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Preface

The preface to the rst edition of this text explained our mission as follows:
This textbook is organized around the principle that much of actuarial science

consists of the construction and analysis of mathematical models that describe the
process by which funds ow into and out of an insurance system. An analysis of
the entire system is beyond the scope of a single text, so we have concentrated
our e orts on the loss process, that is, the outow of cash due to the payment of
benets.
We have not assumed that the reader has any substantial knowledge of insurance

systems. Insurance terms are dened when they are rst used. In fact, most of the
material could be disassociated from the insurance process altogether, and this
book could be just another applied statistics text. What we have done is kept the
examples focused on insurance, presented the material in the language and context
of insurance, and tried to avoid getting into statistical methods that would have
little use in actuarial practice.
In particular, the rst edition of this text was published in 1998 to achieve three

goals:

1. Update the distribution tting material from Loss Distributions [72] by Robert
Hogg and Stuart Klugman, published in 1984.

2. Update material on discrete distributions and collective risk model calcula-
tions from Insurance Risk Models [138] by Harry Panjer and Gordon Willmot,
published in 1992.

3. Integrate the material the three authors had developed for the Society of
Actuaries�’ Intensive Seminar 152, Applied Risk Theory.

xvii



xviii PREFACE

Shortly after publication, the Casualty Actuarial Society and the Society of
Actuaries altered their examination syllabus to include our rst edition. The good
news was that the rst edition was selected as source material for the new third and
fourth examinations. The bad news was that the subject matter was split between
the examinations in a manner that was not compatible with the organization of the
text. This led to the second edition, published in 2004, with two major changes:

1. The rst edition was written with an assumption that readers would be famil-
iar with the subject of mathematical statistics. This topic had been part of
the actuarial examination process at the time the book was written but was
subsequently removed. Some background material on mathematical statistics
is now presented in Chapter 12.

2. For a long time, actuarial education has included the subject of survival mod-
els. This is the study of determining probability models for time to death,
failure, or disability. It is not much di erent from the study of determining
probability models for the amount or number of claims. This (second) edi-
tion integrates that subject and in doing so adds an emphasis on building
empirical models. This is covered in Chapters 13 and 14.

Files containing the data sets used in the examples and exercises continue to be
available at the Wiley ftp site:
ftp://ftp.wiley.com/public/sci_tech_med/loss_models/.
In this third edition, we assume that users will often be doing calculations using

a spreadsheet program such as Microsoft Excelr.1 At various places in the text
we indicate how Excelr commands may help. This is not an endorsement by the
authors, but, rather, a recognition of the pervasiveness of this tool.
As in the rst two editions, many of the exercises are taken from examinations

of the Casualty Actuarial Society and the Society of Actuaries. They have been
reworded to t the terminology and notation of this text and the ve answer choices
from the original questions are not provided. Such exercises are indicated with an
asterisk (*). Of course, these questions may not be representative of those asked
on examinations given in the future.
Although many of the exercises are either directly from past professonal exam-

inations or are similar to such qeustions, there are many other exercises meant to
provide additional insight into the given subject matter. Consequently, it is rec-
ommended that readers interested in particular topics consult the exercises in the
relevant sections in order to obtain a deeper understanding of the material.
The photograph on the cover was taken by Lucas Sprague-Coyle, a professional

photographer in Guelph, Onterio, Canada. It was taken during a night-time re in a
historic downtown Guelph building. As this book is devoted to the study of the cost
of losses, particularly those covered by insurance, this picture provides a dramatic
example of such an event. The authors are indebted to Lucas Sprague-Coyle for
providing this photograph.
For this third edition, we have concentrated on a few evolving areas of actuarial

interest and on improving exposition where needed. The signicant changes are:

1Microsoftr and Excelr are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.



PREFACE xix

1. Actuarial practice has expanded to include risk management. One area of
expanding interest is risk measures, and they are covered in Chapter 3. Par-
ticular emphasis is placed on Tail-Value-at-Risk (TVaR), with appropriate
calculations for each model introduced.

2. Risk managers often use models that are called �“extreme value distributions.�”
These have been added and are covered in Section 5.5.

3. Previous editions of the text have included material on stochastic processes.
We have added two sections on counting processes. Coverage includes ho-
mogeneous, nonhomogeneous, and mixed Poisson processes. These appear
in Chapter 6, where we have separated the coverage of discrete models from
continuous models.

4. Multivariate models have been covered in past editions, but with the emer-
gence of copula models it is now appropriate to devote a full chapter to these
models. This is done in Chapter 7.

5. Chapter 9, which covers aggregate models, has been improved with better ex-
position and elimination of coverage of the recursive formula for the individual
risk model.

6. The review of mathematical statistics (Chapter 12) has been expanded a bit.

7. Bayesian estimation has become more popular as computing tools have im-
proved. Our coverage is still not su cient to make readers experts in this
method. Material on conjugate priors and their relationship to the exponen-
tial family has been moved here (Section 15.5) from the credibility chapter.
The exponential family has been reformulated for pedagogical reasons and is
introduced earlier, at the time other models are discussed (Section 5.4).

8. There is better coverage of methods for constructing condence regions when
there is more than one parameter.

9. Chapter 17 is mostly new, covering estimation for extreme value models and
for copula models.

10. The material on credibility (Chapter 20) has been reorganized. The limited
uctuation approach has been moved to the beginning. The statistical pre-
liminaries that formerly started the chapter have now been incorporated into
the text as needed. The section on exact credibility has also been rewritten.

11. The simulation material (Chapter 21) has been improved by adding more
detail and more applications. In particular, multivariate simulation (for use
with copulas) and nancial applications have been added.

Many people have helped us through the production of three editions of this
text�–family, friends, colleagues, students, readers, and the sta at John Wiley &
Sons. Their contributions are greatly appreciated.

S. A. KLUGMAN, H. H. PANJER, G. E. WILLMOT

Des Moines, Iowa and Waterloo, Ontario





PART I

INTRODUCTION
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MODELING

1.1 THE MODEL-BASED APPROACH

The model-based approach should be considered in the context of the objectives of
any given problem. Many problems in actuarial science involve the building of a
mathematical model that can be used to forecast or predict insurance costs in the
future.
A model is a simplied mathematical description that is constructed based on

the knowledge and experience of the actuary combined with data from the past.
The data guide the actuary in selecting the form of the model as well as in calibrat-
ing unknown quantities, usually called parameters. The model provides a balance
between simplicity and conformity to the available data.
The simplicity is measured in terms of such things as the number of unknown

parameters (the fewer the simpler); the conformity to data is measured in terms
of the discrepancy between the data and the model. Model selection is based on a
balance between the two criteria, namely, t and simplicity.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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Figure 1.1 The modeling process.

1.1.1 The modeling process

The modeling process is illustrated in Figure 1.1, which describes the following six
stages:

Stage 1 One or more models are selected based on the analyst�’s prior knowledge
and experience and possibly on the nature and form of available data. For
example, in studies of mortality, models may contain covariate information
such as age, sex, duration, policy type, medical information, and lifestyle
variables. In studies of the size of insurance loss, a statistical distribution
(e.g., lognormal, gamma, or Weibull) may be chosen.

Stage 2 The model is calibrated based on available data. In mortality studies,
these data may be information on a set of life insurance policies. In studies
of property claims, the data may be information about each of a set of actual
insurance losses paid under a set of property insurance policies.

Stage 3 The tted model is validated to determine if it adequately conforms to
the data. Various diagnostic tests can be used. These may be well-known
statistical tests, such as the chi-square goodness-of-t test or the Kolmogorov-
Smirnov test, or may be more qualitative in nature. The choice of test may
relate directly to the ultimate purpose of the modeling exercise. In insurance-
related studies, the tted model is often required to replicate in total the losses
actually experienced in the data. In insurance practice this is often referred
to as unbiasedness of a model.
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Stage 4 An opportunity is provided to consider other possible models. This is
particularly useful if Stage 3 revealed that all models were inadequate. It is
also possible that more than one valid model will be under consideration at
this stage.

Stage 5 All valid models considered in Stages 1�—4 are compared using some criteria
to select between them. This may be done by using the test results previously
obtained or may be done by using another criterion. Once a winner is selected,
the losers may be retained for sensitivity analyses.

Stage 6 Finally, the selected model is adapted for application to the future. This
could involve adjustment of parameters to reect anticipated ination from
the time the data were collected to the period of time to which the model will
be applied.

As new data are collected or the environment changes, the six stages will need
to be repeated to improve the model.

1.1.2 The modeling advantage

Determination of the advantages of using models requires us to consider the al-
ternative: decision making based strictly upon empirical evidence. The empirical
approach assumes that the future can be expected to be exactly like a sample from
the past, perhaps adjusted for trends such as ination. Consider Example 1.1.

EXAMPLE 1.1

A portfolio of group life insurance certicates consists of 1,000 employees of
various ages and death benets. Over the past ve years, 14 employees died
and received a total of 580,000 in benets (adjusted for ination because the
plan relates benets to salary). Determine the empirical estimate of next
year�’s expected benet payment.

The empirical estimate for next year is then 116,000 (one-fth of the total),
which would need to be further adjusted for benet increases. The danger, of
course, is that it is unlikely that the experience of the past ve years accurately
reects the future of this portfolio as there can be considerable uctuation in
such short-term results. ¤

It seems much more reasonable to build a model, in this case a mortality table.
This table would be based on the experience of many lives, not just the 1,000 in our
group. With this model we not only can estimate the expected payment for next
year, but we can also measure the risk involved by calculating the standard deviation
of payments or, perhaps, various percentiles from the distribution of payments. This
is precisely the problem covered in texts such as Actuarial Mathematics [20] and
Models for Quantifying Risk [30].
This approach was codied by the Society of Actuaries Committee on Actuar-

ial Principles. In the publication �“Principles of Actuarial Science�” [162, p. 571],
Principle 3.1 states that �“Actuarial risks can be stochastically modeled based on
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assumptions regarding the probabilities that will apply to the actuarial risk vari-
ables in the future, including assumptions regarding the future environment.�” The
actuarial risk variables referred to are occurrence, timing, and severity�–that is, the
chances of a claim event, the time at which the event occurs if it does, and the cost
of settling the claim.

1.2 ORGANIZATION OF THIS BOOK

This text takes the reader through the modeling process, but not in the order
presented in Section 1.1. There is a di erence between how models are best applied
and how they are best learned. In this text we rst learn about the models and how
to use them, and then we learn how to determine which model to use because it is
di cult to select models in a vacuum. Unless the analyst has a thorough knowledge
of the set of available models, it is di cult to narrow the choice to the ones worth
considering. With that in mind, the organization of the text is as follows:

1. Review of probability�–Almost by denition, contingent events imply prob-
ability models. Chapters 2 and 3 review random variables and some of the
basic calculations that may be done with such models, including moments
and percentiles.

2. Understanding probability distributions�–When selecting a probability model,
the analyst should possess a reasonably large collection of such models. In
addition, in order to make a good a priori model choice, characteristics of
these models should be available. In Chapters 4 through 7 various distribu-
tional models are introduced and their characteristics explored. This includes
continuous, discrete, and multivariate distributions.

3. Coverage modications�–Insurance contracts often do not provide full pay-
ment. For example, there may be a deductible (e.g., the insurance policy does
not pay the rst $250) or a limit (e.g., the insurance policy does not pay more
than $10,000 for any one loss event). Such modications alter the probability
distribution and a ect related calculations such as moments. Chapter 8 shows
how this is done.

4. Aggregate losses and ruin�–To this point the models are either for the amount
of a single payment or for the number of payments. Of interest when model-
ing a portfolio, line of business, or entire company is the total amount paid.
A model that combines the probabilities concerning the number of payments
and the amounts of each payment is called an aggregate loss model. Calcula-
tions for such models are covered in Chapter 9. Usually, the payments arrive
sequentially through time. It is possible, if the payments turn out to be large,
that at some point the entity will run out of money. This state of a airs is
called ruin. In Chapters 10 and 11 models are established that allow for the
calculation of the probability this will happen.

5. Review of mathematical statistics�–Because most of the models being consid-
ered are probability models, techniques of mathematical statistics are needed
to estimate model specications and make choices. While Chapter 12 is not a
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replacement for a thorough text or course in mathematical statistics, it does
contain the essential items needed later in this book.

6. Construction of empirical models�–Sometimes it is appropriate to work with
the empirical distribution of the data. It may be because the volume of data
is su cient or because a good portrait of the data is needed. Chapters 13
and 14 cover empirical models for the simple case of straightforward data,
adjustments for truncated and censored data, and modications suitable for
large data sets, particularly those encountered in mortality studies.

7. Construction of parametric models�–Often it is valuable to smooth the data
and thus represent the population by a probability distribution. Chapter 15
provides methods for parameter estimation for the models introduced earlier.
Model selection is covered in Chapters 16 and 17.

8. Chapter 18 contains examples that summarize and integrate the topics dis-
cussed to this point.

9. Adjustment of estimates�–At times, further adjustment of the results is needed.
Two such adjustments are covered in this text. The rst is interpolation and
smoothing (also called graduation) and is covered in Chapter 19, where the
emphasis is on cubic splines. There are situations, such as time to death,
where no simple probability distribution is known to describe the observa-
tions. An empirical approach is likely to produce results that are not as
smooth as the population is known to be. Graduation methods can provide
the needed adjustment. A second situation occurs when there are one or
more estimates based on a small number of observations. Accuracy could be
improved by adding other, related observations, but care must be taken if the
additional data are from a di erent population. Credibility methods, covered
in Chapter 20, provide a mechanism for making the appropriate adjustment
when additional data are to be included.

10. Simulation�–When analytical results are di cult to obtain, simulation (use
of random numbers) may provide the needed answer. A brief introduction to
this technique is provided in Chapter 21.
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RANDOM VARIABLES

2.1 INTRODUCTION

An actuarial model is an attempt to represent an uncertain stream of future pay-
ments. The uncertainty may be with respect to any or all of occurrence (is there a
payment?), timing (when is the payment made?), and severity (how much is paid?).
Because the most useful means of representing uncertainty is through probability,
we concentrate on probability models. In all cases, the relevant probability distribu-
tions are assumed to be known. Determining appropriate distributions is covered in
Chapters 13 through 17. In this part, the following aspects of actuarial probability
models are covered:

1. Denition of random variable and important functions with some examples.

2. Basic calculations from probability models.

3. Specic probability distributions and their properties.

4. More advanced calculations using severity models.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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5. Models incorporating the possibility of a random number of payments each
of random amount.

6. Models that track a company�’s surplus through time.

The commonality we seek here is that all models for random phenomena have
similar elements. For each, there is a set of possible outcomes. The particular
outcome that occurs will determine the success of our enterprise. Attaching proba-
bilities to the various outcomes allows us to quantify our expectations and the risk
of not meeting them. In this spirit, the underlying random variable will almost
always be denoted with upper case Roman letters near the end of the alphabet,
such as or . The context will provide a name and some likely characteristics.
Of course, there are actuarial models that do not look like those covered here. For
example, in life insurance a model o ce is a list of cells containing policy type, age
range, gender, and so on.
To expand on this concept, consider the following denitions from the latest

working draft of �“Joint Principles of Actuarial Science�”:1

Phenomena are occurrences that can be observed. An experiment is an ob-
servation of a given phenomenon under specied conditions. The result of
an experiment is called an outcome ; an event is a set of one or more possible
outcomes. A stochastic phenomenon is a phenomenon for which an associated
experiment has more than one possible outcome. An event associated with a
stochastic phenomenon is said to be contingent. Probability is a measure of
the likelihood of the occurrence of an event, measured on a scale of increasing
likelihood from zero to one. A random variable is a function that assigns a
numerical value to every possible outcome.

The following list contains twelve random variables that might be encountered
in actuarial work:

1. The age at death of a randomly selected birth. (Model 1)

2. The time to death from when insurance was purchased for a randomly selected
insured life.

3. The time from occurrence of a disabling event to recovery or death for a
randomly selected workers compensation claimant.

4. The time from the incidence of a randomly selected claim to its being reported
to the insurer.

5. The time from the reporting of a randomly selected claim to its settlement.

6. The number of dollars paid on a randomly selected life insurance claim.

7. The number of dollars paid on a randomly selected automobile bodily injury
claim. (Model 2)

8. The number of automobile bodily injury claims in one year from a randomly
selected insured automobile. (Model 3)

1This document is a work in progress of a joint committee from the Casualty Actuarial Society and
the Society of Actuaries. Key principles are that models exist that represent actuarial phenomena
and that, given su cient data, it is possible to calibrate models.
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9. The total dollars in medical malpractice claims paid in one year owing to
events at a randomly selected hospital. (Model 4)

10. The time to default or prepayment on a randomly selected insured home loan
that terminates early.

11. The amount of money paid at maturity on a randomly selected high-yield
bond.

12. The value of a stock index on a specied future date.

Because all of these phenomena can be expressed as random variables, the ma-
chinery of probability and mathematical statistics is at our disposal both to create
and to analyze models for them. The following paragraphs discuss the ve key
functions used in describing a random variable: cumulative distribution, survival,
probability density, probability mass, and hazard rate. They are illustrated with
four ongoing models as identied in the prceding list plus two more to be introduced
later.

2.2 KEY FUNCTIONS AND FOUR MODELS

Denition 2.1 The cumulative distribution function, also called the distri-
bution function and usually denoted ( ) or ( ),2 for a random variable
is the probability that is less than or equal to a given number. That is,
( ) = Pr( ). The abbreviation cdf is often used.

The distribution function must satisfy a number of requirements:3

�• 0 ( ) 1 for all .

�• ( ) is nondecreasing.

�• ( ) is right-continuous.4

�• lim ( ) = 0 and lim ( ) = 1.

Because it need not be left-continuous, it is possible for the distribution function
to jump. When it jumps, the value is assigned to the top of the jump.
Here are possible distribution functions for each of the four models.

Model 15 This random variable could serve as a model for the age at death. All
ages between 0 and 100 are possible. While experience suggests that there is an

2When denoting functions associated with random variables, it is common to identify the random
variable through a subscript on the function. Here, subscripts are used only when needed to
distinguish one random variable from another. In addition, for the six models to be introduced
shortly, rather than write the distribution function for random variable 2 as 2( ), it is simply
denoted 2( ).
3The rst point follows from the last three.
4Right-continuous means that at any point 0 the limiting value of ( ) as approaches 0 from
the right is equal to ( 0). This need not be true as approaches 0 from the left.
5The six models (four introduced here and two later) are identied by the numbers 1�—6. Other
examples use the traditional numbering scheme as used for Denitions and the like.
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Figure 2.1 Distribution function for Model 1.

upper bound for human lifetime, models with no upper limit may be useful if they
assign extremely low probabilities to extreme ages. This allows the modeler to
avoid setting a specic maximum age.

1( ) =
0 0
0 01 0 100
1 100 ¤

Model 2 This random variable could serve as a model for the number of dollars
paid on an automobile insurance claim. All positive values are possible. As with
mortality, there is more than likely an upper limit (all the money in the world
comes to mind), but this model illustrates that in modeling, correspondence to
reality need not be perfect.

2( ) =

0 0

1

µ
2000

+ 2000

¶3
0

¤

EXAMPLE 2.1

Draw graphs of the distribution function for Models 1 and 2 (graphs for the
other models are requested in Exercise 2.2).

The graphs appear in Figures 2.1 and 2.2. ¤

Model 3 This random variable could serve as a model for the number of claims on
one policy in one year. Probability is concentrated at the ve points (0 1 2 3 4)
and the probability at each is given by the size of the jump in the distribution
function. While this model places a maximum on the number of claims, models
with no limit (such as the Poisson distribution) could also be used.
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Figure 2.2 Distribution function for Model 2.

