Laatzen : P → M principe C- - bundle We can form as sociale bundles : G- ✗ F → F Smooth left- action of E on a mtd . F PFF → M Gfiber handle wihshomdodf.hu F and Structure group C- . For F = N ne representation of G , V : = PEN - M is a wecker bundle . . 1- ( P ✗ a. F) = (P , F) £ t-uuctoridpropertiesofossociahedbundle.suppoze p : P → M principe ( G - bundle and lel G- ✗ F→ F and Ex E F- Smooth left action on wfd . Fand E . Amy smooth uiop OI : F → E that is G- equivanaet. i. e . § (g. f) = g. ☒ (f) V-gc-G.tt c- F . in denes a morphin of fho bundles with Structure gap Glover .mg the identity on M : ← to PEOI] : _ Pz F → PEE Eln , f)Im Eu , Elf)] Note that is G- equiväaer f-er (u , f) . g = (• u -9 , g- ' f) , have it iuauce, a well - defiued luop PIE] and it is Smooth , Since g : Px F FGF i ) le surject.ve Sub merken . H i ) also o morphin of fiber bundle, wir structure group C- , since locdly Peg] ho > the face 4. f) - K . # H )) and OI is G- equiv . We how on induced wop 1- (PIF ) 1- ( PEE ) Is is GLP , F) ↳ → c- ( P , E) £ Ü :p → F - ☒oh :p → Er In particular , for any morphin € : N → of G- representation, we get an induced morphin of wecker handle, < V : =P ^ W : =P EINT → µ ! If § is on isomorph ihn , Keen so is PEOI] . • p :P → M and F : F → NT principe bundles with structure gr . G- and £ respect - , T : C- → Ä hie group homo mon . und ☒ : P → F a morphin ogfpriucird bundles out love hey E- : M → Ü . Given a left action G×→F , then we get a left adieu C- ✗ F → F by g. f = Tlg ) f . Then we get on induced luop : ☒ ( F) : P ✗ cF → FE F [nit ] = [☒n ) , f ] . This delius a www.izneffiserbundlescoueriuy#:M-M~.1fF--NamdGxT-→ F o rezepte > erhoben , ☒ IN] i) u morphium of Vector bundles . Exomptes ① FLM) → M freue bundle of on n-dim.cn/d. M . Any representation N of Gun , R) iuduco, a weder heute ✓ = FIM ) × N → M G-Un.IR) land Isomorphie repneseut . iuduce isomorphe wecker bundles - * N = IR " , F. (M) x R " ⇐ TM FLM/× R " " ⇐ Tµ .G-Llu, /R) G-Un, IR) • Tensor bundle, come > p.to representation s ⑦PIR " ⑦ ① 9 /Ra - . Also , if N is und irreducible and NEU, ⑦ . . ⑦ NN Is the delon position iuho Urne ducible uaeporonl ) , then V = FLM ) × N ± # (m ) ✗ Yt - ☒ NN G- Un , /R ) G-Un .IR ) = FIM /✗ N, ☒ . . ☒ FCM), Na |, GLLu.IR) µ Gllu, /R) = V , ⑦ . . ⑦ VN ④ Survive this a mtd with a G strache ( P- → µ ! PEE = TM . If C- = Oln) ( i. e. M is equ :p> red wir o Riemann - wehe ) , then IR" = IR " * es Oln ) reroseut . VI. = < v. g-1. w > nefkcting the face thai TM = OLM) × IR " an , and THE 044 Rua Dre Isomorphie via g . an) R c- 1- ( 5 ( ATM ) ) SYTIR" B - elements in SYNTH whiusotisfy du Matty RK.n.eu/-R-Hi,j) Bianca identity - 5ps MIR " * = ☒ ☐ ☒ ¥ ☒ IR „ „ * if„ weylcuruteettroce-beeR.ca + Scola Gruebel . Curv . b) Oln ) reyreseul . this Kos 3- irre duckte Laepouecefg _ - RE # FM ⑦ End ( TM ) ) R " ☒ R " II.CONNECTIONS-3.tlRecoKfromGlob•lAndym-AffiuewmeH M h din . mfd . , TM -1M Affine Connection on A is what we will hehe well a linear Connection on the hello bundle TM M . What is the idea of this loucept ? Au affine is o device www.idaiifiestangeut