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Preface to the second edition

I was very encouraged with the reception of the first edition, from both staff and
students. Correspondence eliminated a number of errors and helped me to improve
clarity. Some of the new sections are in response to communications I received.

The book has retained its basic structure, but there have been extensive revisions
to the text. Part I, containing the mathematical background, has been considerably
enhanced in all chapters. All chapters contain new material. This new material is
largely in terms of the mathematical content, but there are some new economic
examples to illustrate the mathematics. Chapter 1 contains a new section on di-
mensionality in economics, a much-neglected topic in my view. Chapter 3 on
discrete systems has been extensively revised, with a more thorough discussion of
the stability of discrete dynamical systems and an extended discussion of solving
second-order difference equations. Chapter 5 also contains a more extensive dis-
cussion of discrete systems of equations, including a more thorough discussion of
solving such systems. Direct solution methods using Mathematica and Maple are
now provided in the main body of the text. Indirect solution methods using the
Jordan form are new to this edition. There is also a more thorough treatment of the
stability of discrete systems.

The two topics covered in chapter 6 of the first edition have now been given a
chapter each. This has allowed topics to be covered in more depth. Chapter 6 on
control theory now includes the use of Excel’s Solver for solving discrete control
problems. Chapter 7 on chaos theory has also been extended, with a discussion
of Sarkovskii’s theorem. It also contains a much more extended discussion of
bifurcations and strange attractors.

Changes to part II, although less extensive, are quite significant. The mathemat-
ical treatment of cobwebs in chapter 8 has been extended and there is now a new
section on stock models and another on chaotic demand and supply. Chapter 9 on
dynamic oligopoly is totally new to this edition. It deals with both discrete and
continuous dynamic oligopoly and goes beyond the typical duopoly model. There
is also a discussion of an R&D dynamic model of duopoly and a brief introduction
to Schumpeterian dynamics. Chapter 11 now includes a discussion of deflationary
‘death spirals’ which have been prominent in discussions of Japan’s downturn.
Cagan’s model of hyperinflations is also a new introduction to this chapter.

The open economy was covered quite extensively in the first edition, so these
chapters contain only minor changes. Population models now include a consid-
eration of age classes and Leslie projection matrices. This material is employed
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in chapter 15 to discuss culling policy. The chapter on overlapping generations
modelling has been dropped in this edition to make way for the new material.
Part of the reason for this is that, as presented, it contained little by the way of
dynamics. It had much more to say about nonlinearity.

Two additional changes have been made throughout. Mathematica and Maple
routines are now generally introduced into the main body of the text rather than
as appendices. The purpose of doing this is to show that these programmes are
‘natural’ tools for the economist. Finally, there has been an increase in the number
of questions attached to almost all chapters. As in the first edition, the full solution
to all these questions is provided on the Cambridge University website, which is
attached to this book: one set of solutions provided in Mathematica notebooks and
an alternative set of solutions provided in Maple worksheets.

Writing a book of this nature, involving as it does a number of software pack-
ages, has become problematic with constant upgrades. This is especially true with
Mathematica and Maple. Some of the routines provided in the first edition no
longer work in the upgrade versions. Even in the final stages of preparing this edi-
tion, new upgrades were occurring. I had to make a decision, therefore, at which
upgrade I would conclude. All routines and all solutions on the web site are carried
out with Mathematica 4 and Maple 6.

I would like to thank all those individuals who wrote or emailed me on material
in the first edition. I would especially like to thank Mary E. Edwards, Yee-Tien Fu,
Christian Groth, Cars Hommes, Alkis Karabalis, Julio Lopez-Gallardo, Johannes
Ludsteck and Yanghoon Song. I would also like to thank Simon Whitby for in-
formation and clarification on new material in chapter 9. I would like to thank
Ashwin Rattan for his continued support of this project and Barbara Docherty for
an excellent job of copy-editing, which not only eliminated a number of errors but
improved the final project considerably.

The author and publishers wish to thank the following for permission to use
copyright material: Springer-Verlag for the programme listing on p. 192 of A First
Course in Discrete Dynamic Systems and the use of the Visual D Solve software
package from Visual D Solve; Cambridge University Press for table 3 from British
Economic Growth 1688-1959, p. 8.

The publisher has used its best endeavours to ensure that the URLSs for external
websites referred to in this book are correct and active at the time of going to
press. However, the publisher has no responsibility for the websites and can make
no guarantee that a site will remain live or that the content is or will remain
appropriate.

March 2002



Preface to the first edition

The conception of this book began in the autumn semester of 1990 when I under-
took a course in Advanced Economic Theory for undergraduates at the University
of Stirling. In this course we attempted to introduce students to dynamics and
some of the more recent advances in economic theory. In looking at this material it
was quite clear that phase diagrams, and what mathematicians would call qualita-
tive differential equations, were becoming widespread in the economics literature.
There is little doubt that in large part this was a result of the rational expectations
revolution going on in economics. With a more explicit introduction of expec-
tations into economic modelling, adjustment processes became the mainstay of
many economic models. As such, there was a movement away from models just
depicting comparative statics. The result was a more explicit statement of a model’s
dynamics, along with its comparative statics. A model’s dynamics were explicitly
spelled out, and in particular, vectors of forces indicating movements when the
system was not in equilibrium. This led the way to solving dynamic systems by
employing the theory of differential equations. Saddle paths soon entered many
papers in economic theory. However, students found this material hard to follow,
and it did not often use the type of mathematics they were taught in their quan-
titative courses. Furthermore, the material that was available was very scattered
indeed.

But there was another change taking place in Universities which has a bearing
on the way the present book took shape. As the academic audit was about to
be imposed on Universities, there was a strong incentive to make course work
assessment quite different from examination assessment. Stirling has always had a
long tradition of course work assessment. In the earlier period there was a tendency
to make course work assessment the same as examination assessment: the only
real difference being that examinations could set questions which required greater
links between material since the course was by then complete. In undertaking this
new course, I decided from the very outset that the course work assessment would
be quite different from the examination assessment. In particular, I conceived the
course work to be very ‘problem oriented’. It was my belief that students come to
a better understanding of the economics, and its relation to mathematics, if they
carry out problems which require them to explicitly solve models, and to go on to
discuss the implications of their analysis.

This provided me with a challenge. There was no material available of this type.
Furthermore, many economics textbooks of an advanced nature, and certainly the
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published articles, involved setting up models in general form and carrying out very
tedious algebraic manipulations. This is quite understandable. But such algebraic
manipulation does not give students the same insight it may provide the research
academic. A compromise is to set out models with specific numerical coefficients.
This has at least four advantages.

It allowed the models to be solved explicitly. This means that students can
get to grips with the models themselves fairly quickly and easily.

Generalisation can always be achieved by replacing the numerical coef-
ficients by unspecified parameters. Or alternatively, the models can be
solved for different values, and students can be alerted to the fact that
a model’s solution is quite dependent on the value (sign) of a particular
parameter.

The dynamic nature of the models can more readily be illustrated. Ac-
cordingly concentration can be centred on the economics and not on the
mathematics.

Explicit solutions to saddle paths can be obtained and so students can
explicitly graph these solutions. Since it was the nature of saddle paths
which gave students the greatest conceptual difficulty, this approach soon
provided students with the insight into their nature that was lacking from
a much more formal approach. Furthermore, they acquired this insight
by explicitly dealing with an economic model.

I was much encouraged by the students’ attitude to this ‘problem oriented’
approach. The course work assignments that I set were far too long and required far
more preparation than could possibly be available under examination conditions.
However, the students approached them with vigour during their course work
period. Furthermore, it led to greater exchanges between students and a positive
externality resulted.

This book is an attempt to bring this material together, to extend it, and make
it more widely available. It is suitable for core courses in economic theory, and
reading for students undertaking postgraduate courses and to researchers who
require to acquaint themselves with the phase diagram technique. In addition, it
can also be part of courses in quantitative economics. Outside of economics, it is
also applicable to courses in mathematical modelling.

Finally, I would like to thank Cambridge University Press and the department of
economics at Stirling for supplying the two mathematical software programmes;
the copy editor, Anne Rix, for an excellent job on a complex manuscript; and my
wife, Anne Thomson, for her tolerance in bringing this book about.

January 1997
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CHAPTER 1

Introduction

1.1 What this book is about

This is not a book on mathematics, nor is it a book on economics. It is true that
the over-riding emphasis is on the economics, but the economics under review is
specified very much in mathematical form. Our main concern is with dynamics and,
most especially with phase diagrams, which have entered the economics literature
in a major way since 1990. By their very nature, phase diagrams are a feature of
dynamic systems.

But why have phase diagrams so dominated modern economics? Quite clearly
it is because more emphasis is now placed on dynamics than in the past. Com-
parative statics dominated economics for a long time, and much of the teaching is
still concerned with comparative statics. But the breakdown of many economies,
especially under the pressure of high inflation, and the major influence of in-
flationary expectations, has directed attention to dynamics. By its very nature,
dynamics involves time derivatives, dx/dt, where x is a continuous function of
time, or difference equations, x, — x,_; where time is considered in discrete units.
This does not imply that these have not been considered or developed in the past.
What has been the case is that they have been given only cursory treatment. The
most distinguishing feature today is that dynamics is now taking a more central
position.

In order to reveal this emphasis and to bring the material within the bounds
of undergraduate (and postgraduate) courses, it has been necessary to consider
dynamic modelling, in both its continuous and discrete forms. But in doing this
the over-riding concern has been with the economic applications. It is easy to
write a text on the formal mathematics, but what has always been demonstrated in
teaching economics is the difficulty students have in relating the mathematics to
the economics. This is as true at the postgraduate level as it is at the undergraduate
level. This linking of the two disciplines is an art rather than a science. In addi-
tion, many books on dynamics are mathematical texts that often choose simple
and brief examples from economics. Most often than not, these reduce down to
a single differential equation or a single difference equation. Emphasis is on the
mathematics. We do this too in part I. Even so, the concentration is on the math-
ematical concepts that have the widest use in the study of dynamic economics. In
part II this emphasis is reversed. The mathematics is chosen in order to enhance the
economics. The mathematics is applied to the economic problem rather than the



Economic Dynamics

(simple) economic problem being applied to the mathematics. We take a number
of major economic areas and consider various aspects of their dynamics.

Because this book is intended to be self-contained, then it has been necessary
to provide the mathematical background. By ‘background’ we, of course, mean
that this must be mastered before the economic problem is reviewed. Accordingly,
part I supplies this mathematical background. However, in order not to make part I
totally mathematical we have discussed a number of economic applications. These
are set out in part I for the first time, but the emphasis here is in illustrating the
type of mathematics they involve so that we know what mathematical techniques
are required in order to investigate them. Thus, the Malthusian population growth
model is shown to be just a particular differential equation, if population growth
is assumed to vary continuously over time. But equally, population growth can be
considered in terms of a discrete time-period model. Hence, part I covers not only
differential equations but also difference equations.

Mathematical specification can indicate that topics such as A, B and C should
be covered. However, A, B and C are not always relevant to the economic prob-
lem under review. Our choice of material to include in part I, and the emphasis
of this material, has been dictated by what mathematics is required to understand
certain features of dynamic economic systems. It is quite clear when considering
mathematical models of differential equations that the emphasis has been, and
still is, with models from the physical sciences. This is not surprising given the
development of science. In this text, however, we shall concentrate on economics
as the raison d’étre of the mathematics. In a nutshell, we have taken a number
of economic dynamic models and asked: “What mathematics is necessary to un-
derstand these?” This is the emphasis of part I. The content of part I has been
dictated by the models developed in part II. Of course, if more economic models
are considered then the mathematical background will inevitably expand. What we
are attempting in this text is dynamic modelling that should be within the compass
of an undergraduate with appropriate training in both economics and quantitative
economics.

Not all dynamic questions are dealt with in this book. The over-riding concern
has been to explain phase diagrams. Such phase diagrams have entered many
academic research papers over the past decade, and the number is likely to increase.
Azariades (1993) has gone as far as saying that

Dynamical systems have spread so widely into macroeconomics that vector fields
and phase diagrams are on the verge of displacing the familiar supply—demand
schedules and Hicksian crosses of static macroeconomics. (p. xii)

The emphasis is therefore justified. Courses in quantitative economics generally
provide inadequate training to master this material. They provide the basics in
differentiation, integration and optimisation. But dynamic considerations get less
emphasis — most usually because of a resource constraint. But this is a most un-
fortunate deficiency in undergraduate teaching that simply does not equip students
to understand the articles dealing with dynamic systems. The present book is one
attempt to bridge this gap.

I have assumed some basic knowledge of differentiation and integration, along
with some basic knowledge of difference equations. However, I have made great
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pains to spell out the modelling specifications and procedures. This should enable a
student to follow how the mathematics and economics interrelate. Such knowledge
can be imparted only by demonstration. I have always been disheartened by the
idea that you can teach the mathematics and statistics in quantitative courses,
and you can teach the economics in economics courses, and by some unspecified
osmosis the two areas are supposed to fuse together in the minds of the student.
For some, this is true. But I suspect that for the bulk of students this is simply not
true. Students require knowledge and experience in how to relate the mathematics
and the economics.

As I said earlier, this is more of an art than a science. But more importantly, it
shows how a problem excites the economist, how to then specify the problem in a
formal (usually mathematical) way, and how to solve it. At each stage ingenuity is
required. Economics at the moment is very much in the mould of problem solving.
It appears that the procedure the investigator goes through' is:

(D Specify the problem

2) Mathematise the problem
3) See if the problem’s solution conforms to standard mathematical solutions
“4) Investigate the properties of the solution.

It is not always possible to mathematise a problem and so steps (2)—(4) cannot
be undertaken. However, in many such cases a verbal discussion is carried out in
which a ‘story’ is told about the situation. This is no more than a heuristic model,
but a model just the same. In such models the dynamics are part of the ‘story’ —
about how adjustment takes place over time. It has long been argued by some
economists that only those problems that can be mathematised get investigated.
There are advantages to formal modelling, of going beyond heuristics. In this book
we concentrate only on the formal modelling process.

1.2 The rise in economic dynamics

Economic dynamics has recently become more prominent in mainstream eco-
nomics. This influence has been quite pervasive and has influenced both micro-
economics and macroeconomics. Its influence in macroeconomics, however, has
been much greater. In this section we outline some of the main areas where eco-
nomic dynamics has become more prominent and the possible reasons for this rise
in the subject.

1.2.1 Macroeconomic dynamics

Economists have always known that the world is a dynamic one, and yet a scan of
the books and articles over the past twenty years or so would make one wonder if
they really believed it. With a few exceptions, dynamics has been notably absent
from published works. This began to change in the 1970s. The 1970s became a
watershed in both economic analysis and economic policy. It was a turbulent time.

! For an extended discussion of the modelling process, see Mooney and Swift (1999, chapter 0).
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Economic relationships broke down, stagflation became typical of many West-
ern economies, and Conservative policies became prominent. Theories, especially
macroeconomic theories, were breaking down, or at best becoming poor predictors
of economic changes. The most conspicuous change was the rapid (and acceler-
ating) rise in inflation that occurred with rising unemployment. This became a
feature of most Western economies. Individuals began to expect price rises and to
build this into their decision-making. If such behaviour was to be modelled, and it
was essential to do so, then it inevitably involved a dynamic model of the macro-
economy. More and more, therefore, articles postulated dynamic models that often
involved inflationary expectations.

Inflation, however, was not the only issue. As inflation increased, as OPEC
changed its oil price and as countries discovered major resource deposits, so
there were major changes to countries’ balance of payments situations. Macro-
economists had for a long time considered their models in the context of a closed
economy. But with such changes, the fixed exchange rate system that operated
from 1945 until 1973 had to give way to floating. Generalised floating began in
1973. This would not have been a problem if economies had been substantially
closed. But trade in goods and services was growing for most countries. Even more
significant was the increase in capital flows between countries. Earlier trade theo-
ries concentrated on the current account. But with the growth of capital flows, such
models became quite unrealistic. The combination of major structural changes and
the increased flows of capital meant that exchange rates had substantial impacts
on many economies. It was no longer possible to model the macroeconomy as a
closed economy. But with the advent of generalised floating changes in the ex-
change rate needed to be modelled. Also, like inflation, market participants began
to formulate expectations about exchange rate movements and act accordingly. It
became essential, then, to model exchange rate expectations. This modelling was
inevitably dynamic. More and more articles considered dynamic models, and are
still doing so.

One feature of significance that grew out of both the closed economy modelling
and the open economy modelling was the stock-flow aspects of the models. Key-
nesian economics had emphasised a flow theory. This was because Keynes himself
was very much interested in the short run — as he aptly put it: ‘In the long run we
are all dead.” Even growth theories allowed investment to take place (a flow) but
assumed the stock of capital constant, even though such investment added to the
capital stock! If considering only one or two periods, this may be a reasonable
approximation. However, economists were being asked to predict over a period of
five or more years. More importantly, the change in the bond issue (a flow) altered
the National Debt (a stock), and also the interest payment on this debt. It is one
thing to consider a change in government spending and the impact this has on the
budget balance; but the budget, or more significantly the National Debt, gives a
stock dimension to the long-run forces. Governments are not unconcerned with
the size of the National Debt.

The same was true of the open economy. The balance of payments is a flow. The
early models, especially those ignoring the capital account, were concerned only
with the impact of the difference between the exports and imports of goods and
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services. In other words, the inflow and outflow of goods and services to and from
an economy. This was the emphasis of modelling under fixed exchange rates. But
a deficit leads to a reduction in the level of a country’s stock of reserves. A surplus
does the opposite. Repeated deficits lead to a repeated decline in a country’s level
of reserves and to the money stock. Printing more money could, of course, offset
the latter (sterilisation), but this simply complicates the adjustment process. At
best it delays the adjustment that is necessary. Even so, the adjustment requires
both a change in the flows and a change in stocks.

What has all this to do with dynamics? Flows usually (although not always)
take place in the same time period, say over a year. Stocks are at points in time. To
change stock levels, however, to some desired amount would often take a number
of periods to achieve. There would be stock-adjustment flows. These are inherently
dynamic. Such stock-adjustment flows became highly significant in the 1970s and
needed to be included in the modelling process. Models had to become more
dynamic if they were to become more realistic or better predictors.

These general remarks about why economists need to consider dynamics, how-
ever, hide an important distinction in the way dynamics enters economics. It enters
in two quite different and fundamental ways (Farmer 1999). The first, which has
its counterpart in the natural sciences, is from the fact that the present depends
upon the past. Such models typically are of the form

Ve =f(yi-1)

where we consider just a one-period lag. The second way dynamics enters macro-
economics, which has no counterpart in the natural sciences, arises from the fact
that economic agents in the present have expectations (or beliefs) about the future.
Again taking a one-period analysis, and denoting the present expectation about
the variable y one period from now by Ey, |, then

yr = g(Eyiy1)

Let us refer to the first lag as a past lag and the second a future lag. There is
certainly no reason to suppose modelling past lags is the same as modelling future
lags. Furthermore, a given model can incorporate both past lags and future lags.

The natural sciences provide the mathematics for handling past lags but has
nothing to say about how to handle future lags. It is the future lag that gained most
attention in the 1970s, most especially with the rise in rational expectations. Once
a future lag enters a model it becomes absolutely essential to model expectations,
and at the moment there is no generally accepted way of doing this. This does not
mean that we should not model expectations, rather it means that at the present
time there are a variety of ways of modelling expectations, each with its strengths
and weaknesses. This is an area for future research.

1.2.2 Environmental issues

Another change was taking place in the 1970s. Environmental issues were becom-
ing, and are becoming, more prominent. Environmental economics as a subject
began to have a clear delineation from other areas of economics. It is true that

1.1)

1.2)
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environmental economics already had a body of literature. What happened in the
1970s and 1980s was that it became a recognised sub-discipline.

Economists who had considered questions in the area had largely confined
themselves to the static questions, most especially the questions of welfare and
cost-benefit analysis. But environmental issues are about resources. Resources
have a stock and there is a rate of depletion and replenishment. In other words,
there is the inevitable stock-flow dimension to the issue. Environmentalists have
always known this, but economists have only recently considered such issues.
Why? Because the issues are dynamic. Biological species, such as fish, grow and
decline, and decline most especially when harvested by humans. Forests decline
and take a long time to replace. Fossil fuels simply get used up. These aspects
have led to a number of dynamic models — some discrete and some continuous.
Such modelling has been influenced most particularly by control theory. We shall
briefly cover some of this material in chapters 6 and 15.

1.2.3 The implication for economics

All the changes highlighted have meant a significant move towards economic dy-
namics. But the quantitative courses have in large part not kept abreast of these
developments. The bulk of the mathematical analysis is still concerned with equi-
librium and comparative statics. Little consideration is given to dynamics — with
the exception of the cobweb in microeconomics and the multiplier—accelerator
model in macroeconomics.