3( ) =

0 0
0 5 0 1
0 75 1 2
0 87 2 3
0 95 3 4
1 4 ¤

Model 4 This random variable could serve as a model for the total dollars paid on
a malpractice policy in one year. Most of the probability is at zero (0.7) because
in most years nothing is paid. The remaining 0.3 of probability is distributed over
positive values.

4( ) =

½
0 0
1 0 3 0 00001 0 ¤

Denition 2.2 The support of a random variable is the set of numbers that are
possible values of the random variable.

Denition 2.3 A random variable is called discrete if the support contains at
most a countable number of values. It is called continuous if the distribution
function is continuous and is di erentiable everywhere with the possible exception
of a countable number of values. It is called mixed if it is not discrete and is con-
tinuous everywhere with the exception of at least one value and at most a countable
number of values.

These three denitions do not exhaust all possible random variables but will
cover all cases encountered in this text. The distribution function for a discrete
variable will be constant except for jumps at the values with positive probability.
A mixed distribution will have at least one jump. Requiring continuous variables
to be di erentiable allows the variable to have a density function (dened later) at
almost all values.
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EXAMPLE 2.2

For each of the four models, determine the support and indicate which type
of random variable it is.

The distribution function for Model 1 is continuous and is di erentiable
except at 0 and 100 and therefore is a continuous distribution. The support
is values from 0 to 100 with it not being clear if 0 or 100 are included. The
distribution function for Model 2 is continuous and is di erentiable except
at 0 and therefore is a continuous distribution. The support is all positive
numbers and perhaps 0. The random variable for Model 3 places probability
only at 0, 1, 2, 3, and 4 (the support) and thus is discrete. The distribution
function for Model 4 is continuous except at 0, where it jumps. It is a mixed
distribution with support on nonnegative numbers. ¤

These four models illustrate the most commonly encountered forms of the dis-
tribution function. For the remainder of this text, values of functions such as the
distribution function are presented only for values in the range of the support of
the random variable.

Denition 2.4 The survival function, usually denoted ( ) or ( ), for a
random variable is the probability that is greater than a given number. That
is, ( ) = Pr( ) = 1 ( ).

As a result:

�• 0 ( ) 1 for all .

�• ( ) is nonincreasing.

�• ( ) is right-continuous.

�• lim ( ) = 1 and lim ( ) = 0.

Because the survival function need not be left-continuous, it is possible for it to
jump (down). When it jumps, the value is assigned to the bottom of the jump.
Because the survival function is the complement of the distribution function,

knowledge of one implies knowledge of the other. Historically, when the random
variable is measuring time, the survival function is presented, while when it is
measuring dollars, the distribution function is presented.



KEY FUNCTIONS AND FOUR MODELS 15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

x

S(
x)

Figure 2.3 Survival function for Model 1.

EXAMPLE 2.3

For completeness, here are the survival functions for the four models.

1( ) = 1 0 01 0 100

2( ) =

µ
2,000
+ 2,000

¶3
0

3( ) =

0 5 0 1
0 25 1 2
0 13 2 3
0 05 3 4
0 4

4( ) = 0 3 0 00001 0 ¤

EXAMPLE 2.4

Graph the survival function for Models 1 and 2.

The graphs appear in Figures 2.3 and 2.4. ¤

Either the distribution or survival function can be used to determine probabili-
ties. Let ( ) = lim % ( ) and let ( ) be similarly dened. That is, we want
the limit as approaches from below. We have Pr( ) = ( ) ( ) =
( ) ( ) and Pr( = ) = ( ) ( ) = ( ) ( ). When the distribution
function is continuous at , Pr( = ) = 0; otherwise the probability is the size
of the jump. The next two functions are more directly related to the probabilities.
The rst is for continuous distributions, the second for discrete distributions.

Denition 2.5 The probability density function, also called the density func-
tion and usually denoted ( ) or ( ), is the derivative of the distribution func-
tion or, equivalently, the negative of the derivative of the survival function. That
is, ( ) = 0( ) = 0( ). The density function is dened only at those points
where the derivative exists. The abbreviation pdf is often used.
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Figure 2.4 Survival function for Model 2.

While the density function does not directly provide probabilities, it does provide
relevant information. Values of the random variable in regions with higher density
values are more likely to occur than those in regions with lower values. Probabil-
ities for intervals and the distribution and survival functions can be recovered by
integration. That is, when the density function is dened over the relevant interval,
Pr( ) =

R
( ) , ( ) =

R
( ) , and ( ) =

R
( ) .

EXAMPLE 2.5

For our models,

1( ) = 0 01 0 100

2( ) =
3(2,000)3

( + 2,000)4
0

3( ) is not dened,

4( ) = 0 000003
0 00001 0

It should be noted that for Model 4 the density function does not completely
describe the probability distribution. As a mixed distribution, there is also
discrete probability at 0. ¤

EXAMPLE 2.6

Graph the density function for Models 1 and 2.

The graphs appear in Figures 2.5 and 2.6. ¤

Denition 2.6 The probability function, also called the probability mass func-
tion and usually denoted ( ) or ( ), describes the probability at a distinct point
when it is not 0. The formal denition is ( ) = Pr( = ).
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Figure 2.5 Density function for Model 1.
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Figure 2.6 Density function for Model 2.

For discrete random variables, the distribution and survival functions can be
recovered as ( ) =

P
( ) and ( ) =

P
( ).

EXAMPLE 2.7

For our models,

1( ) is not dened,

2( ) is not dened,

3( ) =

0 50 = 0
0 25 = 1
0 12 = 2
0 08 = 3
0 05 = 4

4(0) = 0 7
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It is again noted that the distribution in Model 4 is mixed, so the preceding
describes only the discrete portion of that distribution. There is no easy way
to present probabilities/densities for a mixed distribution. For Model 4 we
would present the probability density function as:

4( ) =

½
0 7 = 0
0 000003 0 00001 0

realizing that, technically, it is not a probability density function at all. When
the density function is assigned a value at a specic point, as opposed to being
dened on an interval, it is understood to be a discrete probability mass. ¤

Denition 2.7 The hazard rate, also known as the force of mortality and
the failure rate and usually denoted ( ) or ( ), is the ratio of the density
and survival functions when the density function is dened. That is, ( ) =
( ) ( ).

When called the force of mortality, the hazard rate is often denoted ( ), and
when called the failure rate, it is often denoted ( ). Regardless, it may be inter-
preted as the probability density at given that the argument will be at least .
We also have ( ) = 0( ) ( ) = ln ( ) . The survival function can
be recovered from ( ) = 0

( ) . Though not necessary, this formula implies
that the support is on nonnegative numbers. In mortality terms, the force of mor-
tality is the annualized probability that a person age will die in the next instant,
expressed as a death rate per year.6 In this text we always use ( ) to denote the
hazard rate, although one of the alternative names may be used.

EXAMPLE 2.8

For our models,

1( ) =
0 01

1 0 01
0 100

2( ) =
3

+ 2,000
0

3( ) is not dened,

4( ) = 0 00001 0

Once again, note that for the mixed distribution the hazard rate is only
dened over part of the random variable�’s support. This is di erent from the
preceding problem where both a probability density function and a probability
function are involved. Where there is a discrete probability mass, the hazard
rate is not dened. ¤

6Note that the force of mortality is not a probability (in particular, it can be greater than 1)
although it does no harm to visualize it as a probability.
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Figure 2.7 Hazard rate function for Model 1.
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Figure 2.8 Hazard rate function for Model 2.

EXAMPLE 2.9

Graph the hazard rate function for Models 1 and 2.

The graphs appear in Figures 2.7 and 2.8. ¤

The following model illustrates a situation in which there is a point where the
density and hazard rate functions are not dened.

Model 5 An alternative to the simple lifetime distribution in Model 1 is given here.
Note that it is piecewise linear and the derivative at 50 is not dened. Therefore,
neither the density function nor the hazard rate function is dened at 50. Unlike
the mixed model of Model 4, there is no discrete probability mass at this point.
Because the probability of 50 occurring is zero, the density or hazard rate at 50
could be arbitrarily dened with no e ect on subsequent calculations. In this text
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such values are arbitrarily dened so that the function is right continuous.7 See the
solution to Exercise 2.1 for an example.

5( ) =

½
1 0 01 0 50
1 5 0 02 50 75 ¤

A variety of commonly used continuous distributions are presented in Appendix
A and many discrete distributions are presented in Appendix B. An interesting
feature of a random variable is the value that is most likely to occur.

Denition 2.8 The mode of a random variable is the most likely value. For a
discrete variable it is the value with the largest probability. For a continuous variable
it is the value for which the density function is largest. If there are local maxima,
these points are also considered to be modes.

EXAMPLE 2.10

Where possible, determine the mode for Models 1�—5.

For Model 1, the density function is constant. All values from 0 to 100
could be the mode, or, equivalently, it could be said that there is no mode.
For Model 2, the density function is strictly decreasing and so the mode is at
0. For Model 3, the probability is highest at 0. As a mixed distribution, it
is not possible to dene a mode for Model 4. Model 5 has a density that is
constant over two intervals, with higher values from 50 to 75. These values
are all modes. ¤

2.2.1 Exercises

2.1 Determine the distribution, density, and hazard rate functions for Model 5.

2.2 Construct graphs of the distribution function for Models 3, 4, and 5. Also graph
the density or probability function as appropriate and the hazard rate function,
where it exists.

2.3 (*) A random variable has density function ( ) = 4 (1 + 2) 3, 0 .
Determine the mode of .

2.4 (*) A nonnegative random variable has a hazard rate function of ( ) = +
2 0 . You are also given (0 4) = 0 5. Determine the value of .

2.5 (*) has a Pareto distribution with parameters = 2 and = 10,000. has
a Burr distribution with parameters = 2, = 2, and = 20,000. Let be the
ratio of Pr( ) to Pr( ). Determine lim .

7By arbitrarily dening the value of the density or hazard rate function at such a point, it is
clear that using either of them to obtain the survival function will work. If there is discrete
probability at this point (in which case these functions are left undened), then the density and
hazard functions are not su cient to completely describe the probability distribution.
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BASIC DISTRIBUTIONAL
QUANTITIES

3.1 MOMENTS

There are a variety of interesting calculations that can be done from the models
described in Chapter 2. Examples are the average amount paid on a claim that is
subject to a deductible or policy limit or the average remaining lifetime of a person
age 40.

Denition 3.1 The kth raw moment of a random variable is the expected (av-
erage) value of the th power of the variable, provided it exists. It is denoted by
E( ) or by 0 . The rst raw moment is called the mean of the random variable
and is usually denoted by .

Note that is not related to ( ), the force of mortality from Denition 2.7.
For random variables that take on only nonnegative values (i.e., Pr( 0) = 1),
may be any real number. When presenting formulas for calculating this quantity, a
distinction between continuous and discrete variables needs to be made. Formulas
will be presented for random variables that are either everywhere continuous or
everywhere discrete. For mixed models, evaluate the formula by integrating with

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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respect to its density function wherever the random variable is continuous and by
summing with respect to its probability function wherever the random variable is
discrete and adding the results. The formula for the th raw moment is

0 = E( ) =

Z
( ) if the random variable is continuous

=
X

( ) if the random variable is discrete, (3.1)

where the sum is to be taken over all with positive probability. Finally, note that
it is possible that the integral or sum will not converge, in which case the moment
is said not to exist.

EXAMPLE 3.1

Determine the rst two raw moments for each of the ve models.

The subscripts on the random variable indicate which model is being
used.

E( 1) =

Z 100

0

(0 01) = 50

E( 2
1 ) =

Z 100

0

2(0 01) = 3,333 33

E( 2) =

Z

0

3(2,000)3

( + 2,000)4
= 1,000

E( 2
2 ) =

Z

0

2 3(2,000)3

( + 2,000)4
= 4,000,000

E( 3) = 0(0 5) + 1(0 25) + 2(0 12) + 3(0 08) + 4(0 05) = 0 93

E( 2
3 ) = 0(0 5) + 1(0 25) + 4(0 12) + 9(0 08) + 16(0 05) = 2 25

E( 4) = 0(0 7) +

Z

0

(0 000003) 0 00001 = 30,000

E( 2
4 ) = 02(0 7) +

Z

0

2(0 000003) 0 00001 = 6,000,000,000

E( 5) =

Z 50

0

(0 01) +

Z 75

50

(0 02) = 43 75

E( 2
5 ) =

Z 50

0

2(0 01) +

Z 75

50

2(0 02) = 2,395 83
¤

Before proceeding further, an additional model is introduced. This one looks
similar to Model 3, but with one key di erence. It is discrete, but with the added
requirement that all of the probabilities must be integral multiples of some number.
In addition, the model must be related to sample data in a particular way.

Denition 3.2 The empirical model is a discrete distribution based on a sample
of size that assigns probability 1 to each data point.



MOMENTS 23

Model 6 Consider a sample of size 8 in which the observed data points were 3, 5,
6, 6, 6, 7, 7, and 10. The empirical model then has probability function

6( ) =

0 125 = 3
0 125 = 5
0 375 = 6
0 25 = 7
0 125 = 10 ¤

Alert readers will note that many discrete models with nite support look like
empirical models. Model 3 could have been the empirical model for a sample of size
100 that contained 50 zeros, 25 ones, 12 twos, 8 threes, and 5 fours. Regardless, we
use the term empirical model only when there is an actual sample behind it. The
two moments for Model 6 are

( 6) = 6 25 and ( 2
6 ) = 42 5

using the same approach as in Model 3. It should be noted that the mean of this
random variable is equal to the sample arithmetic average (also called the sample
mean).

Denition 3.3 The kth central moment of a random variable is the expected
value of the th power of the deviation of the variable from its mean. It is denoted
by E[( ) ] or by . The second central moment is usually called the variance
and denoted 2, and its square root, , is called the standard deviation. The ratio
of the standard deviation to the mean is called the coe cient of variation. The
ratio of the third central moment to the cube of the standard deviation, 1 = 3

3,
is called the skewness. The ratio of the fourth central moment to the fourth power
of the standard deviation, 2 = 4

4, is called the kurtosis.1

The continuous and discrete formulas for calculating central moments are

= E[( ) ]

=

Z
( ) ( ) if the random variable is continuous

=
X
( ) ( ) if the random variable is discrete. (3.2)

In reality, the integral need be taken only over those values where ( ) is positive.
The standard deviation is a measure of how much the probability is spread out
over the random variable�’s possible values. It is measured in the same units as the
random variable itself. The coe cient of variation measures the spread relative to
the mean. The skewness is a measure of asymmetry. A symmetric distribution
has a skewness of zero, while a positive skewness indicates that probabilities to the
right tend to be assigned to values further from the mean than those to the left.
The kurtosis measures atness of the distribution relative to a normal distribution

1 It would be more accurate to call these items the �“coe cient of skewness�” and �“coe cient of
kurtosis�” because there are other quantities that also measure asymmetry and atness. The
simpler expressions are used in this text.



24 BASIC DISTRIBUTIONAL QUANTITIES

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 20 40 60 80 100

x

de
ns

ity f(x)
g(x)

Figure 3.1 Densities of ( ) gamma(0.5, 100) and ( ) gamma(5, 10).

(which has a kurtosis of 3). Kurtosis values above 3 indicate that (keeping the
standard deviation constant), relative to a normal distribution, more probability
tends to be at points away from the mean than at points near the mean. The
coe cients of variation, skewness, and kurtosis are all dimensionless.
There is a link between raw and central moments. The following equation indi-

cates the connection between second moments. The development uses the contin-
uous version from (3.1) and (3.2), but the result applies to all random variables.

2 =

Z
( )2 ( ) =

Z
( 2 2 + 2) ( )

= E( 2) 2 E( ) + 2 = 0
2

2 (3.3)

EXAMPLE 3.2

The density function of the gamma distribution appears to be positively
skewed. Demonstrate that this is true and illustrate with graphs.

From Appendix A, the rst three raw moments of the gamma distribution
are , ( +1) 2, and ( +1)( +2) 3. From (3.3) the variance is 2, and
from the solution to Exercise 3.1 the third central moment is 2 3. Therefore,
the skewness is 2 1 2. Because must be positive, the skewness is always
positive. Also, as decreases, the skewness increases.
Consider the following two gamma distributions. One has parameters =

0 5 and = 100 while the other has = 5 and = 10. These have the same
mean, but their skewness coe cients are 2.83 and 0.89, respectively. Figure
3.1 demonstrates the di erence. ¤

Note that when calculating the standard deviation for Model 6 in Exercise 3.2 the
result is the sample standard deviation using (as opposed to the more commonly
used 1) in the denominator. Finally, when calculating moments it is possible
that the integral or sum will not exist (as is the case for the third and fourth
moments for Model 2). For the models we typically encounter, the integrand and
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summand are nonnegative and so failure to exist implies that the required limit
that gives the integral or sum is innity. See Example 3.8 for an illustration.

Denition 3.4 For a given value of with Pr( ) 0, the excess loss
variable is = given that . Its expected value,

( ) = ( ) = E( ) = E( | )

is called the mean excess loss function. Other names for this expectation are
mean residual life function and complete expectation of life. When the
latter terminology is used, the commonly used symbol ise .

This variable could also be called a left truncated and shifted variable. It is left
truncated because observations below are discarded. It is shifted because is
subtracted from the remaining values. When is a payment variable, the mean
excess loss is the expected amount paid given that there has been a payment in
excess of a deductible of .2 When is the age at death, the mean excess loss
is the expected remaining time until death given that the person is alive at age .
The th moment of the excess loss variable is determined from

( ) =

R
( ) ( )

1 ( )
if the variable is continuous

=

P
( ) ( )

1 ( )
if the variable is discrete. (3.4)

Here, ( ) is dened only if the integral or sum converges. There is a particularly
convenient formula for calculating the rst moment. The development is given as
follows for the continuous version, but the result holds for all random variables.
The second line is based on an integration by parts where the antiderivative of ( )
is taken as ( ).

( ) =

R
( ) ( )

1 ( )

=
( ) ( )| +

R
( )

( )

=

R
( )

( )
(3.5)

Denition 3.5 The left censored and shifted variable is

= ( )+ =

½
0

It is left censored because values below are not ignored but are set equal to 0.
There is no standard name or symbol for the moments of this variable. For dollar
events, the distinction between the excess loss variable and the left censored and

2This is the meaning of the superscript , indicating that this payment is per payment made
to distinguish this variable from , the per loss variable to be introduced shortly. These two
variables are explored in depth in Chapter 8.
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Figure 3.2 Excess loss variable.

shifted variable is one of per payment versus per loss. In the former situation, the
variable exists only when a payment is made. The latter variable takes on the value
0 whenever a loss produces no payment. The moments can be calculated from

E[( )+] =

Z
( ) ( ) if the variable is continuous,

=
X

( ) ( ) if the variable is discrete. (3.6)

It should be noted that

E[( )+] = ( )[1 ( )] (3.7)

EXAMPLE 3.3

Construct graphs to illustrate the di erence between the excess loss variable
and the left censored and shifted variable.

The two graphs in Figures 3.2 and 3.3 plot the modied variable as
a function of the unmodied variable . The only di erence is that for
values below 100 the variable is undened while for the left censored and
shifted variable it is set equal to zero. ¤

The next denition provides a complementary function to the excess loss.

Denition 3.6 The limited loss variable is

= =

½

Its expected value, E[ ], is called the limited expected value.

This variable could also be called the right censored variable. It is right censored
because values above are set equal to . An insurance phenomenon that relates
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Figure 3.3 Left censored and shifted variable.
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Figure 3.4 Limit of 100 plus deductible of 100 equals full coverage.

to this variable is the existence of a policy limit that sets a maximum on the benet
to be paid. Note that ( )+ + ( ) = . That is, buying one policy with a
limit of and another with a deductible of is equivalent to buying full coverage.
This is illustrated in Figure 3.4.
The most direct formulas for the th moment of the limited loss variable are

E[( ) ] =

Z
( ) + [1 ( )]

if the random variable is continuous

=
X

( ) + [1 ( )]

if the random variable is discrete. (3.8)
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Another interesting formula is derived as follows:

E[( ) ] =

Z 0

( ) +

Z

0

( ) + [1 ( )]

= ( )0
Z 0

1 ( )

( )0 +

Z

0

1 ( ) + ( )

=

Z 0
1 ( ) +

Z

0

1 ( ) (3.9)

where the second line uses integration by parts. For = 1, we have

E( ) =

Z 0

( ) +

Z

0

( ) .

