (1, 5).

Of course, it is even simpler to place the initial values in the row for t = 0 and
specify

q1,t = 3 − 1
2q2,0

q2,t = 3 − 1
2q1,0

with relative addresses, and then copy down for as many periods as one wishes.1

This is the way figure 9.2 and later figures are constructed. In this procedure there
is no need to solve the difference equations. This simple approach is especially
useful for n ≥ 3.

What we now need to investigate is whether this stability holds for n ≥ 3.

Three-firm case (n = 3)

We continue with our example, which assumes linear demand and constant
marginal costs. Our model is now

1 Recall, a quick check on the correct entry of the formulas is to place the equilibrium value as the
initial value, and then all entries for output of a given firm should be the same.



Dynamic theory of oligopoly 381

p = 9 − Q

Q = q1 + q2 + q3

TC1 = 3q1

TC2 = 3q2

TC3 = 3q3

(9.5)

Profits are readily found to be

π1 = (9 − q1 − q2 − q3)q1 − 3q1

π2 = (9 − q1 − q2 − q3)q2 − 3q2

π3 = (9 − q1 − q2 − q3)q3 − 3q3

resulting in three reaction planes

R1 q1 = 3 − 1
2 (q2 + q3)

R2 q2 = 3 − 1
2 (q1 + q3)

R3 q3 = 3 − 1
2 (q1 + q2)

(9.6)

These three planes intersect at the unique value (q∗
1, q

∗
2, q

∗
3) = ( 3

2 , 3
2 , 3

2 ), the static
Cournot–Nash solution for a three-firm oligopoly, given the present model. This
is shown in figure 9.4.

Given exactly the same assumptions about dynamic behaviour as we outlined
above in equation (9.3), then the profit for each firm is

Firm 1 π1,t = (9 − q1,t − q2,t−1 − q3,t−1)q1,t − 3q1,t

Firm 2 π2,t = (9 − q1,t−1 − q2,t − q3,t−1)q2,t − 3q2,t

Firm 3 π3,t = (9 − q1,t−1 − q2,t−1 − q3,t)q3,t − 3q3,t

Again, in the spirit of Cournot, each firm is maximising its profits under the
conjectural variation that the other firms are holding their output levels constant.

−

Figure 9.4.
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Therefore

∂π1,t

∂q1,t
= 6 − 2q1,t − q2,t−1 − q3,t−1 = 0

∂π2,t

∂q2,t
= 6 − q1,t−1 − 2q2,t − q3,t−1 = 0

∂π3,t

∂q3,t
= 6 − q1,t−1 − q2,t−1 − 2q3,t = 0

which results in the following dynamic adjustments

q1,t = 3 − 1
2q2,t−1 − 1

2q3,t−1

q2,t = 3 − 1
2q1,t−1 − 1

2q3,t−1

q3,t = 3 − 1
2q1,t−1 − 1

2q2,t−1

(9.7)

What we have here is a simultaneous set of three difference equations, which
can be solved in Mathematica using the RSolve command; and, in Maple, using
the rsolve command for some initial values q10, q20 and q30. The instructions are
identical to those given above, so we shall not reproduce them here. The results,
however, are quite revealing. With some re-arrangement of the results provided by
the packages, we can express the solutions in the form

q1,t = 3

2
− 3

2
(−1)t + 1

3
(−1)t(q10 + q20 + q30) + 1

3

(
1

2

)t

(2q10 − q20 − q30)

q2,t = 3

2
− 3

2
(−1)t + 1

3
(−1)t(q10 + q20 + q30) + 1

3

(
1

2

)t

(−q10 + 2q20 − q30)

q3,t = 3

2
− 3

2
(−1)t + 1

3
(−1)t(q10 + q20 + q30) + 1

3

(
1

2

)t

(−q10 − q20 + 2q30)

(9.8)

It is no longer the case that as t tends to infinity the system will converge on the
Cournot–Nash solution. In fact, because of the terms (−1)t, the system will begin
to oscillate between two values. Figure 9.5 shows the trajectory {q1t, q2t, q3t} for
two initial values: (a) point (1,2,3) and (b) point (3,0,0). The figures readily reveal
the general result that for linear demand with constant marginal costs, with three
firms in the industry, the path of output for each firm will eventually give rise to
a constant oscillation over time. In this example output for each firm oscillates
between 1 and 2.

The plot in figure 9.5(a) can be generated by the two programmes by means of the
following instructions. Figure 9.5(b) is generated by a similar set of instructions:

Mathematica
Needs[``Graphics`Graphics3D`’’]

q1[t-]:=(3/2)-(3/2)(-1)^t+(1/3)(-1)^t(6)+(1/3)(1/2)^t(-3)

q2[t-]:=(3/2)-(3/2)(-1)^t+(1/3)(-1)^t(6)+(1/3)(1/2)^t(0)

q3[t-]:=(3/2)-(3/2)(-1)^t+(1/3)(-1)^t(6)+(1/3)(1/2)^t(3)
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Figure 9.5.

points=Evaluate[Table[{q1[t],q2[t],q3[t]},{t,0,10}]

ScatterPlot3D[points,PlotJoined->True,

AxesLabel={``q1’’,’’q2’’,’’q3’’},

PlotStyle->Thickness[0.01]];

Maple
with(plots):

q1:=t->(3/2)-(3/2)*(-1)^t+(1/3)*((-1)^t)*6+(1/3)*((1/2)^t)*(-3);

q2:=t->(3/2)-(3/2)*(-1)^t+(1/3)*((-1)^t)*6+(1/3)*((1/2)^t)*(0);

q3:=t->(3/2)-(3/2)*(-1)^t+(1/3)*((-1)^t)*6+(1/3)*((1/2)^t)*3;

points:=[seq([q1(t),q2(t),q3(t)],t=0..10)];

pointplot3d(points,

axes=BOXED, connect=true,thickness=2,

labels=[``q1’’,’’q2’’,’’q3’’],

colour=black,

orientation=[-17,79]);

Figure 9.5 was in fact generated by the Maple instructions.2

2 Orientation in either programme requires some trial and error to get a perspective that is the most
revealing of the 3-dimensional plot. Figure 9.5(b) has orientation =[−56,50]. It is usually necessary
to join up the points because this gives a better view of the discrete trajectory.
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Four-firm case (n = 4)

Our model is now

p = 9 − Q
Q = q1 + q2 + q3 + q4

TC1 = 3q1

TC2 = 3q2

TC3 = 3q3

TC4 = 3q4

(9.9)

Profits are readily found to be

π1 = (9 − q1 − q2 − q3 − q4)q1 − 3q1

π2 = (9 − q1 − q2 − q3 − q4)q2 − 3q2

π3 = (9 − q1 − q2 − q3 − q4)q3 − 3q3

π4 = (9 − q1 − q2 − q3 − q4)q4 − 3q4

resulting in four reaction planes

R1 q1 = 3 − 1
2 (q2 + q3 + q4)

R2 q2 = 3 − 1
2 (q1 + q3 + q4)

R3 q3 = 3 − 1
2 (q1 + q2 + q4)

R4 q4 = 3 − 1
2 (q1 + q2 + q3)

These four reaction functions can be solved for the unique value (q∗
1, q

∗
2, q

∗
3, q

∗
4) =

( 6
5 , 6

5 , 6
5 , 6

5 ), the static Cournot–Nash solution for a four-firm oligopoly, given the
present model.

Given exactly the same assumptions about dynamic behaviour as we outlined
above, then the profit for each firm is

Firm 1 π1,t = (9 − q1,t − q2,t−1 − q3,t−1 − q4,t−1)q1,t − 3q1,t

Firm 2 π2,t = (9 − q1,t−1 − q2,t − q3,t−1 − q4,t−1)q2,t − 3q2,t

Firm 3 π3,t = (9 − q1,t−1 − q2,t−1 − q3,t − q4,t−1)q3,t − 3q3,t

Firm 4 π4,t = (9 − q1,t−1 − q2,t−1 − q3,t−1 − q4,t)q4,t − 3q4,t

Differentiating, we obtain

∂π1,t

∂q1,t
= 6 − 2q1,t − q2,t−1 − q3,t−1 − q4,t−1 = 0

∂π2,t

∂q2,t
= 6 − q1,t−1 − 2q2,t − q3,t−1 − q4,t−1 = 0

∂π3,t

∂q3,t
= 6 − q1,t−1 − q2,t−1 − 2q3,t − q4,t−1 = 0

∂π4,t

∂q4,t
= 6 − q1,t−1 − q2,t−1 − q3,t−1 − 2q4,t = 0
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which results in the following dynamic adjustments

q1,t = 3 − 1
2q2,t−1 − 1

2q3,t−1 − 1
2q4,t−1

q2,t = 3 − 1
2q1,t−1 − 1

2q3,t−1 − 1
2q4,t−1

q3,t = 3 − 1
2q1,t−1 − 1

2q2,t−1 − 1
2q4,t−1

q4,t = 3 − 1
2q1,t−1 − 1

2q2,t−1 − 1
2q3,t−1

We can, once again, express the solutions in the form

q1,t = 6

5
− 6

5

(−3

2

)t

+ 1

4

(−3

2

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

2

)t

(3q10 − q20 − q30 − q40)

q2,t = 6

5
− 6

5

(−3

2

)t

+ 1

4

(−3

2

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

2

)t

(−q10 + 3q20 − q30 − q40)

q3,t = 6

5
− 6

5

(−3

2

)t

+ 1

4

(−3

2

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

2

)t

(−q10 − q20 + 3q30 − q40)

q4,t = 6

5
− 6

5

(−3

2

)t

+ 1

4

(−3

2

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

2

)t

(−q10 − q20 − q30 + 3q40)

(9.10)

Because of the presence of (−3/2)t, then as t approaches infinity, these terms
become larger, and so the system is unstable. Figure 9.6 shows the path output
for firms 1 and 2 for the initial point (q10, q20, q30, q40) = (3, 0, 0, 0), i.e., where
firm 1 begins from a monopoly position. Firms 3 and 4 have identical time paths
for output as firm 2. Of course, output cannot become negative. But what figure 9.6
illustrates is the inherent instability with four firms. In fact we have illustrated here
the general result that for a linear demand curve and constant marginal costs, for
n > 3, the system is unstable.

Figure 9.6.
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Figure 9.7.

Concentrating on firm 1 for the moment, we can plot the time path of output
for n = 2, 3 and 4 starting at the initial same monopoly value, i.e., q1 = 3, while
all other output levels are zero no matter how many firms there are in the industry.
This is illustrated in figure 9.7, where we have the situation for n = 2 and 3 in
relation to the left axis and n = 4 refers to the right axis. It quite readily reveals
that the stability exhibited for n = 2 is the exception rather than the rule!

9.2.2 Increasing marginal costs

Two-firm case (n = 2)

We retain the basic model, with the exception that each firm has rising marginal
cost. In particular, we assume

p = 9 − Q

Q = q1 + q2

TC1 = 3q2
1

TC2 = 3q2
2

(9.11)

Profits are then

Firm 1 π1,t = (9 − q1,t − q2,t−1)q1,t − 3q2
1,t

Firm 2 π2,t = (9 − q1,t−1 − q2,t)q2,t − 3q2
2,t

Differentiating

∂π1,t

∂q1,t
= 9 − 8q1,t − q2,t−1 = 0

∂π2,t

∂q2,t
= 9 − q1,t−1 − 8q2,t = 0

which results in the following dynamic adjustments
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q1,t = 9

8
− 1

8
q2,t−1

q2,t = 9

8
− 1

8
q1,t−1

Setting q1,t = q1 and q2,t = q2 for all t, we can readily solve for the Cournot–Nash
solution, which is (q∗

1, q
∗
2) = (1, 1). Solving the difference equations for initial

values (q1,0, q2,0) = (q10, q20), we obtain the solutions

q1,t = 1 −
(−1

8

)t

+ 1

2

(−1

8

)t

(q10 + q20) + 1

2

(
1

8

)t

(q10 − q20)

q2,t = 1 −
(−1

8

)t

+ 1

2

(−1

8

)t

(q10 + q20) + 1

2

(
1

8

)t

(−q10 + q20)

(9.12)

Since these solutions involve (1/8)t and (−1/8)t, then as t tends to infinity these
terms tend to zero, and so the system converges on the equilibrium point (q∗

1, q
∗
2) =

(1, 1), regardless of the initial values. Since the terms in brackets involve (1/8) in
absolute value, rather than our earlier (1/2) in absolute value, then the system will
converge on the equilibrium much quicker.

We conclude, then, for the case of two firms with increasing marginal costs, that
the system remains stable and approaches equilibrium much more rapidly.

Three-firm case (n = 3)

The profit for each firm is

Firm 1 π1,t = (9 − q1,t − q2,t−1 − q3,t−1)q1,t − 3q2
1,t

Firm 2 π2,t = (9 − q1,t−1 − q2,t − q3,t−1)q2,t − 3q2
2,t

Firm 3 π3,t = (9 − q1,t−1 − q2,t−1 − q3,t)q3,t − 3q2
3,t

Differentiating

∂π1,t

∂q1,t
= 9 − 8q1,t − q2,t−1 − q3,t−1 = 0

∂π2,t

∂q2,t
= 9 − q1,t−1 − 8q2,t − q3,t−1 = 0

∂π3,t

∂q3,t
= 9 − q1,t−1 − q2,t−1 − 8q3,t = 0

which results in the following dynamic adjustments

q1,t = 9

8
− 1

8
q2,t−1 − 1

8
q3,t−1

q2,t = 9

8
− 1

8
q1,t−1 − 1

8
q3,t−1

q3,t = 9

8
− 1

8
q1,t−1 − 1

8
q2,t−1

Setting q1,t = q1, q2,t = q2 and q3,t = q3 for all t, we can readily solve for the
Cournot–Nash solution, which is (q∗

1, q
∗
2, q

∗
3) = ( 9

10 , 9
10 , 9

10 ). Solving the difference
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equations for initial values (q1,0, q2,0, q3,0) = (q10, q20, q30), we obtain the
solutions

q1,t = 9

10
− 9

10

(−1

4

)t

+ 1

3

(−1

4

)t

(q10 + q20 + q30)

+ 1

3

(
1

8

)t

(2q10 − q20 − q30)

q2,t = 9

10
− 9

10

(−1

4

)t

+ 1

3

(−1

4

)t

(q10 + q20 + q30)

+ 1

3

(
1

8

)t

(−q10 + 2q20 − q30)

q3,t = 9

10
− 9

10

(−1

4

)t

+ 1

3

(−1

4

)t

(q10 + q20 + q30)

+ 1

3

(
1

8

)t

(−q10 − q20 + 2q30)

(9.13)

Unlike the constant marginal cost, with increasing marginal cost the three-firm
dynamic oligopoly model becomes stable. This is because the terms involving
(−1/4)t and (1/8)t will tend to zero as t tends to infinity, and so the system
converges on the equilibrium point (q∗

1, q
∗
2, q

∗
3) = ( 9

10 , 9
10 , 9

10 ). This can readily be
verified using the 3-dimensional plot instructions given earlier.

Four-firm case (n = 4)

The profit for each firm is

Firm 1 π1,t = (9 − q1,t − q2,t−1 − q3,t−1 − q4,t−1)q1,t − 3q2
1,t

Firm 2 π2,t = (9 − q1,t−1 − q2,t − q3,t−1 − q4,t−1)q2,t − 3q2
2,t

Firm 3 π3,t = (9 − q1,t−1 − q2,t−1 − q3,t − q4,t−1)q3,t − 3q2
3,t

Firm 4 π4,t = (9 − q1,t−1 − q2,t−1 − q3,t−1 − q4,t)q4,t − 3q2
4,t

Differentiating

∂π1,t

∂q1,t
= 9 − 8q1,t − q2,t−1 − q3,t−1 − q4,t−1 = 0

∂π2,t

∂q2,t
= 9 − q1,t−1 − 8q2,t − q3,t−1 − q4,t−1 = 0

∂π3,t

∂q3,t
= 9 − q1,t−1 − q2,t−1 − 8q3,t − q4,t−1 = 0

∂π4,t

∂q4,t
= 9 − q1,t−1 − q2,t−1 − q3,t−1 − 8q4,t = 0

which results in the following dynamic adjustments
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q1,t = 9

8
− 1

8
q2,t−1 − 1

8
q3,t−1 − 1

8
q4,t−1

q2,t = 9

8
− 1

8
q1,t−1 − 1

8
q3,t−1 − 1

8
q4,t−1

q3,t = 9

8
− 1

8
q1,t−1 − 1

8
q2,t−1 − 1

8
q4,t−1

q4,t = 9

8
− 1

8
q1,t−1 − 1

8
q2,t−1 − 1

8
q3,t−1

(9.14)

Setting q1,t = q1, q2,t = q2, q3,t = q3 and q4,t = q4 for all t, we can readily
solve for the Cournot–Nash solution, which is (q∗

1, q
∗
2, q

∗
3, q

∗
4) = ( 9

11 , 9
11 , 9

11 , 9
11 ).

Solving the difference equations for initial values (q1,0, q2,0, q3,0, q4,0) =
(q10, q20, q30, q40), we obtain the solution

q1,t = 9

11
− 9

11

(−3

8

)t

+ 1

4

(−3

8

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

8

)t

(3q10 − q20 − q30 − q40)

q2,t = 9

11
− 9

11

(−3

8

)t

+ 1

4

(−3

8

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

8

)t

(−q10 + 3q20 − q30 − q40)

q3,t = 9

11
− 9

11

(−3

8

)t

+ 1

4

(−3

8

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

8

)t

(−q10 − q20 + 3q30 − q40)

q4,t = 9

11
− 9

11

(−3

8

)t

+ 1

4

(−3

8

)t

(q10 + q20 + q30 + q40)

+ 1

4

(
1

8

)t

(−q10 − q20 − q30 + 3q40)

(9.15)

Once again, the unstable system with constant marginal cost becomes a stable
system when marginal cost is rising.

Figure 9.8 compares the time path of output q1 for n = 2, 3 and 4, for both
constant marginal costs and increasing marginal costs. This figure readily shows
the special case of stability for constant marginal costs, and the stabilising influence
that arises when marginal costs are rising.

9.3 Discrete oligopoly models with output not adjusting
completely and instantaneously

9.3.1 Constant marginal costs

Two-firm case (n = 2)

Still in keeping with the Cournot spirit of dynamic adjustment, we now turn to
incomplete and noninstantaneous adjustment. In particular, we assume that for
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Figure 9.8.

each firm

q1,t − q1,t−1 = k1(x1,t − q1,t−1) k1 > 0

q2,t − q2,t−1 = k2(x2,t − q2,t−1) k2 > 0
(9.16)

where x1,t and x2,t are the desired output levels for each firm. What these adjust-
ment equations indicate is that each firm adjusts its previous period’s output by
a proportion of the discrepancy between its desired output level at time t and its
output level in the previous period. Note also, however, that the optimal value
at time t is adjusted according to the information at time t − 1. Output at time t
can therefore be considered a two-step procedure. The adjustment is illustrated
in figure 9.9. The system at time t − 1 is at point A. Given the adjustment equa-
tions (9.16) the system moves in the next period to point B, and so on. What is
not obvious is whether it will converge on the Cournot solution, point C. Nor
is it obvious what shape the trajectory will take. These two issues we need to
investigate.

The desired output levels on the part of each firm are given by their reaction
function, so that



Dynamic theory of oligopoly 391

Figure 9.9.

x1,t = 3 − 1
2q2,t−1

x2,t = 3 − 1
2q1,t−1

(9.17)

Substituting and simplifying we have

q1,t = 3k1 + (1 − k1)q1,t−1 − 1
2k1q2,t−1

q2,t = 3k2 − 1
2k2q1,t−1 + (1 − k2)q2,t−1

(9.18)

Although these difference equations can be solved, the output is long and unwieldy.
We can however, obtain some additional insight if we assume that k1 = k2 = k and
solve for initial values q1,0 = q10 and q2,0 = q20. The solutions are

q1,t = 2 − 2

(−3k

2
+ 1

)t
+ 1

2

(−3k

2
+ 1

)t
(q10 + q20)

+1

2

(−k

2
+ 1

)t
(q10 − q20)

q2,t = 2 − 2

(−3k

2
+ 1

)t
+ 1

2

(−3k

2
+ 1

)t
(q10 + q20)

+1

2

(−k

2
+ 1

)t
(−q10 + q20)

(9.19)

Since k > 0, then both roots are less than +1. Accordingly, stability will be assured
if the roots are greater than –1. Furthermore, (−3k

2 + 1) is less than (−k
2 + 1) and so

the root (−3k
2 + 1) dominates the system. Stability requires that (−3k

2 + 1) > −1 or
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Figure 9.10.

k < 4/3. If k = 4/3 then the root is −1, and the system oscillates, after a certain
time period. If k > 4/3 then the system is explosive.

Although the duopoly model with complete and instantaneous adjustment is
stable, the same cannot be said of partial adjustment. In this instance, duopoly can
exhibit stable, oscillatory and explosive adjustment paths depending on the size
of the adjustment coefficient k. One example of each is illustrated in figure 9.10.
When k = 1 the system converges on the fixed point. For k = 4/3 the system soon
converges on the two values which the system oscillates between, namely 1.5
and 2.5. However, when k = 1.5 the system is explosive, oscillating with greater
amplitude either side of the fixed point.
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Three-firm case (n = 3)

Retaining our assumption of identical adjustment coefficients, then (k > 0)

q1,t − q1,t−1 = k(x1,t − q1,t−1)

q2,t − q2,t−1 = k(x2,t − q2,t−1)

q3,t − q3,t−1 = k(x3,t − q3,t−1)

with optimal outputs given by

x1,t = 3 − 1
2q2,t−1 − 1

2q3,t−1

x2,t = 3 − 1
2q1,t−1 − 1

2q3,t−1

x3,t = 3 − 1
2q1,t−1 − 1

2q2,t−1

(9.20)

Substituting and simplifying we obtain the following difference equations

q1,t = 3k + (1 − k)q1,t−1 − 1
2kq2,t−1 − 1

2kq3,t−1

q2,t = 3k − 1
2kq1,t−1 + (1 − k)q2,t−1 − 1

2kq3,t−1

q3,t = 3k − 1
2kq1,t−1 − 1

2kq2,t−1 + (1 − k)q3,t−1

(9.21)

Solving for initial values q1,0 = q10, q2,0 = q20 and q3,0 = q30 we have

q1,t = 3

2
− 3

2
(−2k + 1)t + 1

3
(−2k + 1)t(q10 + q20 + q30)

+ 1

3

(−k

2
+ 1

)t

(2q10 − q20 − q30)

q2,t = 3

2
− 3

2
(−2k + 1)t + 1

3
(−2k + 1)t(q10 + q20 + q30)

+ 1

3

(−k

2
+ 1

)t

(−q10 + 2q20 − q30)

q3,t = 3

2
− 3

2
(−2k + 1)t + 1

3
(−2k + 1)t(q10 + q20 + q30)

+ 1

3

(−k

2
+ 1

)t

(−q10 − q20 + 2q30)

(9.22)

Since k > 0, then each root is less than +1. In addition, (−2k + 1) is less than
(−k

2 + 1) and so the root (−2k + 1) dominates the system. Stability requires that
−2k + 1 > −1 or k < 1. If k = 1 then the system oscillates; and if k > 1
the equilibrium values is never attained. One example of each is illustrated in
figure 9.11. These three-dimensional plots were produced as discussed earlier. In
figure 9.11(a) k = 0.8 and the system which has firm 1 as a monopolist converges
on the equilibrium. In figure 9.11(b), with k = 1, the system soon begins to os-
cillate between two values. When k = 1.2, however, the system oscillates with
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Figure 9.11.

ever-increasing amplitude. Although output cannot be negative, once again what
we are attempting to illustrate is the inherent instability when k > 1.

Four-firm case (n = 4)

Following exactly the same analysis as for n = 3, we obtain solutions

q1,t = 6

5
− 6

5

(−5k

2
+ 1

)t

+ 1

4

(−5k

2
+ 1

)t

(q10 + q20 + q30 + q40)

+ 1

4

(−k

2
+ 1

)t

(3q10 − q20 − q30 − q40)
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q2,t = 6

5
− 6

5

(−5k

2
+ 1

)t

+ 1

4

(−5k

2
+ 1

)t

(q10 + q20 + q30 + q40)

+ 1

4

(−k

2
+ 1

)t

(−q10 + 3q20 − q30 − q40)

q3,t = 6

5
− 6

5

(−5k

2
+ 1

)t

+ 1

4

(−5k

2
+ 1

)t

(q10 + q20 + q30 + q40)

+ 1

4

(−k

2
+ 1

)t

(−q10 − q20 + 3q30 − q40)

q4,t = 6

5
− 6

5

(−5k

2
+ 1

)t

+ 1

4

(−5k

2
+ 1

)t

(q10 + q20 + q30 + q40)

+ 1

4

(−k

2
+ 1

)t

(−q10 − q20 − q30 + 3q40)

(9.23)

With k > 0, stability requires (−5k
2 + 1) > −1 or k < 4/5. If k = 4/5 then the

system oscillates; while if k > 4/5 it is explosive. Figure 9.12 illustrates each of
these, where we show only the results for output q1.

9.3.2 Increasing marginal costs

Two-firm case (n = 2)

Returning to the model

p = 9 − Q

Q = q1 + q2

TC1 = 3q2
1

TC2 = 3q2
2

(9.24)

Figure 9.12.
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with reaction functions

x1,t = 9

8
− 1

8
q2,t−1

x2,t = 9

8
− 1

8
q1,t−1

(9.25)

and once again assume for k > 0 that

q1,t − q1,t−1 = k(x1,t − q1,t−1)

q2,t − q2,t−1 = k(x2,t − q2,t−1)

Substituting the reaction functions, we obtain the following difference equations

q1,t = 9k

8
+ (1 − k)q1,t−1 − k

8
q2,t−1

q2,t = 9k

8
− k

8
q1,t−1 + (1 − k)q2,t−1

(9.26)

Given the initial conditions q1,0 = q10 and q2,0 = q20 we have solutions

q1,t = 1 −
(−9k

8
+ 1

)t

+ 1

2

(−9k

8
+ 1

)t

(q10 + q20)

+ 1

2

(−7k

8
+ 1

)t

(q10 − q20)

q2,t = 1 −
(−9k

8
+ 1

)t

+ 1

2

(−9k

8
+ 1

)t

(q10 + q20)

+ 1

2

(−7k

8
+ 1

)t

(−q10 + q20)

(9.27)

Since k > 0, then stability requires −9k
8 + 1 > −1, or k < 16/9. The system ex-

hibits oscillations and explosive behaviour if k = 16/9 and k > 16/9, respectively.

Three-firm case (n = 3)

Following the same procedure as in sub-section 9.3.1 we derive the results

q1,t = 9

10
− 9

10

(−5k

4
+ 1

)t

+ 1

3

(−5k

4
+ 1

)t

(q10 + q20 + q30)

+ 1

3

(−7k

8
+ 1

)t

(2q10 − q20 − q30)

q2,t = 9

10
− 9

10

(−5k

4
+ 1

)t

+ 1

3

(−5k

4
+ 1

)t

(q10 + q20 + q30)

+ 1

3

(−7k

8
+ 1

)t

(−q10 + 2q20 − q30)

q3,t = 9

10
− 9

10

(−5k

4
+ 1

)t

+ 1

3

(−5k

4
+ 1

)t

(q10 + q20 + q30)

+ 1

3

(−7k

8
+ 1

)t

(−q10 − q20 + 2q30)

(9.28)
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Since k > 0, then the smallest root is (−5k
4 + 1), which must be larger than –1 for

stability, i.e., k < 8/5.

Four-firm case (n = 4)

Following the same procedure as we did to derive equations (9.23) we obtain the
results

q1,t = 9

11
− 9

11

(−11k

8
+ 1

)t
+ 1

4

(−11k

8
+ 1

)t
(q10 + q20 + q30 + q40)

+ 1

4

(−7k

8
+ 1

)t

(3q10 − q20 − q30 − q40)

q2,t = 9

11
− 9

11

(−11k

8
+ 1

)t
+ 1

4

(−11k

8
+ 1

)t
(q10 + q20 + q30 + q40)

+ 1

4

(−7k

8
+ 1

)t

(−q10 + 3q20 − q30 − q40)

q3,t = 9

11
− 9

11

(−11k

8
+ 1

)t
+ 1

4

(−11k

8
+ 1

)t
(q10 + q20 + q30 + q40)

+ 1

4

(−7k

8
+ 1

)t

(−q10 − q20 + 3q30 − q40)

q4,t = 9

11
− 9

11

(−11k

8
+ 1

)t
+ 1

4

(−11k

8
+ 1

)t
(q10 + q20 + q30 + q40)

+ 1

4

(−7k

8
+ 1

)t

(−q10 − q20 − q30 + 3q40)

(9.29)

Since k > 0 and the smallest root is (−11k
8 + 1), then for stability we require k <

16/11.
Table 9.1 sets out the value of k for stability for n = 2, 3 and 4 and under constant

and increasing marginal costs.
What this table reveals is the following:

(1) As the number of firms in the industry increases, the size of k falls, so
the likelihood of instability is increased with the number of firms in the
industry.

(2) The presence of increasing marginal costs acts as a stabilising influence,
raising the critical value of k, and so increasing the range over which the
systems exhibit stability.

Table 9.1 Stability values for k

Constant MC Increasing MC

n = 2 k < 4/3 k < 16/9
n = 3 k < 1 k < 16/10
n = 4 k < 4/5 k < 16/11
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(3) The presence of increasing marginal costs does not rule out oscillations
or instability. Oscillations and instability can occur for any number of
firms in the industry if k is sufficiently large enough.

9.4 Continuous modelling of oligopoly

So far the discrete form of the oligopoly model has been investigated. We now
turn to its continuous representation. It cannot be guaranteed that the results which
hold for n = 2, 3 and 4 for the discrete model hold for its continuous counterpart.
As with the discrete model, consideration will be given to the case of both constant
and increasing marginal costs.

9.4.1 Constant marginal costs

Two-firm case (n = 2)

The same example is used; paying particular attention to what happens when there
is an increase in the number of firms and what happens when the assumption of
constant marginal costs is changed to one of increasing marginal costs. For the
two-firm case our model is

p(t) = 9 − Q(t)

Q(t) = q1(t) + q2(t)

TC1(t) = 3q1(t)

TC2(t) = 3q2(t)

(9.30)

This leads to total revenue and profits for each firm of

Firm 1 TR1(t) = (9 − q1(t) − q2(t))q1(t)

π1(t) = (9 − q1(t) − q2(t))q1(t) − 3q1(t)

Firm 2 TR2(t) = (9 − q1(t) − q2(t))q2(t)

π2(t) = (9 − q1(t) − q2(t))q1(t) − 3q2(t)

We now specify the dynamics. We assume that for firm 1 output is adjusted
continuously in proportion to the discrepancy between the desired level and the
actual level. The same applies to firm 2. Hence

Firm 1
dq1(t)

dt
= k1(x1(t) − q1(t)) k1 > 0

Firm 2
dq2(t)

dt
= k2(x2(t) − q2(t)) k2 > 0

The desired level of output for each firm is the output level that maximises profits
under the assumption that the other firm does not alter its output level. Differen-
tiating each profit function under the assumed conjectural variation, and setting
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equal to zero

∂π1(t)

∂q1(t)
= 6 − 2q1(t) − q2(t) = 0

∂π2(t)

∂q2(t)
= 6 − q1(t) − 2q2(t) = 0

Then

x1(t) = 3 − 1
2q2(t)

x2(t) = 3 − 1
2q1(t)

(9.31)

Substituting these into the dynamic adjustment equations, we obtain

∂q1(t)

∂t
= 3k1 − k1q1(t) − k1

2
q2(t)

∂q2(t)

∂t
= 3k2 − k2

2
q1(t) − k2q2(t)

First consider the fixed point of the system. This is where output levels do not
change. These represent two isoclines, which are given by

q1(t) = 3 − 1
2q2(t)

q2(t) = 3 − 1
2q1(t)

which are no more than the same reaction functions we have above and in the pre-
vious models, and which intersect at (q∗

1, q
∗
2) = (2, 2). The equilibrium is therefore

unaffected.
Consider now the model in matrix form. We have[

q̇1(t)
q̇2(t)

]
=
[

3k1

3k2

]
+
[−k1 − k1

2
− k2

2 −k2

] [
q1(t)
q2(t)

]

and the matrix of the system is

A =
[−k1 − k1

2
− k2

2 −k2

]

with tr(A) = −(k1 + k2) < 0 and det(A) = k1k2 − k1k2
4 = 3k1k2

4 > 0, which hold
regardless of the values that k1 and k2 take, so long as they are both positive.
Furthermore,

tr(A)2 − 4 det(A) = (k1 + k2)2 − 3k1k2

= (k1 − k2)2 + k1k2

which is positive since k1 >0 and k2 >0. These results indicate that the equilibrium
is stable, and that any cyclical behaviour is ruled out.

Although bothMathematica andMaple can solve the linear differential equation
system, the solution is once again unwieldy. Letting k1 = k2 = k, however, we
obtain the following more insightful solutions

q1(t) = 2 − 2e(−
3k
2 )t + 1

2
e(−

3k
2 )t(q10 + q20) + 1

2
e(−

k
2 )t(q10 − q20)

q2(t) = 2 − 2e(−
3k
2 )t + 1

2
e(−

3k
2 )t(q10 + q20) + 1

2
e(−

k
2 )t(−q10 + q20)

(9.32)



400 Economic Dynamics

Figure 9.13.

which tend to the equilibrium point (q∗
1, q

∗
2) = (2, 2) as t tends to infinity. We

illustrate this for k = 0.5 in figure 9.13, which shows the phase diagram for this
two-firm model under continuous adjustment.

As can be seen from figure 9.13, all paths converge on the equilibrium regardless
of the initial values. It should be noted that this is in marked contrast to the discrete
model, in which stable, unstable and oscillatory behaviour is feasible depending
on the size of the adjustment coefficient. In the present formulation, the size of the
adjustment coefficient has no bearing on the stability/instability of the system, all
it does is change the speed of convergence.

Three-firm case (n = 3)

Performing the same analysis as in the previous case, the model reduces down to
the following



q̇1(t)

q̇2(t)

q̇3(t)


 =




3k1

3k2

3k3


+




−k1 − k1
2 − k1

2

− k2
2 −k2 − k2

2

− k3
2 − k3

2 −k3





q1(t)

q2(t)

q3(t)


(9.33)

and the matrix of the system is

A3 =




−k1 − k1
2 − k1

2

− k2
2 −k2 − k2

2

− k3
2 − k3

2 −k3




with tr(A3) = −(k1 + k2 + k3) < 0 and det(A3) = − 1
2k1k2k3 < 0, which holds

regardless of the values of the adjustment coefficients. Since det(A3) < 0 a saddle-
point solution results.



Dynamic theory of oligopoly 401

If we assume that k1 = k2 = k3 = k, then the solutions are

q1(t) = 3

2
− 3

2
e−2kt + 1

3
e−2kt(q10 + q20 + q30) + 1

3
e−(k/2)t(2q10 − q20 − q30)

q2(t) = 3

2
− 3

2
e−2kt + 1

3
e−2kt(q10 + q20 + q30) + 1

3
e−(k/2)t(−q10 + 2q20 − q30)

q3(t) = 3

2
− 3

2
e−2kt + 1

3
e−2kt(q10 + q20 + q30) + 1

3
e−(k/2)t(−q10 − q20 + 2q30)

(9.34)

Since tr(A3) is now –3k < 0 and the det(A3) is now − 1
2k

3 < 0, then the system
has a saddle point solution at (q∗

1, q
∗
2, q

∗
3) = ( 3

2 , 3
2 , 3

2 ).

Four-firm case (n = 4)

This model reduces to

q̇1(t)

q̇2(t)

q̇3(t)

q̇4(t)


 =




3k1

3k2

3k3

3k4


+




−k1 − k1
2 − k1

2 − k1
2

− k2
2 −k2 − k2

2 − k2
2

− k3
2 − k3

2 −k3 − k3
2

− k4
2 − k4

2 − k4
2 −k4





q1(t)

q2(t)

q3(t)

q4(t)


 (9.35)

and the matrix of the system is

A4 =




−k1 − k1
2 − k1

2 − k1
2

− k2
2 −k2 − k2

2 − k2
2

− k3
2 − k3

2 −k3 − k3
2

− k4
2 − k4

2 − k4
2 −k4




With tr(A4) = −(k1 + k2 + k3 + k4) < 0 and det(A4) = 5
16k1k2k3k4 > 0, which

holds regardless of the values of the adjustment coefficients. We now see the
saddle point solution does not hold for n = 4.

If we assume k1= k2= k3= k4= k then we can express the solutions in the form

q1(t) = 6

5
− 6

5
e−(5k/2)t + 1

4
e−(5k/2)t(q10 + q20 + q30 + q40)

+ 1

4
e−(k/2)t(3q10 − q20 − q30 − q40)

q2(t) = 6

5
− 6

5
e−(5k/2)t + 1

4
e−(5k/2)t(q10 + q20 + q30 + q40)

+ 1

4
e−(k/2)t(−q10 + 3q20 − q30 − q40)

q3(t) = 6

5
− 6

5
e−(5k/2)t + 1

4
e−(5k/2)t(q10 + q20 + q30 + q40)

+ 1

4
e−(k/2)t(−q10 − q20 + 3q30 − q40)

q4(t) = 6

5
− 6

5
e−(5k/2)t + 1

4
e−(5k/2)t(q10 + q20 + q30 + q40)

+ 1

4
e−(k/2)t(−q10 − q20 − q30 + 3q40)

(9.36)
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Table 9.2 Stability properties on trace and determinant

n Trace Determinant

2 −(k1 + k2) < 0 (3/4)k1k2 > 0
3 −(k1 + k2 + k3) < 0 −(1/2)k1k2k3 < 0
4 −(k1 + k2 + k3 + k4) < 0 (5/16)k1k2k3k4 > 0
5 −(k1 + k2 + k3 + k4 + k5) < 0 −(3/16)k1k2k3k4k5 < 0
6 −(k1 + k2 + k3 + k4 + k5 + k6) < 0 (7/64)k1k2k3k4k5k6 > 0

Since tr(A4) is now −4k < 0, det(A4) is now 5
16k

4 > 0 and

tr(A4)2 − 4 det(A4) = 16k2 − 5
4k

4 = 1
4k

2(64 − 5k2)

then the system has an improper node if k <
√

64
5 and a spiral node if k >

√
64
5 ,

where the node is at point (q∗
1, q

∗
2, q

∗
3, q

∗
4) = ( 6

5 , 6
5 , 6

5 , 6
5 ).

The pattern emerging for the continuous model with constant marginal costs
appears complex. The pattern emerging can be seen in terms of table 9.2.

Although the trace remains negative, the determinant alternates in sign – positive
for even numbers and negative for odd numbers. Nor is cyclical behaviour ruled
out, as we noted in the case of four firms. What appears to emerge is saddle point
solutions whenever n is odd, and either an improper node or a spiral node whenever
n is even.

What can be concluded with some confidence from this fairly exhaustive ex-
ample is that the asymptotic stability exhibited for duopoly is a rather special
case.

9.4.2 Increasing marginal costs

Two-firm case (n = 2)

Returning to the model

p(t) = 9 − Q(t)

Q(t) = q1(t) + q2(t)

TC1(t) = 3q2
1(t)

TC2(t) = 3q2
2(t)

(9.37)

the desired output levels are

x1(t) = 9

8
− 1

8
q2(t)

x2(t) = 9

8
− 1

8
q1(t)
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while the dynamics are the same as in the situation of constant marginal costs. The
adjustment equations become

∂q1(t)

∂t
= 9k1

8
− k1q1(t) − k1

8
q2(t)

∂q2(t)

∂t
= 9k2

8
− k2

8
q1(t) − k2q2(t)

Equilibrium is at (q∗
1, q

∗
2) = (1, 1).

The system can be expressed,[
q̇1(t)

q̇2(t)

]
=
[

9k1
8

9k2
8

]
+
[

−k1 − k1
8

− k2
8 −k2

][
q1(t)

q2(t)

]

and the matrix of the system is

B2 =
[

−k1 − k1
8

− k2
8 −k2

]

with tr(B2) = −(k1 + k2) < 0 and det(B2) = 63
64k1k2 > 0. Furthermore,

tr(B2)2 − 4 det(B2) = (k1 + k2)2 − 63k1k2

16

= (k1 − k2)2 + k1k2

16

which is positive. Once again for duopoly in the presence of increasing marginal
costs, the equilibrium is stable and any cyclical behaviour is ruled out.

Under the simplifying assumption that k1 = k2 = k, we obtain the solutions

q1(t) = 1 − e−( 9k
8 )t + 1

2
e−( 9k

8 )t(q10 + q20) + 1

2
e−( 7k

8 )t(q10 − q20)

q2(t) = 1 − e−( 9k
8 )t + 1

2
e−( 9k

8 )t(q10 + q20) + 1

2
e−( 7k

8 )t(−q10 + q20)

(9.38)

which tends to the equilibrium point (q∗
1, q

∗
2) = (1, 1) as t tends to infinity. The

stability of duopoly under increasing marginal costs is illustrated in figure 9.14.
Once again, all paths converge on the equilibrium regardless of the initial values.

Figure 9.14.
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Three-firm case (n = 3)

Following a similar procedure, the system for three firms can be expressed



q̇1(t)

q̇2(t)

q̇3(t)


 =




9k1
8

9k2
8

9k3
8


+




−k1 − k1
8 − k1

8

− k2
8 −k2 − k2

8

− k3
8 − k3

8 −k3





q1(t)

q2(t)

q3(t)


(9.39)

and the matrix of the system is

B3 =




−k1 − k1
8 − k1

8

− k2
8 −k2 − k2

8

− k3
8 − k3

8 −k3




with tr(B3) = −(k1 + k2 + k3) < 0 and det(B3) = − 245
256k1k2k3 < 0. Since the de-

terminant is negative we have a saddle point solution, with node at (q∗
1, q

∗
2, q

∗
3) =

( 9
10 , 9

10 , 9
10 ).

Assuming k1 = k2 = k3 = k then we have the solutions

q1(t) = 9

10
− 9

10
e−( 5k

4 )t − e−( 5k
4 )t(q10 + q20 + q30) + 1

3
e−( 7k

8 )t(2q10 − q20 − q30)

(9.40) q2(t) = 9

10
− 9

10
e−( 5k

4 )t −e−( 5k
4 )t(q10 +q20 + q30) + 1

3
e−( 7k

8 )t(−q10 + 2q20 − q30)

q3(t) = 9

10
− 9

10
e−( 5k

4 )t − e−( 5k
4 )t(q10 + q20 + q30) + 1

3
e−( 7k

8 )t(−q10 − q20 + 2q30)

Four-firm case (n = 4)

Repeating the same analysis, the system for four firms can be expressed



q̇1(t)
q̇2(t)
q̇3(t)
q̇4(t)


 =




9k1
8

9k2
8

9k3
8

9k4
8


+




−k1 − k1
8 − k1

8 − k1
8

− k2
8 −k2 − k2

8 − k2
8

− k3
8 − k3

8 −k3 − k3
8

− k4
8 − k4

8 − k4
8 −k4





q1(t)
q2(t)
q3(t)
q4(t)


(9.41)

and the matrix of the system is

B4 =




−k1 − k1
8 − k1

8 − k1
8

− k2
8 −k2 − k2

8 − k2
8

− k3
8 − k3

8 −k3 − k3
8

− k4
8 − k4

8 − k4
8 −k4




with tr(B4) = −(k1 + k2 + k3 + k4) < 0 and det(B4) = 3773
4096k1k2k3k4 > 0. The sad-

dle point solution disappears once again, and we have either an improper node or
a spiral node, with the node at point (q∗

1, q
∗
2, q

∗
3, q

∗
4) = ( 9

11 , 9
11 , 9

11 , 9
11 ).
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Table 9.3 Roots for firm sizes 2, 3 and 4

n Constant marginal costs Increasing marginal costs

2
−3k

2
,
−k

2

−9k

8
,
−7k

8

3 −2k,
−k

2

−5k

4
,
−7k

8

4
−5k

2
,
−k

2

−11k

8
,
−7k

8

Assuming k1 = k2 = k3 = k4 = k then we have the solution

q1(t) = 9

11
− 9

11
e−( 11k

8 )t + 1

4
e−( 11k

8 )t(q10 + q20 + q30 + q40)

+ 1

4
e−( 7k

8 )t(3q10 − q20 − q30 − q40)

q2(t) = 9

11
− 9

11
e−( 11k

8 )t + 1

4
e−( 11k

8 )t(q10 + q20 + q30 + q40)

+ 1

4
e−( 7k

8 )t(−q10 + 3q20 − q30 − q40)

q3(t) = 9

11
− 9

11
e−( 11k

8 )t + 1

4
e−( 11k

8 )t(q10 + q20 + q30 + q40)

+ 1

4
e−( 7k

8 )t(−q10 − q20 + 3q30 − q40)

q4(t) = 9

11
− 9

11
e−( 11k

8 )t + 1

4
e−( 11k

8 )t(q10 + q20 + q30 + q40)

+ 1

4
e−( 7k

8 )t(−q10 − q20 − q30 + 3q40)

(9.42)

We can compare the constant and increasing marginal cost situations by identi-
fying the distinct roots in each case. These are shown in table 9.3 for n = 2, 3 and
4 and for constant k.

For n = 2, the dominant root is −3k/2 for constant marginal costs and −9k/8
for increasing marginal costs. In fact, in each case the dominant root is shown
in the left-hand column. The dominant root is always smaller for increasing
marginal costs than for constant marginal costs, showing that increasing marginal
costs has a stabilising influence. Also notice, however, that as n increases so
does the dominant root, and so the more probable that the industry exhibits
instability.

9.5 A nonlinear model of duopolistic competition (R&D)

A quite different dynamic duopoly model is that discussed by Parker, Whitby
and Tobias (2000).3 The model consists of two firms, which we shall call A and
B, producing a similar technological product. Rather than competing on price,

3 I am grateful to Simon Whitby for supplying some additional information on the parameters used in
this model and for clarifying a number of points.
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Table 9.4 Nonlinear model of duopolistic competition

Firm A where
RA
t+1 = max[0,RA

t + a(SAt − SBt )] RA = resource allocations to R&D by firm A
a = policy parameter for firm A

SAt =
(

2mA

π

)
arctan(RA

t ) − nA SA = product quality standard for firm A

SB = product quality standard for firm B
nA, nB = shift parameters

�kAt+1 = γ (SAt − S) �kA = change in market share for firm A
γ = market share adjustment parameter
S = average product standard of the industry

Firm B RB = resource allocations to R&D by firm B
RB
t+1 = max[0,RB

t + b(SBt − SAt )] b = policy parameter for firm B
kA = market share of firm A

SBt =
(

2mB

π

)
arctan(RB

t ) − nB kB = market share of firm B

�kBt+1 = γ (SBt − S) �kB = change in market share for firm B

Figure 9.15.

however, competition is through product innovation. It is assumed that the more
resources are allocated to research and development (R&D) the greater the standard
or quality that results. A higher quality leads to a competitive advantage in the
market, leading in turn to a greater market share. It is assumed that each firm can
monitor the product standard of its competitor at zero cost. The authors do not
explicitly consider market share, and here we extend the model by introducing a
simple dynamic adjustment to market share which responds to the firm’s quality
standard relative to the average quality standard of the industry.

The model is captured in terms of the set of relationships in table 9.4.
The model’s basic structure is shown in figure 9.15. The resources each firm

devotes to R&D in time period t determine the product quality standard in that
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period. A competitive advantage occurs at time t if the quality standard achieved
in time t is greater than for their competitor. This in turn alters the market share for
time t + 1. Given just two firms, only one firm can have a competitive advantage
(say firm A if SA > SB).

9.5.1 No learning

Each firm is assumed to adjust the resource allocation to R&D according to their
competitive advantage. Parker et al. consider two possible policy alternatives:

Reinforcing policy (a > 0, b > 0)

Research funds are increased when performance is good and reduced
when performance is bad. The change is set proportional to the differential
in performance, i.e.

RA
t+1 − RA

t = a
(
SAt − SBt

)
a > 0

RB
t+1 − RB

t = b
(
SBt − SAt

)
b > 0

Counteracting policy (a < 0, b < 0)

Research funds are increased when performance is bad and decreased
when performance is good. The change is set proportional to the differ-
ential in performance, i.e.

RA
t+1 − RA

t = a
(
SAt − SBt

)
a < 0

RB
t+1 − RB

t = b
(
SBt − SAt

)
b < 0

Of course, one firm could be reinforcing while the other is pursuing a counteracting
policy, which results in four basic interactions.

The critical relationship is that between product quality standard and R&D
allocations. A typical relationship is S-shaped indicating low improvements in
standard for low levels of R&D, much greater improvements for higher levels, but
a tailing off in improvements in standard once diminishing returns set in, which
occurs at high levels of R&D. Such an S-shaped curve can be captured by arctan.4

Thus

SAt =
(

2mA

π

)
arctan

(
RA
t

)− nA for firm A

SBt =
(

2mB

π

)
arctan

(
RB
t

)− nB for firm B

(9.43)

are the functions employed to represent quality standard by each firm. The higher
the value of m the steeper the S-function, while a positive n shifts it down. The
inflexion point occurs on the y-axis at the value of n.

4 We employed a similar relationship in the previous chapter, section 8.10.
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Substituting the quality standard into the resource function we have

RA
t+1 = max

[
0,RA

t +
{
a

(
2mA

π

)
arctan

(
RA
t

)

− a

(
2mB

π

)
arctan

(
RB
t

)− a(nA − nB)

}]

RB
t+1 = max

[
0,RB

t +
{
b

(
2mB

π

)
arctan

(
RB
t

)

− b

(
2mA

π

)
arctan

(
RA
t

)− b(nB − nA)

}]
(9.44)

for firms A and B, respectively. Given the parameters mA,mB, nA and nB, then we
have the recursive equations

RA
t+1 = f A

(
RA
t ,R

B
t

)
RB
t+1 = f B

(
RA
t ,R

B
t

)(9.45)

which allows us to plot the trajectories {RA
t ,R

B
t } for alternative policy options

given {RA
0 ,RB

0 }. Given the values for RA
t and RB

t , we can compute the product
quality standard for firm A and B, respectively. Given some initial market share
{kA0 , kB0 } it is possible to compute the market shares for the next period. To do this,
however, we need to define the average product quality standard for the industry,
S. This is defined as the weighted sum of the product quality standard for each
firm, where the weight is the respective market share. We therefore have

St = kAt S
A
t + kBt S

B
t kAt + kBt = 1(9.46)

and

kAt+1 = kAt + γ
(
SAt − St

)
kBt+1 = kBt + γ

(
SBt − St

)(9.47)

Although there are no known methods for solving equations (9.44), we can readily
employ a spreadsheet to carry out simulations.

For simplicity the authors treat the functions (9.43) as identical for each firm
and give values to the parameters m and n of 100 and 40, respectively. If both firms
engage in a reinforcing policy, then whichever firm starts with the greater resources
devoted to R&D will have the greater product quality standard and hence the com-
petitive advantage. The market share for the firm with the competitive advantage
will rise while that for the other firm will fall until it goes out of business. Given
the symmetrical nature of the firms, if the same resources are devoted to R&D,
then the market share will remain unaffected regardless of the values of a and b.

Example 9.1 (Reinforcing policy by both firms)

To see the model in operation, consider the following values

mA = mB = 100 RA
0 = 10 RB

0 = 8

nA = nB = 40 kA0 = 0.5 kB0 = 0.5
γ = 0.01
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Figure 9.16.

The model is illustrated in the spreadsheet in figure 9.16. The parameter values
are set out at the top of the spreadsheet. The initial conditions RA

0 and RB
0 allow

for columns RA
t and RB

t to be computed recursively. Once these values have been
obtained, then the columns for SAt and SBt are computed. We have added one
additional constraint, however, in computing columns D and E of the spreadsheet.
Since quality standard cannot be negative, we have for columns D and E the
formulas

= max

[(
2mA

π

)
arctan

(
RA
t

)− nA, 0

]

= max

[(
2mB

π

)
arctan

(
RB
t

)− nB, 0

]

for firms A and B, respectively. Given the values for the product quality standard,
we compute the market shares and the average product quality standard for the
industry using the formulas in equations (9.46) and (9.47). Once again, however,
in constructing columns F and G of the spreadsheet, we add the constraint that the
market share cannot be negative and must sum to unity, i.e., columns F and G have
the formulas

= max
[
kAt + γ

(
SAt − St

)
, 0
]

for column F

= 1 − kAt for column G

for kAt and kBt , respectively. It is now easy to plot resource allocations, product
quality standard and market shares.

For example, given firm A has more resources devoted initially to improving
product quality standard, firm A will soon dominate the market. Figure 9.17(b)
shows that by period 10 firm A has a virtual monopoly.
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Figure 9.17.

If one firm engages in a reinforcing policy while the other engages in a counter-
acting policy, then the system will oscillate – oscillations occurring in particular
with the amount of resources devoted to R&D and in terms of market share. Such
oscillations depend not only on the value and sign of a and b but also on the initial
resources devoted to R&D. Various possibilities are readily investigated once the
model is set up on a spreadsheet or in mathematical software packages. The authors
plot the path of RA

t and RB
t against t after the system settles down, i.e., they plot the

paths for t = 200 . . . 250. Since the equations are symmetrical, then oscillations
of one period will show up in the phase plane (once the system has settled down)
as simply two points; two-period oscillations as four points, and so on. Choosing
the same four paired combinations (a, b) and initial resource allocations RA

0 = 10
and RB

0 = 15 as Parker et al. with m = 100 and n = 40 for both firms, period 1,
2 and 4 along with chaotic behaviour can be observed in figure 9.18, where the
trajectories are plotted for t from 200 to 250.
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Figure 9.18.

Figure 9.18 was produced with Excel. If Mathematica or Maple is used for
constructing this and other figures, then the following instructions can be used.
In these instructions we provide a plot of RA

t for t = 200 to 250 and a plot of the
trajectory {RA

t ,R
B
t } for the same time period:

Mathematica
Clear[RA,RB,t,a,b,mA,mB,nA,nB]

RA[0]:=10; RB[0]:=15;

a:=0.1; b:=-3.8; mA:=100; mB:=100; nA:=40; nB:=40;

RA[t-]:=RA[t]=

Max[0,RA[t-1]+(2 a mA/π )(ArcTan[RA[t-1]])-
(2 a mB/π )(ArcTan[RB[t-1]])-a(nA-nB)]

RB[t-]:=RB[t]=

Max[0,RB[t-1]+(2 b mB/π )(ArcTan[RB[t-1]])-
(2 b mA/π )(ArcTan[RA[t-1]])-b(nB-nA)]

dataRA=Table[{t,RA[t]},{t,200,250}];

dataRARB=Table[{RA[t],RB[t]},{t,200,250}];

ListPlot[dataRA, PlotJoined->True]

ListPlot[dataRARB,PlotStyle->PointSize[0.02]];

Maple

RA:=’RA’: RB:=’RB’: t:=’t’: a:=’a’: b:=’b’:

mA:=’mA’: mB:=’mB’: nA:=’nA’: nB:=’nB’:

a:=0.1: b:=-3.8: mA:=100: mB:=100: nA:=40: nB:=40:
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RA:=proc(t) option remember;

max(0,evalf(RA(t-1)+(2*a*mA/Pi)*(arctan (RA(t-1)))-

(2*a*mB/Pi)*(arctan(RB(t-1)))-a*(nA-nB))) end;

RB:=proc(t) option remember;

max(0,evalf(RB(t-1)+(2*b*mB/Pi)*(arctan (RB(t-1)))-

(2*b*mA/Pi)*(arctan(RA(t-1)))-b*(nB-nA))) end;

RA(0):=10: RB(0):=15:

dataRA:=[seq([t,RA(t)],t=200..250)]:

dataRARB:=[seq([RA(t),RB(t)],t=200..250)]:

plot(dataRA);

plot(dataRARB,style=point);

The only item in these instructions that needs to be changed in producing
figure 9.18 is the value of the parameter b, which takes on the four values
b = −3.8, −4.0, −4.18 and −4.5.

9.5.2 Learning

The model is further extended by the authors to take account of learning. The
possibility of adaptation is taken into account by allowing the policy parameters
a and b to change. In establishing when to change the policy a simple rule is
chosen. Let f denote the frequency of choosing when to change policy (assumed
constant), e.g., every year or every quarter. Then defineM, the sum of the difference
in product quality standard between the last decision point and the present one,
assumed to be at time t, i.e.

M =
t∑

t−f+1

(
SAt − SBt

)
If M > 0 then the current policy is assumed satisfactory and no change in policy is
made. If, however, M < 0, then a change is considered necessary. Since a positive
value of M for firm A implies a negative value of M for firm B and vice versa, then
at any decision point one firm will always be altering its policy.

The authors consider two policy adaptations.

Proportional policy adaptation

A change amounting to a proportion of the existing policy, i.e.

as = αas−1 0 < α < 1
bs = βbs−1 0 < β < 1

Absolute policy adaptation

A change amounting to a fixed amount is applied to the existing policy; this amount
can be either positive or negative, i.e.

as = as−1 + α α 
= 0
bs = bs−1 + β β 
= 0
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In each policy adaptation s describes a particular stretch of f time periods. With the
proportional policy adaptation there is no change in policy stance, only the extent
of reinforcing or counteracting is diminished. However, absolute policy adaptation
allows for a reversal of policy stance, with reinforcing becoming counteracting or
vice versa. It also allows for the intensifying or constraining of an existing policy
stance.

The resource allocation computations now become

RA
t+1 = max

[
0,RA

t +
{
as

(
2mA

π

)
arctan

(
RA
t

)

− as

(
2mB

π

)
arctan

(
RB
t

)−as(n
A − nB)

}]

RB
t+1 = max

[
0,RB

t +
{
bs

(
2mB

π

)
arctan

(
RB
t

)

− bs

(
2mA

π

)
arctan

(
RA
t

)−bs(n
B − nA)

}]

For instance, if f is 10 then the first policy choice is when t = 9 (since period 0 is
considered as part of the decision period) and the policy is implemented at time
t = 10. The next decision is at time t = 19 and implemented at time t = 20, and so
on. The policy parameters a and b remain constant between one decision period
and the next.

Example 9.2 (Proportional adaptation)

Consider the following example of proportional adaptation given by the authors.
Let

mA = mB = 100 nA = nB = 40
α = 0.8 β = 0.9
a0 = 0.1 b0 = −5.0
f = 10

Figure 9.19 illustrates that with proportional adaptation, after an early period of
erratic behaviour, the system settles down to periodic behaviour, the amplitude of
which is reduced in stages by the change in policy and that this applies to both
firms in the industry.

Example 9.3 (Absolute adaptation)

In the example of absolute adaptation given by the authors with values

mA = mB = 100 nA = nB = 40
α = −0.05 β = 0.2
a0 = 0.13 b0 = −5.0
f = 10

the system exhibits some initial dampening, but then oscillations become more
pronounced and the time path of resource allocations to R&D more erratic, as
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Figure 9.19.

illustrated in figure 9.20. This arises because of the change in policy stance that
can occur with absolute adaptation.

The model allows for some interesting simulations concerning policy adaptation
beyond those considered here where decision-makers can engage in complex ‘what
if’ scenarios. In such considerations, however, it is most important to bear in mind
exactly when the decision is made and when the policy is implemented.

9.6 Schumpeterian dynamics

The model in the previous section was a type of model that partly explained the
difference between firms by emphasising that sometimes firms with the higher-
quality product survived. Survival, however, was dependent on adaptive behaviour.
The model is in the spirit of a Schumpeterian evolution theory. In this section
we shall consider a similar model that allows for two types of evolutionary pro-
cesses. The first is in terms of ‘survival of the fittest’. In other words, we con-
sider a firm’s ‘fitness’ relative to that of the industry. We shall refer to this as
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Table 9.5 Evolutionary model of oligopoly

π i
t = pit − cit π i

t = profit margin of firm i at time t

π t =
n∑

i=1
kitπ

i
t pit = product price of firm i at time t

ct =
n∑

i=1
kitc

i
t cit = unit cost of firm i at time t

k̂it+1 = α(π i
t − π t) α ≥ 0 cmt = minimum unit cost at time t

�cit+1 = −β(cit − cmt ) β ≥ 0 kit = market share of firm i at time t

k̂it+1 = kit+1−kit
kit

= percentage change in market share

π t = average industry profit at time t
α = speed of selection parameter
β = speed of imitation parameter

Figure 9.20.

the selection process. The second element is imitation, i.e., firms with inferior
technology can imitate firms with superior technology. Put another way, a firm
can reduce the efficiency gap through imitation. We shall refer to this as the im-
itation process. The model is captured in terms of the relationships set out in
table 9.5.
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Consider first the selection process. We assume that the percentage change in
market share of the ith firm is dependent on its relative fitness compared with the
industry average. We measure fitness in terms of profit margins. Hence

k̂it+1 = α
(
π i
t − π t

)
i = 1, . . . , n α ≥ 0(9.48)

We assume the speed of selection parameter, α, is the same for all firms. As in the
previous section, we measure the average profit as a weighted sum of the profits
of all firms in the industry, where the weights are the respective market shares, i.e.