Now that more attention has been paid to economic dynamics, more and more
articles are highlighting the problems that arise from nonlinearity which typify
many of the dynamic models we shall be considering in this book. It is the presence
of nonlinearity that often leads to more than one equilibrium; and given more than
one equilibrium then only local stability properties can be considered. We discuss
these issues briefly in section 1.4.

1.3 Stocks, flows and dimensionality

Nearly all variables and parameters — whether they occur in physics, biology,
sociology or economics — have units in which they are defined and measured.
Typical units in physics are weight and length. Weight can be measured in pounds
or kilograms, while length can be measured in inches or centimetres. We can add
together length and we can add together weight, but what we cannot do is add
length to weight. This makes no sense. Put simply, we can add only things that
have the same dimension.

DEFINITION

Any set of additive quantities is a dimension. A primary dimension is
not expressible in terms of any other dimension; a secondary dimension
is defined in terms of primary dimensions.>

2 An elementary discussion of dimensionality in economics can be found in Neal and Shone (1976,
chapter 3). The definitive source remains De Jong (1967).
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To clarify these ideas, and other to follow, we list the following set of primary
dimensions used in economics:

(D) Money [M]

) Resources or quantity [Q]
3) Time [T]

4@ Utility or satisfaction [S]

Apples has, say, dimension [Q1] and bananas [Q2]. We cannot add an apple to
a banana (we can of course add the number of objects, but that is not the same
thing). The value of an apple has dimension [M] and the value of a banana has
dimension [M], so we can add the value of an apple to the value of a banana. They
have the same dimension. Our reference to [Q1] and [Q2] immediately highlights a
problem, especially for macroeconomics. Since we cannot add apples and bananas,
it is sometimes assumed in macroeconomics that there is a single aggregate good,
which then involves dimension [Q].

For any set of primary dimensions, and we shall use money [M] and time [7]
to illustrate, we have the following three propositions:

€)) Ifae[M]andb € [M]thena + b € [M]
2) Ifa e [M]and b € [T] then ab € [MT] and a/b € [MT~']
3) If y =f(x) and y € [M] then f(x) € [M].

Proposition (1) says that we can add or subtract only things that have the same
dimension. Proposition (2) illustrates what is meant by secondary dimensions, e.g.,
[MT~'] is a secondary or derived dimension. Proposition (3) refers to equations
and states that an equation must be dimensionally consistent. Not only must the
two sides of an equation have the same value, but it must also have the same
dimension, i.e., the equation must be dimensionally homogeneous.

The use of time as a primary dimension helps us to clarify most particularly the
difference between stocks and flows. A stock is something that occurs at a point in
time. Thus, the money supply, Ms, has a certain value on 31 December 2001. Ms is
a stock with dimension [M], i.e., Ms € [M]. A stock variable is independent of the
dimension [T]. A flow, on the other hand, is something that occurs over a period
of time. A flow variable must involve the dimension [7~!]. In demand and supply
analysis we usually consider demand and supply per period of time. Thus, ¢¢ and
q° are the quantities demanded and supplied per period of time. More specifically,
g € [0T'1and ¢* € [QT~']. In fact, all flow variables involve dimension [T'].
The nominal rate of interest, i, for example, is a per cent per period, so i € [T-1
and is a flow variable. Inflation, , is the percentage change in prices per period,
say a year. Thus, m € [T~']. The real rate of interest, defined as r =i — 7, is
dimensionally consistent since r € [T~'], being the difference of two variables
each with dimension [T1].

Continuous variables, such as x(¢), can be a stock or a flow but are still defined
for a point in time. In dealing with discrete variables we need to be a little more
careful. Let x, denote a stock variable. We define this as the value at the end of
period t.> Figure 1.1 uses three time periods to clarify our discussion: # — 1, ¢ and

3 We use this convention throughout this book.
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Figure 1.1.

(1.3)

-1 T t T 1
x X,

[ Ax,:x,—x,_1—>

period ¢+ 1. Thus x,_; is the stock at the end of period + — 1 and x; is the stock
at the end of period 7. Now let z; be a flow variable over period ¢, and involving
dimension [T~']. Of course, there is also z,_; and z,,;. Now return to variable x.
It is possible to consider the change in x over period ¢, which we write as

Axp =X — X1

This immediately shows up a problem. Let x, have dimension [Q], then by propo-
sition (1) so would Ax;. But this cannot be correct! Ax; is the change over period
¢ and must involve dimension [7~']. So how can this be? The correct formulation
is, in fact,

Ax; X — X—1 1

At t—(—1) €Tl
Implicit is that Ar =1 and so Ax; = x; — x;,—;. But this ‘hides’ the dimension
[T~']. This is because At € [T], even though it has a value of unity, Ax,/At €
[oT'].

Keeping with the convention Ax, = x; — x;_1, then Ax, € [OT '] is referred to
as a stock-flow variable. Ax, must be kept quite distinct from z,. The variable z, is
a flow variable and has no stock dimension. Ax;, on the other hand, is a difference
of two stocks defined over period ¢.

Example 1.1

Consider the quantity equation MV = Py. M is the stock of money, with dimension
[M]. The variable y is the level of real output. To make dimensional sense of this
equation, we need to assume a single-good economy. It is usual to consider y as
real GDP over a period of time, say one year. So, with a single-good economy with
goods having dimension [Q], then y € [QT~!]. If we have a single-good economy,
then P is the money per unit of the good and has dimension [MQ~']. V is the income
velocity of circulation of money, and indicates the average number of times a unit
of money circulates over a period of time. Hence V € [T~']. Having considered
the dimensions of the variables separately, do we have dimensional consistency?

MV e [M][T~"]1=[MT™]
Py e (MO N[QT '] = [MT™]

and so we do have dimensional consistency. Notice in saying this that we have
utilised the feature that dimensions ‘act like algebra’ and so dimensions cancel, as
with [0Q~']. Thus

Py e [MQ QT "1 =[MQ'QT "1 =[MT™ 1]
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Example 1.2

Consider again the nominal rate of interest, denoted i. This can more accurately
be defined as the amount of money received over some interval of time divided by
the capital outlay. Hence,

-1
i€ M7 =[T"]

Example 1.3

Consider the linear static model of demand and supply, given by the following
equations.

¢ =a—bp a,b>0
¢ =c+dp d>0 (1.4)
¢ =q=q
with equilibrium price and quantity
., a-—c . ad+bc
P=%vxa 17 btd

and with dimensions

¢, ¢ elOT™"], pelMQO™']

The model is a flow model since ¢¢ and ¢° are defined as quantities per period of
time.* It is still, however, a static model because all variables refer to time period ¢.
Because of this we conventionally do not include a time subscript.

Now turn to the parameters of the model. If the demand and supply equations
are to be dimensionally consistent, then

a,ce[QT™"1  and b, de[Q*T'M™Y

Then
a—cel[0T™ 1
b+del[Q*T'M
. [or-'1 1
oy - Me]
Also

ad € [QT QT 'M™ 1 = [Q°’T*M ™)
be € [QT-'M1[QT "] = [Q*T>M ]
[Q3 T72M71]
e e —
[QZT— lM—l]
Where a problem sometimes occurs in writing formulas is when parameters
have values of unity. Consider just the demand equation and suppose it takes the

*

q =[oT™]

4 We could have considered a stock demand and supply model, in which case ¢ and ¢* would have
dimension [Q]. Such a model would apply to a particular point in time.
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(1.5)

(1.6)

form ¢? = a — p. On the face of it this is dimensionally inconsistent. a € [QT ']
and p € [MQ~"] and so cannot be subtracted! The point is that the coefficient of p
is unity with dimension [Q2 T~'M~1], and this dimension gets ‘hidden’.

Example 1.4

A typically dynamic version of example 1.3 is the cobweb model

q¢ = a— bp, a,b>0
q; = c+dpi— d>0
4@ =aq =a

Here we do subscript the variables since now two time periods are involved. Al-
though ¢¢ and gf are quantities per period to time with dimension [QT '], they
both refer to period t. However, p € [MQ~'] is for period ¢ in demand but period
t — 1 for supply. A model that is specified over more than one time period is a
dynamic model.

We have laboured dimensionality because it is still a much-neglected topic in
economics. Yet much confusion can be avoided with a proper understanding of
this topic. Furthermore, it lies at the foundations of economic dynamics.

1.4 Nonlinearities, multiple equilibria and local stability

Nonlinearities, multiple equilibria and local stability/instability are all interlinked.
Consider the following simple nonlinear difference equation

X = f(x-1)

An equilibrium (a fixed point) exists, as we shall investigate fully later in the
book, if x* = f(x*). Suppose the situation is that indicated in figure 1.2(a), then
an equilibrium point is where f(x,_;) cuts the 45°-line. But in this example three
such fixed points satisfy this condition: x7, x5 and x3. A linear system, by contrast,
can cross the 45°-line at only one point (we exclude here the function coinciding
with the 45°-line), as illustrated in figures 1.2(b) and 1.2(c). It is the presence of
the nonlinearity that leads to multiple equilibria.

If we consider a sequence of points {x,} beginning at xp, and if for a small
neighbourhood of a fixed point x* the sequence {x;} converges on x*, then x*
is said to be locally asymptotically stable. We shall explain this in more detail
later in the book. Now consider the sequence in the neighbourhood of each fixed
point in figure 1.2(a). We do this for each point in terms of figure 1.3. In the case
of x{, for any initial point xy (or x;) in the neighbourhood of x}, the sequence
{x;} will converge on x}. This is also true for the fixed point xj. However, it is
not true for the fixed point x3, represented by point b. The fixed point x3 is locally
asymptotically unstable. On the other hand both x7 and x5 are locally asymptotically
stable.

Suppose we approximate the nonlinear system in the neighbourhood of each
of the fixed points. This can be done by means of a Taylor expansion about the
appropriate fixed point. These are shown by each of the dotted lines in figure 1.3.
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(a) Nonlinear Figure 1.2.
xt xI:xl—l
C xrzf(xl—l)
o
q g ;
45
0 X, X, X, X,
-
(b) Linear (slope < 1)
x‘ xI:xl—l
xt:ﬂxl—l)
45° :
0
xt—l
(c) Linear (slope > 1)
X X=X,
x~(fx,,)) Pt
45°
0 X,

-1

Observation of these lines indicates that for equilibrium points x} and x the linear
approximation has a slope less than unity. On the other hand, the linear approxi-
mation about x3 has a slope greater than unity. It is this feature that allows us to
deal with the dynamics of a nonlinear system — so long as we keep within a small
neighbourhood of a fixed point.
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Figure 1.3.
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Although a great deal of attention has been given to linear difference and dif-
ferential equations, far less attention has been given to nonlinear relationships.
This is now changing. Some of the most recent researches in economics are
considering nonlinearities. Since, however, there is likely to be no general solutions
for nonlinear relationships, both mathematicians and economists have, with minor
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exceptions, been content to investigate the local stability of the fixed points to a
nonlinear system.

The fact that a linear approximation can be taken in the neighbourhood of a
fixed point in no way removes the fact that there can be more than one fixed
point, more than one equilibrium point. Even where we confine ourselves only
to stable equilibria, there is likely to be more than one. This leads to some new
and interesting policy implications. In simple terms, and using figure 1.2(a) for
illustrative purposes, the welfare attached to point x7 will be different from that
attached to x3. If this is so, then it is possible for governments to choose between
the two equilibrium points. Or, it may be that after investigation one of the stable
equilibria is found to be always superior. With linear systems in which only one
equilibrium exists, such questions are meaningless.

Multiple equilibria of this nature create a problem for models involving per-
fect foresight. If, as such models predict, agents act knowing the system will
converge on equilibrium, will agents assume the system converges on the same
equilibrium? Or, even with perfect foresight, can agents switch from one (sta-
ble) equilibrium to another (stable) equilibrium? As we shall investigate in this
book, many of the rational expectations solutions involve saddle paths. In other
words, the path to equilibrium will arise only if the system ‘jumps’ to the saddle
path and then traverses this path to equilibrium. There is something unsatisfactory
about this modelling process and its justification largely rests on the view that the
world is inherently stable. Since points off the saddle path tend the system ever
further away from equilibrium, then the only possible (rational) solution is that
on the saddle path. Even if we accept this argument, it does not help in analysing
systems with multiple equilibrium in which more than one stable saddle path ex-
its. Given some initial point off the saddle path, to which saddle path will the
system ‘jump’? Economists are only just beginning to investigate these difficult
questions.

1.5 Nonlinearity and chaos

Aperiodic behaviour had usually been considered to be the result of either ex-
ogenous shocks or complex systems. However, nonlinear systems that are simple
and deterministic can give rise to aperiodic, or chaotic, behaviour. The crucial
element leading to this behaviour is the fact that the system is nonlinear. For a
linear system a small change in a parameter value does not affect the qualitative
nature of the system. For nonlinear systems this is far from true. For some small
change (even very small) both the quantitative and qualitative behaviour of the
system can dramatically change. Strangely, nonlinearity is the norm. But in both
the physical sciences and economics linearity has been the dominant mode of
study for over 300 years. Nonlinearity is the most commonly found characteris-
tic of systems and it is therefore necessary for the scientist, including the social
scientist, to take note of this. The fact that nonlinear systems can lead to aperi-
odic or chaotic behaviour has meant a new branch of study has arisen — chaos
theory.

It may be useful to point out that in studying any deterministic system three
characteristics of the system must be known (Hilborn 1994, p. 7):
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1.7)

@)) the time-evolution values,
2) the parameter values, and
3) the initial conditions.

A system for which all three are known is said to be deterministic. If such a de-
terministic system exhibits chaos, then it is very sensitive to initial conditions.
Given very small differences in initial conditions, then the system will after time
behave very differently. But this essentially means that the system is unpredictable
since there is always some imprecision in specifying initial conditions, and there-
fore the future path of the system cannot be known in advance. In this instance
the future path of the system is said to be indeterminable even though the system
itself is deterministic.

The presence of chaos raises the question of whether economic fluctuations
are generated by the ‘endogenous propagation mechanism’ (Brock and Malliaris
1989, p. 305) or from exogenous shocks to the system. The authors go on,

Theories that support the existence of endogenous propagation mechanisms typ-
ically suggest strong government stabilization policies. Theories that argue that
business cycles are, in the main, caused by exogenous shocks suggest that gov-
ernment stabilization policies are, at best, an exercise in futility and, at worst,
harmful. (pp. 306-7)

This is important. New classical economics assumes that the macroeconomy is
asymptotically stable so long as there are no exogenous shocks. If chaos is present
then this is not true. On the other hand, new Keynesian economics assumes that
the economic system is inherently unstable. What is not clear, however, is whether
this instability arises from random shocks or from the presence of chaos. As Day
and Shafer (1992) illustrate, in the presence of nonlinearity a simple Keynesian
model can exhibit chaos. In the presence of chaos, prediction is either hazardous
or possibly useless — and this is more true the longer the prediction period.
Nonlinearity and chaos is quite pervasive in economics. Azariadis (1993) has
argued that much of macroeconomics is (presently) concerned with three rela-
tionships: the Solow growth model, optimal growth, and overlapping generations
models. The three models can be captured in the following discrete versions:

1 —8)k; + sf(k;
0 k= IR

)] kH—l Zf(kz) + =8k — ¢
u'(c) = pu' (e )Lf (k1) + (1 = 8)]

(i) (1 + ke =2 f ker) + (1 = 8), wikp)]

The explanation of these equations will occur later in the book. Suffice it to say
here that Azariadis considers that

the business of mainstream macroeconomics amounts to ‘complicating’ one of
[these] dynamical systems...and exploring what happens as new features are
added. (p.5)

3> As we shall see in chapter 7, even a change in only the third or fourth decimal place can lead to
very different time paths. Given the poor quality of economic data, not to mention knowledge of
the system, this will always be present. The literature refers to this as the butterfly effect.
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All these major concerns involve dynamical systems that require investigation.
Some have found to involve chaotic behaviour while others involve multiple equi-
libria. All three involve nonlinear equations. How do we represent these systems?
How do we solve these systems? Why do multiple equilibria arise? How can we
handle the analysis in the presence of nonlinearity? These and many more ques-
tions have been addressed in the literature and will be discussed in this book. They
all involve an understanding of dynamical systems, both in continuous time and in
discrete time. The present book considers these issues, but also considers dynamic
issues relevant to microeconomics. The present book also tries to make the point
that even in the area of macroeconomics, these three systems do not constitute the
whole of the subject matter. As one moves into the realms of policy questions,
open economy issues begin to dominate. For this reason, the present book covers
much more of the open economy when discussing macroeconomic issues. Of im-
portance here is the differential speeds of adjustment in the various sectors of the
economy. Such asymmetry, however, is also relevant to closed economy models,
as we shall see.

1.6 Computer software and economic dynamics

Economic dynamics has not been investigated for a long time because of the math-
ematical and computational requirements. But with the development of computers,
especially ready-made software packages, economists can now fairly easily handle
complex dynamic systems.

Each software package has its comparative advantage. This is not surprising.
But for this reason I would not use one package to do everything. Spreadsheets —
whether Excel, QuattroPro, Lotus 1-2-3, etc. — are all good at manipulating data
and are particularly good at displaying sequential data. For this reason they are
especially useful at computing and displaying difference equations. This should
not be surprising. Difference equations involve recursive formulae, but recursion
is the basis of the copy command in spreadsheets, where entries in the cells
being copied have relative (and possibly absolute) cell addresses. If we have a
difference equation of the form x, = f(x,—;), then so long as we have a start-
ing value xp, it is possible to compute the next cell down as f(xp). If we copy
down n—1 times, then x, is no more than f(x,_;). Equally important is the fact
that f(x,_;) need not be linear. There is inherently no more difficulty in copy-
ing f(x,—1) = a + bx,_ than in copying f(x,_1) = a + bx,_1 + cx> | or f(x,_1) =
a + bsin(x;—;). The results may be dramatically different, but the principle is the
same.

Nonlinear equations are becoming more important in economics, as we indicated
in the previous section, and nonlinear difference equations have been at the heart
of chaos. The most famous is the logistic recursive equation

X =f—1, A) = Ax— (1 — x—1)

It is very easy to place the value of X in a cell that can then be referred to using
an absolute address reference. In the data column all one does is specify x; and
then x; is computed from f(xg, A), which refers to the relative address of xy and

(1.8)
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absence of § indicates
relative address

$ indicates absolute address %\ [ /

. =$C$3*B5*(1-B5)
™~___ spreadsheet version

of formula

Figure 1.4.

formula being
investigated

value of a
initial value

x(f)=ax(t-1)[1-x(t-1)]

(TR Sheert £ Shend f Sheeid / o 1sl . \ { i

values derived
from copying
cell B6 down

BS is the initial value /
B6 is where the formula is first entered

This is then copied to the clipboard

The clipboard is then copied

down eight times in a single

operation (as shown by the

blocking action)

interactive
graph

the absolute address of . This is then copied down as many times as one likes, as
illustrated in figure 1.4.°
This procedure allows two things to be investigated:

@)) different values for A
2) different initial values (different values for xy).

Equally important, x; can be plotted against # and the implications of changing A
and/or xy can immediately be observed. This is one of the real benefits of the Win-
dows spreadsheets. There is no substitute for interactive learning. In writing this

6 In this edition, all spreadsheets are created in Microsoft Excel.
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book there were a number of occasions when I set up spreadsheets and investigated
the property of some system and was quite surprised by the plot of the data. Some-
times this led me to reinvestigate the theory to establish why I saw what I did. The
whole process, sometimes frustrating, was a most satisfying learning experience.

The scope of using spreadsheets for investigating recursive equations cannot be
emphasised enough. But they can also be used to investigate recursive systems.
Often this is no more difficult than a single equation, it just means copying down
more than one column. For example, suppose we have the system

X = ax;—1 + by,
Ve =cx—1 +dy—

Then on a spreadsheet all that needs to be specified is the values for a, b, c and d
and the initial values for x and y, i.e., xo and yo. Then x; and y; can be computed
with relative addresses to xp and yy and absolute addresses to a, b, ¢ and d. Given
these solutions then all that needs to be done is to copy the cells down. Using
this procedure it is possible to investigate some sophisticated systems. It is also
possible to plot trajectories. The above system is autonomous (it does not involve ¢
explicitly) and so {x(#), y(f)} can be plotted using the spreadsheet’s x-y plot. Doing
this allows the display of some intriguing trajectories — and all without any intricate
mathematical knowledge.’