The corresponding formula for discrete random variables is not particularly inter-
esting. The limited expected value also represents the expected dollar saving per
incident when a deductible is imposed. The th limited moment of many com-
mon continuous distributions is presented in Appendix A. Exercise 3.8 asks you to
develop a relationship between the three rst moments introduced previously.

3.1.1 Exercises

3.1 Develop formulas similar to (3.3) for 3 and 4.

3.2 Calculate the standard deviation, skewness, and kurtosis for each of the six
models. It may help to note that Model 2 is a Pareto distribution and the density
function in the continuous part of Model 4 is an exponential distribution. Formulas
that may help with calculations for these models appear in Appendix A.

3.3 (*) A random variable has a mean and a coe cient of variation of 2. The third
raw moment is 136. Determine the skewness.

3.4 (*) Determine the skewness of a gamma distribution that has a coe cient of
variation of 1.

3.5 Determine the mean excess loss function for Models 1�—4. Compare the func-
tions for Models 1, 2, and 4.

3.6 (*) For two random variables, and , (30) = (30) + 4. Let have
a uniform distribution on the interval from 0 to 100 and let have a uniform
distribution on the interval from 0 to . Determine .

3.7 (*) A random variable has density function ( ) = 1 0. Deter-
mine ( ), the mean excess loss function evaluated at .

3.8 Show that the following relationship holds:

E( ) = ( ) ( ) + E( ) (3.10)
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3.9 Determine the limited expected value function for Models 1�—4. Do this using
both (3.8) and (3.10). For Models 1 and 2 also obtain the function using (3.9).

3.10 (*) Which of the following statements are true?

(a) The mean excess loss function for an empirical distribution is continuous.

(b) The mean excess loss function for an exponential distribution is constant.

(c) If it exists, the mean excess loss function for a Pareto distribution is
decreasing.

3.11 (*) Losses have a Pareto distribution with = 0 5 and = 10,000. Determine
the mean excess loss at 10,000.

3.12 Dene a right truncated variable and provide a formula for its th moment.

3.13 (*) The severity distribution of individual claims has pdf

( ) = 2 5 3 5 1

Determine the coe cient of variation.

3.14 (*) Claim sizes are for 100, 200, 300, 400, or 500. The true probabilities
for these values are 0.05, 0.20, 0.50, 0.20, and 0.05, respectively. Determine the
skewness and kurtosis for this distribution.

3.15 (*) Losses follow a Pareto distribution with 1 and unspecied. Deter-
mine the ratio of the mean excess loss function at = 2 to the mean excess loss
function at = .

3.16 (*) A random sample of size 10 has two claims of 400, seven claims of 800,
and one claim of 1,600. Determine the empirical skewness coe cient.

3.2 QUANTILES

One other value of interest that may be derived from the distribution function is
the percentile function. It is the inverse of the distribution function, but because
this quantity is not well dened, an arbitrary denition must be created.

Denition 3.7 The 100pth percentile of a random variable is any value such
that ( ) ( ). The 50th percentile, 0 5 is called the median.

If the distribution function has a value of for one and only one value, then
the percentile is uniquely dened. In addition, if the distribution function jumps
from a value below to a value above , then the percentile is at the location of the
jump. The only time the percentile is not uniquely dened is when the distribution
function is constant at a value of over a range of values. In that case, any value
in that range (including both endpoints) can be used as the percentile.
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Figure 3.5 Percentiles for Model 1.
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Figure 3.6 Percentiles for Model 3.

EXAMPLE 3.4

Determine the 50th and 80th percentiles for Models 1 and 3.

For Model 1, the th percentile can be obtained from = ( ) = 0 01
and so = 100 , and, in particular, the requested percentiles are 50 and
80 (see Figure 3.5). For Model 3 the distribution function equals 0.5 for all
0 1, and so any value from 0 to 1 inclusive can be the 50th percentile.
For the 80th percentile, note that at = 2 the distribution function jumps
from 0.75 to 0.87 and so 0 8 = 2 (see Figure 3.6). ¤

3.2.1 Exercises

3.17 (*) The cdf of a random variable is ( ) = 1 2 1. Determine the
mean, median, and mode of this random variable.

3.18 Determine the 50th and 80th percentiles for Models 2, 4, 5, and 6.
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3.19 (*) Losses have a Pareto distribution with parameters and . The 10th
percentile is . The 90th percentile is 5 3 . Determine the value of .

3.20 (*) Losses have a Weibull distribution with parameters and . The 25th
percentile is 1,000 and the 75th percentile is 100,000. Determine the value of .

3.3 GENERATING FUNCTIONS AND SUMS OF RANDOM VARIABLES

An insurance company rarely insures only one person. The total claims paid on
all policies is the sum of all payments. Thus it is useful to be able to determine
properties of = 1 + · · · + . The rst result is a version of the central limit
theorem.

Theorem 3.8 For a random variable as previously dened, E( ) = E( 1) +
· · ·+E( ). Also, if 1 are independent, Var( ) =Var( 1)+· · ·+Var( ).
If the random variables 1 2 are independent and their rst two moments
meet certain conditions, lim [ E( )]

p
Var( ) has a normal distribution

with mean 0 and variance 1.

Obtaining the distribution or density function of is usually very di cult.
However, there are a few cases where it is simple. The key to this simplicity is the
generating function.

Denition 3.9 For a random variable , the moment generating function
(mgf) is ( ) = E( ) for all for which the expected value exists. The prob-
ability generating function (pgf) is ( ) = E( ) for all for which the
expectation exists.

Note that ( ) = ( ) and ( ) = (ln ). Often the mgf is used for
continuous random variables and the pgf for discrete random variables. For us,
the value of these functions is not so much that they generate moments or proba-
bilities but that there is a one-to-one correspondence between a random variable�’s
distribution function and its mgf and pgf (i.e., two random variables with di erent
distribution functions cannot have the same mgf or pgf). The following result aids
in working with sums of random variables.

Theorem 3.10 Let = 1+· · ·+ , where the random variables in the sum are
independent. Then ( ) =

Q
=1 ( ) and ( ) =

Q
=1 ( ) provided all

the component mgfs and pgfs exist.

Proof: We use the fact that the expected product of independent random variables
is the product of the individual expectations. Then,

( ) = E( ) = E[ ( 1+···+ )]

=
Y

=1

E( ) =
Y

=1

( )

A similar argument can be used for the pgf. ¤
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EXAMPLE 3.5

Show that the sum of independent gamma random variables, each with same
value of , has a gamma distribution.

The moment generating function of a gamma variable is

E( ) =

R
0

1

( )

=

R
0

1 ( +1 )

( )

=

R
0

1( + 1 )

( )

=
( )( + 1 )

( )
=

µ
1

1

¶
1

Now let have a gamma distribution with parameters and . Then the
moment generating function of the sum is

( ) =
Y

=1

µ
1

1

¶
=

µ
1

1

¶
1+···+

,

which is the moment generating function of a gamma distribution with para-
meters 1 + · · ·+ and . ¤

EXAMPLE 3.6

Obtain the mgf and pgf for the Poisson distribution.

The pgf is

( ) =
X

=0
!

=
X

=0

( )

!
= = ( 1)

Then the mgf is ( ) = ( ) = exp[ ( 1)]. ¤

EXAMPLE 3.7

Determine the distribution of the sum of independent exponential random
variables, no two of which have the same mean.

Let have an exponential distribution with mean 1 for = 1 2 ,
where it is assumed that 6= for all 6= . Let = 1 + 2 + · · ·+ .
This random variable is said to have a generalized Erlang distribution and
the goal is to determine its pdf. The pdf of is ( ) = , which
is a special case of the gamma distribution of Example 3.5 with = 1 and
= 1 . Then,

( ) = E
¡ ¢

=
1

1
=
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and, by Theorem 3.8, the independence of the s implies that

( ) =
Y

=1

µ ¶
(3.11)

In order to obtain the pdf of , dene

( ) =
Y

=1

( ) (3.12)

Then, (3.11) can be rewritten as

( ) =
Y

=1

µ ¶
=

Q

=1
(0 )

Q

=1
( )

=
(0)

( )
(3.13)

Next, recall that if a function ( ) is a polynomial of degree 1, it is
completely determined if values are specied. In Section 19.2 it is shown
that one way to write this polynomial based on knowing the function�’s value
at the points 1 2 is

( ) =
X

=1

( )

Q

=1
6=

( )

Q

=1
6=

( )
(3.14)

where the s can be any number (as long as no two are equal). Now consider
the particular polynomial of degree 1, namely ( ) = 1, and let the s
be those for this example. That is, they must be distinct and positive. Then,
(3.14) becomes

1 = ( ) =
X

=1

Q

=1
6=

( )

Q

=1
6=

( )
=
X

=1

( ) ( )
0( )

(3.15)

where the denominator equivalence is obtained by di erentiating the loga-
rithm of ( ). Multiplying both sides of (3.15) by (0) ( ) (which is ( ))
gives

( ) =
X

=1

(0)
0( )( )

or, equivalently,

( ) =
X

=1

( ) (3.16)
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where

( ) =
(0)
0( )

=
Y

=1
6=

µ ¶
= 1 2 (3.17)

Now, note that
Z

0

( ) =

and so (3.16) can be written

( ) =
X

=1

( )

Z

0

( ) =

Z

0

X

=1

( )

From the denition of the mgf we also have

( ) =

Z

0

( )

Because it is not possible for two di erent functions to have the same gener-
ating function, it must be that

( ) =
X

=1

( ) 0 (3.18)

Note that this pdf is a combination of exponential distributions. Because
the density function must integrate to one, then

P
=1 ( ) = 1.

There is another fact that arises from this development that will be useful
later. First, we must establish that (0) = 0 for = 2 3 . This can be
done by induction. For = 2,

1(2) =
2

2 1

and 2(2) =
1

1 2

and so

2( ) = 2

2 1
1

1 + 1

1 2
2

2

= 1 2

2 1

¡
1 2

¢

and, nally, 2(0) = 0. To complete the induction, assume this is true for
1, then

( ) =

Z

0
1( )
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Because the integrand is bounded for all 0 , as 0, the integral
goes to zero and thus (0) = 0. Finally,

0 = (0) =
(0)Q

=1

=

P
=1 ( )
Q

=1

=
1Q
=1

X

=1

Q

=1

Q

=1
6=

( )

=
X

=1

1
Q

=1
6=

( )
(3.19)

which will prove useful later in this book. Also, because
P

=1 ( ) = 0,
at least one of the ( ) coe cients must be negative. ¤

3.3.1 Exercises

3.21 (*) A portfolio contains 16 independent risks, each with a gamma distribution
with parameters = 1 and = 250. Give an expression using the incomplete
gamma function for the probability that the sum of the losses exceeds 6,000. Then
approximate this probability using the central limit theorem.

3.22 (*) The severities of individual claims have the Pareto distribution with pa-
rameters = 8 3, and = 8,000. Use the central limit theorem to approximate
the probability that the sum of 100 independent claims will exceed 600,000.

3.23 (*) The severities of individual claims have the gamma distribution (see Ap-
pendix A) with parameters = 5 and = 1,000. Use the central limit theorem
to approximate the probability that the sum of 100 independent claims exceeds
525,000.

3.24 A sample of 1,000 health insurance contracts on adults produced a sample
mean of 1,300 for the annual benets paid with a standard deviation of 400. It
is expected that 2,500 contracts will be issued next year. Use the central limit
theorem to estimate the probability that benet payments will be more than 101%
of the expected amount.

3.4 TAILS OF DISTRIBUTIONS

The tail of a distribution (more properly, the right tail) is the portion of the distri-
bution corresponding to large values of the random variable. Understanding large
possible loss values is important because these have the greatest impact on the total
of losses. Random variables that tend to assign higher probabilities to larger values
are said to be heavier-tailed. Tail weight can be a relative concept (model A has
a heavier tail than model B) or an absolute concept (distributions with a certain
property are classied as heavy-tailed). When choosing models, tail weight can help
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narrow the choices or can conrm a choice for a model. Heavy-tailed distributions
are a particularly important aspect of operational risk in connection with extreme
value theory (see Section 5.6).

3.4.1 Classication based on moments

Recall that in the continuous case the th raw moment for a random variable that
takes on only positive values (like most insurance payment variables) is given byR
0

( ) . Depending on the density function and the value of , this integral
may not exist (i.e., it may be innite). One way of classifying distributions is on
the basis of whether all moments exist. It is generally agreed that the existence of
all positive moments indicates a (relatively) light right tail, while the existence of
only positive moments up to a certain value (or existence of no positive moments
at all) indicates a heavy right tail.

EXAMPLE 3.8

Demonstrate that for the gamma distribution all positive moments exist but
for the Pareto distribution they do not.

For the gamma distribution, the raw moments are

0 =

Z

0

1

( )

=

Z

0

( )
( ) 1

( )
, making the substitution =

=
( )

( + ) for all 0

For the Pareto distribution, they are

0 =

Z

0 ( + ) +1

=

Z
( )

+1
, making the substitution = +

=

Z X

=0

µ ¶
1( ) for integer values of .

The integral exists only if all of the exponents on in the sum are less than
1. That is, if 1 1 for all , or, equivalently, if . Therefore,

only some moments exist. ¤

By this classication, the Pareto distribution is said to have a heavy tail and
the gamma distribution is said to have a light tail. A look at the moment formulas
in Appendix A reveals which distributions have heavy tails and which do not, as
indicated by the existence of moments.
It is instructive to note that if a distribution does not have all its positive mo-

ments, then it does not have a moment generating function (i.e., if is the associ-
ated random variable, then E( ) = for all 0). However, the converse is not
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true. The lognormal distribution has no moment generating function even though
all its positive moments are nite.
Further comparisons of tail behavior can be made on the basis of ratios of mo-

ments (assuming they exist). In particular, heavy-tailed behavior is typically as-
sociated with large values of quantities such as the coe cient of variation, the
skewness, and the kurtosis (see Denition 3.3).

3.4.2 Comparison based on limiting tail behavior

One commonly used indication that one distribution has a heavier tail than another
distribution with the same mean is that the ratio of the two survival functions should
diverge to innity (with the heavier-tailed distribution in the numerator) as the
argument becomes large. The divergence implies that the numerator distribution
puts signicantly more probability on large values. Note that it is equivalent to
examine the ratio of density functions. The limit of the ratio will be the same, as
can be seen by an application of L�’Hôpital�’s rule:

lim
1( )

2( )
= lim

0
1( )
0
2( )

= lim
1( )

2( )

EXAMPLE 3.9

Demonstrate that the Pareto distribution has a heavier tail than the gamma
distribution using the limit of the ratio of their density functions.

To avoid confusion, the letters and will be used for the parameters of
the gamma distribution instead of the customary and . Then the required
limit is

lim
Pareto( )

gamma( )
= lim

( + ) 1

1 ( ) 1

= lim
( + ) +1 1

lim
( + ) +

and, either by application of L�’Hôpital�’s rule or by remembering that expo-
nentials go to innity faster than polynomials, the limit is innity. Figure 3.7
shows a portion of the density functions for a Pareto distribution with para-
meters = 3 and = 10 and a gamma distribution with parameters = 1

3
and = 15. Both distributions have a mean of 5 and a variance of 75. The
graph is consistent with the algebraic derivation. ¤

3.4.3 Classication based on the hazard rate function

The hazard rate function also reveals information about the tail of the distribution.
Distributions with decreasing hazard rate functions have heavy tails. Distributions
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Figure 3.7 Tails of gamma and Pareto distributions.

with increasing hazard rate functions have light tails. In the ensuing discussion, we
understand �“decreasing�” to mean �“nonincreasing�” and �“increasing�” to mean �“non-
decreasing.�” That is, a decreasing function can be level at times. The exponential
distribution, which has a constant hazard rate, is therefore said to have both a
decreasing and an increasing hazard rate. For distributions with monotone hazard
rates, distributions with exponential tails divide the distributions into heavy-tailed
and light-tailed distributions.
Comparisons between distributions can be made on the basis of the rate of

increase or decrease of the hazard rate function. For example, a distribution has
a lighter tail than another if its hazard rate function is increasing at a faster rate.
Often these comparisons and classications are of interest primarily in the right tail
of the distribution, that is, for large functional values.

EXAMPLE 3.10

Compare the tails of the Pareto and gamma distributions by looking at their
hazard rate functions.

The hazard rate function for the Pareto distribution is

( ) =
( )

( )
=

( + ) 1

( + )
=

+
,

which is decreasing. For the gamma distribution we need to be a bit more
clever because there is no closed form expression for ( ). Observe that

1

( )
=

R
( )

( )
=

R
0

( + )

( )
,

and so, if ( + ) ( ) is an increasing function of for any xed , then
1 ( ) will be increasing in and thus the random variable will have a de-
creasing hazard rate. Now, for the gamma distribution

( + )

( )
=
( + ) 1 ( + )

1
=
³
1 +

´ 1
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which is strictly increasing in provided 1 and strictly decreasing in if
1. By this measure, some gamma distributions have a heavy tail (those

with 1) and some (with 1) have a light tail. Note that when = 1
we have the exponential distribution and a constant hazard rate. Also, even
though ( ) is complicated in the gamma case, we know what happens for
large . Because ( ) and ( ) both go to 0 as , L�’Hôpital�’s rule yields

lim ( ) = lim
( )

( )
= lim

0( )

( )
= lim ln ( )

¸

= lim
h
( 1) ln

i
= lim

µ
1 1

¶
=
1

That is, ( ) 1 as . ¤

3.4.4 Classication based on the mean excess loss function

The mean excess loss function also gives information about tail weight. If the mean
excess loss function is increasing in , the distribution is considered to have a heavy
tail. If the mean excess loss function is decreasing in , the distribution is considered
to have a light tail. Comparisons between distributions can be made on the basis
of the rate of increase or decrease of the mean excess loss function. For example, a
distribution has a heavier tail than another if, for large values of the argument, its
mean excess loss function is increasing at a lower rate.
In fact, the mean excess loss function and the hazard rate are closely related in

several ways. First, note that

( + )

( )
=
exp

h R +

0
( )

i

exp
h R

0
( )

i = exp

" Z +

( )

#

= exp

Z

0

( + )

¸

Therefore, if the hazard rate is decreasing, then for xed it follows that
R
0
( +

) is a decreasing function of , and from the preceding, ( + ) ( ) is an
increasing function of . But from (3.5), the mean excess loss function may be
expressed as

( ) =

R
( )

( )
=

Z

0

( + )

( )

Thus, if the hazard rate is a decreasing function, then the mean excess loss function
( ) is an increasing function of because the same is true of ( + ) ( ) for
xed . Similarly, if the hazard rate is an increasing function, then the mean
excess loss function is a decreasing function. It is worth noting (and is perhaps
counterintuitive), however, that the converse implication is not true. Exercise 3.29
gives an example of a distribution that has a decreasing mean excess loss function,
but the hazard rate is not increasing for all values. Nevertheless, the implications
just described are generally consistent with the preceding discussions of heaviness
of the tail.
There is a second relationship between the mean excess loss function and the

hazard rate. As , ( ) and
R

( ) go to 0. Thus, the limiting behavior
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of the mean excess loss function as may be ascertained using L�’Hôpital�’s
rule because formula (3.5) holds. We have

lim ( ) = lim

R
( )

( )
= lim

( )

( )
= lim

1

( )

as long as the indicated limits exist. These limiting relationships may be useful if
the form of ( ) is complicated.

