nseootu Klein geometry = M a- mfd . + transitive left - actien of a we group G- . M = % and left oder he neues 6ft ueultpl . by G an GI# . .. Euclid ean geometry . M = IR " equipneed wir shauaherd teuer rrodrd < , > Euch ) = { f : IR " → IR " : f preserve the distance G T distky): = Hx yll• Affine geometry • $" , grad ) , LH " , gngp ) . IRP " ⑥ Con) : der IR " " ' ! IR " " aguipredw.tn Lorentzen immer product < x. y > : = xt ¥" a) y . [ ⇐ { × ER """ : × # , < x. × > = 0 } „ = well Lean on light - Laue + it - - txn, r - - - - . - xp, sm :c: : ' : :c ::c :#y Smooth _ . - - - . . -( xry : A by , sie IR ) Ever . ixn. ) ¥.lu . . . . .mn ) (II!! ) max . )= IC = { y ER "" : < y , × > = 0 } U IRX = IT : IC - Fuß " iuduces en is and rein T.%EF.ie " ¥ ) Since × is well , < , > Indices u postiere definite neuer product on TXCIIRX : < yt IR× , y ' + IRX > = < y.gl ) is welldef . V-yijc-IC.vngive, rise to inner prodecl wie E) of on TITK} " . Replociug × hy Sx Ist Ried ) Changes the isomorphen (* ) ↳ [ ↳× 5 Ttt ,) " = T.tk! " by a men- Zero uueltplie . - Heule , tue iueduced immer rneeeeed on Titus " Changes by J ? =) < , > indnces on S " = IPC only a Riemann: en wahre up to heult pl.ua/ieuhyascuootufd . → (S " , [ groß ) Tv wehrics giadgae aufercuolly µ " laufend eguivdeuce class of grad 9 "iv. , if 7 Id . f s - t g f ge . . ( : O Lux 1 , 1) × S " → S " transitive Left - ochieu S " = Ip µ " Ihohilizer of a null - Line a a weiter und mtd . Ohh , 1) = Couflsn . Egrd] ) = { f : S4 S " diffeau . : f-grd C- [ 9rad] } f- ' [ groß = Egrd] . Geometry in the Sense of Klein ideas ↳ wenn not can Prise the other signifikant generalitat of Euclideae geometry in the 19 tu . Center ry, haue leg Riemann im geometry ! Only homogeneren , Riemann im mf.com he descrikeed ° > Klein geometrie . Com man generalitatien of the beta of there nations of geometry wos giveu by Certain at the beginning of the 20in ceutrury n ) Cartan geometry- 1. 5 Fuerther existence results and the classification of hie greups lemma1.44-supp.ge y : C- → H a we group homomorphismen . and let K : = Kerl y ) E G we the normal hie sub gr . ginen by tue Kernel of y ① The hie algebra of k i , giueu by the tdtowiyided.gg : k - kerly ' ) EG . ② Multiplikation an G des cand , to a Smooth unehrlichen WP %. × %-) % , i.e . % is a hie group . Pri ① K = { GEE : ylg ) = e } Tek = Ker Hey ) = kerly ' ) k = { × zog : expltx ) e- K „ VTEIR } µ = { XEG : explty ' # e + tfS + Eeg : 4 ' k ) - O }. ② By Then . 1.42 , % is secundum hat . Since K is a war und sub group , GIK is also a group Ex G % × % Ä % TT : C- → % - ¥47 ITXF = TI i ) s smarten o ) Loup . ufsueooteiaops. =) µ GK is suwote.ly universal prophecy of surj . Sub meistens . Recall the followiuy definition freu topology : D Def.1.IN Suppe p : Y → X is Continuous uop between homolog Spaces X and Y . Then p is Called a Cover ungMap , if for each point × e- × 7 an open heighbhd V. f × in X , u deine Space D and a houreocuerrwzn Uy :p -40) s . t . FYU ) -4, U xD → Uxb p ! { pr, kommendes . Equiveleutly , for eacu + c- X 7 on open neigen . U afx s . I . p - 1 LU ) = ! i for pair Wise dis joint open subsets V ; • fy and play : Vi → U is a home auorpeiwn . • = ¥ IR → 51=41) + -seit- I e| p u 0 If Y and X are Smooth mtds , Keen one can Talk about Smooth love Sings I Lovers , p : Y → × regnier img everything in Def . 