Having said this, I would not use a spreadsheet to do econometrics, nor would I
use Mathematica or Maple to do so — not even regression. Economists have many
econometrics packages that specialise in regression and related techniques. They
are largely (although not wholly) for parameter estimation and diagnostic testing.
Mathematica and Maple (see the next section) can be used for statistical work, and
each comes with a statistical package that accompanies the main programme, but
they are inefficient and unsuitable for the economist. But the choice is not always
obvious. Consider, for example, the logistic equation

X = f(x—1) = 3.5x-1(1 — x-1)

It is possible to compute a sequence {x;} beginning at xy = 0.1 and to print the
10th through to the 20th iteration using the following commands in Mathematica®

clear[f]
fIx.1:=3.5x(1-x);
StartingVal ue: . 1;
Firstlterati on=10:
Last | terati on=20;
i =0;
y=N St arti ngVal ue] ;
VWil e[i <=Lastlteration,
Ifl[i>=Firstlteration, Print[i, ~ 7, Nvy,8 1 1;
y = flyl;
i =i +1]

7 See Shone (2001) for an introductory treatment of economic dynamics using spreadsheets.
8 Taken from Holmgren (1994, appendix Al).

1.9)

(1.10)
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which would undoubtedly appeal to a mathematician or computer programmer.
The same result, however, can be achieved much simpler by means of a spreadsheet
by inputting 0.1 in the first cell and then obtaining 3.5x(1 — x¢) in the second cell
and copying down the next 18 cells. Nothing more is required than knowing how
to enter a formula and copying down.’

There are advantages, however, to each approach. The spreadsheet approach
is simple and requires no knowledge of Mathematica or programming. However,
there is not the same control over precision (it is just as acceptable to write N[y , 997]
for precision to 99 significant digits in the above instructions). Also what about
the iteration from the 1000th through to 1020th? Use of the spreadsheet means
accepting its precision; while establishing the iterations from 1000 onwards still
requires copying down the first 998 entries!

For the economist who just wants to see the dynamic path of a sequence {x;},
then a spreadsheet may be all that is required. Not only can the sequence be
derived, but also it can readily be graphed. Furthermore, if the formula is entered
as f(x) = rx(1 — x), then the value of » can be given by an absolute address and
then changed.!? Similarly, it is a simple matter of changing x, to some value other
than 0.1. Doing such manipulations immediately shows the implications on a plot
of {x,}, most especially its convergence or divergence. Such interactive learning is
quick, simple and very rewarding.

The message is a simple one. Know your tools and use the most suitable. A
hammer can put a nail in a plank of wood. It is possible to use a pair of pliers and
hit the nail, but no tradesman would do this. Use the tool designed for the task.

I will not be dealing with econometrics in this book, but the message is general
across software: use the software for which it is ‘best’ suited. This does beg the
question of what a particular software package is best suited to handle. In this
book we intend to answer this by illustration. Sometimes we employ one software
package rather than another. But even here there are classes of packages. It is
this that we concentrate on. Which package in any particular class is often less
important: they are close substitutes. Thus, we have four basic classes of software:

(1) Spreadsheets  Excel, QuattroPro, Lotus 1-2-3, etc.

2) Mathematics ~ Mathematica, Maple, MatLab, MathCad, DERIVE, etc.
3) Statistical SPSS, Systat, Statgraphics, etc.

4 Econometrics Shazam, TSP, Microfit, etc.

1.7 Mathematica and Maple

An important feature of the present book is the ready use of both Mathematica and
Maple.'! These packages for mathematics are much more than glorified calculators
because each of them can also be applied to symbolic manipulation: they can
expand the expression (x + y)? intox? 4+ y? 4 2xy, they can carry out differentiation
and integration and they can solve standard differential equations — and much

9 Occam’s razor would suggest the use of the spreadsheet in this instance.

10 We use r rather than A to avoid Greek symbols in the spreadsheet.

11" There are other similar software packages on the market, such as DERIVE and MathCad, but these
are either more specialised or not as extensive as Mathematica or Maple.
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more. Of course, computer algebra requires some getting used to. But so did the
calculator (and the slide rule even more so!). But the gains are extensive. Once the
basic syntax is mastered and a core set of commands, much can be accomplished.
Furthermore, it is not necessary to learn everything in these software packages.
They are meant to be tools for a variety of disciplines. The present book illustrates
the type of tools they provide which are useful for the economist. By allowing
computer software to carry out the tedious manipulations — whether algebraic or
numeric — allows concentration to be directed towards the problem in hand.

Both Mathematica and Maple have the same basic structure. They are composed
of three parts:

(D) a kernel, which does all the computational work,

2) a front end, which displays the input/output and interacts with the user,
and

3) a set of libraries of specialist routines.

This basic structure is illustrated in figure 1.5. What each programme can do de-
pends very much on which version of the programme that is being used. Both
programmes have gone through many upgrades. In this second edition we use
Mathematica for Windows version 4 and Maple 6 (upgrade 6.01).'> Each pro-
gramme is provided for a different platform. The three basic platforms are DOS,
Windows and UNIX. In the case of each programme, the kernel, which is the heart
of the programme, is identical for the different platforms. It is the front end that
differs across the three platforms. In this book it is the Windows platform that is
being referred to in the case of both programmes.

The front end of Maple is more user friendly to that of Mathematica, but Math-
ematica’s kernel is far more comprehensive than that of Maple.'> Both have ex-
tensive specialist library packages. For the economist, it is probably ease of use

12 Mathematica for Windows has been frequently upgraded, with a major change occurring with
Mathematica 3. Maple was Maple V up to release 5, and then become Maple 6. Both packages now
provide student editions.

13 Mathematica’s palettes are far more extensive than those of Maple (see Shone 2001).

Figure 1.5.
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that matters most, and Maple’s front end is far more user friendly and far more
intuitive than that of Mathematica. Having said this, each has its strengths and in
this book we shall highlight these in the light of applicability to economics. The
choice is not always obvious. For instance, although the front end of Maple is more
user friendly, I found Mathematica’s way of handling differential equations easier
and more intuitive, and with greater control over the graphical output. Certainly
both are comprehensive and will handle all the types of mathematics encountered
in economics. Accordingly, the choice between the two packages will reduce to
cost and ease of use.

Having mentioned the front end, what do these look like for the two packages?
Figure 1.6 illustrates the front end for a very simple function, namely y = x°,
where each programme is simply required to plot the function over the interval
—3 < x < 3 and differentiate it. Both programmes now contain the graphical
output in the same window.'* In Mathematica (figure 1.6a) a postscript rendering
of the graph is displayed in the body of the page. This can be resized and copied
to the clipboard. It can also be saved as an Encapsulated Postscript (EPS), Bitmap
(BMP), Enhanced Metafile (EMF) and a Windows Metafile. However, many more
graphical formats are available using the Export command of Mathematica. To
use this the graphic needs to have a name. For instance, the plot shown in figure 1.6
could be called plot16, i.e., the input line would now be

plotli6=Plot [(x"3,{x,-3,3}]

Suppose we wish to export this with a file name Fig01_06. Furthermore, we wish to
export it as an Encapsulated Postscript File (EPS), then the next instruction would
be

Export[TFig01_06.eps” ,plotl6, TEPS™]

In the case of Maple (figure 1.6b) the plot can be copied to the clipboard and pasted
or can be exported as an Encapsulated Postscript (EPS), Graphics Interchange For-
mat (GIF), JPEG Interchange Format (JPG), Windows Bitmap (BMP) and Win-
dows Metafile (WMF). For instance, to export the Maple plot in figure 1.6, simply
right click the plot, choose ‘Export As’, then choose ‘Encapsulated Postscript
(EPS) ...” and then simply give it a name, e.g., Fig01_06. The ‘eps’ file extension
is automatically added.

Moving plots into other programmes can be problematic. This would be nec-
essary, for example, if a certain degree of annotation is required to the diagram.
This is certainly the case in many of the phase diagrams constructed in this book.
In many instances, diagrams were transported into CorelDraw for annotation.'
When importing postscript files it is necessary to use CorelDraw’s ‘.eps,*.ps
(interpreted)’ import filter.

In this book we often provide detailed instructions on deriving solutions, espe-
cially graphical solutions, to a number of problems. Sometimes these are provided
in the appendices. Since the reader is likely to be using either Mathematica or
Maple, then instructions for each of these programmes are given in full in the body

14 This was not always the case with Maple. In earlier versions, the graphical output was placed in
separate windows.
15 CorelDraw has also gone through a number of incarnations. This book uses CorelDraw 9.0.
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of the text for the most important features useful to the economist. This allows the
reader to choose whichever programme they wish without having to follow instruc-
tions on the use of the alternative one, with which they are probably not familiar.
Although this does involve some repeat of the text, it seems the most sensible ap-
proach to take. The routines contained here may not always be the most efficient —at
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least in the eyes of a computer programmer — but they are straightforward and can
readily be reproduced without any knowledge of computer programming. Further-
more, they have been written in such a way that they can easily be adapted for any
similar investigation by the reader.

1.8 Structure and features

This book takes a problem solving, learning by doing approach to economic dy-
namics. Chapters 2-5 set out the basic mathematics for continuous and discrete
dynamical systems with some references to economics. Chapter 2 covers continu-
ous single-equation dynamics, while chapter 3 deals with discrete single-equation
dynamics. Chapter 4 covers continuous dynamical systems of equations and chap-
ter 5 deals with discrete dynamical systems of equations. Chapters 6 and 7 cover
two quite distinct dynamical topics that do not fit into the continuous/discrete cat-
egorisation so neatly. Chapter 6 deals with control theory and chapter 7 with chaos
theory. Both these topics are more advanced, but can be taken up at any stage.
Each deals with both continuous and discrete modelling. Chapters 1-7 constitute
part I and set out the mathematical foundation for the economic topics covered in
part IL.

Part II contains chapters 8—15, and deals with problems and problem solv-
ing. Each subject intermingles continuous and discrete modelling according to
the problem being discussed and the approach taken to solving it. We begin with
demand and supply in chapter 8. Chapter 9 also deals with a topic in microeco-
nomics, namely the dynamics of oligopoly. This chapter is new to this edition.
We then introduce the basic modelling of macroeconomics in terms of closed
economy dynamics, emphasising the underlying dynamics of the IS-LM model
and extending this to the Tobin—Blanchard model. Next we consider the important
topics of inflation and unemployment. Here we are more restrictive, considering
just certain dynamic aspects of these interrelated topics. Chapters 12 and 13 deal
with open economy dynamics, a much-neglected topic in macroeconomics until
recently. Chapter 12 deals with the open economy under the assumption of a fixed
price level, while Chapter 13 deals with open economy dynamics under the as-
sumption of flexible prices. It will be seen that the modelling approach between
these two differs quite considerably. In chapter 14 we consider population models,
which can be considered a microeconomic topic. Not only does it deal with single
populations, but it also considers the interaction between two populations. Finally,
chapter 15 on fisheries economics also deals with a microeconomic topic that is a
central model in the theory of environmental economics.

All the topics covered in part Il are contained in core courses in economic theory.
The main difference here is the concentration on the dynamics of these topics and
the techniques necessary to investigate them.

All chapters, with the exception of this one, contain exercises. These not only en-
hance the understanding of the material in the chapter, but also extend the analysis.
Many of these questions, especially in part II, are problem solving type exercises.
They require the use of computer software to carry them out. Sometimes this is no
more than using a spreadsheet. However, for some problems the power of a math-
ematical programme is required. It is in carrying out the exercises that one learns
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by doing. In a number of the exercises the answers are provided in the question.
When this is not the case, answers to a number of the questions are supplied at the
end of the book.

The present book has a number of features. The coverage is both up-to-date and
deals with discrete as well as continuous models. The book is fairly self-contained,
with part I supplying all the mathematical background for discussing dynamic
economic models, which is the content of part II. Many recent books on dynamic
economics deal largely with macroeconomics only. In this book we have attempted
a more balanced coverage between microeconomics and macroeconomics. Part I
in large part treats continuous models and discrete models separately. In part II,
however, the economics dictates to a large extent whether a particular model is
discrete or continuous — or even both. A feature of both part I and part I is a
discussion of the phase diagram for analysing dynamic models.

A major emphasis is problem solving, and to this end we supply copious solved
problems in the text. These range from simple undergraduate economic models
to more sophisticated ones. In accomplishing this task ready use has been made
of three software packages: Mathematica, Maple and Excel. The text has detailed
instructions on using both Mathematica and Maple, allowing the reader to duplicate
the models in the text and then to go beyond these. In order to reinforce the
learning process, the book contains copious exercises. Detailed solutions using
both Mathematica and Maple are provided on the Cambridge University website.

Additional reading

Additional material on the economic content of this chapter can be found in
Azariades (1993), Brock and Malliaris (1989), Bullard and Butler (1993), Day
and Shafer (1992), De Jong (1967), Farmer (1999), Mizrach (1992), Mooney and
Swift (1999), Mullineux and Peng (1993), Neal and Shone (1976) and Scheinkman
(1990).

Additional material on Mathematica can be found in, Abell and Braselton (1992,
1997a, 1997b), Blachman (1992), Brown, Porta and Uhl (1991), Burbulla and
Dodson (1992), Coombes et al. (1998), Crandall (1991), Don (2001), Gray and
Glynn (1991), Huang and Crooke (1997), Ruskeepaa (1999), Schwalbe and Wagon
(1996), Shaw and Tigg (1994), Shone (2001), Skeel and Keiper (1993), Varian ez al.
(1993), Wagon (1991) and Wolfram (1999).

Additional material on Maple can be found in Abell and Braselton (1994a,
1994b, 1999), Devitt (1993), Ellis ef al. (1992), Gander and Hrebicek (1991),
Heck (1993), Kofler (1997), Kreyszig and Norminton (1994) and Nicolaides and
Walkington (1996).
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CHAPTER 2

Continuous dynamic systems

2.1 Some definitions

A differential equation is an equation relating:

(a) the derivatives of an unknown function,

(b) the function itself,

(c) the variables in terms of which the function is defined, and
(d) constants.

More briefly, a differential equation is an equation that relates an unknown function
and any of its derivatives. Thus

dy
dx

is a differential equation. In general

dy
a - f (-x » Y )
is a general form of a differential equation.
In this chapter we shall consider continuous dynamic systems of a single variable.
In other words, we assume a variable x is a continuous function of time, f. A
differential equation for a dynamic equation is a relationship between a function
of time and its derivatives. One typical general form of a differential equation is

+3xy =¢€"

dx
— =1,
P
Examples of differential equations are:
d
() d—j—l—3x=4+e"
(ii) d*x n 4tdx 31— ) 0
il — - — — )X =
dr? dt
dx
ax _ .
(ii1) 7 X
du dv

(iv) —+—t+4u=0
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In each of the first three examples there is only one variable other than time,
namely x. They are therefore referred to as ordinary differential equations. When
functions of several variables are involved, such as u# and v in example (iv), such
equations are referred to as partial differential equations. In this book we shall
be concerned only with ordinary differential equations.

Ordinary differential equations are classified according to their order. The order
of a differential equation is the order of the highest derivative to appear in the
equation. In the examples above (i) and (iii) are first-order differential equations,
while (ii) is a second-order differential equation. Of particular interest is the linear
differential equation, whose general form is

d"x d"'x
ar +al(t)dt"*1
If ap(t), ai(?), ..., a,(t) are absolute constants, and so independent of #, then
equation (2.2) is a constant-coefficient nth-order differential equation. Any
differential equation not conforming to equation (2.2) is referred to as a non-
linear differential equation. The nth-order differential equation (2.2) is said
to be homogeneous if g(#) = 0 and nonhomogeneous if g(7) is not identically
equal to zero. Employing these categories, the examples given above are as
follows:

ao(t) + ...+ a,()x =g

6)) a linear constant-coefficient differential equation with nonhomogeneous
term g(t) =4 + ¢!
(ii) a second-order linear homogeneous differential equation
(iii) a linear constant-coefficient homogeneous differential equation.

In the present book particular attention will be directed to first-order linear
differential equations which can be expressed in the general form

dx
h(t)— + k(H)x = g(t
0] 7 (Dx = g(1)
by dividing throughout by A(f) we have the simpler form
L ate = b0
— +a(t)x =
dt

The problem is to find all functions x(¢) which satisfy equation (2.3). However,
in general equation (2.3) is hard to solve. In only a few cases can equation (2.1)
or (2.3) be solved explicitly. One category that is sometimes capable of solution
is autonomous or time-invariant differential equations, especially if they are
linear. Equation (2.1) would be autonomous if df/dt = 0 and nonautonomous if
df/dt # 0. In the examples of ordinary differential equations given above only
(iii) is an autonomous differential equation.

A solution to a nth-order differential equation is an n-times differential function

x =)

which when substituted into the equation satisfies it exactly in some interval a <
t<b.

2.2)

(2.3)
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Example 2.1

Consider (iii) above. This is an autonomous first-order homogeneous differential
equation. Rearranging the equation we have

dx 1
ok
dt x
Integrating both sides with respect to ¢ yields
el / kd
dtx

Inx(¢) = kt + ¢

where ¢ is the constant of integration. Taking exponentials of both sides yields

x(f) = ce

where ¢ = e“. It is readily verified that this is indeed a solution by differentiating
it and substituting. Thus

kee" = kx = kee

which holds identically for any a < ¢ < b.

Example 2.2

To check whether x(f) = 1 + ¢ + cé' is a solution of dx/df = x — ¢, we can differ-
entiate x with respect to ¢ and check whether the differential equation holds exactly.
Thus

dx | 4 ce
— = ce
dt
l+ce'=1+t+ce —t

Hence x(t) = 1 + ¢ + ce' is indeed a solution.

Example 2.3
Check whether

apo
bpo + (a — bpg)e=

is a solution to the differential equation

p®) =

dp
— =p(a — b
7 —Pla—bp)
Differentiating the solution function with respect to ¢ we obtain
dp

7 —apo[bpo + (a — bpo)e™“1~*(—a(a — bpy)e™™)

at

_ a’po(a — bpo)e~
[bpo 4 (a — bpy)e=]?
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while substituting for p we obtain
a’p ap ?
ap — bp2 — 0 _b ( 0 )
bpo + (a — bpo)e= bpo + (a — bpo)e=

_ d’pola — bpye™
~ [bpo + (a — bpo)e=1]?

which is identically true for all values of r.

Equation x(f) = ce! is an explicit solution to example (iii) because we can
solve directly x(¢) as a function of ¢. On occasions it is not possible to solve x(#)
directly in terms of ¢, and solutions arise in the implicit form

Fx,1)=0 (2.4)

Solutions of this type are referred to as implicit solutions.

A graphical solution to a first-order differential equation is a curve whose slope
at any point is the value of the derivative at that point as given by the differential
equation. The graph may be known precisely, in which case it is a quantitative
graphical representation. On the other hand, the graph may be imprecise, as far as
the numerical values are concerned; yet we have some knowledge of the solution
curve’s general shape and features. This is a graph giving a qualitative solution.

The graph of a solution, whether quantitative or qualitative, can supply con-
siderable information about the nature of the solution. For example, maxima and
minima or other turning points, when the solution is zero, when the solution is
increasing and when decreasing, etc. Consider, for example, dx/dt = 2 whose
solution is

A
x(t) = 3 +c

where c is the constant of integration. There are a whole series of solution curves
depending on the value of c. Four such curves are illustrated in figure 2.1, with
solutions

A A 3 P
H=—+8 H=—+2 )= — H=—-3
x(1) 5 +8 x(1) ;T2 x(1) 3 x(1) 3

x(t)=(t3/3)+c Figure 2.1.

X =8
15
c=2
c=0
c=-3

10

\\

~ W
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(2.5)

(2.6)

A general solution to a differential equation is a solution, whether expressed
explicitly or implicitly, which contains all possible solutions over an open in-
terval. In the present example, all solutions are involved for all possible values
of c. A particular solution involves no arbitrary constants. Thus, if ¢ = 2 then
x(f) = (£*/3) + 2 represents a particular solution. It is apparent that a second-order
differential equation would involve integrating twice and so would involve two
arbitrary constants of integration. In general the solution to an nth-order differen-
tial equation will involve n arbitrary constants. It follows from this discussion that
general solutions are graphically represented by families of solution curves, while
a particular solution is just one solution curve.

Consider further the general solution in the above example. If we require that
x =0 when ¢ =0, then this is the same as specifying ¢ = 0. Similarly if x =2 when
t = 0, then this is the same as specifying that ¢ = 2. It is clear, then, that a particular
solution curve to a first-order differential equation is equivalent to specifying a
point (xp, fo) through which the solution curve must pass (where 7y need not be
zero). In other words, we wish to find a solution x = x(¢) satisfying x(#) = xo.
The condition x(fy) = xg is called the initial condition of a first-order differential
equation. A first-order differential equation, together with an initial condition, is
called a first-order initial value problem.

In many applications we find that we need to impose an initial condition on the
solution. Consider the following first-order initial value problem

dx
dr
Rearranging and integrating over the interval £, to #; we obtain

5] d l n
/ —x—dt:/ kdt
n dtx f

[In x]§0 = [k t]§0
In ()@> = k(t — tp)

X0

kx x(ty) = xo

x(t) = xpett—)

This is a particular solution that satisfies the initial condition.

We shall conclude this section with some applications taken from economics and
some noneconomic examples. At this stage our aim is simply to set out the problem
so as to highlight the type of ordinary differential equations that are involved, the
general or specific nature of the solution and whether the solution satisfies some
initial value.