Spaces at near by point ( on more generelly a Linear Connection on o hector bundle is a device that ident if ie, point, in near by fihars ) . Why do we Core about such a device ? • y : I- M Smooth Curve , gilt ) cTaff lt t EI . Acceleration of y con con la le de find w . r . to on office connection : j " ( o ) = / im & "H%T ueokes no sense , +→ o E since j (+ ) cTg„µ and J ' lol cTj,% t.ie indifferent• Directiond der ivahhe of vecwor Space)n neuer fields : MTTM ( or a sect/ en s : M → V of any lecker hmdk)in direction of a vector ( field) µ c- IM ? We home T} : TM → TTM ( Ts : TM → Tv ) but this iguoe ) the wecker huelle strecke . We would like to View vector fields ( or action of any now bundle) os Vector- valued huop, on M and differentiale than o, such in direction of woher fields . If TM = Mx IR " → IR " is trivial ( V Mx IV → M) ,then g Lou hexen 6 > o Knop S : M → IR" ( or as maps M → N)and we can olefine tue dirediauddeivetihe (D)4)(y) ( Ds ( x ) ( y)) of } ( resp . s ) in direction of q c- 1-(TM) os tuned : If y : I → M - Cerne , ylo) = ✗ . y ' /01--4 , then Ds 4) Ira ) = dä) s ( ru) ) = 1in """+→ 1- = o and Ds K ) : IM → IR " is a Linear map . luokl) ho Simi ↳ rly , for s : M → IV . Kuk formen- bird TM . Au affine Connection (resp . linear Connection on any Vector handle V74)is a Cho ice of identification of the long cul spaces ( of the /ios )for newby point> . LH „ Connect> " the fho) „ t neu bis point ) - Two ( equiv . ) View point) ou affine Connection we hae olreody teen , ① Directv and derivohiepeswct.ie ☐ : TLTM ) - T (1-* M ①TM ) linear Sir . Gfl = fGg + dt (g) s tsiy c- HTM) , tttt (m, # ( Leibniz rule ) ② Parallel transport . For any G- Curie f i I -1M , ts , tz c-I Me Kos a / in der Donner pur an : Pt " tz ( g ) : IHM, → TM , Jltz)what Pt!; (g) = Id and it sah fies Sane oder pronotie . ① → ② : For any wecker 9g *f- T ) , 7 ! D- parallel neuer Jidd solang j sie. Sltr ) = Sylt, ) und Pt # (g) (sg , " , ) = Sltz ) . ② → ① Pri ) k ) = E) (PE ) " (slm ) ter 1--0 f , I→ M G - Cone flo ) = ✗ , J ' G) =p; There is a 3rd again point of view on un affine connection which we will di> Cass now in the context of linear Connections an vector hindley . 3-2.lineorconnectionsonuecnorbund-Tp.TE-TMDef.3.jp: E → M is a fiber bundle wir Shand - the F . Then the Vertical bundle of p is the wecker Sub bundle of TE → E de ): und hy Ver LE ) : =L SETE : Tps = 0 } = Ker Ep) E TE . It f- ihn > Vern LE) : = Ver (E) „ E Tu E are called the vertical Subspoce> . Rennen . Vector Sun bundle D E TE of TE → E = smooth distribution D on E = Sunset D C- TE s. t . Ds Tut = : Du is a know subspoce and the bestricken of TE → E ho D- E is a near bundle . Note that Vern (E) =] Epa) ( Epa tu ' C- E : plu ' ) - = plu ) } Exercise Check that Vesle) → E i ) a weder subhuudle of TE → E of reuk rk Wer (E) ) = dim (F) . More over , it p : E - M is a never bundle , Epen, is a wecker Space and no one way identification : Verde ) = Tu Ep" , = Ep," , for any u c- E . F ' " " C- F- pm ) : ☒„ i Epa , → Von LE) hlu) adf.HU + tu ' ) is the naturel Hamer puh ohne - -