π t =
n∑

i=1

kitπ
i
t

n∑
i=1

kit = 1 for all t(9.49)

where π i
t = pit − cit is the profit margin for the ith firm at time t. Notice that if

α = 0 market shares remain unaffected and so what equation (9.48) is attempting
to capture is the extent to which firms with above average profits increase their
market share while those with below average profits lose some of their market
share.

Next we allow for imitation. We assume this is captured by a reduction in a
firm’s unit costs. A firm’s unit costs can be reduced if it imitates the ‘best’ firm
in the industry. We assume that the ‘best’ firm is that with the lowest unit cost at
time t. We further assume that firms have full information on the technology of
their competitors and that imitation is costless. Imitation, then, is captured by the
relationship

�cit+1 = −β
(
cit − cmt

)
β ≥ 0(9.50)

where cmt is the minimum unit cost at time t and β measures the speed of imitation.
Of course, if β = 0 no imitation takes place.

Example 9.4 (Constant price, selection, no imitation)

The basic workings of the model are illustrated in the spreadsheet in figure 9.21.
Price for all three firms is set at 18; unit costs are initially set at 8, 10 and 12 for
firms 1, 2 and 3, respectively, which in this example remain constant for all time
periods. This leads to profit margins of 10 for firm 1, 8 for firm 2 and 6 for firm 3.
These too remain constant for all time periods. Firm 1 is the firm with the lowest
unit costs. Market shares are initially set at 1/3 for each firm. Subsequent market
shares are calculated using

kit+1 = kit
(
1 + k̂it

)
(9.51)

where k̂it+1 is given by formula (9.48). The final two columns compute average
profits and average unit costs for the industry.

Figure 9.22(a) shows the profile of market shares. Given no imitation, the process
is governed purely by selection. What we readily observe is ‘survival of the fittest’.
By about period 8, firms 2 and 3 have virtually zero market share and firm 1 is
a virtual monopolist. As can be seen in terms of figure 9.22(b), in this example
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Figure 9.21.

average unit costs for the industry tend to unit costs of the most efficient firm and
profits also tend to the level of profits of the most efficient firm.

Example 9.5 (Constant price, selection, imitation)

A different pattern emerges when imitation is allowed β > 0. Consider the fol-
lowing values

c1
0 = 8 k1

0 = 1/3 p = 18

c2
0 = 10 k2

0 = 1/3 α = 0.25

c3
0 = 12 k3

0 = 1/3 β = 0.5

Now firms 2 and 3 can prevent themselves being pushed out of the market by
imitating firm 1, the most efficient firm. Over time, the industry emerges with a
more-or-less identical product produced by each firm. All firms’ unit costs converge
on the unit costs of the most efficient firm, which implies that the average does
also, as shown in figure 9.23(b). Since price is constant, then it also follows that
profits of each firm converge to the same level, namely that of firm 1. This must
also be the case for average industry profits. As figure 9.23(a) illustrates, in the
early period firm 1, the most efficient firm, gains in market share at the expense
of firms 2 and 3. But as firms 2 and 3 begin to imitate the most efficient firm, and
so achieve a lowering of unit costs, market shares stabilise. After about period 8,
firm 1 has 66% of the market, firm 2 has 27% while firm 3 has 7%. The initial cost
advantage of firm 1 leads to an increase in market share and a permanent market
advantage. However, the process of imitation prevents firms 2 and 3 from being
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Figure 9.22.

driven out of the market, and eventual market shares reflect the initial differences
in cost advantage.

The model allows for other considerations, such as product differentiation. In this
instance brand loyalty may allow a firm to charge a higher price. The spreadsheet
shown in figure 9.21 readily allows for such a consideration. Models incorporating
any combinations of the following are possible.

Selection α > 0
Imitation β > 0
Product differentiation Product prices different

However, none of these models exhibits oscillatory behaviour, the type of behaviour
we encountered in the previous section involving R&D. This follows from the
fact that both speed parameters α and β are positive. The selection parameter
reinforces the advantage of the firm with higher than average profits and diminishes
consistently the market share of firms with below average profits. Where imitation
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Figure 9.23.

takes place, it is always leading to a lowering of unit costs as the firm imitates
the most efficient firm. Although to some extent offsetting the selection process,
it cannot lead to oscillatory behaviour.

Exercises

1. For the general linear demand model with constant marginal costs

p = A − BQ
Q = q1 + q2

TC1 = a1q1

TC2 = a2q2

Show that if a1 = a2 then q∗
1 = q∗

2 for the Cournot solution.
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2. For the n-firm oligopoly model with constant and equal marginal costs

p = A − BQ

Q =
n∑

i=1
qi

TCi = aqi i = 1 . . . n

Show
(i) q∗

i is the same for all i.
(ii) the reaction curves can be expressed

qi =
(A − a) − B

∑
j
=i

qj

2B

3. The text states that for linear demand and constant marginal costs the
duopoly model is dynamically stable. Set up a spreadsheet which allows
for the following parameter values: A,B, a1, and a2 for the model

p = A − BQ B > 0
Q = q1 + q2

TC1 = a1q1

TC2 = a2q2

Hence show
(i) equilibrium q∗

1 and q∗
2 are

q∗
1 = A − 2a1 + a2

3B

q∗
2 = A + a1 − 2a2

3B

(ii) that no matter what the initial value for (q10, q20), the system always
converges on the equilibrium.

4. For the duopoly model

p = 9 − Q
Q = q1 + q2

TC1 = a1q1

TC2 = a2q2

(i) Establish the equilibrium for q1 and q2 in terms of a1 and a2. Show
that if a1 < a2 then q∗

1 > q∗
2.

(ii) Let a1 = 3 and a2 = 5 and consider initial points
(a) firm 1 the monopolist
(b) firm 2 the monopolist

From which initial point does the system reach equilibrium sooner?
5. Consider the model set out in equation (9.5). Let the costs, however, be

TCi = 5qi, i = 1, 2, 3.
(i) Is the equilibrium point (q∗

1, q
∗
2, q

∗
3) closer to the origin?

(ii) Establish the reaction curves for this model.
(iii) Does this system also oscillate with constant amplitude?
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6. Consider the model

p = 9 − Q
Q = q1 + q2 + q3

TC1 = 3q1

TC2 = 2q2

TC3 = q3

(i) Establish the Cournot equilibrium.
(ii) Plot trajectories from initial points where each firm is a monopolist.

(iii) Under the assumption that each firm maximises its profits under the
conjectural variation that the other firms are holding their output
levels constant, solve the system’s difference equations.

7. Consider the model

p = 15 − 2Q
Q = q1 + q2 + q3

TC1 = 5q1

TC2 = 3q2

TC3 = 2q3

(i) Establish the Cournot solution.
(ii) Plot trajectories from initial points where each firm is a monopolist.

(iii) Under the assumption that each firm maximises its profits under the
conjectural variation that the other firms are holding their output
levels constant, solve the system’s difference equations.

(iv) Is the system dynamically stable?
8. Consider the following four models

(a) p = 20 − 3Q (b) p = 20 − 3Q
Q = q1 + q2 Q = q1 + q2 + q3

TC1 = 4q1 TC1 = 4q1

TC2 = 4q2 TC2 = 4q2

TC3 = 4q3

(c) p = 20 − 3Q (d) p = 20 − 3Q
Q = q1 + q2 Q = q1 + q2 + q3

TC1 = 4q2
1 TC1 = 4q2

1

TC2 = 4q2
2 TC2 = 4q2

2

TC3 = 4q2
3

(i) Establish the Cournot solution for each.
(ii) What, if anything do you observe about the dynamic behaviour in

comparing n = 2 as against n = 3 for constant MC? (Take initial
points from the monopoly position in each case.)

(iii) What, if anything, do you observe about the dynamic behaviour in
comparing model (a) with model (b) and model (c) with model (d)?
(Take initial points from the monopoly position in each case.)
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9. Consider the continuous model

p(t) = 20 − 3Q(t)
Q(t) = q1(t) + q2(t)
TC1(t) = 4q1(t)
TC2(t) = 4q2(t)
q̇1(t) = 0.2(x1(t) − q1(t))
q̇2(t) = 0.2(x2(t) − q2(t))

where xi(t) i = 1, 2 is the desired output level that maximises profits under
the assumption that the other firm does not alter its output level.

(i) Find the Cournot solution.
(ii) Is the system dynamically stable?

(iii) Construct a phase diagram which includes the direction field and
trajectories for initial conditions:
(a) firm 1 a monopolist
(b) firm 2 a monopolist
(c) (0,0)

10. Construct a phase diagram with direction field for the continuous model

p(t) = 20 − 5Q(t)

Q(t) = q1(t) + q2(t)

TC1(t) = 4q2
1(t)

TC2(t) = 4q2
2(t)

q̇1(t) = 0.2(x1(t) − q1(t))

q̇2(t) = 0.2(x2(t) − q2(t))

along the lines of sub-section 9.4.2. Is it true for this model that all paths
converge on the equilibrium regardless of the initial value?

11. Re-do figure 9.18 but plotting the trajectories {kAt , kBt } and show that the
same pattern emerges.

12. Show the path RA
t for t = 200 . . . 250 for the same values given in figure

9.18(d). Show that the series is sensitive to initial conditions by setting
RA

0 = 10.1 and show this series for t = 200 . . . 250 on the same graph.
13. Re-do figure 9.18 under the following alternative assumptions. Treat each

one separately
(a) mA = 100 mB = 110
(b) nA = 40 nB = 50
What do you conclude?

14. Consider the example of the proportional adaptation model in sub-section
9.5.2 but with f = 20. What do you conclude about increasing the length
of the decision span?

15. Show that the two adaptation policies in sub-section 9.5.2 are special
cases of the following more general adaptation policy

as = α0 + α1as−1

bs = β0 + β1bs−1
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Derive the paths for RA
t and RB

t given the following adaptive policies on
the part of firms A and B

as = −0.05 + 0.8as−1

bs = +0.2 + 0.9bs−1

given (a0, b0) = (0.13, −5.0),
(
RA

0 ,RB
0

) = (10, 5) and f = 10.

Additional reading

Friedman (1983), Gandolfo (1997), Gehrig (1981), Henderson and Quandt (1971),
McMannus (1962), Okuguchi (1970, 1976), Okuguchi and Szidarovsky (1988,
1990), Parker, Whitby and Tobias (2000) and Theocharis (1960).



CHAPTER 10

Closed economy dynamics

The IS-LM model is still one of the main models with which to introduce macro-
economics.1 In its static form it comprises an IS curve, which denotes real income
and interest rate combinations which lead to equilibrium in the goods market, and
an LM curve, which denotes real income and interest rate combinations which
lead to equilibrium in the money market. Overall equilibrium is established where
the IS curve cuts the LM curve. It is then common to consider comparative stat-
ics, which involves changing one or more exogenous variables or changing some
parameter of the model. Very rarely do we observe any detailed analysis of what
happens out of equilibrium, and yet this is what we are more likely to be observing
around us. In this chapter we will reconsider this model from a dynamic point of
view, beginning with a simple linear version and extending the analysis to more
complex formulations and nonlinear specifications.

In the first two sections we consider the goods market and then the goods
market along with the money market using simple discrete dynamic models of
the macroeconomy. In these formulations we introduce dynamics through the
goods market equilibrium condition. Rather than assume aggregate income equals
aggregate expenditure in the same period, we make the assumption that income
in period t is equal to total expenditure in the previous period. On the other hand,
we assume that the money market clears in the same time period, i.e., the demand
and supply of real money balances in any time period t are equal.

Next we consider continuous versions of the IS-LM model introducing differ-
ential speeds of adjustment in the goods market and the money market. Similar
to the discrete models, we assume that the goods market is slower to adjust to
equilibrium than the money market. In the case of the money market we consider
instantaneous adjustment and noninstantaneous adjustment. In section 10.3 we
specifically assume real investment is negatively related to the rate of interest only.
However, in section 10.4 we allow investment to be positively related to the level
of real income. This is found to be significant for the issue of stability, and it is
this topic that we pay attention to in section 10.4.

All the models in sections 10.1–10.4 are linear. In section 10.5 we turn to a
nonlinear IS-LM model. Even here, however, we consider the dynamics of the
model only after using a linear approximation. Finally, in section 10.6, we outline
the Tobin–Blanchard model. The IS-LM model determines income and interest
rates and has nothing to say about the impact the behaviour of the stock market has

1 We consider a dynamic IS-LM-BP model in chapter 12.
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on these. Using the q-theory of investment, the Tobin–Blanchard model provides
some alternative dynamic behaviour.

10.1 Goods market dynamics

By way of introduction to lags in the IS-LM model, consider the simplest of goods
market models in discrete form, with investment constant, i.e., It = I for all t

Ct = a + bYt

Et = Ct + It

Yt = Et

(10.1)

where

C = consumption
Y = income
E = total expenditure
I = investment

This is a static model with equilibrium

Y∗ = a + I

1 − b
(10.2)

Two generalisations are possible which give this model some dynamic character.
One is to assume consumption is related to lagged income. The model is, then

Ct = a + bYt−1

Et = Ct + I

Yt = Et

(10.3)

which immediately gives the difference equation

Yt = (a + I) + bYt−1 (10.4)

An alternative formulation is to assume a lag between production, Yt, and ex-
penditure Et. Suppose that production in time t is related to overall expenditure in
time t − 1. Then we have the model

Ct = a + bYt

Et = Ct + I

Yt = Et−1

(10.5)

This also gives rise to the same difference equation, namely

Yt = (a + I) + bYt−1 (10.6)

The equilibrium level of income remains what it was in the static model. Since
Yt = Yt−1 = Y∗ for all t in equilibrium, then Y∗ = (a + I) + bY∗ or

Y∗ = a + I

1 − b
(10.7)
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However, given some initial level of income we can plot the path of income. More
explicitly, we can solve this model as follows

Yt = (a + I) + bYt−1

Y∗ = (a + I) + bY∗

Yt − Y∗ = b(Yt−1 − Y∗)

Defining yt = Yt − Y∗, then

yt = byt−1

with solution

yt = bty0

or

Yt = a + I

1 − b
+ bt

(
Y0 − a + I

1 − b

)
(10.8)

So long as 0 < b < 1, then income will converge on the equilibrium value.
If we begin in equilibrium and shock demand, say with a rise in investment to

I1 = I0 + �I, then

Yt = a + I1
1 − b

+ bt
(
Y0 − a + I1

1 − b

)
(10.9)

and income converges on the new equilibrium level, Y∗
1 = (a + I1)/(1 − b). Given

this path of income we immediately have the path for consumption, namely

Ct = a + bI1
1 − b

+ bt+1

(
Y0 − a + I1

1 − b

)
(10.10)

Example 10.1

The situation is illustrated in table 10.1. The table is based on the relationships

Ct = 110 + 0.75Yt

I = 300

Et = Ct + I

Yt = Et−1

Equilibrium income is initially £1640 million. Investment rises by £20 million,
resulting in a new equilibrium level of income of £1720 million. However, income
takes time to converge on this level of income, as shown in table 10.1.

The model is illustrative of the influence of lags. It also shows the dynamic
multiplier in operation. The income multiplier with respect to a change in
investment is

k = �Y

�I
(10.11)

which in the present example is 4. This is the multiplier from one equilibrium
to the next. But with income changing we define �Yt = Yt − Y∗

0 , the deviation
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Table 10.1 Dynamic multiplier

t Yt kt

0 1640
1 1660 1
2 1675 1.75
3 1686.25 2.31
4 1694.69 2.73
5 1701.02 3.05
6 1705.76 3.29
7 1709.32 3.47
8 1711.99 3.60
9 1713.99 3.70

10 1715.50 3.77
11 1716.62 3.83
12 1717.47 3.87
13 1718.10 3.90
14 1718.58 3.93
15 1718.93 3.95
16 1719.20 3.96
17 1719.40 3.97
18 1719.55 3.98
19 1719.66 3.98
20 1719.75 3.99
...

...
...

∞ 1720 4

of income from the initial equilibrium level, and so we have a period multiplier
defined by:

kt = �Yt
�I

What is clearly revealed from table 10.1 is that kt → k as t → ∞. This is under-
standable since Yt → Y∗

1 as t → ∞.
In this naı̈ve model income converges steadily on the new equilibrium level

of income. So long as 0 < b < 1 this must be so. Furthermore, income cannot
oscillate. In section 3.10, however, we considered the multiplier–accelerator model.
In its discrete form this is

Ct = a + bYt−1

It = I0 + v(Yt−1 − Yt−2)

Et = Ct + It

Yt = Et

(10.12)

Then

Yt = a + bYt−1 + I0 + vYt−1 − vYt−2

i.e.

Yt − (b + v)Yt−1 + vYt−2 = a + I0 (10.13)
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with equilibrium income of

Y∗ = a + I0
1 − b

while the solution to (10.13) is

Yt = Y∗ + c1r
t + c2s

t

where

r = (b + v) +
√

(b + v)2 − 4v

2
, s = (b + v) −

√
(b + v)2 − 4v

2

Example 10.2

Ct = 110 + 0.75Yt−1

It = 300 + 1.5(Yt−1 − Yt−2)

Et = Ct + It

Yt = Et

then

Yt − 2.25Yt−1 + 1.5Yt−2 = 410(10.14)

and Y∗ = 1640. The roots to

x2 − 2.25x + 1.5 = 0

are complex conjugate, with r = 1.125 + 0.484123i and s = 1.125 − 0.484123i,
and so income will oscillate. Furthermore, R =

√
α2 + β2 = 1.22474 > 1 and so

income will diverge from the new equilibrium. This is shown in figure 10.1. The
initial level of income is the original equilibrium level of £1,640. In period 1
autonomous investment is raised by £20, which is maintained for all periods
thereafter, so income in period 1 is £1,660. Income in period 3 and beyond is
then specified according to the recursive equation (10.14). However, as figure 10.1
reveals, income never reaches the new equilibrium of £1,720. Of course, this is
not the only possibility and the resulting path of income depends very much on
whether

√
(b + v)2 − 4v is real or complex.

Figure 10.1.
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10.2 Goods and money market dynamics2

The previous section considered only the goods market, and even then only in
simple terms. The essence of the IS-LM model is the interaction between the
goods market and the money market. This interaction is even more significant
when there are lags in the system. Again we illustrate this by introducing a lag
into the goods market of the form Yt = Et−1. On the other hand, we assume the
money market adjusts in the same time period t, so that the demand for real money
balances in time t is equal to the supply of real money balances in time t. This is
a reasonable assumption. Algebraically, our model is

Goods market

ct = a + bydt 0 < b < 1

ydt = yt − taxt

taxt = t0 + t1yt 0 < t1 < 1

it = i0 − hrt h > 0

gt = g

et = ct + it + gt

Money market

md
t = m0 + kyt − urt k > 0, u > 0

ms
t = m

md
t = ms

t

where
c = real consumption

y = real income

yd = real disposable income

tax = real taxes

i = real investment

r = the nominal rate of interest

g = real government spending

e = real total expenditure

md = the demand for real money

balances

ms = the supply of real money

balances

(10.15)

On substitution, we arrive at the difference equation

yt = (a − bt0 + i0 + g) − b

(
m0 − m

u

)
+
[
b(1 − t1) −

(
kh

u

)]
yt−1 (10.16)

Or more simply

yt = A + Byt−1

where

A = a − bt0 + i0 + g − h

(
m0 − m

u

)

B = b(1 − t1) −
(
kh

u

)

setting yt = yt−1 = y∗ the equilibrium level of income is found to be

y∗ =
(a − bt0 + i0 + g) − h

(
m0 − m

u

)

1 − b(1 − t1) +
(
kh

u

) (10.17)

2 The model in this section is based on Teigen (1978, introduction to chapter 1).
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Define xt = yt − y∗, then

xt = Bxt−1

with solution

xt = Btx0

or

yt = y∗ + Bt(y0 − y∗)

The stability of the equilibrium now depends on whether B < 1 or B > 1. If
B < 1 then this amounts to

−
[

1 − b(1 − t1)

h

]
<

k

u

But why express the condition in this way? The equation for the IS curve is the
solution for goods market equilibrium. This takes the form

yt = a − bt0 + i0 + g + b(1 − t1)yt − hrt

or

rt = a − bt0 + i0 + g

h
− [1 − b(1 − t1)]yt

h
The LM curve is the solution for the money market. This takes the form

rt = m0 − m

u
+
(
k

u

)
yt

Hence, the stability condition

B < 1 or − [1 − b(1 − t1)]

h
<

k

u
amounts to the slope of the IS curve being less steep than the slope of the LM
curve. This is definitely satisfied for the usual case where the IS curve is negatively
sloped and the LM curve is positively sloped. With 0 < b < 1 and 0 < t1 < 1, then
0 < 1 − b(1 − t1) < 1. With h > 0 then −[1 − b(1 − t1)]/h < 0 while k/u > 0.
A shift, say, in the IS curve to the right will lead to a rise in income over time,
converging on the new equilibrium level.

Example 10.3

This is illustrated in table 10.2, which is based on the following numerical model.

ct = 110 + 0.75ydt
ydt = yt − taxt

taxt = −80 + 0.2yt

it = 320 − 4rt

gt = 330 for all t

et = ct + it + gt

yt = et−1

md
t = 20 + 0.25yt − 10rt
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Table 10.2 Dynamic impact of a rise in government spending by 20 million

t yt taxt ydt ct rt it ms
t bdt st kt

0 2000.00 320.00 1680.00 1370.00 5.00 300.00 470.00 10.00 310.00 0.00
1 2020.00 324.00 1696.00 1382.00 5.50 298.00 470.00 26.00 314.00 1.00
2 2030.00 326.00 1704.00 1388.00 5.75 297.00 470.00 24.00 316.00 1.50
3 2035.00 327.00 1708.00 1391.00 5.88 296.50 470.00 23.00 317.00 1.75
4 2037.50 327.50 1710.00 1392.50 5.94 296.25 470.00 22.50 317.50 1.88
5 2039.75 327.75 1711.00 1393.25 5.97 296.13 470.00 22.25 317.75 1.94
6 2039.38 327.88 1711.50 1393.63 5.98 296.06 470.00 22.13 317.88 1.97
7 2039.69 327.94 1711.75 1393.81 5.99 296.03 470.00 22.06 317.94 1.98
8 2039.84 327.97 1711.88 1393.91 6.00 296.02 470.00 22.03 317.97 1.99
9 2039.92 327.98 1711.94 1393.95 6.00 296.01 470.00 22.02 317.98 2.00

10 2039.96 327.99 1711.97 1393.98 6.00 296.00 470.00 22.01 317.99 2.00
11 2039.98 328.00 1711.98 1393.99 6.00 296.00 470.00 22.00 318.00 2.00
12 2039.99 328.00 1711.99 1393.99 6.00 296.00 470.00 22.00 318.00 2.00
13 2040.00 328.00 1712.00 1394.00 6.00 296.00 470.00 22.00 318.00 2.00
14 2040.00 328.00 1712.00 1394.00 6.00 296.00 470.00 22.00 318.00 2.00
15 2040.00 328.00 1712.00 1394.00 6.00 296.00 470.00 22.00 318.00 2.00

ms
t = 470

md
t = ms

t

Table 10.2 shows income gradually rising from the initial equilibrium level
£2,000 million to the new equilibrium level of £2,040 million arising from a
sustained increase in government spending of £20 million, occurring in period 1.
As income rises the demand for real money balances increases, leading to a rise in
the rate of interest. The rate of interest gradually rises from 5% to 6%. The rise in the
rate of interest leads to a gradual fall in investment. Table 10.2 also shows the path
of other endogenous variables – such as taxes, disposable income, consumption,
etc. It also illustrates the path of the budget deficit, denoted bdt = gt − taxt, along
with the dynamic multiplier in the final column.

10.3 IS-LM continuous model: version 1

We shall begin with the simplest formulation of the model. Real expenditure is the
sum of consumer expenditure, investment expenditure and government expenditure
(where we assume the economy is closed). Consumers’ expenditure is related to
real disposable income, investment expenditure is negatively related to the rate of
interest, and government expenditure is assumed to be exogenous. We therefore
postulate a very simple linear expenditure function

e(t) = a + b(1 − t1)y(t) − hr(t)

a > 0, 0 < b < 1, 0 < t1 < 1, h > 0
(10.18)

where

e = real expenditure

a = autonomous expenditure

b = marginal propensity to consume

t1 = marginal rate of tax
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y = real income

h = coefficient of investment in response to r

r = nominal interest rate

The demand for real money balances is assumed to be positively related to real
income and negatively related to the nominal interest rate

md(t) = ky(t) − ur(t) k, u > 0(10.19)

The nominal money supply is assumed exogenous at Ms = M0 and the price level
is assumed constant. Hence, real money balances are exogenous at m0 = M0/P.

It is now necessary to be more precise on the adjustment assumptions in each of
the markets. We assume that in the goods market, income adjusts according to the
excess demand in that market and that interest rates adjust according to the excess
demand in the money market, i.e.

ẏ = y′(t) = α(e(t) − y(t)) α > 0

ṙ = r′(t) = β(md(t) − m0) β > 0
(10.20)

These differential equations can be expressed explicitly in terms of y and r, where
we now assume these variables are continuous functions of time, and that we drop
the time variable for convenience

ẏ = α[b(1 − t1) − 1]y − αhr + αa

ṙ = βky − βur − βm0
(10.21)

The equilibrium lines in the (y,r)-phase plane are established simply by setting
ẏ = 0 and ṙ = 0 respectively. For ẏ = 0 we derive the equilibrium line

−α[1 − b(1 − t1)] y − αhr + αa = 0

i.e. r = a − [1 − b(1 − t1)]y

h

which is no more than the IS curve. This equilibrium line has a positive intercept
(a/h) and a negative slope (−(1 − b(1 − t1))/h). Similarly, for ṙ = 0 we derive the
equilibrium line which is no more than the LM curve. This equilibrium line has a
negative intercept −m0/u and a positive slope k/u.

The model has just one fixed point for which ẏ = 0 and ṙ = 0. This is the point

(y∗, r∗) =
(

a + (h/u)m0

1 − b(1 − t1) + (kh/u)
,
−(m0/u)(1 − b(1 − t1)) + (k/u)a

1 − b(1 − t1) + (kh/u)

)
(10.22)

and is shown by point E0 in figure 10.1.
More importantly, we need to consider the dynamic forces in operation when

each of the markets are not in equilibrium. First consider the goods market. For
points to the right of the IS curve, as drawn in figure 10.2, we have

r >
a − [1 − b(1 − t1)]y

h
0 > a + b(1 − t1)y − hr − y

implying ẏ < 0. Hence, to the right of the IS curve income is falling. By the same
reasoning it is readily established that for points to the left of the IS curve income
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Figure 10.2.

is rising. Considering next the money market, for points to the right of the LM
curve

r >
ky − m0

u
0 > ky − ur − m0

implying ṙ > 0, and so interest rates are rising. Similarly, to the left of the LM
curve it is readily established that interest rates are falling. The implied vectors of
force in the four quadrants are illustrated in figure 10.2, which clearly indicate a
counter-clockwise movement.

Suppose the economy is in all-round equilibrium, shown by point E0 in
figure 10.3. Now consider the result of a fall in the nominal money supply. This
will shift the money market equilibrium line to the left. The new equilibrium will
be at point E1. But what trajectory will the economy take in getting from E0 to E1?
Four possible paths are drawn, labelled T1, T2, T3 and T4, respectively.

Trajectory T1 makes a very extreme assumption on the part of adjustment in the
money market and the goods market. It assumes that the money market adjusts
instantaneously, with interest rates adjusting immediately to preserve equilibrium
in the money market. With such immediate adjustment, then in the first instance
the economy must move from E0 vertically up to point A. This is because income
has not yet had a chance to change, and is still at the level y0. With the sharp
rise in interest rates, investment will fall, and through the multiplier impact on
income, income will fall. As income falls, the demand for money declines, and
so too does the rate of interest. The interest rate will fall always in such a manner
that equilibrium is preserved in the money market. This means that the adjustment
must take place along the new LM curve, as shown by trajectory T1. Under this
assumption of instantaneous adjustment in the money market, the interest rate
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Figure 10.3.
A monetary
contraction

Note: Vector forces
are with respect to

E1 and not E0

overshoots its new equilibrium value and then settles down at the new equilibrium
rate. Real income, on the other hand, falls continually until the new equilibrium
level is reached.

Trajectory T2, on the other hand, indicates that both markets adjust imperfectly
in such a manner that the economy gradually moves from E0 to E1, with interest
rates rising gradually until they reach the new level of r1, and income falling
gradually until it reaches its new level of y1. If the economy conforms to this
trajectory, then no overshooting occurs. But our analysis in part I indicates that
there is no reason to assume that this is the only possible trajectory – given the
vector of forces present. For instance, trajectory T3 shows a sharper rise in interest
rates than in trajectory T2, and overshooting of interest rates and income, with a
resulting counter-clockwise spiral towards the new equilibrium E1. If we assume
that the money market, although not adjusting instantaneously, is very quick to
adjust, and that the goods market is also adjusting quickly, then trajectory T3 is
more likely. This is an important observation. A spiralling trajectory to the new
equilibrium (trajectory T3) is more likely if both markets have quick adjustment
speeds, and consequently the more likely overshooting will be observed in both
endogenous variables y and r. Even so, a counter-clockwise spiral is not the most
likely outcome; it is more likely to be trajectory T4. This is because, in general, the
money market is relatively much quicker to adjust than the goods market and the
adjustment path will be contained within the triangle E0AE1, being drawn towards
trajectory T1.

A similar analysis holds for a monetary expansion, shown in figure 10.4, where
the economy is initially at equilibrium point E0. Under instantaneous adjustment
in the money market, the trajectory is T1. Interest rates fall to point A on the new
LM curve. The sharp fall in interest rates stimulates investment, which, through the
multiplier, stimulates the level of income. As income rises the demand for money
rises and so too do interest rates, but in such a manner that the money market clears
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Figure 10.4.
A monetary
expansion
Note: Vector forces
are with respect to
E1 and not E0

continually. Hence the economy moves along the new LM curve until equilibrium
E1 is reached. Once again, interest rates overshoot their new equilibrium level, but
the level of income adjusts gradually until its new equilibrium level is achieved.
If both markets show a fair degree of adjustment, then path T2 will be followed.
However, this would require the goods market to adjust quite quickly. In this
instance, interest rates fall gradually until the new level of r1 is reached, and income
rises gradually until the new level of y1 is reached. There is no overshooting either
of the interest rate or of income. If both the money market and the goods market are
quick to adjust, then the economy is more likely to follow the trajectory illustrated
by T3 in figure 10.4. In other words, a spiral path to the new equilibrium, moving in
a counter-clockwise direction, and such that both the rate of interest and the level
of income overshoot their equilibrium values. However, with the dominance of
adjustment in the money market, a counter-clockwise movement will be observed
but it is not likely to be a spiral path. The most likely trajectory is T4.

It is apparent from this discussion that the speed of adjustment is very much
to do with the values of the reaction coefficients α and β in the dynamic sys-
tem. The higher the value of the coefficient, the quicker the market responds to a
disequilibrium. To some extent, it is the relative values of these coefficients that
will determine which trajectory the economy will take. To clarify this point, let us
consider a numerical example.

Example 10.4

Since throughout the price level is constant, we shall assume that this has a value
of unity. The assumed parameter values and the initial level of the money stock are

a = 50 k = 0.25

b = 0.75 m0 = 8
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Figure 10.5.

t1 = 0.25 u = 0.5

h = 1.525

The economy’s equilibrium is (y0, r0) = (62, 15), shown by point E0 in
figure 10.5(a). A fall in the real money stock tom1 = 5 leads to the new equilibrium
point3 (y1, r1) = (54, 17) and shown by point E1. The resulting differential

3 More exactly (y1, r1) = (54.375, 17.1875).
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equation system, with unspecified values for α and β, is

ẏ = −0.4375αy − 1.525αr + 50α

ṙ = 0.25βy − 0.5βr − 5β

The trajectory the economy takes to the new equilibrium will depend very much
on the values of α and β. Consider three possible combinations, leading to three
possible trajectories

T1: α = 0.05 T2 : α = 0.1 T3 : α = 0.5

β = 0.8 β = 0.8 β = 0.8

If the money market is quicker to adjust than the goods market, as is the most
likely situation, then typical trajectories are T1 and T2 in figure 10.5(a). In these
cases the economy will exhibit overshooting of the interest rate, first rising above
the equilibrium level and then falling, with the new equilibrium interest rate higher
than initially, as shown in figure 10.5(a). On the other hand, there will be a gradual
decrease in the level of income to the new lower equilibrium level. A counter-
clockwise spiral pattern, as shown by trajectory T3, will occur only if both the
money market and the goods market are quick to adjust, as illustrated in figure
10.5(c). Although a counter-clockwise spiral is possible, therefore, it is not the most
likely outcome of this dynamic system because the goods market is not likely to
be quick to adjust.

10.4 Trajectories with Mathematica, Maple and Excel

Figure 10.5(a) set out three trajectories employed in example 10.4. In this and
later chapters we shall be producing a number of trajectories for both continuous
and discrete systems of equations. We shall therefore take a digression and out-
line exactly how to do this with three different software packages: Mathematica,
Maple and (for discrete systems) Excel.4 Figure 10.5 will be used throughout as
an example.

10.4.1 Mathematica

To produce trajectories and other plots withMathematica, two commands of impor-
tance are used, namely the NDSolve command and the ParametricPlot command.
The first command is used to obtain a numerical solution to the differential equa-
tion system, which it does by producing an InterpolatingFunction. The second
command is then used to plot the values of the InterpolatingFunction.

The input instructions are as follows:

sol1=NDSolve[ y’[t]==2.5-0.07625r[t]-0.021875y[t],

r’[t]==-4.0-0.4r[t]+0.2y[t],

y[0]==62,r[0]==15}, {y,r},{t,0,50}]

tr1=ParametricPlot[ {y[t],r[t]} /. sol1, {t,0,50},

PlotPoints->200];

4 See Shone (2001) for a demonstration of how to produce trajectories on a spreadsheet for continuous
systems of two equations employing Euler’s approximation.
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sol2=NDSolve[ y’[t]==5-0.1525r[t]-0.04375y[t],

r’[t]==-4.0-0.4r[t]+0.2y[t],

y[0]==62,r[0]==15}, {y,r},{t,0,50}]

tr2=ParametricPlot[ {y[t],r[t]} /. sol2, {t,0,50},

PlotPoints->200];

sol3=NDSolve[ y’[t]==25-0.7625r[t]-0.21875y[t],

r’[t]==-4.0-0.4r[t]+0.2y[t],

y[0]==62,r[0]==15}, {y,r},{t,0,50}]

tr3=ParametricPlot[ {y[t],r[t]} /. sol3, {t,0,50},

PlotPoints->200];

trajectories=Show[tr1,tr2,tr3];

pathy1=Plot[ y[t] /.sol1, {t,0,50}, PlotPoints->200];

pathy2=Plot[ y[t] /.sol2, {t,0,50}, PlotPoints->200];

pathy3=Plot[ y[t] /.sol3, {t,0,50}, PlotPoints->200];

pathy=Show[pathy1,pathy2,pathy3];

pathr1=Plot[ r[t] /.sol1, {t,0,50}, PlotPoints->200];

pathr2=Plot[ r[t] /.sol2, {t,0,50}, PlotPoints->200];

pathy3=Plot[ r[t] /.sol3, {t,0,50}, PlotPoints->200];

pathr=Show[pathr1,pathr2,pathr3];

Note:

1. We use the NDSolve rather than DSolve because we are deriving a nu-
merical solution.

2. The simultaneous equations include the two initial values for y and r,
which in the present example denotes the initial equilibrium before a
disturbance.

3. The parameter values include the fall in the money supply to m0 = 5 and
we are deriving trajectory T1, so α = 0.05 and β = 0.8.

4. ParametricPlot is a built in command in Mathematica v2.0 and higher,
and so can be employed without recourse to other subroutines.

5. There is no comma after{y[t],r[t]}because these coordinates are specified
for the solution values derived earlier. Thus, the qualifier ‘/. sol1’ instructs
the programme to plot the coordinates using each value derived from the
output of sol1.

6. Interim displays can be suppressed by including the option Display
Function->Identity in each and then in the Show command include the
option DisplayFunction-> $DisplayFunction. For instance trajectory 1
can be written

tr1=ParametricPlot[ {y[t],r[t]} /. sol1, {t,0,50},

PlotPoints->200, DisplayFunction->Identity]

and trajectories can be written

trajectories=Show[tr1,tr2,tr3,

DisplayFunction->$DisplayFunction];
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10.4.2 Maple

In some respects it is easier to produce trajectories in Maple, but more involved
to produce the values for plotting y(t) and r(t). The reason for this is because
we can use Maple’s phaseportrait command to produce the trajectories. This
implicitly uses the numerical solution for the differential equations. Thus, the
three trajectories and their combined display for figure 10.5 is as follows:

with(DEtools):

with(plots):

tr1:=phaseportrait(

[D(y)(t)=2.5-0.07625*r(t)-0.021875*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=black,

arrows=none,

thickness=2):

tr2:=phaseportrait(

[D(y)(t)=5-0.1525*r(t)-0.04375*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=red,

arrows=none,

thickness=2):

tr3:=phaseportrait(

[D(y)(t)=25-0.7625*r(t)-0.21875*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=blue,

arrows=none,

thickness=2):

display(tr1,tr2,tr3);

Notes:

1. It is necessary to load the DEtools and plots subroutines first.
2. Using phaseportrait implicitly uses a numerical solution to the differ-

ential equations.
3. A small stepsize, here 0.05, produces a smoother plot.
4. Having arrows set at none means the direction field is not included.
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Figures 10.5(b) and 10.5(c) can be produced with a similar set of instructions,
except now we use DEplot with the option ‘scene’. The instructions are:

pathy1=DEplot(

[D(y)(t)=2.5-0.07625*r(t)-0.021875*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=black,

arrows=none,

thickness=2,

scene=[t,y]):

pathy2=DEplot(

[D(y)(t)=5-0.1525*r(t)-0.04375*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=black,

arrows=none,

thickness=2,

scene=[y,t]):

pathy3=DEplot(

[D(y)(t)=25-0.7625*r(t)-0.21875*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=blue,

arrows=none,

thickness=2,

scene=[t,y]):

display(pathy1,pathy2,pathy3);

pathr1=DEplot(

[D(y)(t)=2.5-0.07625*r(t)-0.021875*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=black,

arrows=none,

thickness=2,

scene=[t,r]):

pathr2=DEplot(

[D(y)(t)=5-0.1525*r(t)-0.04375*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,
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[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=black,

arrows=none,

thickness=2,

scene=[r,t]):

pathr3=DEplot(

[D(y)(t)=25-0.7625*r(t)-0.21875*y(t),

D(r)(t)=-4-0.4*r(t)+0.2*y(t)],

[y(t),r(t)], t=0..50,

[[y(0)=62,r(0)=15]],

stepsize=.05,

linecolour=blue,

arrows=none,

thickness=2,

scene=[t,r]):

display(pathr1,pathr2,pathr3);

10.4.3 Excel

Discrete trajectories can also be derived using Excel, although there are some
limitations. Consider a discrete variant of example 10.4.

yt+1 − yt = −0.4375αyt − 1.525αrt + 50α

rt+1 − rt = 0.25βyt − 0.5βrt − 5β

or the recursive form

yt+1 = (1 − 0.4375α)yt − 1.525αrt + 50α

rt+1 = 0.25βyt + (1 − 0.5β)rt − 5β

This numerical example is set out in the spreadsheet shown in figure 10.6. The
spreadsheet shows the data computations which can be used to produce a given
trajectory or a multiple time plot of y(t) or r(t).

The initial values are the equilibrium values y∗ = 62 and r∗ = 15. Cells B13
and C13 write out the formulas using both absolute addresses for the parameters
α and β and relative addresses for y(0) and r(0). These cells are then copied to the
clipboard and pasted down up to t = 50. A similar procedure is done for columns
F and G along with columns J and K. Unfortunately spreadsheets cannot plot more
than one trajectory on the same graph. Selecting cells B12 : C62 and invoking the
chart wizard and selecting the x-y plot option produces a plot of trajectory T1.
Similarly, selecting cells F12 : G62 produces trajectory T2 and selecting J12 : K62
produces trajectory T3.

To produce the discrete equivalent of figure 10.5(b) first select cells A12 : B62
and while holding down the Ctrl-key, select cells F12 : F62 and, while continuing
to hold down the Ctrl-key, select cells J12 : J62. Invoking the chart wizard and
selecting the x-y plot option produces figure 10.5(b). In the same manner figure
10.5(c) can be produced for a multiple plot of r(t) against t.
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Figure 10.6.

The instructions provided in this section allow the reproduction of all two-
dimensional trajectories provided in this book. They can be used to produce tra-
jectories for any similar set of differential or difference equations.

10.5 Some important propositions

Similar results can be derived for an increase in the money supply (see exercise 7).
The most likely trajectory to the new equilibrium point is for the economy to exhibit
an overshoot with regard to its interest rate response (falling sharply and then rising
somewhat), while income will gradually rise to its new higher equilibrium level.

Does the economy exhibit the same type of dynamic behaviour for a shock to
the goods market, i.e., a shift in the IS curve? The situation is shown in figures 10.7
and 10.8. Consider first a fiscal expansion (a rising from 50 to 55) which shifts
the IS curve from IS0 to IS1, as illustrated in figure 10.7. The economy moves
from equilibrium point E0 to equilibrium point E1. But what dynamic path does
it take to the new equilibrium? If we again assume that the money market adjusts
instantaneously, then there will be a gradual rise in income as the multiplier impact
of the expansion moves through the economy. The increase in income will raise
the demand for money and hence raise the rate of interest. This rise in interest rate
will be such as to maintain equilibrium in the money market. Hence, the economy
will move along the LM curve until the new equilibrium is reached. There is no
overshooting either of income or of interest rates. With less than instantaneous
adjustment in the money market (β = 0.8), and a sluggish adjustment in the goods
market (α = 0.1), then the economy will follow trajectory T2, with interest rates
rising gradually until the new level r1 is reached, and income adjusting gradually
until the new level of y1 is reached. Again the economy exhibits no overshooting.
Only in the unlikely event that the goods market adjusts very rapidly (e.g. α = 0.5)
along with the money market will the economy exhibit a spiral path following a
counter-clockwise movement to the new equilibrium, trajectory T3, and with the
economy exhibiting overshooting behaviour (see exercise 9).

In the case of a fiscal contraction (a falling from 50 to 45), illustrated in
figure 10.8, the economy will follow trajectory T1 with instantaneous adjustment
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Figure 10.7.

Figure 10.8.

in the money market, with interest rates and income declining steadily until the
new equilibrium is reached. Similarly, if the money market is quick to adjust (but
not instantaneous, e.g., β = 0.8) and the goods market is sluggish in its adjustment
(α = 0.1), then path T2 will be followed. Only in the unlikely event that the goods
market is very quick to adjust (e.g. α = 0.5) as well as the money market (e.g.
β = 0.8) will a spiral path like T3 be followed (see exercise 10).

We can make a number of important propositions about the dynamic behaviour
of (closed) economies concerning money market shocks and goods market shocks.

PROPOSITION 1
If the money market is quick to adjust and the goods market is sluggish in
its adjustment, then a monetary shock will most likely lead to a counter-
clockwise movement with the interest rate overshooting its equilibrium
value and income gradually changing to its new equilibrium level.

COROLLARY 1 A counter-clockwise spiral to a new equilibrium aris-
ing from a monetary shock is only likely to occur in the event that both
the money market and goods market are quick to adjust to disequilibrium
states.
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PROPOSITION 2
If the money market is quick to adjust and the goods market is sluggish
in its adjustment, then a goods market shock will most likely lead to
a gradual movement of the economy to its new equilibrium, with the
economy exhibiting no overshooting of either interest rates or income.

COROLLARY 2 A counter-clockwise spiral to a new equilibrium aris-
ing from a fiscal shock is only likely to occur in the event that both the
money market and goods market are quick to adjust to disequilibrium
states.

Can we make any observations about the dynamic behaviour of this economy
when there is a combined fiscal and monetary shock? In carrying out this particular
analysis we shall simply assume that the money market is quick to adjust, but not
instantaneous, and that the goods market is sluggish in its adjustment. In figure 10.9
we illustrate a fiscal and monetary expansion, a rising from 50 to 55 and m rising
from 8 to 12. In figure 10.10 we illustrate a fiscal and monetary contraction, a
falling from 50 to 45 and m falling from 8 to 5. Under the assumption made about
relative adjustment, it is very likely that the trajectory of the economy in each case is
a counter-clockwise movement to the new equilibrium, with major overshooting
of interest rates and a gradual change in income to the new equilibrium level.
Overshooting of income will, once again, occur only if the goods market adjusts

Figure 10.9.

Figure 10.10.
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quickly to a disequilibrium along with the money market, trajectory T3. Similarly,
a combined fiscal and monetary contraction, which is illustrated in figure 10.10,
leads to a sharp rise in interest rates in the short period, and as income begins to
fall, interest rates too are brought down. There is unlikely to be any overshooting
of income. Only in the unlikely event that the goods market adjusts quickly to a
disequilibrium along with the money market will this occur, trajectory T3. These
results should not be surprising. The initial impact on interest rates comes about
because of the shift in the LM curve. Only when income begins to adjust will this
effect be reversed.

In the case of fiscal and monetary shocks opposing each other, and under
the same assumption about relative adjustment behaviour, the dynamic path to
the new equilibrium can have various possibilities depending on which shock
is the greater. Figure 10.11 illustrates a fiscal expansion and a monetary contraction,
with equilibrium points E0 and E1, respectively. If the fiscal expansion is the more

Figure 10.11.
Monetary
contraction and
fiscal expansion
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Figure 10.12.
Monetary

expansion and
fiscal contraction

dominant of the two shocks (figure 10.11(a)), then the economy will traverse a
smooth path from E0 to E1 with a rise in interest rates and a rise in income. On
the other hand, if the monetary contraction dominates (figure 10.11(b)), then the
economy will move counter-clockwise, with interest rates overshooting their new
equilibrium level and income gradually falling. Similarly, in figure 10.12 we show
a fiscal contraction and a monetary expansion. If the fiscal contraction dominates
(figure 10.12(a)), then the economy will decline gradually from equilibrium point
E0 to E1. On the other hand, if the monetary expansion dominates, the decline in
the interest rate may very well overshoot its equilibrium level, although income
will gradually rise.

We arrive, then, at two further propositions:

PROPOSITION 3
If the money market is quick to adjust and the goods market is sluggish
in its adjustment, then a fiscal expansion (contraction) combined with
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a monetary expansion (contraction) will more likely lead to a counter-
clockwise movement, with interest rates rising (falling) initially and then
falling (rising) into the medium and long term; while income will grad-
ually rise (fall) until its new equilibrium position is reached.

PROPOSITION 4
If the money market is quick to adjust and the goods market is sluggish
in its adjustment, then a fiscal expansion (contraction) combined with a
monetary contraction (expansion) will give rise to a gradual change in
interest rates and income if the fiscal shock dominates, but will exhibit
interest rate overshooting if the monetary shock dominates.

There is one important observation we can draw from this analysis about the
dynamic behaviour of the economy. Given the assumption about relative speeds
of adjustment, then interest rate volatility is far more likely to be observed than
income volatility.

10.6 IS-LM continuous model: version 2

In this section we shall extend the investment function to include real income. In
other words, business will alter the level of investment according to the level of
income; the higher the level of income the more business undertakes new invest-
ment. We shall continue with a simple linear model, but this simple extension will
lead to the possibility that the IS curve is positively sloped. In considering the
implications of this we shall consider some explicit numerical examples in order
to see the variety of solution trajectories. In one case we shall derive an explicit
saddle path solution. Since the formal derivation is similar to the previous section
we can be brief.

The model is5

e = a + b(1 − t)y − hr + jy

md = ky − ur

ẏ = α(e − y)

ṙ = β(md − m0)

(10.23)

where

a > 0, 0 < b < 1, 0 < t < 1, h > 0, j > 0,

k > 0, u > 0, α > 0, β > 0

which gives the two differential equations

ẏ = α[b(1 − t) + j − 1]y − αhr + αa

ṙ = βky − βur − βm0
(10.24)

with the IS curve obtained from setting ẏ = 0 as

r = a − [1 − b(1 − t) − j]y

h

5 Although we use t for the marginal rate of tax, there should be no confusion with the same letter
standing for time.
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and an LM curve obtained from setting ṙ = 0 as

r = ky − m0

u

The major difference between this version and the one in the previous section
is that now the IS curve can have either a negative slope (if b(1 − t) + j < 1) or a
positive slope (if b(1 − t) + j > 1), and that the positive slope is more likely the
larger the value of the coefficient j. Since we dealt with a negatively sloped IS
curve in the previous section, let us consider here the implications of a positively
sloped IS curve, i.e., we assume b(1 − t) + j > 1.

For a positively sloped IS curve, points to the left of this line represent

r >
a − [1 − b(1 − t) − j]y

h

0 > a + [b(1 − t) + j]y − hr − y

implying ẏ < 0. Hence, to the left of the IS curve income is falling. Similarly, by
the same reasoning, for points to the right of the IS curve income is rising.

There is no change for the LM curve, and we have already established that for
points to the right of the LM curve interest rates are rising while to the left of the
LM curve interest rates are falling.

With a positively sloped IS curve, there are two possibilities:

(i) the IS curve is less steep than the LM curve
(ii) the IS curve is steeper than the LM curve.

The two possibilities, along with the vector of forces outlined above, are illustrated
in figure 10.13(a) and (b).

Figure 10.13(a) reveals a counter-clockwise trajectory while figure 10.13(b)
reveals an unstable situation, although it does indicate that a trajectory might
approach the equilibrium point. Neither situation is straightforward. Although
figure 10.13(a) indicates a counter-clockwise trajectory, is the trajectory tending
towards the equilibrium or away from it? There is nothing within the model as laid
down so far to indicate which is the case.

In order to see what the difficulty is, consider the following two numerical
examples.

Example 10.5 Example 10.6

a = 2 k = 0.25 α = 0.05 a = 2 k = 0.25 α = 0.2
b = 0.75 u = 0.5 β = 0.8 b = 0.8 u = 0.25 β = 0.3
t = 0.25 m0 = 8 t = 0.2 m0 = 8
h = 1.525 h = 1.525
j = 0.8 j = 0.95

Solution Solution

y∗ = 66 y∗ = 55.3
r∗ = 17 r∗ = 22.3
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Figure 10.13.

Intercepts and slopes Intercepts and slopes

IS intercept = 1.3 IS intercept = 1.3
IS slope = 0.238 IS slope = 0.387
LM intercept = −16 LM intercept = −32
LM slope = 0.5 LM slope = 1

Both examples typify the situation in figure 10.13(a), with a positive IS curve, and
the IS curve less steep than the LM curve. However, the dynamics of both these
examples is different. Both lead to a counter-clockwise path. However, example
10.5 leads to a stable path which appears to traverse a straight line path after a
certain time period, while example 10.6 leads to an unstable spiral, as illustrated in
figure 10.14(a) and 10.14(b) (see exercise 11). But, then, what is it that is different
between these two examples? To answer this question we need to consider the
differential equation system in terms of deviations from equilibrium, and then to
consider the trace and determinant of the dynamic system.6

Return to the general specification of the differential equations

ẏ = α[b(1 − t) + j − 1]y − αhr + αa

ṙ = βky − βur − βm0

6 See chapter 4.
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Figure 10.14.

and consider the equilibrium values of the variables, i.e.

0 = α[b(1 − t) + j − 1]y∗ − αhr∗ + αa

0 = βky∗ − βur∗ − βm0

Subtracting the second set from the first we have

ẏ = α[b(1 − t) + j − 1](y − y∗) − αh(r − r∗)

ṙ = βk(y − y∗) − βu(r − r∗)
(10.25)

and the matrix of this system is

A =
[
α[b(1 − t) + j − 1] −αh

βk −βu

]
(10.26)

whose trace and determinant are

tr(A) = α[b(1 − t) + j − 1] − βu

det(A) = −αβu[b(1 − t) + j − 1] + αβkh
(10.27)

Using these results we can summarise the properties of the systems in examples
10.5 and 10.6 in terms of the values for their trace and determinant. These are
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Example 10.5

tr(A) = −0.382

det(A) = 0.008 where tr(A)2 > 4 det(A)

Example 10.6

tr(A) = 0.043

det(A) = 0.014 where tr(A)2 < 4 det(A)

In terms of table 4.1 in part I (p. 180), it is clear that example 10.5 satisfies the
conditions for an asymptotically stable node while example 10.6 satisfies the con-
dition of an unstable spiral, verifying what is shown in figure 10.13(a). Notice that
in both examples the determinant of the system is positive. Although this is neces-
sary for a spiral path, it is not sufficient to determine whether the path is stable or
unstable. This requires information on the sign of the trace. A stable spiral requires
the trace to be negative; while an unstable spiral arises if the trace is positive –
and in both cases the condition that tr(A)2 < 4 det(A) needs to be satisfied. Unfor-
tunately, there is no geometric representation of the trace requirement. It can be
ascertained only from the system itself. Even so, a comparison of the two examples
indicates quite clearly that for an unstable spiral to be more likely, it is necessary
for the coefficient of induced spending (b(1 − t) + j) to be high and for there to
be quick adjustment in both markets (large values for the reaction coefficients α

and β). If the IS curve is positively sloped, and is less steep than the LM curve,
the most likely result is a counter-clockwise stable spiral.

Let us now consider a third example for which the IS curve is positively sloped
but is steeper than the LM curve.

Example 10.7

Parameter values Solution Intercepts and slopes
a = −25 k = 0.22 α = 0.05 y∗ = 65.4 IS intercept = −25
b = 0.75 u = 0.75 β = 0.8 r∗ = 10.5 IS slope = 0.5125
t1 = 0.25 m0 = 8
h = 1 LM intercept = −10.7
j = 0.95 LM slope = 0.293

tr(A) = −0.574375
det(A) = −0.006575 where tr(A)2 > 4 det(A)

This example typifies the situation in figure 10.13(b). But in order to see what is
happening, we need to derive the characteristic equations of the system. In terms
of deviations from the equilibrium we have the general results indicated already in
terms of the equation system given above. Substituting the numerical values given
in example 10.7, we obtain the following differential equation system

ẏ = 0.025625(y − y∗) − 0.05(r − r∗)

ṙ = 0.176(y − y∗) − 0.6(r − r∗)
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whose characteristic roots can be obtained from

|A − λI| = 0

i.e. ∣∣∣∣0.025625 − λ −0.05
0.176 −0.6 − λ

∣∣∣∣ = 0

Which leads to the quadratic equation

λ2 + 0.574375λ − 0.006575 = 0

with solutions

r = 0.0112277 s = −0.585603

Using the first solution, we have[
0.025625 −0.05

0.176 −0.6

] [
y − y∗

r − r∗

]
= 0.0112277

[
y − y∗

r − r∗

]

which leads to the relationship

r − r∗ = 0.287945(y − y∗)

On the other hand, using the second characteristic root, and following through the
same procedure, we find

r − r∗ = 12.224555(y − y∗)

These two results indicate two saddle paths; one of which is stable and the other
is unstable. To verify this, we use Mathematica to plot ten trajectories of example
10.7, which are illustrated in figure 10.15. Given the vectors of force already es-
tablished for figure 10.13(b), which typifies example 10.7, it is clear that the first
characteristic root leads to an unstable saddle path, while the second characteristic
root leads to a stable saddle path. The dynamics of this system, then, is schemati-
cally illustrated in figure 10.16, showing the saddle paths (denoted S1S′

1 and S2S′
2

associated with r and s, respectively) in relation to the IS and LM curves. The
equilibrium of this system, then, is unstable except for the unlikely event that the
initial point lies on the stable saddle path denoted S2S′

2 in figure 10.16. Also notice

Figure 10.15.
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Figure 10.16.

from figure 10.16 that one of the saddle paths is almost identical to the LM curve.
This is a result of the assumption of rapid adjustment in the money market relative
to the goods market. With perfect adjustment in the money market, then one saddle
path would be identical with the LM curve, and this would be the unstable saddle
path in the present context.

10.7 Nonlinear IS-LM model

In this section we shall consider a nonlinear version of the IS-LM model. We
can be brief because much of the analysis has already been carried out. In this
version consumption spending in real terms is related to real income (where we
assume disposable income has been eliminated); investment is inversely related to
the nominal rate of interest (we assume expected inflation is zero) and positively
to the level of real income; government spending is assumed exogenous. Our
expenditure function, in real terms, is then

e = c(y) + i(r, y) + g 0 < cy < 1, ir < 0, iy > 0 (10.28)

The demand for real money balances, md, is assumed to be positively related to
real income (the transactions demand for money) and inversely related to the rate
of interest (the speculative demand for money). Thus

md = l( y, r) ly > 0, lr < 0 (10.29)

The dynamics are in terms of excess demand in the goods market and excess
demand for real money balances, i.e.

ẏ = α(e − y) α > 0

ṙ = β(l( y, r) − m0) β > 0
(10.30)

where m0 is the supply of real money balances, and m0 is assumed exogenous.
Equilibrium in the goods market requires ẏ = 0 or e = y, while equilibrium

in the money market requires ṙ = 0 or l(y, r) = m0. Suppose such a fixed point
exists and is denoted (y∗, r∗). The question arises is whether such an equilibrium
is dynamically stable. Given the nonlinear nature of the system, and the fact that
no explicit functional forms are specified, then it is not possible to establish this in
any absolute sense. We can, however, use the linearisation technique discussed in
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part I to establish the stability in the neighbourhood of the equilibrium point.7 As
we mentioned in part I, when employing such a linearisation, only local stability
can be established. But even this is better than having nothing to say on the matter.

Expanding the above system around the fixed point (y∗, r∗) gives

ẏ = α

[
∂(e − y)

∂y
( y − y∗) + ∂(e − y)

∂r
(r − r∗)

]

ṙ = β

[
∂(l − m0)

∂y
( y − y∗) + ∂(l − m0)

∂r
(r − r∗)

]
But

∂(e − y)

∂y
= cy + iy − 1,

∂(e − y)

∂r
= ir

∂(l − m0)

∂y
= ly,

∂(l − m0)

∂r
= lr

Hence

ẏ = α(cy + iy − 1)( y − y∗) + αir(r − r∗)

ṙ = βly( y − y∗) + βlr(r − r∗)
(10.31)

which can be written as a matrix dynamic system in the form[
ẏ
ṙ

]
=
[
α(cy + iy − 1) αir

βly βlr

] [
y − y∗

r − r∗

]
(10.32)

and where the matrix of the system is

A =
[
α(cy + iy − 1) αir

βly βlr

]
(10.33)

The dynamics of the system can now be determined from the properties of A.
These are

tr(A) = α(cy + iy − 1) + βlr

det(A) = αβ(cy + iy − 1)lr − αβirly

= −αβ[lr(1 − cy − iy) + irly]

(10.34)

Can we interpret any economic meaning to the tr(A) and the det(A)? To see if
we can, let us consider the slopes of the IS and LM curves. For the IS curve we
have y = e, hence

y = c(y) + i(y, r) + g

Totally differentiating this expression with respect to y and r we obtain

dy = cydy + iydy + irdr

and so the slope of the IS curve, denoted dr/dy, is given by

(1 − cy − iy)dy = irdr

or
dr

dy
= 1 − cy − iy

ir

7 See section 2.7.
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The slope of the LM curve is established in the same manner (and noting that m0

is exogenous)

0 = lydy + lrdr

dr

dy
= −ly

lr

If the IS curve is less steep than the LM curve, then

1 − cy − iy
ir

<
−ly
lr

i.e.

lr(1 − cy − iy) + irly < 0

−αβ[lr(1 − cy − iy) + irly] > 0

Hence, det(A) > 0. This is certainly satisfied in the usual case of a negatively sloped
IS curve and a positively sloped LM curve. But we have already established in the
previous section that a stable solution will occur if both the IS and the LM curves
are positively sloped but that the IS curve is less steep than the LM curve and that
the trace of the system is negative in sign.

10.8 Tobin–Blanchard model

10.8.1 The model in outline8

There has been some interest by economists as to whether stock market behaviour
can influence income and interest rates – at least in the short run. The IS-LM
model so far outlined does not allow for any such link. It is plausible to think that
investment will, in some way, be influenced by stock market behaviour. Such a
link was considered by Blanchard (1981) following on the approach to investment
suggested by Tobin (1969), and what is referred to as the q-theory of investment.

The variableq represents the market value of equities as a ratio of the replacement
cost. It can be understood as follows.9 If all future returns are equal, and denoted
R, and are discounted at the interest rate r, then the present value of equities, V say,
is equal to R/r. On the other hand, firms will invest until the replacement cost of
any outstanding capital stock, RC, is equal to the return on investment, R/ρ, where
ρ is the marginal efficiency of capital. Then

q = V

RC
= R/r

R/ρ
= ρ

r
(10.35)

Consequently, net investment is a positive function of q, which still means that
it is inversely related to r. In the long run r = ρ and so q = 1, and there is
no net investment. The upshot of this approach is that investment, rather than
being inversely related to r is positively related to q. This in turn means aggregate
expenditure (and hence aggregate demand) is positively related to q.