EXAMPLE 3.11

Examine the behavior of the mean excess loss function of the gamma distrib-
ution.

Because ( ) =
R

( ) ( ) and ( ) is complicated, ( ) is compli-
cated. But (0) = E( ) = , and, using Example 3.10, we have

lim ( ) = lim
1

( )
=

1

lim ( )
=

Also, from Example 3.10, ( ) is strictly decreasing in for 1 and
strictly increasing in for 1, implying that ( ) is strictly increasing
from (0) = to ( ) = for 1 and strictly decreasing from (0) =
to ( ) = for 1. For = 1, we have the exponential distribution for
which ( ) = . ¤

3.4.5 Equilibrium distributions and tail behavior

Further insight into the mean residual lifetime and the heaviness of the tail may be
obtained by introducing the so-called equilibrium (or integrated tail) distribution,
which also has important applications in connection with the continuous time ruin
model of Chapter 11. For positive random variables with (0) = 1, it follows from
Denition 3.4 and (3.5) with = 0 that E( ) =

R
0

( ) , or, equivalently,
1 =

R
0
[ ( ) E( )] , so that

( ) =
( )

E( )
0 (3.20)

is a probability density function. The corresponding survival function is

( ) =

Z
( ) =

R
( )

E( )
0

The hazard rate corresponding to the equilibrium distribution is

( ) =
( )

( )
=

( )R
( )

=
1

( )

using (3.5). Thus, the reciprocal of the mean residual life function is itself a hazard
rate, and this fact may be used to show that the mean residual life function uniquely
characterizes the original distribution. We have

( ) = ( ) ( ) = ( ) 0
( )
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or, equivalently,

( ) =
(0)

( )
0 [

1
( ) ]

using (0) = E( ).
The equilibrium distribution also provides further insight into the relationship

between the hazard rate, the mean residual life function, and heaviness of the tail.
Assuming that (0) = 1, and thus (0) = E( ), we have

R
( ) = (0) ( ),

and from (3.5),
R

( ) = ( ) ( ). Equating these two expressions results in

( )

(0)
=

( )

( )

If the mean residual life function is increasing (implied if the hazard rate is
decreasing), then ( ) (0), which is obviously equivalent to ( ) ( ) from
the preceding equality. This, in turn, implies that

Z

0

( )

Z

0

( )

But E( ) =
R
0

( ) from Denition 3.4 and (3.5) if (0) = 1. Also,

Z

0

( ) =

Z

0

( )

since both sides represent the mean of the equilibrium distribution. This may be
evaluated using (3.9) with = = 2, and (0) = 0 to give the equilibrium
mean, that is,

Z

0

( ) =

Z

0

( ) =
1

E( )

Z

0

( ) =
E( 2)

2 ( )

The inequality may thus be expressed as

E( 2)

2E( )
E( )

or using Var( ) = E( 2) [E( )]2 as Var( ) [E( )]2. That is, the squared
coe cient of variation, and hence the coe cient of variation itself, is at least 1 if
( ) (0). Reversing the inequalities implies that the coe cient of variation is at
most 1 if ( ) (0), in turn implied if the mean residual life function is decreasing
or the hazard rate is increasing. These values of the coe cient of variation are
consistent with the comments made here about the heaviness of the tail.

3.4.6 Exercises

3.25 Using the methods in this section (except for the mean excess loss function),
compare the tail weight of the Weibull and inverse Weibull distributions.

3.26 Arguments as in Example 3.9 place the lognormal distribution between the
gamma and Pareto distributions with regard to heaviness of the tail. To reinforce
this conclusion, consider a gamma distribution with parameters = 0 2, = 500; a
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lognormal distribution with parameters = 3 709290, = 1 338566; and a Pareto
distribution with parameters = 2 5, = 150. First demonstrate that all three
distributions have the same mean and variance. Then numerically demonstrate
that there is a value such that the gamma pdf is smaller than the lognormal and
Pareto pdfs for all arguments above that value and that there is another value such
that the lognormal pdf is smaller than the Pareto pdf for all arguments above that
value.

3.27 For a Pareto distribution with 2, compare ( ) to (0) and also determine
the coe cient of variation. Conrm that these results are consistent with the Pareto
distribution being heavy-tailed.

3.28 Let be a random variable that has the equilibrium density from (3.20). That
is, ( ) = ( ) = ( ) E( ) for some random variable . Use integration by
parts to show that

( ) =
( ) 1

E( )

whenever ( ) exists.

3.29 You are given that the random variable has probability density function
( ) = (1 + 2 2) 2 0.

(a) Determine the survival function ( ).

(b) Determine the hazard rate ( ).

(c) Determine the survival function ( ) of the equilibrium distribution.

(d) Determine the mean residual life function ( ).

(e) Determine lim ( ) and lim ( ).

(f) Prove that ( ) is strictly decreasing but ( ) is not strictly increasing.

3.30 Assume that has probability density function ( ) 0.

(a) Prove that

( ) =

R
( ) ( )

E( )

(b) Use (a) to show that
Z

( ) = ( ) + E( ) ( )

(c) Prove that (b) may be rewritten as

( ) =

R
( )

+ ( )

and that this, in turn, implies that

( )
E( )

+ ( )
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(d) Use (c) to prove that, if ( ) (0), then

( )
E( )

+ E( )

and thus
[ E( )]

1

+ 1

which for = 1 implies that the mean is at least as large as the (smallest)
median.

(e) Prove that (b) may be rewritten as

( ) =
( )

+ ( )

R
( )

E( )

and thus that

( )
( )

+ ( )

3.5 MEASURES OF RISK

3.5.1 Introduction

Probability-based models provide a description of risk exposure. The level of ex-
posure to risk is often described by one number, or at least a small set of numbers.
These numbers are functions of the model and are often called �“key risk indicators.�”
Such key risk indicators inform actuaries and other risk managers about the degree
to which the company is subject to particular aspects of risk. In particular, Value-
at-Risk (VaR) is a quantile of the distribution of aggregate losses. Risk managers
often look at �“the chance of an adverse outcome.�” This can be expressed through
the VaR at a particular probability level. VaR can also be used in the determination
of the amount of capital required to withstand such adverse outcomes. Investors,
regulators, and rating agencies are particularly interested in the company�’s ability
to withstand such events.
VaR su ers from some undesirable properties. A more informative and more

useful measure of risk is Tail-Value-at-Risk (TVaR). It has arisen independently in
a variety of areas and has been given di erent names including Conditional-Value-
at-Risk (CVaR), Conditional Tail Expectation (CTE), and Expected Shortfall (ES).
While these measures have been developed in a risk management context, they

are useful in assessing any random variable.

3.5.2 Risk measures and coherence

A risk measure is a mapping from the random variable representing the loss asso-
ciated with the risks to the real line (the set of all real numbers). A risk measure
gives a single number that is intended to quantify the risk exposure. For example,
the standard deviation, or a multiple of the standard deviation of a distribution, is
a measure of risk because it provides a measure of uncertainty. It is clearly appro-
priate when using the normal distribution. In the eld of nance, the size of loss
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for which there is a small (e.g., 0.05%) probability of exceedence is a simple risk
measure.
Risk measures are denoted by the function ( ). It is convenient to think of
( ) as the amount of assets required to protect against adverse outcomes of the
risk . Studies of risk measures and their properties have included the behavior of
risk measures when several losses are combined and treated as a single loss. Com-
bining risks is important in the study of capital needs of an insurance company
when considering the overall risk exposure of the insurance company. The insur-
ance company may have several divisions or departments specializing in di erent
products; for example, individual life, homeowners, automobile, group life, annu-
ities, and health. When risk measures are applied to the individual departments,
the results should be consistent in some way with the results that are obtained
when the risk measure is applied to the entire company. In what follows, it is useful
to think of the random variables and as the loss random variables for two di-
visions and + as the loss random variable for the entity created by combining
the two divisions.
The study of risk measures and their properties has been carried out by numerous

authors such as Wang [180] and [181]. Specic desirable properties of risk measures
were proposed as axioms in connection with risk pricing by Wang, Young, and
Panjer [182] and more generally in risk measurement by Artzner et al. [7]. The
Artzner paper introduced the concept of coherence and is considered to be the
groundbreaking paper in risk measurement.
We consider the set of random variables such that if and are two members

of the set, then both and + are also in the set. This is not very restrictive,
but it does eliminate risks that are measured as percentages as with Model 1 of
Chapter 2.

Denition 3.11 A coherent risk measure is a risk measure ( ) that has the
following four properties for any two loss random variables and :
1. Subadditivity: ( + ) ( ) + ( )
2. Monotonicity: If for all possible outcomes, then ( ) ( ).
3. Positive homogeneity: For any positive constant , ( ) = ( ).
4. Translation invariance: For any positive constant , ( + ) = ( ) + .

Subadditivity means that the risk measure (and, hence, the capital required to
support it) for two risks combined will not be greater than for the risks treated
separately. Subadditivity reects the fact that there should be some diversica-
tion benet from combining risks. In general, this is necessary at the corporate
level. Otherwise, companies would nd it to be an advantage to disaggregate into
smaller companies. There has been some debate about the appropriateness of the
subadditivity requirement. In particular, the merger of several small companies
into a larger one exposes each of the small companies to the reputational risk of
the others. We will continue to require subadditivity as it reects the benet of
diversication.
Monotonicity means that if one risk always has greater losses than another risk

under all circumstances,3 the risk measure (and, hence, the capital required to
support it) should always be greater. This requirement should be self-evident from
an economic viewpoint.

3Technically, this means that for the joint distribution of ( ), Pr( ) = 0.
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Positive homogeneity means that the risk measure (and, hence, the capital re-
quired to support it) is independent of the currency in which the risk is measured.
Equivalently, it means that, for example, doubling the exposure to a particular risk
requires double the capital. This is sensible because doubling the position provides
no diversication.
Translation invariance means that there is no additional risk (and, hence, capital

required to support it) for an additional risk for which there is no additional uncer-
tainty. In particular, by making identically zero, the value of the assets required
for a certain outcome are exactly the value of that outcome. Also, when a company
meets the capital requirement by setting up additional risk-free capital, the act of
injecting the additional capital does not, in itself, trigger a further injection (or
reduction) of capital.
Risk measures satisfying these four criteria are deemed to be coherent. There

are many such risk measures.

EXAMPLE 3.12

(Standard deviation principle) The standard deviation is a measure of uncer-
tainty of a distribution. Consider a loss distribution with mean and standard
deviation . The quantity + , where is the same xed constant for all
distributions, is a risk measure (often called the standard deviation prin-
ciple). The coe cient is usually chosen to ensure that losses will exceed
the risk measure for some distribution, such as the normal distribution, with
some specied small probability. ¤

In Exercise 3.31 you are asked to prove that the standard deviation principle is
not coherent.
If follows the normal distribution, a value of = 1 645 results in an exceedence

probability of Pr ( + ) = 5% while, if = 2 576, then Pr ( + ) =
0 5%. However, if the distribution is not normal, the same multiples of the standard
deviation will lead to di erent exceedence probabilities. One can also begin with
the exceedence probability, obtaining the quantile + and the equivalent value
of . This is the key idea behind Value-at-Risk.

3.5.3 Value-at-Risk

Value-at-Risk (VaR) has become the standard risk measure used to evaluate expo-
sure to risk. In general terms, the VaR is the amount of capital required to ensure,
with a high degree of certainty, that the enterprise doesn�’t become technically in-
solvent. The degree of certainty chosen is arbitrary. In practice, it can be a high
number such as 99.95% for the entire enterprise, or it can be much lower, such as
95%, for a single unit or risk class within the enterprise. This lower percentage may
reect the inter-unit or inter-risk type diversication that exists.
Suppose ( ) represents the distribution function of outcomes over a xed

period of time, such as one year, of a portfolio of risks (such as a set of insurance
risks or an entire insurance company). An adverse outcome is referred to as a �“loss.�”
In the notation used throughout of this book, positive values of the random variable
are adverse outcomes, that is, losses. The VaR of the random variable is the

100 th percentile of the distribution of , denoted by VaR ( ) = . This shows
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why VaR is often called a quantile risk measure. When the insurance company has
this amount of capital available, it can absorb 100 % of possible outcomes. When
= 99 95% for a one-year time period, the interpretation is that there is only a

very small chance (0.05%) that the insurance company will be bankrupted by an
adverse outcome over the next year.

Denition 3.12 Let denote a loss random variable. The Value-at-Risk of
at the 100 % level, denoted VaR ( ) or , is the 100 percentile (or quantile) of
the distribution of .

For continuous distributions, we can simply write VaR ( ) for random variable
as the value of satisfying

Pr ( ) = 1

It is well known that VaR does not satisfy one of the four criteria for coherence,
the subadditivity requirement. The failure of VaR to be subadditive can be shown
by a simple but extreme example inspired by a more complicated one from Wirch
[188].

EXAMPLE 3.13

(Incoherence of VaR) Let denote a loss random variable of the continuous
type with the following cdf values:

(1) = 0 91

(90) = 0 95

(100) = 0 96

The 95% quantile, the VaR95%( ) is 90 because there is a 5% chance of
exceeding 90.
Suppose that we now split the risk into two separate (but dependent)

risks and such that the two separate risks in total are equivalent to risk
, that is, + = One way to dene them is:

=

½
100

0 100

and

=

½
0 100

100

The cdf for risk satises

(1) = 0 95

(90) = 0 99

(100) = 1

indicating VaR95%( ) = 1.
Similarly, the cdf for risk satises (0) = 0 96, indicating that there is

a 96% chance of no loss. Therefore the 95% quantile cannot exceed 0, and so
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VaR95%( ) 0. Consequently, the sum of the 95% quantiles for and is
less than the VaR95%( ), which violates subadditivity. ¤

Although this example may appear to be somewhat articial, the existence of
such possibilities creates opportunities for strange or unproductive manipulation.
Therefore we turn to a risk measure that is coherent.

3.5.4 Tail-Value-at-Risk

As a risk measure, VaR is used extensively in nancial risk management of trading
risk over a xed (usually relatively short) time period. In these situations, the
normal distribution is often used for describing gains or losses. If distributions of
gains or losses are restricted to the normal distribution, VaR satises all coherency
requirements. However, the normal distribution is generally not used for describ-
ing insurance losses, which are typically skewed. Consequently, the use of VaR is
problematic because of the lack of subadditivity.

Denition 3.13 Let denote a loss random variable. The Tail-Value-at-Risk
of at the 100 % security level, denoted TVaR ( ), is the expected loss given that
the loss exceeds the 100 percentile (or quantile) of the distribution of .

For the sake of notational convenience, we restrict consideration to continuous
distributions to avoid ambiguity about the denition of TVaR. In general, we can
extend the results to discrete distributions or distributions of mixed type by appro-
priately modifying denitions. For most practical purposes, it is su cient to think
in terms of continuous distributions.
We can write TVaR ( ) as

TVaR ( ) = E ( | ) =

R
( )

1 ( )

Furthermore, if this quantity is nite, we can use integration by parts and substi-
tution to rewrite it as

TVaR ( ) =

R 1VaR ( )

1

Thus, TVaR can be seen to average all VaR values above the security level .
This means that TVaR tells us much more about the tail of the distribution than
does VaR alone.
Finally, TVaR can also be written as

TVaR ( ) = E ( | )

= +

R
( ) ( )

1

= VaR ( ) + ( ) (3.21)

where ( ) is the mean excess loss function evaluated at the 100 th percentile.
Thus TVaR is larger than the corresponding VaR by the average excess of all losses



48 BASIC DISTRIBUTIONAL QUANTITIES

that exceed VaR. Furthermore, because = Var ( ), (3.21) expresses TVaR ( )
as a function of Var ( ), and in Exercise 3.37 the fact that TVar ( ) is an non-
decreasing function of Var ( ) is established.
TVaR has been developed independently in the insurance eld and is called

Conditional Tail Expectation (CTE) by Wirch [188] and widely known by that term
in North America. It has also been called Tail Conditional Expectation (TCE). In
Europe, it has also been called Expected Shortfall (ES). (See Tasche [168] and Acerbi
and Tasche [5].)
Overbeck [132] also discusses VaR and TVaR as risk measures. He argues that

VaR is an �“all or nothing�” risk measure, in that if an extreme event in excess of the
VaR threshold occurs, there is no capital to cushion losses. He also argues that the
VaR quantile in TVaR provides a denition of �“bad times,�” which are those where
losses exceed the VaR threshold, thereby not using up all available capital when
TVaR is used to determine capital. Then TVaR provides the average excess loss in
�“bad times,�” that is, when the VaR �“bad times�” threshold has been exceeded.

EXAMPLE 3.14

(Normal distribution) Consider a normal distribution with mean , standard
deviation , and pdf

( ) =
1

2
exp

"
1

2

µ ¶2#

Let ( ) and ( ) denote the pdf and the cdf of the standard normal distri-
bution ( = 0, = 1). Then

VaR ( ) = + 1 ( )

and, with a bit of calculus, it can be shown that

TVaR ( ) = +

£
1 ( )

¤

1
.

Note that, in both cases, the risk measure can be translated to the standard
deviation principle with an appropriate choice of ¤

EXAMPLE 3.15

(Exponential distribution) Consider an exponential distribution with mean
and pdf

( ) =
1
exp

³ ´
0

Then
VaR ( ) = ln (1 )

and
TVaR ( ) = VaR ( ) + .
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The excess of TVaR over VaR is a constant for all values of because of the
memoryless property of the exponential distribution. ¤

EXAMPLE 3.16

(Pareto distribution) Consider a Pareto distribution with scale parameter ,
shape parameter 1, and cdf

( ) = 1

µ

+

¶
0

Then
VaR ( ) =

h
(1 ) 1 1

i

and

TVaR ( ) = VaR ( ) +
VaR ( ) +

1
.

The excess of TVaR over VaR is a linear increasing function in the VaR. This
means that a larger VaR results in a larger mean excess loss over the VaR
indicating a dangerous distribution. ¤

It is well known that TVaR is a coherent measure. This has been shown by
Artzner et al. [7]. Therefore, when using it, we never run into the problem of
subadditivity of the VaR. TVaR is one of many possible coherent risk measures.
However, it is particularly well-suited to insurance applications where you may
want to reect the shape of the tail beyond the VaR threshold in some way. TVaR
represents that shape through a single number: the mean excess loss or expected
shortfall.

EXAMPLE 3.17

(Tail comparisons) Consider three loss distributions for an insurance company,
Losses for the next year are estimated to be $100 million with a standard
deviation $223.607 million. You are interested in nding high quantiles of the
distribution of losses. Using the normal, Pareto, and Weibull distributions,
obtain the VaR at the 99%, 99.9%, and 99.99% security levels.

From the mean and standard deviation, using the moment formulas in
Appendix A, the distributions and their parameters (in $millions) are Nor-
mal(100, 223.607), Pareto(120, 2.2) and Weibull(50, 0.5). From the formulas
for the cumulative distribution functions, the quantiles 0 90, 0 99, and 0 999

are obtained. They are listed, in millions, in Table 3.1. ¤

From this example, it should be noted that the results can vary widely depend-
ing on the choice of distribution. The normal distribution has a lighter tail than
the others. Therefore the probabilities at extreme outcomes are relatively small
leading to smaller quantiles. The Pareto distribution and the Weibull distribution
with 1 have heavy tails and thus relatively larger extreme quantiles. This
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Table 3.1 Quantiles for Example 3.17.