1.45 hohe smooth . Themis het y : G → H be a hie group homomorph isn . between von nected liegen ps G and H . ① Ihr 4 ' : G G is injectiue , then kerly) is a discnet normal sub group of G Conte in ed in Z (E) . ② Hey ' : g → G is surjective , then y surjective # . and des ceeuds to a die group isomorphisn Eher(y) ③ If y ' is hijective , then y : C- → It is a smooth ↳ wring cuop and a Local diffeomorph.im . Proof ① By Lemma 1.44 , the hie algebra of kerly) is Zero . Kerl y ) E G is a submtd . a) dimension 0 . Submfd Chong hier kerly) give rise ↳ Üönen rund U E G- , e EU with Un Kerle) = les Forge kehy) , Ug : = bg LU) E G is open neighbh.ggwir Ugnkuly) Sgs =)suhspace torology eukerly)- Ais diskret . Since Kerl y ) is normal , the Curve c : t ↳ expltx ) g expltx ) -1 Htt IR , ttxcgHg cKerle)is Continuous Win value , in Kerl y ) - By aliscnetness, clt ) = g t TEIR =) exr.lt/)g--gexpltt)V-tElR,V-xEg . = , g Everly ) louumhes with all elements of the kisgnaep gemieden hy ¥7) , www.coiucides With G , since G is com ocheed . = kerly ) EZLG ) . ② y ' : g. → G surjeaie . y ( ei) = exply ) = expleg ) Thai ⇐ yl G) a- H YIG ) - H P P suhgraep =) y in duces a group iseeuerpwzn.lt : %, H . It is en isomorph in of hie group ' : p : G- → %@ ( y)4=4 op is Smooth t p Snrj . SubversionFa → 4- Is sina.tk - y ' : g P ' : G- Hedy ) ) kerly ' ) Ker (pl ) =) 4! is an isauornu.sn ( 4=4 - ° P ) . = ) Y is a Loud di Mean . , whiuhog.tw weh hijediity, iv. phil ) Y i ) o diffeocuorpkisn . ③ By ② we way assam H Kerl y ) and y =p . G -1%4). is the natural projectien . By Proof of ① , 7 an open neighbkd . U of e in G sit . Kerl y ) n U =3 es . By Continuity of Mond U , 7 am open neighbh . Vote s - t . g.hevzh-tgef-C-luparhw.la, V EU . Fug e- G , sehr Vg - 19 (V ) . • Er gtg ' Ekely) one los vgnvg , = ¢ . h E Vgnvg, =) h - V - g = vlg ' v.v ' E ✓ =) k¥1 = v = vlg ' g- 1 eV ⇐ w =) 9 ' g- ' E Onkels) = les kely) I =/ 91=9 . ° P Iv : V → plv) is bijeceiive ( v - v ' g g ekely) c- v =) JE ! 4) FUNF Geiß, Moreno , Plug : Vg = , p ( Vg ) =p Iv ) is a hijeclie ↳ ud elifteaen . und Lance u difteeeudzuihr . ¥ g e- G- , ie on open heights. efgkd4) e- %), - Wik p " ( plvg)) ogahueunieu of poirwrse dis joint open Set - O QUESTION = : Suppen C- and It are hie group and 4 : J G homomorphin hehween their lie algebra s . Does there 7 a hie group homomorphen 4 : GTH sie . y ' = y ? Def.1-47-G.tt hie greups . A local homomorphe ihn freu E to It is give by on open neighbhelrfe in G and a O - map y : U - H EG s.t.yle-e.iq/gh)=ylg)y/h)wheuewg,hTdgVhliein0. Note that Tey = : y ' : g-) G is vegan hie dgenne haus war phizn Tumult Lel E and It we hie group, wih die algebra , J und fand lel 4 : JTG he a homomorph in of hie algehnas . Then I a Local homomorphim y : %-) H Srt - 41=4 . If E is simply nenne chad , then ' there a ists a homomorphen of hie graues y : E - H s. t . 4 ' - 4 . D