8 A different treatment than the one presented here, also utilising phase diagrams, is provided in
Romer (2001, chapter 8). See also Obstfeld and Rogoff (1999, section 2.5.2).

9 See Stevenson, Muscatelli and Gregory (1988, pp. 156–9) for a fuller discussion.
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We can accordingly express aggregate expenditure, e, as

a(t) = a1y(t) + a2q(t) + g 0 < a1 < 1, a2 > 0

where g is real government spending. The goods market is assumed to adjust with
a lag, with reaction coefficient σ > 0, thus

ẏ(t) = σ (e(t) − y(t)) σ > 0

The money market, on the other hand, is assumed to adjust instantaneously, and so
the demand for real money balances is equal to the supply of real money balances,
i.e.

ky(t) − ur(t) = m0 k > 0, u > 0

The next equation relates the rate of interest (on bonds) to the yield on equities,
which are equal because it is assumed that bonds and equities are perfect substitutes,
i.e.

r(t) = b1y(t) + q̇e(t)

q(t)

where b1y constitutes the firms’ profits, which are assumed proportional to out-
put, and q̇e constitutes expected capital gains. Finally, we assume rational ex-
pectations, which in the present model is equivalent to perfect foresight, and so
q̇e = q̇. Suppressing the time variable, then the model can be stated in terms of five
equations

e = a1y + a2q + g

m0 = ky − ur

ẏ = σ (e − y)

r = b1y + q̇e

q
q̇e = q̇

(10.36)

which can be reduced to two nonlinear nonhomogeneous differential equations,
namely

ẏ = σ (a1 − 1)y + σa2q + σg

q̇ =
(
kq

u
− b1

)
y − qm0

u

(10.37)

First we need to establish the existence of a fixed point, an equilibrium point.
We do this by setting ẏ = 0 and q̇ = 0, and solving for y and q. This is no more
than where the two isoclines intersect. So let us first look at these separately. First
consider the ẏ = 0 isocline, which we shall refer to as the IS curve since it implies
goods market equilibrium. We have

ẏ = σ (a1y + a2q + g − y) = 0

−(1 − a1)y + a2q + g = 0

i.e. q = (1 − a1)y − g

a2
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which is linear with intercept on the q-axis of −g/a2 and slope of (1 − a1)/a2.
Since we have assumed that a1 lies between zero and unity, then the slope of this
line is positive.

Next consider the q̇ = 0 isocline, which we shall refer to as the LM curve since
it implies money market equilibrium. We have

q̇ =
(
kq

u
− b1

)
y − qm0

u
= 0

q

(
ky

u
− m0

u

)
= b1y

i.e. q = ub1y

(ky − m0)

which is nonlinear, and has an asymptote at y = m0/k, which means that q is
positive only if y > m0/k. This we shall assume to be the case. Also, as y → ∞,
then q → ub1/k. Although it is possible to solve for y and q, the solution involves
a quadratic and does not reveal anything new.

What we have here, however, is a nonlinear nonhomogeneous differential equa-
tion system. To establish the nature of the equilibrium we need to consider the
vectors of forces in the four quadrants. We have already established that the ẏ = 0
isocline is positively sloped. Furthermore, if ẏ > 0 then

q >
(1 − a1)y − g

a2

Hence, above the ẏ = 0 isocline, y is rising while below it y is falling, as illustrated
in figure 10.17.

In establishing the nature of the forces either side of the q̇ = 0 isocline we first
need to establish its slope. We find this with a little manipulation as follows

q = ub1y

(ky − m0)

Figure 10.17.
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dq

dy
= (ky − m0)ub1 − ub1yk

(ky − m0)2
= b1

(ky − m0)/u
−

u2b1y

(
k

u

)
(ky − m0)2

=
b1 − q

(
k

u

)
r

The slope of the LM curve in (q,y)-space is therefore ambiguous. The slope is
positive if b1 > qk/u and negative if b1 < qk/u. To interpret these two situations,
consider a rise in income, shown by the movement from point A to point B in
figures 10.18(a) and (b). From the money market equation this will raise the rate
of interest, r; from the yield on equities equation, this will raise profits and hence
the equity yield. If the rise in income raises the yield on equities by less than it
raises r then q must fall in order to re-establish equilibrium between r and the
yield on equities ((b1y + q̇)/q), as shown in figure 10.18(a) by the movement from
point B to point C. This Blanchard called the ‘bad news’ case because the rise in

Figure 10.18.
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income led to a fall in stock market prices. On the other hand, if the increase in
income increases r by less than the yield on equities ((b1y + q̇)/q), then q must
rise, as shown in figure 10.18(b) by the movement from point B to point C. This
Blanchard called the ‘good news’ case, since the rise in income leads to a rise in
stock market prices.

Whether the q̇ = 0 isocline is negatively sloped (‘bad news’) or positively sloped
(‘good news’), if q̇ > 0 then

q >
ub1y

(ky − m0)

and so above the q̇ = 0 isocline q is rising while below it q is falling, as shown by
the arrows in figure 10.18.

The combined vector forces in both the ‘bad news’ case and the ‘good news’ case
are illustrated in figures 10.18(a) and (b). In each case, the vector forces indicate

Figure 10.19.
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Figure 10.20.

a saddle path solution. Given the assumption of rational expectations, and given
that for any value of y there is a unique point, (a unique value of q) on the saddle
path, then the economy will be at this value of q and will, over time, converge on
the equilibrium.10

Example 10.8

Let us illustrate the model with a numerical example. In this example we consider
only the ‘bad news’ case. The model is

e = 0.8y + 0.2q + 7

8 = 0.25y − 0.2r

ẏ = 2(e − y)

r = 0.1y + q̇

q

leading to the two nonlinear nonhomogeneous differential equations

ẏ = 14 − 0.4y + 0.4q

q̇ = 1.25qy − 0.1y − 40q

with equilibrium values y∗ = 35.76 and q∗ = 0.76 (and r∗ = 4.7). The solution
with vector forces is shown in figure 10.20.

Let us take this numerical example further and consider the linear approximation.
Taking a Taylor expansion around the equilibrium, we have

ẏ = −0.4(y − y∗) + 0.4(q − q∗)

q̇ = 1.25q∗( y − y∗) − 0.1( y − y∗) − 40(q − q∗) + 1.25y∗(q − q∗)

i.e.

ẏ = −0.4(y − y∗) + 0.4(q − q∗)

q̇ = 0.85(y − y∗) + 4.7(q − q∗)

10 There is a problem if the LM curve is everywhere steeper than the IS curve (see Scarth 1996).
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Figure 10.21.

The matrix of the system is

A =
[−0.4 0.4

0.85 4.7

]

with characteristic equation λ2 − 4.43λ − 2.22 = 0 and characteristic roots r =
4.7658 and s = −0.4658. The fact that the characteristic roots have opposite signs
verifies the saddle point equilibrium (as does the fact that det(A) is negative, i.e.,
det(A) = −2.22). The general solution is

y(t) = y∗ + c1e4.7658t + c2e−0.4658t

q(t) = q∗ + c3e4.7658t + c4e−0.4658t

The saddle paths are readily found by solving

(A − rI)vr = 0

and

(A − sI)vs = 0

giving the two respective eigenvectors

vr =
[

1
12.9145

]
, vs =

[
1

−0.1645

]

where vs is the stable arm of the saddle point.
These results, using the above linearisation, are shown in figure 10.21, which

includes the direction field for the linearisation.11

11 In this example, the stable arm is almost identical with the linear approximation to q̇ = 0 at (y∗, q∗),
see exercise 13.
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10.8.2 Unanticipated fiscal and monetary expansion

We are now in a position to consider the effects of fiscal and monetary policy. In
this sub-section we shall concentrate on unanticipated changes in policy, leaving
anticipated changes to sub-section 10.8.3.

Fiscal expansion

Consider first a fiscal expansion, a rise in g. This has no impact on the q̇ = 0
isocline but decreases the intercept of the ẏ = 0 isocline, i.e., it shifts this isocline
right (down). The situation for both the ‘bad news’ case and the ‘good news’ case
is illustrated in figure 10.22 (where we assume that the q̇ = 0 isocline is less steep
than the ẏ = 0 isocline). In each case the initial equilibrium is at point E1 where
ẏ1 = 0 intersects q̇ = 0. The associated stable arm of the saddle point is S1S′

1.
A rise in g shifts the IS curve down to ẏ2 = 0. Initially income does not alter,
and the system ‘jumps’ to the new saddle path at point A, and then over time

Figure 10.22.
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moves along S2S′
2 to the new equilibrium point E2. Although income rises in both

situations, in the ‘bad news’ case asset prices decline, while in the ‘good news’ case
they rise.

Monetary expansion

Consider next monetary expansion, a rise in m0. This has no impact on the IS
curve, but shifts the q̇ = 0 isocline up, since

dq

dm0

∣∣∣∣
q̇=0

=
(
b1y

u

)
(ky − m0)2 > 0

The system ‘jumps’ from E1 to point A on the new saddle path S2S′
2 and then

moves along this until the new equilibrium point E2 is reached, as shown in figure
10.23. In each case income rises and asset prices rise from one equilibrium point

A

Figure 10.23.
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to the next but the path of asset prices is different between the ‘bad news’ case and
the ‘good news’ case.12

Even though the fiscal and monetary changes were unanticipated, it is assumed
that the moment they are implemented the economy ‘jumps’ from the initial
equilibrium to a point on the saddle path, and then adjusts over time along the
stable arm of the saddle point. But what happens if the changes are announced in
advance?

10.8.3 Anticipated fiscal and monetary policy

Suppose some policy change is announced at time t0 and to be implemented in
some future time t1. In this instance the policy change is anticipated, and some
response can occur now in anticipation of what is known to occur once the policy
is actually implemented. However, what occurs now is governed by the dynamics
of the original equilibrium, since the new equilibrium has yet to come about.

Fiscal expansion

Consider first a fiscal expansion. We have already established that this will not
shift the q̇ = 0 isocline but will shift the IS curve down. In anticipation of what
will happen to stock market prices, the system will move from point E1 to point
A′ (where A′ falls short of point A on the saddle path), as shown in figure 10.24.
In the ‘bad news’ case, stock market prices fall while in the ‘good news’ case they
rise. This movement, of course, is simply anticipating the final implication of the
policy change. But from the time the policy is announced until the time the policy
is implemented, the economy is driven by the dynamic forces associated with the
initial equilibrium point E1. Hence, the system moves from point A′ to point B′

(on the saddle path S2S′
2). The policy is now carried out, and the system moves

along S2S′
2 from point B′ to point E2. The impact on income in the two cases is

now different. In the ‘bad news’ case income falls and then rises, while in the
‘good news’ case it continually rises over time. On the other hand, asset prices
gradually fall (if rather irregularly) in the ‘bad news’ case, and gradually rise (if
rather irregularly) in the ‘good news’ case.

Monetary expansion

Finally consider the case of monetary expansion, which is announced in advance,
and shown in figure 10.25. As in the previous situation, in the first instance the
asset price will move part way towards its new equilibrium value, shown by point
A′. It will then be governed by forces associated with the initial equilibrium point
E1, and so will move along the trajectory with points A′B′. Point B′ is associated
with the time the policy is implemented. Thereafter, the system will move along
the stable arm of the saddle point, i.e., along S2S′

2, until point E2 is reached.

12 For a fuller discussion of what is taking place over the adjustment path, see Blanchard (1981).
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Figure 10.24.

Comparing figure 10.24 with 10.22 and figure 10.25 with 10.23 shows quite a
different behaviour and that it makes quite a difference to the dynamic path of the
economy whether policies are announced (anticipated) or not. This is important.
There has been a growing tendency on the part of policy-makers to announce
in advance their policy intentions – and, at least in the UK, this applies to both
monetary and fiscal policy.

10.9 Conclusion

Although the IS-LM model is considered in some detail in intermediate macroeco-
nomics, little attention has been paid to its dynamic characteristics. In this chapter
we have concentrated on discussing the dynamics of the IS-LM model – both
in discrete terms and by means of continuous time variables. Such a treatment
has allowed us to consider possible trajectories for income and the rate of inter-
est. Although we have not dealt with other endogenous variables, it is quite clear
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Figure 10.25.

that we can obtain their paths from a knowledge of y(t) and r(t). For instance,
given y(t) we can compute tax(t) = t0 + t1y(t), which in turn allows us to compute
disposable income, yd(t) = y(t) − tax(t). This in turn allows us to compute con-
sumption, c(t) = a + byd(t), and so on. However, this is possible only when we
have explicit functional forms for all relationships in the model.

What we observe from this chapter is the importance of different adjustment
speeds in the goods market relative to the money market, where the latter ad-
justs more quickly than the former. Although a number of trajectories exhibit a
counter-clockwise movement towards equilibrium, a counter-clockwise spiral, al-
though possible, is not so likely given a quick adjustment in the money market.
Overshooting, however, especially of the rate of interest, is likely to be a common
occurrence, as is interest rate volatility.

With investment related to both the rate of interest and the level of income, it
is possible to have a positively sloped IS curve. If the IS curve is steeper than the
LM curve then the most likely outcome is an unstable saddle path. This result not
only depends on investment being significantly and positively related to income,
but also on the (realistic) assumption that the money market is quicker to adjust



Closed economy dynamics 467

than the goods market. Although we have considered this possibility in the confines
of a simple (linear) model, it does beg the question of whether it will occur in a
more complex linear model or even in a nonlinear model. We do not, however,
investigate these questions in this text.

Finally, we extended the IS-LM analysis to allow for stock market behaviour
employing the Tobin–Blanchard model. Once again the differential speeds of ad-
justment in the goods market relative to the asset market was shown to be important
for dynamic trajectories. This model also highlighted the importance of unantici-
pated against anticipated policy changes.

Exercises

1. Consider the model

Ct = 110 + 0.75Yt

It = 300

Et = Ct + It

Yt = Et−1

Plot the solution path for income and consumption for three different ad-
justment lags, j=1,2,3 for a permanent increase in investment of £10 mil-
lion beginning in period 1.

2. Consider the numerical model in example 10.2, but assume that

it = 320 − 4rt−1

Show that this leads to a second-order difference equation for income.
Either solve this second-order equation for y0 = 2000, y1 = 2010 and
y2 = 2010. Hence plot the path of y(t) and r(t); or else set the problem up
on a spreadsheet and plot y(t) and r(t).

3. Reconsider the model in exercise 1 and establish the dynamic multiplier
for each of the three time lags in response to a rise in investment of
£20 million. What can you conclude from these results?

4. Consider the model

Ct = 110 + 0.75Yt

It = 4(Yt − Yt−1)

Et = Ct + It

Yt = Et−1

(i) Show that this results in a second-order difference equation for in-
come. Solve this equation.

(ii) Suppose

It = 4(Ct − Ct−1)

Does this lead to a different time path for income?
5. For the numerical model in example 10.2 set up a spreadsheet and derive

the solution path for all endogenous variables resulting from a rise in
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real money balances of £20 million. Compare your results with those
provided in table 10.2.

6. Set up a spreadsheet to derive trajectories for the discrete model

yt+1 − yt = α[b(1 − t) − 1]yt − αhrt + αa

rt+1 − rt = βkyt − βurt − βm0

Derive the equilibrium income and interest rate, by setting yt+1 =
yt = . . . and rt+1 = rt = . . . and place cells on the spreadsheet to compute
such equilibria. Use the parameter values in the text to derive the three
trajectories T1 (α = 0.05, β = 0.8), T2 (α = 0.1, β = 0.8) and T3 (α =
0.5, β = 0.8).
How would you use this specification to:
(i) show a goods market shock?

(ii) show a money market shock?
7. Show that for the same system outlined for figure 10.4 that a monetary

expansion from m0 = 8 to m1 = 12 leads to a new equilibrium point
(y, r) = (72.2, 12.1). Using either Mathematica or Maple, establish three
trajectories for the same combinations of α and β as in exercise 6. Or,
using the discrete form of the model outlined in exercise 6, set up the
model on a spreadsheet and obtain the three trajectories.

8. Use the spreadsheet model of exercise 6 to investigate the implications
for the three trajectories T1, T2 and T3 of
(i) a higher marginal propensity to consume

(ii) a lower marginal rate of tax
(iii) investment being more interest-sensitive (higher h)
(iv) a higher income velocity of circulation of money (lower k)
(v) a more interest-sensitive demand for money (higher u).

9. Use your model in exercise 6 and verify that if the parameter a rises from
50 to 55 the adjustment path exhibits overshooting of both y and r if
α = 0.5 and β = 0.8.

10. Use your model in exercise 6 and verify that if the parameter a falls from
50 to 45 the adjustment path exhibits overshooting of both y and r if
α = 0.5 and β = 0.8.

11. Use Mathematica or Maple to derive the trajectory {y(t),r(t)} for ex-
amples 10.5 and 10.6 in section 10.6. Verify the statements in the text,
namely
(i) Example 10.5 leads to a stable path which appears to traverse a

straight line path after a certain time period.
(ii) Example 10.6 leads to an unstable spiral.

12. Reconsider example 10.6 in section 10.6. Does the same saddle path result
if α = 0.1 and β = 0.8?

13. (i) Show that the linear approximation to the q̇ = 0 isocline in the
Tobin–Blanchard model is

q = q∗ −
[

b1m0u

(ky∗ − m0)2

]
(y − y∗)
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(ii) In example 10.8 show that the equation for the linear approximation
to q̇ = 0 at (y∗, q∗) is

q = 7.23352 − 0.181008y

while the equation for the saddle path is

q = 6.64988 − 0.164683y

14. Consider the following IS-LM model

e = a + b(1 − t)y − hr + jy a = 5 k = 0.5
md = ky − ur b = 0.75 u = 0.3
ẏ = α(e − y)
ṙ = β(md − m0) t = 0.25 α = 0.25

h = 0.3 β = 0.4
j = 0.4 m0 = 10

(i) Find y∗ and r∗.
(ii) What are the equations for the IS curve and the LM curve?

(iii) Obtain the trace and determinant of the system, and hence establish
whether a stable or unstable spiral is present.

15. Given the Tobin–Blanchard model

e = 0.8y + 0.2q + 7

16 = 0.5y − 0.25r

ẏ = 2(e − y)

r = 0.15y + q̇

q

(i) Find y∗ and q∗.
(ii) Show that the fixed point (y∗, q∗) is a saddle point equilibrium.

(iii) Derive the equation of the stable arm of the saddle point.

Additional reading

Additional material on the contents of this chapter can be obtained from
Blanchard (1981), McCafferty (1990), Obstfeld and Rogoff (1999), Romer (2001),
Scarth (1996), Shone (1989, 2001), Stevenson, Muscatelli and Gregory (1988),
Teigen (1978) and Tobin (1969).



CHAPTER 11

The dynamics of inflation and
unemployment

11.1 The Phillips curve

At the heart of most discussions of inflation is the Phillips curve which, in its
modern formulation, stipulates a relationship between price inflation, π , and un-
employment, u, augmented for inflationary expectations, π e. Thus

π = f (u) + ξπ e 0 < ξ ≤ 1(11.1)

This relationship is the expectations-augmented Phillips curve. The only slight
difference from standard textbook treatments is the presence of ξ lying between
zero and unity. The reason for introducing this will become clear.

Next we make a simple assumption about expected inflation, namely

π̇ e = β(π − π e) β > 0(11.2)

This is no more than a continuous version of adaptive expectations. When the
actual rate of inflation exceeds the expected rate, expectations are revised upwards
and when the actual rate is below the expected rate, then expectations are revised
downwards.

Suppose the government attempts to maintain unemployment at some constant
level, u∗.1 We further suppose that they are successful and so f (u∗) is a constant
and known. To establish the implications of such a policy, differentiate the Phillips
curve relationship (11.1) with respect to time under the assumption that u = u∗

and substitute in equation (11.2). Then

π̇ = ξ π̇ e = ξβ(π − π e) = β(ξπ − ξπ e)

But ξπ e = π − f (u∗), and so

π̇ = β[ξπ − π + f (u∗)]

i.e.

π̇ = βf (u∗) − β(1 − ξ )π(11.3)

which is linear with intercept βf (u∗) and slope −β(1 − ξ ). Relationship (11.3) is
illustrated in figure 11.1.

1 u∗ is often assumed to be the level of unemployment associated with full employment. This was the
type of policy pursued in the UK between 1945 and 1979.
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Figure 11.1.

First we need to establish whether a fixed point exists. For such a point
π̇ = 0, i.e.

βf (u∗) − β(1 − ξ )π∗ = 0

or

π∗ = f (u∗)

1 − ξ
(11.4)

Only if 0 < ξ < 1, however, will π∗ exist. In particular, if ξ = 1 then π∗ is un-
defined. Second, if 0 < ξ < 1, then π∗ is asymptotically globally stable since the
relationship between π̇ and π is negatively sloped. Third, if ξ = 1 inflation is
always correctly anticipated and π = π e and π̇ e = 0. In this instance the rate of
unemployment is constant regardless of the rate of inflation. This unemployment
rate, following the work of Friedman and Phelps, is referred to as the natural rate of
unemployment (or the non-accelerating inflation rate of unemployment, NAIRU),
and denoted un. This rate satisfies f (un) = 0.

The situation is illustrated in the more conventional diagram, figure 11.2. How-
ever, we can go further. Since π̇ = βf (u) and f ′(u) < 0, if u = u∗ < un then it
follows that π̇ > 0; while if u = u∗ > un, then π̇ < 0. This implies that if the
government maintains the level of unemployment below the natural level (here
we ignore u∗ > un) then permanent inflation will be the result. This is because
expected inflation always lags behind actual inflation and the economy is forever
trying to catch up with what it observes.

It is common in a number of studies to assume a relationship between inflation,
π , and real income, y, and expected inflation, π e. In particular it is common to
express this relationship in the form

π = α(y − yn) + π e α > 0 (11.5)

where y and yn are in natural logarithms and yn is the natural level of income (the
income level associated with un), and where the relationship is referred to as ‘the
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Figure 11.2.

Phillips curve’. This is not the relationship between inflation and unemployment
and in fact embodies two reaction functions.2 It is worth spelling these out in detail
because of the common occurrence of this equation.

Following the original formulation of the Phillips curve, we postulate a rela-
tionship of the form

π = −γ1(u − un) + π e γ1 > 0

This is the first reaction function indicating the response of price inflation to the
unemployment gap. It implies a specific functional form for f (u). The second
reaction function is a formulation of Okun’s law3 and is given by

u − un = −γ2(y − yn) γ2 > 0

Substituting this into the previous equation we obtain

π = γ1γ2(y − yn) + π e

or

π = α(y − yn) + π e α > 0(11.6)

Although both π , in terms of the unemployment gap, and π , in terms of the output
gap, are both referred to as ‘the Phillips curve’, the second is more suspect because
it involves an additional behavioural relationship, namely Okun’s law – which is
far from being a law. We shall, however, conform to common usage and refer to
both as the Phillips curve.

11.2 Two simple models of inflation

Macroeconomic modelling has generally incorporated the Phillips curve within an
IS-LM framework. In this section we shall consider the simplest of these models to

2 See Shone (1989, chapter 3) for a more detailed discussion on this.
3 See Shone (1989, appendix 3.2).
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highlight the dynamics. Basically, the goods market and money market combine
to give the aggregate demand curve (see Shone (1989, chapter 2). To see this,
consider the following simple linear model, where variables (other than inflation
and rates of interest) are in logarithms.

Goods market

c = a + b(1 − t)y

i = i0 − h(r − π e)

y = c + i + g

(11.7)

Money market

md = ky − ur

ms = m − p

md = ms

(11.8)

where

c = real consumption
y = real GDP
i = real investment
r = nominal rate of interest
π e = expected inflation
g = real government spending
md = real money demand
ms = real money supply
m = nominal money stock
p = price level

Solving for y and r we obtain

y∗ = (a + i0 + g) + (h/u)(m − p) + hπ e

1 − b(1 − t) + (hk/u) (11.9)

r∗ = ky∗ − (m − p)

u
The main focus of attention is on y∗, the equilibrium level of real income. It should
be noted that this is a linear equation in terms of m − p and π e, i.e.

y = a0 + a1(m − p) + a2π
e a1 > 0, a2 > 0 (11.10)

and this represents the aggregate demand curve, the AD curve. Why? Because
it denotes equilibrium in both the goods market and the money market. In other
words, all points along the AD curve denote equilibrium in both the goods market
and the money market.

We can express the aggregate demand curve in the usual way as a relationship
between p and equilibrium y, with p on the vertical axis and y on the horizontal
axis. Then

p =
(
a0 + a1m

a1

)
−
(

1

a1

)
y +

(
a2

a1

)
π e

i.e. p = c0 − c1y + c2π
e
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Figure 11.3.

where

c0 = a0 + a1m

a1
, c1 = 1

a1
, c2 = a2

a1

which clearly indicates an inverse relationship between the price level, p, and the
level of real income, y.

It is at this point we introduce inflation, π . We assume that the rate of inflation
is proportional to the output gap and adjusted for expected inflation, as outlined in
the previous section, i.e.

π = α(y − yn) + π e α > 0

yn is the output level for which π = π e = 0. It represents the long-run situation
where prices are completely flexible. Under this condition the equilibrium price
level is p∗ and y = yn regardless of p and so the long-run aggregate supply curve
is vertical at yn. The situation is illustrated in figure 11.3.

Although figure 11.3 expresses p as a function of y, the more interesting and
revealing relationship is that between y and real money balances, m − p, i.e.,
y = a0 + a1(m − p) + a2π

e. Only when there is a change in real money balances
(a change in m − p) will there be a shift in AD.

This is important. In elementary courses in economics it is quite usual to say
something like ‘a decrease in the money supply shifts LM left, raising r and
reducing y’. But money supply has hardly ever decreased! What has decreased is
the growth in the money supply. This leads to a fall in p. So long as m falls more
than p, then real money balances will fall, i.e., m − p < 0. It is this which shifts
the LM curve to the left.4 In other words, only when m − p 
= 0 will the aggregate
demand curve shift.

4 See chapter 10 on the IS-LM model.
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Figure 11.4.

Example 11.1

To illustrate this model, let π e = 0 and let

y = 9 + 0.4(m − p) m = 5

π = 0.2(y − yn) yn = 6

then

p = 27.5 − 2.5y

In equilibrium y = yn hence π = 0, i.e., y∗ = 6 and p∗ = 12.5. The situation is
illustrated in figure 11.4.

At a price level below (or above) p∗ = 12.5, forces will come into play to move
the economy towards equilibrium. To illustrate these dynamic forces, consider
the following discrete version of the model. We have (noting we have the natural
logarithm of prices)

yt−1 = 9 + 0.4(mt−1 − pt−1)

πt = pt − pt−1 = 0.2(yt−1 − yn)

i.e.

πt = 0.2[9 + 0.4(mt−1 − pt−1) − 6]

= 0.6 + 0.08(mt−1 − pt−1)
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Figure 11.5.

But mt−1 = mt = 5 for all t and so

πt = 1 − 0.08pt−1

Since prices are in natural logarithms, then πt = pt − pt−1, hence

pt − pt−1 = 1 − 0.08pt−1

i.e. pt = 1 + 0.92pt−1

We can either use the original formulation of the model in a spreadsheet, or this
linear relationship5 pt = f (pt−1) = 1 + 0.92 pt−1, as shown in figure 11.5. Either
way, we can first solve for the fixed point pt = p∗ for all t so that

p∗ = 1 + 0.92p∗

p∗ = 12.5

The spreadsheet representation is illustrated in figure 11.6, which shows the
system converging on equilibrium for an initial price of p0 = 5. Convergence to
equilibrium in the neighbourhood of p∗ = 12.5 is assured because | f ′(p∗)| < 1
(see n. 5).

The model just discussed has a major weakness and that is that in the long run
the only acceptable level of inflation is zero, since only this is consistent with the
(assumed) zero expectations value of inflation. But can a situation arise in which
π = π e at some positive value and the economy is in long-run equilibrium with
income at the natural level?

To answer this question, first return to our aggregate demand relation

y = a0 + a1(m − p) + a2π
e

If we take the time derivative of this relationship6 we obtain the demand pressure
curve, with formula

ẏ = a1(ṁ − π ) + a2π̇
e

5 Given pt = f (pt−1) = 1 + 0.92 pt−1 then f ′(p) = 0.92 < 1, which is the requirement for stability
as indicated in part I.

6 We assume that the variables are in logarithms and so dp/dt = d lnP/dt = π .
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Figure 11.6.

Figure 11.7.

where monetary growth, ṁ, is exogenously given. We can now combine this with
the Phillips curve and a dynamic adjustment for inflationary expectations, giving
the model

ẏ = a1(ṁ − π ) + a2π̇
e a1 > 0, a2 > 0

π = α(y − yn) + π e α > 0 (11.11)

π̇ e = β(π − π e) β > 0

The model is captured in terms of figure 11.7 in its more traditional form. The
demand pressure curve intersects the short-run Phillips curve on the long-run
Phillips curve. Since in this situation π = π e, then it follows y = yn and π̇ e = 0,
which implies ṁ = π.
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To consider the dynamics of the model, it can be reduced to two differential
equations.7 From the Phillips curve and the dynamic adjustment equations we
immediately obtain

π̇ e = αβ(y − yn)

For the demand pressure curve we substitute the short-run Phillips curve for π and
the result just obtained for π̇ e i.e.

ẏ = a1(ṁ − π ) + a2π̇
e

= a1ṁ − a1[α(y − yn) + π e] + a2αβ(y − yn)
= a1ṁ − α(a1 − a2β)(y − yn) − a1π

e

Thus, we have the two differential equations

π̇ e = αβ(y − yn)

ẏ = a1ṁ − α(a1 − a2β)(y − yn) − a1π
e

(11.12)

which can be solved for y∗ and π e∗
. Notice that the model solves for the time path

of expected inflation, but the time path of actual inflation is readily obtained from
the short-run Phillips relationship, i.e.

π (t) = α(y(t) − yn) + π e(t)

To solve for equilibrium, a steady state, we set π̇ e = 0 and ẏ = 0. From the first
condition it immediately follows that y = yn. Combining this result with π̇ e = 0
and ẏ = 0 immediately gives the result π̇ e∗ = ṁ. (In what follows we shall suppress
the asterisk.)

First consider the π̇ e = 0 isocline. In this instance it readily follows that y = yn
and so the isocline is vertical at the natural level of income. If y > yn then π̇ e > 0
and hence π e is rising, and so to the right of the vertical isocline we have vector
forces pushing up expected inflation. Similarly, when y < yn then π̇ e < 0 and there
are forces pushing down the rate of expected inflation. These forces are illustrated
in figure 11.8(a). Consider next the ẏ = 0 isocline. In this case

a1ṁ − α(a1 − a2β)(y − yn) = a1π
e

... π e = ṁ − α

(
1 − a2β

a1

)
(y − yn)

which is negatively sloped if 1 − (a2 β/ a1) > 0, which we assume to be the case.
If ẏ > 0 then

π e < ṁ − α

(
1 − a2β

a1

)
(y − yn)

7 This is a simpler version of a similar model discussed in McCafferty (1990, chapter 7).
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Figure 11.8.

and so to the left (below) the ẏ = 0 isocline there are forces present increasing y.
Similarly, to the right (above) this isocline there are forces decreasing y. These
forces are illustrated in figure 11.8(b).

Combining the two isoclines leads to four quadrants with vector forces as
shown in figure 11.9. What this shows is a counter-clockwise movement of
the system. Hence, starting at any point such as point A, the system will
move in an anticlockwise direction either converging directly on the equilib-
rium point, as shown by trajectory T1, or converging on the equilibrium point
with a counter-clockwise spiral, as shown by trajectory T2. Which of these two
trajectories materialises depends on the values of the exogenous variables and
parameters of the dynamic system. Of course, there is nothing in the qual-
itative dynamics preventing the counter-clockwise spiral diverging from the
equilibrium. All we know from figure 11.9 is that the equilibrium is a spiral
node.

We can illustrate the model with a numerical example. We shall present this
model first in continuous time and then in discrete time. The discrete time ver-
sion has the merit that the system’s dynamics can readily be investigated on a
spreadsheet.
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Figure 11.9.

Example 11.2

Consider the numerical model

ẏ = 10(15 − π ) + 0.5π̇ e

π = 0.2(y − 15) + π e

π̇ e = 1.5(π − π e)

Equilibrium income and expected inflation is readily found to be y∗ = 15 and
π e∗ = 15, which is equal to the actual rate of inflation and to the growth of the
money supply. We have already established that the π̇ e = 0 isocline is vertical at
the natural level of income, namely y∗ = yn = 15. On the other hand, the demand
pressure curve ẏ = 0 is given by

π e = ṁ − α

(
1 − a2β

a1

)
(y − yn)

i.e. π e = 17.775 − 0.185y

and it is readily verified that π e∗ = 15 when y∗ = 15. Furthermore, the two differ-
ential equations take the form

ẏ = 177.75 − 1.85y − 10π e

π̇ e = −4.5 + 0.3y

which in terms of deviations from equilibrium are

ẏ = −1.85(y − y∗) − 10(π e − π e∗
)

π̇ e = 0.3(y − y∗)

Hence, the matrix of this system is

A =
[−1.85 −10

0.3 0

]
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Figure 11.10.

Figure 11.11.

with tr(A) = −1.85 and det(A) = 3. From chapter 4, table 4.1 (p. 180), since
tr(A) < 0, det(A) > 0 and tr(A)2 < 4 det(A) then we have a spiral node. Further-
more, the characteristic roots of A are r, s = −0.925 ± 1.4644i and since α in the
characteristic roots r, s = α ± βi is negative, then the system is asymptotically
stable. We verify this by using a software package to derive the direction field
of this system along with a trajectory beginning at point (y0, π

e
0 ) = (12, 12), as

shown in figure 11.10.
Consider the system in equilibrium at π∗ = π e = 15 and y = yn = 15. Now

let monetary growth decline from ṁ0 = 15 to ṁ1 = 12. The result is shown in
figure 11.11. In line with our previous analysis, we have an anticlockwise spiral
that converges on the new equilibrium point E1.

We noted above that although the model solves for π e(t) we can derive π (t)
from the short-run Phillips curve. What is the difference between the path of π e(t)
and the path of π (t)? These paths for a reduction in monetary growth just analysed
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Figure 11.12.

are shown in figure 11.12, which also shows the path of y(t) over part of the
adjustment period. What the lower diagram illustrates is not only the cycle nature
of actual and expected inflation, but that actual inflation is initially below expected
inflation. This is because actual income initially falls short of the natural level and
so dampens inflation. When, however, income is above the natural level then actual
inflation is above expected inflation and so pushes up actual inflation.

Example 11.3

Next consider a discrete version of the model with the same parameter values. The
model is

yt − yt−1 = 10(ṁt−1 − πt−1) + 0.5
(
π e
t − π e

t−1

)
πt = 0.2(yt − yn) + π e

t

π e
t − π e

t−1 = 1.5
(
πt−1 − π e

t−1

)
which leads to the two difference equations

yt = 177.75 − 0.85yt−1 − 10π e
t−1

π e
t = −4.5 + 0.3yt−1 + π e

t−1
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Figure 11.13.

These are readily set out on a spreadsheet as shown in figure 11.13, which includes
the dynamic path of the system from a starting value of (y0, π

e
0 ) = (12, 12).

The system, however, now diverges from the fixed point in a counter-clockwise
direction! Why is this? The matrix of the system is

A =
[−0.85 −10

0.3 1

]

with characteristic equation λ2 − 0.15λ + 2.15 = 0 and complex roots, r, s =
α ± βi, i.e.

r = 0.075 + 1.4644i

s = 0.075 − 1.4644i

For discrete systems, stability requires8∣∣∣√α2 + β2
∣∣∣ < 1

However, in this example
∣∣∣√α2 + β2

∣∣∣ = 1.4663 and so the system, illustrated in

figure 11.13, is explosive.
This example should act as a warning. It is not possible to attribute the same

properties to discrete systems as occur in continuous systems. The more complex
the system the more likely the discrete system will exhibit different properties
from its continuous counterpart.

8 See section 3.8 and Azariadis (1993, pp. 36–8).
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11.3 Deflationary ‘death spirals’9

At the time of writing (mid-2001), Japan was in a recession and the USA began to
experience a serious downturn – enough for some economists to wonder whether a
major deflation worldwide was likely. In explaining such a possibility, interest has
returned to the concept of the liquidity trap. Not in the sense of the early literature
that considered a low positive nominal interest rate so that the demand for real
money balances became infinitely elastic at this value, but because the nominal
interest rate cannot be negative. These two types of liquidity trap are conceptually
different. The floor of zero on the nominal interest rate leads to what Groth (1993)
has called a dynamic liquidity trap. Here we shall present a simplified version of
the model outlined in Groth (1993) and similar to the one utilised by Krugman
(1999).

The model is in natural logarithms, except for all inflation rates and the nominal
interest rate.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

c = a + b(1 − t)y
i = i0 − h(r − π e)
y = c + i + g
md = ky − ur
ms = m − p
md = ms

π = α(y − yn) + π e

π̇ e = β(π − π e)

c = consumption
y = income
i = investment
r = nominal interest rate
π e = expected inflation
md = demand for real money balances
ms = supply of real money balances
m = nominal money supply
p = price level
yn = natural level of income
π = inflation
π̇ e = dπ e/dt

g, yn andm are assumed constant, as are all autonomous expenditures (a and i0) and
all parameters (b, t, h, k, u, α and β). The first six equations are the familiar IS-LM
model, equation (7) is the expectations augmented Phillips curve and equation (8)
specifies adaptive expectations.

The dynamics of the model is analysed in terms of (ms, π
e)-phase space, i.e.,

we need to derive two equations of the form

ṁs = f (ms, π
e)

π̇ e = g(ms, π
e)

Although the algebra is a little tedious, it does allow us to investigate various
numerical versions of the model. From equation (5), and noting m is constant, we
have ṁs = −π and substituting equation (7) into this we have

ṁs = −[α(y − yn) + π e](11.13)

9 I am grateful to Christian Groth, University of Copenhagen, for drawing my attention to the literature
on which this section is based.
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From equation (7) we immediately have π − π e = α(y − yn), which on substitu-
tion into equation (8), gives

π̇ e = αβ(y − yn) (11.14)

In order to eliminate income, y, in each dynamic equation, we require to solve the
IS-LM component of the model embedded in equations (1)–(6). Combining (1),
(2) and (3) we derive the IS-curve in exactly the same way we did in chapter 10.
This is

r =
(
a + i0 + g

h

)
+ π e − [1 − b(1 − t)]y

h
(11.15)

From equations (4), (5) and (6) we obtain the LM-curve

r = −ms

u
+ ky

u
(11.16)

Substituting equation (11.16) into equation (11.15) we derive an expression for
equilibrium income

y∗ = (a + i0 + g) + hπ e + (h/u)ms

1 − b(1 − t) + (kh/u)
(11.17)

Substituting equation (11.17) into equation (11.13) we obtain

ṁs =
{ −α(a + i0 + g)

1 − b(1 − t) + (kh/u)
+ αyn

}
− α(h/u)ms

1 − b(1 − t) + (kh/u)
(11.18)

−
{

αh

1 − b(1 − t) + (kh/u)
+ 1

}
π e

which is a linear function ofms and π e. Substituting equation (11.17) into equation
(11.14) we obtain

π̇ e =
{

αβ(a + i0 + g)

1 − b(1 − t) + (kh/u)
− αβyn

}
+ αβ(h/u)ms

1 − b(1 − t) + (kh/u)
(11.19)

+ αβhπ e

1 − b(1 − t) + (kh/u)

which is also linear in ms and π e.
We shall simplify these linear equations by writing them in the form

ṁs = A + Bms + Cπ e

π̇ e = D + Ems + Fπ e

Using these equations we can define the (ms, π
e)-phase plane with isoclines ṁs = 0

and π̇ e = 0. We shall now pursue this model by means of a numerical example.
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Example 11.4

Consider the model

c = 60 + 0.75(1 − 0.2)y
i = 430 − 4(r − π e)
y = c + i + g
md = 0.25y − 10r
ms = 450 − p
md = ms

π = 0.1(y − 2000) + π e

π̇ e = 0.08(π − π e)

a = 60
b = 0.75 t = 0.2
i0 = 430 h = 4
g = 330
k = 0.25 u = 10
m = 450 p = 0
yn = 2000
α = 0.1
β = 0.08

Then

ṁs = 36 − 0.08ms − 1.8π e

π̇ e = −2.88 + 0.0064ms + 0.064π e

Setting ṁs = 0 and π̇ e = 0 we derive the two isoclines

ṁs = 0 π e = 20 − 0.0444ms
(11.20)

π̇ e = 0 π e = 45 − 0.1ms

with fixed point (m∗
s , π

e∗) = (450, 0). The two isoclines identify four quadrants,
as shown in figure 11.14.

To derive the vector forces in each quadrant, we note that

ṁs > 0 implies π e < 20 − 0.0444ms

therefore below ṁs = 0 and ms is rising while above it it is falling. Similarly,

π̇ e > 0 implies π e > 45 − 0.1ms

therefore above π̇ e = 0 and π e is rising while below it it is falling. The vector
forces, therefore, indicate a counter-clockwise movement around the fixed point.

To consider (local) stability, consider the linear system in terms of deviations
from equilibrium, then

ṁs = −0.08(ms − m∗
s ) − 1.8(π e − π e∗)

π̇ e = 0.0064(ms − m∗
s ) + 0.064(π e − π e∗)

Figure 11.14.
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Figure 11.15.

whose matrix is

A =
[−0.08 −1.8
0.0064 0.064

]

with

tr(A) = −0.016

det(A) = 0.0064

which indicates local stability.10 In fact, as Groth (1993) indicates, stability is
guaranteed if βu/m∗

s < 1, and in the present example βu/m∗
s = 0.00178 and so

stability is assured.
Before continuing with this example, it is useful to display the results in the

more familiar IS-LM model. The equations for the IS-curve and the LM-curve are

IS : r = 205 − 0.1y
LM : r = −45 + 0.025y

which intersect at the point (y∗, r∗) = (2000, 5) with π = π e = 0, as shown in
figure 11.15.

So far, however, we have not taken account of the nominal interest rate floor of
zero. If the equilibrium interest rate is r = 0, then md = kyn = 500, which is equal
to the money supply, ms. But if r = 0, then π e must be equal to minus the real rate
of interest, where rreal = r − π e. Therefore in our numerical example it follows
that π e = −5. This is illustrated by the dotted line in figure 11.15, which passes
through point y = yn = 2000 for r = 0.

10 The eigenvectors are −0.008 ± 0.0796i and since the real part is negative, the system is asymptot-
ically stable. See chapter 4.



488 Economic Dynamics

The resulting kink in the money demand curve at r = 0 results in a kink in both
isoclines ṁs = 0 and π̇ e = 0. To establish exactly where these kinks occur we note
that the equilibrium interest rate for the general model is

r∗ = (k/u)(a + i0 + g)

1 − b(1 − t) + (kh/u)
+
{

(h/u)(k/u)

1 − b(1 − t) + (kh/u)
− 1

u

}
ms

(11.21)
+ (kh/u)π e

1 − b(1 − t) + (kh/u)

i.e.

r∗ = G + Hms + Jπ e

For our numerical example, this expression is

r∗ = 41 − 0.08ms + 0.2π e

and so the relationship between π e and ms when r∗ = 0 is given by

π e = −205 + 0.4ms(11.22)

Equating equation (11.22) with each equation in (11.20) gives the kinks at the
following values

ṁs = 0 (ms, π
e) = (506.3, −2.48)

π̇ e = 0 (ms, π
e) = (500, −5)

At these values the isoclines become horizontal, as illustrated in figure 11.16. Note
in particular, that π̇ e is equal to the real rate of interest that we established above,
namely −5.

Now return to equation (11.14) where π̇ e = αβ(y − yn). It immediately follows
that

π̇ e = 0 implies y = yn

π̇ e > 0 implies y > yn

π̇ e < 0 implies y < yn

Figure 11.16.
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Figure 11.17.

But we established earlier that for π̇ e < 0 the economy is below the π̇ e = 0 iso-
cline. So the recessionary region is shown by the area below this isocline, as
illustrated in figure 11.17, and identified by the shaded area.

Consider a situation where the economy is in recession, and at point A in
figure 11.17, where y < yn and there is excess capacity. Suppose the line marked T1

shows the trajectory of the economy. But at point B, the economy hits the nominal
interest rate floor, and thereafter moves in the southeast direction and always away
from the fixed point. It cannot get out of the dynamic liquidity trap. The output
gap feeds expectations of deflation, and since the nominal interest rate cannot fall
any further below zero, this implies a rise in the real interest rate. This in turn
worsens the output gap. The economy falls into a deflationary spiral that it cannot
escape. More significantly, raising the money supply to expand the economy will
not alleviate the situation.

Now consider an independent Central Bank’s solution to the economy’s prob-
lem at point A. Given the economy is in recession, it could expand the money
supply. At point A the nominal rate of interest is positive. If it expands the money
supply immediately, we may suppose the economy moves along trajectory T2. It
passes into the corridor (what Krugman calls the ‘window of opportunity’) and
can manoeuvre the economy to equilibrium. On the other hand, if it misses the cor-
ridor and follows trajectory T1, then deflation passes the point of no return. What
Krugman argues is that if the Central Bank increases monetary growth rapidly then
trajectory T1 is more likely.

It is interesting in this regard to comment on the behaviour of the European
Central Bank (ECB) in April–May 2001. The USA was concerned about a reces-
sion and the Fed (Federal Reserve) lowered interest rates in a set of steps. The
independent Bank of England also lowered UK interest rates. However, the ECB
kept interest rates constant, i.e., refused to expand the money supply. Europe at the
time was in a situation of below full capacity (y < yn), with high levels of unem-
ployment, especially in Germany. If, then, the economy (Europe in this instance)
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follows path T1 by the time the ECB decides to act, it may be too late. As Krugman
(1999) says,

conservative monetary policy may seem prudent and responsible to the European
Central Bank today, just as it did to the Bank of Japan not long ago, but in
retrospect that supposed prudence may look like disastrous folly.

11.4 A Lucas model with rational expectations

In line with earlier sections, our aim in this one is to introduce a simple macro-
economic model to illustrate how rational expectations are employed in macro-
economic modelling. From the outset we need to be absolutely clear about vari-
ables for which expectations are formed. In particular, we need to specify the
date the expectation was formed, and second the future time period about which
the expectation is being formed. To be more precise, suppose we have a vari-
able X about which expectations are being formed. If the expectation is made
at time t, then we write Et to denote an expectation being formed at time t.
But it is possible to formulate an expectation about X one period ahead, i.e.,
EtXt+1, or two periods ahead, EtXt+2, etc. In fact, we can formulate an expec-
tation for any future time period. By the same reasoning, an expectation about
Xt+ 1 may have been made two periods ago, i.e., Et−1Xt+1 is an expectation
made at time t − 1 about variable X at time t+ 1. So far we are simply speci-
fying a notation to express expectations. No statement has been made about how
such expectations are formed. Thus, if π denotes inflation, then Etπt+1 denotes
expected inflation11 next period having been made in period t. Since prices pt
are usually expressed in natural logarithms, as we shall be doing in this section,
then

Etπt+1 = Etpt+1 − pt

The model we shall investigate is

ydt = a0 + a1(mt − pt) + εt a0 > 0, a1 > 0

yst = yn + b1(pt − Et−1pt) + νt b1 > 0

ydt = yst = yt
ε ∼ N

(
0, σ 2

ε

)
, ν ∼ N

(
0, σ 2

ν

)(11.23)

This model has a variety of new features that are worth commenting on. First,
aggregate demand is the same as our earlier section but has a random component
added to it. Second, the Phillips curve is in the Lucas form, i.e., the natural level
of income is adjusted by deviations of prices from expected prices. Third, the
aggregate supply also involves random shocks. Fourth, the random components
are normally distributed with zero mean and constant variance. For those readers
less familiar with stochastic equations, the random terms simply act like shocks to
the AD and AS curves. On average, since their means are zero, the likely expected
curve is the respective deterministic component.

11 Although it is common to write πe
t+1, this does not make it explicit when the expectation was formed.

It is implicitly assumed to be at time t.
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First we solve the model under the assumption that expectations are given. Thus,
we can express the equations in matrix form as follows[

1 a1

1 −b1

] [
yt
pt

]
=
[

a0 + a1m + εt
yn − b1Et−1pt + νt

]

Using Cramer’s rule we can solve for yt and pt

yt = a0b1 + a2yn
a1 + b1

+ a1b1mt

a1 + b1
− a1b1Et−1pt

a1 + b1
+ b1εt + a1νt

a1 + b1

pt = a0 − yn
a1 + b1

+ a1mt

a1 + b1
+ b1Et−1pt

a1 + b1
+ εt − νt

a1 + b1

(11.24)

These are the reduced form equations under the assumption that expected prices
are exogenous. The next step in the rational expectations procedure is to take the
expected value at time t−1 for the variable pt. In other words, the expectation of
the variable p is derived in the same manner that determines the variable p itself.
Thus

Et−1pt = a0 − yn
a1 + b1

+ a1Et−1mt

a1 + b1
+ b1Et−1pt

a1 + b1
+ Et−1εt − Et−1νt

a1 + b1

But Et−1εt = Et−1νt = 0, hence

Et−1pt = a0 − yn
a1 + b1

+ a1Et−1mt

a1 + b1
+ b1Et−1pt

a1 + b1

... Et−1pt = a0 − yn
a1

+ Et−1mt

which is the rational expectations solution forEt−1pt. Now having solved forEt−1pt
we can substitute this into the reduced form equations. Doing so, and simplifying,
we obtain the solutions for yt and pt as follows

yt = yn + a1b1(mt − Et−1mt)

a1 + b1
+ b1εt + a1νt

a1 + b1

pt = a0 − yn
a1

+ a1mt − b1Et−1mt

a1 + b1
+ εt − νt

a1 + b1

(11.25)

To see that this model is consistent with our earlier results, consider the following
two cases:

(i) constant money supply and correct expectations
(ii) constant monetary growth and correct expectations.

To analyse these two cases we first need to obtain the rate of inflationπt = pt − pt−1

pt = a0 − yn
a1

+ a1mt − b1Et−1mt

a1 + b1
+ εt − νt

a1 + b1

pt−1 = a0 − yn
a1

+ a1mt−1 − b1Et−2mt−1

a1 + b1
+ εt−1 − νt−1

a1 + b1
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But πt = pt − pt−1, hence

πt = a1(mt − mt−1)

a1 + b1
+ b1(Et−1mt − Et−2mt−1)

a1 + b1

+ (εt − εt−1) − (νt − νt−1)

a1 + b1

Under the condition that mt = mt−1 and Et−1mt = Et−2mt−1, then

πt = (εt − εt−1) − (νt − νt−1)

a1 + b1
(11.26)

with no random shocks (εt = εt−1 = 0 and νt = νt−1 = 0) then πt = 0, which was
the first model we analysed in section 11.2.

Under the condition of constant monetary growth, λ, which is expected, then

mt − mt−1 = λ

Et−1mt − Et−2mt−1 = λ

so that

πt = a1λ

a1 + b1
+ b1λ

a1 + b1
+ (εt − εt−1) − (νt − νt−1)

a1 + b1

i.e. πt = λ + (εt − εt−1) − (νt − νt−1)

a1 + b1

(11.27)

with no random shocks inflation is equal to monetary growth, λ, the result next
analysed in section 11.2.

It is worth summarising a number of features of this model.

(1) Since

yt = yn + a1b1(mt − Et−1mt)

a1 + b1
+ b1εt + a1νt

a1 + b1

then the correct forecast on the part of market participants means that
income can still deviate from the natural level in the short run, but only
due to random factors either on the demand side or on the supply side.

(2) The deviation of yt from yn depends not only on the level of the random
elements, but also on:
(a) The parameters of the economic system (both AD and AS).
(b) The correctness of forecasting government monetary policy. Assum-

ing no shocks (εt = νt = 0) then income can still be above/below
the natural level if forecasters underestimate/overestimate the money
supply.

(3) A positive monetary surprise (i.e. mt > Et−1mt) means a rise in yt, pt and
π t.

(4) Although pt includes forecast errors these are random in nature and so
there are no systematic forecast errors. To see this, note

pt − Et−1pt = a1(mt − Et−1mt)

a1 + b1
+ εt − νt

a1 + b1

If the money stock is constant (i.e. mt = Et−1mt), or if the money stock is
forecasted correctly (Et−1mt = mt), or if the money stock itself is subject
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to random shocks (which then means mt − Et−1mt is a random variable),
then pt − Et−1pt is purely a random variable. Thus, the (mathematical
conditional) expectation is

E( pt − Et−1pt) = E(εt) − E(νt)

a1 + b1
= 0

(5) It can be shown (see exercise 5) that any systematic component of a
money supply rule has no bearing on the solution value of output, i.e.,
systematic elements of policy which are known have no impact on real
output.

(6) A systematic component of a money supply rule can have a bearing on
the solution of pt, and hence on π t (see exercise 6).

(7) The procedure here adopted for deriving the rational expectations is pos-
sible only if the reduced form equations can be derived. Where this can-
not be done, then other procedures are necessary. (See Holden, Peel and
Thompson 1985; Leslie 1993).

(8) Most attention has been on the result derived in (1) indicating policy
impotence with regard to influencing the level of real income. So long
as the money supply is correctly forecasted (i.e. there are no monetary
surprises), then income can deviate from the natural level only as a result
of random shocks to either aggregate demand or aggregate supply.

11.5 Policy rules

In the previous section we pointed out the possibility of policy impotence. Let
us make this more precise. Consider some policy rule for the money supply. A
variety has been considered – some active and some passive. An active policy rule
is one in which the policy in period t depends on the performance of the economy
in the previous periods. A passive policy rule is completely independent of recent
economic performance. For our present analysis we shall consider policy rules
based only on variables in the previous period. This in no way invalidates the
conclusions.

Let x denote the policy instrument used for monetary control12 and let q denote
a vector of economy variables. Then an active policy rule takes the form

mt = f (xt−1, qt−1) (11.28)

where f (x, q) is nonstochastic and can be linear or nonlinear. A passive policy rule,
on the other hand, can take the form

mt = g(xt−1) (11.29)

where g(x) is nonstochastic which can be linear or nonlinear.
Return now to the result in the previous section for income, given in equation

(11.25)

yt = yn + a1b1(mt − Et−1mt)

a1 + b1
+ b1εt + a1νt

a1 + b1

12 A typical choice for x is either the money base or the rate of interest.
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This result suggests that income will deviate from its natural level for two basic
reasons:

(1) deviation of mt from Et−1mt

(2) random occurrences to either aggregate demand or aggregate supply.

Here our concentration is on the first. Given either of the two rules above, so long
as they are nonstochastic then

Et−1mt = Et−1f (xt−1, q) = f (xt−1, q)
(11.30)

Et−1mt = Et−1g(xt−1) = g(xt−1)

which implies that deviations mt − Et−1mt = 0 for both the active and the pas-
sive policy rule. It does not matter therefore whether the rule is active or passive
nor whether it is simple or complex, the result is still the same. Deviations will
be nonnegative only when forecasters get the government’s policy rule wrong.
This would especially be true when the government ‘changed’ the rule with-
out announcing it. Under rational expectations theory, however, market partic-
ipants would soon come to know the rule as they attempted to minimise their
errors.

If the policy rule involved a random component, wt, which we again assume is
normally distributed with zero mean and constant variance, then the two rules can
take the form

mt = f (xt−1, q) + wt

mt = g(xt−1) + wt

wherewt ∼ N(0, σ 2
w). Taking expectations at time t − 1, i.e., Et−1, we immediately

arrive at the nonstochastic component since Et−1wt = 0. Hence

mt − Et−1mt = wt

in both cases. The result on income is the same, namely

yt = yn + a1b1wt + b1εt + a1νt

a1 + b1

The only reason why income deviates from its natural level is because of random
shocks, including random elements to the policy rule.

Before leaving this topic a warning is in order. The impotence of policy may
appear to be solely because of the assumption of rational expectations. But this is
not true. It also depends on the model chosen to illustrate the problem. In particular
the result crucially depends on the assumption of completely flexible prices and a
vertical long-run Phillips curve. (See Attfield, Demery and Duck 1985, chapter 4).

11.6 Money, growth and inflation

In this section we turn to yet another model where inflation takes place in a growing
economy. In such models it is common to establish that along the equilibrium
growth path, the expected rate of inflation equals the rate of monetary expansion
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minus the warranted rate of growth.13 Furthermore, in models involving rational
expectations (which amount to perfect foresight models) then expected inflation
equals actual inflation.

The model we use is that given by Burmeister and Dobell (1970, chapter 6) and
taken up by George and Oxley (1991). In this model agents have perfect foresight
and all markets are assumed to clear continuously.14 The model assumes a fixed
money growth rule of the type advocated frequently by Milton Friedman.

The goods market is captured by the following set of equations

Y = F(K, L)

y = f (k)

C = cY

Y = cY + K̇ + δK

(11.31)

where

Y = output

K = capital stock

L = labour

y = Y/L

k = K/L

C = consumption

c = marginal propensity to consume

K̇ = dK/dt = net investment

δ = depreciation

The final equation in (11.31) is no more than income equals consumption plus
investment, and is the condition for equilibrium in the goods market. This condition
is assumed to hold continuously. In line with our discussion of the Solow growth
model in section 2.7, we can derive the following differential equation

k̇ = sf (k) − (n + δ)k (11.32)

where

s = 1 − c

n = L̇/L (the rate of growth of the labour force)

Turning now to the money market we assume a constant monetary growth rule

Ṁ

M
= λ or Ṁ = λM (11.33)

The real demand for money per capita, m = M/L, is given by

m = M

L
= PG(y, r) (11.34)

13 For an analysis of the production function and the resulting differential equation, see section 2.7.
14 As we have pointed out elsewhere, these are two quite separate assumptions.
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where

m = per capita nominal money balances

P = price level

r = nominal interest rate

Gy = ∂G/∂y > 0

Gr = ∂G/∂r < 0

The model is more easily analysed in terms of per capita real money balances,
namely x = m/P, where

x = m

P
= G(y, r)(11.35)

Equation (11.35) is assumed to hold continuously because the money market is
assumed to be always in equilibrium. From equation (11.35) we assume we can
derive the implicit function

r = H(y, x)

In this model there are only two assets: money and physical capital. The real
rate of interest is the nominal rate, r, minus the rate of inflation, π (where
π e = π ). In equilibrium this will be equated with the marginal product of capital,
f ′(k), adjusted for the rate of depreciation, δ, i.e.

r − π = f ′(k) − δ
(11.36)

or r = f ′(k) − δ + π

We now require to obtain a differential equation for x. Since x = m/P
then ẋ is

ẋ = ṁ

P
−
(
Ṗ

P

)
x or ẋ = ṁ

P
− πx

i.e. ẋ = ṁ

P
+ ( f ′(k) − r − δ)x

But

ṁ = Ṁ

L
−
(
M

L

)
L̇

L

= (λ − n)
M

L
= (λ − n)m = (λ − n)Px

and so

ẋ = (λ − n)Px

P
+ ( f ′(k) − r − δ)x

= ( f ′(k) + λ − δ − n − r)x

i.e.

ẋ = ( f ′(k) + λ − δ − n − H( f (k), x))x(11.37)
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We can establish the first isocline quite easily. In equilibrium k = k∗ and x = x∗

with the result that k̇ = 0 and ẋ = 0. Consider k̇ = 0, then

sf (k∗) = (n + δ)k∗

and for positive k this is unique, as illustrated in figure 11.18.
It is also independent of x. Hence, in (x, k)-space this gives rise to a vertical

isocline at k∗, as shown in figure 11.19. For k < k∗ then k is rising while for k >

k∗, k is falling, leading to the vector forces shown in Figure 11.19.
The isocline ẋ = 0 is less straightforward, and in general is nonlinear. We shall

pursue this isocline by means of a numerical example, using the figures in George
and Oxley (1991, p. 218).

Figure 11.18.

Figure 11.19.
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Example 11.5

Let

y = 2k0.25

ln x = ln y − 0.25 ln r
s = 0.2, δ = 0.03, λ = 0.05, n = 0.02

Then

k̇ = 0.4k0.25 − 0.05k

If k̇ = 0 then

k(0.4k−0.75 − 0.05) = 0

i.e. k∗ = 0 or k∗ = 16.
Before considering ẋ = 0, we note that

x = yr−0.25

... r = y4x−4 = (2k0.25)4x−4 = 16kx−4

and f ′(k) = 0.5k−0.75

Hence

ẋ = (0.5k−0.75 − 16kx−4)x

If ẋ = 0 then

(0.5k−1.75 − 16x−4)kx = 0

So ẋ = 0 if

x = 0 or (0.5k−1.75 − 16x−4) = 0

The second term leads to the isocline

x = 2.3784k0.4375

which is nonlinear, and is shown in figure 11.20.

Figure 11.20.
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Figure 11.21.

Figure 11.22.