Example 2.4

A simple continuous price-adjustment demand and supply model takes the form:
¢ =a+bp b<0
¢ =c+dp d>0

d i
d—’j=a(q"—q°) a>0
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_c-a c— —a(d-by Figure 2.2.
H=—+[p,-C)]e
o g [po—¢ P ]
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where quantities, qd and ¢° and price, p, are assumed to be continuous functions
of time. Substituting the demand and supply equations into the price adjustment
equation we derive the following

dp

E—a(b—d):a(a—c)

which is a first-order linear nonhomogeneous differential equation.
Using a typical software programme for solving differential equations, the so-
lution path is readily found to be

_c—a c—a —ald—b)
1) = —— —
p(t) b_d+[po (b_d)}e

which satisfies the initial condition. For d — b > 0 the solution path for different
initial prices is illustrated in figure 2.2

Example 2.5

Suppose we have the same basic demand and supply model as in example 2.4 but
now assume that demand responds not only to the price of the good but also to
the change in the price of the good. In other words, we assume that if the price of
the good is changing, then this shifts the demand curve. We shall leave open the
question at this stage of whether the demand curve shifts to the right or the left as
a result of the price change. The model now takes the form

d
qdza—l—bp—i—fd—l: b<0,f#0
¢ =c+dp d>0 (2.7)

d
d—’j=a(q"—q$> @ >0
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Figure 2.3.

This is effectively a stock-adjustment model. Stocks (inventories) change accord-
ing to the difference between supply and demand, and price adjusts according
to the accumulation—decumulation of stocks. Thus, if i(f) denotes the inventory
holding of stocks at time ¢, then
di s 4
7 q9 —49
t
i=ip+ / (¢ — gt
0
and prices adjust according to

dp di . J
7 alg —4°)
=al¢'—¢) a>0

which is the third equation in the model. Substituting the demand and supply
equations into the price-adjustment equation results in the following first-order
linear nonhomogeneous differential equation

dp |:oz(b - d):| ala —c)
p =

dat | 1—af 1—af

with solution

_ CcC—da CcC—da %ﬂ}b)f
””‘(b—d)*@“_(b—dﬂe

which satisfies the initial condition p(0) = py. For this model there are far more
varieties of solution paths, depending on the values of the various parameters. Some
typical solution paths are illustrated in figure 2.3. We shall discuss the stability of
such systems later.

c—a c—a., {-a(d-byAl-of)}
= "—+[p—(—
PO = p= (e

p(®)

0.5 1 1.5 2 25 3
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Example 2.6

Assume population, p, grows at a constant rate k, where we assume that p is
a continuous function of time, 7. This means that the percentage change in the
population is a constant k. Hence

dp 1
dpl _,
dtp

which immediately gives the first-order linear homogeneous differential equation

dp

— —kp=0

dt P
with solution

p(t) = poe"

which satisfies the initial condition p(0) = pg. Typical solution paths for this
Malthusian population growth are illustrated in figure 2.4.

Example 2.7

In many scientific problems use is made of radioactive decay. Certain radioactive
elements are unstable and within a certain period the atoms degenerate to form
another element. However, in a specified time period the decay is quite specific.
In the early twentieth century the famous physicist Ernest Rutherford showed that
the radioactivity of a substance is directly proportional to the number of atoms

Figure 2.4.

(2.8)
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(2.9)

(2.10)

present at time 7. If dn /dt denotes the number of atoms that degenerate per unit of
time, then according to Rutherford

dn

dr
where A is the decay constant of the substance concerned and n is a continuous
function of time. This is a first-order linear homogeneous differential equation and
is identical in form to the exponential population growth specified in example 2.6
above. We shall return to this example later when we consider its solution and how
the solution is used for calculating the half-life of a radioactive substance and how
this is used to authenticate paintings and such items as the Turin shroud.

=—Ain A>0

Example 2.8

In this example we consider a continuous form of the Harrod—Domar growth
model. In this model savings, S, is assumed to be proportional to income, Y;
investment, /, i.e., the change in the capital stock, is proportional to the change in
income over time; and in equilibrium investment is equal to savings. If s denotes
the average (here equal to the marginal) propensity to save, and v the coefficient
for the investment relationship, then the model can be captured by the following
set of equations

S=sY
I=K=vY
I=S

where a dot above a variable denotes the first-time derivate, i.e., dx/dt. Substituting,
we immediately derive the following homogeneous differential equation

v =sY
. s
Y — (-)Y —0
v
with initial condition
I() = SO = SY()

It also follows from the homogeneous equation that the rate of growth of income
is equal to s/v, which Harrod called the ‘warranted rate of growth’. The solution
path satisfying the initial condition is readily established to be

Y(f) = Yoe/V!

Example 2.9"

It is well known that the Solow growth model reduces down to a simple au-
tonomous differential equation. We begin with a continuous production function

! We develop this model in detail here because it has once again become of interest and is the basis
of new classical growth models and real business cycle models. A discrete version of the model is
developed in chapter 3.
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Y = F(K, L), which is twice differentiable and homogeneous of degree one (i.e.
constant returns to scale). Let k = K /L denote the capital/labour ratioandy = Y /L
the output/labour ratio. Then

Y—F(K’L)—F Kl =Fk,1)=f(k
ie. y=rk

with f(0) = 0, f'(k) > 0,f"(k) <0,k >0
We make two further assumptions:

1. The labour force grows at a constant rate n, and is independent of any
economic variables in the system. Hence

L=nL LO)=Ly

2. Savings is undertaken as a constant fraction of output (S = sY) and savings
equal investment, which is simply the change in the capital stock plus
replacement investment, hence
1=K+ 8K
S=sY
K + 8K = sY
K(0) = Ko

Now differentiate the variable k with respect to time, i.e., derive dk/dft,
dK KdL
dk _ . dt dt

) ()0
() ()

But
K sY—8K sY[(L s YR o
K~ K  L\K Tk
and
L nL
—_ = — =N
L L
Hence

k = sf(k) — 8k — nk

= sf(k) — (n + &)k 11)



36  Economic Dynamics

with initial conditions
ko) = 50 _ i
0) = I, ko
We cannot solve equation (2.11) because the production function is not explicitly
defined. Suppose we assume that the production function F(K, L) conforms to a
Cobb-Douglas, i.e., we assume

Y=aK*L'™ O0<a<l1
Y K\“
Z—al=
L L

or

(2.12) y =f(k) = ak®

In this instance the capital/labour ratio grows according to

(2.13) k = sak® — (n+ 8k
The Solow growth model with a Cobb-Douglas production function therefore
conforms to the following differential equation

k+ (n+ 8k = sak®

This is a Bernoulli equation,> and can accordingly be solved by performing a
transformation that results in a linear differential equation that is readily solvable.
Given such a solution, then a solution can be found for the original variable.

To verify this, define the following transformation:

v =k
D g
dt * dr
o
or kot
(I —a)dt

Using these results we can derive the following
k% + (n + 8)kk™® = sa
K%+ (n+8k'™® = sa

k%KY dv
= Sy =
<1—a)dt+(n+ v = sa

. dv
ie. 7 +(0—-—a)n+8v=>10—a)sa

which is a linear differential equation in v with solution

as as
— —(1—a)(n+8)t
vt) = —— Vo — —— )€
® n+6+<0 n+8>

2 A Bernoulli equation takes the general form

dy
— Hx = h(H)x*
5 T/ (0x = h(x
See Giordano and Weir (1991, pp. 95-6).
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k()

which satisfies the initial condition
Vo = k(l)_a

This allows us to solve for k(¢) as follows

as as
klfot — kl—ot _ —(1—a)(n+d)t
n+48 + < 0 n+ 8>e

1
T—a
ie. k()= [% + (=)t <k(1)_°‘ B nc_z:(s)}

The solution path for different initial values of & is illustrated in figure 2.5.

2.2 Solutions to first-order linear differential equations

Solutions to first-order linear differential equations are well discussed in the math-
ematical texts on differential equations (see Boyce and DiPrima 1997; Giordano
and Weir 1991). Here our intention is simply to provide the steps in obtaining a
solution. In doing this we shall suppose y is a function of ¢. This is useful since
most economic examples are of this type. The general form for a first-order linear
differential equation is then

dy

dt
Notice that in this formulation both p and g are functions of time. This also allows
for the case where p(f) and g(¢) are constants, in which case we have

dy

—+by=a

ar

The four-step procedure is as follows.

+p@®y = g

Step 1  Write the linear first-order equation in the standard form

dy

i +p@)y = g(®)

Figure 2.5.
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Step 2 Calculate the integrating factor

u(r) = e/ PO

Step 3 Multiply throughout by the integrating factor, integrate both sides and add
a constant of integration to the right-hand side

dy
(@ @) <E +p(t)y> = u(Hg()

or

d
E[M(t)y] = (g

d
) / “linlar = / w(DgDdt + ¢

Step 4 Write the general result

n@®y = f n(g® +c

Example 2.10

As an example, let us apply this four-step procedure to the equation

dy
— =a+b
ar 4T
Step 1 'We can write this in the standard form
dy
— —by=a
dt Y

Step 2 Calculate the integrating factor
M(t) — ef (—b)dt — e—bt

Step 3 Multiply throughout by the integrating factor, integrate both sides and add
a constant of integration to the right-hand side

d
(@ ™ (E — by) =ae ¥ or d—t(efb’y) =qe ¥

d
(b) /E(e_b’y)dt = /ae_b’dt +c

Step4 e Py = fae_b'dt +c

_ ¢ bt
y= b+ce
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Furthermore, if we have the initial condition that y(0) = y,, then we can
solve for ¢
2 +
=——+c
Yo b
n a
c= —
Yo b
Hence, we have the solution to the initial value problem of
=7+ (50+5)"
) = b Yo b
Example 2.11
Suppose we have the initial value problem
D oy ar y0)=1
dr y yW) =
Applying the four-step procedure we have
dy
Step ] — —2y=4t
ep dr Y
Step2 () =/ =¥
Step 3 e My = /4te’2’dt +c
Step4 e Py=—2te ¥ —e Mt ¢
Or
y=—2t—14ce*
Since y(0) = 1, then
l=—-1+4c¢
c=2
Hence,
Y1) = =2t — 1 4 2%
2.3 Compound interest
If an amount A is compounded annually at a market interest rate of r for a given
number of years ¢, then the payment received at time ¢, P; is given by
Pr=A+r) (2.14)
On the other hand if the same amount is compounded m times each year, then the
payment received is given by
v\ mt
P,:A(1+—) (2.15)
m
If compounded continuously, then m — oo and
mt
P(t) = A lim (1 + i) — Ae" (2.16)
m

X—>00
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(2.17)

Looked at from the point of view of a differential equation, we can readily establish
that

dpP
— =7rP
dt
with solution
P(t) = Pye”

Since Py is the initial payment, then Py = A in this formulation of the problem.
We know that an initial deposit, Py, compounded continuously at a rate of r
per cent per period will grow to

P(t) = Po@rt

Now assume that in addition to the interest received, rP, there is a constant rate of
deposit, d. Thus

dpP
— =rP+d
o rP +

The solution to this differential equation can be found as follows>

ar_ [P+ (d/n)]
dt_r /r

dp/dt
P+am
then
iln |P+/r)| =r
dt

Integrating both sides

/dit In|P+(d/r)|dt = /rdt

which leads to

In|P+(d/r)| =rt+co

P+ (d/r)=ce” c=e"
Therefore

P(t) =ce™ — (d/r)
If P(0) = Py, then

Po=c—(d/r)
and

P(1) = [Py + (d/1)]e" — (/1)

= Poe’ + (d/r)(e" = 1)

We know that Pye" is the interest paid on the initial deposit of Py, so (d/r)(e” — 1)

is the interest paid on the additional deposit rate, d.

3 An alternative solution method is to use the one outlined in section 2.2.
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2.4 First-order equations and isoclines

For many problems, especially in economics where fairly general equations are
used in model construction, it may not be possible to find the explicit solution to
a differential equation. Even if we can derive an implicit form, it still may not be
possible to solve its explicit form. This does not mean that we can say nothing
about the solution. On the contrary, it is possible to investigate information about
the solution, i.e., we can investigate the qualitative properties of the solution. These
properties can be obtained by studying features of the differential equation.

As an introduction to the study of the qualitative properties of differential equa-
tions let us begin by simply investigating the following differential equation. We
shall use this example to define a number of terms that we shall use throughout
this book

d
d—i:ax—by y(O):% a,b>0

With no more information we cannot solve this equation. Suppose, then, that

y=f .
and f'(x) =ax—bf(x)  f(0)= b

Since, by assumption, f(x) is differentiable, then so is f'(x). Thus

£ = a— bf'(x)
= a — blax — bf(x)] = a — [abx — b*f(x)]
Since each derivative can be reduced to functions of x and f(x), then so long as
f(x) is differentiable, all order differentials exist.
But why consider the existence of such differentials? The reason is that they

give information about f(x), the domain of x.
Now consider y = f(x) for the range x > 0. Since f(0) = a/b

, ba
f(O):a.O—;:—a<0

Then we know that f(x) crosses the y-axis at a/b and for x near zero the function
is decreasing. This decrease will continue until a turning point occurs. A turning
point requires that f’(x) = 0. Let x* denote the value of x at the turning point, then

f' &) = ax* = bf(x*) =0

ax* .
or = f(x
=)
i.e. where f(x) cuts the line y = ax/b.
To establish whether the turning point at x = x* is a minimum or a maximum

we turn to

f'(x*) = a — [abx* — B*f(x*)]
b2ax*
b

= a — [abx™ — abx™]

=a-— |:abx* —

=a>0
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Figure 2.6.

Yy
y=ax/b fx)
a/b 4
a’b
0 x X

Rough sketch of flx), the solution to
ayldx = ax —
y(O) =a/b and ab>0

Hence, f(x) reaches a minimum at x = x* where f(x) cuts the line y = ax/b. It
must follow, then, that for x > x*, f(x) is positively sloped. This can be verified
immediately

J'(x) = ax — bf (x)
x> x* implying %C > f(x) or ax > bf(x)

fx)>0

All the analysis so far allows us to graph the properties, as shown in figure 2.6.
The curve f(x) cuts the y-axis at a/b, declines and reaches a minimum where f(x)
cuts the line y = ax/b, and then turns up.

Although we cannot identify f(x) or the solution value of x*, we do know that
x* is nonzero. But can we obtain additional information about the shape of f(x)?
Yes — if we consider isoclines.

Isoclines and direction fields

Given

dy
A —b
dx ax 'y

then for every (x,y)-combination this equation specifies the slope at that point.
A plot of all such slopes gives the direction field for the differential equation,
and gives the ‘flow of solutions’. (The slopes at given points can be considered
as small lines, like iron filings, and if many of these are drawn the direction
field is revealed — just like iron filings reveal magnetic forces.) However, it is
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y Figure 2.7.
y=2x-2
6
4
2
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not possible to consider all points in the (x,y)-plane. One procedure is to con-
sider the points in the (x,y)-plane associated with a fixed slope. If m denotes
a fixed slope, then f(x,y) = m denotes all combinations of x and y for which
the slope is equal to m. f(x,y) = m is referred to as an isocline. The purpose
of constructing these isoclines is so that a more accurate sketch of f(x) can be
obtained.

For dy/dx = ax — by = m the isoclines are the curves (lines)

These are shown in figure 2.7. Of course, the slope of f(x, y) at each point along
an isocline is simply the value of m. Thus, along y = ax/b the slope is zero or
inclination arctan0 = 0°. Along y = (ax/b) — (1/b) the slope is unity or inclination
arc tanl = 45°; while along y = (ax/b) — (2/b) the slope is 2 or inclination arc
tan2 = 63°. Hence, for values of m rising the slope rises towards infinity (but never
reaching it). We have already established that along y = ax/b the slope is zero and
so there are turning points all along this isocline. For m negative and increasing,
the slope becomes greater in absolute terms. Consider finally m = a/b. Then the
isocline is

=5-()6)-5-6)

with intercept —a/b?. Then along this isocline the slope of the directional field
is identical to the slope of the isocline. Hence, the direction fields look quite
different either side of this isocline. Above it the solution approaches this isocline
asymptotically from above. Hence, the function f(x) takes the shape of the heavy
curve in figure 2.7. In general we do not know the intercept or the turning point. In
this instance we consider the approximate integral curves, which are the continuous
lines drawn in figure 2.7. Such integral curves can take a variety of shapes.
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We can summarise the method of isoclines as follows:

(1) From the differential equation

D gy

_ = X,

dx Y

determine the family of isoclines
P(x,y) =m

and construct several members of this family.
2) Consider a particular isocline ¢(x, y) = myg. All points (x, y) on this iso-
cline have the same slope mjy. Obtain the inclination

g = arctan my 0<ay<180°

Along the isocline ¢(x, y) = myg construct line elements with inclination
ay. (This establishes part of the direction field.)

3) Repeat step 2 for each isocline.

“) Draw smooth curves to represent the approximate integral curves indi-
cated by the line elements of step 3.

It is apparent that this is a very tedious procedure. Luckily, a number of mathe-
matical software packages now compute direction fields and can be used to con-
struct isoclines (see appendices 2.1 and 2.2).

Example 2.12

dy

o 2x —y

In sections 2.11 and 2.12 we give the instructions on using software pack-
ages to solve this differential equation explicitly, and in appendices 2.1 and
2.2 we provide Mathematica and Maple instructions, respectively, for plot-
ting solution curves along with the direction field. The result is shown in
figure 2.8

Throughout this book we shall provide a number of direction field diagrams
of differential equation systems. In some cases we can readily obtain the solu-
tion explicitly, as shown in figure 2.9(a) for the Malthusian population and figure
2.9(b) for the logistic growth curve,* which features prominently in the present
text.

In the previous section we derived a differential equation for the Solow growth
model under the assumption that production conformed to a Cobb-Douglas pro-
duction function. Although we explicitly solved this using the Bernoulli equation,
its solution was not at all obvious. In such cases we can obtain considerable insight
into the solution paths by considering the direction field. Thus, in figure 2.10 we
illustrate this feature of the Solow growth model for three initial values of k, the

4 See example 2.15 in section 2.5.
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ay/dx =2x —y
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capital/labour ratio: one below the equilibrium level, another equal to the equi-
librium level and a third above the equilibrium level. It is quite clear from the
solution paths and the direction field that the equilibrium k* is locally stable (see
exercise 14).

Direction fields can usefully be employed for two further areas of study. First,
when considering nonlinear differential equations whose solution may not be avail-
able. In this case the qualitative features of the solution can be observed from the
direction field. Second, in the case of simultaneous equation systems, the exam-
ples given so far refer to only one variable along with time. But suppose we are
investigating a system of two variables, say x and y, both of which are related
to time. In these cases we can observe much about the solution trajectories from
considering the direction field in the plane of x and y — which later we shall refer
to as the phase plane. We shall investigate such differential equation systems in
detail in chapter 4.

2.5 Separable functions

Earlier we solved for the first-order linear homogeneous differential equation

— —kx=0

dt
for the initial condition x(0) = x( (see equation (2.5)). We did this by first re-writing
equation (2.18) in the form

dx 1

=k

dt x

Figure 2.8.

(2.18)



46  Economic Dynamics

Figure 2.9.
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(a) Direction field for Malthusian population growth
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(b) Direction field for logistic population growth

Hence integrating both sides with respect to ¢ gives

dx 1
/iﬂmiﬁm+%
dt x
Inx =kt + ¢
x(t) = ce

which gives the solution

x(f) = xpe

In other words, we could solve x(¢) explicitly in terms of ¢.

150
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But equation (2.18) is just a particular example of a more general differential

equation

dx
dt

Any differential equation which can be written in terms of two distinct functions
f(x) and g(?) is said to be a separable differential equation. Some examples are the

following:

dx
dr
.. dx
(i) o

dx
dt

®

(iii)

Our interest in these particular differential equations is because they are often
possible to solve fairly readily since we can write one side in terms of x and the

Ol 20 40 60 80 100

t
Direction field for Solow growth model

_ 80
S

=x(2 —Xx)

1

2xt

other in terms of 7. Thus, writing (2.19) in the form

dx
f(x)E = g(®)

we can then integrate both sides with respect to ¢

dxd _ J
ff(x)E f—/g(t) t+co

or

Flx(n)] = /g(t)dt + co

Figure 2.10.

(2.19)
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where

Flx(n)] = / f(x)dx
Using this equation we can solve for x = x(f) which gives the general solution to
equation (2.19).

Example 2.13 Radioactive decay and half-life

Equation (2.9) specified the differential equation that represented the radioactive
decay of atomic particles. We can employ the feature of separability to solve this
equation. Thus, if

dn
—=—in A>0
dt
then we can re-write this equation
dn
— = —Adt
n

Integrating both sides, and letting ¢y denote the coefficient of integration, then

d
a :—f/\dt+c0
n

Inn=—XAt+co

At

n=e Mo = ce” ¢ = e%

At t = 9, n = ng. From this initial condition we can establish the value of ¢

ng = ce Mo

¢ = npe™

n= noef)»le)»lo — noef)u(lfto)
The half-life of a radioactive substance is the time necessary for the number

of nuclei to reduce to half the original level. Since ny denotes the original level
then half this number is ny/2. The point in time when this occurs we denote #;>.