Security Level Normal Pareto Weibull

0.900 386.56 221.76 265.09
0.990 620.19 853.36 1,060.38
0.999 791.00 2,652.16 2,385.85

book is devoted to the exercise of selecting the best distribution based on avail-
able information. In the preceding example, knowing only the mean and standard
deviation is not enough to estimate the extreme quantiles needed for determining
capital requirements.
In practice, obtaining numerical values of VaR or TVaR can be done either

from the data directly or from the distributional formulas as was done in Example
3.17. When estimating the VaR from data, the methods of obtaining quantiles
from empirical distributions described in Section 15.1 can be used. Since TVaR
is the expected value of the observations that are larger than a given threshold,
the natural estimator is the average of the values of the observations that exceed
the threshold. However, we caution against using this approach in practice unless
there are a large number of observations in excess of the threshold. In cases where
there are not many observations in excess of the threshold, we prefer to obtain a
model for the distribution of all of the observations, or at least of all observations
in excess of some relatively low threshold. The values of VaR and TVaR can then
be calculated directly from the tted distribution. This can be done easily for the
continuous distributions listed in Appendix A using the relation

TVaR ( ) = E ( | )

= +

R
( ) ( )

1

= +

R
( ) ( )

R
( ) ( )

1

= +
E ( )

R
( ) [1 ( )]

1

= +
E ( ) E [min ( )]

1

= +
E ( ) E ( )

1
(3.22)

The notation E( ) is dened in Denition 3.6.
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EXAMPLE 3.18

Using (3.22), obtain the TVaR at the 99.9% security level for the Pareto(120,
2.2) distribution.

For the Pareto(120, 2.2) distribution, from Example 3.16 and Appendix A,

= VaR ( ) =
h
(1 ) 1 1

i
= 120

h
(1 999) 1 2 2 1

i
= 2,652 16

E( ) =
1
=
120

1 2
= 100

E ( ) =
1

"

1

µ

+

¶ 1
#

=
120

1 2

"

1

µ
120

+ 120

¶1 2#

= 97 6899

TVaR ( ) = +
E ( ) E ( )

1
= 2,652 16 +

100 97 68987

001
= 4,692 28

¤

3.5.5 Exercises

3.31 Prove that the standard deviation principle satises coherence criteria 1, 3,
and 4. To see that it does not satisfy criterion 2, consider the bivariate variable
( ) that takes on the value (0,4) with probability 0.25 and the value (4,4) with
probability 0.75. Using = 1, show that monotonicity is not satised.

3.32 Show that the VaR and TVaR formulas in Example 3.15 are correct.

3.33 Show that the VaR and TVaR formulas in Example 3.16 are correct.

3.34 Verify the parameters and the VaR calculation in Example 3.17

3.35 Using (3.22), obtain the TVaR at the 99.9% security level for the Weibull(50,
0.5) distribution.

3.36 Consider an exponential distribution with = 500 and a Pareto distribution
with = 3 and = 1,000. Determine VaR and TVaR at the 95% security level.

3.37 Suppose that the distribution of is continuous on ( 0 ) where
0 (this does not rule out the possibility that Pr( 0) 0 with discrete
mass points at or below 0). For 0, let ( ) be the pdf, ( ) be the hazard
rate function, and ( ) be the mean excess loss function. Demonstrate that

E( | ) = ( ) ( ) 0

and hence that E( | ) is nondecreasing in for 0.
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4

CHARACTERISTICS OF
ACTUARIAL MODELS

4.1 INTRODUCTION

Basic probability models for actuarial situations tend to be either continuous or
discrete (i.e., not mixed). Either the situation calls for counting something (dis-
crete) or paying something (continuous). In both cases it is unlikely the model will
need to accommodate negative values. The set of all possible distribution functions
is too large to comprehend. Therefore, when searching for a distribution function
to use as a model for a random phenomenon, it can be helpful if the eld can be
narrowed.
In Chapter 3, distributions were distinguished by tail weight. In Section 4.2

distributions are classied based on the complexity of the model. Then in Chapter 5,
a variety of continuous models is developed. Chapter 6 provides a similar treatment
of discrete models.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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4.2 THE ROLE OF PARAMETERS

In this section, models are characterized by how much information is needed to
specify the model. The number of quantities (parameters) needed to do so gives
some indication of how complex a model is, in the sense that many items are needed
to describe a complex model. Arguments for a simple model include the following:

�• With few items required in its specication, it is more likely that each item
can be determined more accurately.

�• It is more likely to be stable across time and across settings. That is, if the
model does well today, it (perhaps with small changes to reect ination or
similar phenomena) will probably do well tomorrow and will also do well in
other, similar, situations.

�• Because data can often be irregular, a simple model may provide necessary
smoothing.

Of course, complex models also have advantages.

�• With many items required in its specication, a complex model can more
closely match reality.

�• With many items required in its specication, it can more closely match
irregularities in the data.

Another way to express the di erence is that simpler models can be estimated
more accurately, but the model itself may be too supercial. The principle of
parsimony states that the simplest model that adequately reects reality should
be used. The denition of �“adequately�” will depend on the purpose for which the
model is to be used.
In the following subsections, we move from simpler models to more complex

models. There is some di culty in naming the various classications because there
is not universal agreement on the denitions. With the exception of parametric
distributions, the other category names have been created by the authors. It should
also be understood that these categories do not cover the universe of possible models
nor will every model be easy to categorize. These should be considered as qualitative
descriptions.

4.2.1 Parametric and scale distributions

These models are simple enough to be specied by a few key numbers.

Denition 4.1 A parametric distribution is a set of distribution functions,
each member of which is determined by specifying one or more values called para-
meters. The number of parameters is xed and nite.

The most familiar parametric distribution is the normal distribution with para-
meters and 2. When values for these two parameters are specied, the distrib-
ution function is completely known.
These are the simplest distributions in this subsection, because typically only a

small number of values need to be specied. All of the individual distributions in
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Appendixes A and B are parametric. Within this class, distributions with fewer
parameters are simpler than those with more parameters.
For much of actuarial modeling work, it is especially convenient if the name of

the distribution is unchanged when the random variable is multiplied by a constant.
The most common uses for this phenomenon are to model the e ect of ination and
to accommodate a change in the monetary unit.

Denition 4.2 A parametric distribution is a scale distribution if, when a ran-
dom variable from that set of distributions is multiplied by a positive constant, the
resulting random variable is also in that set of distributions.

EXAMPLE 4.1

Demonstrate that the exponential distribution is a scale distribution.

According to Appendix A, the distribution function is ( ) = 1 .
Let = , where 0. Then,

( ) = Pr( )

= Pr( )

= Pr
³ ´

= 1

This is an exponential distribution with parameter . ¤

Denition 4.3 For random variables with nonnegative support, a scale parame-
ter is a parameter for a scale distribution that meets two conditions. First, when
a member of the scale distribution is multiplied by a positive constant, the scale
parameter is multiplied by the same constant. Second, when a member of the scale
distribution is multiplied by a positive constant, all other parameters are unchanged.

EXAMPLE 4.2

Demonstrate that the gamma distribution, as dened in Appendix A, has a
scale parameter.

Let have the gamma distribution and = . Then, using the incom-
plete gamma notation in Appendix A,

( ) = Pr
³ ´

=
³
;

´

indicating that has a gamma distribution with parameters and . There-
fore, the parameter is a scale parameter. ¤
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Many textbooks write the density function for the gamma distribution as

( ) =
1

( )

We have chosen to use the version of the density function that has a scale parameter.
When the alternative version is multiplied by , the parameters become and .
As well, the mean is proportional to in our version, while it is proportional to 1
in the alternative version. Our version makes it easier to get ballpark estimates of
this parameter, although, for the alternative denition, one need only keep in mind
that the parameter is inversely proportional to the mean.
It is often possible to recognize a scale parameter from looking at the distribution

or density function. In particular, the distribution function would have always
appear as .

4.2.2 Parametric distribution families

A slightly more complex version of a parametric distribution is one in which the
number of parameters is nite but not xed in advance.

Denition 4.4 A parametric distribution family is a set of parametric distri-
butions that are related in some meaningful way.

The most common type of parametric distribution family is described in the
following example.

EXAMPLE 4.3

One type of parametric distribution family is based on a specied parametric
distribution. Other members of the family are obtained by setting one or more
parameters from the specied distribution equal to a preset value or to each
other. Demonstrate that the transformed beta family as dened in Appendix
A is a parametric distribution family.

The transformed beta distribution has four parameters. Each of the other
named distributions in the family is a transformed beta distribution with
certain parameters set equal to 1 (e.g., the Pareto distribution has = = 1)
or to each other (the paralogistic distribution has = 1 and = ). Note that
the number of parameters (ranging from two to four) is not known in advance.
There is a subtle di erence in denitions. A modeler who uses the transformed
beta distribution looks at all four parameters over their range of possible
values. A modeler who uses the transformed beta family pays particular
attention to the possibility of using special cases such as the Burr distribution.
For example, if the former modeler collects some data and decides that =
1 01, that will be the value to use. The latter modeler will note that = 1
gives a Burr distribution and will likely use that model instead. ¤

4.2.3 Finite mixture distributions

By themselves, mixture distributions are no more complex, but later in this sub-
section we nd a way to increase the complexity level. One motivation for mixing
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is that the underlying phenomenon may actually be several phenomena that occur
with unknown probabilities. For example, a randomly selected dental claim may be
from a check-up, from a lling, from a repair (such as a crown), or from a surgical
procedure. Because of the di ering modes for these possibilities, a mixture model
may work well.

Denition 4.5 A random variable is a k-point mixture1 of the random vari-
ables 1 2 if its cdf is given by

( ) = 1 1
( ) + 2 2

( ) + · · ·+ ( ) (4.1)

where all 0 and 1 + 2 + · · ·+ = 1.

This essentially assigns probability to the outcome that is a realization of the
random variable . Note that, if we have 20 choices for a given random variable,
a two-point mixture allows us to create over 200 new distributions.2 This may
be su cient for most modeling situations. Nevertheless, these are still parametric
distribution, though perhaps with many parameters.

EXAMPLE 4.4

For models involving general liability insurance, actuaries at the Insurance
Services O ce once considered a mixture of two Pareto distributions. They
decided that ve parameters were not necessary. The distribution they se-
lected has cdf

( ) = 1

µ
1

1 +

¶
(1 )

µ
2

2 +

¶ +2

Note that the shape parameters in the two Pareto distributions di er by 2.
The second distribution places more probability on smaller values. This might
be a model for frequent, small claims while the rst distribution covers large,
but infrequent claims. This distribution has only four parameters, bringing
some parsimony to the modeling process. ¤

Suppose we do not know how many distributions should be in the mixture. Then
the value of becomes a parameter, as indicated in the following denition.

Denition 4.6 A variable-component mixture distribution has a distribution
function that can be written as

( ) =
X

=1

( )
X

=1

= 1, 0 = 1 = 1 2

1The words �“mixed�” and �“mixture�” have been used interchangeably to refer to the type of dis-
tribution described here as well as distributions that are partly discrete and partly continuous.
This text does not attempt to resolve that confusion. The context will make clear which type of
distribution is being considered.
2There are actually 20

2
+ 20 = 210 choices. The extra 20 represent the cases where both distri-

butions are of the same type but with di erent parameters.
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These models have been called semiparametric because in complexity they are
between parametric models and nonparametric models (see Section 4.2.4). This
distinction becomes more important when model selection is discussed in Chapter
16. When the number of parameters is to be estimated from data, hypothesis tests
to determine the appropriate number of parameters become more di cult. When all
of the components have the same parametric distribution (but di erent parameters),
the resulting distribution is called a �“variable mixture of s�” distribution, where
stands for the name of the component distribution.

EXAMPLE 4.5

Determine the distribution, density, and hazard rate functions for the variable
mixture of exponentials distribution.

A combination of exponential distribution functions can be written

( ) = 1 1
1

2
2 · · ·

X

=1

= 1 0 = 1 = 1 2

Then the other functions are

( ) = 1
1

1
1 + 2

1
2

2 + · · ·+ 1

( ) =
1

1
1

1 + 2
1

2
2 + · · ·+ 1

1 1 + 2 2 + · · ·+
The number of parameters is not xed nor is it even limited. For example,
when = 2 there are three parameters ( 1 1 2), noting that 2 is not a
parameter because once 1 is set, the value of 2 is determined. However,
when = 4 there are seven parameters. ¤

The paper by Keatinge [90] presents a strong argument for using the mixture of
exponentials distribution as an all-purpose model.

EXAMPLE 4.6

Illustrate how a two-point mixture of gamma variables can create a bimodal
distribution.

Consider a fty�—fty mixture of two gamma distributions. One has para-
meters = 4 and = 7 (for a mode of 21) and the other has parameters
= 15 and = 7 (for a mode of 98). The density function is

( ) = 0 5
3 7

3!74
+ 0 5

14 7

14!715

and a graph appears in Figure 4.1. ¤

4.2.4 Data-dependent distributions

Models 1�—5 and many of the examples rely on an associated phenomenon (the ran-
dom variable) but not on observations of that phenomenon. For example, without
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Figure 4.1 Two-point mixture of gammas distribution.

having observed any dental claims, we could postulate a lognormal distribution
with parameters = 5 and = 1. Our model may be a poor description of dental
claims, but that is a di erent matter. There is another type of model that, unlike
the lognormal example, requires data. These models also have parameters but are
often called nonparametric.

Denition 4.7 A data-dependent distribution is at least as complex as the
data or knowledge that produced it, and the number of �“parameters�” increases as
the number of data points or amount of knowledge increases.

Essentially, these models have as many (or more) �“parameters�” than observations
in the data set. The empirical distribution as illustrated by Model 6 on page 23
is a data-dependent distribution. Each data point contributes probability 1 to
the probability function, so the parameters are the observations in the data set
that produced the empirical distribution.
Another example of a data-dependent model is the kernel smoothing model,

which is covered in more detail in Section 14.3. Rather than place a spike of
probability 1 at each data point, a continuous density function with area 1
replaces the data point. This piece is centered at the data point so that this model
follows the data, but not perfectly. It provides some smoothing versus the empirical
distribution. A simple example follows.

EXAMPLE 4.7

Construct a kernel smoothing model from the data that produced Model 6
using the uniform kernel and a bandwidth of 2.

The probability density function is

( ) =
5X

=1

6( ) ( )

( ) =

½
0 | | 2
0 25 | | 2
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Figure 4.2 Kernel density distribution.

where the sum is taken over the ve points where the original model has
positive probability. For example, the rst term of the sum is the function

6( 1) 1( ) =
0 1
0 03125 1 5
0 5

The complete density function is the sum of ve such functions, which are
illustrated in Figure 4.2. ¤

Note that both the kernel smoothing model and the empirical distribution can
also be written as mixture distributions. The reason these models are classied
separately is that the number of components relates to the sample size rather than
to the phenomenon and its random variable.

4.2.5 Exercises

4.1 Demonstrate that the lognormal distribution as parameterized in Appendix A
is a scale distribution but has no scale parameter. Display an alternative parame-
trization of this distribution that does have a scale parameter.

4.2 Which of Models 1�—6 could be considered as members of a parametric distrib-
ution? For those that are, name or describe the distribution.

4.3 (*) Claims have a Pareto distribution with = 2 and unknown. Claims the
following year experience 6% uniform ination. Let be the ratio of the proportion
of claims that will exceed next year to the proportion of claims that exceed this
year. Determine the limit of as goes to innity.

4.4 Determine the mean and second moment of the two-point mixture distribution
in Example 4.4. The solution to this exercise provides general formulas for raw
moments of a mixture distribution.
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4.5 Determine expressions for the mean and variance of the mixture of gammas
distribution.

4.6 Which of Models 1�—6 could be considered to be from parametric distribution
families? Which could be considered to be from variable-component mixture dis-
tributions?

4.7 (*) Seventy-ve percent of claims have a normal distribution with a mean of
3,000 and a variance of 1,000,000. The remaining 25% have a normal distribution
with a mean of 4,000 and a variance of 1,000,000. Determine the probability that
a randomly selected claim exceeds 5,000.

4.8 (*) Let have a Burr distribution with parameters = 1, = 2, and =
1,000 and let have a Pareto distribution with parameters = 1 and = 1,000.

Let be a mixture of and with equal weight on each component. Determine
the median of . Let = 1 1 . Demonstrate that is also a mixture of a Burr
and a Pareto distribution and determine the parameters of .

4.9 (*) Consider three random variables: is a mixture of a uniform distribution
on the interval 0 to 2 and a uniform distribution on the interval 0 to 3; is the
sum of two random variables, one is uniform on 0 to 2 and the other is uniform on
0 to 3; is a normal distribution that has been right censored at 1. Match these
random variables with the following descriptions:

(a) Both the distribution and density functions are continuous.

(b) The distribution function is continuous but the density function is dis-
continuous.

(c) The distribution function is discontinuous.

4.10 Demonstrate that the model in Example 4.7 is a mixture of uniform distrib-
utions.

4.11 Show that the inverse Gaussian distribution as parameterized in Appendix A
is a scale family but does not have a scale parameter.

4.12 Show that the Weibull distribution has a scale parameter.





5

CONTINUOUS MODELS

5.1 INTRODUCTION

In this chapter a variety of continuous models are introduced. The collection devel-
oped here should be su cient for most modeling situations. The discussion begins
by showing how new distributions can be created from existing ones. This bottom-
up approach allows for additional parameters to be added. After summarizing
some specic collections of distributions these models are examined in the context
of Tail-Value-at-Risk. The nal section provides a di erent motivation for some of
the models, that of extreme value theory.

5.2 CREATING NEW DISTRIBUTIONS

Many continuous distributions are listed in Appendix A where formulas are given
for the pdf, cdf, and other quantities. In actuarial applications, we are mainly
interested in distributions that have only positive support; that is, where (0) = 0.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.

65
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Distributions with this property that are familiar to most students of statistics
include the exponential, gamma, Pareto, and lognormal distributions.
For any distribution, it is possible to construct other, new, distributions by

making a transformation or by using some other mathematical technique. Many
of the distributions in Appendix A can be obtained by applying such methods to
other distributions that are also listed in Appendix A. In this section we illustrate
such methods through numerous examples. The examples help explain some of
the relationships between the distributions. In particular, Section 5.3 examines
�“families�” of distributions where the members of the family are all special cases of
a �“parent�” distribution.

5.2.1 Multiplication by a constant

This transformation is equivalent to applying ination uniformly across all loss
levels and is known as a change of scale. For example, if this year�’s losses are given
by the random variable , then uniform ination of 5% indicates that next year�’s
losses can be modeled with the random variable = 1 05 .

Theorem 5.1 Let be a continuous random variable with pdf ( ) and cdf
( ). Let = with 0. Then

( ) =
³ ´

( ) =
1 ³ ´

Proof:

( ) = Pr( ) = Pr( ) = Pr
³ ´

=
³ ´

( ) = ( ) =
1 ³ ´

. ¤

Corollary 5.2 The parameter is a scale parameter for the random variable .

The following example illustrates this process.

EXAMPLE 5.1

Let have pdf ( ) = 0. Determine the cdf and pdf of = .

( ) = 1 ( ) = 1

( ) =
1

.

We recognize this as the exponential distribution. ¤

5.2.2 Raising to a power

Theorem 5.3 Let be a continuous random variable with pdf ( ) and cdf
( ) with (0) = 0. Let = 1 . Then, if 0,

( ) = ( ) ( ) = 1 ( ) 0
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while, if 0,

( ) = 1 ( ) ( ) = 1 ( ). (5.1)

Proof: If 0
( ) = Pr( ) = ( )

while, if 0
( ) = Pr( ) = 1 ( ).

The pdf follows by di erentiation. ¤

It is more common to keep parameters positive and so, when is negative, create
a new parameter = . Then (5.1) becomes

( ) = 1 ( ) ( ) = 1 ( ).

Drop the asterisk for future use of this positive parameter.

Denition 5.4 When raising a distribution to a power, if 0, the resulting
distribution is called transformed; if = 1, it is called inverse; and if 0
(but is not 1), it is called inverse transformed. To create the distributions in
Appendix A and to retain as a scale parameter, the base distribution should be
raised to a power before being multiplied by .

EXAMPLE 5.2

Suppose has the exponential distribution. Determine the cdf of the inverse,
transformed, and inverse transformed exponential distributions.