Since ẋ > 0 when x > 2.3784 k0.4375 then above the isocline vector forces are
pushing x up; while below the isocline they are pushing x down. These forces are
also illustrated in figure 11.20.

The system’s dynamics are shown in figure 11.21. The two isoclines intersect at
the equilibrium point E, where (k∗, x∗) = (16, 8). What figure 11.21 shows is not
only a nonlinear isocline, but that the equilibrium is a saddle-point solution whose
stable arm is given by the equation satisfying ẋ = 0. The full dynamics of the
system are shown in figure 11.22, which uses Maple’s phaseportrait command to
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plot the vector forces and the ẋ = 0 isocline, and which has then been annotated
to complete the figure.

11.7 Cagan model of hyperinflation

11.7.1 Original model

Cagan argued that during periods of hyperinflation the main determinant of the
demand to hold money balances was the expected rate of inflation – the higher
the rate of expected inflation the lower the demand to hold real money bal-
ances. Income and interest rates could be thought of as constant during peri-
ods of hyperinflation relative to the impact of expected inflation. The Cagan
(1956) model consists of two equations, a demand for money equation (where
nominal demand is equated with nominal supply) and an equation for adaptive
expectations

m(t) − p(t) = −απ e(t) α > 0

π̇ e(t) = γ [π (t) − π e(t)] γ > 0
(11.38)

where

m = lnM = logarithm of nominal money stock
p = lnP = logarithm of prices
π e = expected inflation
π = inflation

Also note that since p(t) is a logarithm then ṗ(t) = π (t). In order to appreciate
the dynamics of this model, differentiate the first equation in (11.38) with respect
to time, holding the money stock constant at some level, then

−ṗ(t) = −απ̇ e(t)

= −αγ [π (t) − π e(t)]

But ṗ(t) = π (t) so

−π (t) = −αγ [π (t) − π e(t)]

i.e. π (t) = −αγπ e(t)

1 − αγ
= γ [m(t) − p(t)]

1 − αγ

or

ṗ(t) = γ [m(t) − p(t)]

1 − αγ
(11.39)

which is a first-order differential equation.
The fixed point of equation (11.39) satisfies ṗ(t) = 0, which means p(t) = m(t).

Differentiating this result with respect to time t gives the typical monetarist result
ṗ(t) = π (t) = m(t), i.e., inflation is equal to the growth of the money supply. The
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Figure 11.23.

fixed point is stable only if the coefficient of p(t) is negative, which requires

1 − αγ > 0 or αγ < 1

The situation is shown in figure 11.23(a).
Cagan’s stability condition emphasises that with a highly sensitive demand for

money function (α high), then stability requires inflationary expectations to adapt
slowly to past inflation rates (γ = 1/α small). If this is not the case, then the
system is unstable, as shown in figure 11.23(b), and the economy will exhibit
either accelerating inflation or accelerating deflation depending on the initial price
level.

Now consider the Cagan model with rational expectations as represented by
perfect foresight. Then

m(t) − p(t) = −απ e(t) α > 0
π̇ e(t) = π (t)

(11.40)

Hence

m(t) − p(t) = −απ (t) = −αṗ(t)

i.e.

ṗ(t) = − 1

α
[m(t) − p(t)] (11.41)

Since the coefficient of p(t) is 1/α > 0, then this system is globally unstable. The
dynamics is captured in terms of figure 11.24. Assume the system is in equilibrium
with p0 = p∗ with money supply m0. Now suppose there is a rise in the money
supply from m0 to m1. To restore equilibrium in the money market the demand for
real money balances must also increase. In the present model this can occur only
if expected inflation (equal to actual inflation) falls. But as the inflation rate falls
the price level starts to fall (π < 0). With the money stock now fixed at m1, real
money balances rise. To re-establish equilibrium in the money market means that
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Figure 11.24.

the demand for real money balances must fall, which means π e = π also falls.
The result is a continuing fall in the price level.

11.7.2 Cagan model with sluggish wages15

This version of the model consists of the following equations, where we have
suppressed the time variable

m − p = ky − απ e α > 0
y = c + (1 − θ )n 0 < θ < 1
w − p = a − θn
ẇ = β(n − n) β > 0
π e = π = ṗ

(11.42)

where all variables are in natural logarithms except for inflation rates and
where

m = stock of money
p = price level
y = income
π e = expected inflation
n = labour
w = money wages
n = natural level
π = ṗ = inflation

The first equation adds an income component to the Cagan demand for money
equation. The second equation arises from a Cobb–Douglas production function,
while the third equation is that real wages is equal to the marginal physical product
of labour. The fourth equation is the Phillips curve while the fifth equation is the
assumption of perfect foresight.

15 This draws on Turnovsky (1995, section 6.2).
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From the first and last equations we have

m − p = ky − αṗ

ṗ = ky

α
− (m − p)

α

From the second and third equations we have

θn = a − (w − p)

y = c + (1 − θ )

[
a

θ
− w − p

θ

]

= c + a(1 − θ )

θ
−
(

1 − θ

θ

)
(w − p)

Substituting this result into the previous one, we have

ṗ = k

α

[
c + a(1 − θ )

θ

]
− k

α

(
1 − θ

θ

)
(w − p) − m − p

α

ṗ = k

α

[
c + a(1 − θ )

θ

]
− m

α
+
[
k

α

(
1 − θ

θ

)
+ 1

α

]
p − k

α

(
1 − θ

θ

)
w

Turning to the second differential equation,

ẇ = β(n − n)

n = a

θ
− w − p

θ

... ẇ = β

[
a

θ
− w − p

θ
− n

]
= β

(a
θ

− n
)

+ β

θ
p − β

θ
w

The model therefore comprises the following two differential equations

ṗ = k

α

[
c + a(1 − θ )

θ

]
− m

α
+
[
k

α

(
1 − θ

θ

)
+ 1

α

]
p − k

α

(
1 − θ

θ

)
w

(11.43)
ẇ = β

(a
θ

− n
)

+ β

θ
p − β

θ
w

Or in matrix form

[
ṗ
ẇ

]
=




k

α

[
c + a(1 − θ )

θ

]
− m

α

β
(a
θ

− n
)


+




k

α

(
1 − θ

θ

)
+ 1

α
− k

α

(
1 − θ

θ

)
β

θ
−β

θ



[
p
w

]

where the matrix of the system is

A =



k

α

(
1 − θ

θ

)
+ 1

α
− k

α

(
1 − θ

θ

)
β

θ
−β

θ


 (11.44)

and where det(A) = −β/αθ < 0. Hence this system is represented by a saddle
point solution. To illustrate the model consider the following numerical example.
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Example 11.6

The equations are

m − p = 0.25y − 2π e

y = 3 + 0.75n
w − p = 2 − 0.25n
ẇ = 0.3(n − 20)
π e = π = ṗ

If m = 20 then we have

ṗ = −8.875 + 0.875p − 0.375w

ẇ = −3.6 + 1.2p − 1.2w

The fixed point of the system is found by setting ṗ = 0 and ẇ = 0 with result
(w∗, p∗) = (12.5, 15.5). The resulting isoclines are

ṗ = 0 p = 10.1429 + 0.4286w
ẇ = 0 p = 3 + w

In matrix form the system is[
ṗ
ẇ

]
=
[−8.875

−3.6

]
+
[

0.875 −0.375
1.2 −1.2

] [
p
w

]

and so the matrix of the system is

A =
[

0.875 −0.375
1.2 −1.2

]

with tr(A) = −0.325 and det(A) = −0.6. Since det(A) < 0 then we have a saddle
point equilibrium. The saddle point equilibrium is also verified by computing the
eigenvalues. The eigenvalues are r = −0.954 and s = 0.629, and since these are
opposite in sign we have a saddle point solution. The eigenvectors associated with
the eigenvalues are

vr =
[
0.2009
0.9796

]
=
[

1
4.8761

]
vs =

[
0.8361
0.5486

]
=
[

1.5241
1

]

To derive the saddle paths we need to consider (A − rI)vr = 0 and (A − sI)vs =
0. Consider r = −0.954 first. Then

(A − rI)vr =
[
1.829 −0.375
1.2 −0.246

] [
p − p
w − w

]
=
[

0
0

]

Using the first equation, then

1.829(p − 15.5) − 0.375(w − 12.5) = 0

p = 12.9371 + 0.205w
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Figure 11.25.

Next consider s = 0.629, then

(A − sI)vs =
[
0.246 −0.375
1.2 −1.829

] [
p − p
w − w

]
=
[

0
0

]

Again using the first equation, then

0.246(p − 15.5) − 0.375(w − 12.5) = 0

p = −3.5549 + 1.5244w

i.e.

S0
1 : p = 12.9371 + 0.205w stable arm

S0
2 : p = −3.5549 + 1.5244w unstable arm

The vector forces of this extended Cagan model are illustrated in figure 11.25.
When ṗ > 0 then p > 10.1429 + 0.4286w, so above the ṗ = 0 isocline p is

rising while below p is falling. Similarly, when ẇ > 0 then p > 3 + w, and so
above the ẇ = 0 isocline w is rising while below w is falling.

Consider now a one-off rise in the money supply, som = 25. This has an impact
only on the ṗ = 0 isocline, which shifts up. The equation of this new isocline is

p = 13 + 0.4286w

resulting in a new equilibrium of (w∗, p∗) = (17.5, 20.5). The situation is illustrated
in figure 11.26. Notice that dp∗ = dw∗ = dm = 5. This readily follows from the
equation of ẇ = 0. The new stable saddle path is S1

1S
1
1 which passes through the

fixed point E1. But what trajectory does the economy follow? In this model we
assume that prices are flexible and can ‘jump’ to the new stable arm immediately.
This is an implication of the assumption of rational expectations with perfect
foresight. Wages are assumed to alter continuously but sluggishly owing to wage
contracts. The path the economy follows, therefore, is E0->A->E1 as shown by
the heavy line in figure 11.26.
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Figure 11.26.

11.8 Unemployment and job turnover

In order to introduce the dynamics of unemployment (and employment) we con-
sider in this section a very extreme model in which we assume that at the ruling
wage there is full employment in the sense that the number of jobs is matched
by the number of households seeking employment. The working population, N,
is assumed fixed and the number of jobs available is constant. At any instant of
time a fraction s of individuals become unemployed and search over firms to find
a suitable job. Let f denote the probability of finding a job, i.e., the fraction finding
a job. At any moment of time, if u is the fraction of the participating labour force
unemployed, then

s(1 − u)N = individuals entering the unemployment pool

f uN = individuals exiting the unemployment pool.

The change in the unemployment pool, uN, is therefore given by the differential
equation

d(uN)

dt
= s(1 − u)N − f uN 0 < s < 1, 0 < f < 1(11.45)

Since N is constant then

u̇ = du

dt
= s(1 − u) − f u

or u̇ = s − (s + f )u
(11.46)

Equilibrium requires that du/dt = 0, or

s − (s + f )u∗ = 0

i.e. u∗ = s

s + f
= s/f

1 + (s/f )

(11.47)

where

∂u∗

∂s
= f

(s + f )2
> 0,

∂u∗

∂ f
= −s

(s + f )2
< 0

In other words, the equilibrium unemployment rate – the natural rate in this model –
rises the more individuals enter the unemployment pool to actively search for a
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Figure 11.27.

job; and falls the greater the job-finding rate. But this simple model says more than
this about the equilibrium (natural) level of unemployment. It says that the level
of u∗ occurs because individuals need to seek alternative employment and that the
search for a new job takes time.

The time path of unemployment is readily found by solving the differential
equation (11.46). If u(0) = u0, then

u(t) = u∗ + (u0 − u∗)e−(s+f )t u∗ = s

s + f

Since both s and f are positive then this solution implies that unemployment tends
to its equilibrium value over time. The situation is illustrated in figure 11.27.

In this model concentration is on the level of unemployment. Of course, if N is
fixed then employment, E, is simply E = (1−u)N or e = E/N = (1−u), where e is
the employment rate. In order to lay the foundation for other dynamic theories it
is worth noting that at any moment of time there will be an unemployment rate of
u = U/N, and a vacancy rate of v = V/N. Since N is constant throughout we can
concentrate on the rates u, v and e.
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At any moment of time there will be an unemployment rate u and a vacancy rate
v, where those individuals who are unemployed are attempting to match themselves
with the available vacancies. Since we have assumed that the number of jobs is
matched by the number seeking employment, then u = v. The problem is one of
matching the unemployed to the vacancies. Accordingly the literature refers to
the matching rate or ‘exchange technology’ (Mortensen 1990). In other words,
the unemployed and the jobs that employers are seeking to fill are ‘inputs’ into the
meeting process. Let this be denoted m(u, v).

Given m(u, v), then for such a meeting to take place there must either be some
unemployment or some vacancies. More formally m(0,v) = m(u,0) = 0. Further-
more, the marginal contribution of each ‘input’ is positive, i.e., ∂m/∂u >0 and
∂m/∂v > 0. Following Diamond (1982) it is further assumed that the average re-
turn to each ‘input’ is diminishing, i.e., m/u and m/v diminishes with u and v,
respectively. Finally, and purely for mathematical convenience, we assume that
m(u, v) is homogeneous of degree k, so that

m(u, v) = ukm(1, v/u)

Using this analysis we can write the change in employment as the total match
Nm(u, v) minus those losing a job s(1−u)N, i.e.

dE

dt
= d(eN)

dt
= Nm(u, v) − s(1 − u)N

or
de

dt
= ė = m(u, v) − se

(11.48)

Although the time path of employment, e(t), must mirror the time path of the
unemployment rate, u(t), since e = 1 − u, the present formulation directs attention
to the matching rate m(u, v).

In general (Mortensen 1990), the equilibrium hiring frequency m(u, v)/u will
be a function of the present value of employment per worker to the firm, q, and
the employment rate, e. This can be established by noting that

m(u, v)

u
= ukm(1, v/u)

u
= uk−1m(1, v/u)

(11.49) = (1 − e)k−1m(1, v/u) = h(q, e)

The hiring function h(q, e) is a function of q since the value of v/u in (11.49) is that
determined in equilibrium. In equilibrium, the return on filling a vacancy (mq/v)
is equal to the cost of filling a vacancy, c, i.e.[

m(u, v)

v

]
q = c(11.50)

which gives

(1 − e)k−1q = cv/u

m(1, v/u)

which means that the hiring frequency is related to both q and e. Furthermore, we
can establish from this last result that hq > 0 and he < 0 if k > 1 and he > 0 if
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k < 1. Hence

m(u, v)

u
= h(q, e) hq > 0,

{
he < 0 if k > 1

he > 0 if k < 1

... m(u, v) = uh(q, e) = (1 − e)h(q, e)

which in turn leads to the following equilibrium adjustment equation

ė = (1 − e)h(q, e) − se (11.51)

The profit to the firm of hiring an additional worker is related to q and the
employment rate, e. i.e., π (q, e), and will be different for different models of
the labour market. This profit arises from the difference in the marginal revenue
product per worker, MRPL, less the wage paid, w. If we denote the MRPL by x(e),
then π (q, e) = x(e) − w.16 However, the future profit stream per worker to the
firm is

rq = x(e) − w − s(q − kv) + q̇

where rq represents the opportunity interest in having a filled vacancy and kv is the
capital value of a vacant job, i.e., the present value of employment to the firm is the
profit from hiring the worker less the loss from someone becoming unemployed
plus any capital gain.

Since in equilibrium no vacancies exist, then kv = 0 and so

rq = π (q, e) − sq + q̇

or q̇ = (r + s)q − π (q, e)
(11.52)

To summarise, we have two differential equations in e and q, i.e.

ė = (1 − e)h(q, e) − se
(11.53)

q̇ = (r + s)q − π (q, e)

Whether a unique equilibrium exists rests very much on the degree of homogene-
ity of the match function, i.e., the value of k in m(u, v) = ukm(1, v/u), and the
productivity per worker x(e).

11.9 Wage determination models and the profit function

In order to establish the properties of this differential equation system we need to
have information on the partial derivatives of the profit function, i.e., πq and πe.
But this in turn requires a statement about wage determination, and there are a
variety of wage determination models. Here we shall consider just two: a market
clearing model and a shirking model.17

16 In the case of the shirking model of wage determination MRPL = x(e) − aλ, where λ denotes the
average number of times that the effort of each worker is checked and a the fixed cost required to
do the checking.

17 This analysis draws heavily on Mortensen (1990) who also considers an insider–outsider model of
wage determination.
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For instance, in the simplest model, Diamond (1971), all workers are identical
and all have the same reservation wage and so the wage must equal the value
of leisure forgone when employed, denoted b. Thus, w = b and the profit func-
tion is π (q, e) = x(e) − b, with πq = 0 and πe < 0 if x′(e) < 0, i.e., if we have
diminishing returns to labour employed.

In the case of the shirking model, an individual can receive a wage w and if
successful at shirking can receive a value b in leisure. If, however, the employer
monitors the worker with a frequency λ and fires them if they are found shirking,
then the equilibrium wage must exceed b to ensure that the expected worker cost of
shirking per period is no less than the benefit b. If ye denotes the expected present
value of a worker’s income when employed and yu the expected present value of
a worker’s future income when unemployed, then in equilibrium

λ(ye − yu) = b

Furthermore

rye = w + s(yu − ye) + ẏe

ryu = b +
[
m(u, v)

u

]
(ye − yu) + ẏu

The first equation states that the opportunity interest from holding a job must
equal the wage received plus the income she receives when unemployed, which
she faces with probability s, plus any capital gain. The second equation states
that the opportunity interest on being unemployed must equal the return from not
working (including any unemployment benefit) plus the income she receives when
employed, which she faces with an average match of m(u, v)/u, plus any capital
gain.

In equilibrium ẏe = 0 and

rye = w − sb

λ

ryu = b +
[
m(u, v)

u

](
b

λ

)

Hence

r(ye − yu) = w − b − sb

λ
−
[
m(u, v)

u

](
b

λ

)

rb

λ
= w − b − sb

λ
−
[
m(u, v)

u

](
b

λ

)

In other words the wage rate is

w = b +
[
r + s + m(u, v)

u

](
b

λ

)

= b + [r + s + h(q, e)]

(
b

λ

)(11.54)
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Using this result we can obtain the optimal values for λ, w and π (q, e) (see exer-
cise 6), i.e.,

λ = (b/a)
1
2 [r + s + h(q, e)]

1
2

w = b + (ab)
1
2 [r + s + h(q, e)]

1
2

π (q, e) = x(e) − b − 2(ab)
1
2 [r + s + h(q, e)]

1
2

(11.55)

Thus the optimal wage paid exceeds the market clearing wage and is an increasing
function of h(q, e), so long as a > 0.

We therefore have two alternative dynamic systems:
Model 1 Market clearing

ė = (1 − e)h(q, e) − se
(11.56)

q̇ = (r + s)q − x(e) + b

Model 2 Shirking model

ė = (1 − e)h(q, e) − se
(11.57)

q̇ = (r + s)q − x(e) + b + 2(ab)
1
2 [r + s + h(q, e)]

1
2

Both systems are nonlinear and the dynamics depend on the value of k, and hence
on the properties of h(q, e), and on the properties of x(e).

An equilibrium steady state requires ė = 0 and q̇ = 0. So in both models equi-
librium satisfies

(1 − e∗)h(q∗, e∗) = se∗

in other words, the hire flow must equal the turnover flow. The isocline ė = 0
is called by Mortensen (1990) the employment singular curve and for x′(e) < 0
and k < 1 this curve is upward sloping. For instance, if m(u, v) = (uv)

1
4 so that

m(u, v) = u
1
2 (v/u)

1
4 with k = 1/2 we derive the following results (see exercise 7).

v =
(q
c

) 4
3 u

1
3

h(q, e) = (1 − e)−
2
3

(q
c

) 1
3 hq > 0, he > 0

For ė = 0 then

q = c(se)3

1 − e

To pursue this analysis further, consider the following example in which we
derive explicitly the isocline q̇ = 0, called the value singular curve by Mortensen.
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Figure 11.28.

Example 11.7

Let

m(u, v) = (uv)
1
4

x(e) = 3e−0.2

r = 0.05, a = 0.1, c = 1, s = 0.2, b = 3.2

then

h(q, e) = (1 − e)−
2
3 q

1
3

and for ė = 0

q = 0.008e3

1 − e

Considering q̇ = 0 for each model we have
Model 1

q̇ = 0.25q − 3e−0.2 + 3.2 = 0

i.e. q = 12e−0.2 − 12.8

Hence the equilibrium level of employment is found from solving

0.008e3

1 − e
= 12e−0.2 − 12.8

which can be done by means of a software package.18 The solution is found to be
e∗ = 0.7212. The stylised situation is shown in figure 11.28.

18 Recall that if you do not have a software package likeMathematica orMaple, you can use the Solver
of Excel’s spreadsheet.
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Model 2
In the case of model 2, the shirking model, the q̇ = 0 isocline is given by

q̇ = 0.25q − 3e−0.2 + 3.2 + 2[(0.1)(3.2)]
1
2

[
0.25 + 0.008e3

1 − e

] 1
2

i.e. q̇ = 12e−0.2 − 12.8 − (2.56)
1
2

[
0.25 + 0.008e3

1 − e

] 1
2

Qualitatively this leads to the same situation as in figure 11.28 except that the
q̇ = 0 isocline is below that of model 1, so leading to a smaller level of equilibrium
employment. In fact, given the parameter values this is found to be e∗ = 0.3207.

These equilibrium values are consistent with the equilibrium wages in the two
models, which are:

Model 1 w = b = 3.2

Model 2 w = b + (ab)
1
2 [r + s + h(q, e)]

1
2 = 3.4836

Since the two models are qualitatively identical, we shall pursue here only the
simple market clearing model illustrated in figure 11.28.

11.10 Labour market dynamics

The situation we have developed so far for the simple market clearing model is a
set of differential equations given by

ė = (1 − e)h(q, e) − se

q̇ = (r + s)q − x(e) + b

which reproduces equations (11.56). The isocline ė = 0 is upward sloping and
q̇ = 0 is downward sloping. Given the parameter values in example 11.7 we have
the equilibrium point (e∗, q∗) = (0.7212, 0.0108) which is unique. The isoclines
are given by

ė = 0 implying q = 0.008e3

1 − e

q̇ = 0 implying q = 12e−0.2 − 12.8

furthermore

when ė > 0 then q >
0.008e3

1 − e

so employment is rising above the ė = 0 isocline and falling below this isocline.
Similarly

when q̇ > 0 then q > 12e−0.2 − 12.8

so the present value of the future profit stream of the marginal worker is rising
above the q̇ = 0 isocline and falling below this isocline. These vector forces are
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Figure 11.29.

illustrated in figure 11.29 and indicate that the equilibrium point E is a saddle point
solution. This property is also true for model 2 in which wages are determined
within a shirking model.19

Given the saddle point nature of the equilibrium in all models the only solution
trajectories are those which lie on the saddle path SS′. Suppose the present level
of employment is e0, as shown in figure 11.30, then the only rational expectations
trajectory must be the starting point (e0, q0) at point A and the path along SS′ to
point E. Any point below SS′, such as point B, tends the system to zero present
value profit stream from the marginal worker; or, such as point C, to an ever
expanding profit, i.e., an unstable speculative bubble.

The solution value so far is unique because we have assumed k < 1 and x′(e) < 0.
A number of labour economists, however, have been investigating the situation
of increasing returns in the production exchange process, which allows vari-
ous possibilities for x(e). Consider the situation shown in figure 11.31 in which
the ė = 0 isocline is upward sloping while the isocline q̇ = 0 takes a variety of
shapes.

There are now three solutions: a low (L), medium (M) and high (H) (e, q)-
pair. The medium employment level is unstable. But for any level of employment
such as e0 in figure 11.31, there are two values of q consistent with the rational
expectations behaviour of the system: point A on S1S′

1 and point B on S2S′
2. In the

case of point A, the system will tend to solution point L; while for point B, the
system will tend to solution point H. It is also possible that in the neighbourhood
of point M a stable limit cycle can occur.

19 In fact, the insider–outsider model of wage determination also leads to the same qualitative model
with a corresponding saddle–point solution (Mortensen 1990).
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Figure 11.30.

Figure 11.31.

This second version of the model, exhibiting as it does multiple equilibria aris-
ing from increasing returns, illustrates a point we made in chapter 1. Rational
expectations alone is not sufficient to determine outcomes. At e0 points A and
B are equally likely and yet the solution points L and H, respectively, involve
quite different welfare implications. This suggests quite strongly that some policy
coordination is necessary to fix the system on one or other of the solution paths.
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Exercises

1. (i) Solve the nonhomogeneous differential equation

dπ

dt
= βf (u) − β(1 − ξ )π

for π (0) = π0.

(ii) Show that for β > 0 and 0 < ξ < 1 the equilibrium π∗ is asymptot-
ically stable.

2. Given the model

yt−1 = 9 + 0.2(mt−1 − pt−1)
πt = α(yt−1 − yn) α > 0

if mt = 5 and yn = 6, use a spreadsheet to investigate the dynamics of the
system for different values of α.

3. For the system

ẏ = −1.85(y − y∗) − 10(π e − π e∗)

π̇ e = 0.3(y − y∗)

establish that the characteristic roots are complex conjugate and that r, s =
α ± βi has α < 0.

4. Show that if

EtPt+1 − Et−1Pt = (1 − λ)(Pt − Et−1Pt) 0 ≤ λ ≤ 1

then

Pt =
(

Mt

a + b

)
+
(

b

a + b

)
(1 − λ)

∞∑
k=0

λkPt−k

5. Consider the model

ydt = a0 + a1(mt − pt)

yst = yn + b1(pt − Et−1pt)

ydt = yst = yt

where expectations are formed rationally.
(i) Show that if money supply follows a systematic component such

that mt = µ0 which is correctly anticipated by market participants,
then y = yn.

(ii) Show that if mt = µ0 + zt where zt ∼ N(0, σ 2
z ), then

yt = yn + a1b1zt
a1 + b1

Interpret this result.
6. In the shirking model of wage determination the firm chooses the optimal

value of λ. Given

rq = max
λ

{x(e) − aλ − w − sq + q̇}
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(i) Show that

λ =
(
b

a

) 1
2

[r + s + h(q, e)]
1
2

(ii) Hence show that

w = b + (ab)
1
2 [r + s + h(q, e)]

1
2

π (q, e) = x(e) − b − 2(ab)
1
2 [r + s + h(q, e)]

7. Given m(u, v) = (uv)
1
4 and [m(u, v)/v]q = c

(i) Show that

v =
(q
c

) 4
3 u

1
3

(ii) Hence show that

h(q, e) = (1 − e)−
2
3

(q
c

) 1
3

(iii) Verify hq > 0 and he > 0.
(iv) Show that the ė = 0 isocline is given by:

q = c(se)3

1 − e

8. Given m(u, v) = √
uv and [m(u, v)/v]q = c

(i) Show that

v = (1 − e)(c/q)2

(ii) Hence show that h(q, e) is independent of e.
9. For the numerical model (11.4) establish the new steady-state equilibrium

values for k and x for each of the following, and illustrate diagrammati-
cally the trajectory the economy follows
(i) A rise in s from 0.2 to 0.3

(ii) A rise in n from 0.05 to 0.06
(iii) A rise in technology such that y = 5 k0.25.

10. For the numerical model (11.4) establish the new steady-state equilibrium
values for k and x for a rise in monetary growth from λ = 5% to λ = 6%.
What trajectory does the economy traverse?

11. Consider the model

(1) c = a + b(1 − t)y a = 100 b = 0.8 t = 0.25
(2) i = i0− h(r − π e) i0 = 600 h = 2.5
(3) y = c + i + g g = 525
(4) md = ky − ur k = 0.25 u = 5
(5) ms = m − p m = 700 p = 0
(6) md = ms α = 0.2
(7) π = α(y − yn) + π e yn = 3000
(8) π̇ e = β(π − π e) β = 0.05
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(i) What is the fixed point of the system?
(ii) Derive equations for the two isoclines

(iii) Derive an equation for r∗ = 0 and hence establish the presence of a
corridor.

12. In the Cagan model with perfect foresight we have the model

m − p = −απ e

π e = π

Given seigniorage is defined as

S = �M

P
and money grows at a constant rate λ

(i) Express ln S in terms of λ.
(ii) Establish that the value of λ which maximises seigniorage is

λm = 1

α

Additional reading

Further material on the contents of this chapter can be found in Attfield, Demery
and Duck (1985), Azariades (1993), Burmeister and Dobell (1970), Cagan (1956),
Carter and Maddock (1984), Diamond (1971, 1982), Frisch (1983), George and
Oxley (1991), Groth (1993), Holden, Peel and Thompson (1989), Krugman (1999),
McCafferty (1990), Mortensen (1990), Pissarides (1976, 1985), Scarth (1996),
Sheffrin (1983), Shone (1989) and Turnovsky (1995).



CHAPTER 12

Open economy dynamics: sticky
price models

In this chapter and chapter 13 we shall consider a number of open economy models
that exhibit dynamic behaviour. We shall start with the very simplest – the income–
expenditure model considered at the beginning of all courses on macroeconomics.
This model assumes a fixed exchange rate. Simple as it is, it will allow us to set the
scene and illustrate, in the simplest possible terms, how instability may occur, but
is less likely to occur in an open economy in comparison to a closed one. We then do
the same in the context of the IS-LM model we discussed in chapter 10, extending it
to the open economy, but considering the situation under both a fixed and a flexible
exchange rate. This forms the basis of the Mundell–Fleming model. This model
was originally concerned with the relative impact of monetary and fiscal policy
under fixed and floating exchange rate regimes, but with perfect capital mobility.
It has become the standard model of open economy macroeconomics, and so we
shall look into its dynamic properties in some detail – for models with some (but
not perfect) capital mobility and for situations of perfect capital mobility. We shall
find that the assumption about the degree of capital mobility is quite important to
the dynamic results. As in earlier chapters, we shall be particularly interested in
what happens out of equilibrium, and hence in the dynamic forces in operation in
an open economy.

12.1 The dynamics of a simple expenditure model

The simplest macroeconomic model for an open economy is the one where prices
are assumed constant, and so we need not distinguish between real and nominal
variables. Expenditure, E, is the sum of consumption expenditure, C, investment
expenditure, I, government expenditure G, and expenditure on net exports, NX –
where net exports are simply the difference between exports,X, and imports,M. We
make four behavioural assumptions with respect to consumption expenditure, net
taxes, investment expenditure and imports. Consumption expenditure is assumed
to be a linear function of disposable income, where disposal income, Yd, is defined
as the difference between income, Y , and net taxes, T , and we make a further
behavioural assumption that net taxes is linearly related to income. Investment
expenditure is assumed to be positively related to the level of income (we shall
consider investment and interest rates more fully in the IS-LM dynamic model).
Finally, we assume that imports are linearly related to the level of income. We treat
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government spending and exports as exogenous. The definitions and behavioural
equations of our model are, then

E = C + I + G + NX

C = a + bYd a > 0, 0 < b < 1

Yd = Y − T

T = T0 − tY 0 < t < 1

I = I0 + jY j > 0

M = M0 + mY 0 < m < 1

NX = X − M

(12.1)

We now make a dynamic assumption about how the model adjusts over time. We
assume that national income will adjust continuously over time in response to the
excess demand in the goods market. More explicitly, we assume

dY

dt
= λ(E − Y) λ > 0(12.2)

In other words, when expenditure exceeds income, then there will be pressure in
the economy for income to rise. This is because firms can sell all they wish, and
with stocks running down then they will expand their production, take on more
labour and so raise the overall level of economic activity. On the other hand, if
expenditure falls short of income, then there will be a build up of stocks. Firms will
cut back on production, possibly lay off workers, and generally lead to a reduction
in economic activity. Equilibrium in this model is therefore defined to be a situation
where income is not changing, or where E = Y .

Substituting the equations in (12.1) into equation (12.2), we obtain the following
differential equation

dY

dt
= λ(a − bT0 + I0 + G + X − M0) − λ[1 − b(1 − t) − j + m]Y

= λA − λ[1 − b(1 − t) − j + m]Y
(12.3)

where A denotes all autonomous expenditures.
First consider equilibrium in this model. This requires dY/dt = 0, i.e.

λA − λ[1 − b(1 − t) − j + m]Y = 0

Y∗ = A

1 − b(1 − t) − j + m

(12.4)

But our main concern is whether this equilibrium is stable or unstable. Since there
is only one equilibrium, one fixed point, in this model then the situation will either
be globally stable or globally unstable. Two situations are illustrated in figures 12.1
and 12.2. In figure 12.1 the growth line is negatively sloped. Hence, for income less
than the equilibrium level, income will rise; while for income above the equilibrium
level, income will fall. Hence, the fixed point is a stable one. In figure 12.2, on the
other hand, the growth line is positively sloped. In this case, if income is below
the equilibrium level then it will decline, and decline continually. If, on the other
hand, income is above the equilibrium level, then income will rise continually. In
other words, the equilibrium is globally unstable.
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Figure 12.1.

It is clear from the differential equation in (12.3) that the slope of the growth
line will be negative if b(1 − t) + j − m < 1. This also ensures that the simple
expenditure multiplier, k, is positive, i.e.

k = 1

1 − b(1 − t) − j + m
> 0

But there is no reason for b(1 − t) + j − m < 1. Suppose investment responds
quite readily to income, with j = 0.3. The marginal propensity to consume can
during some periods be quite high. Suppose then, that b = 0.95. Further assume
that the marginal rate of tax is t = 0.25. Finally, assume the marginal propensity to
import is 0.2. Then b(1 − t) + j − m = 0.8125, and since this is less than unity the
economy exhibits stability. However, in the absence of trade (with m= 0), then we
have b(1 − t) + j = 1.0125, which is greater than unity and the economy would
exhibit an unstable situation. Why is there this difference?

Take the closed economy first, and assume that income begins initially be-
low the equilibrium level. As illustrated in figure 12.2 at Y = Y0, the change in
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Figure 12.2.

income is negative and income would decline. The reason is that at this initial
level of income, income exceeds aggregate expenditure (Y0 > AE0). There is a
build up of stocks and so firms lay off workers. Because h is high, they lay off
quite a number of workers. But the loss in income of the workers means that they
in turn have less disposable income. With a high marginal propensity to spend,
this means a major cut in consumer spending. But this will itself lead to a further
excess supply of goods, and so firms will respond with further cuts. Hence, the
economy goes into continuous decline. If income had begun above the equilibrium
level, at Y = Y1, with stocks running down, then firms would expand their pro-
duction, disposable income would rise and consumption expenditure would rise.
The economy would expand. Of course, once it reached full employment, then this
would eventually manifest itself in rising prices (which we have assumed constant
so far).
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Why is the open economy different? Again begin with income below the equi-
librium level, as typified by the situation in figure 12.1 for Y = Y0. At this level of
income, if the economy were not importing then there would be a running down
of stocks as expenditure is in excess of income. But with the economy open, part
of this demand is directed abroad and so the run-down in stocks at home is not as
great. Hence openness tends to dampen the multiplier. Furthermore, the greater
the marginal propensity to import the more likely stability because the greater the
stabilising influence.1 We shall state this in the form of a proposition:

PROPOSITION 1
The higher themarginal propensity to import, themore likely the economy
will exhibit a stable equilibrium.

We can consider this proposition in more detail by considering a simple numeri-
cal discrete model that we can investigate by means of a spreadsheet. The model is
an extension of that provided in table 10.2 (but here we ignore the money market).
In line with our discussion in chapter 10, we introduce dynamics into this discrete
model by assuming that income in period t adjusts according to total expenditure
in the previous period. Our model is

Et = Ct + It + G0 + NX

Ct = 100 + 0.75Yd
t

Yd
t = Yt − Taxt

Taxt = −80 + 0.2Yt

It = 320 + 0.1Yt

Mt = 10 + 0.2Yt

NXt = X0 − Mt

Yt = Et−1

where we assume government spending remains constant at G0 = £330 million
for all periods and exports remain constant at X0 = £440 million for all periods –
unless either is shocked. Equilibrium income is readily found to be equal to Y∗ =
£2500 million, which can be found from the resulting difference equation

Yt = 1250 + 0.5Yt−1

A rise in government spending from £330 million to £400 million results
in a new equilibrium level of income of £2640 million. The movement of the
economy over time in terms of the main variables is illustrated in table 12.1, which
also includes the dynamic multiplier. What the table shows is that all variables
gradually tend to their new levels as the multiplier impact comes closer to its
final value. A marginal propensity to import of m = 0.3 (and with autonomous
exports at £690 million) also leads to an initial equilibrium level of income of
£2500 million. For the same rise in government spending from £330 million to

1 Exactly the same argument holds for the tax rate. The higher the marginal rate of tax the greater the
stabilising influence on the economy, and the more likely the equilibrium is stable.
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Table 12.1 Impact of a rise in government spending of £70 million

t Et Yt Taxt Ydt Ct It Mt NXt kt

0 2500.00 2500.00
1 2570.00 2500.00 420.00 2080.00 1670.00 570.00 512.00 −70.00 0.00
2 2605.00 2570.00 434.00 2136.00 1712.00 577.00 524.00 −84.00 1.00
3 2622.50 2605.00 441.00 2164.00 1733.00 580.50 531.00 −91.00 1.50
4 2631.25 2622.50 444.50 2178.00 1743.50 582.25 534.50 −94.50 1.75
5 2635.63 2631.25 446.25 2185.00 1748.75 583.13 536.25 −96.25 1.88
6 2637.81 2635.63 447.13 2188.50 1751.38 583.56 537.13 −97.13 1.94
7 2638.91 2637.81 447.56 2190.25 1752.69 583.78 537.56 −97.56 1.97
8 2639.45 2638.91 447.78 2191.13 1753.34 583.89 537.78 −97.78 1.98
9 2639.73 2639.45 447.89 2191.56 1753.67 583.95 537.89 −97.89 1.99

10 2639.86 2639.73 447.95 2191.78 1753.84 583.97 537.95 −97.95 2.00
11 2639.93 2639.86 447.97 2191.89 1753.92 583.99 537.97 −97.97 2.00
12 2639.97 2639.93 447.99 2191.95 1753.96 583.99 537.99 −97.99 2.00
13 2639.98 2639.97 447.99 2191.97 1753.98 584.00 537.99 −97.99 2.00
14 2639.99 2639.98 448.00 2191.99 1753.99 584.00 538.00 −98.00 2.00
15 2640.00 2639.99 448.00 2191.99 1753.99 584.00 538.00 −98.00 2.00
16 2640.00 2640.00 448.00 2192.00 1754.00 584.00 538.00 −98.00 2.00
17 2640.00 2640.00 448.00 2192.00 1754.00 584.00 538.00 −98.00 2.00
18 2640.00 2640.00 448.00 2192.00 1754.00 584.00 538.00 −98.00 2.00
19 2640.00 2640.00 448.00 2192.00 1754.00 584.00 538.00 −98.00 2.00
20 2640.00 2640.00 448.00 2192.00 1754.00 584.00 538.00 −98.00 2.00

£400 million, the economy also gradually approaches its new equilibrium level
of income (namely £2617 million) marginally sooner than with a lower marginal
propensity to import (see exercise 4).

This can also be seen in terms of figure 12.3, which captures the movement of the
economy in the first few periods. It is clear that the new level of income is lower.The
economy is inherently more stable the higher the marginal propensity to import. Of
course, the corollary of this is that government spending has less influence on the
domestic economy. Or, put another way, the more open an economy the greater the
change in government spending necessary to achieve a given change in national
income.

12.2 The balance of payments and the money supply

We precede our discussion of open economy models under fixed and flexible
exchange rates with a consideration of two interrelated variables: the balance
of payments and the money supply. Both of these play a prominent role in
the modelling to follow, and it is important that they are fully understood. This
is quite important because we shall be setting up the models in real terms, even
though we shall be assuming that prices at home and abroad are constant. This
assumption of constant prices will be relaxed in chapter 13.

12.2.1 The balance of payments

We define the balance of payments in real terms, bp, as the sum of real net exports,
nx, and real net capital flows, cf, i.e.

bp = nx + cf(12.5)

Consider first net exports.
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Figure 12.3.

Net exports in nominal terms, NX, is the value of exports minus the value of
imports. Since we do not distinguish between goods in our modelling, then exports
and imports in domestic currency are priced in terms of the domestic price level P.
Making a clear distinction between real and nominal variables we have

NX = Px − Pz

where x is real exports and z real imports. Defining S as the spot exchange rate
expressed as domestic currency per unit of foreign currency,2 and letting P∗ denote
the price level abroad, then

NX = Px − SP∗z

Dividing throughout by P to bring everything into real terms

NX

P
= x −

(
SP∗

P

)
z

or

nx = x − Rz where R = SP∗

P
(12.6)

and where R define the real exchange rate, a variable which features prominently
in later models.3

2 This means that a rise is S denotes a devaluation of the domestic currency while a fall in S indicates
a revaluation of the domestic currency.

3 This variable denotes the competitiveness of home goods relative to those abroad.
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Real exports depend on income abroad and the real exchange rate (competitive-
ness). We assume a simple linear function

x = x0 + f R f > 0(12.7)

The constant x0 can be considered as relating to income abroad, but we shall
be holding this constant throughout. The second term captures competitiveness.
Suppose the home currency depreciates, so S rises and hence so does R. Then
domestic prices fall relative to those abroad and hence exports are stimulated.
There is then a positive relationship between real exports and the real exchange
rate.4

In the case of real imports we assume

Rz = z0 + my − gR 0 < m < 1, g > 0(12.8)

where m is the marginal propensity to import, and real imports decline with a
devaluation of the domestic currency (a rise in S). Combining the results we can
now express real net exports as

nx = (x0 + f R) − (z0 + my − gR)
= (x0 − z0) + ( f + g)R − my
= nx0 + ( f + g)R − my

(12.9)

where nx0 = x0 − z0.

Turning now to real net capital flows, cf, we assume that

cf = cf0 + v(r − r∗) v > 0(12.10)

where cf0 is real net capital flows independent of interest rates, and r and r∗ are the
nominal interest rates at home and abroad (which are here equal to the real rates
since we shall be holding prices at home and abroad constant). At this point we do
not need to consider expected changes in the exchange rate.5 The modelling is for
a fixed exchange rate with no expected devaluation or revaluation, i.e., dSe/dt = 0.
In chapter 13 we shall relax this assumption. Under this assumption, capital flows

4 We are assuming here that the Marshall–Lerner condition is satisfied. Differentiating net exports
with respect to S we have

dNX

dS
= P

dx

dS
− SP∗ dz

dS
− P∗z

= P
x

S

(
S

x

dx

dS

)
− SP∗ z

S

(
S

z

dz

dS

)
− P∗z

= P∗xEx − P∗zEz − P∗z

where Ex and Ez are the export and import price elasticities, respectively. Assuming initially x = z,
then

dNX

dS
= P∗x(Ex − Ez − 1)

or
dNX

dS
> 0 if Ex + Ez > 1

i.e. |Ex| + |Ez| > 1

5 Had we done so then the net capital flow equation would become

cf = cf0 + v(r − r∗ − Ṡe)
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in real terms according to the uncovered interest differential, r − r∗, with an inflow
if r > r∗ and vice versa.

Combining net exports and the capital flow equation, we arrive at an expression
for the balance of payments

bp = nx + cf
= nx0 + ( f + g)R − my + cf0 + v(r − r∗)
= bp0 + ( f + g)R − my + v(r − r∗)

(12.11)

where bp0 = nx0 + cf0. Balance of payments equilibrium occurs when bp = 0, a
deficit when bp < 0 and a surplus when bp > 0.

Recall that in chapter 10 we discussed the IS-LM model. We can now introduce
a third relationship into the framework. Under the assumption of fixed exchange
rates, the BP curve denotes combinations of income and interest rates for which
the balance of payments is in equilibrium. Setting bp= 0 and expressing the result
as r a function of y, we have

r =
[
r∗ − bp0 + ( f + g)R

v

]
+
(m
v

)
y (12.12)

hence the BP curve is, in general, positively sloped. But also note that if bp < 0
then

bp0 + ( f + g)R − my + v(r − r∗) < 0

i.e. r <

[
r∗ − bp0 + ( f + g)R

v

]
+
(m
v

)
y

In other words, below the BP curve the balance of payments is in deficit, while
above the BP curve the balance of payments is in surplus. This information is
displayed in figure 12.4.

One way to account for the situations off the BP curve is to take a point on
the BP curve, such as point A in figure 12.4, and move horizontally across to
point B, moving to a point below the BP curve. Since the rate of interest remains
constant, then so too do net capital flows. On the other hand, the rise in the level of
income raises the level of imports, and hence worsens the current account. Hence,
if initially the balance of payments was zero, then it must now be negative as a
result of the worsening current account balance. Note also that this helps to explain
why the BP curve is positively sloped. Given the deficit at point B, then this can be
eliminated by raising the rate of interest. This will increase the net capital inflow,
so bringing the balance of payments back into equilibrium (at point C). A similar
argument applies to points above the BP curve.

Care must be exercised in interpreting the BP curve, and points off it. The BP
curve denotes combinations of income and interest rates for which bp = 0. In
other words, we interpret external equilibrium as a situation where the current
account is matched by the capital account but with opposite sign (i.e. nx = − cf or
bp = 0). This is not the only definition of external equilibrium, but it is the one
we shall use throughout this chapter. But what about the vectors of force either
side of the BP curve? It is here we must be especially careful. If the exchange
rate is fixed, then although there is some force acting on the market exchange rate,
there is no change in the parity rate, and it is the parity rate that determines the
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Figure 12.4.

intercept of the BP curve.6 If the economy is below the BP curve, then the balance
of payments is in deficit. What is occurring in this situation is a running down
of the country’s reserves. Such a situation can persist in the short term, but not
necessarily in the medium and long term. A similar situation arises in the case of
a surplus, which occurs above the BP curve. Here the economy is adding to its
reserves. The implication of the change in the reserve position of the economy
depends on a number of factors. These include:

(i) The change in the money supply resulting from a change in the reserves.
(We shall take this up in the next sub-section.)

(ii) The extent to which the authorities sterilise the impact on the money
supply.
(We shall also take this up in the next sub-section.)

(iii) Whether a change in the parity rate is considered a possibility.

What we observe here are asset market forces that act on the economy in the
medium and long term. We shall return to these where appropriate.

It is also worth noting some special cases:

(i) If v = 0 then the BP curve is vertical at income level

y = bp0 + ( f + g)R

m

6 The market exchange rate is determined by the demand and supply of foreign exchange, but the
parity rate is set by the authorities. Under the Bretton Woods system, where exchange rates were
fixed vis-à-vis the dollar, the market exchange rate could fluctuate either side of the parity rate
by ± 1 per cent.
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(ii) If v = ∞ there is perfect capital mobility and the BP curve is horizontal
at r = r∗.

(iii) With some, but not perfect, capital mobility then the BP curve is pos-
itively sloped. However, there are two further categories which can be
distinguished here, depending on the relative slopes of the BP and LM
curves, which are both positively sloped:
(a) the BP curve is steeper than the LM curve
(b) the BP curve is less steep than the LM curve.

Situations (i) and (ii) are illustrated in figure 12.5.
Before we consider the IS-LM-BP model we need to take note of the fact that

the expenditure function has now altered, since it includes net exports, and hence

Figure 12.5.
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so too has the IS-curve that we developed in chapter 10. To be specific

e = a + [b(1 − t) + j]y − hr + nx0 + ( f + g)R − my

= [a + nx0 + ( f + g)R] + [b(1 − t) + j − m]y − hr

which leads to an IS curve of

r = a + nx0 + ( f + g)R

h
− [1 − b(1 − t) − j + m]y

h
(12.13)

which indicates a change in the position of the IS curve and in its slope relative to
that in the closed economy.

12.2.2 The money supply in an open economy

In the model developed in chapter 10 the money supply was exogenous and fixed.
In an open economy with a fixed exchange rate this is no longer the case. To see
why this is so, we need to be clear on the definition of money for an open economy.
Here we shall consider just the narrow definition of money, the money base, and
denoted M0, and a broader definition of money supply, namely M1. Specifically

M0 = Cp + CBR
Ms = Cp + D

(12.14)

where

M0 = money base
Cp = cash held by the public
CBR = commercial bank reserves at the Central Bank
Ms = money supply (here M1)
D = sight deposits

We shall further assume a simple money multiplier relationship between Ms and
M0,7 i.e.

Ms = qM0(12.15)

Return to the money base M0 = Cp + CBR. This is the money base from the
point of view of Central Bank liabilities. It is possible to consider a consolidated
banking system from the point of view of the asset side.8 The money base from
the asset side denotes Central Bank Credit, CBC, and international reserves, IR.9

Thus

M0 = Cp + CBR = CBC + IR(12.16)

Hence

Ms = qM0 = q(CBC + IR)(12.17)

7 If Cp = cD and CBR = rD then Ms = cD + D = (1+ c)D and M0 = cD + rD = (c + r)D. Hence,
Ms/M0 = (1 + c)/(c + r) or Ms = qM0. See Shone (1989, pp.147–51).

8 See Copeland (2000, pp. 120–8).
9 International reserves, IR, should not be confused with commercial bank reserves at the Central

Bank, CBR.
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Looking at the money base from the point of view of assets means that any
change in the money base can occur from two sources:

(i) Open market operations (including sterilisation) which operates through
changes in CBC.

(ii) Changes in the foreign exchange reserves that, under a fixed exchange
rate, is equal to the balance of payments.

Open market operations, �CBC, can usefully be thought of in terms of two com-
ponents. (a) Open market operations which have nothing to do with the balance of
payments, denoted µ, and which we shall refer to as autonomous open market op-
erations. (b) A component that is responding to the change in the reserves. Let, then

�CBC = µ − λ�IR 0 ≤ λ ≤ 1 (12.18)

where λ denotes the sterilisation coefficient. If λ = 0 then regardless of the change
in reserves, no sterilisation occurs; if λ = 1, then we have perfect sterilisation.
Thus, for a surplus on the balance of payments and a rise in the money base
of �IR, the Central Bank reduces the money base by an equal amount. If the
country has a deficit, leading to a reduction in the money base, then the Central
Bank increases the money base by an equal amount. Where some, but not perfect,
sterilisation occurs, then 0 < λ < 1.

We are now in a position to consider the money supply in more detail.

Ms = q(CBC + IR)
�Ms = q(�CBC + �IR)

= q(µ − λ�IR + �IR)
= q[µ + (1 − λ)�IR]

Hence

�Ms

P
= µq

P
+ q(1 − λ)�IR

P
(12.19)

Consider the two extreme cases:

(i) µ = 0 and λ = 0, no autonomous open market operations and no sterili-
sation

�Ms

P
= q�IR

P
= q.bp where bp = �IR

P

i.e. real money balances change by a multiple of the balance of payments
(in real terms). A deficit leads to a fall in the money supply, while a surplus
leads to a rise in the money supply.

(ii) µ = 0 and λ = 1 no autonomous open market operations and perfect
sterilisation

�Ms

P
= 0

i.e. under no autonomous open market operations and perfect sterilisation
there is no change in the money supply regardless of the balance of
payments situation.
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Figure 12.6.

It should be noted that retaining the assumption of an exogenous and constant
money supply for an open economy is equivalent to assuming no autonomous
open market operations and perfect sterilisation (i.e. case (ii)). In general, this
is not true, and so for an open economy the money supply should be treated as
endogenous.

With no sterilisation, a deficit on the balance of payments under a fixed exchange
rate leads to a shift left in the LM curve, while a surplus on the balance of payments
leads to a shift right in the LM curve, as illustrated in figure 12.6.

We are now in a position to consider the dynamics of monetary and fiscal policy
under a fixed exchange rate.

12.3 Fiscal and monetary expansion under fixed
exchange rates

12.3.1 Fiscal expansion

In chapter 10 we have already established the vectors of force either side of the IS
curve and the LM curve. Even with the IS curve re-specified for an open economy,
as outlined in the previous section, the forces either side remain the same. In sub-
section 12.2.1 we established the deficit/surplus situation either side of the BP
curve. In a dynamic context, the BP curve is the condition for which bp= 0. There
is no equivalent to the adjustment functions in the goods market or the money
market. Why is this? The exchange rate, S, is assumed to be fixed. Prices at home,
P, and abroad,P∗, are assumed constant. Hence the real exchange rate,R = SP∗/P,
is constant. Once income and interest rates are determined by the dynamics of the
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Table 12.2 Parameter values and equilibrium points for figure 12.8

Equations: Parameter values:
e = a + ( f + g)R + b(1 − t)y − hr + jy − my a = 43.5 m = 0.2 S = 1.764
md = Md/P = ky − ur f = 5 P = 1 P∗ = 1
ms = Ms/P = q(CBC0 + IR0) + q[µ + (1 − λ)�IR] g = 2 k = 0.25 x0 = 0
R = SP∗/P R = SP∗/P = S u = 0.5 z0 = 24
nx = (x0 − z0) + ( f + g)R − my b = 0.75 CBC = 0 cf0 = 20.5
cf = cf0 + v(r − r∗) t = 0.3 IR0 = 3 v = 1
bp = nx + cf h = 2 q = 1 r∗ = 15
dy/dt = ẏ = α(e − y) α > 0 j = 0 λ = 0, µ = 0 α = 0.05
dr/dt = ṙ = β(md − ms) β > 0 β = 0.8

Intercepts and slopes: Solutions for point E0:
IS intercept = 27.924
IS slope = −0.3375 y = 40.506

r = 14.253
LM intercept = −6
LM slope = 0.5 nx = −19.753

cf = 19.753
BP intercept = 6.152 bp = 0
BP slope = 0.2

Solutions for point E1:
IS1 intercept = 32.924 y = 46.476 Ms = 3
IS1 slope = −0.3375 r = 17.238

bp = 1.791

LM1 intercept = −8.791 Solutions for point E2:
LM1 slope = 0.5 y = 49.809 Ms = 4.395

r = 16.114
bp = 0

goods market and the money market, the balance of payments is automatically
determined from

bp = bp0 + ( f + g)R − my + v(r − r∗)

But this is a short-run result. Why? Because a deficit leads to a fall in the reserves
and hence to a reduction in the money supply, while a surplus leads to a rise in
the reserves and hence to an expansion in the money supply, as explained in sub-
section 12.2.2. In the long run, with no sterilisation, interest rates and income will
change until the deficit/surplus is eliminated. Geometrically, the LM curve will
shift until it intersects the IS curve on the BP curve.

To see this adjustment consider the following numerical model outlined in
table 12.2, where CBC0 and IR0 denote the initial level for Central Bank credit and
international reserves, respectively.

In this model all three curves intersect at the same point, namely (y, r) =
(40.506, 14.253). The situation is shown in figure 12.7, in which it should be
noted that the BP curve is less steep than the LM curve.

Consider a rise in autonomous spending by 10, e.g., because of a rise in govern-
ment spending. The situation is shown in figure 12.8. In the short run the economy
moves from equilibrium point E0 to E1. Since the money market always clears, or
is very quick to clear, then the economy moves along either the LM curve or close
to it. At E1 the economy is in surplus. This follows from the new IS curve (whose
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Figure 12.7.

Figure 12.8.
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intercept and slope are indicated in the table 12.2), intersects the LM curve above
the BP curve.

This must be a short-run result. Assuming no sterilisation, then the money supply
must rise as the balance of payments surplus leads to a rise in international reserves.
Of course, equilibrium E1 will persist into the medium term if perfect sterilisation
occurs and the money supply remains constant.10 In the case of no sterilisation,
then the money supply will rise, the LM curve will shift right, and this will continue
until the balance of payments becomes zero once again. This requires the final LM
curve to cut the BP curve and the IS curve on the BP curve. This is shown by LM1

in figure 12.8, where all three curves (IS1, LM1 and BP0) all intersect at point E2.
Given the fact that the money supply under these circumstances is endogenous, it
is possible to establish that it must increase from Ms = 3 to Ms = 4.395.

We have so far concentrated on the comparative statics. But what type of tra-
jectory will such an economy follow? From our analysis so far we know that the
money market is quick to adjust and the initial movement will be close to the initial
LM curve. But as the economy goes into surplus the money supply will rise so
shifting the LM curve right, income will adjust and the interest rate will be brought
down because of the monetary expansion. The expected trajectory, therefore, is
shown by the path indicated in figure 12.8 on which the arrow heads are marked.
To the extent that any sterilisation takes place, then the actual path the economy
follows will deviate from the trajectory shown. For instance, with perfect sterili-
sation and instantaneous clearing in the money market, then the path will be along
LM0, between E0 and E1.

Under perfect capital mobility the BP curve is horizontal at r = r∗ (v= ∞). The
qualitative results are similar. The fiscal expansion leads to a rise in interest rates,
which in turn leads to an immediate capital inflow. This will continue until the
interest rate is brought into line with the interest rate abroad. During this process
the balance of payments is in surplus because of the favourable capital account.
The resulting surplus on the balance of payments leads to a rise in the money
supply. However, since adjustment is quite quick the trajectory is either along the
BP curve or close to it, as shown in figure 12.9. This will occur, however, so long
as no sterilisation takes place.

12.3.2 Monetary expansion

Consider next a monetary expansion for the model outlined in table 12.2. Suppose
Central Bank credit is raised from zero to CBC = 2, raising the money supply
from Ms = 3 to Ms = 5. This results in a new LM curve given by

LM1 r = −10 + 0.5y

This cuts IS0 with solution values

y = 45.282 r = 12.641 bp = −2.567

10 The situation is more serious where the BP curve is steeper than the LM curve, then the rise in
autonomous spending leads to a deficit. Perfect sterilisation will eventually lead to a running out of
gold and overseas currency.
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Figure 12.9.

where the deficit on the balance of payments results because LM1 cuts IS0 below
the BP curve, as shown in figure 12.10.

In the long run, however, the deficit leads to a fall in international reserves and a
fall in the money supply, shifting the LM curve back to LM0. The final equilibrium,
E2, is the same as E0.

What about the dynamic path of this result? This is quite different from a situation
of a fiscal expansion. To see this, consider a situation of instantaneous adjustment
in the money market. The initial impact is a fall in the rate of interest to r = 10.253
(point A). This not only overshoots the short run equilibrium point E1, but leads to
a greater deficit because of the larger capital outflow. Two forces now come into
operation. With a fall in the rate of interest investment rises which, through the
multiplier, raises the level of income. Simultaneously, however, the deficit leads to
a fall in international reserves and a fall in the money supply. The economy moves
along a shifting LM curve, with a trajectory shown by the arrows pointing from
position A to E2. How ‘bowed out’ the trajectory is depends on the extent to which
the money supply is slow to fall as a result of the deficit (i.e. as a consequence of
the fall in the level of reserves). Also, the trajectory will be more bowed out the
more the Central Bank engages in any sterilisation in an attempt to move (or keep)
the economy at point E1.

Perfect capital mobility does not change the qualitative nature of the results
just discussed. The major difference is that the fall in the rate of interest below
the world level r∗ will lead to a rapid outflow of capital and a more immediate
reduction in the money supply. The economy is more likely to return to E0 more
quickly, with a less ‘bowed out’ return trajectory.
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Figure 12.10.

This section verifies the Mundell–Fleming results:

PROPOSITION 2
Under fixed exchange rates, fiscal policy is effective at changing the level
of income but monetary policy is totally ineffective.

Also, our analysis indicates three dynamic forces in operation:

(1) pressure on income to change whenever expenditure differs from income
(2) pressure on interest rates to change whenever the demand and supply of

money are not equal
(3) pressure on the money supply to adjust whenever there is a balance of

payments disequilibrium, and where the extent of this change depends
on the degree of sterilisation being undertaken by the Central Bank.

The change in income is likely to be slow since the goods market takes time to
adjust to any disequilibrium. On the other hand, interest rates are likely to adjust
quite quickly. This supposition, however, assumes that the Central Bank is not
attempting to control the rate of interest. The speed of the change in the money
supply arising from changes in the balance of payments (the level of reserves) is
likely to lie between that of the change in the rate of interest arising from capital
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flows and that of the level of income. What is being hinted at here is the need for
another adjustment function: namely, the rate at which the authorities change the
money supply in response to a change in the level of reserves. This is a much more
sophisticated analysis than we propose to investigate in this book.

12.3.3 Rise in the foreign interest rate

A less frequently discussed shock, but an important one, arises from a change in
the foreign interest rate. Consider a rise in the foreign interest rate, a rise in r∗.
Such a rise shifts only the BP curve in the first instance. From equation (12.12) we
note that a rise in r∗ raises the intercept of the BP curve – in fact by exactly the rise
in r∗. The situation is shown in figure 12.11, where we start from the same initial
position. The rise in the foreign interest rate from r∗ = 15 to r∗ = 18 shifts the BP
curve up to BP1. Given this situation, the economy is still at E0 and so experiences
a deficit on the balance of payments, bp = −3. Under a fixed exchange rate and
no sterilisation, the deficit leads to a capital outflow and a fall in the money supply.
LM shifts left to LM1 and the economy settles down at E1. But what trajectory
does the economy follow on its path to E1?

