Homework 2—Differential Geometry

Due date: 20.4. 2021

- Show that the cross-product × : ℝ³ × ℝ³ → ℝ³ defines a Lie bracket on ℝ³ and that the Lie algebra (ℝ³, ×) is isomorphic to the Lie algebra (so(3, ℝ), [·, ·]).
- 2. Consider the Lie group $SL(2, \mathbb{K})$ and its Lie algebra $\mathfrak{sl}(3, \mathbb{K})$ for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .
 - Show that $\langle \cdot, \cdot \rangle : \mathfrak{sl}(2, \mathbb{K}) \times \mathfrak{sl}(2, \mathbb{K}) \to \mathbb{K}$ defined by

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{trace}(XY)$$

defines a symmetric non-degenerate \mathbb{K} -bilinear form on the 3-dimensional \mathbb{K} -vector space $\mathfrak{sl}(2,\mathbb{K})$. Moreover, show that over \mathbb{R} it has signature (2,1).

• Show that the adjoint representation Ad : $SL(2, \mathbb{K}) \to GL(\mathfrak{sl}(2, \mathbb{K})) \cong GL(3, \mathbb{K})$ induces covering maps

$$\begin{split} & \operatorname{Ad}:\operatorname{SL}(2,\mathbb{C})\to\operatorname{SO}((\mathfrak{sl}(2,\mathbb{C}),\langle\cdot,\cdot\rangle)\cong\operatorname{SO}(3,\mathbb{C})\\ & \operatorname{Ad}:\operatorname{SL}(2,\mathbb{R})\to\operatorname{SO}((\mathfrak{sl}(2,\mathbb{R}),\langle\cdot,\cdot\rangle)\cong\operatorname{SO}_o(2,1). \end{split}$$

What are the kernels of these group homomorphisms?

- 3. Consider the upper-half plane $\mathcal{H} = \{(x, y) \in \mathbb{R}^2 : y > 0\} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}.$
 - Show that

$$SL(2,\mathbb{R}) \times \mathcal{H} \to \mathcal{H}$$
$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \end{pmatrix} \mapsto \frac{az+b}{cz+d}$$

defines a smooth transitive left action of $SL(2, \mathbb{R})$ on \mathcal{H} . What is the isotropy group of $i \in \mathcal{H} \subset \mathbb{C}$?

• Consider the following Riemannian metric on \mathcal{H} :

$$g = \frac{dx^2 + dy^2}{y^2} = \frac{4|dz|^2}{|z - \bar{z}|^2} \qquad (z = x + iy, dz = dx + idy).$$

Show that $SL(2, \mathbb{R})$ acts by isometries on (\mathcal{H}, g) , that is, $z \mapsto \frac{az+b}{cz+d}$ is an isometry for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$.

 Suppose G is a connected Lie group. Let φ : G → GL(V) be a representation on a finitedimensional vector space V and let φ' : g → gl(V) be the induced representation of the Lie algebra g of G.

- Show that a subspace $W \subset V$ is G-invariant \iff it is g-invariant.
- Show that V is unitary as G-representation \iff it is unitary as g-representation.
- 5. Suppose G is a compact Lie group of dimension n. Choose a nonzero element $\omega \in \Lambda^n \mathfrak{g}^*$ (i.e. a volume form on the vector space \mathfrak{g}). Then via left-multiplication this gives rise to a volume form on G:

$$vol(g)(\xi_1,...,\xi_n) = \omega(T_g \lambda_{g^{-1}} \xi_1,...,T_g \lambda_{g^{-1}} \xi_n), \quad \text{ for } \xi_1,...,\xi_n \in T_g G.$$

Hence, we can integrate smooth functions $f: G \to \mathbb{K} = \mathbb{R}, \mathbb{C}$ by setting

$$\int_G f := \int_G f \operatorname{vol}$$

- Show that vol is left-invariant (i.e. $\lambda_g^* \text{vol} = \text{vol for all } g \in G$) and deduce that $\int_G f = \int_G f \circ \lambda_g$ for all $g \in G$.
- Let V be a real or complex representation of G and let $b(\cdot, \cdot) : V \times V \to \mathbb{K}$ be an arbitrary positive definite (Hermitian in the complex case) inner product on V. For two vectors $v, w \in V$ set

$$\langle v, w \rangle := \int_G f_{v,w},$$

where $f_{v.w}: G \to \mathbb{K}$ is the smooth function defined by $f_{v.w}(g) = b(g^{-1}v, g^{-1}w)$. Show that $\langle \cdot, \cdot \rangle$ defines a *G*-invariant positive definite inner product on *V* (Hermitian in the complex case), i.e. *V* is a unitary representation.