Hence
@ — noe*)»(fl/zflo)
2
1 s
Z — pMup—t)
B e
—In2 = —)\(l‘l/z — 1)
In2 0.693
t1/2=t0+T=t0+T

Usually, #p = 0 and so

0693
2=

These results are illustrated in figure 2.11.
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tO tl/Z t

Example 2.14 Testing for art forgeries®

All paintings contain small amounts of the radioactive element lead-210 and a
smaller amount of radium-226. These elements are contained in white lead which
is a pigment used by artists. Because of the smelting process from which the
pigment comes, lead-210 gets transferred to the pigment. On the other hand, over
90 per cent of the radium is removed. The result of the smelting process is that
lead-210 loses its radioactivity very rapidly, having a half-life of about 22 years;
radium-226 on the other hand has a half-life of 1,600 years (see example 2.7). For
most practical purposes we can treat radium-226 emissions as constant. Let I(f)
denote the amount of lead-210 per gram of white lead at time ¢, and /y the amount
present at the time of manufacture, which we take to be #y. The disintegration of
radium-226 we assume constant at r. If X is the decay constant of lead-210, then

al M+ I(tg) =1
-V = - r =
dt 0 0
with solution
;
() = —(1 — e t—10) JneH—10)
® )L( e ) + lpe

Although I(¢) and r can readily be measured, this is not true of /y, and therefore we
cannot determine ¢ — fy.

We can, however, approach the problem from a different perspective. Assume
that the painting of interest, if authentic, is 300 years old and if new is at the present
time . Then r — ) = 300. If we substitute this into the previous result and simplify
we obtain

Mo = M(0)e™™ — r(@™ — 1)

3 This is based on the analysis presented in Braun (1983, pp. 11-17).

Figure 2.11.
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(2.20)

Itis possible to estimate Aly for an authentic painting. It is also possible to estimate
Ml for the lead in the painting under investigation. If the latter is absurdly large rel-
ative to the former, then we can conclude that it is a forgery. A very conservative
estimate would indicate that any value for Aly in excess of 30,000 disintegra-
tions per minute per gram of white lead is absurd for an authentic painting aged
300 years. Using 22 years for the half-life of lead-210, then the value of A is (In2/22)
and

63()0)» — e(3()0/22)ln2 — 2(150/11)

To estimate the present disintegration rate of lead-210 the disintegration rate of
polonium-210 is used instead because it has the same disintegration rate as lead-
210 and because it is easier to measure.

In order, then, to authenticate the ‘Disciples at Emmaus’, purported to be a
Vermeer, it is established that the disintegration rate of polonium-210 per minute
per gram of white lead in this particular painting is 8.5 and that of radium-226is 0.8.
Using all this information then we can estimate the value of Ll for the‘Disciples
at Emmaus’ as follows:

Mo = (8.5)2150/11 _ 0.8(215/11 _ 1)
= 98,050

which is considerably in excess of 30,000. We, therefore, conclude that the ‘Dis-
ciples at Emmaus’ is not an authentic Vermeer.

Example 2.15 The logistic curve

In this example we shall consider the logistic equation in some detail. Not only does
this illustrate a separable differential equation, but also it is an equation that occurs
in a number of areas of economics. It occurs in population growth models, which
we shall consider in part II, and in product diffusion models. It is the characteristic
equation to represent learning, and hence occurs in a number of learning models.
We shall justify the specification of the equation in part II; here we are concerned
only with solving the following growth equation for the variable x
dx

7 = kx(a — x)

The differential equation is first separated

dx

(a —x)x

=kdt

Integrating both sides, and including the constant of integration, denoted c(

dx
= | kdt+ cg

(a—x)x
B
-+
X a—x

However
1 —
(a—x)x -

Q| =
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Hence

1 [d d
—[/—x+/ x:|=/kdt+c0
a X a—X

1
—[Inx —1Inl|a — x|] =kt + co
a

1

—1In }:kt—l—co

a |a—x

In = akt + acy
a—x

Taking anti-logs, we have

X

— eaktJraco — eaCQeakt — Ceakt

a—x
where ¢ = ¢“. Substituting for the initial condition, i.e., t = 7y then x = x(, we
can solve for the constant ¢, as follows

X0 akto

= ce
a— X

X0 _
c= e akty
a — Xo

Substituting, then

x x0 ) _
— e akty eakt
a—Xx a — Xp

_ X0 oK(t=10)
a — X

a X0 pak(1—1o)
a — Xo
[1 + <x_0>gak(lfo):|
a — Xo

Which can be further expressed®

Solving for x

X =

axg
X = %
(a — xg)e k=) + xo

From the logistic equation (2.21) we can readily establish the following results,
assuming that xj is less than a:

1. For t = ¢ty then x = xp

2. Ast— oothenx — a

6 The logistic growth equation is a particular example of the Bernoulli function and can be solved in
a totally different way using a simple transformation. See n. 2 and exercise 6.

(2.21)
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Figure 2.12. b

al2 b

Inflexion point

Xo

1 a-x,
tH = In (e
ot on % )

3. An inflexion occurs at the point

1 —
l‘:l‘()—i-—ln(a XO)
ak Xo

X = =

2

The logistic curve is shown in figure 2.12.

Example 2.16 Constant elasticity of demand

Let a commodity x be related to price p with a constant elasticity of demand e,

then
dx
axp =—c €>0
dp x
We can rearrange this as
dx dp
—_— = ——
X p
Integrating both sides and adding a constant of integration, then
dx dp
x p
Inx=—elnp+cp

= —¢lnp+Inc wherecy=1Inc
=Incp~®
Therefore

x=cp*

which is the general expression for a demand curve with constant elasticity of
demand.
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2.6 Diffusion models

In recent years we have seen the widespread use of desktop computers, and more
recently the increased use of the mobile phone. The process by which such in-
novations are communicated through society and the rate at which they are taken
up is called diffusion. Innovations need not be products. They can just as easily
be an idea or some contagious disease. Although a variety of models have been
discussed in the literature (e.g. Davies 1979; Mahajan and Peterson 1985), the time
path of the diffusion process most typically takes the form of the S-shaped (sig-
moid) curve. Considering the mobile phone, we would expect only a few adoptions
in the early stages, possibly business people. The adoption begins to accelerate,
diffusing to the public at large and even to youngsters. But then it begins to tail
off as saturation of the market becomes closer. At the upper limit the market is
saturated.

Although this is a verbal description of the diffusion process, and suggests an
S-shaped mathematical formulation of the process, it supplies no exact information
about the functional form. In particular, the slope, which indicates the speed of the
diffusion; or the asymptote, which indicates the level of saturation. Furthermore,
such diffusion processes may differ between products.

The typical diffusion model can be expressed

dN(1) N

TR gn(m — N(1))
where N(z) is the cumulative number of adopters at time ¢, m is the maximum
number of potential adopters and g(#) is the coefficient of diffusion. dN(¢#)/dt then
represents the rate of diffusion at time ¢. Although we refer to the number of
adopters, the model is assumed to hold for continuous time . It is possible to think
of g(¢) as the probability of adoption at time ¢, and so g(¢)(;m — N(¢)) is the expected
number of adopters at time .

Although a number of specifications of g(f) have been suggested, most are a
special case of

g(t) =a+bN()
So the diffusion equation generally used is
dN(1)
dt

If we divide (2.23) throughout by m and define F(t) = N(t)/m, with F(f) =N(t)/m,
then

= (a/m+ bN(t))(m — N(2))

dF(t
# = (a+ bF())(1 — F(2))
This is still a logistic equation that is separable, and we can re-arrange and integrate
by parts (see example 2.15) to solve for F(¢)
1— e—(a+b)l
1 + (b/a)e—(zH—h)t

This specification, however, is not the only possibility. The Gompertz function
also exhibits the typical S-shaped curve (see exercise 2), and using this we can

F(@)

(2.22)

(2.23)

(2.24)

(2.25)
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(2.26)

(2.27)

express the diffusion process as

dN (1)
2 = bN(®)(Inm — InN(1))
dt
or
dF(r)
— = bF(H)(— In F(z))

Suppressing the time variable for convenience, then the two models are
F=(a+bF)1-F)

and
F =bF(—InF)

Pursuing the logistic equation, we can graph F' against F. When F = 0 then
F = a and when F = 0 then (a + bF)(1 — F) = 0 with solutions

Fy=—-b/a and F, =1

Since F denotes the rate of diffusion, then the diffusion rate is at a maximum
(penetration is at its maximum rate) when ¥ = 0, i.e., when d’F/dt*> = 0. Differ-
entiating and solving for F, which we denote Fp (for maximum penetration rate),
we obtain

1 a

F molvi N P 1 a m am
= - — — implyin =—m-Fp=ml-=-2)=2"_=2"
P=7 75 UPYIE AP P 2" w) T2

In order to find the time #p when F(zp) is at a maximum penetration rate, we must
first solve for F(¢). This we indicated above. Since we need to find the value of ¢
satisfying F(t) = Fp, then we need to solve

1 — e—(a-‘rb)t 1 a

1+ (bjaye—@or — 2~ 2p
for #, which we can do using a software package. This gives the time for the
maximum penetration of

(&)
In| —

_\4/
a+b

Since d?F/dt*> = 0 at Fp, then this must denote the inflexion point of F().

The stylised information is shown in figure 2.13. Notice that the time for the
maximum penetration is the same for both F(f) and N(¢). Also note that F(r)
involves only the two parameters a and b; while N(¢) involves the three parameters
a, b and m.

tp =

2.7 Phase portrait of a single variable

This book is particularly concerned with phase diagrams. These diagrams help
to convey the dynamic properties of differential and difference equations — either
single equations or simultaneous equations. To introduce this topic and to lay
down some terminology, we shall consider here just a single variable. Let x denote
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F'@O=(atbF())Y(1-F(5))
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tp=In(b/a)/(a+b)

a variable which is a continuous function of time, ¢. Let x'(¢) denote an autonomous
differential equation, so that x'(¢) is just a function of x and independent of z.
Assume that we can solve for x'(f) for any point in time . Then at any point in time
we have a value for x'(r). The path of solutions as ¢ varies is called a trajectory,
path or orbit. The x-axis containing the trajectory is called the phase line.

If () = 0 then the system is at rest. This must occur at some particular point in
time, say #. The solution value would then be x(#y) = x*. The point x* is referred
to variedly as a rest point, fixed point, critical point, equilibrium point or
steady-state solution. For the Malthusian population equation p/(f) = kp, there is

Figure 2.13.
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Figure 2.14.

d/dt>0 X dddi<0 dvdi<0 X dud>0
> Pl — < < < < @ > >
attractor repellor
ax/dt>0  5° dx/dt > 0 ax/di <0 dx/di <0
— *— et @———t—
(right) shunt (left) shunt

only one fixed point, namely p* = 0. In the case of the logistic growth equation
X' () = kx(a — x) there are two fixed points, one at x] = 0 and the other at x5 = a.
In example 2.4 on demand and supply the fixed point, the equilibrium point, is
given by
. _C—a

P =%—a
which is also the fixed point for example 2.5. For the Harrod—Domar growth model
(example 2.8) there is only one stationary point, only one equilibrium point, and
that is Y* = 0. For the Solow growth model, in which the production function
conforms to a Cobb—Douglas (example 2.9), there are two stationary values, one
at k¥ = 0 and the other at

o (s ()
2_<n+6)

Whether a system is moving towards a fixed point or away from a fixed point
is of major importance. A trajectory is said to approach a fixed point if x(#) — x*
as t — 0o, in this case the fixed point is said to be an attractor. On the other
hand, if x(r) moves away from x* as ¢ increases, then x* is said to be a repellor.
Fixed points, attractors and repellors are illustrated in figure 2.14. Also illustrated
in figure 2.14 is the intermediate case where the trajectory moves first towards
the fixed point and then away from the fixed point. Since this can occur from two
different directions, they are illustrated separately, but both appear as a shunting
motion, and the fixed point is accordingly referred to as a shunt.

Consider once again the logistic growth equation x'(f) = kx(a — x), as illustrated
in figure 2.15. Figure 2.15(a) illustrates the differential equation, figure 2.15(b) il-
lustrates the phase line’ and figure 2.15(c) denotes the path of x(¢) against time.
The stationary points on the phase line are enclosed in small circles to iden-
tify them. The arrows marked on the phase line, as in figure 2.15(b), indicate
the direction of change in x(¢) as t increases. In general, x* = O is uninterest-
ing, and for any initial value of x not equal to zero, the system moves towards
X* = a, as illustrated in figure 2.15(c). Even if x initially begins above the level
x* = a, the system moves over time towards x* = a. In other words, x* = a is an
attractor.

7 Some textbooks in economics confusingly refer to figure 2.15(b) as a phase diagram.



Continuous dynamic systems 57
(a) dx/dt Figure 2.15.
----------------- : dx/dt = kx(a—x)
0 a? a X
©=0 dx/dt > 0 . dx/dt < 0
(b) . X .— a

t !

If any trajectory starting ‘close to” a fixed point® stays close to it for all future
time, then the fixed point is said to be stable. A fixed point is asymptotically
stable if it is stable as just defined, and also if any trajectory that starts close to the
fixed point approaches the fixed point as t — oco. Considering the logistic equation
as shown in figure 2.15, it is clear that x* = a is an asymptotically stable rest point.

Figure 2.15 also illustrates another feature of the characteristics of a fixed point.
The origin, x* = 0, is a repellor while x* = a is an attractor. In the neighbourhood
of the origin, the differential equation has a positive slope. In the neighbourhood

8 We shall be more explicit about the meaning of ‘close to’ in section 4.2.
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Figure 2.16.

of the attractor, the differential equation has a negative slope. In fact, this is a
typical feature of instability/stability. A fixed point is unstable if the slope of the
differential equation in the neighbourhood of this point is positive; it is stable if the
slope of the differential equation in the neighbourhood of this point is negative. If
there is only one fixed point in a dynamic system, then such a fixed point is either
globally stable or globally unstable. In the case of a globally stable system, for
any initial value not equal to the fixed point, then the system will converge on the
fixed point. For a globally unstable system, for any initial value not equal to the
fixed point, then the system will move away from it.
Consider example 2.4, a simple continuous price-adjustment demand and supply

model with the differential equation

d_p =a@—c)+ab—-—dp a>0

dt
For a solution (a fixed point, an equilibrium point) to exist in the positive quadrant
then a > ¢ and so the intercept is positive. With conventional shaped demand and
supply curves, then b < 0 and d > 0, respectively, so that the slope of the differential
equation is negative. The situation is illustrated in figure 2.16(a).

(@
dp/dt

dp/dt = o (a—c)+o (b-d)p

attracting fixed point

dp/dt > 0 dplds < 0

(b)
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Given linear demand and supply then there is only one fixed point. The system
is either globally stable or globally unstable. It is apparent from figure 2.16 that the
fixed point is an attractor, as illustrated in figure 2.16(b). Furthermore, the differ-
ential equation is negatively sloped for all values of p. In other words, whenever
the price is different from the equilibrium price (whether above or below), it will
converge on the fixed point (the equilibrium price) over time. The same qualita-
tive characteristics hold for example 2.5, although other possibilities are possible
depending on the value/sign of the parameter f.

Example 2.6 on population growth, and example 2.7 on radioactive decay, also
exhibit linear differential equations and are globally stable/unstable only for p =
0 and n = 0, respectively. Whether they are globally stable or globally unstable
depends on the sign of critical parameters. For example, in the case of Malthusian
population, if the population is growing, k > 0, then for any initial positive popula-
tion will mean continuously increased population over time. If £ < 0, then for any
initial positive population will mean continuously declining population over time.
In the case of radioactive decay, A is positive, and so there will be a continuous
decrease in the radioactivity of a substance over time.

The Harrod—Domar growth model, example 2.8, is qualitatively similar to the
Malthusian population growth model, with the ‘knife-edge’ simply indicating the
unstable nature of the fixed point. The Solow growth model, example 2.9, on
the other hand, exhibits multiple equilibria. There cannot be global stability or
instability because such statements have meaning only with reference to a single
fixed point system. In the case of multiple fixed points, statements about stability or
instability must be made in relation to a particular fixed point. Hence, with systems
containing multiple equilibria we refer to local stability or local instability, i.e.,
reference is made only to the characteristics of the system in the neighbourhood
of a fixed point. For instance, for the Solow growth model with a Cobb—Douglas
production function homogeneous of degree one there are two fixed points

sa ()
ki=0 and k;:( +8>
n

The first is locally unstable while the second is locally stable, as we observed
in figure 2.10. The first fixed point is a repellor while the second fixed point is
an attractor. The slope of the differential equation in the neighbourhood of the
origin has a positive slope, which is characteristic of a repellor; while the slope
of the differential equation in the neighbourhood of the second fixed point is
negative, which is characteristic of an attractor. These characteristics of the slope
of the differential equation in the neighbourhood of a system’s fixed points and
the features of the phase line are illustrated in figure 2.17.

2.8 Second-order linear homogeneous equations

A general second-order linear homogeneous differential equation with constant
coefficients is
d’y  dy
— +b— =0
ar + dt to

(2.28)
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Figure 2.17. dk/dr

k=sak’~(n+8)k

repellor attractor
dk/dt > 0 di/dt <0
* @ > Ot
k=0 k, k

I fixed points g

ay" (1) + by () +cy(t) =0

If we can find two linearly independent solutions’ y; and y, then the general
solution is of the form

y=c1y1 + cay2

where ¢; and ¢, are arbitrary constants. Suppose y = ¢*. Substituting we obtain
ax’e™ + bxe™ + ce™ =0
eax?+bx+¢)=0

Hence, y = ¢ is a solution if and only if

ax> +bx+c=0

9 See exercises 9 and 10 for a discussion of linear dependence and independence.
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which is referred to as the auxiliary equation of the homogeneous equation. The
quadratic has two solutions

—b 4+ /b? —dac —b — A/b? — dac
I":—, S=-
2a 2a

If b2 > 4ac the roots r and s are real and distinct; if b> = 4ac the roots are real
and equal; while if b> < 4ac the roots are complex conjugate. There are, therefore,
three types of solutions. Here we shall summarise them.

2.8.1 Real and distinct (b* > dac)

If the auxiliary equation has distinct real roots r and s, then ¢’* and ¢*' are linearly
independent solutions to the second-order linear homogeneous equation. The gen-
eral solution is

y(0) = cre” + cze”

where ¢ and c; are arbitrary constants.
If y(0) and y'(0) are the initial conditions when ¢ = 0, then we can solve for ¢;
and ¢,

¥0) = c1e" + 26 = ¢1 + ¢
Y (0) = rere” + scye”

V(0) = rc1e’® + s¢2e'® = rey + sco

Hence

_ Y(0) —s5y(0) _Y(0) = ry(0)
cL=——, )= —""—"""—
r—=s s—r

and the particular solution is

o= (YOO (YOO

r—s S—r

which satisfies the initial conditions y(0) and y'(0).

Example 2.17

Suppose

Then the auxiliary equation is
¥ +4x—-5=0
x+5x—-1)=0

Hence, r = —5 and s = 1, with the general solution

Y1) = cre > + e
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If y(0) = 0 and y'(0) = 1, then

1 1

C1: = ——
—5-1 6

1 1

= —— = —
T1-(=5 6

So the particular solution is
1 =5t 1 t
n=—|- -
0==(g)+(5)e
2.8.2 Real and equal roots (b* = 4ac)
If r is a repeated real root to the differential equation
ay' )+ by(t)+c=0
then a general solution is
y(t) = cie” + cyte”

where c¢; and ¢, are arbitrary constants (see exercise 9). If y(0) and y'(0) are the
two initial conditions, then

¥(0) =c; + c2(0) = ¢
V() = rcie™ + repte’ + cre”
Y(O0)=rci+c
Hence
c1 = y(0), c2 ='(0) — ry(0)

So the particular solution is

(1) = y(0)e" + [y'(0) — ry(0)]ze”
Example 2.18

V') + 4y (1) +4y1) =0

Then the auxiliary equation is

¥ 4+4x+4=0
x+2?%=0
Hence, r = —2 and the general solution is

Y1) = cre” 2 + cote™

If y(0) = 3 and y'(0) = 7, then
cp=y0)=3
c2=Y(0)—r(0)=7—-(-2)3) =13
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so the particular solution is

y(1) = 3¢ 4 13t
=3+ 130

2.8.3 Complex conjugate (b* < dac)

If the auxiliary equation has complex conjugate roots r and s where r = o + if8
and s = o — if then

e cos(Br) and e sin(Br)
are linearly independent solutions to the second-order homogeneous equation (see
exercise 10). The general solution is

y(t) = c1e* cos(Bt) + ce* sin(Bt)

where c¢; and c; are arbitrary constants.
If y(0) and y'(0) are the initial conditions when ¢ = 0, then we can solve for ¢,
and ¢,
¥(0) = ¢1 cos(0) + ¢, sin(0) = ¢
Y (@) = (aci + Bea)e™ cos(Br) + (eeer — Ber)e™ sin(Bi)
¥'(0) = (acy + Bea)e’ cos(0) + (aey — Ber)e” sin(0)
=ac) + B
ie.
¢ =y0) and = M

Hence, the particular solution is

¥'(0) — ay(0)

5 )e"” sin(Bt)

y() = y(0)e*' cos(B1) + (

Example 2.19

Y'(0) +2y'(1) + 2y(1) = 0, y0)=2 and y(0)=1
The auxiliary equation is

X 4+2x+2=0

with complex conjugate roots

-2+ AAD)

5 -1+

2-VA-AY _ .