The immediate impact of the deficit is a fall in the money supply. If the money
market adjusts instantaneously to this fall in the money supply, then the economy
moves vertically up to point B on LM1. Thereafter, as income falls in response to
the rise in the rate of interest, money demand falls putting pressure on the interest
rate to fall until point E1 is reached. In this scenario the trajectory of the economy
is E0->B->E1, and labelled trajectory T1. What we observe is an overshoot of
the domestic interest rate. If the shift in the LM curve is not complete or not so
immediate, and depending on income adjustment, another trajectory is possible,
shown by T2. Also note one other feature. The change in interest rate abroad is
shown by the vertical distance between BP0 and BP1 while the rise in the domestic
interest rate is less. Why is this? The fact that income is falling means a fall in
imports and so net exports are rising. Hence the size of the capital outflow does
not have to be as great.

Even with perfect capital mobility, the same basic logic holds. The only differ-
ence is that eventually the domestic interest rate will rise in line with the foreign
interest rate. With instantaneous adjustment of money supply to the resulting deficit
and instantaneous adjustment in the money market, the interest rate will once again
overshoot the final rise.

In this section we have concentrated on the impact of changes in fiscal and
monetary policy under a fixed exchange rate system – typical of the situation
under Bretton Woods. However, since 1973 the exchange rate in most countries
has been floating.11 In the next section we consider the IS-LM-BP model under
the assumption that the exchange rate is allowed to float. However, we retain the
assumption that prices at home and abroad are constant. This reminder is important.
A change in the exchange rate is most likely to lead to a change in the price level
in the medium and longer term. We shall take up this question of the link between

11 Britain floated its exchange rate in June 1972.
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Figure 12.11.

the exchange rate and changes in the price level in chapter 13. Even so, what it
does mean is that the real exchange rate, R = SP∗/P is changing because of the
change in S.

12.4 Fiscal and monetary expansion under flexible
exchange rates

12.4.1 Fiscal expansion

In this section we shall consider monetary and fiscal policy under floating exchange
rates. In doing this we need to be clear on the implications of floating. With the spot
exchange rate floating, S variable, and with fixed prices at home and abroad (P and
P∗ constant), then the real exchange rate, R, will vary directly with S. Whatever
is happening in the economy, the exchange rate will vary so that the balance of
payments is always in equilibrium, bp= 0. If we assume instantaneous adjustment
in the foreign exchange market and the money market, then the full impact of any
change in the economy will initially fall on interest rates and the exchange rate.
Only over time will the economy adjust to the situation as income changes. In
terms of the diagrammatic treatment we have been using, the BP curve will shift
continuously so that it always passes through the intersection between the IS and
LM curves.

Consider the initial situation depicted in table 12.2. Once again let autonomous
spending rise by 10. This shifts the IS curve to IS1, as shown in figure 12.12, which
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Figure 12.12.

Table 12.3 Exchange rate values and equilibrium points for
figure 12.12

S = 1.764 S = 1.764
IS0 r = 27.924 − 0.3375y Point E0 Point E1
LM0 r = −6 + 0.5y y = 40.506 y = 46.476
BP0 r = 6.152 + 0.2y r = 14.253 r = 17.238

bp = 1.791
IS1 r = 32.924 − 0.3375y

S = 1.547 S = 1.547
IS2 r = 32.165 − 0.3375y Point E2
LM0 r = −6 + 0.5y y = 45.57
BP2 r = 7.671 + 0.2y r = 16.785

is the same IS1 curve indicated in table 12.2. The resulting surplus on the balance
of payments leads to an immediate appreciation of the domestic currency. The BP
curve shifts up, and the resulting appreciation results in the IS curve shifting left
to IS2. The final results are set out in table 12.3 and illustrated in figure 12.12.

Our discussion, however, concentrates on the comparative statics. Let us for
a moment turn to the dynamics of adjustment. In doing this we shall, as already
indicated, assume instantaneous adjustment in all asset markets (money and foreign
exchange), but slow adjustment in the goods market. The initial impact of the fiscal
expansion is to move the economy to point E1, with a trajectory moving along
LM0 from E0 to E1, as shown in figure 12.12. Because of the resulting surplus, the
domestic currency appreciates shifting the BP curve up to BP1. It should be noted
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Figure 12.13.

that BP1 passes through point E1, which it must do to eliminate any surplus on the
balance of payments. The appreciation, however, leads to an appreciation of the
real exchange rate, a fall inR, which leads over time to a reduction in net exports. As
net exports decline, so too does income through the multiplier impact. As income
falls, so too does the demand for money, and this leads to a fall in the rate of
interest. What we observe, since the money market is continuously in equilibrium,
is a movement along LM0 from E1 to E2. As the interest rate falls, however, the
amount of net capital inflows declines and so the exchange rate must depreciate.
This shifts the BP curve down from BP1 to BP2 which occurs as the IS curve shifts
from IS1 to IS2. In other words, in the (y, r)-plane, the economy gradually moves
down LM0 from E1 to E2, establishing itself at the final equilibrium point E2. The
most likely trajectory, therefore, is a movement along LM0 from E0 to E2 as all
these forces take effect.

There is some difference in the results for the situation of perfect capital mobility.
This is illustrated in figure 12.13. We can be brief because the formal analysis is
similar. The fiscal expansion shifts IS to IS1 and the economy from E0 to E1.
The domestic currency appreciates as a result of the balance of payments surplus,
shifting the BP line up to BP1. The resulting appreciation leads to a fall in net
exports shifting IS left. As this takes place, income falls, interest rates fall, and the
exchange rate depreciates, with the economy moving down the LM curve from E1

to E2 = E0, and with the situation returning to its initial position, with no impact
on the level of income.

Two observations are worth noting about all these results, which we shall put
in the form of two propositions. The first is the typical Mundell–Fleming result
concerning a fiscal expansion under the assumption of a floating exchange rate;
the second proposition is in the spirit of Dornbusch and overshooting.
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PROPOSITION 3
Under flexible exchange rates, fiscal policy is effective in changing the
level of income where there is some degree of capital mobility, but totally
ineffective where there is perfect capital mobility.

PROPOSITION 4
Under flexible exchange rates, a fiscal expansion leads to an overshooting
of interest rates and an overshooting of the exchange rate, and this result
holdswith some degree of capitalmobility orwith perfect capitalmobility.

The important results are those with regard to some degree of capital mobility,
since this is likely to capture the real world. A fiscal expansion would lead to a
rise in income, a rise in interest rates and an appreciation of the domestic currency.
This would be followed by interest rates falling, income falling and the exchange
rate depreciating – but all such that the initial impact outweighs the secondary
impacts.

12.4.2 Monetary expansion

A monetary expansion under imperfect capital mobility and under perfect capital
mobility is illustrated in figures 12.14 and 12.15, respectively. The adjustment
is similar in both cases. However, figure 12.14 illustrates a numerical example.

Figure 12.14.



Open economy dynamics: sticky price models 543

Figure 12.15.

Table 12.4 Equilibrium points for figure 12.14

IS, LM and BP curves Solution values
IS0 r = 27.924 − 0.3375y E0 y = 40.506 E1 y = 45.282
LM0 r = −6 + 0.5y r = 14.253 r = 12.641
BP0 r = 6.152 + 0.2y S = 1.764 bp = −2.567

LM1 r = −10 + 0.5y E2 y = 46.582
IS1 r = 29.013 −0.3375y r = 13.291
BP2 r = 3.975 + 0.2y S = 2.075

Which illustrates the result of increasing the money supply by 2. The relevant
information is given in table 12.4

A rise in the money supply shifts the LM curve right to LM1 and moves the
economy from point E0 to point E1. At E1 the balance of payments is in deficit.
Since the exchange rate is flexible and adjusts instantaneously, it will depreciate,
shifting the BP curve down from BP0 to BP1, where it intersects both the IS curve
and LM curve at point E1. The depreciation leads to a rise in the real exchange rate
and hence to a stimulus to net exports. This leads to a shift right in the IS curve. In
terms of figure 12.14, this will be to IS1, and the resulting rise in the rate of interest
leads to an appreciation of the exchange rate, but not enough to swamp the original
depreciation. The economy accordingly moves to point E2 (the intersection point
between IS1, LM1 and BP2). The situation in figure 12.15 is somewhat similar.
The depreciation leads to a shift right in the IS curve to IS1, but this will cut the
LM1 curve on the original BP curve because interest rates will have to be brought
back into line with world interest rates, which is accomplished by an expected
appreciation of the currency, which returns BP1 to BP0.

Again we have concentrated on the comparative statics. But what will the tra-
jectory of the economy look like in the short run and in the long run? The analysis
is similar for both figure 12.14 and figure 12.15. The immediate impact of the
monetary expansion is a sharp drop in the rate of interest, to point A on LM1. This
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is because the money market adjusts immediately, while the goods market is yet
to alter. But there is another immediate result. The sharp fall in the rate of interest
leads to a major depreciation of the exchange rate. There will be another BP curve
(not shown) that passes through point A. As the goods market adjusts to the lower
interest rate, stimulating investment, and through the multiplier stimulating the
level of income, the economy will move to point E1, the movement taking place
along LM1 and the BP curve continuously adjusting upwards until BP1 is reached.
In the longer run, however, the depreciation which originally occurred will begin to
shift the IS curve because of the stimulus to net exports. This will lead to a further
movement along LM1 and a further shift up in the BP curve until the economy
moves to point E2.

Again we arrive at two propositions:

PROPOSITION 5
Under flexible exchange rates, monetary policy is effective in changing
the level of income, and the effect is greater the greater the degree of
capital mobility.

PROPOSITION 6
Under flexible exchange rates, a monetary expansion leads to overshoot-
ing of interest rates and overshooting of exchange rates, and the less the
degree of capital mobility the greater the overshooting of the exchange
rate.

The important results are those with regard to some degree of capital mobility,
since this is likely to capture the real world. A monetary expansion would lead to a
rise in income, a fall in interest rates and a depreciation of the domestic currency.
This would be followed by interest rates rising, income rising and the exchange rate
appreciating – but all such that the initial impact outweighs the secondary impacts.

12.4.3 A rise in the foreign interest rate

Finally, consider the situation where the foreign interest rate is increased under
floating. As earlier, the initial impact is to raise the BP curve by the amount of the
increase. The initial situation, point E0 in figure 12.16, now represents a deficit on
the balance of payments. This leads to a depreciation of the domestic currency,
which improves competitiveness. The improvement in competitiveness stimulates
net exports, so shifting IS to the right (to IS1) and BP down to BP2 in figure 12.16.
The final equilibrium is at E1. But what is the trajectory of the economy over the
adjustment period? As the depreciation stimulates net exports shifting IS right and
BP down, the economy will move along LM0, since the money market clears in
every period. The economy will have a trajectory along LM0 between E0 and E1,
shown by the arrows. We arrive, then, at the important conclusion that under a
floating exchange rate the economy’s adjustment exhibits no overshooting.

The same basic conclusion holds with perfect capital mobility, except that the
final equilibrium must have the domestic interest rate equal to the new (higher)
foreign interest rate. the trajectory remains along LM with no overshooting.
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Figure 12.16.

12.5 Open economy dynamics under fixed prices
and floating

So far we have concentrated on the comparative statics with some reference to the
dynamics. Keeping within the simple linear model, let us consider the dynamics
in more detail. We begin by stating the adjustment functions for the three markets
explicitly, namely

Goods market ẏ = α(e − y) α > 0
Money market ṙ = β(md − ms) β > 0
Foreign market Ṡ = γ (bp) γ > 0

(12.20)

To simplify we set P = P∗ = 1 so that R = S and hence

e = (a + nx0) + [b(1 − t) + j − m]y − hr + ( f + g)S

giving

ẏ = α(a + nx0) + α[b(1 − t) + j − m − 1]y − αhr + α( f + g)S

or

ẏ = A0 + A1y + A2r + A3S (12.21)

where

A0 = α(a + nx0)
A1 = α[b(1 − t) + j − m − 1]
A2 = −αh
A3 = α( f + g)

Equilibrium in the goods market is where ẏ = 0 which no more than traces out the
IS curve in ( y, r)-space. If ẏ > 0 then e > y and r is below the value on the line
ẏ = 0. Hence, below and to the left of ẏ = 0 then y is rising while above and to
the right income is falling, as shown in figure 12.17(a).



546 Economic Dynamics

Figure 12.17.

The money market is unchanged. Money market equilibrium is where ṙ = 0
which traces out the LM curve in (y, r)-space. If ṙ > 0 then Md/P > Ms/P and r is
below and to the right of the value on the ṙ = 0 line. Hence, below and to the right
of ṙ = 0 then r is rising, while above and to the left r is falling, as shown in figure
12.17(b). The greater the value of β the faster interest rates rise or fall to clear the
money market.

Finally, the foreign exchange market is in equilibrium when bp = 0 or Ṡ = 0,
which simply traces out the BP curve in ( y, r)-space. Here we need to be careful.
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Below Ṡ = 0 then bp< 0 and S is rising representing a depreciating of the domestic
currency, resulting in the Ṡ = 0 line shifting down, as shown in figure 12.17(c). The
fact that the Ṡ = 0 line shifts should be clear. The BP curve is drawn in ( y, r)-space
for a fixed exchange rate. When the exchange rate varies, which it will do for either
a deficit or a surplus, then the result is a shift in the BP curve. However, there is
also a shift in the IS curve. A depreciation of the domestic currency shifts IS right
while an appreciation shifts it left – assuming the Marshall–Lerner conditions are
satisfied.12 The higher the value of γ , the more the BP curve shifts for any given
deficit or surplus.

Turning to the money market we have

ṙ = β(md − ms) β > 0

= β(ky − ur − m0)

i.e. ṙ = −βm0 + βky − βur

or

ṙ = B0 + B1y + B2r (12.22)

where

B0 = −βm0

B1 = βk

B2 = −βu

Finally, for the foreign exchange market

Ṡ = γ (bp) = γ [bp0 + ( f + g)S − my + v(r − r∗)]

= γ (bp0 − vr∗) − γmy + γ vr + γ ( f + g)S

or

Ṡ = C0 + C1y + C2r + C3S (12.23)

where

C0 = γ (bp0 − vr∗)

C1 = −γm

C2 = γ v

C3 = γ ( f + g)

Our model, then, amounts to three differential equations

ẏ = A0 + A1y + A2r + A3S

ṙ = B0 + B1y + B2r

Ṡ = C0 + C1y + C2r + C3S

(12.24)

The fixed point is where ẏ = 0, ṙ = 0 and Ṡ = 0 and can be solved for the equi-
librium values y∗, r∗ (not the interest rate abroad)13 and S∗.

12 See n. 4, p. 526.
13 There should be no confusion between the foreign interest rate and the equilibrium interest rate both

being referred to as r∗.
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It is clear from the specification of the initial adjustment functions that the three
parameters α, β and γ have no bearing on the existence of a fixed point. What they
do have a bearing on is the dynamic path or trajectory of the system from some
initial value. Such a trajectory is less straightforward than any we have encountered
so far because in (y, r)-space the trajectory is also governed by the movement of the
exchange rate. The fiscal expansion we outlined in the previous section illustrates
the problem.

Suppose we start from an equilibrium. A fiscal expansion will shift the ẏ = 0
line to the right. Interest rates will be pushed up and there will be a capital inflow
resulting in a balance of payments surplus. The extent of the interest rate rise
depends on the value of β. The resulting surplus on the balance of payments leads
to an appreciation of the domestic currency. The extent of the appreciation depends
on the value of γ , which in turn will influence the trajectory arising from changes
in the rate of interest and changes in the level of income. Finally, the changes in
income will be governed by the parameter α. The difficulty, of course, is that we
are attempting to reduce a three-variable problem into a two-dimensional plane.

To appreciate some of the difficulties suppose we have the parameter values
given in table 12.2 along with α = 0.05, β = 0.8 and γ = 0.0001. The fixed
point is

(y∗, r∗, S∗) = (40.506, 14.253, 1.764)

Now let autonomous spending rise by 10 as before. We have already established
(see table 12.3) that the new fixed point is

(y∗, r∗, S∗) = (45.570, 16.785, 1.547)

But is this new fixed point attained?
The first thing we note is that E0 becomes our initial position and the dynamics

of the system are governed by point E2. The differential equation system associated
with point E2 is

ẏ = 2.675 − 0.03375y − 0.1r + 0.35S
ṙ = −2.4 + 0.2y − 0.4r
Ṡ = −0.00185 − 0.00002y + 0.0001r + 0.0007S

whose trajectory we can establish using a software package. One possible trajectory
is shown in figure 12.18. The trajectory must begin in the shaded triangle and move
anticlockwise. But there is nothing in the qualitative analysis precluding the system
overshooting and spiralling towards E2 (or even away from E2!). Such a possibility
is very dependent on the reaction coefficients α, β and γ .

For instance, with the same fiscal expansion but now α = 0.1 (higher than
before) then the trajectory lies outside that for α = 0.05, as shown in figure 12.19.
This should not be surprising because a higher α is indicating a greater response
on income in the goods market for any given level of excess demand. On the other
hand, a higher value for β (say β = 1.5 rather than 0.8) leads to a trajectory inside
that for β = 0.8, as shown in figure 12.20. Again this should not be surprising
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Figure 12.18.

Figure 12.19.

since a higher value for β will push the trajectory towards the LM curve.14 Notice,
however, that the trajectory in figure 12.19 overshoots the equilibrium E2 while it
is difficult to see whether this is the case in figure 12.20.

We have not considered the reaction coefficient γ . The greater γ the more the BP
curve and IS curve shift for any given level of balance of payments disequilibrium.
The greater the value of γ the more likely the system over-reacts and equilibrium
E2 not attained. By way of example, compare the following two situations for
a fiscal change. The first situation is as before, while situation II has a higher

14 Recall that with instantaneous adjustment in the money market the system would move along the
LM curve.
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Figure 12.20.

Figure 12.21.

level of γ , with the exchange rate reacting significantly to balance of payments
disequilibria.

Situation I α = 0.05, β = 0.8, γ = 0.0001
ẏ = 2.675 − 0.03375y − 0.1r + 0.35S
ṙ = −2.4 + 0.2y − 0.4r
Ṡ = −0.00185 − 0.00002y + 0.0001r + 0.0007S

Situation II α = 0.05, β = 0.8, γ = 0.05
ẏ = 2.675 − 0.03375y − 0.1r + 0.35S
ṙ = −2.4 + 0.2y − 0.4r
Ṡ = −0.925 − 0.01y + 0.05r + 0.35S

As can be seen from figure 12.21, the trajectories for these two situations are
quite different. More significantly, although point E2 exists, it is not attained in
situation II. Why is this? We noted that the fiscal expansion led to a surplus and to
an appreciation. The resulting rise in income led to a subsequent depreciation. But
this is swamped in the present situation and the appreciation begins to dominate
the dynamics pushing the system along the dotted line trajectory in figure 12.21.

Of course, these parameter values are purely illustrative. But they act as a warn-
ing in the present example that the comparative statics is not sufficient to establish
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the likely trajectory of the system. It also suggests that the larger γ the greater the
possibility that the system is dynamically unstable.

Exercises

1. Set up the same numerical model as in section 12.1, but have the adjust-
ment lag Yt = Et−2. Compare your results for the time path of Yt with
that in table 12.1.

2. Consider the simple dynamics of section 12.1 with exactly the same
parameter values but with the following alternative lags for the import
function (take each one separately):
(i) Mt = 10 + 0.2Yt−1

(ii) Mt = 10 + 0.2Et−1

3. Show that

�NXt = −mkt�G

and that

lim
t→∞mkt = mk

where Xt = X0 and Mt = M0 + mYt.
4. Consider the numerical model in section 12.1 for three alternative

marginal propensities to import: m = 0.2, m = 0.3 and m = 0.4, all
other parameters constant.

(i) Show that the three total expenditure lines emanate from the same
point on the vertical axis but that their slopes differ by deriving the
equation for each total expenditure curve.

(ii) Obtain the equilibrium income in each case.
(iii) Assuming income begins at Y0 = £2000 million, plot on the same

graph the path of income over 10 periods for each marginal propen-
sity.

(iv) What conclusions do you draw from your analysis?
5. Using the data in table 12.2, consider the new equilibrium income and

interest rate for the following changes, assuming no sterilisation, constant
prices and a fixed exchange rate. Draw each situation and the likely path
to the new equilibrium.

(i) Rise in a from 43.5 to 50.0.
(ii) Fall in IR (hence fall in the money supply) from 3 to 2.

(iii) Devaluation of the exchange rate from 1.764 to 2.
6. Using the data in table 12.3, consider the new equilibrium income and

interest rate for the following changes, assuming no sterilisation and that
P and P∗ are fixed. Draw each situation and the likely path to the new
equilibrium.
(i) autonomous spending rises by 20 and under floating S = 1.33.

(ii) Ms rises from 3 to 4, i.e., LM becomes r = −8 + 0.5y and under
floating S = 1.92.
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7. Consider the following discrete version of the numerical model of section
12.5, where again the figures refer to point E2.

yt+1 − yt = 2.675 − 0.03375yt − 0.1rt + 0.35St
rt+1 − rt = −2.4 + 0.2yt − 0.4rt
St+1 − St = −0.00185 − 0.00002yt + 0.0001rt + 0.0007St

(i) Set the system up on a spreadsheet and show that

( y∗, r∗, S∗) = (45.570, 16.785, 1.547) is an equilibrium.

(ii) Show that this equilibrium is not attained from the initial position

( y0, r0, S0) = (40.506, 14.253, 1.764).

(iii) Is the equilibrium attained for initial values very close to the equi-
librium?

8. For situation II in section 12.5, the equivalent discrete model is

yt+1 − yt = 2.675 − 0.03375yt − 0.1rt + 0.35St
rt+1 − rt = −2.4 + 0.2yt − 0.4rt
St+1 − St = −0.925 − 0.01yt + 0.05rt + 0.35St

Given (y0, r0,S0)= (40.506, 14.253, 1.764) show that point E2 represented
by (y∗, r∗, S∗)= (45.570, 16.785, 1.547) isnot attained and that the system
is explosive.

Additional reading

Additional material on the contents of this chapter can be obtained from Copeland
(2000), Dernburg (1989), Gapinski (1982), Gärtner (1993), Karakitsos (1992),
McCafferty (1990), Pilbeam (1998) and Shone (1989).



CHAPTER 13

Open economy dynamics: flexible
price models

Since the advent of generalised floating in 1973 there have been a number of ex-
change rate models, most of which are dynamic. In this chapter we shall extend our
discussion of the open economy to such models. Besides having the characteristic
of a flexible exchange rate they also have the essential feature that the price level
is also flexible, at least in the long run. This is in marked contrast to chapter 12
in which the price level was fixed. The models are often referred to, therefore, as
fix-price models and flex-price models, respectively.

The majority of the flex-price models begin with the model presented by
Dornbusch (1976). Although the model emphasised overshooting, what it did do
was provide an alternative modelling procedure from the Mundell–Fleming model
that had dominated international macroeconomic discourse for many years. It must
be stressed, however, that the model and its variants are very monetarist in nature.
Although the Mundell–Fleming model assumed prices fixed, which some saw as
totally inappropriate, the models in the present chapter assume full employment,
and hence a constant level of real income. This too may seem quite inappropriate.
Looked at from a modelling perspective, it allows us to concentrate on the rela-
tionship between the price level and the exchange rate. Of particular importance,
therefore, in such models is purchasing power parity. It does, of course, keep
the analysis to just two main variables.

Purchasing power parity (PPP) indicates that prices in one country are equal
to those in another after translating through the exchange market. There is a vast
literature on this topic that we shall not go into here. All we shall do is stipulate
that this is supposed to hold at the aggregate level. Hence, if P is the price level
at home, P∗ the price level abroad, and S the exchange rate (quoted in terms of
domestic currency), then

SP∗ = P

Taking natural logarithms, and setting the foreign price to unity (i.e.P∗ = 1), which
throughout is held constant, then

ln S − lnP∗ = lnP

i.e. s = p since lnP∗ = ln 1 = 0

where lower case letters denote natural logarithms. A rise in S (or s) is an
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appreciation of the foreign currency, i.e., a depreciation of the domestic currency.1

For purchasing power parity to hold, therefore, we require s = p. So long as s
differs from p, then purchasing power parity does not hold.2 It is the purchasing
power parity condition that drives the long-run result in the models to be discussed
in this chapter. In other words, in the short run it is possible for the economy to
deviate from purchasing power parity but in the long run purchasing power parity
must hold.3

One of the essential differences between the present models and those of chapter
12 is that they are presented in terms of natural logarithms. Accordingly we shall
denote all variables in natural logarithms with lower case letters. The exception is
interest rates. These are percentages and the home interest rate will be denoted r
and the foreign rate r∗, as in chapter 12.

In section 13.1 we consider a simplified Dornbusch model in which the goods
market is independent of the rate of interest. This captures most of the character-
istics of the original Dornbusch model but is easier to follow. In section 13.2 we
consider Dornbusch’s (1976) model. Both these models assume perfect capital mo-
bility. In section 13.3 we consider what happens when capital is immobile (but not
perfectly immobile). Next we consider the Dornbusch model under the assumption
of perfect foresight, which gives a rational expectations solution (section 13.4).
One of the main features of rational expectations modelling is the possibility of
considering the impacts of government announcements. This topic we consider in
section 13.5. The discovery of gas and then oil in the North Sea led to major im-
pacts on the exchange rate, which in turn influenced adversely the non-oil sector.
Section 13.6 presents a popular model for considering any resource discovery and
its impact on the exchange rate. The final section 13.7 considers the dynamics of a
simple monetarist model. Throughout we concentrate on the economic dynamics,
illustrating this with many numerical examples.

13.1 A simplified Dornbusch model4

We begin with a simplified Dornbusch model that captures nearly all the features
of the original but is more manageable. We can then go on to further complications
once this is fully understood. All the Dornbusch models begin with three markets.
There is the goods market, the money market and the foreign exchange market
(or the balance of payments). The goods market reduces down to two simple
relationships, a total expenditure equation and a price adjustment equation, where
income is assumed constant at the full employed level. The money market is a

1 The reader needs to be vigilant concerning which currency is appreciating and which depreciating.
Since S (or s) is the price of overseas currency in terms of domestic currency (the European conven-
tion of quoting exchange rates, other than the UK), then a rise in the price is an appreciation of the
foreign currency. However, most discussion takes place in terms of the price of domestic currency.

2 In terms of the analysis of chapter 12 purchasing power parity requires the real exchange rate, R, to
equal unity.

3 There is something wholly unsatisfactory in this modelling. Although in the short run deviation
from PPP is possible, but not in the long run, income cannot deviate from its full employment level
either in the short run or in the long run, which is quite unrealistic.

4 Based on a model presented in Gärtner (1993).
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Table 13.1 Model 13.1

Goods market e = total expenditure
e = cy + g + h(s − p) 0 < c < 1, h > 0 y = real income (exogenous)
ṗ = a(e − y) a > 0 g = government spending

s = spot exchange rate
p = domestic price level
ṗ = inflation rate (since p = ln P)

Money market md = demand for money
md = p + ky − ur k > 0, u > 0 r = domestic interest rate
ms = md = m ms = supply of money

m = exogenous money balances
International asset market r∗ = interest rate abroad
r = r∗ + ṡe ṡe = change in expected spot rate
ṡe = v(s − s) v > 0 (expected depreciation/appreciation)

s = purchasing power parity rate
(equilibrium rate)

straightforward demand for money and a constant level of real money balances.
The international asset market varies considerably from one model to another. Here
we assume perfect capital mobility and therefore the domestic interest rate is equal
to the foreign interest rate adjusted for any expected change in the exchange rate.
The expected change in the exchange rate, in turn, depends on the extent of the
deviation of the exchange rate from its purchasing power parity level. The model,
then, is captured by the set of equations in table 13.1.

The model can be captured diagrammatically by deriving two equilibrium lines
in (s,p)-space. A goods market equilibrium line, which denotes combinations of
p and s for which the price level is not changing, i.e., ṗ = 0, which we shall
denote GM; and an asset market line which denotes combinations of p and s
which maintains equilibrium in the money market and satisfies the condition on
the expected change in the exchange rate, which we shall denote AM.

Substituting the expenditure function into the price adjustment relation ṗ =
a(e − y), and setting ṗ equal to zero, gives the following relationship between the
price level and the exchange rate

p = s − (1 − c)y

h
+ g

h
(13.1)

Equation (13.1) is a positive relationship between p and s with a slope of unity. If
we impose the condition of purchasing power parity, which we shall do, then in
the long run p = s, and so the intercept of the GM line must be zero. Hence, in
figure 13.1 we have drawn the GM line through the origin with a slope of unity.
Furthermore, ṗ > 0 if e > y, i.e.

p < s − (1 − c)y

h
+ g

h

Hence, below the GM line expenditure exceeds income and there is pressure on
prices to rise, while above the GM line expenditure is less than income, and there
is pressure on prices to fall.
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Figure 13.1.

The asset market line, denoted AM in figure 13.1, is derived by substituting
the condition on the expected exchange rate into the interest rate condition and
substituting that into the money market equilibrium condition. Thus

m = p + ky − u[r∗ + v(s − s)]

i.e. p = (m − ky + ur∗ + uvs) − uvs
(13.2)

which denotes a negative association between the price level, p, and the exchange
rate, s. All markets are in equilibrium where the GM line intersects the AM line, at
(s, p) in figure 13.1. From the asset market line we immediately have the condition

p = m − ky + ur∗(13.3)

while from the goods market condition we have

p = s − (1 − c)y

h
+ g

h
(13.4)

We are now in a position to consider some comparative statics and some dy-
namics. Consider an increase in the money supply from m0 to m1. This has no
bearing on the goods market line, which remains unaffected. However, the rise in
the money supply raises the intercept on the p-axis in terms of equation (13.2), and
so shifts the AM line to the right, to AM1 in figure 13.2. The equilibrium moves
from E0 to E1, resulting in a rise in the price level and a depreciation of the do-
mestic currency (a rise in s). But much more significant is the dynamic movement
of the economy from E0 to E1. The rise in the money supply leads initially to a
major depreciation of the domestic currency (rising from s0 to s2). This is because
the domestic interest rate falls below that abroad (r < r∗), resulting in an immedi-
ate capital outflow. This occurs because we have assumed that initially the goods
market has not responded to the increase in the money supply, but the asset market
can do so immediately. This is a basic behavioural assumption of all the models in
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Figure 13.2.

this chapter: the goods market is slow to adjust (there is price stickiness) while the
asset market is very quick to adjust (here instantaneous). Initially, therefore, the
economy moves from point E0 to point C. But at point C the goods market exhibits
real expenditure in excess of real income. This puts pressure on prices to rise. As
the price level rises this leads to a fall in real money balances. This reverses some
of the capital outflow and so leads to an appreciation of the domestic currency (a
fall in s). The economy accordingly moves up AM1 from point C to point E1. At
E1 not only are all markets in equilibrium, but purchasing power parity holds once
more.

There are a number of characteristics of importance about this model:

(1) The exchange rate initially overshoots its long-run result. Although there
is an eventual depreciation of the domestic currency, it first depreciates by
far too much, and then appreciates. This arises because the goods market
is slow to adjust and the asset market is quick to adjust.

(2) Because of the condition of purchasing power parity, dp = ds = dm in
moving from one equilibrium to the next. Geometrically it must be the
case that dp = ds because both E0 and E1 lie on the line GM, which has
a slope of unity.

(3) The speed of adjustment of prices towards the new equilibrium depends
on the parameters, a, u, v and h. To see this we first note that

p = m − ky + ur∗ − uv(s − s)

p = m − ky + ur∗

... p = p − uv(s − s)

or s − s = − 1

uv
(p − p)
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Since ṗ = a(e − y) then 0 = a(e − y) and e = cy + g + h(s − p). Sub-
tracting we get

ṗ = a(e − e)

= a[h(s − s) − h(p − p)]

= a

[
− h

uv
(p − p) − h(p − p)

]
or

ṗ = −ah

(
1

uv
+ 1

)
(p − p)(13.5)

Which is a first-order autonomous homogeneous differential equation.
(4) The model assumes perfect capital mobility. The domestic interest rate

diverges from the foreign interest rate only to the extent of an expected
change in the exchange rate. At equilibrium points E0 and E1, there is no
expected change in the exchange rate and so the domestic rate of interest
is equal to the foreign rate of interest. Since the foreign rate of interest
is constant throughout, then in the long run there is no change in the
domestic rate of interest. Although there is an initial fall in the rate of
interest in response to the increase in the money supply, as prices begin
to rise, real money balances fall and the rate of interest gradually returns
to its former level. In other words, r = r∗ at point E0 and point E1.

Example 13.1, Model 13.1

We can explore the model by means of a numerical example. Namely

e = 0.8y + 4 + 0.01(s − p)

ṗ = 0.1(e − y)

md = p + 0.5y − 0.5r

ms = md = 105

r = r∗ + ṡe

ṡe = 0.2(s − s)

y = 20, r∗ = 10

This gives the GM line through the origin with unit slope and the AM line of
p = 110 − 0.1s. The initial equilibrium, E0, is therefore p = 100 and s = 100. A
rise in the money supply from m0 = 105 to m1 = 110 shifts the AM line from AM0

to AM1 (with formula p = 115.5 − 0.1s), and new equilibrium, E1, with p = 105
and s = 105, as shown in figure 13.3. The domestic currency initially depreciates
from s = 100 to s2 = 155.

The adjustment coefficient for this model is

λ = ah

(
1

uv
+ 1

)
= 0.011

We have already shown that
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Figure 13.3.

ṗ = −ah

(
1

uv
+ 1

)
(p − p)

= −λ(p − p)

This has the general solution

p(t) = p + (p0 − p)e−λt

For the numerical model p0 = 100, p = 105 and λ = 0.011. Hence

p(t) = 105 − 5e−0.011t

Furthermore (see exercise 1)

s(t) = s + (s0 − s)e−λt

= 105 + 50e−0.011t

and consequently both the price level and the exchange rate have the same adjust-
ment coefficient. However, care must be exercised in interpreting these dynamic
forces. What they represent is the movement along AM1 from point C to equilib-
rium point E1, in other words, the price level is rising from p = 100 to p = 105
while the domestic currency is appreciating from s = 155 to s = 105. The final
result, however, is a depreciation of the domestic currency.

We can demonstrate that the trajectory is along AM1 by eliminating e−0.011t in
both p(t) and s(t). Thus

p(t) − 105

−5
= s(t) − 105

50
i.e. p(t) = 115.5 − 0.1s(t)

which is the equation for AM1.

13.2 The Dornbusch model

Having discussed a simplified version of the Dornbusch model we can now turn
to his original formulation, shown in table 13.2. Although only one equation is
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Table 13.2 Model 13.2

Goods market e = total expenditure
e = cy − dr + g + h(s − p) 0 < c < 1, d > 0, h > 0 y = real income (exogenous)
ṗ = a(e − y) a > 0 g = government spending

s = spot exchange rate
p = domestic price level
ṗ = inflation rate (since p = ln P)

Money market md = demand for money
md = p + ky − ur k > 0, u > 0 r = domestic interest rate
ms = md = m ms = supply of money

m = exogenous money balances
International asset market r∗ = interest rate abroad
r = r∗ + ṡe ṡe = change in expected spot rate
ṡe = v(s − s) v > 0 (expected depreciation/appreciation)

s = purchasing power parity rate
(equilibrium rate)

different, this does add a significant complication. The change is to the expenditure
function, which now assumes that investment (a component of expenditure) is
inversely related to the rate of interest; hence a component −dr (d > 0) is added
to the expenditure function. This has the immediate implication that the goods
market and the asset market are interdependent, and this interdependence arises
through the rate of interest.

The asset market line remains unaffected and therefore can be expressed as
before, i.e., the AM line is

m = p + ky − u[r∗ + v(s − s)]

i.e. p = (m − ky + ur∗ + uvs) − uvs
(13.6)

However, the goods market line, GM, now takes the form

p =
{
−
[

(1 − c) + (dk/u)

h + (d/u)

]
y +

[
g + (dm/u)

h + (d/u)

]}
+ hs

h + (d/u)
(13.7)

Notice in particular that the slope of the GM line (where p is on the vertical axis
and s on the horizontal axis) is now

slope GM = h

h + (d/u)
= 1

1 + (d/uh)
< 1(13.8)

since d, v and h are all positive. It is also still the case that below the GM line
the goods market has expenditure in excess of income, and so there is pressure on
prices to rise. Above the GM line, expenditure is less than income, and there is
pressure on prices to fall. The situation is illustrated in figure 13.4. In this figure
we have both markets in equilibrium at point E, which in this instance is both
a short-run equilibrium and a long-run equilibrium. It is a short-run equilibrium
because the solution lies at the intersection of GM and AM, but it is also a long-
run equilibrium because this also satisfies the purchasing power parity condition,
which is given by the 45◦-line, and denoted PPP. It is no longer the case, therefore,
that the GM line coincides with the 45◦-line.

Now consider a monetary expansion once again. This shifts the AM line to
the right, as before. Since we have retained the assumption of an instantaneously
adjusting asset market and a sluggish goods market adjustment, the economy
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Figure 13.4.

Figure 13.5.

moves initially to point C on AM1 in figure 13.5. This movement is because of
the immediate capital outflow. But now two responses come into play. At point C
expenditure is in excess of income and so there is pressure on prices to rise, so
moving the economy up AM1. However, the rise in the nominal money supply has
initially led to a fall in the rate of interest. This fall in the rate of interest shifts the
GM curve to the left (it raises the intercept). One can think of the shift in the GM
line as follows. If the money supply rises, this puts pressure on domestic interest
rates to fall. This fall stimulates investment which increases expenditure. At the
existing exchange rate prices are now higher, and so the GM line has shifted up
(left) as a result of the impact on r from the rise in m. This result can be seen in
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terms of equation (13.7). A rise in m leads to a rise in the intercept term, i.e., a
shift up in the GM line. Expectations will change so long as the exchange rate
differs from its purchasing power parity level. Hence, the system will come to a
long-run equilibrium once the goods market line has shifted from GM0 to GM1,
establishing a new equilibrium E1 once again on the PPP line. Prices rise and the
domestic currency depreciates. Because of our assumption about perfect capital
mobility the rate of interest must return to its former level, which is equal to the
foreign interest rate.

Consider the following numerical example.

Example 13.2, Model 13.2

e = 0.8y − 0.1r + 5 + 0.01(s − p)
ṗ = 0.1(e − y)
md = p + 0.5y − 0.5r
ms = md = 105
r = r∗ + ṡe

ṡe = 0.2(s − s)
y = 20, r∗ = 10

This gives the GM and AM lines as

GM p = 95.2 + 0.0476s

AM p = 110 − 0.1s

with equilibrium point E0 given by (s0, p0) = (100, 100), which satisfies the pur-
chasing power parity condition, i.e., s = p. Furthermore, r = r∗ = 10, as illustrated
in figure 13.6.

Now consider an increase in the money supply from 105 to 110. As we indicated
above, this shifts both the asset market line and the goods market line. The new
lines are

GM p = 100 + 0.0476s

AM p = 115.5 − 0.1s

Figure 13.6.
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with the new equilibrium point, E1, given by (s1, p1) = (105, 105), which also
satisfies the purchasing power parity condition and the condition that r = r∗ = 10.

As in the previous model, comparing equilibrium point E0 with E1, we notice
that

ds = dp = dm = 5

As we would expect with an unchanged AM line, point C has an exchange rate of
s= 155 at the price level p = 100. Again there is overshooting of the exchange rate,
first the domestic currency is depreciating and then appreciating, with an overall
depreciation in the long run.

The fact that the interest rate affects the GM line must mean that although the
system moves along AM, as in the previous model, it must do so at a different
speed. We can establish this in the present example as follows. First we note (see
exercise 3) that we can express the change in prices as a first-order autonomous
homogeneous differential equation, i.e.

ṗ = −a

(
h + h

uv
+ d

u

)
(p − p)

This is consistent with our previous result. If d = 0, then this reduces to the same
differential equation we considered in example 13.1. The adjustment coefficient

Figure 13.7.
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is therefore

λ = a

(
h + h

uv
+ d

u

)
= 0.031

which is greater than 0.011 as we would expect.
In terms of the dynamics, the only essential difference is the adjustment coef-

ficient λ. The price level and the exchange rate still adjust the same, since e−λt

applies to both, as in example 13.1, and so adjustment still takes place along a tra-
jectory determined by the AM line. What makes the difference from example 13.1
is the change in the interest rate during the adjustment period. Although this moves
the goods market line to the left, the change in the rate of interest speeds up the
adjustment process. Eventually, however, the rate of interest returns to its former
level of r = r∗ = 10. This difference in the adjustment path for the exchange rate
and the price level is illustrated in figure 13.7.

13.3 The Dornbusch model: capital immobility

The two versions of the Dornbusch model so far outlined assume that capital is
perfectly mobile. This has the effect of leaving interest rates equal to the world level
in long-run equilibrium. Furthermore, in the previous two models the exchange rate
will always overshoot its long-run equilibrium when the money supply is changed.
Allowing exchange rate immobility leads to the possibility of undershooting
rather than overshooting.

To see this we need to change the relationship between the domestic interest
rate and the foreign interest rate. In doing this we need to define the balance of
payments. This is given by

bp = h(s − p) + b(r − r∗ − ṡe) h > 0, b > 0(13.9)

Equation (13.9) says no more than the balance of payments is the sum of the current
account and the net capital flow. The current account element is the same as that
in the expenditure function,5 while the second element denotes net capital flows
which is responding to the difference between the two interest rates, adjusted for
any expected change in the exchange rate. Perfect capital mobility implies b = ∞,
while a value ofb close to zero implies more extreme capital immobility. We need to
make one further observation concerning this equation. Given a perfectly floating
exchange rate, then the balance of payments is always in balance and so bp = 0.
We retain the assumption about the expected change in the exchange rate, namely
that it adjusts to the difference between the purchasing power parity level and the
actual level. Since nothing else in the model is different, then there is no change in
the goods market line. Only the specification of the asset market line is changed.

Consider example 13.1 again, which excludes any interest rate impact on the
goods market, and so the GM line is the same as the purchasing power parity
line, and is a 45◦-line through the origin. The model is set out in detail below in
table 13.3.

5 Gärtner (1993) has a different coefficient on (s − p) in the expenditure function and the balance
of payments equation. There is no real need for this. Both arise from net exports, which occurs
identically in both equations.
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Table 13.3 Model 13.3

Goods market e = total expenditure
e = cy + g + h(s − p) 0 < c < 1, h > 0 y = real income (exogenous)
ṗ = a(e − y) a > 0 g = government spending

s = spot exchange rate
p = domestic price level
ṗ = inflation rate (since p = ln P)

Money market md = demand for money
md = p + ky − ur k > 0, u > 0 r = domestic interest rate
ms = md = m ms = supply of money

m = exogenous money balances
International asset market bp = balance of payments
bp = h(s − p) + b(r − r∗ − ṡe) h > 0, b > 0 r∗ = interest rate abroad
ṡe = v(s − s) v > 0 ṡe = change in expected spot rate

(expected depreciation/appreciation)
s = purchasing power parity rate
(equilibrium rate)

Figure 13.8.

As we have just indicated, the essential change is to the asset market line. This
now takes the form

p = m − ky + ur∗

1 − (uh/b)
+ uvs

1 − (uh/b)
− [uv + (uh/b)]s

1 − (uh/b)
(13.10)

Notice that this is consistent with model 13.1. If b → ∞ then this equation reduces
to the asset market equation of section 13.1. Of particular importance in this model
is the slope of the asset market line, which is

slope of AM = −uv + (uh/b)

1 − (uh/b)
(13.11)

A very high value of b, a high degree of capital mobility, will mean the typical
negatively sloped asset market line, with analysis identical to that in section 13.1.
However, with a very low degree of capital mobility, a value of b close to zero, can
mean a positively sloped asset market line. The situation is illustrated in figure 13.8.
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A rise in the money supply will shift the asset market line to the right, from AM0

to AM1, and the equilibrium will move from E0 to E1 on the goods market line,
which coincides with the purchasing power parity condition. The movement of
the economy now, however, is quite different. Although the trajectory is still along
the new asset market line, with sticky prices initially the economy moves to point
C on AM1. Since again there is excess expenditure over income, prices will rise.
The rise in the price level, although reducing real money balances and raising the
rate of interest at home, will have only a small effect on capital inflows. In order,
therefore, to maintain balance of payments equilibrium the domestic currency must
also depreciate (s must rise). Hence, the economy moves along AM1 from point C
to point E1. In this version of the model, therefore, the exchange rate undershoots
its long-run equilibrium level. There is initially a rapid depreciation of the domestic
currency (a movement from point E0 to point C), followed by a further gradual
depreciation in response to the price rise (a movement from point C to point E1).

In this version of the model the rate of interest both before and after the change
in the money supply will equal the interest rate abroad. Since purchasing power
parity implies s = p, and since in long-run equilibrium ṡe = 0, then it follows that
r = r∗ in long-run equilibrium.

Once again price movements and exchange rate movements can be expressed
by the equations

p(t) = p + (p0 − p)e−λt

s(t) = s + (s0 − s)e−λt
(13.12)

but now

λ = ah

(
1 − (uh/b)

uv + (uh/b)
+ 1

)
(13.13)

Notice that for b → ∞ this reduces to the adjustment coefficient of model 13.1
(see exercise 5 for a numerical example illustrating this model).

The analysis is very similar in the original Dornbusch model, but with capital
immobility. This model, model 13.4, is presented in table 13.4.

Table 13.4 Model 13.4

Goods market e = total expenditure
e = cy − dr + g + h(s − p) 0 < c < 1, d > 0, h > 0 y = real income (exogenous)
ṗ = a(e − y) a > 0 g = government spending

s = spot exchange rate
p = domestic price level
ṗ = inflation rate (since p = ln P)

Money market md = demand for money
md = p + ky − ur k > 0, u > 0 r = domestic interest rate
ms = md = m ms = supply of money

m = exogenous money balances
International asset market bp = balance of payments
bp = h(s − p) + b(r − r∗ − ṡe) h > 0, b > 0 r∗ = interest rate abroad
ṡe = v(s − s) v > 0 ṡe = change in expected spot rate

(expected depreciation/appreciation)
s =purchasing power parity rate
(equilibrium rate)
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Figure 13.9.

The situation is illustrated in figure 13.9. A rise in the money supply shifts both
the asset market line and the goods market line. But because capital is very immo-
bile, the exchange rate initially undershoots its long-run equilibrium value, s2 < s1.

In this model we have (see exercise 6)

ṗ = −a

[
(h + dv)(1 − (uh/b))

uv + (uh/b)
+ h

]
(p − p) (13.14)

so prices and the exchange rate have the same adjustment coefficient

λ = a

[
(h + dv)(1 − (uh/b))

uv + (uh/b)
+ h

]
(13.15)

This is consistent with all our previous results. If d → 0 the model reduces to model
13.3; if b → ∞ the model reduces to model 13.2; and if d → 0 and b → ∞ the
model reduces to model 13.1.

13.4 The Dornbusch model under perfect foresight

One of the advantages of the Dornbusch model is that it readily lends itself to
different specifications of exchange rate expectations. One such specification is
perfect foresight. This model has a number of formal advantages. It can be shown
that rational expectations is formally the same as expectations under perfect
foresight, and since it is easier to handle models under the assumption of perfect
foresight, then all the features of modelling rational expectations can be captured
by this version. Second, the assumption that ṡe = v(s − s) with v > 0, is the same
as the assumption of perfect foresight – so long as v is correctly chosen (see
exercise 7).

Again we shall begin with the simplified Dornbusch model in which expenditure
is independent of the rate of interest. The model is captured in model 13.5, and
set out in table 13.5, where we have replaced the assumption about exchange
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Table 13.5 Model 13.5

Goods market e = total expenditure
e = cy + g + h(s − p) 0 < c < 1, h > 0 y = real income (exogenous)
ṗ = a(e − y) a > 0 g = government spending

s = spot exchange rate
p = domestic price level
ṗ = inflation rate (since p = ln P)

Money market md = demand for money
md = p + ky − ur k > 0, u > 0 r = domestic interest rate
ms = md = m ms = supply of money

m = exogenous money balances
International asset market r∗ = interest rate abroad
r = r∗ + ṡe ṡe = change in expected spot rate
ṡe = ṡ (expected depreciation/appreciation)

ṡ = change in spot exchange rate

rate expectations of model 13.1 with that of perfect foresight. This is the only
difference from model 13.1, but it will be seen that it has significant implications
for the dynamic behaviour of prices and exchange rates.

Since the formal algebraic manipulations are the same in deriving the goods
market line and the asset market line, we shall be brief. There has been no change
to the goods market, this remains the same as model 13.1, and under the assumption
of purchasing power parity is a 45◦-line through the origin. The dynamics of the
goods market is still specified by the relationship

ṗ = a[h(s − p) − (1 − c)y + g] a > 0, h > 0, 0 < c < 1(13.16)

The major change is in the foreign exchange market. Substituting the perfect
foresight assumption into the interest rate condition, which retains the assumption
of perfect capital mobility, and substituting this into the money market equilibrium,
we obtain

m = p + ky − u(r∗ + ṡ)

... ṡ = 1

u
(p + ky − m) − r∗

(13.17)

We therefore have the following dynamic system

ṗ = a[g − (1 − c)y] − ahp + ahs

ṡ =
[

1

u
(ky − m) − r∗

]
+ 1

u
p

(13.18)

which is a differential equation system which can be solved for the two variables
p(t) and s(t).

The critical point, stationary point, or equilibrium point of the system is where
ṗ = 0 and ṡ = 0. Consider the second condition first. We immediately have no
change in the exchange rate if

p = p = m − ky + ur∗(13.19)

which is a horizontal line in the phase plane, as shown in figure 13.10. Turning to
the goods market, ṗ = 0 implies a straight line through the origin with slope 45◦,
as shown in figure 13.10.
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Figure 13.10.

We are now in a position to consider the model’s dynamics. Consider points
either side of the ṡ = 0 line and ṗ = 0 line.

ṡ > 0 if p > m − ky + ur∗

ṡ < 0 if p < m − ky + ur∗

and

ṗ > 0 if p < s + (g − (1 − c)y)/h

ṗ < 0 if p > s + (g − (1 − c)y)/h

In other words, below the horizontal line the exchange rate is falling (the domestic
currency is appreciating), while above the horizontal line the exchange rate is
rising (the domestic currency is depreciating). On the other hand, below the goods
market line prices are rising while above it prices are falling, consistent with our
earlier analysis. The vector forces in figure 13.10 illustrate all this information.

What is quite clear from figure 13.10 is that we have a saddle point equilibrium.
This can be established as follows. Consider the system in terms of deviations
from equilibrium, which is particularly useful.

ṗ = a[h(s − p) − (1 − c)y + g]

0 = a[h(s − p) − (1 − c)y + g]

... ṗ = −ah(p − p) + ah(s − s)

and

ṡ = 1

u
(p + ky − m) − r∗

0 = 1

u
(p + ky − m) − r∗

... ṡ = 1

u
(p − p)
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Hence, the system can be written in matrix form as follows.[
ṗ
ṡ

]
=
[−ah ah

1/u 0

] [
p − p
s − s

]
(13.20)

Letting A denote the matrix of the system, then we immediately have

A =
[−ah ah

1/u 0

]
and det(A) = −ah

u
< 0

Since det(A) < 0 then the critical point, E in figure 13.10, is a saddle point.
What appears conspicuously absent from this analysis is any discussion of the

asset market line, which was so prominent in model 13.1. But this is not the case.
The saddle point solution along with the vector forces illustrated in figure 13.10
suggests there is one line through point E and passing through quadrants I and III
which is a stable arm of the saddle. This is indeed the case. But more significantly,
this stable arm is no more than the asset market line. We shall not prove this
algebraically but rather show it is the case by means of a numerical example.
Example 13.3 is a slight variant on example 13.1, where perfect foresight replaces
the exchange rate expectation formation.

Example 13.3, Model 13.5

The model is

e = 0.8y + 4 + 0.01(s − p)

ṗ = 0.1(e − y)

md = p + 0.5y − 0.5r

ms = md = 105

r = r∗ + ṡe

ṡe = ṡ

y = 20, r∗ = 10

We can express this in the form of deviations from equilibrium.

ṗ = −0.001(p − p) + 0.001(s − s)

ṡ = 2(p − p)

The goods market line is the 45◦-line through the origin as before. But this line
simply denotes the condition ṗ = 0 while the horizontal line in figure 13.10 denotes
the condition ṡ = 0. It is readily established that the equilibrium point is given by
(s, p) = (100, 100). In other words, the trajectories when passing over these lines
do so with infinite slope and zero slope, respectively, in the phase plane. To establish
the arms of the saddle point we need to consider the matrix of the system and its
associated eigenvalues and eigenvectors.

The system can be written[
ṗ
ṡ

]
=
[−0.001 0.001

2 0

] [
p − p
s − s

]
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with associated matrices

A =
[−0.001 0.001

2 0

]
A − λI =

[−(0.001 + λ) 0.001
2 −λ

]

Hence, det(A − λI) = λ2 + 0.001λ − 0.002 = 0, with roots r = 0.0442242 and
s = −0.0452242. The fact that the roots are of opposite sign verifies that the
equilibrium point is a saddle point solution.

For r = 0.0442242 we have

(A − rI)vr =
[−0.0452242 0.001

2 0.0442242

] [
p − p
s − s

]
=
[
0
0

]

This leads to the equation

−0.0452242(p − p) + 0.001(s − s) = 0

i.e. p = 97.7888 + 0.0221s

This is the line that would pass through the equivalent of quadrants II and IV in
figure 13.10, and denotes the unstable arm of the saddle point. Or equivalently the
eigenvector

vr =
[

1
45.2242

]

which emanates from point E0. This solution is shown by the saddle path denoted
SP1 in figure 13.11. Similarly, using s = −0.0452242 we obtain

(A − sI)vs =
[
0.0442242 0.001

2 0.0452242

] [
p − p
s − s

]
=
[
0
0

]

This leads to the equation

0.0442242(p − p) + 0.001(s − s) = 0

i.e. p = 102.2612 − 0.0226s

Figure 13.11.
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Figure 13.12.

This is the line which would pass through the equivalent of quadrants I and III in
figure 13.10, and denotes the stable arm of the saddle point, and is denoted SP2 in
figure 13.11. It leads to the eigenvector

vs =
[

1
−44.2242

]

with the resulting general solution[
p(t)
s(t)

]
= c1

[
1

45.2242

]
e0.04422t + c2

[
1

−44.2242

]
e−0.04522t

The dynamics of the situation are revealed by considering an increase in the
money supply. The initial equilibrium is at point E0, with associated saddle paths
SP1

0 and SP2
0. An increase in the money supply shifts the ṡ = 0 line up as shown

in figure 13.12, from ṡ0 = 0 to ṡ1 = 0. There is a new equilibrium point E1 with
its associated saddle paths,6 namely SP1

1 and SP2
1. But what is the trajectory of the

economy in this situation? With perfect foresight the market knows that there is the
saddle path through E1, and so moves immediately to point C on this saddle path.
At this stage prices have not moved and the domestic currency has depreciated to
s2. With excess demand in the goods market, the economy moves along the stable
arm of the saddle path reaching point E1 as prices begin to rise and the domestic
currency appreciates, with the economy moving along trajectory T1.

Unfortunately in this model, any lack of perfection will send the system away
from point E1. For example, if the market under-estimates the depreciation and the
system moves to point D, then it will over time diverge and move along trajectory

6 SP2
1 has the equation p = 107.3743 – 0.0226s for an increase in the money supply from m = 105 to

m = 110.
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Figure 13.13.

T2, with the economy heading into a major slump. Similarly, if the market over-
adjusts and moves to point F, then the system will become explosive, with prices
rising and the domestic currency depreciating, as shown by trajectory T3.

Given all our previous analysis we can outline the original Dornbusch model
under perfect foresight quite readily. All we need to recall is that the goods mar-
ket line is positively sloped and with a slope less than unity, and that the 45◦-
line now indicates only purchasing power parity. The situation is captured in
figure 13.13.

Again, an increase in the money supply moves the economy from point E0 to
point C as prices remain sticky. All adjustment initially falls on the exchange rate
(and the rate of interest). There is a large depreciation of the domestic currency. As
prices rise in response to excess demand in the goods market, the economy adjusts
along the stable arm SP2

1, eventually re-establishing purchasing power parity at
the long-run equilibrium point E1. Like the simpler version, any mis-judgement
by the market will send the system away from point E1 towards the unstable arm
SP1

1.

13.5 Announcement effects

This section has three objectives:

(i) To present a discrete formulation of the Dornbusch model under perfect
foresight.

(ii) To deal with policy announcements which:

(a) are actually carried out
(b) are not carried out as promised.

(iii) To provide some implications for price and exchange rate variability.
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Table 13.6 Model 13.6

et = cyt + g + h(st − pt)

pt+1 − pt = a(et − y)

md
t = pt + ky − urt

md
t = ms

t = m

rt = r∗ + (set+1 − set )

set+1 − set = st+1 − st

We begin with a discrete version of the simple Dornbusch model under perfect
foresight (model 13.6, table 13.6). All variables and parameters are as defined
earlier in this chapter.

Define �pt+1 = pt+1 − pt and �st+1 = st+1 − st, then from the first two equa-
tions of table 13.6 we have

�pt+1 = −ahpt + ahst + a[g − (1 − c)y](13.21)

and from the asset market equations of table 13.6 we have

�st+1 = 1

u
pt + 1

u
(ky − m − ur∗)(13.22)

In equilibrium we have �pt+1 = �st+1 = 0. Thus

0 = −ahp + ahs + a[g − (1 − c)y]

0 = 1

u
p + 1

u
(ky − m − ur∗)

Hence, taking deviations from the equilibrium, we have

�pt+1 = −ah(pt − p) + ah(st − s)

�st+1 = 1

u
(pt − p)

(13.23)

Or in matrix notation

[
�pt+1

�st+1

]
=
[−ah ah

1/u 0

] [
pt − p
st − s

]
(13.24)

The system can be displayed in the form of a phase diagram, as shown in
figure 13.14, where we once again illustrate the Dornbusch overshooting phe-
nomenon. The vector forces are shown in relation to equilibrium point E0.

It is clear from this result that the matrix of the system is identical with that of the
continuous model. We shall use this fact in developing our numerical example. We
shall now, therefore, pursue some of the properties and characteristics of this model
by means of a numerical example, which follows closely that of example 13.3.
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Figure 13.14.

Example 13.4, Model 13.6

Our model is

et = 0.8yt + 4 + 0.01(st − pt)

pt+1 − pt = 0.1(et − y)

md
t = pt + 0.5y − 0.5rt

md
t = ms

t = 105

rt = 10 + (set+1 − set )

set+1 − set = st+1 − st

With y = 20 and setting pt+1 = pt = p for all t and st+1 = st = s for all t, then we
readily establish the equilibrium as (s, p) = (100,100). Furthermore, the system
is readily established to be[

�pt+1

�st+1

]
=
[−0.001 0.001

2 0

] [
pt − 100
st − 100

]
or

pt+1 = 0.999pt + 0.001st

st+1 = st + 2pt − 200

Given p0 and s0, therefore, we can plot the path of pt and st. Given these paths, we
can also plot the path of rt and et. All this can readily be accomplished by means
of a spreadsheet.

In plotting trajectories, it is useful to establish the saddle paths. Since the matrix
of the system is identical to that of the previous section, so are the saddle paths.
The eigenvectors are r = 0.0442242 and s = −0.0452242. The two arms of the
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Figure 13.15. Note:
Not to scale.

saddle point are

SP1
0 : p = 97.788794 + 0.0221121s unstable arm

SP2
0 : p = 102.26121 − 0.0226121s stable arm

for m = 105 and E0 = (100, 100), as shown in figure 13.15.

A rise in the money supply to m = 110 leads to a new long-run equilibrium
point E1, which is also a saddle point with arms

SP1
1 : p = 102.67823 + 0.0221121s unstable arm

SP2
1 : p = 107.37427 − 0.0226121s stable arm

If this were a totally unexpected change, then the domestic currency would depre-
ciate sharply and the exchange rate would rise to

s = 107.37427 − 100

0.0226121
= 326.121

and will then appreciate as the economy moves along the asset market line given
by SP2

1 until point E1 is reached, as shown in figure 13.15.
Now consider the implications of announcing a change in the money supply to

take place in the future, say in one year’s time. Market participants, having perfect
foresight, will know two things. They will know that in the long run the price
level and the exchange rate will increase by the same amount. Second, they will
know that in the short run the domestic currency will sharply depreciate (since it
will overshoot its long-run value), and will then begin to appreciate towards the
long-run result. Given this knowledge transactors will attempt to move into real
assets in order to preserve the value of their portfolio. Second, they will move out
of domestic assets and into foreign assets. Although ideally this would take place
just before the money supply is actually increased, in order to take advantage of
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Figure 13.16.

the situation they would do it sooner. This line of reasoning will continue until
the most sensible reaction is to move some funds immediately. This results in an
immediate depreciation of the domestic currency. This moves the economy to the
right, as shown in figure 13.16, but not as much as would have occurred with
no announcement, i.e., the economy moves from point E0 to point F. Prices have
not yet changed. The dynamics is still governed by point E0 because as yet the
policy change has not taken place. Hence, the system will begin to diverge from E0

towards the unstable arm SP1
0. Given perfect foresight, the trajectory will coincide

with the stable arm of the saddle point, namely SP2
1 at the moment the policy

change takes place, denoted by point G. Once this happens the economy will then
move along this stable arm until point E1 is reached in the long run.