The inverse exponential distribution with no scale parameter has cdf

( ) = 1 [1 1 ] = 1

With the scale parameter added, it is ( ) = .
The transformed exponential distribution with no scale parameter has cdf

( ) = 1 exp( ).

With the scale parameter added, it is ( ) = 1 exp[ ( ) ]. This distrib-
ution is more commonly known as the Weibull distribution.
The inverse transformed exponential distribution with no scale parameter

has cdf
( ) = 1 [1 exp( )] = exp( ).

With the scale parameter added, it is ( ) = exp[ ( ) ]. This distribution
is the inverse Weibull. ¤

Another base distribution has pdf ( ) = 1 ( ). When a scale parame-
ter is added, this becomes the gamma distribution. It has inverse and transformed
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versions that can be created using the results in this section. Unlike the distribu-
tions introduced to this point, this one does not have a closed form cdf. The best
we can do is dene notation for the function.

Denition 5.5 The incomplete gamma function with parameter 0 is de-
noted and dened by

( ; ) =
1

( )

Z

0

1

while the gamma function is denoted and dened by

( ) =

Z

0

1 .

In addition, ( ) = ( 1) ( 1) and for positive integer values of , ( ) =
( 1)!. Appendix A provides details on numerical methods of evaluating these
quantities. Furthermore, these functions are built into most spreadsheet programs
and many statistical and numerical analysis programs.

5.2.3 Exponentiation

Theorem 5.6 Let be a continuous random variable with pdf ( ) and cdf
( ) with ( ) 0 for all real . Let = exp( ). Then, for 0,

( ) = (ln ) ( ) =
1

(ln ).

Proof: ( ) = Pr( ) = Pr( ln ) = (ln ). The pdf follows by
di erentiation. ¤

EXAMPLE 5.3

Let have the normal distribution with mean and variance 2. Determine
the cdf and pdf of = .

( ) =

µ
ln

¶

( ) =
1

µ
ln

¶
=

1

2
exp

"
1

2

µ
ln

¶2#

.
¤

We could try to add a scale parameter by creating = , but this adds
no value, as is demonstrated in Exercise 5.5. This example created the lognor-
mal distribution (the name has stuck even though �“expnormal�” would seem more
descriptive).

5.2.4 Mixing

The concept of mixing can be extended from mixing a nite number of random
variables to mixing an uncountable number. In the following theorem, the pdf
( ) plays the role of the discrete probabilities in the -point mixture.
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Theorem 5.7 Let have pdf | ( | ) and cdf | ( | ), where is a parameter
of . While may have other parameters, they are not relevant. Let be a
realization of the random variable with pdf ( ). Then the unconditional pdf of
is

( ) =

Z
| ( | ) ( ) , (5.2)

where the integral is taken over all values of with positive probability. The resulting
distribution is a mixture distribution. The distribution function can be determined
from

( ) =

Z Z
| ( | ) ( )

=

Z Z
| ( | ) ( )

=

Z
| ( | ) ( )

Moments of the mixture distribution can be found from

E( ) = E[E( | )]

and, in particular,

Var( ) = E[Var( | )] + Var[E( | )]

Proof: The integrand is, by denition, the joint density of and . The integral is
then the marginal density. For the expected value (assuming the order of integration
can be reversed),

E( ) =

Z Z
| ( | ) ( )

=

Z Z
| ( | )

¸
( )

=

Z
E( | ) ( )

= E[E( | )].

For the variance,

Var( ) = E( 2) [E( )]2

= E[E( 2| )] {E[E( | )]}2

= E{Var( | ) + [E( | )]2} {E[E( | )]}2

= E[Var( | )] + Var[ ( | )] ¤

Note that, if ( ) is discrete, the integrals must be replaced with sums. An alter-
native way to write the results is ( ) = E [ | ( | )] and ( ) = E [ | ( | )],
where the subscript on E indicates that the random variable is .
An interesting phenomenon is that mixture distributions tend to be heavy-tailed

so this method is a good way to generate such a model. In particular, if | ( | )
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has a decreasing hazard rate function for all , then the mixture distribution will
also have a decreasing hazard rate function (see Ross [152, pp. 407�—409] for de-
tails). The following example shows how a familiar heavy-tailed distribution may
be obtained by mixing.

EXAMPLE 5.4

Let | have an exponential distribution with parameter 1 . Let have a
gamma distribution. Determine the unconditional distribution of .

We have (note that the parameter in the gamma distribution has been
replaced by its reciprocal)

( ) =
( )

Z

0

1

=
( )

Z

0

( + )

=
( )

( + 1)

( + ) +1

=
( + ) +1

This is a Pareto distribution. ¤

The following example provides an illustration useful in Chapter 20.

EXAMPLE 5.5

Suppose that, given = is normally distributed with mean and
variance , so that

| ( | ) =
1

2
exp

1

2
( )

2

¸

and is itself normally distributed with mean and variance , that is,

( ) =
1

2
exp

1

2
( )2

¸

Determine the marginal pdf of .

The marginal pdf of is

( ) =

Z
1

2
exp

1

2
( )2

¸
1

2
exp

1

2
( )2

¸

=
1

2

Z
exp

1

2
( )2

1

2
( )2

¸

We leave as an exercise for the reader the verication of the algebraic identity

( )2
+
( )2

=
+

µ
+

+

¶2
+
( )2

+
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obtained by completion of the square in . Thus,

( ) =

exp
( )2

2( + )

¸

p
2 ( + )

Z r
+

2
exp

"
+

2

µ
+

+

¶2#

We recognize the integrand as the pdf (as a function of ) of a normal dis-
tribution with mean ( + ) ( + ) and variance ( ) ( + ). Thus the
integral is 1 and so

( ) =

exp
( )2

2( + )

¸

p
2 ( + )

;

that is, is normal with mean and variance + . ¤

The following example is taken from Hayne [63]. It illustrates how this type of
mixture distribution can arise. In particular, continuous mixtures are often used to
provide a model for parameter uncertainty. That is, the exact value of a parameter
is not known, but a probability density function can be elucidated to describe
possible values of that parameter.

EXAMPLE 5.6

In the valuation of warranties on automobiles it is important to recognize that
the number of miles driven varies from driver to driver. It is also the case that
for a particular driver the number of miles varies from year to year. Suppose
the number of miles for a randomly selected driver has the inverse Weibull
distribution, but that the year-to-year variation in the scale parameter has
the transformed gamma distribution with the same value for . Determine
the distribution for the number of miles driven in a randomly selected year
by a randomly selected driver.

Using the parameterizations from Appendix A, the inverse Weibull for miles
driven in a year has parameters (in place of ) and , while the transformed
gamma distribution for the scale parameter has parameters , , and . The
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marginal density is

( ) =

Z

0
+1

( )
1

( )
( )

=
2

( ) +1

Z

0

+ 1 exp[ ( + )]

=
2

( ) +1

Z

0

[ 1 ( + ) 1 ] + 1

×
1 1 1( + ) 1

=
( ) +1( + ) +1

Z

0

=
( + 1)

( ) +1( + ) +1

=
1

( + ) +1
.

The third line is obtained by the transformation = ( + ). The
nal line uses the fact that ( + 1) = ( ). The result is an inverse
Burr distribution. Note that this distribution applies to a particular driver.
Another driver may have a di erent Weibull shape parameter and, as well,
that driver�’s Weibull scale parameter may have a di erent distribution and,
in particular, a di erent mean. ¤

5.2.5 Frailty models

An important type of mixture distribution is a frailty model. Although the physical
motivation for this particular type of mixture is originally from the analysis of
lifetime distributions in survival analysis, the resulting mathematical convenience
implies that the approach may also be viewed as a useful way to generate new
distributions by mixing.
We begin by introducing a frailty random variable 0 and dene the condi-

tional hazard rate (given = ) of to be | ( | ) = ( ), where ( ) is a
known function of (i.e., ( ) is to be specied in a particular application). The
frailty is meant to quantify uncertainty associated with the hazard rate, which by
the preceding specication of the conditional hazard rate acts in a multiplicative
manner.
The conditional survival function of | is therefore

| ( | ) = 0 | ( | ) = ( )

where ( ) =
R
0
( ) . In order to specify the mixture distribution (i.e., the

marginal distribution of ), we dene the moment generating function of the frailty
random variable to be ( ) = E( ). Then, the marginal survival function is

( ) = E[ ( )] = [ ( )] (5.3)

and obviously ( ) = 1 ( ).
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The type of mixture to be used determines the choice of ( ) and, hence, ( ).
The most important subclass of the frailty models is the class of exponential mix-
tures with ( ) = 1 and ( ) = , so that | ( | ) = 0. Other useful
mixtures include Weibull mixtures with ( ) = 1 and ( ) = .
Evaluation of the frailty distribution requires an expression for the moment gen-

erating function ( ) of . The most common choice is gamma frailty, but other
choices such as inverse Gaussian frailty are also used.

EXAMPLE 5.7

Let have a gamma distribution and let | have a Weibull distribution
with conditional survival function | ( | ) = . Determine the uncon-
ditional or marginal distribution of .

In this case it follows from Example 3.5 that the gamma moment generating
function is ( ) = (1 ) , and from (5.3) it follows that has survival
function

( ) = ( ) = (1 + )

This is a Burr distribution (see Appendix A) with the usual parameter
replaced by 1 . Note that when = 1, this is an exponential mixture
which is a Pareto distribution, considered previously in Example 5.4. ¤

As mentioned earlier, mixing tends to create heavy-tailed distributions, and in
particular a mixture of distributions that all have decreasing hazard rates also has
a decreasing hazard rate. In Exercise 5.16 the reader is asked to prove this fact for
frailty models. For further details on frailty models, see the book by Hougaard [77].

5.2.6 Splicing

Another method for creating a new distribution is by splicing. This approach is
similar to mixing in that it might be believed that two or more separate processes are
responsible for generating the losses. With mixing, the various processes operate
on subsets of the population. Once the subset is identied, a simple loss model
su ces. For splicing, the processes di er with regard to the loss amount. That is,
one model governs the behavior of losses in some interval of possible losses while
other models cover the other intervals. Denition 5.8 makes this precise.

Denition 5.8 A k-component spliced distribution has a density function that
can be expressed as follows:

( ) =

1 1( ) 0 1

2 2( ) 1 2

...
...

( ) 1

For = 1 , each 0 and each ( ) must be a legitimate density function
with all probability on the interval ( 1 ). Also, 1 + · · ·+ = 1.



74 CONTINUOUS MODELS

EXAMPLE 5.8

Demonstrate that Model 5 on page 19 is a two-component spliced model.

The density function is

( ) =

½
0 01 0 50
0 02 50 75

and the spliced model is created by letting 1( ) = 0 02, 0 50, which
is a uniform distribution on the interval from 0 to 50, and 2( ) = 0 04,
50 75, which is a uniform distribution on the interval from 50 to 75.
The coe cients are then 1 = 0 5 and 2 = 0 5. ¤

It was not necessary to use density functions and coe cients, but this is one way
to ensure that the result is a legitimate density function. When using parametric
models, the motivation for splicing is that the tail behavior may be inconsistent with
the behavior for small losses. For example, experience (based on knowledge beyond
that available in the current, perhaps small, data set) may indicate that the tail
follows the Pareto distribution, but there is a positive mode more in keeping with
the lognormal or inverse Gaussian distributions. A second instance is when there
is a large amount of data below some value but a limited amount of information
elsewhere. We may want to use the empirical distribution (or a smoothed version
of it) up to a certain point and a parametric model beyond that value. Denition
5.8 is appropriate when the break points 0 are known in advance.
Another way to construct a spliced model is to use standard distributions over

the range from 0 to . Let ( ) be the th such density function. Then, in
Denition 5.8 replace ( ) with ( ) [ ( ) ( 1)]. This formulation makes
it easier to have the break points become parameters that can be estimated.
Neither approach to splicing ensures that the resulting density function will be

continuous (i.e., the components will meet at the break points). Such a restriction
could be added to the specication.

EXAMPLE 5.9

Create a two-component spliced model using an exponential distribution from
0 to and a Pareto distribution (using in place of ) from to .

The basic format is

( ) =
1

1

1
0

2
( + ) 1

( + )

However, we must force the density function to integrate to 1. All that is
needed is to let 1 = and 2 = 1 . The spliced density function becomes

( ) =

1

1
0

(1 )
( + )

( + ) +1

0 0 1.
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Figure 5.1 Two-component spliced density.

Figure 5.1 illustrates this density function using the values = 100, = 0 6,
= 100, = 200, and = 4. It is clear that this density is not continuous.¤

5.2.7 Exercises

5.1 Let have cdf ( ) = 1 (1 + ) 0. Determine the pdf and cdf
of = .

5.2 (*) One hundred observed claims in 1995 were arranged as follows: 42 were
between 0 and 300, 3 were between 300 and 350, 5 were between 350 and 400, 5
were between 400 and 450, 0 were between 450 and 500, 5 were between 500 and
600, and the remaining 40 were above 600. For the next three years, all claims are
inated by 10% per year. Based on the empirical distribution from 1995, determine
a range for the probability that a claim exceeds 500 in 1998 (there is not enough
information to determine the probability exactly).

5.3 Let have the Pareto distribution. Determine the cdf of the inverse, trans-
formed, and inverse transformed distributions. Check Appendix A to determine if
any of these distributions have special names.

5.4 Let have the loglogistic distribution. Demonstrate that the inverse distrib-
ution also has the loglogistic distribution. Therefore there is no need to identify a
separate inverse loglogistic distribution.

5.5 Let have the lognormal distribution with parameters and . Let = .
Show that also has the lognormal distribution and, therefore, the addition of a
third parameter has not created a new distribution.

5.6 (*) Let have a Pareto distribution with parameters and . Let =
ln(1 + ). Determine the name of the distribution of and its parameters.

5.7 In [177], Venter noted that if has the transformed gamma distribution and
its scale parameter has an inverse transformed gamma distribution (where the
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parameter is the same in both distributions), the resulting mixture has the trans-
formed beta distribution. Demonstrate that this is true.

5.8 (*) Let have a Poisson distribution with mean . Let have a gamma
distribution with mean 1 and variance 2. Determine the unconditional probability
that = 1.

5.9 (*) Given a value of = , the random variable has an exponential dis-
tribution with hazard rate function ( ) = , a constant. The random variable
has a uniform distribution on the interval (1 11). Determine (0 5) for the

unconditional distribution.

5.10 (*) Let have a Poisson distribution with mean . Let have a uniform
distribution on the interval (0 5). Determine the unconditional probability that

2.

5.11 (*) Two-point mixed distribution has, with probability , a binomial distrib-
ution with parameters = 2 and = 0 5, and with probability 1 , a binomial
distribution with parameters = 4 and = 0 5. Determine, as a function of ,
the probability that this random variable takes on the value 2.

5.12 Determine the probability density function and the hazard rate of the frailty
distribution.

5.13 Suppose that | has the Weibull survival function | ( | ) = ,
0, and has an exponential distribution. Demonstrate that the unconditional

distribution of is loglogistic.

5.14 Consider the exponential�—inverse Gaussian frailty model with

( ) = (2 1 + ) 0

(a) Verify that the conditional hazard rate | ( | ) of | is indeed a
valid hazard rate.

(b) Determine the conditional survival function | ( | ).
(c) If has a gamma distribution with parameters = 1 and replaced by

2 , determine the marginal or unconditional survival function of .

(d) Use (c) to argue that a given frailty model may arise from more than one
combination of conditional distributions of | and frailty distributions
of .

5.15 Suppose that has survival function ( ) = 1 ( ) given by (5.3).
Show that 1( ) = ( ) [E( ) ( )] is again a survival function of the form given
by (5.3), and identify the distribution of associated with 1( ).

5.16 Fix 0, and dene an �“Esscher-transformed�” frailty random variable
with probability density function (or discrete probability mass function in the dis-
crete case) ( ) = ( ) ( ) 0

(a) Show that has moment generating function

( ) = ( ) =
( )

( )
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(b) Dene the cumulant generating function of to be

( ) = ln[ ( )]

and use (a) to prove that

0 ( ) = E( ) and 00 ( ) = Var( )

(c) For the frailty model with survival function given by (5.3), prove that
the associated hazard rate may be expressed as ( ) = ( ) 0 [ ( )],
where is dened in (b).

(d) Use (c) to show that

0 ( ) = 0( ) 0 [ ( )] [ ( )]2 00 [ ( )]

(e) Prove using (d) that if the conditional hazard rate | ( | ) is nonin-
creasing in , then ( ) is also nonincreasing in .

5.17 Write the density function for a two-component spliced model in which the
density function is proportional to a uniform density over the interval from 0 to
1,000 and is proportional to an exponential density function from 1,000 to .
Ensure that the resulting density function is continuous.

5.18 Let have pdf ( ) = exp( | |) 2 for . Let = .
Determine the pdf and cdf of .

5.19 (*) Losses in 1993 follow the density function ( ) = 3 4 1, where
is the loss in millions of dollars. Ination of 10% impacts all claims uniformly

from 1993 to 1994. Determine the cdf of losses for 1994 and use it to determine the
probability that a 1994 loss exceeds 2,200,000.

5.20 Consider the inverse Gaussian random variable with pdf (from Appendix
A)

( ) =

r

2 3
exp

"

2

µ ¶2#

0

where 0 and 0 are parameters.

(a) Derive the pdf of the reciprocal inverse Gaussian random variable 1 .

(b) Prove that the �“joint�” moment generating function of and 1 is
given by

( 1 2) = E
³

1 + 2
1
´

=

r

2 2
exp

Ã p
( 2 2

1) ( 2 2)
!

where 1

¡
2 2

¢
and 2 2.

(c) Use (b) to show that the moment generating function of is

( ) =
¡ ¢

= exp

" Ã

1

r

1
2 2

!#

2 2
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(d) Use (b) to show that the reciprocal inverse Gaussian random variable
1 has moment generating function

1 ( ) = E
³

1
´

=

r

2
exp

" Ã

1

r

1
2
!#

2

Hence prove that 1 has the same distribution as 1 + 2, where 1

has a gamma distribution, 2 has an inverse Gaussian distribution, and
1 is independent of 2. Also, identify the gamma and inverse Gaussian
parameters in this representation.

(e) Use (b) to show that

=
1
µ ¶2

has a gamma distribution with parameters = 1
2 and the usual para-

meter (in Appendix A) replaced by 2 .

(f) For the mgf of the inverse Gaussian random variable in (c), prove by
induction on that, for = 1 2 , the th derivative of the mgf is,

( )
( ) = ( )

1X

=0

( + 1)!

( 1)! !

µ
1

2

¶ +3
2

2

µ

2 2

¶ +
2

and hence that the inverse Gaussian random variable has integer mo-
ments

E[ ] =
1X

=0

( + 1)!

( 1)! !

+

(2 )
= 1 2 .

(g) The modied Bessel function, ( ) may be dened, for half-integer
values of the index parameter , by ( ) = ( ), together with

+ 1
2
( ) =

r

2

X

=0

( + )!

( )! !

µ
1

2

¶
= 0 1 .

Use part (f) to prove that, for 0, 0, and = 0 1

Z

0

3
2 2 = 2

µ

2

¶
2

1
4

1
2

³
2

´
.

5.3 SELECTED DISTRIBUTIONS AND THEIR RELATIONSHIPS

5.3.1 Introduction

There are many ways to organize distributions into groups. Families such as Pear-
son (12 types), Burr (12 types), Stoppa (5 types), and Dagum (11 types) are dis-
cussed in Chapter 2 of [91]. The same distribution can appear in more than one
system, indicating that there are many relations among the distributions beyond
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Figure 5.2 Transformed beta family.

those presented here. The systems presented in Section 5.3.2 are particularly useful
for actuarial modeling because all the members have support on the positive real
line and all tend to be skewed to the right. For a comprehensive set of continu-
ous distributions, the two volumes by Johnson, Kotz, and Balakrishnan [84] and
[85] are a valuable reference. In addition, there are entire books devoted to single
distributions (such as Arnold [6] for the Pareto distribution). Leemis and McQue-
ston [103] present 76 distributions on one page with arrows showing all the various
relationships.