S=- = —] —1
2

The general solution is

y(@) = cre” cos(t) + ce” " sin()
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(2.29)

The coefficients are
cp=y0)=2

_ YO —ay©) _
B

Hence the particular solution is

C 3

y(t) = 2e " cos(t) + 3e " sin(z)

2.9 Second-order linear nonhomogeneous equations

A second-order linear nonhomogeneous equation with constant coefficients takes
the form
d’y | dy
a—+b— 4+ cy=g(t
a2 il 8
or

ay” () + by'(t) + cy(t) = g(¢)

Let L(y) = ay”"(¢t) + by'(¢) + cy(¢) then equation (2.29) can be expressed as L(y) =
g(®). The solution to equation (2.29) can be thought of in two parts. First, there
is the homogeneous component, L(y) = 0. As we demonstrated in the previous
section, if the roots are real and distinct then

Ve = Clert + czesz

The reason for denoting this solution as y. will become clear in a moment.
Second, it is possible to come up with a particular solution, denoted y,, which
satisfies L(y,) = g(t). y. is referred to as the complementary solution satisfying
L(y) =0, while y, is the particular solution satisfying L(y,) = g(). If both y.
and y, are solutions, then so is their sum, y = y. + y,, which is referred to as
the general solution to a linear nonhomogeneous differential equation. Hence,
the general solution to equation (2.29) if the roots are real and distinct takes the
form

¥ =y.+ Yp = Clert + C2€St + ¥

The general solution y(¢) = y. + ¥, holds even when the roots are not real or
distinct. The point is that the complementary solution arises from the solution to
L(y) = 0. As in the previous section there are three possible cases:

€))] Real and distinct roots
Ve = cle” + CzeS’
2) Real and equal roots

ye = c1e” + cote”
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3)

Complex conjugate roots

Ve = c1e” cos(Bt) + cre* sin(Br)

In finding a solution to a linear nonhomogeneous equation, four steps need to
be followed:

Step 1
Step 2

Step 3
Step 4

Find the complementary solution y,.
Find the general solution y;, by solving the higher-order equation

Ly(yn) =0

where yj, is determined from L(y) and g(z).

Obtain y, = yi — Y.

Determine the unknown constant, the undetermined coefficients, in the
solution y, by requiring

L(y,) = g(1)

and substituting these into y,, giving the particular solution y,,.

Example 2.20

Suppose

Step 1

Step 2

Y +y@=t

This has the complementary solution y., which is the solution to the aux-
iliary equation

X4+x=0
xx+1)=0
with solutions r = 0 and s = —1 and

Ye = cie” +cre”!

=c; +cre!

The differential equation needs to be differentiated twice to obtain
Ly(yn) = 0. Thus, differentiating twice

Yo +y9n =0

with auxiliary equation

Y4+ =0

with roots 0, —1, 0, 0. Hence'?

yin = c1€” + cre™ 4+ c3te” + cut?e™

=c¢| + e + 3t + cat?

10 We have here used the property that ¢, fe” and r?¢™ are linearly independent and need to be
combined with a root repeating itself three times (see exercise 9(ii)).
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Step 3 Obtain y, = y; — y.. Thus
yg = (c1 + c2e™ + 3t + cat®) — (¢ + c2e™)
=3t + C4l2
Step 4 To find c3 and ¢4, the undetermined coefficients, we need L(y,) = ¢. Hence
Yo +y, () =1t
But from step 3 we can derive
Yg = €3+ 2cat
Yy =2ca
Hence
2c4+c3+2c4t =1t

Since the solution must satisfy the differential equation identically for
all t, then the result just derived must be an identity for all # and so
the coefficients of like terms must be equal. Hence, we have the two
simultaneous equations
2¢c4 +c3=0
2C4 =1
with solutions ¢4 = !5 and ¢3 = —1. Thus
yp=—t+ 31
and the solution is
y)=ci+ce —t+ %tz
It is also possible to solve for ¢; and c¢; if we know y(0) and y'(0).
Although we have presented the method of solution, many software pack-
ages have routines built into them, and will readily supply solutions if they
exist. The economist can use such programmes to solve the mathematics and

so concentrate on model formulation and model features. This we shall do in
part IL.

2.10 Linear approximations to nonlinear
differential equations

Consider the differential equation
X =f(x)

here f is nonlinear and continuously differentiable. In general we cannot solve such
equations explicitly. We may be able to establish the fixed points of the system
by solving the equation f(x) = 0, since a fixed point is characterised by X = 0.
Depending on the nonlinearity there may be more than one fixed point.
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If f is continuously differentiable in an open interval containing x = x*, then we

approximate f using the Taylor expansion

FO) = f&*) + £ (&) — x7)

//x* )C—)C* nx* X—X*
+f—( X )++f—( X )+Rn(x,x*)
2! n!

where R, (x, x*) is the remainder. In particular, a first-order approximation takes
the form

) = f&) + /() = x°) + Ro(x, x7)
If the initial point xj is sufficiently close to x*, then R,(x, x*) ~ 0. Furthermore, if
we choose x* as being a fixed point, then f(x*) = 0. Hence we can approximate
f(x) about a fixed point x* with

) = () — x7) (2.30)

Example 2.21

Although we could solve the Solow growth model explicitly if the production
function was a Cobb—Douglas by using a transformation suggested by Bernoulli,
it provides a good example of a typical nonlinear differential equation problem.
Our equation is

k = f(k) = sak® — (n + 8)k

This function has two fixed points obtained from solving
k[sak® ' —(n+8)] =0

namely

-G
n

Taking a first-order Taylor expansion about point k¥, we have
flk) = f(K) +f' (k™) k — k)
where
F(k*) = asa(k)* ' — (n + 8)
and f(k*)=0
Consider first k* = kj = 0, then
FU) = lim f'(k) = lim[asak®™" — (n 4 8)] = o0

Next consider k = k5 > 0, then f(k3) = 0 and

(27!
asa(k3)* ™ — (n+8) = asa|:( a ) j| —(n+9)

F&) n+4é

a(n+68)—(n+9)
—(n+8)1 -0
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Figure 2.18. k

f)= — (n+8)(1~0)(k—k3)

Sik)y=sak*~(n+8)k

Hence
flk) = —(n+8)(1 — a)(k — k)

Since 0 < o < 1 and n and § are both positive, then this has a negative slope
about k3 and hence & is a locally stable equilibrium. The situation is shown in
figure 2.18.

The first-order linear approximation about the non-zero equilibrium is then

k=) = —(n+8)(1 — a)(k — k")
with the linear approximate solution

k() = K5 + (k(0) — k3)e™ rHoXI=e
As t — oo then k(t) — k.

What we are invoking here is the following theorem attributed to Liapunov

THEOREM 2.1
If x = f(x) is a nonlinear equation with a linear approximation

&) =f0) + /) —x")

about the equilibrium point x*, and if x* is (globally) stable for the linear
approximation, then x* is asymptotically stable for the original nonlinear
equation.

Care must be exercised in using this theorem. The converse of the theorem is
generally not true. In other words, it is possible for x* to be stable for the nonlinear
system but asymptotically unstable for its linear approximation.
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x Figure 2.19.
X x
. .3
x=a(x—x)
x>0 x<0
*
x =0 X
Example 2.22
Consider
X =f(x) = a(x — x*) —00 < X < 00, a>0

There is a unique equilibrium at x = x* = 0 which is globally stable. This is readily
seen in terms of figure 2.19, which also displays the phase line.
Now consider its linear approximation at x = x*

() = 3a(x — x*)*
=0
and so
X =) =f") +f(H)x —x*) =0

which does not exhibit global stability. This is because for any xy # x* then x = xo
for all ¢ since x = 0. Consequently, x, does not approach x* in the limit, and so
x* = 0 cannot be asymptotically stable.
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We shall return to linear approximations in chapter 3 when considering differ-
ence equations, and then again in chapters 4 and 5 when we deal with nonlinear
systems of differential and difference equations. These investigations will allow
us to use linear approximation methods when we consider economic models in
part IL.

2.11 Solving differential equations with Mathematica
2.11.1 First-order equations

Mathematica has two built in commands for dealing with differential equations,
which are the DSolve command and the NDSolve command. The first is used to
find a symbolic solution to a differential equation; the second finds a numerical
approximation. Consider the following first-order differential equation

dy

i 1

PR
In particular, we are assuming that y is a function of ¢, y(#). Then we employ the
DSolve command by using

DSolve[y” [t]==F[y[t].t]l.y[t].t]

Note a number of aspects of this instruction:

) The equation utilises the single apostrophe, so y'(#) denotes dy/dt

2) The function f(y(¢), f) may or may not be independent of ¢

3) ¥(t) is written in the equation rather than simply y

(@) The second term, y(t), is indicating what is being solved for, and ¢ denotes

the independent variable.

It is possible to first define the differential equation and use the designation in the
DSolve command. Thus

Eq = y’[t]==F[y[t].t]
DSolve[Eq,y[t],t]

If Mathematica can solve the differential equation then this is provided in the
output. Sometimes warnings are provided, especially if inverse functions are being
used. If Mathematica can find no solution, then the programme simply repeats the
input. The user does not need to know what algorithm is being used to solve the
differential equation. What matters is whether a solution can be found. What is
important to understand, however, is that a first-order differential equation (as we
are discussing here) involves one unknown constant of integration. The output
will, therefore, involve an unknown constant, which is denoted C[1].

Consider the examples of first-order differential equations used in various places
throughout this chapter shown in table 2.1.

Mathematica has no difficulty solving all these problems, but it does provide
a warning with the last stating: “The equations appear to involve transcendental
functions of the variables in an essentially non-algebraic way.” What is also illus-
trated by these solutions is that the output may not, and usually is not, provided in
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Table 2.1 First-order differential equations with Mathematica

Problem Input instructions
@  dx .
%= kx DSolve[x” [t]==kx[t],x[t],t]
(i) % — 1+ DSolve[x” [t]==1+cExp[t],x[t], ]
(i) dp »
i ab —d)p=ala—c) DSolve[p’[t]-« (b-d)p[t]l==a(a-c),p[t].t]
@) % = kx(a — x) DSolve[x” [t]==kx[t](a-x[t]),x[t].t]
) k= sak®—(n+ 8k DSolve[k” [t]==sak[t]*-(n+s)K[t],k[t],t]

Table 2.2 Mathematica input instructions for initial value problems

Problem Input instructions
i d
O P pa—tpp0)=p0  DSolve[{p’[t]==p[t](a-bp[t]),p[0]==p0},
p[t].t]
(i)  dn
i —n, n(0) = n0 DSolve[{n’ [t]==-An[t],n[0]==n0},n[t],t]
(i) dy 5 Py Pmmy 2 —
Pt 2x+1,y(0) =1 DSolve[{y’ [X]==x<-2x+1,y[0]==1},y[x1.x]
X

a way useful for economic interpretation. So some manipulation of the output is
often necessary.

It will be noted that none of the above examples involve initial conditions, which
is why all outputs involve the unknown constant C[1]. Initial value problems are
treated in a similar manner. If we have the initial value problem,

dy _ _
o =f(y,)  y(0)=»0

then the input instruction is
DSolve[{y” [t]==f[y[t].t].y[0]==y0},y[t].t]

For example, look at table 2.2.

2.11.2 Second-order equations

Second-order differential equations are treated in fundamentally the same way. If
we have the homogeneous second-order differential equation

d?y | dy
REEAN s =0
adt2 + Ut +cy
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Table 2.3 Mathematica input instructions for second-order differential equations

Problem Input Instructions

: 2
® % +4% —5y=0 DSolvel[y””[t]+4y’ [t]-5y[t]==0,y[t].t]
i)  Y'O+HO+40 =0 DSolve[y”” [t]+4y” [t]+4y[t]==0,y[t] . t]
(i) Y'O+2YO+2y@) =0 DSolvely”’[t]+2y’ [t]+2y[t]==0,y[t].t]
vy YO+yn=t DSolvely””[t]+y”[t]==t,y[t].t]

Table 2.4 Mathematica input instructions for initial value problems

Problem Input instructions
: 2
® % + 4% —5y=0, DSolve[{y”’[t]+4y’ [t]-5y[t]==0,y[0]==0,
[0]==1},y[t].t
3(0) = 0.y/(0) = 1 y’[0]==1}.y[t].t]
(i) Y1) + 4y (1) + 4y(r) = 0, DSolve[{y’’[t]+4y’ [t]+4y[t]==0,y[0]==3,
y0)=3,y0)=7 y”[01==7}.,y[t].t]

then the input instruction is'!
DSolve[ay”~ [t]+by” [t]+cy[t]==0,y[t].t]
If we have the nonhomogeneous second-order differential equation

d®y dy
— +b— = g(t
a 2 + o +cy = g(¥)

then the input instruction is
DSolve[ay”~ [t]+by” [t]+cy[t]==g[t],y[t],t]

Of course, the solutions are far more complex because they can involve real and
distinct roots, real and equal roots and complex conjugate roots. But the solution
algorithms that are built into Mathematica handle all these. Furthermore, second-
order differential equations involve two unknowns, which are denoted C[1] and
C[2] in Mathematica’s output.

The Mathematica input instructions for some examples used in this chapter are
shown in table 2.3.

Initial value problems follow the same structure as before (table 2.4).

2.11.3 NDSolve

Many differential equations, especially nonlinear and nonautonomous differential
equations, cannot be solved by any of the known solution methods. In such cases a
numerical approximation can be provided using the NDSolve command. In using
NDSolve it is necessary, however, to provide initial conditions and the range for

T Do not use the double quotes in these equations; rather input the single quote twice.
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the independent variable. Given the following initial value problem

d
= =000 3(0) =)0
the input instruction is
NDSolve[{y” [t]==f[y[t].t].y[0]==y0},
y[t].{t,tmin,tmax}]

Mathematica provides output in the form of an InterpolatingFunction that rep-
resents an approximate function obtained using interpolation. This Interpolating-
Function can then be plotted. Since it is usual to plot an InterpolatingFunction,
then it is useful to give the output a name. For example, given the problem

d
d—f —sin3t—y)  y0)=05,  re[0,10]

the instruction is
sol=NDSolve[{y’[t]==Sin[3t-y[t]].y[0]==0.5},
y[t].{t,0,10}]
Although the output is named ‘sol’, the solution is still for the variable y(f). So the
plot would involve the input

Plot[y[t] /- sol, {t,0,10}]

Note that the range for ¢ in the plot is identical to the range given in the NDSolve
command.

Higher-order ordinary differential equations are treated in the same way. For
example, given the initial value problem

dzy dy . ’
SIH0S 4sin0) =0, O =-1YO =0  re[0,15]

the input instruction is

sol=NDSolve[{y””[t]+0.5y” [t]+Sin[y[t]]==0,
y[0]==-1,y*[0]==0}, y[t],{t,0,15}]

with plot
Plot[y[t] /- sol, {t,0,15}]

2.12 Solving differential equations with Maple
2.12.1 First-order equations

Maple has a built in command for dealing with differential equations, which is the
dsolve command. This command is used to find a symbolic solution to a differential
equation. The command dsolve(..., numeric) finds a numerical approximation.
Consider the following first-order differential equation

dy B
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In particular, we are assuming that y is a function of ¢, y(#). Then we employ the
dsolve command by using

dsolve(diff(y(D),)=Ff(y(t),1),y(D));
Note a number of aspects of this instruction:

D The equation utilises diff(y(¢), ¢) to denote dy/dt

2) The function f(y(¢), f) may or may not be independent of ¢
3) ¥(t) is written in the equation rather than simply y
“4) The second term, y(#), is indicating what is being solved for and that ¢ is

the independent variable.

It is possible to first define the differential equation and use the designation in the
dsolve command. Thus

Eq:=diff(y(t),t);
dsolve(Eq,y(t));

If Maple can solve the differential equation then this is provided in the output. If
Maple can find no solution, then the programme simply gives a blank output. The
user does not need to know what algorithm is being used to solve the differential
equation. What matters is whether a solution can be found. What is important to
understand, however, is that a first-order differential equation (as we are discussing
here) involves one unknown constant of integration. The output will, therefore,
involve an unknown constant, which is denoted _C1.

Consider the following examples of first-order differential equations used in
various places throughout this chapter (table 2.5). Maple has no difficulty solving
all these problems. What is illustrated by these solutions is that the output may
not, and usually is not, provided in a way useful for economic interpretation. So
some manipulation of the output is often necessary.

It will be noted that none of the above examples involves initial conditions,
which is why all outputs involve the unknown constant _C/. Initial value problems

Table 2.5 Maple input instructions for first-order differential equations

Problem Input instructions
@) dx _ .
i kx dsolve(diff(x(t),t)=k*x(t),x(t));
(i) dx , i .
i 1+ ce dsolve(diff(x(t),t)=1+c*exp(t),x(t));
(i) dp - * *
i ab —d)p =ala—-c) dsolve(diff(p(t),t)-alpha*(b-d)*p(t)=
) alpha*(a-c),p(t));
@) %;::kﬂa——x) dsolve(difF(x(t),t)=
_ k*x()*(a-x(1)) ,x(1));
) k=sak® — (n+ 8)k dsolve(diff(k(t),t)=s*a*k(t)"alpha-

(n+delta)*k(t) ,k(t));
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Table 2.6 Maple input instructions for first-order initial value problems

Problem Input instructions
@ % = pla — bp), p(0) = poO dsolve ({diff(p(t),t)=

B p(t)*(a-b*p(t)),p(0)=p0},p(L));
@ dn o n©) = n0 dsolve({diFF(n(L),t)=

a —lambda*n(t) ,n(0)=n0},n(t)):
(i) % =2 2+ 1,y0) =1 dsolve ({diff(y(x),x)=

x"2-2*x+1,y(0)=1},y(X));

are treated in a similar manner. If we have the initial value problem,

d
== O =)0

then the input instruction is

dsolve({diff(y(t),t)=F(y(t),t),y(0)=y0},y(t));

For example, look at table 2.6.

2.12.2 Second-order equations

Second-order differential equations are treated in fundamentally the same way. If
we have the homogeneous second-order differential equation
d*y

b2 4y =0
a—-— _— =
dr? dt <

then the input instruction is
dsolve(a*diff(y(t),t$2)+b*diff(y(t),t)+c*y(t)=0,y(t));
If we have the nonhomogeneous second-order differential equation

d’y dy
ATy d = ot
a5 + dt+cy g

then the input instruction is

dsolve(a*diff(y(t),t$2)+b*diff(y(t),t)+c*y(t)
=g(t),y(1));

Of course, the solutions are far more complex because they can involve real and
distinct roots, real and equal roots and complex conjugate roots. But the solution
algorithms that are built into Maple handle all these. Furthermore, second-order
differential equations involve two unknowns, which are denoted _-C/ and _C2 in
Maple’s output.

The input instructions for some examples used in this chapter are shown in
table 2.7.