We can establish such a trajectory with the help of our numerical example and a
spreadsheet.7 The situation is illustrated in figures 13.17 and 13.18. Figure 13.17
gives the main computations. Column (1) is simply the time period. Columns (2)
and (3) are the price level and the exchange rate starting from a point such as F
(i.e. a point to the right of E0). In this example we have the point (s,p) = (120,
100). The remaining computations are to establish the point where the trajectory
cuts the asset market line (the line SP2

1 of figure 13.16). First we compute points
along the stable arm SP2

1, as shown in columns (4) and (5), starting from the point
(s,p) = (100,326.121). We then compute, in column (6), the price level for each
exchange rate given in column (3), but satisfying the formula

pt = 107.37427 − 0.0226121st

This we have labelled SP[p(t)]. It is what the price would be on the stable arm of
the saddle point through E1. We then compute the difference between column (6)

7 A more detailed explanation can be found in Shone (2001, section 8.6).
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Figure 13.17.

Figure 13.18.
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and column (2), to give column (7). When this difference is zero we have establish
the point at which the economy begins to move along the stable arm of the saddle
point associated with E1. In other words, all the observations in columns (8) and (9)
at or above where the difference column is positive are a copy of the observations
in columns (2) and (3). After that point, shown by a bar across columns (8) and
(9), we plot observations along the asset market line. We do this by first taking the
price immediately above the bar and then using this to compute the corresponding
point on SP2

1. The remaining values in columns (8) and (9) then conform to the
model with m = 110. Columns (8) and (9) constitute the observations for figure
13.18 for period 0 to 120.

This use of the spreadsheet allows us to consider different time periods of
announcement. Columns (4) and (5) indicate the path of the economy where no
announcement at all is made, and there is an unexpected increase in the money
supply. This is the version first considered by Dornbusch. In terms of figure 13.19

Figure 13.19.
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Table 13.7 Response periods

Period (s =150) Period (p =102)

No announcement 34 11
Short announcement 76 51
Long announcement 113 88

this gives the ‘No announcement’ path for the exchange rate and the price level,
and is a plot of columns (5) and (4), respectively, of figure 13.17. A period that
is relatively short in announcing government intentions will lead to a point like F,
which is ‘close to’ the asset market line through point E1. This is the trajectory
computed in figure 13.17 and illustrated in figure 13.18. This leads to the path
for the exchange rate and the price level marked ‘Short announcement’ in figure
13.19. A period of ‘long announcement’ will lead to a point F that is closer to
point E0. The computations of this are not given here, but follow exactly the same
reasoning. This leads to the path for the exchange rate and the price level denoted
‘Long announcement’ in figure 13.19.

But we can go further in our analysis with this numerical example. Suppose
we take a point of reference for the exchange rate, say s = 150. We now ask the
question for each of these announcements, how long does it take the system to
reach s = 150, when moving along the asset market line?8 Similarly, how long
does it take the exchange rate to reach s = 150 once the policy has actually been
implemented? Similarly, how long does it take the price level to reach p = 102?
The results are tabulated as shown in table 13.7.

What we observe from figure 13.19 and from table 13.7 is three important
observations. First, the exchange rate varies less the longer the time period of
the announcement. Second, the greater the time period for the announcement,
the longer it takes for the exchange rate and the price level to reach the new
equilibrium. Thus, increasing the announcement period increases the adjustment
period. Policy-makers therefore need to weigh these two possibilities. Third, the
price level gradually approaches its new level, with just a minor kink in the case
of a short and long announcement. In other words, price changes do not show the
same dramatic changes that can occur with the exchange rate.

But there is a further problem to consider. Policy-makers are often known to
renege on their announcement. They may announce they will increase the money
supply, but when the time comes, they decide not to do so! Does this in any way
change the results? The situation is illustrated in figure 13.20. On the announcement
of an increase in the money supply the economy immediately moves to point F
in anticipation of the changes that are expected. As before, the economy then
moves along the trajectory between F and G, which is dominated by the saddle
path SP1

0 which passes through equilibrium point E0. At point G, the moment
when the change should take place, the government announces that it does not
intend to change the money supply after all! Given perfect foresight, and given
instantaneous adjustment in the asset market, the economy will move immediately

8 We cannot ask the time for it to reach point E1, since this is at infinity. However, any common point
of reference will do for this comparison.
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Figure 13.20.

from point G to point H on SP2
0 (since SP2

0 is the asset market line through the
original equilibrium point E0). Since this is a stable arm of the saddle point E0,
the economy will accordingly move down this line approaching E0 in the limit.
Hence, the economy will have a trajectory E0-F-G-H-E0. Prices no longer show a
gradual movement to the new equilibrium, but on the contrary rise and fall. But
even more dramatic is the movement in the exchange rate.

We can illustrate the movement in prices and the exchange rate using the same
technique we developed in relation to figure 13.19. We consider a short announce-
ment period which positions F at (s, p) = (100, 120), as before. Also as before, the
economy moves along the same trajectory until point G is reached. Now, however,
the situation changes, as shown in figure 13.21.9 Realising the government has re-
neged on their decision, market participants move money back into the economy,
leading to a sharp appreciation of the domestic currency. The economy is now
above the PPP line, and income is in excess of expenditure. This leads to a gradual
fall in prices, which in turn leads to a depreciation of the currency. The conclusion
we come to, therefore, is that although policy announcements lead to less variation
in prices and exchange rates, reneging on such policy announcements leads to
more variation in prices and exchange rates than would have occurred without any
such announcement.

13.6 Resource discovery and the exchange rate

The analysis so far presented, with some modification, allows us to consider some
of the implications of a major resource discovery like North Sea Oil. We assume that

9 Although in this numerical example the exchange rate becomes negative, which is not possible, the
general path of the exchange rate, however, is as displayed in the figure.
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Figure 13.21.

the discovery leads to an increase in wealth and hence to an increase in permanent
income. We capture this effect by adding a term f xp( f > 0) to the expenditure
equation, where xp denotes the permanent income stream from the new wealth and
f is a positive coefficient. Thus, our expenditure equation now takes the form

e = cy + g + h(s − p) + f xp(13.25)

On the other hand, x is the current income from oil that adds additional demand for
money balances, which is captured by a term jx( j > 0) in the demand for money
equation. But we need to make an additional change to the demand for money
equation. To understand this, return to prices and exchange rates in unlogged
form. We assume that the domestic price level (the RPI) is a weighted average of
domestically produced goods, P, and imported goods, Pf = SP∗, i.e.

Q = Pα(SP∗)1−α(13.26)

taking natural logarithms and denoting these by lower case letters, then

q = αp + (1 − α)(s + p∗)(13.27)

But if we set P∗ = 1, then p∗ = 0, hence

q = αp + (1 − α)s(13.28)
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Table 13.8 Model 13.7

Goods market e = total expenditure
e = cy + g + h(s − p) + f xp y = real income (exogenous)

0 < c < 1, h > 0, f > 0 g = government spending
ṗ = a(e − y) s = spot exchange rate

p = price of domestic goods
ṗ = inflation rate (since p = ln P)

Money market md = demand for money
md = q + ky − ur + j x k > 0, u > 0, j > 0 ms = supply of money
q = αp + (1 − α)s 0 < α < 1 r = domestic interest rate

m = exogenous money balances
q = domestic price level
α =weight of domestic goods in q

International asset market r∗ = interest rate abroad
r = r∗ + ṡe ṡe = change in expected spot rate
ṡe = ṡ (expected depreciation/appreciation)

ṡ = change in spot exchange rate

Finally, we deflate money balances by the domestic price levelQ. Thus the demand
for money equation becomes

md = q + ky − ur + jx (13.29)

where q = αp + (1 − α)s.
The complete model (model 13.7), under the assumption of perfect foresight

and no interest rate effect on expenditure, is given in table 13.8. Carrying out the
same manipulations as for model 13.5 we obtain

ṗ = a[g − (1 − c)y + f xp] − ahp + ahs

ṡ =
(α

u

)
p +

(
1 − α

u

)
s +

[
ky + jx − m

u
− r∗

] (13.30)

In equilibrium ṗ = 0 and ṡ = 0, hence

0 = a[g − (1 − c)y + f xp] − ahp + ahs

0 =
(α

u

)
p +

(
1 − α

u

)
s +

[
ky + jx − m

u
− r∗

]
So taking deviations from the equilibrium we have

ṗ = −ah(p − p) + ah(s − s)

ṡ =
(α

u

)
(p − p) +

(
1 − α

u

)
(s − s)

(13.31)

Or in matrix notation[
ṗ
ṡ

]
=

−ah ah

α

u

1 − α

u


[p − p

s − s

]
(13.32)

Hence, the matrix of this system is

A =

−ah ah

α

u

1 − α

u



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Figure 13.22.

with det(A) = −ah/u < 0. Since det(A) is negative the equilibrium point is a
saddle point.

From the conditions ṗ = 0 and ṡ = 0 given above, we can solve for p and s
using Cramer’s rule. These are

p = m −
[

(1 − c)(1 − α)

h
+ k

]
y + (1 − α)g

h
+ f (1 − α)xp

h
+ ur∗ − jx

s = m +
[
α(1 − c)

h
− k

]
y − αg

h
+ α f xp

h
+ ur∗ − jx

(13.33)

It is apparent, therefore, that the discovery of a major resource leading to terms xp
and x will influence the equilibrium price and exchange rate.10 To see this more
clearly we need to consider the model in more detail.

To do this we need to consider the equilibrium lines associated with ṗ = 0 and
ṡ = 0. With some algebraic manipulation these are

p = s +
[
g − (1 − c)y + f xp

h

]
for ṗ = 0

p =
(
m − ky − jx + ur∗

α

)
−
(

1 − α

α

)
s for ṡ = 0

(13.34)

Consequently, the goods market line, the line associated with ṗ = 0, is a 45◦-line.
The second equilibrium line, that associated with ṡ = 0, is negatively sloped. Ini-
tially we assume that purchasing power parity is satisfied. This is best considered
as the situation before any resource is discovered. Hence, the goods market line

10 These results are consistent with those of model 13.5. If α = 1 and x = xp = 0, then we have the
same equilibrium results as model 13.5.
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Figure 13.23.

passes through the origin, as shown in figure 13.22. This figure also shows the
vector forces and the saddle paths associated with the equilibrium point E, and
denoted SP1 and SP2. Note in particular that SP2 denotes the asset market equilib-
rium. In this model, as in previous models, we assume asset markets are always
clearing while the goods market takes time.

Now consider the discovery of a natural resource, such as oil, as shown in
figure 13.23. The change in xp (from zero to some positive amount) shifts the ṗ = 0
line up (i.e. leads to a rise in the intercept) to ṗ1 = 0. But this will generate an
income stream and so raise x (from zero to some positive amount). This in turn will
shift the ṡ = 0 line left (i.e. will reduce the intercept) to ṡ1 = 0. The economy will
move from equilibrium point E0 to equilibrium point E1. But what trajectory will
such an economy take? Initially prices do not change, and so the economy moves
horizontally from point E0 to point C, point C being on the new saddle path SP2

1
through E1. The domestic currency has accordingly appreciated taking the full
impact of the adjustment in the short run. Point C is on the new asset market line.
The resulting increase in permanent income raises consumers’ expenditure. Since
we have full employment this results in excess demand and hence to a rise in the
price level. Accordingly the economy moves up the new asset market line from
point C to point E1. In this example there is no overshooting. This occurs, however,
only where the goods market impact is greater than the money market impact.

To see this consider figure 13.24, which shows the situation where the money
market impact exceeds that of the goods market. Again the economy moves hor-
izontally from point E0 to point C on SP2

1, but then moves down the new asset
market line until point E1 is reached. This is because the significant effect of the
current income stream on the demand for money leads to a significant rise in
the rate of interest. In order to maintain the condition r = r∗ + ṡe, the domestic
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Figure 13.24.

currency must depreciate, moving the economy along the path C to E1 on SP2
1.

Although prices gradually fall, the home currency first appreciates, overshooting
its long-run equilibrium value, and then depreciates but leading to an eventual
appreciation of the exchange rate. The difference in the two results is determined
by the rate of resource depletion. In figure 13.23 the rate of depletion is slow
and so the permanent income stream outweighs the current income from the oil
extraction. Figure 13.24, however, indicates that resource depletion is quick and
there is a relatively large current income from resource sales. In either case, the
discovery of a resource, although having ambiguous results on the price level, does
lead to an appreciation of the home currency, with the possibility of overshooting
the quicker the resource depletion.

Given the discovery of North Sea Oil, we may hypothesise that market par-
ticipants with perfect foresight would know that the domestic currency would
appreciate in the long run and would act accordingly. The situation is similar to the
analysis in the previous section, and the result is shown in figure 13.25. Because of
the anticipated appreciation, the economy moves to point F. We can think of this
as the situation the moment the discovery is made. The economy then moves along
the trajectory F to G, which is governed by the unstable arm SP1

1, and where point
G is determined by the point in time that the oil comes on-stream. The economy
then moves along the asset market line, SP2

1, from point G to point E1.

13.7 The monetarist model

An early flex-price model of exchange rate determination was the simple monetarist
model. The model is set out in table 13.9. All variables are in natural logarithms
except for interest rates.11

11 Since s is ln S, then ṡ is the percentage change in the exchange rate.
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Figure 13.25.

Table 13.9 Monetarist model

m − p = ky − ur k > 0, u > 0 m = nominal money supply
r = r∗ + ṡe y = real income
p = s + p∗ r = nominal interest rate at home
ṡe = ṡ r∗ = nominal interest rate abroad

p = domestic price level
p∗ = foreign price level
s = exchange rate

The first equation is no more than real money balances is equal to real demand
for money balances, where we assume a simple demand for money equation. The
second equation is the interest parity condition under perfect capital mobility,
while the third equation is purchasing power parity. The final equation is rational
expectations under perfect foresight. Real income is assumed constant at the natural
level. Also m, r∗ and p∗ are assumed constant. Substituting, we have

m − s − p∗ = ky − u(r∗ + ṡe)

or

ṡ =
(
k

u

)
y − r∗ − 1

u
(m − p∗) +

(
1

u

)
s (13.35)

which is a first-order differential equation.
The dynamics of the model are illustrated in figure 13.26. Since m, y, r∗ and p∗

are constant, then so is(
k

u

)
y − r∗ − 1

u
(m − p∗)

which is the intercept on the vertical axis. The slope is 1/u. We have labelled the
line A to denote asset market. The fixed point is readily established by setting
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Figure 13.26.

Figure 13.27.

ṡ = 0, hence

0 =
(
k

u

)
y − r∗ − 1

u
(m − p∗) +

(
1

u

)
s

or

s = (m − p∗) + ur∗ − ky(13.36)

Since the slope of the asset market line is positive, the system is dynamically
unstable. Also we have a linear differential equation, so the system is globally
unstable.

To solve differential equation (13.35) we normally require an initial condition,
say s(0) = s0. But any s0 < s leads the system to a continual appreciation of
the home currency (fall in s); while for s0 > s the home currency continually
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depreciates (s rises). Since in this rational expectations model market participants
have perfect foresight, then s jumps immediately to s.

The effect of a rise in nominal money balances is shown in figure 13.27. The
asset market line shifts down (by (1/u)�m) and the new equilibrium exchange
rate increases to s2. From equation (13.36) it immediately follows that �s = �m,
i.e., the domestic currency depreciates by exactly the same percentage as the rise
in nominal money balances. Under perfect foresight, expected depreciation and
actual depreciation are identical and the system immediately jumps from s1 to s2.

Exercises

1. For the model outlined in table 13.1 we have the result

p(t) = p + (p0 − p)e−λt

(i) Show that

s(t) = s + (s0 − s)e−λt

where s0 is the initial exchange rate after the shock, but associated
with the price level p0.

(ii) In terms of example 13.1, show that point C is represented by

(s,p) = (155,100) and that

s(t) = 105 + 50e−0.011t

(iii) Plot on the same graph p(t) and s(t) for λ = 0.011 and λ = 0.02.

2. Given the model in section 13.1 (example 13.1), establish the comparative
static and dynamics of a rise in the foreign interest rate from r∗ = 10 to
r∗ = 12.

3. For the Dornbusch model given in table 13.2 (model 13.2), show that

(i) s − s = − 1

uv
(p − p)

(ii) hence show

ṗ = −a

(
h + h

uv
+ d

u

)
(p − p)

and

λ = a

(
h + h

uv
+ d

u

)
4. Consider the following discrete version of the Dornbusch model of ta-

ble 13.2

et = 0.8y − 0.1rt + 5 + 0.01(st − pt)

pt+1 − pt = 0.2(et − y)

md
t = pt + 0.5y − 0.25rt

md
t = ms

t = 105

rt = r∗ + set+1 − set
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set+1 − set = 0.25(s − st)

y = 20 r∗ = 10

(i) Derive an expression for the GM line and the AM line of the form
pt = φ(st) and establish the fixed point of the model.

(ii) Set up the model on a spreadsheet and establish its fixed point,
starting from the initial value pt = 100.

(iii) Letms rise from 105 to 110 establish the new equilibrium and demon-
strate that dmt = dst = dpt.

5. Given the numerical model based on table 13.3

e = 0.8y + 4 + 0.01(s − p)

ṗ = 0.2(e − y)

md = p + 0.5y − 0.5r

md = ms = 105

bp = 0.01(s − p) + b(r − r∗ − ṡe)

ṡe = 0.2(s − s)

y = 20 r∗ = 10

(i) If b = 0.0045 establish that the initial equilibrium is (s,p) =
(100,100).

(ii) For a rise in the money supply to ms = 110, establish that point C is
represented by (s,p) = (104.54128, 100).

(iii) Confirm that the new equilibrium satisfies dp = ds = dm.

6. For the model in table 13.4

(i) Show that

ṗ = −a

[
(h + dv)(1 − (uh/b))

uv + (uh/b)
+ h

]
(p − p)

and

λ = a

[
(h + dv)(1 − (uh/b))

uv + (uh/b)
+ h

]

(ii) If d → 0 then ṗ and λ reduce to the values of model 13.3 (table 13.3).
(iii) If b → ∞ then ṗ and λ reduce to the values of model 13.2 (ta-

ble 13.2).
(iv) If d → 0 and b → ∞ then ṗ and λ reduce to the values of model

13.1 (table 13.1).
7. A numerical version of model 13.4 (table 13.4) is

e = 0.8y − 0.1r + 5 + 0.01(s − p)

ṗ = 0.1(e − y)

md = p + 0.5y − 0.5r

md = ms = 105

bp = 0.01(s − p) + 0.004(r − r∗ − ṡe)
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ṡe = 0.2(s − s)

y = 20 r∗ = 10

(i) Establish the following at the initial equilibrium.
(a) Equilibrium is (s,p)= (100,100).
(b) GM0: p = 95.238095 + 0.0476190s
(c) AM0: p = −440 + 5.4s

(ii) Let ms rise to 110. Find point C on AM1 and establish that for the
new equilibrium dm = ds = dp.

8. Using the model in example 13.3, and assuming r∗ = 18, all other pa-
rameters the same, then establish that

(i) the initial equilibrium is (s,p) = (104,104)
(ii) the characteristic roots are r = 0.04422415 and s = −0.0452242
(iii) the saddle path equations are:

(a) unstable arm: p = 101.70034 + 0.02211208s
(b) stable arm: p = 106.35166 − 0.0226121s

(iv) for a rise in the money supply to 110 the intercepts of the saddle
paths only alter to 106.58978 for the unstable arm and to 111.46472
for the stable arm, respectively.

9. In the model outlined in table 13.8 suppose we have the following nu-
merical version of the model

e = 0.8y + 4 + 0.01(s − p) + 2xp

ṗ = 0.1(e − y)

m = q + 0.5y − 0.5r + x

q = αp + (1 − α)s

md = ms = 105

r = r∗ + ṡe

ṡe = ṡ

y = 20 r∗ = 10

(i) If initially xp = x = 0 and α = 0.8, show that the initial equilibrium,
E0, is given by (s, p) = (100, 100).

(ii) Show that the stable and unstable arms of the saddle point E0 are:

stable arm p = 125.31 − 0.253s

unstable arm p = 99.7531 + 0.002469s

(iii) Now assume a resource discovery which leads to xp = 0.5 and x =
0.3. With α = 0.8,
(a) show that equilibrium (s, p) = (19.7, 119.7)
(b) the unstable arm is given by p = 119.65135 + 0.00246943s
(c) the stable arm is given by p = 124.68608 − 0.2531005s
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10. Use the model surrounding figure 13.25 to analyse the UK’s position in
1979 when the Conservative government under Mrs Thatcher took office.
The basic information at the time was as follows.

(a) Oil had been discovered in the North Sea, was being drilled around
1975 and was known to come on-stream in 1979.

(b) The Conservatives won the General Election in 1979 with Mrs
Thatcher indicating:
– removal of all UK exchange controls; and
– a reduction in monetary growth to combat inflation.

Take as your starting date 1975 when oil was being drilled.
11. For the monetarist model in table 13.8 let

y = 20, m = 106, p∗ = 1, k = 0.5, u = 0.5, r∗ = 10

(i) Derive the differential equation for this model.
(ii) Solve for equilibrium s.

12. Suppose nominal money supply grows at a constant rate λ and inflation
abroad is constant at π∗, i.e.

ṁ = λ and ṗ∗ = π∗

Derive an expression for equilibrium s under the assumption that a sta-
tionary equilibrium is one in which real money balances are constant.

Additional reading

Additional material on the contents of this chapter can be obtained from Buiter and
Miller (1981), Copeland (2000), Dornbusch (1976), Dernburg (1989), Ford (1990),
Frenkel and Rodriguez (1982), Gärtner (1993), MacDonald (1988), Niehans
(1984), Obstfeld and Rogoff (1999), Pilbeam (1998), Rødseth (2000), Shone (1989,
2001).



CHAPTER 14

Population models

14.1 Malthusian population growth

Population growth is frequently considered by means of differential equations,
where the growth can be of persons, animal species, or bacteria. Although the
increase in population is discontinuous, if the population is very large, then the
additions to its size will be very small and so it can be considered as changing
continuously. Hence, we assume population size, p, changes continuously over
time and that p(t) is differentiable. The simplest population growth model is to
assume that population grows/declines at a constant rate. Thus

dp

dt

1

p
= k (14.1)

this means that the change in the population is proportional to the size of the
population

dp

dt
= kp

where k is positive for a growth in the population and negative for a decline. The
initial condition is that if at time t0 the population is p0 then

p(t0) = p0

Although (14.1) is a simple equation to solve, let us investigate its qualitative
properties by means of phase-space.

For positive k the growth curve is linear, positively sloped, and passes through
the origin, as shown in figure 14.1. It is clear, then, that the only equilibrium for
this population is a population of zero, since this is the only value of p for which
dp/dt = 0. Furthermore, for any population of size greater than zero, e.g., p0, then
dp/dt is positive and so population will be increasing over time. In other words,
the arrows along the phase line indicate a continuously growing population. If, on
the other hand, k is negative then equilibrium population size is still zero, but now
for any population greater than zero means dp/dt is negative and so population
will decrease over time until it is extinguished.

Although not wholly realistic, let us solve for the population size explicitly. To
do this integrate both sides of the differential equation
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Figure 14.1.

dp

dt
= kp∫
dp

dt
=
∫
kdt

ln p = kt + c

p = c0e
kt

where c is the constant of integration. Applying the initial condition p = p0 for
t = t0 we have

p = p0ekt0

implying c0 = p0e−kt0

Which leads to the result

p = p0e
−kt0ekt = p0e

k(t−t0)(14.2)

and which clearly satisfies the initial condition.
In this model, population grows/declines exponentially, and is referred to as the

Malthusian model of population growth.
Of interest in rapidly growing populations is the time necessary for the popu-

lation to double in size.1 It is readily shown that for the Malthusian model this

1 Biologists refer to this as the mean generation time, i.e., the time necessary for a population to
reproduce itself.
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period depends only on the rate of growth, k. To show this let the population be p0

initially at time t0. Let the time period when the population has doubled be denoted
t1. Then the length of time for the population to double is t1 − t0. Furthermore,
p1 = 2p0, hence

2p0 = p0ek(t1−t0)

ln 2 = k(t1 − t0)

... t1 − t0 = ln 2

k
= 0.6931

k

For example, if a population is growing at 2% per annum, then it will double ap-
proximately every 0.6931/0.02 = 35 years regardless of the initial population size.

Example 14.1

Table 14.1 gives the population of the UK from 1781 to 1931. Our first problem is to
estimate the parameter k. Suppose we set p0 = 13 million for the initial year 1781.
Further, take the population in year 1791 to be as in the table, namely 14.5 million.
This allows us to estimate the value of k. Letting t0 = 0 to represent 1781, then
t1 = 10 for 1791, i.e., t1 − t0 = 10

p(0) = p0 = 13

p(10) = p0e10k = 13e10k = 14.5

k = ln 14.5 − ln 13

10
= 2.6741 − 2.5649

10
k = 0.01092

Using this estimate of kwe compute the Malthusian estimate of population growth,
as shown in column (3) of table 14.1.

Table 14.1 UK Population, 1781–1931 (million)

Year Actual Malthusian Logistic

1781 13.000 13.000 13.000
1791 14.500 14.500 14.996
1801 15.902 16.173 17.143
1811 18.103 18.039 19.410
1821 21.007 20.121 21.756
1831 24.135 22.442 24.135
1841 26.751 25.032 26.498
1851 27.393 27.920 28.799
1861 28.977 31.142 30.993
1871 31.556 34.735 33.046
1881 34.934 38.743 34.934
1891 37.802 43.213 36.641
1901 41.538 48.200 38.162
1911 45.299 53.761 39.500
1921 47.168 59.964 40.662
1931 49.007 66.883 41.662

Source: Deane and Cole (1962, table 3, p. 8).
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A discrete version of the model may appear more appropriate. This takes the
form

�pt+1 = kpt
i.e. pt+1 = pt + kpt = (1 + k)pt

(14.3)

Using the analysis of chapter 3, we have the general solution

pt = (1 + k)tp0(14.4)

Again, using p0 = 13 and p10 = (1 + k)10(13) = 14.5, we obtain

k =
(

14.5

13

) 1
10

− 1 = 0.0109798

Using this estimate of k, and the discrete solution, we compute an alternative series
based on the Malthusian assumption. However, it is readily established that this
gives exactly the same figures (to three places of decimal) as the continuous model.

The model is reasonably accurate up to 1851 but thereafter the error becomes not
only quite large but increasing. This should not be surprising. In the first instance, k
was estimated from the first two observations. Second, the population increases at
an ever-increasing rate, which is unrealistic. Third, for distant population there is no
account taken of competition of the population for the limited resources available.

It may be thought that the model is inappropriate because it does not take account
of births and deaths. But this is not strictly true. If births are assumed to follow
the Malthusian law as well as deaths, i.e., both grow at constant rates b and d,
respectively, then

dpb

dt
= p0e

bt and
dpd

dt
= p0e

dt

dp

dt
= dpb

dt
− dpd

dt
= p0e

(b−d)t = p0e
kt

(14.5)

Hence, the k we estimated using data from 1781 and 1791 would account for both
births and deaths. This means that the problem lies elsewhere.

Although we have considered births and deaths we have taken no account of
immigration or emigration. Migration (immigration minus emigration), however,
is usually fairly small relative to the total size of the population, or occurs only
at specific times (most especially in human populations). This would suggest,
therefore, that the exponential growth curve might not be the most appropriate
specification of the growth process.

14.2 The logistic curve

An alternative approach is to assume that not only does population grow with
population size, but that as it grows its members come into competition with each
other for the food or limited resources. In order to capture this ‘competition’ it is
assumed that there are p(p − 1)/2 interactions for a given population of size p.
Assuming such interactions lead to additional deaths, for example because of
disease or war, then we can assume that the growth in the population will also
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diminish in proportion to this element of interaction. In other words, population
now changes by

dp

dt
= kp − k1p(p − 1)

2

= kp + k1p

2
− k1p2

2

=
(
k + k1

2

)
p − k1p2

2

Therefore
dp

dt
= ap − bp2 = p(a − bp) a > 0, b > 0 (14.6)

which is referred to as the logistic growth equation.
In general the parameter b is small relative to the parameter a, so that the second

term is often negligible. However, as the population size grows and competition
becomes greater, the second term −bp2 becomes more significant. This is espe-
cially true as time moves further away from the initial level. As the second term
becomes more significant, this dampens the growth in the population. This second
formulation is referred to as the logistic law of growth.

Before solving for population explicitly, let us investigate the qualitative proper-
ties of the population by considering the phase-space. The logistic growth equation

ṗ = p(a − bp) a > 0, b > 0

is an autonomous first-order differential equation. The qualitative properties of this
equation are shown in the phase diagram in figure 14.2.

Figure 14.2.
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The equilibrium population is where ṗ = 0, i.e., zero population growth, which
occurs at

p∗
1 = 0 and p∗

2 = a

b
Since we are interested only in positive populations we can ignore p∗

1 = 0 and so
just refer to equilibrium rate p∗. For p0 < a/b, where p0 is the initial population,
then dp/dt > 0, and so p rises over time. For p0 > a/b then dp/dt < 0, and p falls
over time. The arrows in figure 14.2 show these properties. It is clear that p∗ = a/b
is a (locally) stable equilibrium.2 Although population approaches the limit a/b,
this is never in fact achieved (see exercise 5).

We can solve for p explicitly as follows
dp

dt
= ap − bp2 = p(a − bp)∫ p

p0

dp

p(a − bp)
=
∫ p

p0

dt

But
1

p(a − bp)
= 1

a

(
1

p
− −b

a − bp

)

...
1

a

∫ p

p0

dp

p
− 1

a

∫ p

p0

−bdp

(a − bp)
=
∫ t

t0

dt

Solving we have[
1

a
ln p − 1

a
(−b) ln(a − bp)

(
1

−b

)]p
p0

= t − t0

1

a
ln

(
p

p0

)
− 1

a
ln

(
a − bp

a − bp0

)
= t − t0

ln

(
p(a − bp0)

p0(a − bp)

)
= a(t − t0)

... p0(a − bp)ea(t−t0) = p(a − bp0)

We can now solve for p(t)

p0ae
a(t−t0) = pbp0e

a(t−t0) + p(a − bp0)

= p[bp0e
a(t−t0) + (a − bp0)]

i.e.

p(t) = ap0

bp0 + (a − bp0)e−a(t−t0)
(14.7)

This represents the logistic function, which is sketched in figure 14.3, and shows
the logistic curve. This curve depends on the three parameters a, b and p0. It has
an upper limit of

lim
t→∞ p(t) = a

b
(14.8)

2 Expanding ṗ = f (p) in a Taylor series aroundp∗ = a/bwe obtain the following linear approximation
ṗ = −a

(
p − a

b

)
, which has a positive intercept (a2/b) and a negative slope (−a).
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Figure 14.3.

The zero population growth is, however, never reached. (This result is also es-
tablished in exercise 5 using a linear approximation around the equilibrium.) A
second property of the logistic function is that it has an inflexion point at

p = a

2b
(14.9)

This is readily established from the logistic growth equation, since the inflexion
point occurs where the logistic growth equation is at a maximum. Thus, if

f (p) = ap − bp2

f ′(p) = a − 2bp = 0

p = a

2b

The shape of the logistic curve depends on whether the initial population is below
or above the inflexion value of p, or even above the limit value a/b. Figure 14.3
illustrates three different paths.

We can use the logistic function and the data provided in table 14.1 to compute
the values of a and b for the logistic growth equation. Using figures for 1781,
1831 and 1881, respectively, for t(0), t(50) and t(100), we have the following two
equations

24.135 = 13a

13b + (a − 13b)e−50a

34.934 = 13a

13b + (a − 13b)e−100a
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Figure 14.4.

which provide two nonlinear equations in two unknowns. Using a mathematical
software package for solving equations3 (and using the Malthusian value of k for
a first approximation for a), it can be established that

a = 0.02038302 b = 0.0004605

As indicated above, the value of b is very small and the population has to be
large before this second term becomes significant. Even so, it implies an upper
limit for the population of the UK of a/b = 46.745186 million. Using these val-
ues for a and b, we have the logistic results shown in column (4) of table 14.1.
It is clear that these give significantly different results than those of the Malthu-
sian growth law and that towards the end of the period they under-estimate the
growth in the population of the UK. The different growth processors relative to
the actual observations are illustrated in figure 14.4. This shows quite clearly that
the Malthusian law grossly over-estimates the UK population in 1931, while the
logistic growth equation under-estimates it. Of course, a possible reason for the
under-estimate of the logistic growth equation is the choice of years to estimate
the parameters a and b. We quite arbitrarily chose t1 to be fifty years on from t0 and
t2 to be 100 years on. A different choice of years would give different computed
values of a and b, and hence different values in column (4) of table 14.1. It is even
possible to estimate a and b using nonlinear statistical estimation, which would
use all the available data in table 14.1. However, the point being emphasised is that
the logistic calculations are sensitive to the computed/estimated values of a and b,
and most especially the limit in the growth of the population.

We might, however, approach the logistic equation in terms of its discrete ap-
proximation we developed in chapter 3, section 3.7. It is assumed that the change
in the population, �pt+1 conforms to the rule

�pt+1 = apt − bp2
t(14.10)

3 After defining the equations, Mathematica can solve these equations using the FindRoot command
and using initial guesses for a and b. Maple can do the same using the fsolve command and giving
ranges for a and b. The two programmes give the same results (see appendices 14.1 and 14.2). The
same results can be established using TK Solver. With all programmes, care must be exercised in
providing initial guesses.
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which has the approximate solution

pt = ap0

bp0 + (1 + a)−t(a − bp0)
(14.11)

This too has the limit a/b. Again using the figures for 1781, 1831 and 1881 we
obtain two equations

24.135 = 13a

13b + (1 + 10)−50(a − 13b)

34.934 = 13a

13b + (1 + 10)−100(a − 13b)

which gives two slightly different estimates for a and b, namely

a = 0.0205922 b = 0.00044052

However, once again using these estimates for a and b along with the discrete
form for the population, we obtain exactly the same estimates as column (4) of
table 14.1.

Although the discrete approximation is good for forecasting population, care
must be exercised in its use. The original model is nonlinear. As we showed in
chapter 3, for certain values of the parameters a and b the model leads to cyclical
behaviour. This is not true of the discrete approximation. Regardless of the values
of a and b the discrete approximation leads to an equilibrium value of a/b in the
limit for some arbitrary population size which is nonzero.

For instance if we consider the two formulations4:

pt+1 = apt − bp2
t = 3.2pt − 2.2p2

t

pt+1 = (1 + a)pt
1 + bpt

= 4.2pt
1 + 2.2pt

i.e. a= 3.2 and b= 2.2, then system (i) goes to a 2-cycle with values oscillating be-
tween 0.74625 and 1.16284. On the other hand, system (ii) converges very quickly
on the limiting value of 1.45455. These quite different stability characteristics of
the two systems are a warning about the use of approximations when dealing with
nonlinear systems.

14.3 An alternative interpretation

In modelling population change it is useful to consider the process from a different
perspective. Population at a point in time is a stock. This stock level will change
depending on the difference between the inflow and the outflow. Depending on the
population under investigation there will be different factors contributing to each
of these flows. For example, a typical inflow will consist of births and immigration;
while a typical outflow will consist of deaths and emigration. In the case of fish
populations, however, there is also the extent of the harvesting over the period. We

4 See chapter 3, section 3.9 for a derivation of the second equation above.
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shall consider fisheries in chapter 15, and here we shall concentrate on ‘natural’
changes to population. We have then:

Net change in population = inflow − outflow
= (births + immigration) − (deaths + emigration)

But births and deaths can be considered as ‘internal’ to the population, while
immigration and emigration can be considered as coming from outside the system,
as ‘external’ influences on the population. We can, therefore, redefine the net
change in the population as composed of internal change plus external change as
follows:

Net change in population = internal change + external change
= (births − deaths) + migration

where, of course, migration is immigration less emigration. Notice that this inter-
pretation is particularly useful for open systems, for it is only in such systems that
migration can take place. For example, when considering the population of the UK
we can consider the internal change in terms of births and deaths of UK citizens,
and we can consider the external change in terms of the migration of the population
in and out of the UK. On the other hand, if we are considering world population,
then this is a closed system (at least until planetary movements of population take
place!). There can be only births and deaths in a closed system.

Abstracting from the many characteristics that make up a population, like age,
sex, density, fertility, etc., we can think of a representative unit that contributes a
net amount to the internal change in the population, which we shall label n. The
population size at a point in time is p(t), and denotes the number of individuals
at time t. Hence, the internal change in the population is np(t). Letting m(t) de-
note the migration (immigration less emigration) over the same interval of time
as we are measuring the internal change, and measured at time t, then m(t) de-
notes the external change. Accordingly, the change in the population, dp(t)/dt is
given by

dp

dt
= np(t) + m(t)(14.12)

Example 14.2 (Malthusian population growth)

In the case of the Malthusian population growth we considered earlier, there is
no migration (m(t) = 0 for all t) and population is assumed to grow at a constant
rate r. In other words, the net contribution of each member is assumed to be equal
to r (i.e. n = r). Hence for n = r and m(t) = 0 for all t

dp(t)

dt
= rp(t)

with population at time t given by

p(t) = p0e
rt
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Example 14.3 (Logistic growth curve)

Again there is assumed to be no migration and m(t) = 0 for all t. Assume, as in
the Malthusian case, that a population which is not influenced by other factors
grows at a constant rate r. But now further assume that there is a restraint on the
growth process that is proportional to the size of the population. In other words,
the growth process r is reduced by a factor r1p(t). The net internal contribution is
therefore given by

n(t) = r − r1p(t)

Notice in particular that the internal net contribution is a function of time since it
is related to the stock size of the population. Under these two assumptions about
migration and net internal change, we have for the growth of the population

dp

dt
= (r − r1p(t))p(t)

= r

(
1 − p(t)

k

)
p(t) where k = r

r1

(14.13)

which is the logistic growth equation we discussed earlier. Notice first that r is
the Malthusian growth of population and k denotes the carrying capacity of the
population. This version of the logistic equation will be found particularly useful
when we discuss fisheries in chapter 15. For this population its size at time t is
given by

p(t) = k

1 +
(

k

p0
− 1

)
e−rt

(14.14)

As we shall see in the next section, this alternative view of population change
will be found very useful when considering multispecies populations that interact
with each other in complex ways.

14.4 Multispecies population models:
geometric analysis

Consider some closed system, a habitat, in which there are just two species. These
two species can interact with each other in a variety of ways. They may be:

(1) independent of each other,
(2) in competition with each other,
(3) one a predator and the other a prey,
(4) both mutually supportive of each other.

If both are independent of each other then the populations will grow according to
the type of laws we have already considered. In this section we are more concerned
with interacting species. But before we consider each of the possible interactions
in turn, we need to model the problem.
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Let the two species be denoted x(t) and y(t), respectively. Then we can posit that
the growth of the two species, with no migration for each species, as

ẋ = Rx(t)
ẏ = Qy(t)

(14.15)

where R denotes the net contribution of each individual in the x-population and Q
the net contribution of each individual in the y-population. The extent to which a
typical member of the x-population contributes to the stock depends not only on
births and deaths, but also on its interaction with the y-population. The same holds
for the y-population. Consider a very general interaction specification, namely

R = α + βx(t) + γy(t)
Q = δ + εy(t) + ζx(t)

(14.16)

For each population, α and δ denote the natural growth coefficient of the species.
The second term denotes the over-crowding (or self-limiting) coefficient of the
species. As with the logistic growth equation, if β and ε are negative, then over-
crowding will occur and the species come into competition with themselves. On
the other hand, if β and ε are positive, then growth expands as the population size
increases, i.e., there is an increase in fertility as population expands. This we refer
to as mutualism. If γ and ζ are both zero then the two species are independent
of each other. If γ and ζ are both negative, then each is in competition for the
limited resources of the habitat. The growth of one species is at the expense of the
other. On the other hand, if γ and ζ are both positive, then we have a mutually
supportive closed system: the growth of each species is mutually beneficial. Finally
we have a predatory–prey relationship. If γ is positive and ζ is negative then x
is the predator and y is the prey; if γ is negative and ζ is positive, then x is the
prey and y is the predator. The predatory–prey model has been discussed in some
detail in the literature, and much of it is the model of Lotka and Volterra or its
extension. Given the general specifications here, then it is possible, for example,
to consider models that combine over-crowding and have predatory–prey features
or only predatory–prey characteristics.

We now turn to each of the various models to consider them in some detail. In
doing this we shall employ Mathematica to illustrate, in particular, the numerical
examples in the phase plane. Some of the basic instructions for doing this are pro-
vided in appendix 14.3, which also includes instructions for using Maple. Here we
concentrate on the geometric features of the modelling, leaving the mathematical
analysis of such models to the next section.

14.4.1 Competition with no over-crowding

Consider the following model

ẋ = [a − by]x x(0) = x0 a > 0, b > 0
ẏ = [c − dx]y y(0) = y0 c > 0, d > 0

(14.17)

The terms −by and −dx (where we suppress the time variable) show that each
species is in competition for the limited resources of the habitat. We assume the
habitat represents a closed system so there is no migration. Does such a system
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have an equilibrium? Stationary values occur when ẋ = 0 and ẏ = 0, i.e.

ẋ = [a − by(t)]x(t) = 0 implying y = a/b or x = 0
ẏ = [c − dx(t)]y(t) = 0 implying x = c/d or y = 0

Hence, there are two stationary points (x∗
1, y

∗
1) = (0, 0) and (x∗

2, y
∗
2) = (c/d, a/b),

as shown by points E0 and E1, respectively, in figure 14.5.
Figure 14.5 also illustrates the qualitative nature of the trajectories. In this prob-

lem only nonnegative values of x and y are meaningful. Consider first the trajec-
tories in the neighbourhood of the origin. Since y < a/b, then 0 < a − by, and
so ẋ > 0 and hence x is increasing. Similarly, x < c/d means 0 < c − dx, and so
ẏ > 0 and hence y is increasing. In fact, this specifies the nature of trajectories in
quadrant I in figure 14.5. Using the same reasoning, we can summarise the prop-
erties of the four quadrants as shown in table 14.2. The trajectories are looking
complex. For some trajectories in quadrant I the system seems to tend towards the
equilibrium point E1. However, if it passes into quadrant II then it moves away
from the equilibrium point E1. This is because x dominates the habitat and fertil-
ity of y is now so low that it begins to decline. A similar problem occurs if the

Figure 14.5.

Table 14.2 Vector properties for competition with no over-crowding

Quadrant I Quadrant II
For x < c/d then c−dx < 0, hence ẏ > 0 For x > c/d then 0 > c−dx, hence ẏ < 0
For y < a/b then 0 < a−by, hence ẋ > 0 For y < a/b then 0 < a−by, hence ẋ > 0

Quadrant III Quadrant IV
For x > c/d then 0 < c−dx, hence ẏ < 0 For x < c/d then 0 < c−dx, hence ẏ > 0
For y > a/b then 0 > a−by, hence ẋ < 0 For y > a/b then 0 > a−by, hence ẋ < 0
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trajectory moves from quadrant I into quadrant IV. In this instance, however, species
y dominates the habitat and x declines to extinction. A similar logic holds if the
system begins in quadrant III. An initial situation in either quadrant II or IV simply
moves the system away from the equilibrium point E1.

Example 14.4

We can try to see what is happening to this system by considering a numerical
example. Consider the following competitive model

ẋ = [4 − 3y]x
ẏ = [3 − x]y

Equilibrium points can readily be found by setting ẋ = 0 and ẏ = 0, which gives
two equilibrium points

E0: (x∗
0, y

∗
0) = (0, 0) E1: (x∗

1, y
∗
1) = (3, 4/3)

Point E1, in particular, is the solution to the two equations

y = 4

3
ẋ = 0

x = 3 ẏ = 0

To highlight the stability/instability properties of equilibrium E1 (here we ignore
E0), we can consider the direction field, which is illustrated in figure 14.6. This
diagram illustrates a number of features. First, equilibrium E1 appears to be a
saddle path solution. Second, the possible trajectories of the system conform to
those highlighted by the qualitative discussion of figure 14.5, in particular the
movement of the system in the various quadrants, and the likely paths as trajectories
move from one quadrant into another. Third, the movement of the system is from
quadrant I into quadrants II and IV; and from quadrant III into quadrants II and IV.
Fourth, it is not obvious whether any path will lead to the equilibrium point E1.

Figure 14.6.
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Although it was not possible to solve the nonlinear system given in the gen-
eral specification of the system, we can obtain more detailed information on the
properties of the trajectories in the phase-plane by noting5

dy

dx
= dy/dt

dx/dt
= (c − dx)y

(a − by)x

which uses the chain rule. We can re-arrange this expression as follows(
a

y
− b

)
dy =

(
c

x
− d

)
dx

Integrating both sides we have∫ (
a

y
− b

)
dy =

∫ (
c

x
− d

)
dx

a ln y − by = c ln x − dx + k1

a ln y − c ln x = by − dx + k1

yax−c = keby−dx k = ek1

where k1 is the constant of integration. Hence

k = yax−c

eby−dx

where k is a constant. For a given value of k this solution gives the solution trajectory
in the phase-plane.

Example 14. 4 (cont.)

Returning to our numerical example, we can useMathematica orMaple, to plot the
trajectories for various values of k. We do this using Mathematica’s ContourPlot
command or Maple’s contourplot command (see appendix 14.3). Figure 14.7
shows a number of trajectories for different values of k. The trajectories in
figure 14.7 verify the general features outlined in figures 14.5 and 14.6, most
especially the saddle path nature of equilibrium E1.

14.4.2 Predatory–prey model with no over-crowding
(Lotka–Volterra model)

Consider the following model

ẋ = (a − by)x = ax − bxy a > 0, b > 0
ẏ = (−c + dx)y = −cy + dxy c > 0, d > 0

(14.18)

In this model y is the predator and x is the prey. Notice that if the stock of x is
zero, then the predator has no food and is assumed to die out, as indicated by −c.
The greater the food stock, the greater the x-population, and hence the greater the
growth in the predator. On the other hand, the natural growth of the x-stock does
not depend on the predator for food and so a is positive, but it is subject to prey,

5 This is possible only for autonomous systems, see chapter 4.



608 Economic Dynamics

Figure 14.7.

and so the greater the y-population, the more the x-population will be subject to
prey, as indicated by −b.

Our first task is to establish the equilibrium of the system, to find the stationary
points. We do this by setting ẋ = 0 and ẏ = 0 and solving for x and y. Thus

ẋ = (a − by)x = 0 implying y = a/b or x = 0
ẏ = (−c + dx)y = 0 implying x = c/d or y = 0

Hence, there are two stationary points: (x∗
1, y

∗
1) = (0, 0) and (x∗

2, y
∗
2) = (c/d, a/b),

represented by points E0 and E1, respectively, in figure 14.8.
Figure 14.8 also illustrates the qualitative nature of the trajectories. We can

summarise the properties of the four quadrants as shown in table 14.3.
It would appear, then, that the trajectories follow some sort of anticlockwise

spiral.

Example 14.5

To see whether this is so, consider a numerical example at this stage, namely

ẋ =
(
2 − y

100

)
x

ẏ =
(
−2 + x

50

)
y

The equilibrium (other than the origin) is readily found to be (x∗, y∗) = (100, 200).
But the much more interesting question is what is happening to the species out of
equilibrium. To obtain some initial insight into this obtain the direction field for
this system. This is illustrated in figure 14.9. What is apparent from figure 14.9 is
that the system has a cyclical pattern around the equilibrium point E1, and that the
movement of the system is anticlockwise.
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Table 14.3 Vector properties for predatory–prey model

Quadrant I Quadrant II
For x < c/d then −c + dx < 0, hence ẏ < 0 For x > c/d then −c + dx > 0, hence ẏ > 0
For y < a/b then 0 < a − by, hence ẋ > 0 For y < a/b then 0 < a − by, hence ẋ > 0

Quadrant III Quadrant IV
2 For x > c/d then −c + dx > 0, hence ẏ > 0 For x < c/d then −c + dx < 0, hence ẏ < 0
For y > a/b then 0 > a−by, hence ẋ < 0 For y > a/b then 0 > a−by, hence ẋ < 0

Figure 14.8.

Figure 14.9.
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However, we can go further into the trajectories by noting that the predator must
be a function of the prey, i.e., y = f (x). By the chain rule we have

dy

dx
= dy/dt

dx/dt

Substituting the specific general equations, we have

dy

dx
= (−c + dx)y

(a − by)x

or

(
a

y
− b

)
dy =

(−c

x
+ d

)
dx

Integrating both sides, we have∫ (
a

y
− b

)
dy =

∫ (−c

x
+ d

)
dx

a ln y − by = −c ln x + dx + k1

a ln y + c ln x = by + dx + k1

yaxc = keby+dx k = ek1

where k1 is the constant of integration. Hence,

k = yaxc

eby+dx

where k is a constant. For a given value k this solution gives the solution trajectory
in the phase-plane.

Once again, using Mathematica’s ContourPlot command or Maple’s contour-
plot command, we obtain typical trajectories shown in figure 14.10, which clearly
illustrates the cyclical pattern of the solution. Using the information in figure 14.9
we further note that the system moves in an anticlockwise direction.

Suppose, however, we concentrate on just one trajectory with the initial sit-
uation shown by point P0 in figure 14.11, where P0 denotes the initial point
(x0, y0) = (50, 300). Point P0 is in the northwest quadrant. In this situation the
predator is in excess of its equilibrium level while the prey is below its equilib-
rium level. But because the number of predators is contracting, the number of prey
will soon begin to rise as the system moves into the southwest quadrant. Once
into the southwest quadrant, the number of prey begins to rise since the number
of predators is too small to be a major threat. Eventually, this moves the sys-
tem into the southeast quadrant, allowing sufficient prey for the predator once
again to expand towards its equilibrium. However, too great an expansion in the
predatory population diminishes the prey as the system moves into the northeast
quadrant.

From figures 14.10 and 14.11 it is clear that the trajectories form closed curves.
This means that neither the predator nor the prey becomes extinct. Each species
cycles between its minimum and maximum level, as illustrated in figure 14.12.
This figure plots the time path of the predator, y, and the prey, x. The starting point
is represented by point P0 (i.e. x = 50, y = 300), the point shown in figure 14.11.
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Figure 14.10.

Figure 14.11.

What is also clear from figure 14.12 is that the predator lags behind the prey in a
cyclic pattern, and because of this the stationary state is never attained.

14.4.3 Competitive model with over-crowding

In section 14.4.1 we considered a competitive model in which two species were in
competition for the limited resources. But suppose there is also competition within
each species as well; in other words, there is the possibility of over-crowding. We
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Figure 14.12.

can capture this situation in the following model

ẋ = (a − by − ux)x
ẏ = (c − dx − vy)y

where the terms −ux2 and −vy2 denote the over-crowding in the x-species, and
y-species, respectively; while −by and −dx denote the interactive competition
between the two species.

This system is nonlinear and much more complex than our earlier models. But
we can still readily obtain the stationary points of the system by setting ẋ and ẏ
equal to zero. This is certainly satisfied for x = 0 and y = 0, and so the origin
denotes an equilibrium of the system, and the axes represent isoclines.

Once again we can use the chain rule to specify the situation in the phase-plane,

dy

dx
= dy/dt

dx/dt
= (c − dx − vy)y

(a − by − ux)x

We cannot solve this because the expression is not separable. We can, however,
derive expressions for two further isoclines

dy

dx
= 0 when (c − dx − vy) = 0

dy

dx
= 0 when (a − by − ux) = 0

These represent two straight lines in the phase-plane, of which there are four
configurations depending on the values of the six parameters, a, b, c, d, u,
and v, as illustrated in figure 14.13. The markings along the isoclines indicate
that

ẋ = 0 when a − by − ux = 0 implying dy/dx = ∞ and y = (a/b) − (u/b)x
ẏ = 0 when c − bx − vy = 0 implying dy/dx = 0 and y = (c/v) − (d/v)x
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Figure 14.13.

while above and below the isoclines we have the properties

ẋ > 0 when a − by − ux > 0 implying y < (a/b) − (u/b)x (below ẋ = 0)
ẋ < 0 when a − by − ux < 0 implying y > (a/b) − (u/b)x (above ẋ = 0)
ẏ > 0 when c − dx − vy > 0 implying y < (c/v) − (d/v)x (below ẏ = 0)
ẏ < 0 when c − dx − vy < 0 implying y > (c/v) − (d/v)x (above ẏ = 0)

which are indicated by the vectors of force in figure 14.13.
In the upper diagrams in figure 14.13 extinction will occur in one of the species.

So long as the system does not begin at the origin, then the system will either move
to equilibrium point E1, in which the y-species dies out, or to equilibrium point
E2, in which the x-species dies out. In the lower diagrams it is also possible for the
two species to coexist. Such a situation occurs where the two isoclines intersect,
and is given by the solution

(x∗, y∗) = av − bc

uv − bd

But an important question is whether such a coexisting equilibrium is a stable solu-
tion of the model. Figure 14.13(c) would suggest that E3 is not a stable equilibrium,
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Figure 14.14.

while in figure 14.13(d) E3 appears a stable equilibrium. In order to verify these re-
sults we shall continue our discussion with two numerical examples. This not only
allows us to compare the two diagrams in the lower part of figure 14.13 but also to
consider some trajectories in the phase-plane. In order to show such trajectories,
however, we need to solve the nonlinear system using numerical solutions. We do
this within Mathematica, using the NDSolve command and the ParametricPlot
command. Similar plots can be derived with Maple.6

Example 14.6

ẋ = (3 − y − x)x
ẏ = (4 − 2x − y)y

The basic properties of this system are illustrated in figure 14.14, which displays
the isoclines and the vectors of force in the various quadrants. These forces are
based on the following observations

ẋ = 0 when 3 − y − x = 0 implying y = 3 − x and dy/dx = ∞
ẏ = 0 when 4 − 2x − y = 0 implying y = 4 − 2x and dy/dx = 0
ẋ > 0 when 3 − y − x > 0 implying y < 3 − x (below ẋ)
ẋ < 0 when 3 − y − x < 0 implying y > 3 − x (above ẋ)
ẏ > 0 when 4 − 2x − y > 0 implying y < 4 − 2x (below ẏ)
ẏ < 0 when 4 − 2x − y < 0 implying y > 4 − 2x (above ẏ)

6 See Lynch (2001) for plotting multispecies models with Maple.
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Figure 14.15.

This system in general leads to the extinction of one of the species, depending
on the initial situation. This is clearly illustrated in figure 14.15. The trajectories in
this figure required the use of a software package to solve numerically the nonlinear
system of equations. What figure 14.15 clearly shows is that if the initial situation
is not on the saddle path solution, then the system will tend either towards equi-
librium E1, where only the x-species survives, or equilibrium E2, where only the
y-species survives. Only in the unlikely event of the initial condition of the system
being on the saddle path will the system converge to the coexistent equilibrium
point E3.

Example 14.7

ẋ = (4 − y − x)x
ẏ = (6 − x − 2y)y

The basic properties of this system are illustrated in figure 14.16, which displays
the isoclines and the vectors of force in the various quadrants. These forces are
based on the following observations

ẋ = 0 when 4 − y − x = 0 implying y = 4 − x and dy/dx = ∞
ẏ = 0 when 6 − x − 2y = 0 implying y = 3 − 1

2x and dy/dx = 0

ẋ > 0 when 4 − y − x > 0 implying y < 4 − x (below ẋ)

ẋ < 0 when 4 − y − x < 0 implying y > 4 − x (above ẋ)

ẏ > 0 when 6 − x − 2y > 0 implying y < 3 − 1
2x (below ẏ)

ẏ < 0 when 6 − x − 2y < 0 implying y > 3 − 1
2x (above ẏ)

In this example, unlike the previous example, the system converges on the
coexistent equilibrium point E3, so long as the system does not have an initial point
equal to the other stationary values. This is illustrated quite clearly in figure 14.17,
which shows a number of trajectories for this nonlinear system. It is also quite clear
from figure 14.17 that this system does not have a saddle path, except for the axes,
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Figure 14.16.

Figure 14.17.

corresponding to the equilibrium point (x∗, y∗) = (0, 0), which is an uninteresting
case.

We can give another interpretation to our results. First we note that a denotes the
natural growth of the x-species and c denotes the natural growth of the y-species.
We can then make the following definitions:

u/a the competitive effect of x on itself relative to the natural growth of x
b/a the competitive effect of y on x relative to the natural growth of x
v/c the competitive effect of y on itself relative to the natural growth of y
d/c the competitive effect of x on y relative to the natural growth of y
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Consider, then, figure 14.13(a). Here we have c/v > a/b and c/d > a/u or b/a >

v/c and u/a > d/c, i.e., the relative competitive effect of the y-species on x is
greater than its relative competitive effect on itself; while the relative competitive
effect of the x-species on itself is greater than its relative effect on the y-species.
Depending, therefore, on the starting position, either the x-species will die out or
the y-species will.

Turning to figure 14.13(b) we have a/b > c/v and a/u > c/d or v/c > b/a and
d/c > u/a, i.e., the relative competitive effect of the y-species on itself is greater
than its effect on the x-species; while the relative impact of the x-species on the
y-species is greater than the relative competitive effect on itself. Hence, depending
on the starting position, one of the species will die out.

Next consider figure 14.3(c) where we have c/v > a/b and a/u > c/d or b/a >

v/c and d/c > u/a. In this instance the relative competitive effect of the y-species
on x is greater than its relative competitive effect on itself; while the relative
competitive effect of the x-species on y is greater than on itself. This is unstable,
and which species wins out depends on the initial conditions, but E3 cannot be
attained unless the starting point lies on a saddle path.7

Finally, in figure 14.13(d) we have a/b > c/v and c/d > a/u or v/c > b/a and
u/a > d/c, i.e., the relative competitive effect of the y-species on itself is greater
than the relative impact of the y-species on x; while the relative competitive effect
of the x-species on itself is greater than the relative impact of the x-species on y. Ac-
cordingly, the species will settle to some mutually coexistent level – namely at E3.

14.4.4 Predatory–prey model with over-crowding

In sub-section 14.4.2 we considered the predatory–prey model (often referred to
as the Lotka–Volterra model), which involved no competition from within the
species. But suppose there are many predators and so they are in competition with
themselves for the prey. Suppose, too, that the prey, besides being under attack from
the predator is also in competition for the resources of the habitat from members of
its own species. Consider then the most general situation of predatory–prey with
over-crowding of both species in the model

ẋ = (a − by − ux)x
ẏ = (−c + dx − vy)y

where the terms −ux2 and −vy2 denote the over-crowding in the prey (x-species),
and the predator (y-species), respectively. The stationary points of the system are,
once again, obtained by setting ẋ = 0 and ẏ = 0. This is certainly satisfied at the
point (x∗, y∗) = (0, 0). Hence the origin denotes one equilibrium solution, but an
uninteresting one. The other solution is found by setting the terms in brackets to
zero, which provides two isoclines.

ẋ = 0 when a − by − ux = 0 implying y = (a/b) − (u/b)x
ẏ = 0 when − c + dx − vy = 0 implying y = −(c/v) + (d/v)x

7 We shall illustrate this in the next section.
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which gives the nontrivial equilibrium

x∗ =

(a
b

+ c

d

)
(
u

b
+ d

v

) y∗ =

(
a

b

)(
d

v

)
−
(
u

b

)(
a

v

)
(
u

b
+ d

v

)

Furthermore, we can use the chain rule to express the slope of the trajectory in the
phase plane, i.e.

dy

dx
= dy/dt

dx/dt
= (−c + dx − vy)y

(a − by − ux)x

which is nonlinear and cannot be solved. Using the isoclines, however, we can
get some insight into the possible trajectories. However, this is a much more
complex system than the straight predatory–prey model, and so we shall continue
our discussion with a numerical example.

Example 14.8

Let

ẋ =
(
2 − y

100
− x

75

)
x

ẏ =
(
−2 + x

50
− y

200

)
y

Then the nontrivial equilibrium point is (x∗, y∗) = (112.5, 50). The question arises,
however, as to whether, like the Lotka–Volterra model, a closed cycle occurs around
the equilibrium point. In fact, this is not the case in the present model. The fact that
there is competition from within each of the species leads the system towards the
equilibrium point in the limit. This is illustrated in figure 14.18, which portrays
the direction field along with a number of typical trajectories in the phase plane. It
is quite clear that, given the parameter values, this system will always converge on
the equilibrium in the limit. Hence, point (x∗, y∗) = (112.5, 50) is asymptotically
stable.

Figure 14.18.
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Of course, it is not always the situation that the equilibrium is asymptotically
stable. For different parameter values the fixed point can be asymptotically unstable
(see exercise 12), but once again does not converge on a closed orbit around the
equilibrium, as in the Lotka–Volterra model.

This section has illustrated quite a variety of solution paths to systems involv-
ing the interaction between two species depending on whether the interaction is
competitive, mutual or of the predatory–prey variety. With more than two species
the variety of interactions becomes even more complex, but the nature of the so-
lutions is basically similar. In the next section we shall consider the mathematical
properties of these systems.

