Homework 1—Differential Geometry

Due date:16.3. 2021

1. Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, set

$$
I_{p, q}:=\left(\begin{array}{cc}
\mathrm{Id}_{p} & 0 \\
0 & -\mathrm{Id}_{q}
\end{array}\right) \in M_{p+q}(\mathbb{K}) \quad J_{n}:=\left(\begin{array}{cc}
0 & \mathrm{Id}_{n} \\
-\mathrm{Id}_{n} & 0
\end{array}\right) \in M_{2 n}(\mathbb{K}),
$$

and consider the following subgroups of the general linear group $\mathrm{GL}(n, \mathbb{K})$ (resp. $\mathrm{GL}(2 n, \mathbb{K})$).

- The special linear group given by

$$
\operatorname{SL}(n, \mathbb{K})=\left\{A \in \operatorname{GL}(n, \mathbb{K}): \operatorname{det}_{\mathbb{K}}(A)=1\right\} .
$$

- The orthogonal and the special orthogonal group

$$
\mathrm{O}(n, \mathbb{K})=\left\{A \in \mathrm{GL}(n, \mathbb{K}): A^{t}=A^{-1}\right\} \text { and } \mathrm{SO}(n, \mathbb{K})=\mathrm{O}(n, \mathbb{K}) \cap \mathrm{SL}(n, \mathbb{K})
$$

Note that $A \in \mathrm{O}(n, \mathbb{K})$ implies $\operatorname{det}_{\mathbb{K}}(A)= \pm 1$.

- The (indefinite) orthogonal group of signature (p, q) with $p+q=n$:

$$
\mathrm{O}(p, q)=\left\{A \in \mathrm{GL}(n, \mathbb{R}): A^{t} I_{p, q} A=I_{p, q}\right\} .
$$

- The (indefinite) special orthogonal group of signature (p, q) with $p+q=n$:

$$
\mathrm{SO}(p, q)=\mathrm{O}(p, q) \cap \mathrm{SL}(n, \mathbb{R})
$$

- The symplectic group

$$
\operatorname{Sp}(2 n, \mathbb{K})=\left\{A \in \mathrm{GL}(2 n, \mathbb{K}): A^{t} J_{n} A=J_{n}\right\} .
$$

- The (indefinite) unitary group of signature (p, q) with $p+q=n$

$$
\mathrm{U}(p, q)=\left\{A \in \mathrm{GL}(n, \mathbb{C}): \bar{A}^{t} I_{p, q} A=I_{p, q}\right\} .
$$

Note that $A \in \mathrm{U}(p, q)$ implies $\left|\operatorname{det}_{\mathbb{C}}(A)\right|^{2}=1$. Here, \bar{A} denotes the conjugate of A.

- The (indefinite) special unitary group of signature (p, q) with $p+q=n$:

$$
\mathrm{SU}(p, q)=\mathrm{U}(p, q) \cap \mathrm{SL}(n, \mathbb{C}) .
$$

For $q=0$, one also writes $U(n):=\mathrm{U}(n, 0)=\left\{A \in \mathrm{GL}(n, \mathbb{C}): \bar{A}^{t}=A^{-1}\right\}$ and $\mathrm{SU}(n):=\mathrm{SU}(n, 0)$.

Show that these groups are Lie groups, compute their dimensions and their Lie algebras $\mathfrak{s l}(n, \mathbb{K}), \mathfrak{o}(n, \mathbb{K})=\mathfrak{s o}(n, \mathbb{K}), \mathfrak{o}(p, q)=\mathfrak{s o}(p, q), \mathfrak{u}(p, q)$ and $\mathfrak{s u}(p, q)$.
2. Suppose (G, μ, ν, e) is a Lie group with Lie algebra $(\mathfrak{g},[\cdot, \cdot])$. For $X \in \mathfrak{g}$ denote by L_{X} and R_{X} the left- respectively right-invariant vector field on G generated by X. Show that the following holds:
(a) $R_{X}=\nu^{*} L_{-X}$ for all $X \in \mathfrak{g}$
(b) $\left[R_{X}, R_{Y}\right]=-R_{[X, Y]}$ for all $X, Y \in \mathfrak{g}$;
(c) $\left[L_{X}, R_{Y}\right]=0$ for all $X, Y \in \mathfrak{g}$.

As a hint for (a) note that $\nu \circ \rho^{g}=\lambda_{g^{-1}} \circ \nu$ and for (c) it might help to show that the vector fields $\left(0, L_{X}\right)$ and $\left(R_{Y}, 0\right)$ on $G \times G$ are μ-related to L_{X} and R_{Y} respectively.