Initial value problems follow the same structure as before (table 2.8).
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Table 2.7 Maple input instructions for second-order differential equations

Problem Input instructions
: 2

@ % n 4% —sy=0 dsolve(diff(y(t), t$2)+4*di FF(y(t),t)-
5*y(1)=0,y(t));

() YO+ O +40=0 dsolve(diff(y(t),t$2)+4*diff(y(t),t)+
4*y()=0,y(1));

i)  Y'O+2YO+2y0=0 dsolve(diff(y(t),t$2)+2*diff(y(t),t)+
2*y(1)=0,y(t));

i) Y'O+y@®=t dsolve(diff(y(t),t$2)+diff(y(t),t)=
t,y(t);

Table 2.8 Maple input instructions for second-order initial value problems

Problem Input instructions

i  dy dy . .
n + 45 —5y=0, dsolve({diff(y(t),t$2)+4*diFF(y(t),t)-
¥(0)=0,y'(0) =1 5*y(1)=0,y(0)=0,D(y) (0)=1},y(t));

(i) V' () + 4y (1) + 4y(t) = 0, dsolve({diff(y (L), t$2)+4*diff(y(t),t)+
¥y0)=3,y(0)=7 4*y(1)=0,y(0)=3,D(¥)(0)=7},y(D));

2.12.3 dsolve(..., numeric)

Many differential equations, especially nonlinear and nonautonomous differential
equations, cannot be solved by any of the known solution methods. In such cases
a numerical approximation can be provided using the dsolve(. .., numeric) com-
mand. In using the numerical version of the dsolve command, it is necessary to
provide also the initial condition. Given the following initial value problem,

% =fO®,n  y0)=y0

the input instruction is

dsolve({diff(y(t),t)=F(y(t),t),y(0)=y0},y(t),numeric);

Maple provides output in the form of a proc function (i.e. a procedural function)
that represents an approximate function obtained using interpolation. This proce-
dure can then be plotted. Since it is usual to plot such a procedural function, it is
useful to give the output a name. Furthermore, since the plot is of a procedural
function, it is necessary to use the odeplot rather than simply the plot command.
In order to do this, however, it is first necessary to load the plots subroutine with
the following instruction.

with(plots):
For example, given the problem

d
d—f —sinBr—y)  y0)=05  te[0,10]
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the instruction for solving this is
Soll=dsolve({diff(y(t),t)=sin(3*t-y(t)),y(0)=0.5},
y(t),numeric);

Although the output is named ‘Sol’, the solution is still for the variable y(f). So the
plot would involve the input

odeplot(Soll,[t,y(t)],0..10);

Note that the range for # is given only in the odeplot instruction.
Higher-order ordinary differential equations are treated in the same way. For
example, given the initial value problem,

dzy dy . ’
W-I-O.Sa—l-sm(y)zo, y(0) = —1,y(0) =0, t € [0,15]
the input instruction is
Sol2=dsolve({diff(y(t),t$2)+0.5*diff(y (1),
B+sin(y(t))=0, y(0)=-1,D(y)(0)=0},y(t),numeric);
with plot

odeplot(Sol2,[t,y(t)],0..15);

Appendix 2.1 Plotting direction fields for a single equation
with Mathematica

Figure 2.8 (p. 45)

Given the differential equation

A, T
dx Y

the direction field and isoclines can be obtained using Mathematica as follows:
Step 1 Load the PlotField subroutine with the instruction
<< Graphics PlotField”

Note the use of the back-sloped apostrophe.
Step 2 Obtain the direction field by using the PlotVectorField command as
follows

arrows=PlotVectorField[{1,2x-y},{X,-2,2},{y,.-2,2}]

Note the following:

(a) ‘arrows’ is a name (with lower case a) which will be used later in the
routine

(b) the first element in the first bracket is unity, which represents the time
derivative with respect to itself

(c) if memory is scarce, the plot can be suppressed by inserting a semi-
colon at the end of the line.
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Step 3

Step 4

Step 5

Step 6

Step 7

Solve the differential equation using the DSolve command (not available
prior to version 2.0)

sol=DSolve[ y’[x]+y[x]==2x, v[x]., x]

Note the double equal sign in the equation.
Derive an arbitrary path by extracting out the second term in the previous
result. This is accomplished with the line

path=sol[[1,1,2]]

Derive a series of trajectories in the form of a table using the Table
command.

trajectories=Table[sol[[1,1,2]]1/-C[1]->a,{a,-2,2,-5}]

Note the following:

(a) the solution to the differential equation is evaluated by letting C[1],
the constant of integration, take the value of a. This is accomplished
by adding the term /. C[1]->a’

(b) a is then given values between —2 and 2 in increments of (.5.

Plot the trajectories using the Plot and Evaluate commands

plottraj=Plot[ Evaluate[trajectories], {x,-2,2} ]

Note thatitis important to give the domain for x the same as in the direction
field plot.

Combine the direction field plot and the trajectories plot using the Show
command (not available prior to version 2.0)

Show[arrows,plottraj]

This final result is shown in figure 2.8.

Figure 2.9(a) (p. 46)

This follows similar steps as for figure 2.8, and so here we shall simply list the
input lines, followed by a few notes.

ey
(@)
3
“)
&)
(6)

(N

Input <<Graphics PlotField™
Input malthus[t_, k_,p0_]=p0 E~(k t)
Input malthus[0,0.01,13]
Input malthus[150,0.01,13]
Input popl=Plot[ malthus t,0.01,13 ], {t,0,150%} ]
Input arrows=PlotVectorField[{1, 0.01p},
{t.,0,150}, {p,0,60}]
Input Show[popl,arrows,
AxesOrigin->{0,0},
AxesLabel->{"t","p"} ]

Input (2) and (3) are simply to check the initial population size and the final
population size. Input (6) has {1, kp} (with k = 0.01) as the first element in the
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PlotVectorField. Input (7) indicates some options that can be used with the Show
command. These too could be employed in (a) above.

Figure 2.9(b) (p. 46)

Before we can plot the logistic function we need to solve it. In this example we
shall employ the figures for @ and b we derive in chapter 14 for the UK population
over the period 1781-1931.

a=0.02 and b = 0.000436
and with p0 = 13.
(D) Input <<Graphics PlotField”

2) Input DSolve[{p’[t]==(0.02-0.000436p[tDp[t].
p[0]==13}, p[t], t ]
3) Input logistic=%[[1,1,2]]
“4) Input logplot=Plot[logistic, {t,0,150%} ]
o) Input arrows=PlotVectorField[{1,0.02p-0.000436p"2},
{t,0,150}, {p,0,50} ]
(6) Input Show[logplot, arrows,
AxesOrigin->{0,0},
AxesLabel->{"t","p"} ]
Note again that the PlotVectorField has the first element in the form {1, (a — bp)p}
(with @ = 0.02 and b = 0.000436).

Appendix 2.2 Plotting direction fields for a single
equation with Maple

Figure 2.8 (p. 45)

Given the differential equation

A, T
dx =Y

the direction field and isoclines can be obtained using Maple as follows:
Step 1 Load the DEtools subroutine with the instruction
with(DEtools):

Note the colon after the instruction.
Step 2 Define the differential equation and a set of points for the isoclines.

Eq:= diff(y(X),x)=2*x-y
Points:={[-2,2].[-1,1].[-1,0.5],[-0.5,-2],
[0,-2],[0.5,-1.5],[0.5,-1],[1,-1],[1.5,-0.5]1};
Step 3 Obtain the direction field and the integral curves with the instruction

DEplot(Eq,y(X),x=-2..2,Points,y=-2..2, arrows=slim,
linecolour=blue);
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Note that the direction field has six elements:

®
(ii)

(iii)
(iv)

(v)
(vi)

the differential equation

y(x) indicates that x is the independent variable and y the dependent
variable

the range for the x-axis

the initial points

the range for the y-axis

a set of options; here we have two options:

(a) arrows are to be drawn slim (the default is thin)

(b) the colour of the lines is to be blue (the default is yellow).

Figure 2.9(a) (p. 46)

This follows similar steps as figure 2.8 and so we shall be brief. We assume a new
session. Input the following:

ey
@
3
“
&)
(6)

with(DEtools):

equ:=p0*exp(k*t);

newequ:=subs(p0=13,k=0.01,equ);

inisol:=evalf(subs(t=0,newequ));

finsol :=eval f(subs(t=150, newequ)) ;

DEplot(diff(p(t),t)=0.01*p,p(t),t=0..150,{[0,13]},
p=0..60, arrows=slim,linecolour=blue);

Instructions (2), (3), (4) and (5) input the equation and evaluate it for the initial
point (time # = 0) and at t = 150. The remaining instruction plots the direction
field and one integral curve through the point (0, 13).

Figure 2.9(b) (p. 46)

The logistic equation uses the values ¢ = 0.02 and b = 0.000436 and p0 = 13.
The input instructions are the following, where again we assume a new session:

ey
@

with(DEtools):

DEplot(diff(p(t),t)=(0.02-0.000436*p)*p,p(t),
t=0..150,{[0,13]},p=0..50,arrows=slim,
linecolour=blue);

Exercises

Show the following are solutions to their respective differential equations

dy_

. =k — kx
1) i y y=ce
Lo dy —X
i) 25 =~ y=x+y =c
(i) dy =2y a
i) — = — = —
dx X Y x2



Continuous dynamic systems

81

Analyse the qualitative and quantitative properties of the Gompertz
equation for population growth

p=p(t)=kp(a—1Inp)

Solve the following separable differential equations

d
) ZL=x1-y» —1<y<l
dx
d
Gi) D =1-2y4?
dx
Lody Y
(i) dx  x?
Solve the following initial value problems
d
1) —y=x2—2x+l y=1whenx=0
dx
d 3x% 4 4x +2
(ii) _y:M y=—1whenx=0
dx 20— 1)
Solve the following Bernoulli differential equations
. dy 2
M) - —y=-y
.. dy 2
(i) — —y =y
dy

iii) — =2y -’
(iif) —= =2y — €'y
Show that the logistic equation

dp
X pa—b
m p( P)

can be represented as a Bernoulli function. Using a suitable transfor-
mation, solve the resulting linear differential equation; and hence show
that

apo
(@ — bpo)e" + bpy

In the Great Hall in Winchester hangs a round table on the wall that was
purported to be King Arthur’s famous original round table top. Wood con-
tains carbon-14 with a decay-constant of 1.245 x 10~ per year. Living
wood has a rate of disintegration of 6.68 per minute per gram of sample.
When the tabletop was inspected in 1977 the rate of disintegration was
found to be 6.08 per minute per gram of sample. Given King Arthur was
on the throne in the fifth century AD, demonstrate that the tabletop at
Winchester was not that of King Arthur.

(Use information in exercise 7.) In 1950 the Babylonian city of Nippur
was excavated. In this excavation there was charcoal from a wooden roof
beam which gave off a carbon-14 disintegration count of 4.09 per minute

p(t) = where p(0) = po
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9.

10.

1.

12.

13.

14.

per gram. If this charcoal was formed during the reign of Hammurabi,

what is the likely time of Hammurabi’s succession?

(1) fi(x) and f>(x) are linearly dependent if and only if there exists con-
stants b; and b, not all zero such that

bifix) + byfo(x) =0

for every x. Suppose b; # 0, then fi(x) = —(b2/by) fo(x) and so
f1(x) is a multiple of f>(x) and therefore the functions are linearly
dependent. If the set of functions is not linearly dependent, then f;(x)
and f>(x) are linearly independent. Show that y; = ¢" and y, = te"
are linearly independent.

(i1) fi(x), f2(x) and f3(x) are linearly dependent if and only if there exist
constants by, b, and bz not all zero such that

b1fix) + brfo(x) + b3 f3(x) =0

for every x. If the set of functions is not linearly dependent, then f; (x),
f>(x) and f5(x) are linearly independent. Show thaty; = e”, y, = te”
and y3 = t%¢" are linearly independent.
For the second-order linear differential equation with complex conjugate
roots r = o + Bi and s = o — Bi, show that

y(1) = cre’ + e

is equivalent to

y(1) = c1e* cos(B1) + c2e* sin(Bt)

by using Euler’s identity that for the complex number if
e? =cos B +isinp

A principal P is compounded continuously with interest rate r.

(1) What is the rate of change of P?

(ii) Solve for P at time ¢, i.e., P(t), given P(0) = P,.
(iii) If Py = £2,000 and r = 7.5% annually, what is P after 5 years?
If £1,000 is invested at a compound interest of 5%, how long before the
investment has doubled in size, to the nearest whole year?
Ifx=x>+2x—15

(i) establish the fixed points
(i1) determine whether the fixed points are attracting or repelling.
Given the following parameters for the Solow growth model

a=4,0=0.25s5=0.1,6 =04,n=0.03

(1) use a software program to plot the graph of k()
(ii) plot the function

k = sak® — (n+ 8)k

(iii) Linearise k about the equilibrium in (ii) and establish whether it is
stable or unstable.
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15.

16.

17.

18.

19.

20.

Given the differential equation

-(2)r=o

for the Harrod—Domar growth model:

(i) construct a diagram of ¥ against Y and establish the phase line for
this model

(ii) establish Y(¢) given Y(0) = Y.

From Domar (1944), assume income Y (#) grows at a constant rate . In

order to maintain full employment the budget deficit, D(¢), changes in

proportion k to Y (¢), i.e.,

D) = kY ()

Show that

DO _ (B0 Ao &
Y@@ Yo r r

At what nominal interest rate will it take to double a real initial investment

of A over 25 years, assuming a constant rate of inflation of 5% per annum?

Table 2A.1 provides annual GDP growth rates for a number of countries

based on the period 1960-1990 (Jones 1998, table 1.1).

(a) In each case, calculate the number of years required for a doubling
of GDP.

(b) Interpret the negative numbers in the ‘years to double’ when the
growth rate is negative.

In 1960 China’s population was 667,073,000 and by 1992 it was

1,162,000,000.

(a) What is China’s annual population growth over this period?

(b) How many years will it take for China’s population to double?

(c) Given China’s population in 1992, and assuming the same annual:
growth rate in population, what was the predicted size of China’s
population at the beginning of the new millennium (2000)?

An individual opens up a retirement pension at age 25 of an amount

£5,000. He contributes £2,000 per annum each year up to his retirement

at age 65. Interest is 5% compounded continuously. What payment will
he receive on his retirement?

Table 2A.1 GDP growth rates, selected countries, 1960—1990

‘Rich’ Growth Years to ‘Poor’ Growth Years to
countries rate double countries rate double
France 2.7 China 2.4

Japan 5.0 India 2.0

West Germany 2.5 Uganda —-0.2

UK 2.0 Zimbabwe 0.2

USA 1.4

Source: Jones (1998, table 1.1).
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Additional reading

For additional material on the contents of the present chapter the reader can consult:
Arrowsmith and Place (1992), Berry (1996), Borrelli et al. (1992), Boyce and
DiPrima (1997), Braun (1983), Burmeister and Dobell (1970), Davies (1979),
Giordano and Weir (1991), Griffiths and Oldknow (1993), Jeffrey (1990), Lynch
(2001), Mahajan and Peterson (1985), Percival and Richards (1982), Takayama
(1994) and Tu (1994).



CHAPTER 3

Discrete dynamic systems

3.1 Classifying discrete dynamic systems

A discrete dynamic systemis a sequence of numbers, y,, that are defined recursively,
i.e., there is a rule relating each number in the sequence to previous numbers in
the sequence; we denote such a sequence {y,}.

A first-order discrete dynamic system is a sequence of numbers y, for r =
0, 1,2 ... such that each number after the first is related to the previous num-
ber by the relationship

Ver1 = (1) (3.1)

We shall refer to (3.1) as a recursive equation. The sequence of numbers given
by the relationship

Ayt = yerr —ye = 8(00) 3.2
we shall refer to as a first-order difference equation.! Examples are
® Y1 =24y  implies  yq—y =2
(i) Yer1 = 2y implies Y1 = Ve = Yt

Given the discrete dynamic system y,; = f(y;), thenif f(y,) is linear, the system
is said to be linear; if f(y,) is nonlinear then the system is said to be nonlinear.
Examples

() Yie1 =2+ 3y, linear
() Y2 —2y41 — 3y, =5  linear
(iii) Ve = 3.2y:(1 — y;) nonlinear
(iv) Vi1 = ry; In(k/vy) nonlinear

Consider the general discrete dynamic system

Yer1 = [, y1) (3.3

For example

Yir1 = th(y;)

! Often equation (3.1) and equation (3.2) are each referred to as a difference equation.
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(3.4)

As in the case of differential equations, if the dynamic system depends not only
on h(y,) but also on ¢ itself, then the system is said to be nonautonomous. If,
however, the dynamic system is independent of 7, then it is said to be autonomous.
Hence, y;+1 =t + 2y, is a nonautonomous dynamic system, while y,;; = 2y, is
autonomous.

Suppose we consider a linear first-order difference equation with all y-terms on
the left-hand side, for example

Vir1 +ay, = g()

If g(r) = O for all ¢, then these equations are said to be homogeneous, otherwise
they are nonhomogeneous. They are referred to as homogeneous difference equa-
tions because if a series {y,} satisfies the equation, then so does the series {ky,}.

Of particular importance is the order of a dynamic system. The dynamic system
(3.1) is a first-order system in which each number in the sequence depends only
on the previous number. In general, an mth-order discrete dynamic system takes
the form

Yi+m :f(yH—m—h Yerm—=25 -« yt)
For instance, a second-order linear discrete dynamic system takes the general form

Vg2 +ayip1 + by, = g(t)

This would be a second-order linear homogeneous dynamic system if g(#) = O for
all z.
Examples are:

@) Vir1 — 2y, =0 is first-order linear homogeneous

(i1) Verr — 4y —4y, =0 is second-order linear homogeneous
(iii) Yyl — 2y, =5 is first-order linear nonhomogeneous
(@iv) Vg2 — 4y —4y, =6 is second-order linear nonhomogeneous

All are also examples of autonomous systems. In this book we shall consider only
autonomous systems.

3.2 The initial value problem

The initial value problem is the requirement of knowing certain initial values in
order to solve the sequence of numbers. Thus, for y;+1 = f(y;)

Yir2 = Fer) = FFO0)) = F2 ()

Hence, the sequence of numbers is defined only given some initial value for y;. In
the case of a second-order sequence, then we require to know two initial values.
This is because, if

Yee2 = f(Veg1, Y1)

then

Vi3 = f(Ver2, Yr1) = Ff Y15 Y1) Yis1)
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and so on. Hence, each number in the sequence ultimately depends on two initial
values, y,4 and y,. This requirement generalises. For an m-order dynamic system
m-initial values are generally required for its solution.

Let

Yer1 = f(31) yoatt =0

This represents a recursive equation and we can generate a sequence starting
from the value yy. The sequence would be

Y0, f(y0), f (S o)), S (f(yo))), -

Letting f"(yo) denote the nth iterate of yy under f, then the sequence can be ex-
pressed

Y0 F(0)s F2(30)s 2 (o), - - -

The set of all (positive) iterates { f"(yy), n > 0} is called the (positive) orbit of y,.

3.3 The cobweb model: an introduction

To highlight the features so far outlined, and others to follow, consider the following
typical cobweb model in which demand at time ¢, qﬁ’ , depends on the price now
ruling on the market, p;, while the supply at time ¢, g;, depends on planting, which
in turn was governed by what the price the farmer received in the last period, p,_;.
The market is cleared in any period, and so ¢¢ = ¢°. Assuming linear demand and
supply curves for simplicity, the model is, then,

g =a—bp, a,b>0
¢ =c+dpi d>0
4 =q

Substituting, we obtain

a—bp,=c+dp

r=(5) - ()

which is a first-order nonhomogeneous dynamic system. It is also an autonomous
dynamic system since it does not depend explicitly on .

This model is illustrated in figure 3.1. The demand and supply curves are indi-
cated by D and S, respectively. Because we have a first-order system, we need one
initial starting price. Suppose this is py. This gives a quantity supplied in the next
period of gy, read off the supply curve, and indicated by point a. But since demand
equals supply in any one period, this gives a demand of also g, while this demand
implies a price of p; in period 1. This in turn means that supply in period 2 is ¢».
And so the sequence continues.

We shall refer to this model frequently in this chapter.

or

(3.5)

(3.6)
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Figure 3.1. p

P

P

3.4 Equilibrium and stability of discrete dynamic
systems

Ify,+1 = f(y,)is adiscrete dynamic system, then y* is a fixed point or equilibrium
point of the system if

(3.7) fOy) =y* forallt

A useful implication of this definition is that y* is an equilibrium value of the
system y,1; = f(y,) if and only if

V=100

For example, in the cobweb model (3.6) we have,
x_a—=c _ C_l *
r == (5)

a—c¢

T b+d

Hence

*

p

where p* > 0ifa > ¢

With linear demand and supply curves, therefore, there is only one fixed point,
one equilibrium point. However, such a fixed point makes economic sense (i.e. for
price to be nonnegative) only if the additional condition a > c is also satisfied.

As with fixed points in continuous dynamic systems, a particularly important
consideration is the stability/instability of a fixed point. Let y* denote a fixed point
for the discrete dynamic system y,y; = f(y,). Then (Elaydi 1996, p. 11)
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®

(ii)

(iii)

The equilibrium point y* is stable if given & > 0 there exists § > 0 such
that

|)’0 - y*| <$é implies ’f"(yo) - y*’ <é

for all n > 0. If y* is not stable then it is unstable.
The equilibrium point y* is a repelling fixed point if there exists ¢ > 0
such that

0<ly—y|<e implies |f(yo)—y*| > |yo— "

The point y* is an asymptotically stable (attracting) equilibrium point?
if it is stable and there exists 7 > 0 such that

|y0 — y*| <n implies lim y, = y*
—00

If n = oo then y* is globally asymptotically stable.

All these are illustrated in figure 3.2(a)—(e).
In utilising these concepts we employ the following theorem (Elaydi 1996,
section 1.4).