5.3.2 Two parametric families

As noted when dening parametric families, many of the distributions presented in
this section and in Appendix A are special cases of others. For example, a Weibull
distribution with = 1 and arbitrary is an exponential distribution. Through this
process, many of our distributions can be organized into groupings, as illustrated
in Figures 5.2 and 5.3. The transformed beta family includes two special cases of a
di erent nature. The paralogistic and inverse paralogistic distributions are created
by setting the two nonscale parameters of the Burr and inverse Burr distributions
equal to each other rather than to a specied value.

5.3.3 Limiting distributions

The classication in Section 5.3.2 involved distributions that are special cases of
other distributions. Another way to relate distributions is to see what happens as
parameters go to their limiting values of zero or innity.

EXAMPLE 5.10

Show that the transformed gamma distribution is a limiting case of the trans-
formed beta distribution as , , and 1 , a constant.
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Figure 5.3 Transformed/inverse transformed gamma family.

The demonstration relies on two facts concerning limits:

lim
1 2(2 )1 2

( )
= 1 (5.4)

and

lim
³
1 +

´ +

= (5.5)

The limit in (5.4) is known as Stirling�’s formula and provides an approximation
for the gamma function. The limit in (5.5) is a standard result found in most
calculus texts.
To ensure that the ratio 1 goes to a constant, it is su cient to force it

to be constant as and become larger and larger. This can be accomplished
by substituting 1 for in the transformed beta pdf and then letting

. The rst steps, which also include using Stirling�’s formula to replace
two of the gamma function terms, are

( ) =
( + ) 1

( ) ( ) (1 + ) +

=
( + ) + 1 2(2 )1 2 1

1 2(2 )1 2 ( )( 1 ) (1 + 1) +

=
[( + ) ] + 1 2 1

( ) [1 + ( ) ]
+

The two limits

lim
³
1 +

´ + 1 2

= and lim 1 +
( )

¸ +

= ( )

can be substituted to yield

lim ( ) =
1 ( )

( )

which is the pdf of the transformed gamma distribution. ¤
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Figure 5.4 Distributional relationships and characteristics.

With a similar argument, the inverse transformed gamma distribution is obtained
by letting go to innity instead of (see Exercise 5.23)
Because the Burr distribution is a transformed beta distribution with = 1, its

limiting case is the transformed gamma with = 1 (using the parameterization
in the previous example), which is the Weibull distribution. Similarly, the inverse
Burr has the inverse Weibull as a limiting case. Finally, letting = = 1 shows
that the limiting case for the Pareto distribution is the exponential (and similarly
for their inverse distributions).
As a nal illustration of a limiting case, consider the transformed gamma dis-

tribution as parameterized previously. Let 1
p

and 1( 1) .
If this is done by letting (so both and must go to zero), the limiting
distribution will be lognormal.
In Figure 5.4 some of the limiting and special case relationships are shown. Other

interesting facts about the various distributions are also given.1

5.3.4 Exercises

5.21 For a Pareto distribution, let both and go to innity with the ratio
held constant. Show that the result is an exponential distribution.

5.22 Determine the limiting distribution of the generalized Pareto distribution as
and both go to innity.

5.23 Show that as in the transformed beta distribution, the result is the
inverse transformed gamma distribution.

1Thanks to Dave Clark of American Re-Insurance Company for creating this graphic.
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5.4 THE LINEAR EXPONENTIAL FAMILY

A large parametric family that includes many of the distributions of interest to ac-
tuaries has special use when calculating risk measures (see Section 5.5), in Bayesian
analysis (Section 15.5) and in credibility (Section 20.3.7). The denition is as fol-
lows.

Denition 5.9 A random variable (discrete or continuous) has a distribution
from the linear exponential family if its pdf may be parameterized in terms of a
parameter and expressed as

( ; ) =
( ) ( )

( )
(5.6)

The function ( ) depends only on (not on ), and the function ( ) is a nor-
malizing constant. Also, the support of the random variable must not depend on .
The parameter ( ) is called the canonical parameter of the distribution.

Many standard distributions are of this form as shown in the following examples.

EXAMPLE 5.11

Show that the normal distribution is a member of the linear exponential fam-
ily.

The pdf is, letting the mean be ,

( ; ) = (2 ) 1 2 exp
1

2
( )2

¸

= (2 ) 1 2 exp

µ
2

2
+

2

2

¶

=

(2 )
1 2
exp

µ
2

2

¶¸
exp

µ ¶

exp

µ 2

2

¶

which is of the form (5.6) with ( ) = (2 )
1 2
exp[ 2 (2 )], ( ) = ,

and ( ) = exp[ 2 (2 )]. ¤

EXAMPLE 5.12

Show that the gamma distribution is a member of the linear exponential
family.

The pdf is (from Appendix A)

( ; ) =
1

( )

which is of the form (5.6) with ( ) = 1 , ( ) = , and ( ) = 1 ( ).¤
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As is clear from Examples 5.11 and 5.12, there may be other parameters in
addition to , but they will have no explicit role in any subsequent analysis involving
the linear exponential family.
We now nd the mean and variance of the distribution dened by (5.6). First,

note that
ln ( ; ) = ln ( ) + ( ) ln ( )

Di erentiate with respect to to obtain

( ; ) = 0( )
0( )

( )

¸
( ; ) (5.7)

Integrate over the range of (known not to depend on ) to obtain
Z

( ; ) = 0( )

Z
( ; )

0( )

( )

Z
( ; )

On the left-hand side, interchange the order of di erentiation and integration to
obtain

Z
( ; )

¸
= 0( )

Z
( ; )

0( )

( )

Z
( ; )

We know that
R
( ; ) = 1 and

R
( ; ) = E( ) and thus

(1) = 0( )E( )
0( )

( )

In other words, the mean is

E( ) = ( ) =
0( )

0( ) ( )
(5.8)

To obtain the variance, (5.7) may rst be rewritten as

( ; ) = 0( )[ ( )] ( ; )

Di erentiate again with respect to to obtain

2

2 ( ; ) = 00( )[ ( )] ( ; ) 0( ) 0( ) ( ; )

+[ 0( )]2[ ( )]2 ( ; )

Again, integrate over the range of to obtain
Z 2

2 ( ) = 00( )

Z
[ ( )] ( ; ) 0( ) 0( )

Z
( ; )

+[ 0( )]2
Z
[ ( )]2 ( ; )

In other words, because (5.8) holds,

[ 0( )]2
Z
[ ( )]2 ( ; ) = 0( ) 0( ) +

2

2

Z
( ; )
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Because ( ) is the mean, the left-hand side is the variance (by denition) multiplied
by [ 0( )]2, and then because the second term on the right-hand side is zero, we
obtain

Var( ) = ( ) =
0( )
0( )

(5.9)

Although the emphasis in this section has been on continuous distributions, the
linear exponential family also includes discrete distributions such as the Poisson,
binomial, and negative binomial (among others). In this case, ( ; ) in (5.6) is a
pf rather than a pdf, but the mean and variance are still given by (5.8) and (5.9),
respectively (their derivation is identical, with integrals replaced by sums). The
discrete case is considered further in Section 6.14.

5.4.1 Exercises

5.24 Use the results of Example 5.12 and equations (5.8) and (5.9) to derive the
mean and variance of the gamma distribution.

5.25 Consider the generalization of (5.6) given by

( ; ) =
( ) ( )

[ ( )]

where is a known parameter. This distribution is said to be of the exponential
dispersion type. Prove that the mean is still given by (5.8) but the variance is
given by ( ) , where ( ) is given by (5.9).

5.26 For = 1 2 , let have pf of the form (5.6), namely

( ; ) =
( ) ( )

( )

and assume that 1 are independent.

(a) Show that = 1 + 2 + · · ·+ also has pdf of the form (5.6) with

( ) =
Y

=1

( )

(b) Now assume that 1 2 are also identically distributed. Show
that ¯ = has a pdf of the form given in Exercise 5.25.

5.5 TVaR FOR CONTINUOUS DISTRIBUTIONS

The Tail-Value-at-Risk (TVaR) for any quantile can be computed directly for
any continuous distribution with a nite mean. From Exercise 3.8 and (3.21),

TVaR ( ) = + ( )

= +
E( ) E( )

( )
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For each distribution in Appendix A, the formulas for the elements in the sec-
ond term are listed. The TVaR is easily computed. The specic results for each
distribution do not provide much insight into the relationship between the TVaR
and the shape of the distribution. Sections 5.5.1 and 5.5.2 provide general formulas
for two large families of continuous distributions.

5.5.1 Continuous elliptical distributions

�“Elliptical distributions�” are distributions where the contours of the multivariate
version of the distribution form ellipses. Univariate elliptical distributions are the
corresponding marginal distributions. The normal and distributions are both
univariate elliptical distributions; the exponential distribution is not. In fact, the
class of elliptical distribution consists of all symmetric distributions with support
on the entire real line. These distributions are not normally used for modeling
losses because they have positive and negative support. However they can be used
for modeling random variables, such as rates of return, that can take on positive
or negative values. The normal and other distributions have been used in the elds
of nance and risk management. Landsman and Valdez [100] provide an analysis
of TVaR for such elliptical distributions. In an earlier paper, Panjer [133] showed
that the TVaR for the normal distribution can be written as

TVaR ( ) = +

1
³ ´

1 ( )
2

where =VaR ( ) Landsman and Valdez [100] show that this formula can be
generalized to all univariate elliptical distributions with nite mean and variance.
They show that the pdf of any univariate elliptical distribution with nite mean
and variance can be written as

( ) =

"
1

2

µ ¶2#

where ( ) is a function on [0 ) with
R
0

( ) Let

( ) =

Z

0

( )

( ) = ( ) ( )

( ) =

Z
( ) and

( ) = 1 ( )

Theorem 5.10 Consider any univariate elliptical distribution with nite mean and
variance. Then the TVaR at -quantile where 1 2 can be written as

TVaR ( ) = + 2

where

=

1 1
2

³ ´2¸

( )
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Proof: From the denition of TVaR,

TVaR ( ) =
1

( )

Z
( )

=
1

( )

Z "
1

2

µ ¶2#

Letting = ( ) ,

TVaR ( ) =
1

( )

Z
( + )

µ
1

2
2

¶

= +
( )

Z µ
1

2
2

¶

= + 2

where

=
( )

Z

1
2

2
( )

=
1

( )

"
1

2

µ ¶2#

¤

EXAMPLE 5.13

(Logistic distribution) The logistic distribution has density of the form

( ) =

"
1

2

µ ¶2#

where

( ) =
exp( )

[1 + exp( )]2

and = 1 2. Thus

( ) =
1

2

Z

0

( )

=
1

2

Z

0

exp( )

[1 + exp( )]
2

=
1

2

1

1 + exp( )

1

2

¸
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and, noting that ( ) = 1 4,

1
"
1

2

µ ¶2#

=
1

2
1

1

1 + exp 1
2

³ ´2¸

=
1

2

exp 1
2

³ ´2¸

1 + exp 1
2

³ ´2¸

=
1

2

1
³ ´

1
2
+

³ ´

Therefore,

=
1

2

1
³ ´

1
2
+

³ ´ 1³ ´

¤

5.5.2 TVaR for the linear exponential family

In Section 5.4 the linear exponential family was introduced with pdf (5.6) and mean
given by (5.8). Let the tail be given by

( ; ) =

Z
( ; )

Landsman and Valdez [101] obtained the TVaR for this class of distributions as
given in the following theorem.

Theorem 5.11 Suppose that has pdf from the linear exponential family as given
by (5.6). Then the TVaR may be expressed as

TVaR ( ) = ( ) +
1
0( )

ln ( ; ),

where ( ) =E( ) is given by (5.8).

Proof: By (5.6) and Liebniz�’s rule for di erentiation of an integral,

ln ( ; ) =
1

( ; )

Z
( ; )

¸

=
1

( ; )

Z
( )

( )

( )

¸

=
1

( ; )

Z
( )

½ 0( )

( )
( )

0( )

[ ( )]2
( )

¾

=
1

( ; )

Z
0( )

0( )

( )

¸
( ; )

= 0( )TVaR ( )
0( )

( )
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Rearranging the terms and using (5.8) yields

TVaR ( ) = ( ) +
1
0( )

ln ( ; )

¤
We now illustrate the use of Theorem 5.11 with two examples.

EXAMPLE 5.14

Derive TVaR ( ) for the normal distribution.

From Example 5.11, the normal distribution with mean and variance
has pdf

( ; ) = (2 ) 1 2 exp
1

2
( )2

¸

and ( ) = . The tail is

( ; ) = 1

¸

where ( ) is the standard normal cdf. Di erentiation yields

( ; ) =
1

( ; )

and, by Theorem 5.11, with replaced by ,

TVaR ( ) = +
( ; )

1 [( ) ]

because ( ) = and 0( ) = 1 . ¤

EXAMPLE 5.15

Determine TVaR ( ) for the gamma distribution.

From Example 5.12, the gamma pdf is

( ; ) =
1

( )

which is of the form (5.6) with ( ) = 1 and ( ) = . Then, from (5.8),
( ) = 1 ( 2+ ) = . The tail is, from Appendix A,

( ; ) = 1 ( ; )

Because the pdf satises

( ; ) =

"

( ; )

¯̄
¯̄
=

#
1
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it follows that

( ; ) =

"

( ; )

¯̄
¯̄
=

#µ

2

¶
= ( ; )

Therefore, because 0( ) = 1 2, replacement of by yields

TVaR ( ) = +
( ; )

1 ( ; )
(5.10)
¤

5.5.3 Exercise

5.27 Use (5.10) to determine an explicit expression for TVaR ( ) when has an
exponential distribution (gamma with = 1).

5.6 EXTREME VALUE DISTRIBUTIONS

5.6.1 Introduction

There are times when actuaries are only interested in the distribution of large losses.
One example would be per-claim reinsurance arrangements. The reinsurer makes
a payment only when the loss exceeds a certain large value. The shape of the
distribution below this value is not important (although it is important to know
the probability that a reinsurance payment will be made). It turns out that there
is theory to support the choice of particular models for this situation. This di ers
from the more usual setting. For example, when examining automobile physical
damage losses, there is little reason to believe in advance that a lognormal model
will be more appropriate than a Burr model.
The theory to be developed in this section is called Extreme Value Theory (EVT)

and is a well-developed body of knowledge. It is concerned with two types of
loss. One is the largest loss over a period of time. This one is less interesting for
most actuarial applications because insurance contracts do not usually focus on
the maximum loss. However, it is of great interest in operational risk management
where quantifying extreme events is a key challenge. The second is the distribution
of losses in excess of a threshold. This is the situation reinsurers face and is directly
relevant to actuarial work.
One of the key results in EVT is that the limiting distribution of the largest

observation must be one of a very small number of distributions. Similarly, in a
closely related result, the limiting distribution of the excess over a threshold must
be one of a small number of distributions. The shape of the distribution from which
the sample is drawn determines which one of the distributions is appropriate. This
convenient theory allows us to rationally extrapolate to loss amounts that are well
in excess of any historic loss and thus gives an idea of the magnitude of probabilities
of large losses, even when those losses have never before occurred.
We begin by introducing some distributions known as extreme value distrib-

utions to provide background to the theoretical justication for the use of these
distributions later in this section. There are three related distributions, the Gum-
bel, Fréchet, and Weibull, in the family known as extreme value distributions. We
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also introduce some notation for convenient reference to these distributions used by
Reiss and Thomas [146] in their comprehensive book dealing with extreme value
theory and its applications.

Gumbel distribution
The standardized Gumbel distribution has cdf

( ) = 0( ) = exp [ exp ( )]

With location and scale parameters and included, it has cdf

( ) = 0 ( ) = exp exp

µ ¶¸
0

Fréchet distribution
The standardized Fréchet distribution has cdf

( ) = 1 ( ) = exp
¡ ¢

0 0

where is a shape parameter. With location and scale parameters and included,
it has cdf

( ) = 1 ( ) = exp

" µ ¶ #

0

Note that the Fréchet distribution has support only for values of greater than
the location parameter . In the applications considered in this book, the location
parameter will sometimes be set to zero, making the distribution a two-parameter
distribution. The cdf of that two-parameter distribution is denoted by 1 0 ( ).
Note that this is the same as the inverse Weibull distribution from Appendix A.

Weibull distribution
The standardized Weibull distribution has cdf

( ) = 2 ( ) = exp
h
( )

i
0 0

With location and scale parameters and included, it has cdf

( ) = 2 ( ) = exp

" µ ¶ #

0

Note that this Weibull distribution (which is not the same as the Weibull distrib-
ution from Appendix A) has support only for values of smaller than the location
parameter . This distribution is often associated with the distribution of the
minimum values of distributions and with distributions that have a nite right-
hand endpoint of the support of the distribution. Because insurance losses rarely
have these characteristics, this model is not discussed further in this book. It is
referenced only for completeness of exposition of extreme value theory.
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Generalized extreme value distribution
The generalized extreme value distribution is the family of distributions incor-

porating, in a single expression, the preceding three distributions as special cases.
The general expression for the standardized cdf of the generalized extreme value
distribution is

( ) = exp
³
1 +

´ ¸

For notational convenience, it is often written as

( ) = ( ) = exp
h
(1 + )

1
i

(5.11)

Because the limiting value of (1 + ) 1 is exp( ) as 0 it is clear that
0( ) is the standardized Gumbel distribution function. When is positive, the

cdf ( ) has the form of a Fréchet distribution. When is negative, the cdf ( )
has the form of a Weibull distribution. With simple location and scale changes,
these distributions can be written as general Fréchet and Weibull distributions.

5.6.2 Distribution of the maximum

5.6.2.1 From a xed number of losses Consider a set of observations of inde-
pendent and identically distributed nonnegative random variables with common
distribution function ( ), where is a xed number. Let the maximum value of
the observations be denoted by and let its distribution and density functions
be denoted by ( ) and ( ). Then, because no observation can exceed the
maximum, the cdf of the maximum is

( ) = Pr ( ) = Pr ( 1 2 )

Because of the independence of the observations,

( ) =
Y

=1

Pr ( ) = [ ( )] (5.12)

This shows that the distribution function of the maximum is a simple function
of the common distribution of the original random variables. As the value
of the right-hand side approaches either 0 or 1 depending on whether ( ) 1
or ( ) = 1. Thus, the limiting distribution of the maximum is degenerate.2

To avoid the e ect of degeneracy in the limit, the study of the behavior of the
maximum for large values of requires appropriate normalization. This is studied
later in this section.
For nonnegative random variables, the mean (if it exists) of the maximum can

be obtained as

E ( ) =

Z

0

( )

=

Z

0

[1 ( )]

=

Z

0

[1 ( ) ]

2A degenerate distribution is a distribution that has all the probability at a single point.
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It should be noted that for distributions with no upper limit of support, this
maximum continues to increase without limit as For distributions with a
right-hand endpoint, the maximum approaches that right-hand endpoint as .
The second raw moment (if it exists) of the maximum can be obtained as

E
¡

2
¢
=

Z

0

2 ( )

= 2

Z

0

[1 ( )]

= 2

Z

0

[1 ( ) ]

EXAMPLE 5.16

(From monthly to annual maxima) Suppose that we have carried out studies
of the largest losses over many months and determined the distribution of
the monthly maximum to be given by cdf ( ). Then from equation (5.12),
it follows that the distribution function of the annual maximum is given by
[ ( )]

12 ¤

EXAMPLE 5.17

Suppose that the monthly maximum in Example 5.16 follows a Gumbel dis-
tribution with cdf given by

( ) = 0 ( ) = exp exp

µ ¶¸

The annual maximum has distribution function given by

[ ( )]
12
= exp 12 exp

µ ¶¸

= exp exp

µ ¶¸

= 0 ( )

where = + ln 12 ¤

This example shows that if the monthly maximum has a Gumbel distribution,
the annual maximum also has a Gumbel distribution, but with a change in location.