14.5 Multispecies population models:
mathematical analysis8

In this section we shall set out the general approach, look at just two of the examples
in the previous section in detail, and summarise all remaining examples. We shall
then conclude with some general comments about such linear approximations to
nonlinear systems.

Suppose we have a general nonlinear system denoting the interaction between
two species of the form

ẋ = f (x, y)
ẏ = g(x, y)

Suppose further that this system has at least one fixed point, denoted (x∗, y∗), at
which ẋ = 0 and ẏ = 0. If we wish to consider the stability of the system in the
neighbourhood of the fixed point then, following our treatment in chapter 4, we
can expand the system in a Taylor expansion around the fixed point. Thus

ẋ − x∗ = ∂ f (x∗, y∗)

∂x
(x − x∗) + ∂ f (x∗, y∗)

∂y
(y − y∗)

ẏ − y∗ = ∂g(x∗, y∗)

∂x
(x − x∗) + ∂g(x∗, y∗)

∂y
(y − y∗)

Let fx, fy, gx and gy denote the partial derivatives, each evaluated at the fixed point
(x∗, y∗). Then

ẋ − x∗ = fx(x − x∗) + fy(y − y∗)

ẏ − y∗ = gx(x − x∗) + gy(y − y∗)

or, in matrix notation[
ẋ − x∗

ẏ − y∗

]
=
[
fx fy
gx gy

] [
x − x∗

y − y∗

]

The matrix composed of elements fx, fy, gx and gy are evaluated at the fixed point
and this is a square matrix9 and the system is a linear approximation of the original
nonlinear system.

8 This section requires knowledge of chapter 4.
9 It is a Jacobian matrix.
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Let

A =
[
fx fy
gx gy

]

We have already shown in chapter 4 that all the stability properties of this linear
system can be established from the eigenvalues and eigenvectors of A, along with
the trace and determinant of A, where

tr(A) = fx + gy

det(A) = fxgy − fygx

These properties, however, are only local and apply only for the neighbourhood
of the fixed point under investigation. For nonlinear systems with more than one
fixed point, as in all the examples in the previous section, then the neighbourhood
of each fixed point must be investigated individually.

Example 14.4 (cont.)

Example 14.4 has the nonlinear system

ẋ = f (x, y) = 4x − 3xy
ẏ = g(x, y) = 3y − xy

Taking an arbitrary equilibrium point (x∗, y∗), then we can expand this system in
a Taylor expansion around this value

ẋ − x∗ = fx(x − x∗) + fy(y − y∗)

ẏ − y∗ = gx(x − x∗) + gy(y − y∗)

where

fx = 4 − 3y evaluated at (x∗, y∗)

fy = −3x evaluated at (x∗, y∗)

gx = −y evaluated at (x∗, y∗)

gy = 3 − x evaluated at (x∗, y∗)

We have already established two fixed points

E0 = (0,0) and E1 = (3, 4/3)

and we need to consider the system’s behaviour in the neighbourhood of each.
Take the point E0 = (0, 0). Then fx = 4, fy = 0, gx = 0 and gy = 3. Hence

A =
[
4 0
0 3

]

and our system has the linear approximation[
ẋ
ẏ

]
=
[
4 0
0 3

] [
x
y

]
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in the neighbourhood of the origin. The eigenvalues and eigenvectors are found
from

A − λI =
[
4 − λ 0

0 3 − λ

]

where det(A − λI) = (4 − λ)(3 − λ) = 0 with the two eigenvalues r = 4 and
s = 3. Furthermore, tr(A) = 7 and det(A) = 12. (Note that tr(A)2 > 4 det(A)).

For r = 4 then[
0 0
0 −1

] [
x
y

]
=
[
0
0

]

Hence it does not matter what values x and y take in forming the eigenvector vr

Let

vr =
[
1
0

]

Next consider s = 3, then[
1 0
0 0

] [
x
y

]
=
[
0
0

]

and again it does not matter what values x and y take in forming the eigenvector
vs. Since vr must be linearly independent of vs, then let

vs =
[
0
1

]

The general solution is, therefore,[
x(t)
y(t)

]
= c1

[
1
0

]
e4t + c2

[
0
1

]
e3t

and it is quite clear that this is asymptotically unstable. The situation is shown
in figure 14.19, at the point E0. For any value not the origin and in the positive
quadrant will move the system away from the origin over time. (Also notice that
the two independent eigenvectors form part of the axes.)

Next consider the point E1 = (3, 4/3). Then fx = 0, fy = −9, gx = −4/3 and
gy = 0. Hence

A =
[

0 −9
−4/3 0

]

and our system has the linear approximation[
ẋ − x∗

ẏ − y∗

]
=
[

0 −9
−4/3 0

] [
x − x∗

y − y∗

]

where (x∗, y∗) = (3, 4/3). The eigenvalues and eigenvectors are found from

A − λI =
[ −λ −9
−4/3 −λ

]

where det(A − λI) = λ2 − 12 = 0, with the two eigenvalues r = √
12 = 2

√
3 and

s = −√
12 = −2

√
3. Furthermore, tr(A)=0 and det(A)= −12. From our analysis
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Figure 14.19.

in chapter 4 we already know that these results identify a saddle point, since the
eigenvalues are real and of opposite sign.10

For r = 2
√

3 then[−2
√

3 −9
−4/3 −2

√
3

] [
x
y

]
=
[
0
0

]

giving

−2
√

3x − 9y = 0

Let x = √
3 then y = −2/3, hence

vr =
[ √

3
−2/3

]

For s = −2
√

3 then[
2
√

3 −9
−4/3 2

√
3

] [
x
y

]
=
[
0
0

]

giving

2
√

3x − 9y = 0

Let x = √
3 then y = 2/3, hence

vs =
[√

3
2/3

]

10 Another identifying feature of the saddle point is that det(A) < 0.
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The general solution is, therefore,[
x − x∗

y − y∗

]
= c1

[ √
3

−2/3

]
e(2

√
3)t + c2

[√
3

2/3

]
e(−2

√
3)t

Suppose c2 = 0 then[
x − x∗

y − y∗

]
= c1

[ √
3

−2/3

]
e(2

√
3)t

and so vr represents an unstable arm because the system if perturbed will move
over time away from (x∗, y∗) along the vector vr. On the other hand, if c1 = 0 then[

x − x∗

y − y∗

]
= c2

[√
3

2/3

]
e(−2

√
3)t

which converges on (x∗, y∗) over time. Hence, vs is a stable arm of the saddle point
E1 = (3, 4/3). The behaviour of the system, therefore, in the neighbourhood of E1

is illustrated in figure 14.19.
Unlike our analysis in the previous section, this present analysis indicates that

if the system begins on the stable arm of the saddle point in the neighbourhood
of the fixed point, then it will converge on the fixed point over time. However, for
all other perturbations in the neighbourhood of the critical point, the system will
diverge away from it. In which direction depends on how the system is disturbed,
i.e., which of the four quadrants the system is moved into (but not along the arm
through vs).

The next example has more equilibrium points to consider but the formal analysis
is the same. Accordingly we shall be more succinct in our presentation.

Example 14.6 (cont.)

The system is

ẋ = f (x, y) = 3x − xy − x2

ẏ = g(x, y) = 4y − 2xy − y2

which has four equilibrium points:

E0 = (0, 0), E1 = (3, 0), E2 = (0, 4), E3 = (1, 2)

In each case we shall consider a linear approximation of the system in that neigh-
bourhood.

The matrix of the linear system has elements

fx = 3 − y − 2x fy = −x

gx = −2y gy = 4 − 2x − 2y

E0= (0,0)

A =
[
3 0
0 4

]
A − λI =

[
3 − λ 0

0 4 − λ

]
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Figure 14.20.

Hence det(A − λI) = (3 − λ)(4 − λ) = 0 with eigenvalues r = 4 and s = 3. The
eigenvectors are

vr =
[
1
0

]
and vs =

[
0
1

]

and the general solution is[
x
y

]
= c1

[
1
0

]
e4t + c2

[
0
1

]
e3t

and is asymptotically unstable. The behaviour of the system in the neighbourhood
of E0 is shown in figure 14.20. In particular, since both x and y are positive then
the system will move away from the origin.
E1= (3,0)

A =
[−3 −3

0 −2

]
A − λI =

[−(3 + λ) −3
0 −(2 + λ)

]

Hence, det(A − λI) = (3 + λ)(2 + λ) = 0, with eigenvalues r = −3 and s = −2.
Using r = −3 the associated eigenvector is

vr =
[
1
0

]

while for s = −2 the associated eigenvector is

vs =
[

3
−1

]
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and so the general solution in the neighbourhood of E1 is[
x − x∗

y − y∗

]
= c1

[
1
0

]
e−3t + c2

[
3

−1

]
e−2t

Since both r and s are negative, then the system is asymptotically stable in the
neighbourhood of E1.
E2= (0,4)

A =
[−1 0
−8 −4

]
A − λI =

[−(1 + λ) 0
−8 −(4 + λ)

]

Hence, det(A − λI) = (1 + λ)(4 + λ) = 0, with eigenvalues r = −4 and s = −1.
The associated eigenvectors are, respectively,

vr =
[
0
1

]
and vs =

[
1

−8/3

]

and the general solution in the neighbourhood of E2 is[
x − x∗

y − y∗

]
= c1

[
0
1

]
e−4t + c2

[
1

−8/3

]
e−t

Since both r and s are negative, then the system is asymptotically stable in the
neighbourhood of E2.
E3= (1,2)

A =
[−1 −1
−4 −2

]
A − λI =

[−(1 + λ) −1
−4 −(2 + λ)

]

Hence, det(A − λI) = (1 + λ)(2 + λ) − 4 = λ2 + 3λ − 2 = 0, with eigenvalues

r = −3 + √
17

2
= 0.56155 and s = −3 − √

17

2
= −3.56155

The fact that the eigenvalues are of opposite sign indicates that E3 is a local saddle
point. The eigenvector associated with r = 0.56155 is

vr =
[

1
−1.5616

]

while that associated with s = −3.56155 is

vs =
[

1
2.5616

]

and the general solution in the neighbourhood of E3 is[
x − x∗

y − y∗

]
= c1

[
1

−1.5616

]
e0.56155t + c2

[
1

2.5616

]
e−3.56155t

It readily follows, therefore, that vr is the unstable arm of the saddle point and vs

is the stable arm. Again the situation is illustrated in figure 14.20.
Although this second example involves more critical points, the linearisation

of the nonlinear system enables us to investigate some useful properties of the
system. Furthermore, it supports the analysis of the previous section.
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Table 14.4 Eigenvalues and eigenvectors for examples 14.4–14.8

Ex Points Eigenvalues Eigenvectors

14.4 E0 = (0,0) r = 4
vr =

[
1
0

]
, vs =

[
0
1

]
s = 3

E1 = (3,4/3) r = +2
√

3 vr =
[ √

3
−2/3

]
, vs =

[√
3

2/3

]
s = −2

√
3

14.5 E0 = (0,0) r = 2
vr =

[
1
0

]
, vs =

[
0
1

]
s = −2

E1 = (100,200) r = 2i
vr =

[
1
2i

]
, vs =

[
1
2i

]
s = −2i

14.6 E0 = (0,0) r = 4
vr =

[
1
0

]
, vs =

[
0
1

]
s = 3

E1 = (3,0) r = −3
vr =

[
1
0

]
, vs =

[
3

−1

]
s = −2

E2 = (0,4) r = −4
vr =

[
0
1

]
, vs =

[
1

−8/3

]
s = −1

E3 = (1,2) r = 0.5616
vr =

[
1

−1.5616

]
, vs =

[
1

2.5616

]
s = −3.5616

14.7 E0 = (0,0) r = 6
vr =

[
0
1

]
, vs =

[
1
0

]
s = 4

E1 = (4,0) r = −4
vr =

[
1
0

]
, vs =

[
2/3
1

]
s = 2

E2 = (0,3) r = 1
vr =

[
1

3/7

]
, vs =

[
0
1

]
s = −6

E3 = (2,2) r = −0.7639
vr =

[
1

0.61805

]
, vs =

[
1

1.61805

]
s = −5.2361

14.8 E1 = (0,0) r = 2
vr =

[
1
0

]
, vs =

[
0
1

]
s = −2

E2 = (112.5,50) r = 1.4375 + 1.0588i
s = −1.4375 − 1.0588i

Complex conjugate vectors∗

∗ If required they can be obtained using Mathematica or Maple. Obtain the matrix A and define it in
Mathematica or Maple as a matrix, say m. Then use the Eigenvectors[m] command in Mathematica
or eigenvects(m) command in Maple.

Before we comment generally on the linearisation of nonlinear systems,
table 14.4 provides a summary of all the mathematical properties of examples
14.4–14.8 of the previous section.

14.5.1 Some general remarks

For linear systems there are general formulae for solutions. These general formu-
lae include all solutions. Even where discontinuities exist, these can be located.
Unfortunately, for nonlinear systems no such general formulae exist. This means
that it is very difficult, or not even possible, to establish properties of solutions.
Another difficulty with nonlinear systems is that of determining the interval in
which a solution exist which satisfies an initial value.
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Figure 14.21.

14.6 Age classes and projection matrices

Since it is females that give birth, then a number of population models consider only
the number of females. However, the probability of giving birth varies throughout
the lifespan of the female – something that we have so far ignored. In any period
there are two probabilities (events): (1) the probability of dying in that period,
and (2) the probability of giving birth in that period. Put another way, there is a
rate of survival and a reproduction rate for a given class. Many models, therefore,
consider the population of women of childbearing age. In such models, equal class
intervals are taken. If, for example, we assume women can bear children to age 45
and we have three class intervals, then we have the three classes: 0–15, 15–30 and
30–45. Let x denote the continuous variable ‘age’. In general, if the terminal age
is N = 45, and we have n age-classes, then N/n is the duration of the age class. In
our present example this is 45/3 = 15. Finally, let t denote the projection interval,
which has the same duration as the age class (here 15 years). The population is
observed at the end of each projection interval. Turning now to the characteristics
of the female population, let bi denote the birth rate for the ith-class (i = 1, 2, 3)
and sij the survival rate from class i into class j. In our present example we have
only s12 and s23. The model can be captured in terms of a state diagram, presented
in figure 14.21.

Let xi(t) denote the population of the ith-age class at the tth-time step. To be in
class i = 1, age 0–15, then the female can be born from a woman of any of the
three age classes. So

x1(t + 1) = b1x1(t) + b2x2(t) + b3x3(t)

But account must be taken of women in the population surviving into the second and
third age class. The number surviving to the second age class is x2(t + 1) = s12x1(t);
while the number surviving to the third age class is x3(t + 1) = s23x2(t). We have,
then, the set of equations

x1(t + 1) = b1x1(t) + b2x2(t) + b3x3(t)
(14.19)

x2(t + 1) = s12x1(t)

x3(t + 1) = s23x2(t)

This can be written in the matrix form
x1(t + 1)
x2(t + 1)
x3(t + 1)


 =


b1 b2 b3

s12 0 0
0 s23 0




x1(t)
x2(t)
x3(t)



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or more succinctly

x(t + 1) = Ax(t) (14.20)

In general

A =



b1 b2 b3 . . . bn−1 bn
s12 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . sn−1,n 0


(14.21)

The matrix A is often called a Leslie matrix after P. Leslie who first introduced
them.

Of course (14.20) is just a recursive equation with solution

x(t) = Atx(0)(14.22)

where x(0) denotes the vector of females in each ith-class in period 0.
Before continuing, consider the following simple numerical example.

Example 14.9

Let

b1 = 0.4, b2 = 0.8, b3 = 0.2

s12 = 0.9, s23 = 0.8

Suppose a population has 10 million females in each of the three age classes, giving
a total female population of 30 million. Using the recursive relations specified in
(14.19), by means of a spreadsheet we can derive the time profile of this population
over, say, ten periods as shown in table 14.5(a). The ten periods cover 150 years,
since the projection interval is 15 years. Figure 14.22 shows the time profile of
this population in terms of the three classes.

Alternatively, using result (14.22) we could derive a particular row of the spread-
sheet. For example, for t = 4 we have

x(4) = A4x(0) =

1.0048 .7680 .1568

.7056 .6912 .1584

.6336 .3456 .0576




10

10
10


 =


19.2960

15.5520
10.3680




which is exactly the same as the row for t = 4 in table 14.5(a).
In table 14.5(b) we have computed the proportion of the total female population

in each class. It should be noticed that these proportions are settling down to 42.7%
in class 1, 33.7% in class 2 and 23.6% in class 3 by period 10.

What we shall now illustrate is that the dominant eigenvalue of the matrix A
establishes the growth rate of the population, while the eigenvector associated
with the dominant eigenvalue allows a computation of the proportion to which
each class stabilises. Such results are highly significant. Once we know the matrix
A, it is relatively easy to establish with computer software the eigenvalues and
eigenvectors.

To show these properties we utilise the following theorem.11

11 This theorem itself utilises the Perron–Frobenious theorem.
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Table 14.5 Age class projections
(a) Numbers

t Years x1(t) x2(t) x3(t) Total

0 0 10 10 10 30
1 15 14 9 8 31
2 30 14.4 12.6 7.2 34.2
3 45 17.28 12.96 10.08 40.32
4 60 19.296 15.552 10.368 45.216
5 75 22.237 17.366 12.442 52.042
6 90 25.275 20.010 13.893 59.178
7 105 28.897 22.747 16.008 67.652
8 120 32.958 26.007 18.198 77.163
9 135 37.629 29.662 20.806 88.097

10 150 42.943 33.866 23.730 100.538

(b) Per cent

t Years x1(t) x2(t) x3(t)

0 0 33.3 33.3 33.3
1 15 45.2 29.0 25.8
2 30 42.1 36.8 21.1
3 45 42.9 32.1 25.0
4 60 42.7 34.4 22.9
5 75 42.7 33.4 23.9
6 90 42.7 33.8 23.5
7 105 42.7 33.6 23.7
8 120 42.7 33.7 23.6
9 135 42.7 33.7 23.6

10 150 42.7 33.7 23.6

THEOREM 14.1
If A is a Leslie matrix of the form

A =



b1 b2 b3 . . . bn−1 bn
s12 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . sn−1,n 0


 bi ≥ 0 i = 1, . . . n

0 < si−1,i ≤ 1 i = 2, . . . n

then

(1) there exists a unique dominant eigenvalue, λd, which is positive,
(2) the eigenvector associated with the dominant eigenvalue has

positive components,
(3) all other eigenvalues, λi 
= λd satisfy |λi| < λd.

Example 14.9 (cont.)

The Leslie matrix for example 14.9 is

A =

0.4 0.8 0.2

0.9 0 0
0 0.8 0



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Figure 14.22.

with eigenvalues

λ1 = 1.14136 λ2 = −0.4767 λ3 = −0.26466

We see that λ1 is the dominant eigenvalue and |λ2| < λ1 and |λ3| < λ1. The eigen-
vector, v1 associated with the eigenvalue λ1 is

v1 =

0.72033

0.56800
0.39812




which clearly has all positive components.
Given the three eigenvalues, the system has the general solution

x(t + 1) = c1λ
t
1v1 + c2λ

t
2v2 + c3λ

t
3v3

which will be governed in the limit by the dominant root, λ1. Since λ1 > 1 then the
system grows over time. This is clearly shown in figure 14.22. Furthermore, the
growth of the system is given by λ1 − 1 = 0.14136, which means a growth rate
of 14.1%. Since the eigenvector v1 has elements x1(t) = 0.72033, x2(t) = 0.56800
and x3(t) = 0.39812 then their sum is 1.68645 and so normalising the eigenvector
by dividing each term by this sum, we arrive at the values

0.42713
0.33680
0.23607




which in percentage terms are the values we obtained as the limiting values in
table 14.5(b).

Appendix 14.1 Computing a and b for the logistic
equation using Mathematica

When solving for a and b in the logistic growth equation do not use Solve or Nsolve
command, rather use FindRoot. It is important to have ‘good’ initial estimates of
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a and b. First define the two equations:

In[1]:= eq1 := 24.135 == 13a
13b + (a-13b) e-50 a

In[2]:= eq2 := 34.934 == 13a
13b + (a-13b) e-100 a

Then use the FindRoot command using initial estimates for a and b.

In[3]:=FindRoot[{eq1, eq2}, {a, 0.02}, {b, 0.0004}]

Out[3]= {a → 0.020383, b → 0.000436045}

We do the same for the linear approximation

In[4]:= eq3 := 24.135 == 13a
13b + a-13b

(1+a)50

In[5]:= eq4 := 34.934 == 13a
13b + a-13b

(1+a)100

In[6]:= FindRoot[{eq3, eq4}, {a, 0.02}, {b, 0.0004}]

Out[6]= {a → 0.0205922, b → 0.00044052}

Appendix 14.2 Using Maple to compute a and b for the
logistic equation

When solving for a and b in the logistic growth equation do not use the solve
command, rather use the fsolve command. Because solving can be problematic,
include ranges for a and b, e.g. a = 0.02..0.03 and b = 0.0004..0.0005.

First define the two equations:

> eq1:=24.135=13*a/(13*b+(a-13*b)*exp(-50*a));

eq1 := 24.135 = 13
a

13b + (a − 13b)e(−50a)

> eq2:=34.934=13*a/(13*b+(a-13*b)*exp(-100*a));

eq2 := 34.934 = 13
a

13b + (a − 13b)e(−100a)

Then use the fsolve command using ranges for both a and b

> fsolve ({eq1,eq2},{a,b},

{a=0.02..0.03,b=0.0004..0.0005});

{a = .02038301946, b = .0004360453198}

We do the same for the linear approximation

> eq3:=24.135=13*a/(13*b+((1+a)ˆ(-50))*(a-13*b));

eq3 := 24.135 = 13
a

13b + a − 13b

(1 + a)50
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> eq4:=34.934=13*a/(13*b+((1+a)ˆ(-100))*(a-13*b));

eq4 := 34.934 = 13
a

13b + a − 13b

(1 + a)100

> fsolve ({eq3, eq4}, {a,b},

{a=0.02..0.03, b=0.0004..0.0005});

{a = .02059217184, b = .0004405196282}

Appendix 14.3 Multispecies modelling with Mathematica
and Maple

In this appendix we give detailed instructions for deriving direction fields and
trajectories for example 14.4 employing both Mathematica and Maple. We also
give some basic instructions for the linear approximation. All other problems in
this chapter can be investigated in the same manner. Here we concentrate only on
the input instructions.

The equation system we are to investigate is

ẋ = (4 − 3y)x
ẏ = (3 − x)y

This is a nonlinear system and cannot be solved directly by any known method.
However, as we pointed out in sub-section 14.4.1, we can express the properties of

ẋ = (a − by)x a > 0, b > 0
ẏ = (c − dx)y c > 0, d > 0

in the phase plane by plotting the solution trajectories

k = yax−c

eby−dx
k a constant

Alternatively for the nonlinear system

ẋ = f (x, y)

ẏ = g(x, y)

we can investigate the linear approximation[
ẋ
ẏ

]
=
[
fx fy
gx gy

] [
x − x∗

y − y∗

]

in the neighbourhood of a particular fixed point (x∗, y∗), and where fx, fy, gx and
gy are evaluated at a fixed point.

14A.1 Mathematica

To derive the contour plot in Mathematica input the following instructions:

k[x-,y-]:=y^ a x^ (-c)/E^ (b y - d x)

{a=4, b=3, c=3, d=1}

graph1=ContourPlot[ k[x,y], {x,0.5,6}, {y,0.5,4},

ContourShading->False,

PlotPoints->50]
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The contour plot, however, does not indicate in which direction the vector forces
go. For this purpose we need to invoke the PlotVectorField command and then
combine this with the contour plot. Thus

graph2=PlotVectorField[ {(4-3y)x,(3-x)y},

{x,0.5,6}, {y,0.5,4}]
Show[graph1,graph2]

There may be memory problems with showing the two graphs together.
Turning to the linear approximation, the system can be investigated by means

of the following input instructions

roots=Solve[ {(4-3y)x==0, (3-x)y==0}, {x,y} ]

eq3=(4-3y)x

eq4=(3-x)y

matrixA= { {D[eq3,x], D[eq3,y]},

{D[eq4,x], D[eq4,y]} };

MatrixForm[matrixA]

matrixA1=matrixA /. roots[[1]]

Eigenvalues[matrixA1]

Eigenvectors[matrixA1]

matrixA2=matrixA /. roots[[2]]

Eigenvalues[matrixA2]

Eigenvectors[matrixA2]

Although Mathematica gives the eigenvectors for matrixA2 as

vr =

−3

√
3

2
1


 and vs =


3

√
3

2
1




these are, in fact, the same as those in the text.

14A.2 Maple

The equivalent in Maple is not as satisfactory. The contour plots can be obtained
using the following input instructions.

with(plots):

equ:=y^e*x^(-3)/exp(3*y-x);

contourplot(equ, x=0.5..6, y=0.5..4, grid=[40,40]);

This plot has only contour lines to the left and right of the fixed point (x∗, y∗) =
(3, 4/3) and not above or below this value. A better rendition of the phase portrait
is to utilise the following instructions.

with(plots):

with(DEtools):

seq1:=seq( [0,0.5,0.5+0.25*i], i=0..10);

seq2:=seq( [0, 6, 1+0.25*j], j=1..10);

seq3:=seq( [0,1,0.1+0.1*k], k=1..10)
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inits:={seq1, seq2, seq3};

phaseportrait( equ, [x,y], 0..1, inits, x=0.5..6,

y=0.5..4,arrows=THIN);

Turning to the linear approximation, the system can be investigated by means
of the following input instructions

with(linalg):

sol1:=solve( {(4-3*y)*x=0, (3-x)*y=0} );

equ1:=(4-3*y)*x;

equ2:=(3-x)*y;

matrixA:=matrix( [ [diff(equ1,x), diff(equ1,y)],

[diff(equ2,x), diff(equ2,y)] ] );

matrixA1:=matrix( [ [ subs(sol1[1],diff(equ1,x) ),

subs(sol1[1], diff(equ1,y) ) ],

[subs(sol1[1], diff(equ2,x)),

subs(sol1[1], diff (equ2,y)) ] ] );

eigenvals(matrixA1);

eigenvects(matrixA1);

matrixA2:=matrix( [ [ subs(sol1[2],diff(equ1,x) ),

subs(sol1[2], diff(equ1,y) ) ],

[subs(sol1[2], diff(equ2,x)),

subs(sol1[2], diff (equ2,y)) ] ] );

eigenvals(matrixA2);

eigenvects(matrixA2);

These instructions produce the same results as with Mathematica, with the same
eigenvectors that, as indicated above, are the same as those in the text – which can
readily be verified.

Exercises

1. Given the following data for population in England and Wales over the
period 1701–91, obtain the estimated population using the continuous
Malthusian population model and compare your results with those pro-
vided. Why do you think the estimated population under-estimates the
actual population in 1791?

Year 1701 1711 1721 1731 1741 1751 1761 1771 1781 1791

Population (million) 5.8 6.0 6.0 6.1 6.2 6.5 6.7 7.2 7.5 8.3

Source: Tranter (1973, table 1).

2. Two countries, A and B, have populations of equal size, p0, and are
growing at the same net rate of 2% per annum. However, population A
has a birth rate of 3% per annum and a death rate of 1% per annum
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while country B has a birth and death rate of 5% and 3%, respectively.
Unfortunately, country A suffers a major spread of AIDS and its death
rate rises to 2% per annum. Assuming both populations conform to the
Malthusian model, how long will it take for the population of country B
to be twice the size of country A?

3. A population has births b, deaths d and migration m each growing ex-
ponentially. If b < (d + m), how long before the population is half its
original size?

4. (i) If a population conforms to the Malthusian population model and is
growing at 3% per annum, how long will it take for the population
to treble in size?

(ii) Derive a general formula for the time interval necessary for an in-
crease in population to grow by λ times its initial size, assuming it
is growing at some general rate k% per annum?

5. For the logistic equation

ṗ = p(a − bp) a > 0, b > 0

expand this as a Taylor series around the equilibrium a/b and hence
show that the population in the neighbourhood of the equilibrium can be
expressed

p − a

b
=
(
p0 − a

b

)
eat

Show that as t → ∞ then p → a/b. What does this imply about the
achievement of equilibrium?

6. Suppose

ṗ = p(a + cp) a > 0, c > 0

(i) Explain this equation.
(ii) Draw the phase line for this population and show that the population

tends to infinity.
(iii) Derive an explicit solution for the population and use this to show

that an infinite population is reached at a finite point in time.
7. A population is thought to have the feature that if it falls below a minimum

level,m, then it will die out and that there is a maximum carrying capacity
of M for the same population.
(i) Given an intrinsic growth rate of r, discuss the usefulness of

ṗ = r(M − p)(p − m)

to describe this population.
(ii) Compare

(a) ṗ = rp(M − p)
(b) ṗ = r(M − p)(p − m)

8. For the Gompertz equation

ṗ = rp(a − ln p) a > 0

(i) Solve the equation subject to p(0) = p0.
(ii) Sketch this graph and its associated phase line.
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(iii) Obtain the fixed points and establish their stability/instability.
(iv) What happens to p as t → ∞?

9. Solve the following system for two competing species x and y

ẋ = −3y(t)
ẏ = −9x(t)

and derive explicitly the phase line.
10. Trout, species T , and bass, species B, are assumed to conform to the

following model

Ṫ = a

(
1 − T

k1

)
T − bTB

Ḃ = c

(
1 − B

k2

)
B − dTB

Analyse this model in detail using a graphical analysis.
11. Suppose N(t) denotes the biomass of halibut in the Pacific Ocean. It has

been estimated that for the equation

N(t) = N0K

N0 + (K − N0)e−rt

Note: N(t)/K = N0/(N0 + (K − N0)e−rt) = (N0/K)/((N0/K) + (1 −
(N0/ K))e−rt) r = 0.71 per year and K = 80.5 × 106 kg. If the initial
biomass is one-quarter of the carrying capacity,
(i) What is the biomass 2 years later?

(ii) What is the time at which the biomass is
(a) half the carrying capacity?
(b) three-quarters of the carrying capacity?

12. In each of the following systems which describes the interaction between
two species of population x and y,

(i) Find the stationary values.
(ii) Linearise each system in the neighbourhood of all critical points.

(iii) Find the eigenvalues and eigenvectors for each linearisation and
describe the nature of the critical point.

(iv) Try to establish the nature of the system by plotting sufficient tra-
jectories.

(a) ẋ = −x + xy

100
ẏ = 2y − 2xy

25

(b) ẋ = − 1
2x + xy

( 1
4 + y)

ẏ = y − y2 − xy

( 1
4 + y)

(c) ẋ = x − x2 − xy ẏ = y − 2xy − 2y2

13. Consider the following discrete numerical predatory–prey model, where
x is the prey and y is the predator

xt+1 − xt = 1.4(1 − yt)xt

yt+1 − yt = 0.6(1 − 4yt + xt)yt

(i) Establish the critical points.
(ii) Find the linearisation coefficient matrix, A, for each critical point.
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(iii) Establish the eigenvalues and eigenvectors of A.
(iv) Set up the system on a spreadsheet and establish the limit value of x

and y as t → ∞.
14. Investigate fully the discrete dynamical system

xt+1 = 1.3xt − 0.3x2
t − 0.15xtyt

yt+1 = 1.3yt − 0.3y2
t − 0.15xtyt

(i) Showing in particular that four critical points exit.
(ii) Linearising the system about each critical point.

(iii) Establishing the behaviour of the system by considering sufficient
trajectories in relation to (i)–(ii).

15. The American bison population can be sub-divided into three categories
(Cullen 1985): calves, yearlings and adults. These are denoted x1(t), x2(t)
and x3(t), respectively. In each year the number of newborns is 42% of the
number of adults from the previous year. Each year 60% of the calves live
to become yearlings, while 75% of yearlings become adults. Furthermore,
95% of adults survive to live to the following year.

(i) Write out the system as a set of difference equations.
(ii) Draw a state diagram for this population.

(iii) Show that this system has one real eigenvalue and two conjugate
complex eigenvalues.

(iv) What is the eventual growth rate of the bison population?
(v) What proportion of calves, yearlings and adults does this system

settle down to?

Additional reading

Additional material covered in this chapter can be found in Boyce and DiPrima
(1997), Braun (1983), Caswell (2000), Deane and Cole (1962), Haberman (1977),
Hoppensteadt (1992), Lynch (2001), Meyer (1985), Mooney and Swift (1999),
Renshaw (1991), Sandefur (1990), Tranter (1973) and Vandermeer (1981).



CHAPTER 15

The dynamics of fisheries

In this chapter we consider a renewable resource. Although we shall concentrate on
fishing, the same basic analysis applies to any biological species that involves births
and deaths. A fishery consists of a number of different characteristics and activities
that are associated with fishing. The type of fish to be harvested and the type of
vessels used are the first obvious characteristics and activities. Trawlers fishing
for herring are somewhat different from pelagic whaling.1 In order to capture the
nature of the problem we shall assume that there is just one type of fish in the
region to be harvested and that the vessels used for harvesting are homogeneous
and that harvesters have the same objective function.

Because fish reproduce, grow and die then they are a renewable resource. But
one of the main characteristics of biological species is that for any given habitat
there is a limit to what it can support. Of course, harvesting means removing fish
from the stock of fish in the available habitat. Whether the stock is increasing,
constant or decreasing, therefore, depends not only on the births and deaths but
also on the quantity being harvested. The stock of fish at a moment of time denotes
the total number of fish, and is referred to as the biomass. Although it is true that
the biomass denotes fish of different sizes, different ages and different states of
health, we ignore these facts and concentrate purely on the stock level of fish.
But like any renewable resource, over an interval of time the stock level will
change according to births, deaths and harvesting. We shall deal with harvesting
later. For the moment we shall concentrate purely on the biological characteristics
of the fish stock. Our first aim is to represent the biological growth curve of a
fishery.

15.1 Biological growth curve of a fishery

We assume that the growth rate of the fish stock, denoted ds/dt, is related to the
biomass (the stock level), denoted s. Although stock size and the growth in stock
size are related to time, in what follows we shall suppress the time variable in the
stock. Thus, the instantaneous growth process for fish can be represented by the
equation

ds

dt
= f (s)(15.1)

1 See Shone (1981, application 11) for a review of pelagic whaling.
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which is a representation of the births and deaths of the species in the absence of
harvesting.

In order to take the analysis further we need to assume something about the bio-
logical growth curve. A reasonable representation is given by the logistic equation,
which we discussed in chapter 14. Thus

ds

dt
= f (s) = rs

(
1 − s

k

)
(15.2)

The coefficient r represents the intrinsic instantaneous growth rate of the biomass,
i.e., it is equal to the rate of growth of the stock s when s is close to zero. More
importantly, the coefficient k represents the carrying capacity (or saturation level)
of the biomass, i.e., it represents the maximum population that the habitat can
support. This follows immediately from the fact that the stock size will be a
maximum when ds/dt = 0, i.e., when s = k. In what follows we assume that both
r and k are constant. These, and other features of the logistic equation representing
fish growth, are illustrated in figure 15.1.

In the upper section of the diagram we have the growth curve represented by
the logistic equation, while in the lower section we draw the equation of the stock
size against time, i.e., the solution equation

s = k

1 +
(
k

s0
− 1

)
e−rt

(15.3)

Figure 15.1.
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In the lower section we also draw the curve denoting the biotic potential. This curve
represents the growth of a species in which there is no negative feedback from over-
crowding or environmental resistance. In other words, the biotic potential denotes
the exponential growth curve

s = s0e
rt(15.4)

The shaded region in the lower section of figure 15.1 shows the environmental
resistance, which increases sharply after the inflexion point. The environmental
resistance occurs because of the carrying capacity of the habitat.

From the upper diagram in figure 15.1 it is clear that the growth function has a
maximum point. At the stock size denoted smsy the growth of the fish stock is at
a maximum, and is referred to as the maximum sustainable yield. The maximum
sustainable yield is readily found. Since the growth curve is at a maximum, then
we can establish this maximum by differentiating the growth curve and setting it
equal to zero to solve for smsy and then substituting this value into f (s). Thus

f ′(s) = rs

(
−1

k

)
+ r

(
1 − s

k

)
= 0

−rs + r(k − s) = 0

smsy = k

2

f

(
k

2

)
= rk

4

(15.5)

i.e. the stock level of fish at the maximum sustainable yield of a particular species
is exactly half of its carrying capacity. Furthermore, given the logistic equation,
equation (15.2), the growth function is symmetrical about smsy.

The importance of the maximum sustainable yield is in relation to harvesting.
The situation is shown in figure 15.2. With no harvesting, the species will be in

Figure 15.2.
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biological equilibrium when there is no growth, i.e., when ds/dt = 0. There are
two biological equilibria, s∗ = 0 and s∗ = k, as shown in figure 15.2. Any stock
size above zero and below the carrying capacity will lead to positive growth and
hence an increase in the stock. Any stock level above the carrying capacity will
lead to excessive environmental resistance, and hence to a decline in the stock
size. (This naturally follows since above s∗ = k, ds/dt < 0, and hence the stock
size must be declining.)

Now consider three constant levels of harvesting, h1,h2 and h3. Harvesting level
h1 is above the growth curve, which means that the fish are being extracted faster
than they can reproduce. The fish will accordingly be harvested to extinction. At a
harvest level of h2, the harvest line just touches the growth curve at the maximum
sustainable yield. What does this imply? Suppose the fish stock begins at the level
of the carrying capacity. There will be no natural growth in the fish stock, but there
will be a level of harvesting equal to h2, which will result in the fish stock declining.
When the fish stock declines to the maximum sustainable yield, then the natural
growth in the fish population is just matched by the level of harvesting, and so this
level of fish stock can be sustained perpetually. However, if the fish stock should
fall below the maximum sustainable yield, then the rate of harvesting will exceed
the natural population growth, and the fish stock will decline, and extinction will
eventually result. This suggests that a management policy to harvest at the level
h2 is not necessarily a sensible one, especially with the uncertainty involved in
estimating fish stocks.

If harvesting were at a level of h3, there are two possible equilibria, s∗1 and s∗2,
given by the stock levels where the harvesting line cuts the growth curve. Both s∗1
and s∗2 represent sustainable yields. This is because at each of these stock levels
the growth rate equals the rate of harvesting, and so the fish stock will remain
constant. There are a number of characteristics of the fishery in this instance:

(1) If 0 < s < s∗1 then harvesting exceeds natural fish growth, and the species
will decline to extinction.

(2) If s∗1 < s < s∗2 then harvesting is less than the natural fish growth, and so
the stock size will increase, and increase until s∗2 is reached.

(3) If s > s∗2 then again harvesting exceeds the natural fish growth and so the
fish stock will decline until it reaches s∗2.

(4) Any deviation of the stock size away from s∗1 will lead to a further move-
ment of the fish stock away from this level, either to extinction or to the
level s∗2. Accordingly, s∗1 denotes a locally unstable equilibrium.

(5) Any deviation of the stock size around the level s∗2 will lead to the stock
size changing until it reaches s∗2. Hence, s∗2 denotes a stable equilibrium.

Consider the following discrete form of the model2

�st+1 = st+1 − st = rst
(
1 − st

k

)
− ht (15.6)

which can readily be investigated by means of a spreadsheet. Let r = 0.2 and
k = 1000; further assume h = 20 for all time periods. The results are shown

2 It is well known that the discrete form of the model can produce far more complex behaviour than
the continuous model depending on the value of r. See Sandefur (1990).
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Figure 15.3.

in figure 15.3. An initial stock size equal to the carrying capacity leads to an
equilibrium stock size of s = 887 approached from below (i.e. s falls). On the
other hand, an initial stock level equal to s = 500 (the msy stock level), leads to the
same equilibrium but approached from above (i.e. s increases). In fact any initial
stock in excess of s = 113 will lead to the stable equilibrium. An initial stock level
below s = 113 leads to extinction.3 Any constant level of harvesting in excess of
50 will automatically lead to extinction.

We can generalise the problem by letting h(t) denote the harvesting function,
then the net growth in the fish population is given by

ds(t)

dt
= f (s(t)) − h(t)

= rs(t)

(
1 − s(t)

k

)
− h(t)

Suppressing the time variable for convenience, this can be expressed more simply
as

ds

dt
= rs

(
1 − s

k

)
− h(15.7)

Equilibrium is established by setting equation (15.7) equal to zero, which gives
the steady-state equilibrium. The steady-state equilibrium is at the maximum sus-
tainable yield only if the harvest is at the level h2.

One of the simplest models, developed by Crutchfield and Zellner (1962), is to
assume that the harvest level is partly determined in a demand and supply market.
Demand for fish is determined by price while the supply of fish is determined by
price and by fish stocks. The market is assumed to clear, which determines the

3 Solving the quadratic rs(1−s/k) = h gives s∗1 = 112.702 and s∗2 = 887.298.
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harvest. Thus the model is

ds

dt
= rs

(
1 − s

k

)
− h

qd = a0 − a1p a0 > 0, a1 > 0
qs = b1p + b2s b1 > 0, b2 > 0
qd = qs = h

(15.8)

From the market equations we can eliminate the price and solve for the harvest
function in terms of stock levels. This gives

h = h(s) = a0b1 + a1b2s

b1 + a1
(15.9)

which is linear with positive intercept and positive slope.
As before, the model is captured by superimposing the harvest function on the

biological growth curve, as shown in figure 15.4.

Example 15.1

Using the following numerical discrete version of the model on a spreadsheet

st+1 = st + 0.2
(
1 − st

1000

)
qdt = 45 − pt

qst = 1.2pt + 0.05st

qdt = qst = ht

the two equilibrium values are readily found to be s∗1 = 172 and s∗2 = 715. At the
stable equilibrium value the price is found to be approximately p∗ = 4.2, with

Figure 15.4.
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Figure 15.5.

equilibrium harvest of h∗ = 41.4 The stable equilibrium of the model is illustrated
in figure 15.5.

Although this model relates the harvest to the fish stock, through the supply
equation, no account is taken of the number of vessels employed. A consequence
of this is that no account is taken of the profitability of the fishing to the fishermen,
and hence no account is taken of entry into and exit from the industry. In order
to consider such possibilities we need to consider the harvesting function in more
detail.

15.2 Harvesting function

The harvesting function, or catch locus, is a form of production function of the
fishermen. Considered from this point of view, the harvest function is the catch at

4 Using the continuous form of the model it is readily established, employing a software programme
such asMathematicaorMaple, that s∗1 = 171.736, s∗2 = 714.628,p(s∗2) = 4.213 andh(s∗2) = 40.787.
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Figure 15.6.

time t, denoted h(t), as a function of the inputs. We assume the inputs are of two
kinds. First, the stock of fish available for catching, s(t); and, second, the ‘effort’
expended by the fishermen, e(t). Effort is here an index of all inputs commonly
used for fishing – such as man-hours, trawlers, time spent at sea, nets, etc. Again
we suppress the time variable and simply write the harvesting function as

h = h(e, s) (15.10)

A common, and very simple, harvesting function used in the literature is

h = aes a > 0 (15.11)

where a denotes the technical efficiency of the fishing fleet. This function is il-
lustrated in figure 15.6, where we have drawn the harvesting (measured in terms
of numbers of fish) against effort. For a given stock size, harvesting is a constant
fraction of effort. It follows therefore that the marginal product to effort is constant
and equal to the average product with respect to effort. Also shown in figure 15.6
is that for a higher stock size, the harvesting function is to the left, i.e., for given
effort (e0 say) the catch size is greater the greater the stock of fish in the habitat
(h2 > h1 if s2 > s1).

Although a common harvesting function, this is but a special case of the Cobb–
Douglas type harvesting function that allows for a diminishing marginal product
to effort and to stock size. Such a function would be

h = aeαsβ a > 0, 0 < α ≤ 1, 0 < β ≤ 1 (15.12)

Diminishing returns to stock size seem sensible if effort is constant. With dimin-
ishing returns, stocks may be reasonably maintained until the level falls below a
critical size. This appears to be the situation with pelagic species, such as her-
ring and anchovy, that exhibit schooling behaviour. It appears that predation is a
decreasing function of school size. Where heavy fishing reduces the school size
below a critical level then the fish stock may be in danger of collapse as it finds the
school is unable to handle the level of predation or major adverse environmental
change. Such diminishing return to stock size has been one reason advanced for
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Figure 15.7.

the collapse of the Peruvian anchoveta fisheries and the North Sea herring fisheries
in the 1970s. It is even more likely that there are diminishing returns to effort. In
the short run stock size is undoubtedly limited, and it is quite unrealistic to assume
that yield will double or triple with a doubling or tripling of effort.

In many studies diminishing returns is usually ignored because it cannot be
handled formally. We shall do the same in the body of this text, but in using
spreadsheets and some of the more popular software packages now available,
there is no great difficulty in handling diminishing returns. We shall pursue this
aspect, however, in the exercises at the end of this chapter.

We can illustrate the harvesting function given by α = β = 1 in equation (15.12)
on the biological growth diagram. In figure 15.7 we have the growth function,
relating the growth in the fish stock to the stock level; and the harvesting function,
which relates the fish harvest to the stock level. In figure 15.7, therefore, any
particular harvesting function is drawn under the assumption of a fixed effort. The
greater the effort the further the harvesting function is to the left, i.e., for a given
fish stock (s0 say), the greater the effort the more fish are harvested (h2 > h1 if
e2 > e1). Second, as drawn in figure 15.7, we have a constant marginal product
with respect to fish stock (in terms of the Cobb–Douglas function this means
β = 1).

Now that we have outlined the harvesting function we can return to consider
equilibria. Steady-state equilibria requires that ds/dt = 0, hence it requires the
condition

f (s) = h(s)(15.13)

where we have suppressed the time variable. The situation is illustrated in
figure 15.8. First consider effort at level e1 with a corresponding harvesting func-
tion h1. There are two equilibria, an unstable equilibrium at s = 0 and a stable
equilibrium at s = s1. On the other hand, if effort is raised to the level e2, with the
corresponding harvesting function h2, then the stable stock equilibrium falls to s2.
But another feature is illustrated in figure 15.8. As drawn the harvesting function
h1 and h2 both yield the same level of harvest at the respective equilibrium stock
sizes. Economic efficiency would imply that the same harvest level would always
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Figure 15.8.

be undertaken at the lowest effort. This means that harvest function h1 would be
chosen over harvest function h2. In fact, on the grounds of economic efficiency,
no effort would be employed which led to a harvesting function resulting in an
equilibrium fish stock size less than the maximum sustainable yield. However, we
have so far assumed open access to the fishery by all companies.

But are there any circumstances where an equilibrium in open access to the
fishery would be at a stock level below the maximum sustainable yield? To answer
this question it must be recalled that open access involves no restrictions on com-
panies harvesting in the locality under study or of new firms entering the industry
(or firms leaving the industry). What is clearly missing from the analysis so far is
any consideration of profits to the industry.

15.3 Industry profits and free access

We simplify our analysis by assuming that the unit cost of effort expended is
constant. Let this be denoted w, and can be considered as the ‘wage’ for effort.
Then the total cost is given by

TC = we (15.14)

Turning to revenue, we assume that all fish are sold at the same price, denoted p.
Hence, with the total fish caught being h, it follows that total revenue is

TR = ph = paes (15.15)

It follows, then, that profits for the industry are

π = TR − TC
= paes − we
= (pas − w)e

(15.16)
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What is the shape of the TR and TC functions? We wish to construct TR and
TC against effort. TC is linear since TC = we and w is assumed constant. TR is
less straightforward. As effort rises we have already established that the stock size
in equilibrium falls.

Return to figure 15.7. At zero effort the harvesting function lies along the hori-
zontal axis and the stock size is at the level k, but total revenue is zero. As effort
rises the harvesting line shifts left, h rises and, with p constant, total revenue rises.
Once effort has risen to a level such that s = smsy, then total revenue must be at a
maximum since the harvest is at the maximum level. Effort beyond this means a
fall in harvesting and a fall in total revenue. Hence, TR takes a similar shape to
f (s), adjusted by the factor p. More formally TR = ph. But in equilibrium

rs
(
1 − s

k

)
− aes = 0

or s = k
(
1 − ae

r

)
Hence we can express h = aes as a function of e

h = aek
(
1 − ae

r

)
= ak

r
(r − ae)e

Hence

TR = ph = pak

r
(r − ae)e(15.17)

which is quadratic in e. It is readily established that for this TR function:

(1) TR = 0 at e = 0 and e = r/a
(2) TR is a maximum at e = r/2a.

The situation is shown in figure 15.9.
Figure 15.9 highlights two other features. A rise in the ‘wage’ to effort shifts

the total cost function to the left. Second, a rise in the price of fish shifts the total
revenue function up, but still passing through the points e = 0 and e = em. The
results on the profits function are illustrated in figure 15.10.

In figure 15.11(a) assume effort is at the level e2. At this level of effort TR
exceeds total cost (TR2 > TC2). There are excess profits in the industry and there
will be entry by firms to take advantage of the excess profits. The increase in
firms is captured in this model by an increase in effort. Entry will continue in
open access while total revenue exceeds total cost. As effort rises with entry, total
revenue will rise initially beyond TR2 but will then fall. Furthermore, as effort rises
we move along both TC and TR. Effort will rise (entry will continue) until effort
level e1 is reached, where TR = TC. In figure 15.11(b) we note that at effort level
e1 we have the harvest function h1 and the equilibrium stock is s1 which is less
than smsy.

What we have established here is that although for the same harvest lower ef-
fort would be the most efficient, with open access and free entry, effort would be
established at level e1 and the equilibrium stock size s1 < smsy. In other words,
effort will always be adjusted until profits reduce to zero because only then will
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Figure 15.9.

Figure 15.10.

there be no further entry into the industry. But at effort e1, MR is negative as
shown by the slope of the TR curve at e = e1, and MC is constant (and equal to w).
Hence, at e = e1 MR < MC, which is economically inefficient. It is also biolog-
ically inefficient in that it leads to a stock size below the maximum sustainable
yield. What we have illustrated is that with free access, entry will continue until
profits are reduced to zero. This leads to excess effort (over fishing) and hence
to a stock size below the maximum sustainable yield. It is, however, sustainable
in the sense that the level of harvesting equals the level of natural population
growth.

It readily follows in the case of open access that depending on the price of fish
and the wage rate to effort, it is possible that effort is such that the harvesting
function in figure 15.11(b) lies wholly above the growth function f (s) and so the
catch is to extinction. This has been argued to be the case for a number of species,
including the blue whale (see Shone 1981, application 11).
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Figure 15.11.

15.4 The dynamics of open access fishery

So far we have concentrated on the equilibrium situation. However, it is necessary
to consider what happens to the fish stock when it is out of equilibrium. To do this
we need to consider the model in terms of phase space. In order to do this we shall
assume that effort changes according to a fraction of the profits. In other words, if
profits are positive then effort will rise, and the greater the profits the more entry
will occur and the more effort expended. Similarly, if profits are negative, then
some firms will leave the industry and effort will fall. The greater the loss, the
greater the number of firms leaving the industry. We can capture this change in
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effort over time quite simply as follows

de

dt
= vπ v > 0

= v(pas − w)e
(15.18)

Our fisheries model with open access can therefore be captured by means of
two dynamic equations

ṡ = rs
(
1 − s

k

)
− aes

ė = v(pas − w)e
(15.19)

where we have used the dot notation to denote the derivative with respect to time.
The two variables under consideration are the stock size, s, and the amount of
effort, e. In equilibrium both variables must be jointly determined. When out of
equilibrium, equations for ṡ and ė will determine the dynamic path taken. To this
we now turn.

The situation is shown in figure 15.12. We measure the stock size on the hor-
izontal axis and effort on the vertical axis. Our first problem is to determine the
equilibrium paths. In equilibrium we know that

ṡ = 0 for equilibrium stock size
ė = 0 for equilibrium effort

First consider the effort equilibrium. Entry will occur until profits are zero, at
which point effort is zero. There is only one stock size consistent with this result,

Figure 15.12.
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namely

s∗ = w

ap
(15.20)

This is shown by the vertical line in figure 15.12. Now consider a stock size less
than w/ap. In this case pas < w (or pas − w < 0), and so losses are being made.
Firms leave the industry and so effort is reduced. In other words, to the left of the
vertical line there is a force on effort to fall. Similarly, to the right of the vertical
line pas − w > 0 and so profits are being made and firms enter the industry with
a resulting increase in effort. Hence, to the right of the vertical line there is a force
on effort to rise. These forces are shown by the vertical arrows in figure 15.12.

Now consider the stock equilibrium. We derive this as follows

ṡ = rs
(
1 − s

k

)
− aes = 0

r(k − s) = kae

e = r

a
−
( r

ka

)
s

(15.21)

Result (15.21) indicates that the equilibrium situation for stock size is linear with
a negative slope. The intercept on the effort axis is given by (r/a), the slope is
given by −(r/ka) and the intercept on the stock axis is k. Consider next points
either side of this equilibrium line. Above the stock equilibrium line we have the
condition

e >
r

a
−
( r

ka

)
s

aes > rs
(
1 − s

k

)
which means the harvest exceeds the natural stock growth for a given stock size.
This, in turn, means that the stock size will fall over time. Hence, above the stock
equilibrium line the forces are shown by arrows pointing to the left. By similar
reasoning, points below the stock equilibrium line lead to growth in excess of
harvesting for any stock size, and so the stock size will increase over time. Hence,
below the stock equilibrium line the forces are shown by arrows pointing to the
right. All these vectors of forces are illustrated in figure 15.12.

Finally, we can readily establish the equilibrium stock size and effort level by
solving the two linear equations. The equilibrium stock size is given immediately
as s∗ = w/pa and the equilibrium effort is readily found to be equal to

e∗ = r

a

(
1 − w

kap

)
(15.22)

One final observation to make concerning the dynamics is the slope of the path
when it crosses either equilibrium line. In the case of the vertical line at any point
on this line effort is unchanging and so the trajectory must have a zero slope when
crossing the vertical line. Similarly, a trajectory crossing the stock equilibrium
line must have the stock size unchanging; hence the trajectory must have no slope
when crossing this line.

The trajectory over time must depend on the starting position of the species.
Suppose, for illustrative purposes, that the species is at the level of its carrying
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Figure 15.13.

capacity, i.e., s = k, as shown in figure 15.13. At this stock level profits are to
be had and entry will occur. This entry will raise the effort of the industry and
will simultaneously reduce the fish stock. Because profits are initially large there
is a sizable entry into the industry that pushes effort beyond its eventual equi-
librium. As a result, the path must cross the vertical line (which it does with a
zero slope). In other words, the system moves from quadrant I into quadrant II.
In this quadrant harvesting is still above the natural growth level and so the stock
size is continuing to fall. On the other hand, profits are now negative and some
firms will be leaving the industry, resulting in a reduction in effort. However, the
reduction in effort results in the system moving from quadrant II into quadrant III
(cutting the stock equilibrium line with a zero slope). In quadrant III losses are
still being made and so effort is falling, but the reduction in effort leads to less
harvesting and a rise in the stock of fish. This pushes the system into quadrant IV.
Now profits are again positive and firms will enter the industry resulting in in-
creased effort. Furthermore, the harvesting is less than the natural growth and
so the stock size will be rising. It follows, then, that the trajectory of the sys-
tem over time is shown by the heavy line, showing a counter-clockwise spiralling
path.

Although figure 15.13 illustrates a stable spiral we have implicitly assumed
certain values on the parameters in the construction of the diagram. This can best be
noted by considering the mathematical properties of the system (equations (15.19)).
In order to do this, however, we need to make two adjustments to the dynamical
system. First, we consider percentage changes rather than simply changes. Hence,
we need to divide the first equation by the stock size, s, and the second equation by
the effort, e. Using hats to denote percentage changes, then our dynamic system
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takes the form

ŝ = r
(
1 − s

k

)
− ae

ê = v(pas − w)
(15.23)

Next we note that in equilibrium the percentage changes are zero, hence

0 = r

(
1 − s

k

)
− ae

0 = v(pas − w)

Subtracting the equilibrium conditions from these equations gives

ŝ = −
( r
k

)
(s − s) − a(e − e)

ê = vpa(s − s)
(15.24)

The matrix of this system is

A =
[

−
( r
k

)
−a

vpa 0

]

where the trace and determinant of A are

tr(A) = − r

k
det(A) = a2vp

A stable spiral, as indicated in table 4.1 (p. 180), requires three conditions to be
met

(1) tr(A) < 0 i.e. tr(A) = −(r/k) < 0
(2) det(A) > 0 i.e. det(A) = a2vp > 0
(3) [tr(A)]2 < 4 det(A)

It is the third condition that we have implicitly assumed in graphing figure 15.15.
This requires the condition( r

k

)2
< 4a2vp

to be met. In order to see this issue, we shall now consider a numerical example.

15.5 The dynamics of open access fishery:
a numerical example

Example 15.2

Consider the following numerical example of the open access fishery

ṡ = 0.5s
(
1 − s

200

)
− 0.005es

p = 25, w = 4, v = 0.02
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The two dynamic equations are, then

ṡ = 0.5s
(
1 − s

200

)
− 0.005es

ė = 0.02(0.125es − 4e)

Which gives the two equilibrium lines

s = 32
e = 100 − 0.5s

and the equilibrium solutions s∗ = 32 and e∗ = 84. The diagrams consistent with
these results are illustrated in figure 15.14.

The stable spiral in this example is readily established. The matrix A, its trace
and determinant are

A =
[−0.0025 −0.005

0.0375 0

]
tr(A) = −0.0025
det(A) = 0.0001875

from which it readily follows that not only are the first two conditions for a stable
spiral met, but so is the third condition, since [tr(A)]2 < 4 det(A).

A change in p or w

The model readily illustrates the result of either a change in the wage rate or a
change in the price level. Neither of these changes does anything to the stock
equilibrium line. Only the effort equilibrium is altered. Thus, a rise in the price
of fish will result in the effort equilibrium line shifting to the left. Assuming the
system was initially in equilibrium, the result is shown in figure 15.15, where effort
rises and the fish stock falls. The assumed trajectory is shown by T1. For example,
in our numerical example if the price of fish rises from p = 25 to p = 32, then the
system will settle down at s∗ = 25 and e∗ = 87.5.

On the other hand, a rise in the wage paid to effort will shift the effort equilibrium
line to the right. The situation is shown in figure 15.16, where effort falls and the fish
stock rises. The assumed trajectory is shown by T1. For example, in our numerical
example, if the wage rate rises from w = 4 to w = 10, then the system will settle
down at s∗ = 80 and e∗ = 60.

Figure 15.15 and 15.16 highlight a potential misleading result if concentration is
paid only to equilibrium values. The equilibrium stock size will lead to extinction
only if the price rises infinitely. But this ignores the dynamic behaviour out of
equilibrium. If the trajectory of the system is that shown by T2 in figure 15.15,
then extinction occurs before some positive equilibrium stock size can occur. In the
case of trajectory T2, the rise in the price of fish leads to a glut of firms entering the
industry. The rise in effort that results leads to excess harvesting and fish harvested
faster than they can reproduce, so leading to extinction. The system never reaches
its eventual equilibrium!
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Figure 15.14.

The same issue can arise with a rise in the wage rate. This is shown by trajectory
T2 in figure 15.16. Effort is reduced to zero and the fishing industry effectively
collapses before the new equilibrium can be reached.

One of the parameters of significance in these last two results is v, which is
a reaction coefficient of the industry to profits and losses. The larger v, then the
more likely are the results shown by trajectory T2 in figures 15.15 and 15.16.
This is because the larger v, then the more firms will enter the industry when
profits are positive. This means that effort rises more for any given size of fish
stock, hence, the more steep the trajectory resulting from a rise in the price of fish.
Similarly, if wages rise, then the resulting losses lead to a more rapid exit from the
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Figure 15.15.

Figure 15.16.

industry and a relatively greater reduction in effort. The resulting trajectory is fairly
steep.

The converse of these results is that the smaller the value of the reaction co-
efficient, v, the more likely the system will converge to its equilibrium without
oscillations, shown by trajectory T3 in figures 15.15 and 15.16.
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15.6 The fisheries control problem

In the next section we shall discuss school fisheries, i.e., fish populations that
shoal in large numbers. However, before we can do this we need to consider the
optimal control problem more closely. So far we have ignored the facts that profits
are spread over time, they need discounting, and fish left in the sea is forgone
revenue for the fisherman. In this section we shall consider only a continuous
model formulation, leaving the discrete form as exercises.

Since the aim of the fisherman or agency is to maximise discounted profits
subject to the biological growth function, we have a typical control problem as
outlined in chapter 6, sections 6.1–6.3. Knowledge of these sections is required
for the present section and the next one. To recap before we consider fisheries, a
typical maximisation principle problem is to5

max
{u}

∫ t1

t0

V(x, u, t)dt + F(x1, t1)

s.t. ẋ = f (x, u, t)

x(t0) = x0

x(t1) = x1

(15.25)

by a suitable choice of the control variable u. Here V(x, u, t) is the objective
function,F(x1) is the value of the terminal state, ẋ = f (x, u, t) denotes how the state
variable changes over time, while x(t0) = x0 and x(t1) = x1 denote the initial and
final values of the state variable. In solving this maximisation principle problem,
we form the dynamic Lagrangian.