THEOREM 3.1

Let y* be an equilibrium point of the dynamical system

Yer1 = f (1)

where f'is continuously differentiable at y*. Then

(i) if ! f (y*)| < 1 then y* is an asymptotically stable (attracting)
fixed point
(ii) if ’f’(y*)} > 1 then y* is unstable and is a repelling fixed point
(i) if || =1and
(a) if f"(y*) # 0, then y* is unstable
(b) if f"(y*) = 0 and f""'(y*) > 0O, then y* is unstable
(c) if f/(y*) =0 and f"(y*) <0, then y* is asymptotically
stable
(iv)  iff (") =—land
(a) if =2f"(y*) =3[f'(y)]> <O, then y* is asymptotically
stable
(b) if =2f"(y*) = 3[f"(y)? > 0, then y* is unstable.

The attraction and repulsion of a fixed point can readily be illustrated for a
first-order system. Suppose f(y,) is linear for the first-order system y;+; = f(y,).
This is represented by the lines denoted L in figures 3.3(a) and (b), where y, is
marked on the vertical axis and y, on the horizontal axis. The equilibrium condition
requires y,+; = ¥, for all #, hence this denotes a 45°-line, denoted by E in figures
3.3(a) and (b). The fixed point in each case, therefore, is y*.

2 Sometimes an asymptotically stable (attracting) equilibrium point is called a sink.
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Figure 3.2.

(a) Stable (b) Unstable
e Ye "
. -
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Y-t
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t t
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e
y' //—‘*
¥ 2 4 6 8 10

Consider first figure 3.3(a). We require an initial value for y to start the sequence,
which is denoted y(. Given yy in period 0, then we have y; in period 1, as read off
from the line L. In terms of the horizontal axis, this gives a value of y; as read off
the 45°-line (i.e. the horizontal movement across). But this means that in period 2
the value of y is y,, once again read off from the line L. In terms of the horizontal
axis this also gives a value y,, read horizontally across. Regardless of the initial
value yy, the sequence converges on y*, and this is true whether yj is below y*, as in
the figure, or is above y*. Using the same analysis, it is clear that in figure 3.3(b),
starting from an initial value of y of yy, the sequence diverges from y*. If yy is
below y* then the system creates smaller values of y and moves away from y*
in the negative direction. On the other hand, if y, is above y*, then the sequence
diverges from y* with the sequence diverging in the positive direction. Only if
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3.3(a) (0<a<1) Figure 3.3.
attractor

Vi

Ly~ )

0 );0 Y N y‘ Y.
3.3(b) (@>1) )
repellor L) )
y1+1
E
Yo

0 ¥ / ooy ¥ ¥,

yo = y* will the system remain at rest. Hence, y* in figure 3.3(a) is an attractor
while y* in figure 3.3(b) is a repellor.

It is apparent from figure 3.2 that the essential difference between the two
situations is that the line in figure 3.3(a) has a (positive) slope less than 45°, while
in figure 3.3(b) the slope is greater than 45°.

Another feature can be illustrated in a similar diagram. Consider the following
simple linear dynamic system

Yie1 = =y +k



92

Economic Dynamics

Figure 3.4.

Given this system, the first few terms in the sequence are readily found to be:

Vel = =yt k

Vitr = V1 thk=—(=y+ k) +k=y
Vi3 = V2 k= -y t+k

Yierd = V3 Hh=—(=yi+ b +k=y

It is apparent that this is a repeating pattern. If y, denotes the initial value, then we
have

Yo=Y2=Ys=... and  y1=y;=ys=...

We have here an example of a two-cycle system that oscillates between —yg + k
and yy. There is still a fixed point to the system, namely

yi=—ytk

but it is neither an attractor nor a repellor. The situation is illustrated in figure 3.4,
where again the line L denotes the difference equation and the line E gives the
equilibrium condition. The two-cycle situation is readily revealed by the fact that
the system cycles around a rectangle.

Return to the linear cobweb model given above, equation (3.5). Suppose the
slope of the (linear) demand curve is the same as the slope of the (linear) supply

Y
k
Ey.=y)
VK2 :
L (yt+1:_y t+k)
0 Yo=Y~ y'=ki2 YT Ve

\; 2-cycle 4
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curve but with opposite sign. Then b = d and

a—c b
Pt = d _<;l>pl_1

a—c
:< d >_Ptl

Pi+1 = —p: + k where k =

or

a—=c¢

which is identical to the situation shown in figure 3.4, and must produce a two-cycle
result.
In general, a solution y, is periodic if

Yo+m = Yn

for some fixed integer m and all n. The smallest integer for m is called the period
of the solution. For example, given the linear cobweb system

qf’ =10 —2p;
CI? =4+2p;
4 =q

itis readily established that the price cycles between py and 3—py, while the quantity
cycles between 4 + 2pg and 10 — 2py (see exercise 12). In other words

Po=pP2r=p4=... and pP1=p3=ps=...

so that y,1» = y, for all n and hence we have a two-cycle solution.
More formally:

DEFINITION
If a sequence {y;} has (say) two repeating values y, and y,, then y, and
v, are called period points, and the set {y,y»} is called a periodic orbit.

Geometrically, a k-periodic point for the discrete system y.;; = f(y;) is the
y-coordinate of the point where the graph of f*(y) meets the diagonal line y,, | = y;.
Thus, a three-period cycle is where f3(y) meets the line y,, | = y;.

In establishing the stability/instability of period points we utilise the following
theorem.

THEOREM 3.2
Let b be a k-period point of f. Then b is

(i) stable if it is a stable fixed point of f*
(ii) asymptotically stable (attracting) if it is an attracting fixed point

of f*
(iii) repelling if it is a repelling fixed point of f*.
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In deriving the stability of a periodic point we require, then, to compute [ f*(y)]’,
and to do this we utilise the chain rule

O =F DGR .. f )

where y7, 3, ..., y; are the k-periodic points. For example, if y] and y; are two
periodic points of f2(y), then

LY = 7O O
and is asymptotically stable if
OO <1
All other stability theorems hold in a similar fashion.

Although it is fairly easy to determine the stability/instability of linear dynamic
systems, this is not true for nonlinear systems. In particular, such systems can
create complex cycle phenomena. To illustrate, and no more than illustrate, the
more complex nature of systems that arise from nonlinearity, consider the following
quadratic equation

Vi1 = aYr — bylz

First we need to establish any fixed points. It is readily established that two fixed
points arise since

by*
y*zay*_by*2:ay*(1_ y)

a

which gives two fixed points
a—1

b
The situation is illustrated in figure 3.5, where the quadratic is denoted by the graph
G, and the line E as before denotes the equilibrium condition. The two equilibrium
points, the two fixed points of the system, are where the graph G intersects the
line E.

Depending on the values for a and b, it is of course possible for the graph G
to be totally below the line E, in which case only one equilibrium point exists,
namely y* = 0. Whether one or more equilibria exist, the question of interest is
whether such a fixed point is stable or unstable. Suppose we attempt to establish
which by means of a numerical example

*

y'=0 and Y=

Virl =2y — )’;2

The situation is illustrated in figure 3.6, where G denotes the graph of the difference
equation, and the line E the equilibrium condition. The two equilibrium values are
readily found to be y* = 0 and y* = 1.

As in the linear system, we need to consider a starting value, which we denote
Yo, then y; = 2yg — y(z). But this is no more than the value as read off the graph G.
In terms of the horizontal axis, this value is read off by moving horizontally across
to the E-line, as shown more clearly in figure 3.7. Given y; then y, = 2y; — y% as
read off the graph G, which gives y, on the horizontal axis when read horizontally
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Yin Figure 3.5.
E
G
0y=0 y=(a-1)/b Y
Yen Figure 3.6.
E
1
; G
0y'=0 y=1 2y,

off the E-line. And so on. It would appear, therefore, that y* = 1 is an attractor.
Even if yy is above y* = 1, the system appears to converge on y* = 1. Similarly,

y* = 0 appears to be a repellor.

It is useful to use a spreadsheet not only to establish the sequence {y,}, but also
to graph the situation. A spreadsheet is ideal for recursive equations because the
relation gives the next element in the sequence, and for given initial values, the
sequence is simply copied to all future cells. A typical spreadsheet for the present
example is illustrated in figure 3.8, where we have identified the formulas in the

initial cells.
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Figure 3.7.

Figure 3.8. +$C5*B10-$C$6*B10"2

copied

Fixed point
(-1 = 1 Figure 3.8

T T T T —

0.20 040 060 0.80 1.00
y(t)

T
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Given such a spreadsheet, it is possible to change the initial value yy and see
the result in the sequence and on the various graphs that can be constructed.? For
instance, considering

Y1 =32y, — 0.8y}

readily establishes that the equilibrium value is y* = 2.75, but that this is not
reached for any initial value not equal to it. For any initial value not equal to the
equilibrium value, then the system will tend towards a two-cycle with values 2.05
and 3.20, as can readily be established by means of a spreadsheet. It is also easy
to establish that for any value slightly above or slightly below 2.75, i.e., in the
neighbourhood of the equilibrium point, then the system diverges further from
the equilibrium. In other words, the equilibrium is locally unstable. What is not
apparent, however, is why the system will tend towards a two-cycle result. We
shall explain why in section 3.7.

Nor should it be assumed that only a two-cycle result can arise from the logistic
equation. For instance, the logistic equation

Vir1 = 3.84y(1 — y1)

has a three-cycle (see exercise 13).

We can approach stability/instability from a slightly different perspective. Con-
sider the first-order difference equation y,; = f(y,) with fixed points satisfying
a = f(a). Let y denote y,;; and x denote y,, then the difference equation is of
the form y = f(x). Expanding this equation around an equilibrium point (a, a) we
have

y—a=fla)x—a)

or

y = a[l = f(@)] +f(a)x

which is simply a linear equation with slope f”(a). The situation is illustrated in
figure 3.9.

This procedure reduces the problem of stability down to that of our linear
model. There we noted that if the absolute slope of f(x) was less than the
45°-line, as in figure 3.9, then the situation was stable, otherwise it was un-
stable. To summarise,

If | f/(a)| < 1 then a is an attractor or stable

If | f’(a)| > 1 then a is a repellor or unstable

If | f'(a)| = 1 then the situation is inconclusive.*

We can use such a condition for each fixed point.

3 Many spreadsheets now allow graphics to be displayed within the spreadsheet, as shown here — espe-
cially those using the Windows environment. Hence, any change in initial values or parameter values
results in an immediate change in the displayed graph. This is a very interactive experimentation.

4 However, it is possible to utilise higher derivatives to obtain more information about the fixed point
a, as pointed out in theorem 3.1 (p. 89).
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Figure 3.9.

0 y=a x
Example 3.1
2
Yer1 =2y —

The fixed points can be found from

a=2a—d?
@ —a=0
ala—1)=0

a=0 and a=1
To establish stability, let

y=f(x)=2x—x

then

fx)=2—-2x

f0=2 and f(1)=0
Since

|f/(0)] > 1 then a = 0 is unstable
Since

|f'(1)] < 1thena = 1is stable

Example 3.2

Yer1 = 3.2y — 0.8);
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The fixed points can be found from
a=32a—- 084>
0.84> —22a=0
a(0.8a—2.2)=0
a=0 and a=2.5
To establish stability let
y = f(x) = 3.2x — 0.8x*
then
fx)=32—1.6x
f(0)=3.2 and  f'(2.75)=—-1.2
Since
|f'(0)| > 1 then a = Ois unstable
Since

|f'(2.75)| > 1 then a = 2.75 is unstable.

Although a = 2.75 is unstable, knowledge about f’(x) does not give sufficient
information to determine what is happening to the sequence {y,} around the point
a=2.75.

3.5 Solving first-order difference equations

For some relatively simple difference equations it is possible to find analytical
solutions. The simplest difference equation is a first-order linear homogeneous
equation of the form

Yer1 = ay:
If we consider the recursive nature of this system, beginning with the initial value
Yo, we have

Y1 = ayo

y2 = ayy = alayo) = a*yo

y3 = ay, = a(a®yy) = a*yo

Yn = a"y 0
The analytical solution is, therefore,
Yn = a"yo

satisfying the initial value yo. The properties of this system depend only on the
value and sign of the parameter a. There is only one fixed point to such a system,
y* = 0. For positive yy, if a exceeds unity, then the series gets larger and larger
over time, tending to infinity in the limit. If 0 < a < 1, then the series gets smaller

(3.8)

(3.9)



100  Economic Dynamics

Figure 3.10.
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and smaller over time, tending to zero in the limit. If a is negative, then the series
will alternate between positive and negative numbers. However, if —1 <a < 0
the values of the alternating series becomes smaller and smaller, tending to zero
in the limit. While if @ < —1, then the series alternates but tends to explode over
time. The various solution paths are plotted in figure 3.10.

Example 3.3

A number of systems satisfy this general form. Consider the Malthusian population
discussed in chapter 2, but now specified in discrete form. Between time tand 7 + 1
the change in the population is proportional to the population size. If p, denotes
the population size in period ¢, then Ap,+| = p;y1 — p; is proportional to p,. If k
denotes the proportionality factor, then

Api1 = kp,

pry1 = (1L +k)p;

which has the analytical solution

pr=0+ k)tPO
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where py is the initial population size. If population is growing at all, k > 0, then this
population will grow over time becoming ever larger. We shall discuss population
more fully in chapter 14.

Example 3.4

As a second example, consider the Harrod—Domar growth model in discrete time

S, =sY,
L=v(Y,— Y1)
S; - It

This gives a first-order homogeneous difference equation of the form

1%
Yt = thl
vV—=S

with solution

v t
Y, = Yo
vV—Ss

Ifv>0andv > sthen v/(v — s) > 1 and the solution is explosive and nonoscil-
latory. On the other hand, even if v > 0 if s > v then the solution oscillates, being
damped if s < 2v, explosive if s > 2v or constant if s = 2v.

The analytical solution to the first-order linear homogeneous equation is use-
ful because it also helps to solve first-order linear nonhomogeneous equations.
Consider the following general first-order linear nonhomogeneous equation

Vg1 = ayr + ¢

A simple way to solve such equations, and one particularly useful for the economist,
is to transform the system into deviations from its fixed point, deviations from
equilibrium. Let y* denote the fixed point of the system, then

C

y* — ay* +c
*
y= l1—a
Subtracting the equilibrium equation from the recursive equation gives
Vi1 =Y =aly, —y")

Letting x;11 = y,+1 — y* and x; = y, — y* then this is no more than a simple ho-
mogeneous difference equation in x

X1 = axy
with solution
ot
X; = a Xg
Hence,

v =y =d(yo—y")

(3.10)
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3.11)

(3.12)

(3.13)

or

o rd <
yt_l—a Yo 1 —a

which clearly satisfies the initial condition.

Example 3.5

Consider, for example, the cobweb model we developed earlier in the chapter,
equation (3.5), with the resulting recursive equation

_a-—c d
Pr = b b Pi—1

and with equilibrium

a—c
*_
p

T b+d

Taking deviations from the equilibrium, we have

d
pr—p"=—2(pi1 —p")
b
which is a first-order linear homogeneous difference equation, with solution

*x dt *
P — P —<—Z)0m—p)

= (559)+ (T (59

With the usual shaped demand and supply curves, i.e., b > 0 and d > 0, then
d/b > 0, hence (—d/b)" will alternate in sign, being positive for even numbers of ¢
and negative for odd numbers of 7. Furthermore, if 0 < |—d/b| < 1 then the series
will become damped, and in the limit tend towards the equilibrium price. On the
other hand, if |—d/b| > 1 then the system will diverge from the equilibrium price.
These results are verified by means of a simple numerical example and solved by
means of a spreadsheet, as shown in figure 3.11.

The examples we have just discussed can be considered as special cases of the

or

following recursive equation:
Ynt+1 = QAnYn yoatn =0
The solution to this more general case can be derived as follows:

Y1 = apYo
Y2 = apyr = apdo)o

Y3 = a2yz = aza1dpYo

Yn = Qp—1Qp—2 . ..A140Y0
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Figure 3.11.
3 4 a= 200¢= 2 a= 20¢c= 2
5 b= 44d= 25 b= 4d= 6
B p*= 2769231 -d/b = -0.625 p*= 18 -dib = -1.5:
7
8 t price Convergent t price Divergent
9 0 1 0 1
0 1 3.875 . 1 3
1 2 2078125 Path of price 2 o Path of price
33201172 5 3 45 ©
412499768 4 4 -2.25 300
5: 2.937958 5 7.875 200
6 2.663776 | pt0° 6 -73125 100
7 283514 2 71546875 | PO
8 2.728038 1 8 -18.7031 100 2 4 6 8 10
2.794976 1] g 32.55469 200
275314 0 2 4 6 8 10 12 14 10 -44.332 -300
2.779288 t 11 70.99805 t
2.762945 12 -101.997
2773159 13 157.4956
2.766775 14 -231743 -
1510068 15, AR7 1184 | i
or
n—1
Yn = ax | yo (3.14)
k=0
Hence, if a; = a for all k, then
—1
l_[ ar | =d" and Vo = d"yo
k=0
Consider an even more general case: that of the nonhomogeneous first-order
equation given by
Yn4+1 = ApYn + &n ao, 8o, Yo atn = 0 (315)
Then
Y1 = aoYo + go
Y2 = a1y1 + g1 = ai1(apyo + go) + &1
= aiapyo + aigo + 81
Y3 = a2y2 + g = az(araoyo + a1go + g1) + &2
= apaiapyo + axa18o + a281 + &2
with solution for y, of
n—1 n—1 n—1
Yn = 1_[ ax | yo + E l_[ ax |&i (3.16)
k=0 i=0 | k=i+1
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We can consider two special cases:

Case A : a;y = aforall k
CaseB:a, =a and gr =bforall k

Case A a;, = a for all k
In this case we have

Ynt1 = AYn + &n go.yoatn =0

Using the general result above, then

n—1 n—1
Hak =d" and l_[ a=da" !
k=0

k=i+1
Hence,

n—1

(317) w=dyo+ Y d g
i=0

Case Ba, = aand g, = b for all k
In this case we have

Ynt1 =ayn,+b  yoatn=0

We already know that if a; = a for all k then

n—1 n—1
Hak =d" and l_[ ap =da" !
k=0 k=i+1

and so

n—1

w=dyo+bYy a!
i=0

This case itself, however, can be divided into two sub-categories: (i) where a = 1
and (ii) where a # 1.

Case (i)a =1
If a = 1 then

and so
Yn =Yoo+ bn

Case (ii)a # 1
Let

n—1

S = Zanfifl

i=0
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then
n—1 .
aS=>) da""
i=0
S—aS=1-a)S=1—-4d"
1—a"
S =
l1—a
and
" 1—-a"
Ya=dayo+b
l1—a
Combining these two we can summarise case B as follows
y+bn a=1
n = 1-da" 3.18
Y a”y0+b<1 a> a#1 (318)
—a

These particular formulas are useful in dealing with recursive equations in the
area of finance. We take these up in the exercises.

These special cases can be derived immediately using either Mathematica or
Maple with the following input instructions®:

Mathematica

RSol ve[ {y[ n+1] ==y[n] +b, y[0] ==y0}, y[n], n]
RSol ve[{y[ n+1] ==a y[n] +b, y[0]==y0},y[n],n]
Maple

rsol ve({y(n+1)=y(n)+b, y(0)=y0},y(n));

rsol ve({y(n+1)=a*y(n)+b, y(0)=y0},y(n));

3.6 Compound interest

If an amount A is compounded annually at a market interest rate of r for a given
number of years, ¢, then the payment received at time ¢, P,, is given by

P =A(l + 1Y

On the other hand, if it is compounded m times each year, then the payment received
is

o\ mt
P,:A(1+—)
m

If compounding is done more frequently over the year, then the amount received
is larger. The actual interest rate being paid, once allowance is made for the com-
pounding, is called the effective interest rate, which we denote re. The relationship
between re and (r, m) is developed as follows

Al +re)=A(1 + 1)
m
. r\™
i.e. re=(1+—> -1
m
It follows that re > r.

5 See section 3.13 on solving recursive equations with Mathematica and Maple.
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Figure 3.12.

re =8%
0.082
0.08/——

0.078

0.076

0.074

0.072

Example 3.6

A bank is offering a savings account paying 7% interest per annum, compounded
quarterly. What is the effective interest rate?

07\*
re=<l+%> —1=0.072

or 7.2%.

If we assume that m is a continuous variable, then given an interest rate of say,
7%, we can graph the relationship between re and m. A higher market interest rate
leads to a curve wholly above that of the lower interest rate, as shown in figure 3.12.

Returning to the compounding result, if an amount is compounded at an annual
interest rate r, then at time r we have the relationship Y, = (1 + r)Y,_;. If we
generalise this further and assume an additional deposit (or withdrawal) in each
period, a;, then the resulting recursive equation is

Yi=Q0+nY—1 +a-
Or more generally, we have the recursive equation
Yi=a,1+DbY,_,

Many problems reduce to this kind of relationship. For example, population 