Homework 2—Differential Geometry

Due date: 20.4. 2021

1. Show that the cross-product $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defines a Lie bracket on \mathbb{R}^{3} and that the Lie algebra $\left(\mathbb{R}^{3}, \times\right)$ is isomorphic to the Lie algebra $(\mathfrak{s o}(3, \mathbb{R}),[\cdot, \cdot])$.
2. Consider the Lie group $\operatorname{SL}(2, \mathbb{K})$ and its Lie algebra $\mathfrak{s l}(3, \mathbb{K})$ for $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.

- Show that $\langle\cdot, \cdot\rangle: \mathfrak{s l}(2, \mathbb{K}) \times \mathfrak{s l}(2, \mathbb{K}) \rightarrow \mathbb{K}$ defined by

$$
\langle X, Y\rangle=\frac{1}{2} \operatorname{trace}(X Y)
$$

defines a symmetric non-degenerate \mathbb{K}-bilinear form on the 3 -dimensional \mathbb{K}-vector space $\mathfrak{s l}(2, \mathbb{K})$. Moreover, show that over \mathbb{R} it has signature $(2,1)$.

- Show that the adjoint representation $\operatorname{Ad}: \operatorname{SL}(2, \mathbb{K}) \rightarrow \operatorname{GL}(\mathfrak{s l}(2, \mathbb{K})) \cong \mathrm{GL}(3, \mathbb{K})$ induces covering maps

$$
\begin{aligned}
& \mathrm{Ad}: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}((\mathfrak{s l}(2, \mathbb{C}),\langle\cdot, \cdot\rangle) \cong \mathrm{SO}(3, \mathbb{C}) \\
& \mathrm{Ad}: \mathrm{SL}(2, \mathbb{R}) \rightarrow \mathrm{SO}\left((\mathfrak{s l}(2, \mathbb{R}),\langle\cdot, \cdot\rangle) \cong \mathrm{SO}_{o}(2,1)\right.
\end{aligned}
$$

What are the kernels of these group homomorphisms?
3. Consider the upper-half plane $\mathcal{H}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.

- Show that

$$
\begin{aligned}
& \mathrm{SL}(2, \mathbb{R}) \times \mathcal{H} \rightarrow \mathcal{H} \\
&\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), z\right) \mapsto \frac{a z+b}{c z+d}
\end{aligned}
$$

defines a smooth transitive left action of $\operatorname{SL}(2, \mathbb{R})$ on \mathcal{H}. What is the isotropy group of $i \in \mathcal{H} \subset \mathbb{C}$?

- Consider the following Riemannian metric on \mathcal{H} :

$$
g=\frac{d x^{2}+d y^{2}}{y^{2}}=\frac{4|d z|^{2}}{|z-\bar{z}|^{2}} \quad(z=x+i y, d z=d x+i d y) .
$$

Show that $\operatorname{SL}(2, \mathbb{R})$ acts by isometries on (\mathcal{H}, g), that is, $z \mapsto \frac{a z+b}{c z+d}$ is an isometry for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$.
4. Suppose G is a connected Lie group. Let $\phi: G \rightarrow \mathrm{GL}(V)$ be a representation on a finitedimensional vector space V and let $\phi^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ be the induced representation of the Lie algebra \mathfrak{g} of G.

- Show that a subspace $W \subset V$ is G-invariant \Longleftrightarrow it is \mathfrak{g}-invariant.
- Show that V is unitary as G-representation \Longleftrightarrow it is unitary as \mathfrak{g}-representation.

5. Suppose G is a compact Lie group of dimension n. Choose a nonzero element $\omega \in \Lambda^{n} \mathfrak{g}^{*}$ (i.e. a volume form on the vector space \mathfrak{g}). Then via left-multiplication this gives rise to a volume form on G :

$$
\operatorname{vol}(g)\left(\xi_{1}, \ldots \xi_{n}\right)=\omega\left(T_{g} \lambda_{g^{-1}} \xi_{1}, \ldots, T_{g} \lambda_{g^{-1}} \xi_{n}\right), \quad \text { for } \xi_{1}, \ldots, \xi_{n} \in T_{g} G .
$$

Hence, we can integrate smooth functions $f: G \rightarrow \mathbb{K}=\mathbb{R}, \mathbb{C}$ by setting

$$
\int_{G} f:=\int_{G} f \mathrm{vol} .
$$

- Show that vol is left-invariant (i.e. $\lambda_{g}^{*} \mathrm{vol}=$ vol for all $g \in G$) and deduce that $\int_{G} f=$ $\int_{G} f \circ \lambda_{g}$ for all $g \in G$.
- Let V be a real or complex representation of G and let $b(\cdot, \cdot): V \times V \rightarrow \mathbb{K}$ be an arbitrary positive definite (Hermitian in the complex case) inner product on V. For two vectors $v, w \in V$ set

$$
\langle v, w\rangle:=\int_{G} f_{v, w},
$$

where $f_{v . w}: G \rightarrow \mathbb{K}$ is the smooth function defined by $f_{v . w}(g)=b\left(g^{-1} v, g^{-1} w\right)$. Show that $\langle\cdot, \cdot\rangle$ defines a G-invariant positive definite inner product on V (Hermitian in the complex case), i.e. V is a unitary representation.