L =
∫ t1

t0

V(x, u, t)dt + F(x1) +
∫ t1

t0

λ[ f (x, u, t) − ẋ]dt

=
∫ t1

t0

[V(x, u, t) + λ f (x, u, t) − λẋ]dt + F(x1)

We further define the Hamiltonian function

H(x, u, t) = V(x, u, t) + λ f (x, u, t)

which implies

L =
∫ t1

t0

[H(x, u, t) − λẋ]dt + F(x1)

and using

−
∫ t1

t0

λẋdt =
∫ t1

t0

xλ̇dt − [λ(t1)x(t1) − λ(t0)x(t0)]

(see exercise 2, chapter 6) then

L =
∫ t1

t0

[H(x, u, t) + λ̇x]dt + F(x1) − [λ(t1)x(t1) − λ(t0)x(t0)]

5 In chapter 6 we assumed F(x1, t1) = 0 and so λ(t1) = 0. Here we assume a nonzero terminal state
x(t1) = x1 with value F(x1).



The dynamics of fisheries 659

The necessary conditions for an (interior) solution are, then,

(i)
∂H

∂u
= 0 t0 ≤ t ≤ t1

(ii) λ̇ = −∂H

∂x
t0 ≤ t ≤ t1

(iii) ẋ = ∂H

∂λ
= f (x, u, t)

(iv) λ(t1) = ∂F

∂x1

(v) x(t0) = x0

(15.26)

Our first task, therefore, is to appropriately define the objective function
V(x, u, t). Returning to our fisheries question, the profit at time t is total revenue
less total cost. We continue to assume the following relationships:

(i) ṡ = f (s) − h(e, s)
(ii) TR = ph = ph(e, s) p is a constant
(iii) TC = we w is a constant

where f (s) is the biological growth function and h = h(e, s) is the harvesting func-
tion; and where TR = total revenue and TC = total cost. The price of fish, p, and,
w, the ‘wage’ to effort are both assumed constant. Since profits are defined as total
revenue minus total cost, then

π = TR − TC = ph(e, s) − we

where we have suppressed the time variable.
One possible objective function is to letV(s, e, t) be given by the profits function

π (e, s, t) which can be maximised over the interval t0 ≤ t ≤ t1. But this is not
appropriate for two reasons:

(i) It does not allow discounting either of profits, or of the terminal state
F(s1).

(ii) It ignores the fact that stock that is left in the sea will lead to a capital
gain or loss if the shadow price of fish should rise or fall, respectively.

This extreme problem with no discounting is left as an exercise (see exercise 8).
Now consider the objective function when profits are discounted between

0 ≤ t ≤ T . Letting E−δt denote the discount factor and δ the discount rate, then the
objective is

max
{e}

∫ T

0
E−δtV(s, e, t)dt + E−δtF(s1) =

max
{e}

∫ T

0
E−δt(ph(e, s) − we)dt + E−δtF(s1)

(15.27)
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subject to the growth function and the terminal condition. Our problem, then, is

max
{e}

∫ T

0
E−δt(ph(e, s) − we)dt + E−δtF(s1)

s.t. ṡ = f (s) − h(e, s)

s(T) = s1

(15.28)

Hence

L =
∫ T

0
E−δt[ph(e, s) − we]dt

+
∫ T

0
λ[ f (s) − h(e, s) − ṡ]dt + E−δtF(s1) − λ(T)s(T)

The Hamiltonian function associated with this is

H(e, s, t) = E−δt[ph(e, s) − we] + λ[ f (s) − h(e, s)]

with first-order necessary conditions

(i)
∂H

∂e
= 0 or E−δtp

∂h

∂e
− w − λ

∂h

∂e
= 0

i.e. (p − λE−δt)
∂h

∂e
= w

λ̇ = −∂H

∂s
or λ̇ = −

[
E−δtp

∂h

∂s
+ λ f ′(s) − λ

∂h

∂s

]

(ii) λ̇ = −(E−δtp − λ)
∂h

∂s
− λ f ′(s)

i.e. λ̇ = (λ − E−δtp)
∂h

∂s
− λ f ′(s)

(iii) ṡ = ∂H

∂λ
= f (s) − h(e, s)

(iv) λ(T) = ∂F

∂sT
= 0

(v) s(0) = 0

Now define

µ(t) = Eδtλ(t) or µ = Eδtλ

Then λ = E−δtµ and

λ̇ = E−δtµ̇ − δE−δtµ

Condition (i) then becomes

(p − µ)
∂h

∂e
= w
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while condition (ii) becomes

E−δtµ̇ − δE−δtµ = (λ − E−δtp)
∂h

∂s
− λf ′(s)

or µ̇ = δµ + µ
∂h

∂s
− p

∂h

∂s
− µf ′(s)

i.e. µ̇ = [δ − f ′(s)]µ − (p − µ)
∂h

∂s

The three necessary conditions can now be summarised

(i) (p − µ)
∂h

∂e
= w

(ii) µ̇ = [δ − f ′(s)]µ − (p − µ)
∂h

∂s

(iii) ṡ = f (s) − h(e, s)

(15.29)

These three conditions are known, respectively, as the maximum principle, the
portfolio balance condition and the dynamic constraint.6 The maximum principle
indicates that the current value Hamiltonian is maximised if the marginal net
revenue from effort equals the marginal cost of that effort – the typical marginal
revenue equals marginal cost condition. Since p is the market price of fish sold and
µ is the resource price of fish in the sea (the shadow price) then (p − µ) can be
considered as the net price of a caught fish. Hence, (p − µ)∂h/∂e is the marginal
net revenue of fish caught. Now consider condition (ii). On the right-hand side
of condition (ii), the first term denotes the net interest from selling the fish and
investing the proceeds. The second term denotes the net revenue from holding fish.
Thus, the first term denotes the net interest forgone, while the second term is the
net benefit from holding fish. If

[δ − f ′(s)]µ − (p − µ)
∂h

∂s
> 0 then µ̇ > 0

i.e. there is need of a capital gain to compensate for the loss of interest forgone.
The third equation is simply the constraint.

A steady state requires

ė = 0, ṡ = 0 and µ̇ = 0

15.7 Schooling fishery

It is well known that some fish move in shoals for purposes of migration, repro-
duction or to fend off predators. Although schooling activity is a defence against
natural predators, it makes them especially vulnerable to human predation. Modern
equipment means shoals are easy to locate and the fish easy to catch. This means
that the stock size has little impact on the catch so ∂h/∂s = 0. We can, therefore,
define the catch function as h = h(e, s) = h(e) and the three necessary conditions

6 See Neher (1990, chapter 9).
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as

(i) (p − µ)h′(e) = w
(ii) µ̇ = [δ − f ′(s)]µ

(iii) ṡ = f (s) − h(e)
(15.30)

where we retain the assumption that the fish sell at a constant price p and the ‘wage’
per unit of effort, w, is constant.

The steady state requires three conditions to be met

ė = 0, ṡ = 0 and µ̇ = 0

The dynamics of the problem is solved in stages. First, two variables are chosen
whose dynamics are ‘solved’ in terms of the phase-plane. Both the steady state
(equilibrium) and out-of-equilibrium situations can be depicted. The third variable
is then considered in the light of what is occurring with these two. The common
approach is to consider the phase-plane in terms of fish stock, s, and its shadow
price µ.7

In continuing our analysis we shall assume some specific functional forms. The
catch locus we shall assume is

h = aeb a > 0, 0 < b < 1(15.31)

while the biological growth f (s) we shall assume is logistic

f (s) = rs
(
1 − s

k

)
(15.32)

where k is the carrying capacity and r is the intrinsic growth. Using these specifi-
cations

h′(e) = abeb−1

f ′(s) = r − 2rs

k

and the three necessary conditions are

(i) (p − µ)abeb−1 = w

(ii) µ̇ =
[
δ −

(
r − 2rs

k

)]
µ

(iii) ṡ = rs
(
1 − s

k

)
− aeb

(15.33)

If µ̇ = 0 then

δ −
(
r − 2rs

k

)
= 0

s∗ = k(r − δ)

2r

(15.34)

which is shown by the vertical line in figure 15.17. If µ > 0 then s > k(r − δ)/2r,
and µ is rising. Similarly, when s < k(r − δ)/2r then µ is falling. We can conclude

7 This is the resource cost of the fish caught as distinct from the price at which the fish sells on the
market.
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Figure 15.17.

that for s < s∗ then µ is falling8 while for s > s∗ then µ is rising. These results are
shown by the vector forces in figure 15.17.

In order to derive the second isocline ṡ = 0, we first need to eliminate effort, e.
From (15.33)(i) we have

b(p − µ)aeb−1 = w

... e =
[

w

ab(p − µ)

] 1
b−1

Substituting this into (15.33)(iii) gives

ṡ = rs
(
1 − s

k

)
− a

[
w

ab(p − µ)

] b
b−1

(15.35)

If ṡ = 0, then the above expression is equal to zero, which is a quadratic in s. There
is little gain in solving this for µ in terms of s explicitly. We can, however, express
it implicitly. Define

φ(s, µ) = −rs
(
1 − s

k

)
+ a

[
w

ab(p − µ)

] b
b−1

(15.36)

Then for a turning point

∂φ

∂s
= −r + 2rs

k
= 0

i.e. s∗ = k

2
∂2φ

∂s2
= 2r

k
> 0

8 For s* > 0 then δ must be less than r, i.e., the discount rate must be less than the intrinsic growth
rate.
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Figure 15.18.

Figure 15.19.

hence it is a minimum. The relationship between µ and s for ṡ = 0 is shown in
figure 15.18.

If ṡ > 0 then φ(s, µ) is above the curve, i.e., above ṡ = 0 and s is rising; while
below ṡ = 0, s is falling. These forces are represented by the arrows in figure 15.18.

We can now combine all the results, as shown in figure 15.19. The fixed point,
the equilibrium point, is given by (s∗, µ∗), which occurs at the intersection of the
two steady-state conditions µ̇ = 0 and ṡ = 0. They lead to four quadrants with
vector forces illustrated by the arrows.

The typical trajectories arising from this problem are illustrated in figure 15.20,
indicating the presence of a stable saddle path S1S′

1 and an unstable saddle path
S2S′

2.
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Figure 15.20.

Example 15.3

Let

f (s) = 0.2s
(
1 − s

100

)
i.e. r = 0.2, k = 100

h(e) = 5e0.5 i.e. a = 5, b = 0.5
p = 10, w = 8, δ = 0.1

Our three maximisation conditions are, then

(i) (10 − µ)(2.5)e−0.5 = 8

(ii) µ̇ =
[
0.1 −

(
0.2 − 0.4s

100

)]
µ

(iii) ṡ = 0.2s
(
1 − s

100

)
− 5e0.5

which can be solved for e, s and µ once the steady-state conditions µ̇ = 0 and
ṡ = 0 are imposed. For this example

e∗ = 0.5625, s∗ = 25, µ∗ = 7.6

The curve denoting ṡ = 0 is given by

0.2s
(
1 − s

100

)
− 1.5625(10 − µ) = 0

i.e. µ = 10 − 0.128s + 0.00128s2

with minimum point at sm = 50.
This example is nonlinear but we can investigate the stability of the equilib-

rium point (s∗, µ∗) = (25, 7.6) using a linear approximation.9 Let µ̇ = g(s, µ) and

9 See chapter 4.
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ṡ = v(s, µ), then

ṡ = ∂v(s∗, µ∗)

∂s
(s − s∗) + ∂v(s∗, µ∗)

∂µ
(µ − µ∗)

µ̇ = ∂g(s∗, µ∗)

∂s
(s − s∗) + ∂g(s∗, µ∗)

∂µ
(µ − µ∗)

Or

ṡ = (0.2 − 0.004s∗)(s − s∗) + 0.97652(10 − µ∗)(µ − µ∗)
µ̇ = 0.004µ∗(s − s∗) + (−0.1 + 0.004s∗)(µ − µ∗)

i.e.

ṡ = 0.1(s − s∗) + 2.34375(µ − µ∗)
µ̇ = 0.0304(s − s∗)

Writing the equations in matrix form, we have[
ṡ
µ̇

]
=
[

0.1 2.34375
0.0304 0

] [
s − s∗

µ − µ∗

]

where the matrix of the system, A, is given by

A =
[

0.1 2.34375
0.0304 0

]

from which we can readily compute

tr(A) = 0.1
det(A) = −(0.0304)(2.34375) = −0.07125

Since det(A) < 0, we know from chapter 4 that we must have a saddle point. This
is also verified if the characteristic roots are of opposite sign. The roots of the
characteristic equation are

λ1, λ2 = tr(A) ± √
tr(A) − 4 det(A)

2

= 0.1 ±
√

(0.1)2 − 4(−0.07125)

2
λ1 = 0.32157 λ2 = −0.22157

Using the first solution we have[
0.1 2.34375

0.0304 0

] [
s − s∗

µ − µ∗

]
= 0.32157

[
s − s∗

µ − µ∗

]

which leads to the relationship

µ = 5.2375 + 0.0945s

Using the second solution we have[
0.1 2.34375

0.0304 0

] [
s − s∗

µ − µ∗

]
= −0.22157

[
s − s∗

µ − µ∗

]
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Figure 15.21.

Figure 15.22.

which leads to the relationship

µ = 11.03 − 0.1372s

These saddle path solutions, along with the isoclines ṡ = 0 and µ̇ = 0 are shown
in figure 15.21.

Finally Mathematica was used to produce a number of trajectories, as shown in
figure 15.22. In doing this we employed the linear approximation results, i.e., we
used the NDSolve command on the simultaneous linear differential equations

ṡ = 0.1(s − s∗) + 2.34375(µ − µ∗)
µ̇ = 0.0304(s − s∗)

where (s∗, µ∗) = (25, 7.6). Notice that this linear approximation was reasonable.
The stable and unstable saddle paths are given by

µ = 11.03 − 0.1372s
µ = 5.2375 + 0.0945s,

respectively. Given s = 10, then the corresponding points on the saddle paths
are µ0 = 9.658 and µ0 = 6.1825, respectively. Taking the trajectory through the
point (10,9.658) did indeed lead to a trajectory straight towards the equilibrium
(s∗, µ∗). Similarly, for the point (10,6.1825) the trajectory moved directly away
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Figure 15.23.

from (s∗, µ∗). The same is true for µ0 = 4.17 and µ0 = 9.9625 on the stable and
unstable saddle paths for s = 50. All other initial points were taken off the saddle
paths. It is quite clear from figure 15.22 that the numerical results support our
earlier qualitative results.

What meaning can we give to these results? All the trajectories in figure 15.22
represent solution paths, in the sense that each satisfies the three conditions listed
above. The decision-maker, whether it be the fishery manager or the manager of an
agency, begins with a stock size s0 at time t = 0. Suppose this is below s∗, as shown
in figure 15.23. The manager has control over effort, e(t), and by implication over
the shadow price µ. In particular, the manager can control the initial shadow price
µ0 = µ(0). Given (s0, µ0) then the particular trajectory starting at this point will
move the system to reach sT . If the terminal time T is also a choice variable, then
the manager has to choose both µ0 and T .

Consider first the choice of T . If T is finite, then sT would be a target. But this
implies that net benefits beyond sT are of no concern to the manager. Since, under
free choice, this is unlikely, then the only logical possibility is for T to be infinite.

Now consider all infinite planning horizons and the choice of µ0. With an initial
stock s0, three possible choices are shown by µ1

0, µ
2
0 and µ3

0. µ1
0 belongs to the

stable arm of the saddle path S1S′
1. Hence, the trajectory is along this path tending

to (s∗, µ∗) in the limit.10 A choice of µ2
0 (above S1S′

1) implies a shadow price of
fish in the sea higher than µ1

0. Fishing effort is not so great and the fish stock rises
until it reaches its own biological carrying capacity of k. On the other hand, an
initial shadow price of µ3

0 leads to increased effort and to eventual extinction. The
trajectories emanating from µ2

0 and µ3
0 cannot, therefore, be maximising paths.

10 Since the paths are infinite, the trajectory never actually reaches µ∗.
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Only µ1
0 is optimal. The same logic holds if s0 is initially above s∗, at s0 = s′0, µ4

0
is the only optimal path.

The conclusion we arrive at is that the optimal path is to choose an initial point
on the stable arm of the saddle path. Although this result is appealing, there is here
a warning. If the shadow price is incorrectly estimated, then a divergent path is
the most likely outcome – either raising the stock size to its carrying capacity or
diminishing the species to extinction. This is certainly the problem facing a fishing
agency which is attempting to balance profit and conservation.

15.8 Harvesting and age classes11

So far we have assumed the fish are homogeneous and in particular have not made
any distinction between males and females or age composition. As we pointed
out in chapter 14, section 14.6, we can model female populations in terms of age
classes. In doing this here for fish populations, we shall simplify drastically and
concentrate on sustainable harvesting.

Let xi(t) denote the population of fish in the ith-age class just before harvesting
and assume harvesting takes place at discrete time intervals. Throughout we will
consider just three age classes. As in section 14.6, let bi denote the birth rate for
the ith-class and sij the survival rate from class i to class j. This gives the Leslie
matrix in the present example for i = 1, 2, 3 of

L =

 b1 b2 b3

s12 0 0
0 s23 0




and without harvesting we have
 x1(t + 1)
x2(t + 1)
x3(t + 1)


 =


 b1 b2 b3

s12 0 0
0 s23 0




 x1(t)
x2(t)
x3(t)




or

x(t + 1) = Lx(t) (15.37)

Now suppose hi are harvested (killed) for the age class i (i = 1, 2, 3). Then the
number of females harvested is

h1x1(t)

h2x2(t) or Hx(t)

h3x3(t)

where

H =

h1 0 0

0 h2 0
0 0 h3




11 This section is based on the analysis in Lynch (2001, chapter 13).
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This means that HLx(t) will be the total harvested and the remaining population
will be

x(t + 1) = Lx(t) − HLx(t) = (I − H)Lx(t)

If harvesting is to be sustainable across the age classes, then we require x(t + 1) =
x(t), i.e.

x(t) = (I − H)Lx(t)(15.38)

Let M = (I − H)L, then M is also a Leslie matrix, and by theorem 14.1 (p. 629)
there is a unique dominant eigenvalue λd which is positive. Also recall from
section 14.6 that the population will then grow at a rate λd − 1. If we require
the population to stabilise (no growth), then we require λd = 1 and there is a
nonzero vector solution of

(I − H)Lx(t) = λdx(t) = x(t)

where x(t) is the eigenvector associated with λd = 1. This means that we require
the dominant eigenvalue of the matrix M = (I − H)L to equal unity. In our present
example of i = 1, 2, 3 we have

M = (I − H)L =

1 − h1 0 0

0 1 − h2 0
0 0 1 − h3




 b1 b2 b3

s12 0 0
0 s23 0




=

 (1 − h1)b1 (1 − h1)b2 (1 − h1)b3

(1 − h2)s12 0 0
0 (1 − h3)s23 0




(15.39)

Since λd = 1 is to be the dominant root, then we require

|M − λdI| = |M − I| = 0

which will impose restrictions on the h-values. We have

|M − I| =
∣∣∣∣∣∣
(1 − h1)b1 − 1 (1 − h1)b2 (1 − h1)b3

(1 − h2)s12 −1 0
0 (1 − h3)s23 −1

∣∣∣∣∣∣ = 0

i.e.

[(1 − h1)b1 − 1] + (1 − h1)b2(1 − h2)s12

+ (1 − h1)b3[(1 − h2)(1 − h3)s12s23] = 0

or

(1 − h1)b1 + (1 − h1)(1 − h2)b2s12

+ (1 − h1)(1 − h2)(1 − h3)b3s12s23 = 1
(15.40)

Only values of hi(i = 1, 2, 3) lying in the range 0 ≤ hi ≤ 1 will satisfy (15.40) in
order to produce a sustainable policy. Once hi(i = 1, 2, 3) are found, the eigenvec-
tor of M associated with λd = 1 can be computed. Finally, from this the normalised
vector can be obtained.
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Example 15.4

A fish species is divided into three age classes with a Leslie matrix

L =

0.4 0.8 0.2

0.9 0 0
0 0.8 0




We have already solved for the eigenvalues of this in example 14.9, where we
found

λ1 = 1.14136, λ2 = −0.4767, λ3 = −0.26466

with dominant root λ1 = 1.14136 and associated eigenvector

v1 =

0.72033

0.56800
0.39812




and associated normalised eigenvector

x1
n =


0.42713

0.33680
0.23607




If no harvesting takes place, therefore, the fish population grows at λd − 1 =
0.14136 or about 14% every period. Furthermore, the female population will settle
down at 42.7% in age group 1, 33.7% in age group 2 and 23.6% in age group 3.

Now consider four harvesting policies:

(i) Uniform harvesting h1 = h2 = h3 = h
(ii) Harvesting only the youngest age class h1 
= 0, h2 = 0, h3 = 0
(iii) Harvesting only the middle age class h1 = 0, h2 
= 0, h3 = 0
(iv) Harvesting only the oldest age class h1 = 0, h2 = 0, h3 
= 0

(i) Uniform harvesting h1 = h2 = h3 = h
Under this policy, and given the Leslie matrix above, equation (15.40) becomes

(1 − h)(0.4) + (1 − h)2(0.8)(0.9) + (1 − h)3(0.2)(0.9)(0.8) = 1

with solution h = 0.123855. Given this value for h, the matrix M takes the form

Mu =

0.350458 0.700916 0.175229

0.788531 0 0
0 0.700916 0




and the associated eigenvector is

v1 =

0.720329

0.568001
0.398121




while the normalised eigenvector is

xu =

0.427127

0.336803
0.236070



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(ii) Harvesting the youngest age class h1 
= 0, h2 = 0, h3 = 0
Under this policy, and given the Leslie matrix above, equation (15.40) becomes

(1 − h1)(0.4) + (1 − h1)(0.8)(0.9) + (1 − h1)(0.2)(0.9)(0.8) = 1

with solution h1 = 0.208861. Given this value for h1, the matrix M takes the form

M1 =

0.316456 0.632911 0.158228

0.9 0 0
0 0.8 0




and the associated eigenvector is

v1 =

0.655347

0.589812
0.471850




while the normalised eigenvector is

xn1 =

0.381679

0.343511
0.274809




(iii) Harvesting the middle age class h1 = 0, h2 
= 0, h3 = 0
Under this policy, and given the Leslie matrix above, equation (15.40) becomes

(1)(0.4) + (1 − h2)(0.8)(0.9) + (1 − h3)(0.2)(0.9)(0.8) = 1

with solution h2 = 0.305556. Given this value for h2, the matrix M takes the form

M2 =

 0.4 0.8 0.2

0.625 0 0
0 0.8 0




and the associated eigenvector is

v1 =

0.78072

0.48795
0.39036




while the normalised eigenvector is

xn2 =

0.470588

0.294118
0.235294




(iv) Harvesting the oldest age class h1 = 0, h2 = 0, h3 
= 0
Under this policy, and given the Leslie matrix above, equation (15.40) becomes

(1)(0.4) + (1)(0.8)(0.9) + (1 − h3)(0.2)(0.9)(0.8) = 1

There is no solution for h3 that lies in the range 0 ≤ h3 ≤ 1.
The normalised vectors xu, xn1and xn2 determine the long-term distribution of

the fish in the different age categories. If, however, it was considered beneficial to
leave as many of the young age fish in the sea as possible, then pursuing a policy of
catching middle age fish should be undertaken. In this case, the female population
of the youngest age class would settle down at about 47%.
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Exercises

1. A discrete-time production function takes the form

ht = st(1 − Eaet )

where E is the exponential term. Show that this function exhibits dimin-
ishing returns to effort and constant returns with respect to stock size.

2. For the Gompertz growth function

f (s) = rs ln

(
k

s

)

derive the sm level and the growth at this level.
3. Given the following two growth functions, f (s) and g(s), respectively, and

the same harvest function h(e, s),

f (s) = rs
(
1 − s

k

)

g(s) = rs ln

(
k

s

)
h(e, s) = aes

(i) Show, after eliminating the stock size, that the yield to effort (h/e) is
linear and log-linear, respectively.

(ii) Demonstrate that ordinary least squares estimates of the para-
meters in (i) are not sufficient to determine the three parameters a, r
and k.

4. In the following numerical model

ṡ = 0.2s
(
1 − s

1000

)
− h

qd = 45 − p
qs = 1.2p + 0.05s
qd = qs = h

establish whether it is possible for a regulatory authority to set the price
to clear the market at a stable equilibrium which has a yield equal to the
maximum sustainable yield.

5. A typical fisheries problem can be captured by the following three funda-
mental relationships, where the first denotes the biological growth process
of a fish stock; the second a harvesting function (or catch function); while
the third denotes the profits of a fishing agency.

g = ks(su − s)
h = aes
π = ph − we
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where:

g = growth of fish stock
k = stock-specific parameter
s = fish stock
su = maximum sustainable fish population
h = harvest level
a = technology efficiency parameter
e = per unit of ‘effort’ expended in fishing
p = price per unit of fish
w = “wage” rate

(i) Interpret these three equations in detail using sketches where pos-
sible.
For the remaining questions assume:

g = 0.5s(25 − s)
h = 2.5es

(ii) Given the level of effort is e = 2.
(a) Establish the maximum sustainable yield (msy) and the stock

size at this level.
(b) Establish the steady-state value of the stock size.
(c) Explain why the steady-state value of s exceeds the msy value.

(iii) Now assume that ‘effort’ is not known and must be determined
along with the stock size. Assume p = 0.6 and w = 12.
(a) Establish the equilibrium values of stock size and effort that

maximise profits. What is this level of profits? What is the
growth rate?

(b) Under the same price and wage levels, calculate the profits
under the condition e = 2 (i.e. use your answers in (ii)) and
compare them with the present level of maximum profits.

(c) Explain why the stock size in this maximisation problem is
greater than under (ii)(b).

(iv) Undertake the calculations in question (iii) (a) with the following
values for the respective parameters:
(a) p = 0.8, w = 12 and a = 2.5
(b) p = 0.6, w = 15 and a = 2.5
(c) p = 0.6, w = 12 and a = 3
Discuss the implications of these results.

(v) Suppose entry and exit occurs according to the following rule:

ė = vπ = v(ph − we)

where the parameter v denotes the speed of entry and exit in re-
sponse to profits. For v = 5 , p = 0.6 andw= 12, establish the stock
level associated with equilibrium (i.e. no entry or exit). Establish
the vector of forces each side of the ṡ = 0 phase line drawn with e
on the vertical axis and s on the horizontal axis.
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(vi) For a steady-state solution ṡ = 0, and using p = 0.6 and w = 12,
show that e is a linear function of s, and hence establish the vector
of forces either side of this phase line.

(vii) Using the results in (v) and (vi), establish the equilibrium for stock
size and effort. Show that for a starting stock size of s0 = 25, the
dynamic path gives a stable oscillation to equilibrium. Verify this
result by establishing the characteristic roots of the dynamic system
and the trace and determinant.

(viii) Discuss this fisheries model with entry and exit commenting, in
particular, on the importance of the parameter v.

6. (i) In the following model

ṡ = 0.2s
(
1 − s

1000

)
− h

h = 0.125es

what is the level of effort that should be set by the regulatory authority
to have a stable equilibrium with the maximum sustainable yield?

(ii) Show that the level of effort obtained in (i) is the level that maximises

125

0.2
(0.2 − 0.125e)e

(iii) What is the stock size which maximises profits in equilibrium if
TR = ph and TC = we, with p = 0.4 and w = 10?

7. Show that in the case of open access fishery, a rise in either the price
of fish or the productivity of the fishing industry leads to an increase in
effort and a reduction in fish stocks.

8. Show that if the aim is to

max
{u}

∫ T

0
πdt

ṡ = f (s) − h

where π = ph − we, and p and w are constant and h = h(e, s). Then the
first-order conditions for an interior maximum are:

(i) (p − λ)
∂h

∂e
= w

(ii) λ̇ = (λ − p)
∂h

∂s
− λ f ′(s)

(iii) ṡ = f (s) − h(e, s)
where λ is the Lagrangian multiplier (the shadow price of the resource).

9. In a fishery the fish can be divided into three age groups, each one a year
long. The Leslie matrix for this population is

L =

 0 3 40

0.1 0 0
0 0.5 0




(i) What is the growth rate of the fish population if no harvesting takes
place?
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(ii) What is the long-run behaviour of the system if 25% of each age
class is harvested?

10. What is the optimal sustainable harvesting policy for the system in
question 9, given the youngest age class is not harvested and groups
two and three are harvested to the same extent?

Additional reading

Additional material on the contents of this chapter can be obtained from Conrad
(1999), Conrad and Clark (1987), Crutchfield and Zellner (1962), Cunningham,
Dunn and Whitmarsh (1985), Dasgupta and Heal (1979), Fisher (1981), Hamilton
(1948), Hartwick and Olewiler (1986), Hilborn and Walters (1992), Lynch (2001),
McVay (1966), Neher (1990), Peterson and Fisher (1987), Shone (1981) and Smith
et al. (1977).



Answers to selected exercises

Chapter 2

2 p(t) = p e−tk

0 e−a(etk−1)

p(0) = p0 and p → ea as t → ∞

3 (i) y = cex
2 − 1

cex2 + 1
(ii) y = x − 1 − c

x − c

(iii) y = x

1 − cx

4 (i) y = x3

3
− x2 + x + 1 (ii) y = 1 ±

√
4 + x3 + 2x2 + 2x

5 (i) y = e−x

e−x + c
(ii) y = 1

−x + 1 + ce−x

(iii)
1

y
= ex

3
+ ce−2x

7 Table about 1220AD
8 1990BC

11 (i) r (ii) P(t) = P0e
rt (iii) £2,910

12 14 years
13 (i) x = 3 (repellor), x = −5 (attractor)
14 (ii) k∗ = 0.908
15 (ii) Y(t) = Y0e(s/v)t

16 D(t) = D0 + k

r
Y0(ert − 1)

17 7.77%
18 (a)

‘Rich’ Years to ‘Poor’ Years to
countries double countries double

France 26 China 29
Japan 14 India 35
West Germany 28 Uganda −347
UK 35 Zimbabwe 347
USA 50

(b) Years for the population to halve.
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19 (a) 23.32%

(b) 3 years (2.97)

(c) 0.7506 × 1010

20 £292,507.52

Chapter 3

1 (i) second-order, linear, autonomous, nonhomogeneous
(ii) second-order, linear, autonomous, nonhomogeneous

(iii) first-order, linear, autonomous, homogeneous
(iv) second-order, linear, non-autonomous, nonhomogeneous

2 Pt = (1 + r)Pt−1 − R

Pn = (1 + r)n
(
P0 − R

r

)
+ R

r

3 Pn = (1 + r)nP0 − (1 + r)n−1R1 − (1 + r)n−2R2 − . . .

− (1 + r)Rn−1 − Rn

4 (i) yn = y0

(
−1

2

)n
− 2

(
−1

2

)n
+ 2, stable

(ii) yn = y0

(
−3

2

)n
− 4

5

(
−3

2

)n
+ 4

5
, unstable

(iii) yn = y0(−1)n − 3(−1)n + 3, cyclical

(iv) yn = y0

(
1

2

)n
− 6

(
1

2

)n
+ 6, stable

(v) yn = y0 (−1)n − 1

4
(−1)n + 1

4
, cyclical

5 (i) a3 − a2 − a + 1 = (a + 1)(a − 1)2

7 (i) pt = 8

3
− 1

3
pt−1, stable

(ii) pt = 5.5 − pt−1, oscillatory

(iii) pt = 16 − 3pt−1, unstable

8 Yn =
(
a + I + G

1 − b

)
+ bn

[
Y0 −

(
a + I + G

1 − b

)]
, stable if 0 < b < 1

10 (i) pt =
(
a − c

b

)
−
(
d

b

)
(1 − e)pt−1 −

(
de

b

)
pt−2

16 (i) pt =
[
1 − λ(b + d)

b

]
pt−1 + λ(a − c)

b

(ii) p = a − c

b + d
, q = ad + bc

b + d
17 £248.85
18 22.25 minutes
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19 xn = x0

1 + nx0

20 (ii) Mathematica xn = 2−1−n[−(1 − √
5)1+n + (1 + √

5)1+n]√
5

(ii) Maple xn = −2

5

√
5

(
−2

1

1 − √
5

)n
1 − √

5
+

2

5

√
5

(
−2

1

1 + √
5

)n
1 + √

5

Chapter 4

1 y =
√

9x

2

5 v1 =
[

1
1

]
, v2 =

[
1

−1

]
7 W = 4
8 (i) λ1 = 1, λ2 = 2, λ3 = 5

v1 =

 1

−3/2
1


, v2 =


 0

1
−1


, v3 =


0

1
2




x(t) = c1et

(ii) y(t) = −3

2
c1e

t + c2e
2t + c3e

5t

z(t) = c1et − c2e2t + 2c3e5t

(iii) W = 3

9 (i) (r, s) = (−2, −4), vr =
[

1
1

]
, vs =

[−1
1

]
x(t) = c1e−2t − c2e−4t improper node

y(t) = c1e−2t + c2e−4t

(ii) (r, s) = (1, −2), vr =
[

4
1

]
, vs =

[
1
1

]
x(t) = 4c1et + c2e−2t saddle point

y(t) = c1et + c2e−2t

(iii) (r, s) = (2i, −2i), vr =
[−i/2

1

]
, vs =

[
i/2
1

]
x(t) = c1 sin(2t) + c2 cos(2t) centre

y(t) = 2c1 cos(2t) − 2c2 sin(2t)

(iv) (r, s) = (−1 + i, −1 − i), vr =
[−i

1

]
, vs =

[
i
1

]
x(t) = c2e−t sin(t) − c1e−t cos(t) spiral

y(t) = c1e−t sin(t) + c2e−t cos(t)



680 Answers to selected exercises

10 (i) P1 = (6,0) and P2 = (0.846,2.114).
(ii) Fixed point P2, exhibits a stable limit cycle

12 (i) (p∗, Y∗) = (7.055, 26.221)
(ii) Yes.

13 System has limit cycles that shrinks as β rises.
14 System has limit cycles that expand as α rises.

Chapter 5

7 (i) (a) (r, s) = (i, −i) (b) vr =
[−i

1

]
, vs =

[
i
1

]

(c) D =
[
i 0
0 −i

]

(ii) (a) (r, s) = (−3, −1) (b) vr =
[−1

1

]
, vs =

[
1
1

]

(c) D =
[−3 0

0 −1

]

(iii) (a) (r, s) = (2, −1) (b) vr =
[

4
1

]
, vs =

[
1
1

]

(c) D =
[

2 0
0 −1

]
11 (i) trace = 11, determinant = 14

(ii)


 3 5

4 2
11 −5




(iii)

[
1/2 −1
1/2 −2

]

(iv) r = √
7, s = −√

7 for mA

r = 3

2
+ 1

2

√
17, s = 3

2
− 1

2

√
17 for mB

vr =

 1

1

3

√
7 − 2

3


, vs =


 1

−1

3

√
7 − 2

3


 for mA

vr =

 1

5

4
− 1

4

√
17


, vs =


 1

5

4
+ 1

4

√
17


 for mB

(v) λ2 − 7

12 Mathematica xt = −9 +
(

5 + i

2

)
(−i)t +

(
5 − i

2

)
it

yt =
(

1

4
+ i

4

)
((−5 + 5i) + (10 + i)(−i)t − (1 + 10i)it)
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Maple xt = −9 + 5(−i)t + 5it + 1

2
i(−i)t − 1

2
i it

yt = −5

2
+ 9

4
(−i)t + 11

4
i(−i)t + 9

4
it − 11

4
i it

13 J =
[−i 0

0 i

]
, V =

[
1 − i 1 + i

1 1

]

14 (i) (x∗, y∗) = (−9, −5

2
), 4-period cycle results

15 J =
[−0.5 0

0 −0.4

]
, V =

[
0 1

−4 4

]

Chapter 6

1 (i) Minimum ABEHJ = 12, (ii) JHEBA, hence same.
8 x(t) = 5 cos(1.11803t) + 8.68811 sin(1.11803t)

y(t) = 3.2697 cos(1.11803t) + 0.688441 sin(1.11803t)

9 x(t) = 5e−t(−3e + 2e−2 − 2e2t + 3e1+2t)

e2 − 1

y(t) = 10e−t(−9e + 6e2 − 2e2t + 3e1+2t)

1 − e2

10 ċ = (0.4k−0.7 − 0.1067)c
k̇ = k0.3 − 0.05k − c
k∗ = 6.6047, c∗ = 1.4316

Chapter 7

1 λ2 = 3.5458

2 λk =
(

λ1 − λ0

δ

)(
1

δk−2
+ 1

δk−1
+ · · · − 1

)
+ λ1

lim
k→∞

λk = λ1 − λ0

δ
+ λ1

Chapter 8

2 (i) pt = 60 − 1.5pt−1, oscillatory and divergent
(ii) pt = 15 + 0.5pt−1, convergent

(iii) pt = 60 − pt−1, cyclical

(iv) pt = 28

3
− 4

3
pt−1, oscillatory and divergent

3 (i) pt = 24 − 14(−0.25)t

(ii) pt = 30 − 20(−0.9)t

4 (i) pt = 4.5 − 0.2pt−1, cyclical and convergent
(ii) pt = 100 + 0.2pt−1, convergent
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5 (i) p∗ = 4, pt = 4 − 0.5(pt−1 − 4), stable
p∗ = 10, pt = 10 + 2.5(pt−1 − 10), unstable

(ii) p∗ = 6, pt = 6 + 0.5(pt−1 − 6), stable
p∗ = 8, pt = 8 + 1.5(pt−1 − 8), unstable

6 (i) p∗ = 3.5, q∗ = 20.5 (ii) 4 periods

7 pt = 49λ

9
+
(

1 − 14λ

9

)
pt−1

(i) 4 periods, (ii) 2 periods,
(iii) 2 periods, (iv) 5 periods.

8 (i) p(t) = 3 + c1e−37.5t (ii) stable

9 (i) w∗ = 4, (ii) Investigate f (w) =
{

10 − 1.5w w ≤ 14/3
3 w > 14/3

12 pt = 1 +
(

−2

3

)t

(p0 − 1), stable

13 pt = 28λ

5
+
(

1 − 7λ

5

)
pt−1

14 (i) Ṗ = r(P − P∗) − R′(h∗)(h − h∗)
ḣ = g′(P∗)(P − P∗) − (d + n)(h − h∗)

Chapter 9

4 (i) q∗
1 = 9 − 2a1 + a2

3

q∗
2 = 9 + a1 − 2a2

3
(ii) Cournot solution (q∗

1, q
∗
2) = (

8
3 , 2

3

)
Firm 1 monopolist.

5 (i) (q∗
1, q

∗
2, q

∗
3) = (1, 1, 1)

(ii) q1,t = 2 − 1
2q2,t−1 − 1

2q3,t−1

q2,t = 2 − 1
2q1,t−1 − 1

2q3,t−1

q3,t = 2 − 1
2q1,t−1 − 1

2q2,t−1

(iii) Yes.

6 (i) (q∗
1, q

∗
2, q

∗
3) = ( 3

4 , 7
4 , 11

4 )

(ii) q1t = 3

4
− 7

4
(−1)t + 1

3
(−1)t(q10 + q20 + q30)

+ 1

3

(
1

2

)t

(2q10 − q20 − q30)

q2t = 7

4
− 7

4
(−1)t + 1

3
(−1)t(q10 + q20 + q30)

+ 1

3

(
1

2

)t

(−q10 + 2q20 − q30)
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q3t = 11

4
− 7

4
(−1)t + 1

3
(−1)t(q10 + q20 + q30)

+ 1

3

(
1

2

)t

(−q10 − q20 + 2q30)

7 (i) (q∗
1, q

∗
2, q

∗
3) = (

5
8 , 13

8 , 17
8

)
(iii) q1t = 5

8
− 35

24
(−1)t + 1

3
(−1)t(q10 + q20 + q30)

+ 1

3

(
1

2

)t

(2q10 − q20 − q30)

q2t = 13

8
− 35

24
(−1)t + 1

3
(−1)t(q10 + q20 + q30)

+ 1

3

(
1

2

)t

(−q10 + 2q20 − q30)

q3t = 17

8
− 35

24
(−1)t + 1

3
(−1)t(q10 + q20 + q30)

+ 1

3

(
1

2

)t

(−q10 − q20 + 2q30)

8 (i) (a) (q∗
1, q

∗
2) = (1.778, 1.778) (b) (q∗

1, q
∗
2, q

∗
3) = (

4
3 , 4

3 , 4
3

)
(c) (q∗

1, q
∗
2) = (1.176, 1.176) (d) (q∗

1, q
∗
2, q

∗
3) = (1, 1, 1)

9 (i) (q∗
1, q

∗
2) = (

16
9 , 16

9

)
(ii) Yes.

10 Cournot solution (q∗
1, q

∗
2) = (

16
9 , 16

9

)
. Yes, all paths converge on Cournot

solution.

Chapter 10

2 yt = 1000 + 0.6yt−1 − 0.1yt−2

3 Smaller for any given time period.

4 (i) Yt = 110 + 4.75Yt−1 − 4Yt−2, explosive
(ii) Yt = 110 + 3.75Yt−1 − 3Yt−2, explosive

6 (i) Change in a, b or t.
(ii) Change in k, u or m0.

12 No. Roots are (r, s) = (0.22984, −0.5715) with
r − r∗ = 0.2825(y − y∗) associated with r
r − r∗ = 0.2298(y − y∗) associated with s

14 (i) (y∗, r∗) = (27.907, 13.178)
(ii) IS curve: r = 16.6667 − 0.125y

LM curve: r = −33.3333 + 1.6667y
(iii) trace = −0.129, determinant = 0.016, stable spiral.

15 (i) (y∗, q∗) = (35.720, 0.720)
(iii) q = 6.5498 − 0.1632y
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Chapter 11

1 (i) π (t) = f (u)

1 − δ
+ e−β(1−δ)t

(
1 − f (u)

1 − δ

)
3 (r, s) = (−0.925 + 1.464i, −0.925 − 1.464i)

11 (i) (m∗
s , π

e∗) = (700, 0)
(ii) ṁs = 0 gives π e = 68.29 − 0.098ms

π̇ e = 0 gives π e = 140 − 0.2ms

(iii) π e = −488.125 + 0.625ms

12 (i) ln S = ln λ − αλ

Chapter 12

1 Yt = 1320 − 0.5Yt−2

2 (i) Yt = 1320 − 0.7Yt−1 − 0.2Yt−2

(ii) Yt = 1320 + 0.5Yt−1

4 (i) Yt = 1250 + 0.5Yt−1, Yt = 1250 + 0.4Yt−1,
Yt = 1250 + 0.3Yt−1

(ii) Y∗(m = 0.2) = 2500, Y∗(m = 0.3) = 2083.3,
Y∗(m = 0.4) = 1785.7

5 (i) (y, r) = (44.39, 16.19)
(ii) (y, r) = (38.12, 15.06)
(iii) (y, r) = (41.49, 14.75)

6 (i) (y, r) = (52.447, 20.223) s fixed, s = 1.7640145
(y, r) = (50.663, 19.316) s variable, s = 1.33

(ii) (y, r) = (42.894, 13.447) s fixed, s = 1.7640145
(y, r) = (43.544, 13.772) s variable, s = 1.9195

Chapter 13

2 AM(r∗ = 12) p = 111.1 − 0.1s
4 (i) GM0 : pt = 95.122 + 0.0244st

AM0 : pt = 103.5938 − 0.0625st
(s∗, p∗) = (97.5, 97.5)

(ii) GM1 : pt = 100 + 0.0244st
AM1 : pt = 108.90625 − 0.0625st
(s∗, p∗) = (102.5, 102.5)

7 (ii) C(s, p) = (104.07407, 100)
11 (i) ṡ = −200 + 2s (ii) s̄ = 100
12 s = (m − p∗) − ky + u(r∗ + λ − π∗)

Chapter 14

2 69 years

3
− ln 2

b − (d + m)
years
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4 (i) 37 years (ii)
ln λ

k
years

5 ṗ � −a
(
p − a

b

)
p(t) = a

b
+
(
p0 − a

b

)
e−at

lim
t→∞ p(t) = a

b
, hence equilibrium never achieved in finite time period.

6 (iii) p(t) = −a

c − kae−at
k = constant of integration

p(t) = ∞ at t = ln(c/ak)

−a
which is finite

8 (i) p(t) = pe
−rt

0 e−a(e−rt−1)

(iii) p = 0, unstable; p = ea, stable

(iv) lim
t→∞ p(t) = ea

9 y = √
3x2 + c

10 B = a

b
−
(

a

bk1

)
T for Ṫ = 0

B = k2 −
(
dk2

c

)
T for Ḃ = 0

11 (i) 46.67 × 106 kg (ii) (a) 1.27 years (b) 3.095 years

12 (i) (a) E1 = (0, 0), E2 = (25, 100)
(b) E1 = (0, 0), E2 = (0, 1), E3 = (0.375, 0.25)
(c) E1 = (0, 0), E2 = (1, 0), E3 = (0, 0.5)

(ii) (a) oscillations around E2 = (25, 100)
(b) limit cycle around E3 = (0.375, 0.25)
(c) competing predators at E2 = (1, 0)

13 (i) E1 = (0, 0) E2 = (3, 1) E3 = (0, 1
4 )

(ii) A1 =
[

1.4 0
0 0.6

]
, A2 =

[
0 −4.2

0.6 −2.4

]
,

A3 =
[

1.05 0
0.15 −0.6

]

(iii) E1 = (0, 0), (r, s) = (0.6, 1.4)

vr =
[

0
1

]
, vs =

[
1
0

]
E2 = (3, 1), (r, s) = (−1.2 + 1.039i, −1.2 − 1.039i)

vr =
[−1.732 + 2i

i

]
, vs =

[−1.732 − 2i
−i

]

E3 = (0, 1
4 ), (r, s) = (−0.6, 1.5)

vr =
[

0
1

]
, vs =

[
1

0.09

]
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14 (i) E1 = (0, 0) E2 = (1, 0) E3 = (0, 1) E4 = (
2
3 , 2

3

)

(ii) A1 =




3

10
0

0
3

10


, A2 =




−3

10

−3

20

0
3

20


,

A3 =




3

20
0

−3

20

−3

10


, A4 =




−1

5

−1

10
−1

10

−1

5




15 (i) x1(t + 1) = 0.4x3(t)
x2(t + 1) = 0.6x1(t)
x3(t + 1) = 0.95x2(t) + 0.75x3(t)

(iv) 10.5%
(v) 24%, 13% and 63%

Chapter 15

1
∂ht
∂et

= st(aE
−aet) > 0,

∂2ht
∂e2

t
= −a2stE

−aet < 0

∂ht
∂st

= 1 − E−aet ,
∂2ht
∂s2

t
= 0

2 sm = k

E
, f (sm) = rk

E
where E is the exponential

3 (i)
h

e
= ak −

(
a2k

r

)
e for f (s)

ln

(
h

e

)
= ln(ak) −

(
a

r

)
e for g(s)

(ii) Use h/e = α̂ + β̂e and ln(h/e) = α̂ + β̂e. In each case α̂ and β̂ are
insufficient to identify all parameters.

4 No.
5 (ii) (a) sm = 12.5, g(sm) = 78.125, (b) s = 15

(iii) (a) sm = 16.5, e = 17, π = 21.675, g = 70.125 (b) π = 21

(iv)
p = 0.8 p = 0.6 p = 0.6
w = 12 w = 15 w = 12
a = 2.5 a = 2.5 a = 3

s 15.5 17.5 15.83
e 1.9 1.5 1.53
π 36.1 16.875 25.21
g 73.625 65.625 72.57

(v) s∗ = 8
(vi) e = 5 − 0.2s
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(vii) s∗ = 8, e∗ = 3.4

A =
[−0.5 −2.5

7.5 0

]
, (r, s) = (−0.25 + 4.32i, −0.25 − 4.32i)

tr(A) = −0.5, det(A) = 18.75

6 (i) e = 0.8 (iii) s = 600
9 (i) 34%

(ii) group one, 90.7%; group two, 6.8%; group three, 2.5%

10 h = 0.7192 with group 1, 94.5%; group 2, 4.5%; group 3, 1.0%
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isoprofit curves, 376–377

Jacobian matrix, 619n
job-finding rate, 506–507
John, Sir E.

and erratic behaviour, 314n
Jordan blocks, 217–218
Jordan form xi, 216–217, 225, 230, 231

k-periodic point, 93–94
Kuhn–Tucker condition, 264n

Lagrangian, 253–260, 266, 267, 658, 675
current value, 269

Leslie matrix xi, 628, 629, 669, 670–672,
675

Liapunov theorem, 68, 147
limit cycle, 147, 179–183, 514

Hopf bifurcation, 306
large-amplitude, 306–307

linear
approximation, 127–130
dependence, 60–61
systems, 201–204

linearity, exception to norm, 287
Li–Yorke theorem, 303, 314
LM curve, see IS–LM model,

Tobin–Blanchard model
logistic equation, 118–123

chaos, 293–301
productivity growth, 121–123
Sarkovskii theorem, 302–304

logistic function, 598–599
logistic growth curves, 44, 50–52, 56–57,

299, 597, 598
direction field, 46
fixed point, 56

logistic growth equation, 597–601, 603,
630–632, 638–639

see also fisheries
long-run aggregate supply curve, 474–475
Lorenz [strange] attractor, 301, 307,

310–312
Lorenz curve, 186, 191, 193
Lotka–Volterra model, 604, 607–611, 617,

618, 619
Lotus, 1, 2, 3, 17, 20
Lucas model, 49–53
Lyapunov dimension, 310, 312

Malthusian population growth, 4, 33,
100–101, 593–596, 600, 602–603

direction fields, 44, 46
fixed points, 55, 59

Maple xi, xii, 19–23, 25
basic matrices, 204–205, 206–207
Cobweb, 370–371
complex roots, 134
DEtools, 79–80
differential equations, 73–77, 149–150,

186–190, 192–194
direction fields, 44
discrete systems, 214–216
dsolve, 73–77, 187–189
eigenvalues/vectors, 212–214, 230
employment level, 512n
equilibrium values, 280
Jordan form, 216–217
linalg, 204
LinearAlgebra, 204
logistic equation, 118–119, 134,

137–138, 631–632
optimal control problem, 258n
oligopoly models, 378–379, 382, 383,

411
oscillations, 125
parametric plots, 195–196
phase plane in Cobweb, 342–343,

345–346
phaseportrait, 192–193
population growth, 600n, 604, 607, 610,

614: procedural function 76
multispecies model, 633–634
recursive equations, 105, 131–134:

Cobweb 338–339, 340
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rsolve, 131–134, 214–216, 378–379, 382
trajectories, 222–223, 439–441, 499

marginal revenue product per worker, 509
market clearing model, 330, 509–513
market share, and R&D, 406, 409–410,

416, 417–419
Marshall–Lerner condition, 526n, 547
MathCad, 20
Mathematica, xi, xii, 19–23, 25

basic matrices, 204–206
bifurcation diagrams, 301, 307
Cobweb model, 334, 342–343, 345–346,

367–369
complex roots, 134, 195–196
differential equations, 70–73, 149–150,

186–191
direction fields, 44
discrete systems, 214–216
DSolve, 70–71, 187–189, 195
eigenvalues/vectors, 212–214, 230
equilibrium values, 280
Hénon map, 308
ImplicitPlot, 125
Jordan form, 216–217
NDSolve, 70, 72–73
oligopoly model, 378, 382–383, 411
oscillations, 125
parametric plots, 195–196
piecewise function, 318n
PlotField, 77–79
PlotVectorField, 190
population growth, 600n, 604, 607, 610,

614: logistic equation, 630–631;
multispecies model, 632–633

recursive equations, 105, 131–134
recursive Cobweb, 338–339, 340
RSolve, 131–134, 214–216, 378, 382
trajectories, 222–223, 437–438, 452, 667
VisualDSolve, 179n, 181

MatLab, 20
maximisation principle problem, 658
maximum principle, 661

see also Pontryagin maximum principle
maximum sustainable yield, 640, 641
mean generation time, 594n
Microfit, 20
migration, 596, 602–603, 604
monetarist model, 586–589
monetary expansion

Dornbusch model, 560–562, 568
fixed exchange rates, 535–538
Tobin–Blanchard model, 463–465

monetary shocks, 443–447

money market, 473, 495, 501
adjustment function, 545
Dornbusch model, 554–555, 560, 565,

566
resource discovery, 58–64
see also IS–LM model; IS–LM–BP

model
money supply

growth, 474, 493, 500
open economy, 530–532
policy rules, 493–494, 495

multiple equilibria, 12, 15
multiplier, 523
multiplier–accelerator model, 123–126,

427–428
Mundell–Fleming model, 519, 537, 541,

553
mutualism, 604

Nash solution, see Cournot solution
natural growth coefficient, 604
natural unemployment rate, 506–507
net present value, 109
nodes, 167–168

improper, 174, 402, 404
proper, 172
spiral, 176, 402, 404, 479, 481
Van der Pol equation, 305

non-accelerating inflation rate of
unemployment (NAIRU), 471–472

non-linear discrete systems, 245–247
nonlinearity, 8, 12–15

chaotic behaviour, 15–17, 300
North Sea gas and oil discovery, 554,

581–586
North Sea herring fisheries, 646

Occam’s razor, 20n
Okun’s law, 472
oligopoly

two-firm models, 375–380, 386–387,
389–392, 395–396

three-firm models, 380–383, 387–388,
393–394, 396–397, 400–401, 404

four-firm models, 384–386, 388–389,
394–395, 397–398

openness, 523–524
optimal control problem, 251–252

continuous model, 252–259
discounting, 265–270
maximum control, 259–264
see also fisheries

optimal growth model, 16



706 Subject index

orbit, 55, 145, 179
orbital stability, 179
ordinary differential equation, 27
oscillations, 125, 129
over-crowding, 605, 605

competition, 611–617
fish stocks, 640
predatory–prey model, 617–619

overlapping generation model, 16
overshooting, 442–444, 447, 466, 538,

541, 544
flex-price models, 553, 557, 574

parametric plot, 194–196
parity rate, 527–528
partial differential equation, 27

particular solution, 30, 64, 65, 116,
117

passive policy rule, 493–494
paths, 55, 145

counter-clockwise, 449
counter-clockwise spiral, 437
counter-clockwise stable spiral, 451
spiral, 435, 442–443
stable, 449
stable spiral, 451
unstable spiral, 449, 451
see also trajectories

pelagic whaling, 638
perfect foresight, 15, 495

Dornbusch model, 567–573, 574–581
monetary model, 587, 589
rational expectations, 502–503

periodic solution, 93
Perron–Frobenious theorem, 628n
Peruvian anchoveta fisheries, 646
phase diagrams, 3, 4

control models, 270–283
single variable, 54–59
two-firm model, 400

phase line, 55, 56–57
phase plane, 45, 145, 166

discrete systems, 235–239
housing market, 360–363
internal and external balance, 239–245
optimal trajectory, 271
see also Cobweb model

phase portrait, 145, 149, 189
direction fields, 190–194
discrete systems, 219

Phillips curve, 470–472, 477–478, 481, 494
and Cagan, 502–503
and Lucas, 490

Poincaré–Bendixson theorem, 180
policy announcement, time periods,

579–581
Pontryagin maximum principle, 251–264

continuous model, 252–259, 272
discrete model, 259–264

population growth
by age of women, 626–627
Malthusian, 593–596, 600, 603
multispecies analysis, 619–626,

632–634
natural changes, 601–602
see also fisheries, logistic growth

equation, migration, predatory–prey
relationship

portfolio balance condition, 661
predatory–prey relationship, 604, 607–611,

617–619
present value, 108–109
price inflation, see Phillips curve
price-ceiling

Cobwel model, 345
principle of effective market classification,

243
product differentiation, 418
product innovation, 406
production function, 272n
profit function, 509–510
proportional policy adaptation, 412–414
purchasing power parity (PPP), 553–555,

557, 560, 562–564, 568, 584–585, 587

q-theory of investment, 425, 455
QuattroPro, 17, 20

radioactive decay, half-life, 33–34, 48–50
fixed points, 59

Ramsey growth model, 275–283
rational expectations, 7, 15, 228, 494, 495

Cagan model, 501, 505
Dornbusch model, 567–573
Lucas model, 490–493
monetarist model, 587, 589

reaction coefficients, 435–437, 451,
656–657

real income level, internal balance,
239–240

real wages, 502–503
recursive equation, 85, 87

dominant, 405
Mathematica/Maple, 134
multiplier–accelerator model, 123–126
solutions, 105–108
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regression, spreadsheets, 19
relative risk aversion, 277
repellor, 56–57, 59, 60, 89–93, 95, 97, 128,

147
Cobweb model, 341

resource depletion rate, 586
resources, 9
rest point, 55
roots

characteristic, 461, 481, 666
complex conjugate, 63–64, 65, 111,

114–115, 125, 159–160, 164–166,
174–177, 178–179, 217–218,
231–234, 428

real and distinct, 61–62, 64, 111–112,
124–125, 159–161, 167–169, 178,
217–218, 223–228, 405

real and equal, 62–63, 64, 111–113,
159–160, 172–174, 178, 228–231

Rössler attractor, 199, 200
Rössler equations, 320–321

saddle path, 15, 169, 282, 447, 452–453,
460, 461, 464, 572, 575–576, 585,
606–607, 615, 664, 667–668

saddle point, 169–170, 179, 2325, 274,
278, 281, 461, 622, 666

Cagan model, 503–505
housing market, 361–362
oligopoly model, 400–401, 402, 404
stable arm, 169–170, 172, 227–228, 237,

275, 281–282, 361–362, 461,
462–466, 499, 505, 570–572,
576–577, 623, 625, 668

unstable arm, 169–170, 172, 227, 237,
275, 281

wage determination, 514
Sarkovskii’s theorem xi, 302–304
Schumpeterian dynamics xi, 414–419
secondary dimensions, 9
selection process, 414–419
Shazam, 20
shirking model, 509–513, 514
slopes

fish stocks, 652
IS–LM model, 430, 448–449, 451,

454–455, 527
Tobin–Blanchard model, 457–459

Solow growth model, 16, 34–37, 56, 67,
82, 495

direction fields, 44, 47
discrete time, 130–131: multiple

equilibria, 59

speculative demand for money, 453
spiral point see nodes
spreadsheets

recursive systems, 19–20
SPSS, 20
stability problem, 97–99, 128–129
stability

competitive equilibrium, 353–358
demand and supply models, 349–353
discrete systems, 223–234
expenditure model, 520–523
linear systems, 203–204, 219, 551,

619–620
local, 12–15, 59, 97, 127–128, 148, 454:

Cobweb 344; fish stocks, 641;
liquidity trap, 486–487

Lorenz system, 311
non-linear systems, 601, 620–626
oligopoly models, 385–386, 387–389,

392, 396, 397–400, 402, 403
see also asymptotic stability, global

stability
stable fixed point see attractor, repellor,

fixed points
state diagram, 627
Statgraphics, 20
sticky prices, 557, 566, 573
sticky wage theory, 330–332
stock behaviour

demand and supply models, 349–353
stock market behaviour, see

Tobin–Blanchard model
stock variables, 9–10
stock-adjustment model, 32
stock-flow, 6–7, 10
strange attractor, 186, 307–312
survival of the fittest, see selection process
Systat, 20

Taylor expansion, 67, 128, 460
non–linear discrete system, 246
Solow growth model, 131

tent function, 320
Thatcher, M., 592
time-independency, 144–145
time-series data

discrete processes, 287
randomness, 286

Tobin–Blanchard model, 24, 424–425,
455–465, 467

trade-cycle model (Hicks), 125–126
trajectories, 55, 145, 149, 177–178

Cagan model, 505
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trajectories (cont.)
deflation, 489
discrete systems, 220–223
Dornbusch model, 559, 572–573,

577–579, 580–581
eigenvectors, 173–174, 390
using Excel, 441–442
IS–LM model, 433–435, 437, 442–445,

448
IS–LM–BP model, 54–50
using Maple, 439–441
using Mathematica, 437–438, 452
population growth, 605–607, 614–615:

fish stocks, 652–653, 655–657, 664,
667–668; Lotka–Volterra model, 608,
610

rational expectations, 514, 535, 536, 541
see also paths

transactions demand for money, 453
transient chaos, 293
TSP, 20
two-cycle result, 97

undershooting, 564, 566–567
undetermined coefficients, 65–66
unemployment level, 506–509

see also Phillips curve

unit limit cycle, 181
utility, satisfaction, 9
vacancy rate, 507–508
value singular curve, 511
Van der Pol equation, 181–182, 190, 193

bifurcation features, 304–307
vector forces, 151–156

Cagan model, 505
discrete systems, 235–236
flex-price models, 585
inflation, 478–480
IS–LM model, 433–435
liquidity trap, 486
market clearing model, 513–514
phase plane analysis, 239, 240, 356–357
population growth, 605–606, 615–616:

fish stocks, 652, 66–74;
predatory–prey model, 609

Tobin–Blanchard model, 459–460
Vermeer, 50
VisualDSolve, 179n

wage determination, 509–513
Walrasian price and quantity adjustment,

182–183, 199, 354
warranted rate of growth (Harrod), 34
Wronksian, 198