EXAMPLE 5.18

Suppose instead that the monthly maximum in Example 5.16 follows a Fréchet
distribution with cdf given by

( ) = 1 ( ) = exp

" µ ¶ #
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Then the annual maximum has cdf given by

[ ( )]12 = exp

"

12

µ ¶ #

= exp

" µ ¶ #

= 1 ( )

where = 12 1 ¤

This example shows that if the monthly maximum has a Fréchet distribution,
the annual maximum also has a Fréchet distribution, but with a change in scale.

5.6.2.2 From a random number of losses The distribution given by equation (5.12)
assumes that the sample size each period is xed. In most cases, the number of
losses in a period will uctuate and thus is a random variable. Let denote
the random number of losses and its pgf by ( ). The following uses the law of
total probability to obtain the distribution of the maximum loss where is a
random number.

( ) = Pr( )

=
X

=0

Pr( | = )Pr( = )

=
X

=0

Pr ( = ) [ ( )]

= [ ( )] (5.13)

Then, if we can specify the distribution of the frequency and severity of losses,
we can easily obtain the exact distribution of the maximum loss. The distribution
can be calculated for values for all nonnegative values of . The distribution func-
tion (5.13) has value zero for negative values of because only positive losses are
considered. It has a jump at = 0. The jump at = 0 has value [ (0)], the
probability of no loss cost (either no loss event occurs, or all loss events have no
cost). Further, if (0) = 0 (all loss events have a positive loss), as is the case in
most applications, the jump reduces to (0) = Pr( = 0), the probability that
no loss occurs.

EXAMPLE 5.19

Consider a Poisson process that generates Poisson losses at a rate of losses
per year. Then from (5.13), for a single year, the cdf of the maximum loss is
given by

( ) = [ ( )] = exp{ [1 ( )]}

and, for a period of years, the cdf of the maximum loss is given by

( ) = exp{ [1 ( )]} ¤
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EXAMPLE 5.20

(Example 5.19 continued) Suppose, in addition, that the individual losses are
exponentially distributed with

( ) = 1 exp
³ ´

0

Then the distribution of the maximum loss for a -year period has cdf

( ) = exp
h

exp
³ ´i

which can be rewritten as

( ) = exp exp

µ ¶¸
0

where = ln ( ). This is the cdf of an extreme value distribution, the
Gumbel cdf 0 ( ). ¤

EXAMPLE 5.21

(Example 5.19 continued) Suppose instead that the individual losses are Pareto
distributed with cdf

( ) = 1

µ
+

¶
0 0

Then the distribution of the maximum loss for a -year period has cdf

( ) = exp

" µ
+

¶ #

0

which can be rewritten as

( ) = exp

" µ ¶ #

where

= ( )1 and =

This is the cdf of an extreme value distribution, the Fréchet cdf 1 ( ).¤

Examples 5.20 and 5.21 illustrate how the Gumbel and Fréchet distributions are
distributions of extreme statistics, in this case maxima. We do not consider the
Weibull, which plays the corresponding role for minima. Later, we use some key
theoretical results from the eld of extreme value theory to show how extreme value
distributions are the limiting distributions of extreme statistics for any distribution.
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EXAMPLE 5.22

Suppose that the number of losses in one year follows a negative binomial
distribution with parameters and . Then from formula (5.13), the cdf of
the maximum loss is given by

( ) = [ ( )]

= {1 [ ( ) 1]}

= {1 + [1 ( )]} ¤

EXAMPLE 5.23

(Example 5.22 continued) Suppose, in addition, that the individual losses are
exponentially distributed with

( ) = 1 exp
³ ´

0

Then the distribution of the maximum loss for a -year period has cdf

( ) =
h
1 + exp

³ ´i
0 ¤

EXAMPLE 5.24

(Example 5.23 continued) Suppose instead that the individual losses are Pareto
distributed. Then the distribution of the maximum loss for a -year period
has cdf

( ) = {1 + [1 ( )]}

=

"

1 +

µ
+

¶ #

, 0 ¤

5.6.3 Stability of the maximum of the extreme value distribution

The Gumbel, Fréchet, and Weibull distributions have another property, called �“sta-
bility of the maximum�” or �“max-stabilty�” that is very useful in extreme value the-
ory. This was demonstrated in Examples 5.16, 5.17, and 5.18.
First, for the standardized Gumbel distribution, we note that

[ 0( + ln )] = exp [ exp ( ln )]

= exp [ exp ( )]

= 0 ( )

Equivalently,
[ 0 ( )] = 0 ( ln )

This shows that the distribution of the maximum of observations from the
standardized Gumbel distribution has itself a Gumbel distribution, after a shift of
location of ln . Including location and scale parameters yields
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[ 0 ( )] = 0

µ ¶¸

= 0

µ
ln

¶

= 0

µ
ln

¶

= 0

µ ¶

= 0 ( )

where = + ln .
Similarly, for the standardized Fréchet distribution

h
1 ( 1 )

i
= exp

³
1

´ ¸

= exp
¡ ¢

= 1 ( )

Equivalently,

[ 1 ( )] = 1

³
1

´

This shows that the distribution of the maximum of observations from the stan-
dardized Fréchet distribution, after a scale change, has itself a Fréchet distribution.
Including location and scale parameters yields

[ 1 ( )] = 1

µ

1

¶

= 1 ( )

where = 1

The key idea of this section is that the distribution of the maximum, after a
location or scale normalization, for each of the extreme value (EV) distributions
also has the same EV distribution. Section 5.6.4 shows that these EV distributions
are also approximate distributions of the maximum for (almost) any distribution.

5.6.4 The Fisher�—Tippett theorem

We now examine the distribution of the maximum value of a sample of xed size
(as becomes very large) when the sample is drawn from any distribution. As

, the distribution of the maximum is degenerate. Therefore, to understand
the shape of the distribution for large values of , it is necessary to normalize
the random variable representing the maximum. We require linear transformations
such that

lim

µ ¶
= ( )
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for all values of , where ( ) is a nondegenerate distribution. If such a linear
transformation exists, Theorem 5.12 gives a very powerful result that forms a foun-
dational element of extreme value theory.

Theorem 5.12 (Fisher�—Tippett Theorem) If
h ³ ´i

has a nondegenerate

limiting distribution as for some constants and that depend on ,
then

µ ¶¸
( )

as , for all values of , where is an extreme value distribution which is
one of 0, 1 , or 2 for some location and scale parameters.

The original theorem was given in a paper by Fisher and Tippett [46]. A de-
tailed proof can be found in Resnick [147]. The Fisher�—Tippett theorem proves
that the appropriately normed maximum for any distribution (subject to the limit-
ing nondegeneracy condition) converges in distribution to exactly one of the three
extreme value distributions: Gumbel, Fréchet, and Weibull. If we are interested
in understanding how large losses behave, we only need to look at three (actually
two, because the Weibull has an upper limit) choices for a model for the extreme
right-hand tail.
The Fisher�—Tippett theorem requires normalization using appropriate norming

constants and that depend on . For specic distributions, these norming
constants can be identied. We have already seen some of these for the distributions
considered in the examples in Section 5.6.2.
The Fisher�—Tippett theorem is a limiting result that can be applied to any

distribution ( ). Because of this, it can be used as a general approximation to
the true distribution of a maximum without having to completely specify the form
of the underlying distribution ( ). Thus, when we only have data on extreme
losses as a starting point, without specic knowledge of the form of the underlying
distribution, the theorem indicates that one of these distributions will be a useful
model.
It now remains to describe which distributions have maxima converging to each

of the three limiting distributions and to determine the norming constants and
.

EXAMPLE 5.25

(Maximum of exponentials) Without any loss of generality, for notational con-
venience, we use the standardized version of the exponential distribution. Us-
ing the norming constants = 1 and = ln the distribution of the
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maximum is given by

Pr

µ ¶
= Pr ( + )

= [Pr ( + )]

= [Pr ( + ln )]

= [1 exp( ln )]

= 1
exp( )

¸

exp[ exp ( )] as

Having chosen the right norming constants, we see that the limiting dis-
tribution of the maximum of exponential random variables is the Gumbel
distribution. ¤

EXAMPLE 5.26

(Maximum of Paretos) Using the Pareto survival function,

( ) =

µ
+

¶

=
³
1 +

´
0 0

and the norming constants = 1 and = 1

Pr

µ ¶
= Pr ( + )

= [Pr ( + )]

= Pr

µ
1

+ 1

¶¸

= 1

Ã

1 +

1

+ 1
!

= 1
1 ³
1 +

´ ¸

exp

µ ³
1 +

´ ¶
as

This shows that the maximum of Pareto random variables has a Fréchet dis-
tribution with = and = . ¤

5.6.5 Maximum domain of attraction

Denition 5.13 The maximum domain of attraction (MDA) for any distri-
bution is the set of all distributions that has as the limiting distribution as
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of the normalized maximum ( ) for some norming constants
and .

Essentially, distributions (with nondegenerate limits) can be divided into three
classes according to their limiting distribution: Gumbel, Fréchet, and Weibull. If
we can identify the limiting distribution, and if we are only interested in modeling
the extreme value, we no longer need to worry about trying to identify the exact
form of the underlying distribution. We can simply treat the limiting distribution
as an approximate representation of the distribution of the extreme value.
Because we are interested in the distribution of the maximum, it is natural

that we only need to worry about the extreme right-hand tail of the underlying
distribution. Furthermore, the MDA should depend on the shape of only the tail
and not on the rest of the distribution. This expectation is conrmed in Theorem
5.14.

Theorem 5.14 (MDA characterization by tails) A distribution belongs to the
maximum domain of attraction of an extreme value distribution with norming
constants and if and only if

lim ( + ) = ln ( )

This result is illustrated in Examples 5.27 and 5.28.

EXAMPLE 5.27

(Maximum of exponentials) As in Example 5.25, we use the standardized
version of the exponential distribution. Using the norming constants = 1
and = ln the distribution of the maximum is given by

( + ) = Pr ( + ln )

= exp( ln )

=
exp( )

= exp ( )

= ln 0( )

Having chosen the right norming constants, we see that the limiting dis-
tribution of the maximum of exponential random variables is the Gumbel
distribution. ¤

It is also convenient, for mathematical purposes, to be able to treat distribu-
tions that have the same asymptotic tail shape in the same way. The preceding
example suggests for distributions with tails similar to the exponential that the
limiting distribution of the maximum should be Gumbel. Therefore, we dene two
distributions and as being tail-equivalent if

lim
( )

( )
=

where is a constant. (Here the notation should be interpreted as
increasing to the right-hand endpoint if the distribution has a nite right-hand
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endpoint.) Clearly, if two distributions are tail-equivalent, they will be in the same
maximum domain of attraction, because the constant can be absorbed by the
norming constants.
Then, to determine the MDA for a distribution, it is only necessary to study any

tail-equivalent distribution. This is illustrated through Example 5.28.

EXAMPLE 5.28

(Maximum of Paretos) Using the Pareto survival function,

( ) =

µ
+

¶
0 0

the norming constants = 1 and = 0 and the tail-equivalence

( )
³ ´

for large , we obtain

lim ( + ) lim

µ
1

¶

=

= ln 1 ( )

This shows that the maximum of Pareto random variables has a Fréchet
distribution. ¤

Because tail-equivalent distributions have the same MDA, all distributions with
tails of the asymptotic form are in the Fréchet MDA, and all distributions
with tails of the asymptotic form are in the Gumbel MDA. Then, all other
distributions (subject to the nondegenerate condition) with innite right-hand limit
of support must be in one of these classes; that is, some have tails that are closer,
in some sense, to exponential tails. Similarly, some are closer to Pareto tails. There
is a body of theory that deals with the issue of �“closeness�” for the Fréchet MDA.
In fact, the constant above can be replaced by a slowly varying function (see
Denition 9.14). Slowly varying functions include positive functions converging to
a constant and logarithms.

Theorem 5.15 If a distribution has its right-tail characterized by ( ) ( ),
where ( ) is a slowly varying function, then it is in the Fréchet maximum domain
of attraction.

Example 5.28 illustrates this concept for the Pareto distribution, which has
( ) = 1. Distributions that are in the Fréchet MDA of heavier-tailed distributions

include all members of the transformed beta family and the inverse transformed
gamma family that appear in Figures 5.2 and 5.3.
The distributions that are in the Gumbel MDA are not as easy to characterize.

The Gumbel MDA includes distributions that are lighter-tailed than any power
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function. Distributions in the Gumbel MDA have moments of all orders. These
include the exponential, gamma, Weibull, and lognormal distributions. In fact,
all members of the transformed gamma family appearing in Figure 5.3 are in the
Gumbel MDA, as is the inverse Gaussian distribution. The tails of the distributions
in the Gumbel MDA are very di erent from each other, from the very light-tailed
normal distribution to the much heavier-tailed inverse Gaussian distribution.

5.6.6 Generalized Pareto distributions

In this section, we introduce some distributions known as generalized Pareto (GP)
distributions3 that are closely related to extreme value distributions. They are used
in connection with the study of excesses over a threshold. For these distribution
functions, we use the general notation ( ). Generalized Pareto distributions are
related to the extreme value distributions by the simple relation

( ) = 1 + ln ( ) (5.14)

with the added restriction that ( ) must be nonnegative, that is, requiring that
( ) exp( 1)
Paralleling the development of extreme value distributions, there are three re-

lated distributions in the family known as generalized Pareto distributions: expo-
nential, Pareto, and beta.

Exponential distribution
The standardized exponential distribution has cdf of the form

( ) = 0( ) = 1 exp ( ) 0

With location and scale parameters and included, it has cdf

( ) = 1 exp

µ ¶

Note that the exponential distribution has support only for values of greater than
. In the applications considered in this book, is generally set to zero, making the
distribution a one-parameter distribution with a left-hand endpoint of zero. The
cdf of that one-parameter distribution is denoted by

( ) = 0 ( ) = 1 exp
³ ´

0

Pareto distribution
The standardized Pareto distribution has cdf of the form

( ) = 1 ( ) = 1 1 0

3The �“generalized Pareto distribution�” used in this chapter di ers from the distribution with
the same name given in Appendix A and listed in Figure 5.2. It is unfortunate that the term
�“generalized�” is often used by di erent authors in connection with di erent generalizations of the
same distribution. Since the usage in each chapter is standard usage (but in di erent elds), we
leave it to the reader to be cautious about which denition is being used. The same caveat applies
to the use of the terms �“beta distribution�” and �“Weibull distribution.�”
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With location and scale parameters and included, it has cdf

( ) = 1

µ ¶
+ 0

Note that the Pareto distribution has support only for values of greater than
+ . In the applications considered in this book, is generally set to , making

the distribution a two-parameter distribution with a zero left-hand endpoint. The
cdf of the two-parameter Pareto distribution is denoted by

( ) = 1 ( ) = 1

µ

+

¶
0 0

The case with = 0 is called the single parameter Pareto distribution in Appendix
A.

Beta distribution
The standardized beta distribution has cdf of the form

( ) = 2 ( ) = 1 ( ) 1 0 0

With location and scale parameters and included, it has cdf

( ) = 1

µ ¶
0 0

Note that the beta distribution has support only for values of on the interval [
]. As with the Weibull distribution, it is not considered further in this book. It
is included here for completeness of exposition of extreme value theory. It should
also be noted that the beta distribution is a (shifted) subclass of the usual beta
distribution on the interval (0 1) interval, which has an additional shape parameter,
and where the shape parameters are positive.

Generalized Pareto distribution
The generalized Pareto distribution is the family of distributions incorporating,

in a single expression, the preceding three distributions as special cases. The general
expression for the cdf of the generalized Pareto distribution is

( ) = 1
³
1 +

´

For notational convenience, it is often written as

( ) = ( ) = 1
³
1 +

´ 1

Because the limiting value of
¡
1 +

¢ 1
is exp( ) as 0 it is clear that

0( ) is the exponential distribution function. When (or, equivalently, ) is
positive, the cdf ( ) has the form of a Pareto distribution.
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5.6.7 Stability of excesses of the generalized Pareto

The exponential, Pareto, and beta distributions have another property, called �“sta-
bility of excesses.�” Let = | denote the conditional excess random
variable.
When has an exponential distribution with zero left-hand endpoint

Pr( ) = 0 ( ) = 1 exp
³ ´

0

Then

Pr ( ) = Pr ( + | )

=
exp

¡ ¢
exp

³
+
´

exp
¡ ¢

= 1 exp
³ ´

= 0 ( ) 0

This shows that the distribution of the excess from the exponential distribution
itself has an exponential distribution. The excess of the loss over the threshold has
the same distribution as the original loss random variable This is known as the
�“memoryless property�” of the exponential distribution.
Similarly, for the Pareto distribution beginning at zero,

Pr( ) = 1 ( ) = 1

µ
+

¶
0 0

we have

Pr ( ) = Pr ( + | )

= 1
( + )

( )

= 1

µ
+ +

+

¶

= 1

µ
+ ( + )

+

¶

= 1 + ( ) 0

This shows that the excess over a threshold from the Pareto distribution has
itself a Pareto distribution. The excess over the threshold has a Pareto distribution
that is the same as the original loss random variable, but with a change of scale
from to + .
A similar result holds for the beta distribution, but is not considered further.

Thus, for the generalized Pareto distribution, the conditional distribution of the
excess over a threshold is of the same form as the underlying distribution. The form
for the distribution of conditional excesses of the generalized Pareto distribution
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can be written as

Pr ( ) = Pr ( + | )

= 1
( + )

( )

= 1
1 +

³
+
´

1 +
¡ ¢

1

= 1

µ
+ ( + )

+

¶ 1

= 1

µ
1 +

+

¶ 1

= + ( ) 0

5.6.8 Limiting distributions of excesses

We now examine the distribution of excesses over some threshold of a sample of
size for any distribution as becomes very large. In particular, we are specically
interested in the limiting distribution as the threshold increases. As with the study
of the maximum, in order to understand the shape of the distribution, it is necessary
to normalize the loss random variable in some way. This need becomes clear in the
following theorem.
For the conditional random variable = | , dene its distribution

function as

( ) = ( ) = Pr ( )

= Pr ( + | )

=
( + ) ( )

1 ( )

Theorem 5.16 is the analogue of the Fisher�—Tippett theorem, but for excesses.

Theorem 5.16 (Balkema�—de Haan�—Pickands Theorem) If, for some constants
and that depend on , the conditional distribution of excesses ( + ) has
a continuous limiting distribution as approaches the right-hand endpoint of the
support of then

( ) ( )

as , for all , where is a generalized Pareto distribution that is one of
0 , 1 , or 2 for some scale parameter 0

The Balkema�—de Haan�—Pickands Theorem (see [13] and [142]) shows that, as
the threshold becomes large, the right-hand tail of the distribution of the excess
converges in shape to exactly one of the three generalized Pareto distributions:
exponential, Pareto and beta. In practice, the limiting distribution serves as an
approximating distribution for small sample sizes when the threshold is very high.
It is also interesting to note that the upper tails of the standardized EV distri-

bution and the standardized GP distribution converge asymptotically as .



EXTREME VALUE DISTRIBUTIONS 105

However, the left-hand end of the distributions are very di erent. The similarity of
the right-hand tails can be seen by examining the series expansion of the survival
functions of each. From (5.14),

1 ( ) = ln[ ( )] = ln{1 [1 ( )]}

= [1 ( )]
[1 ( )]2

2
+
[1 ( )]3

3
· · · .

As grows very large, the right-hand side is dominated by the rst term and
the remaining terms become insignicant.

5.6.9 TVaR for extreme value distributions

The limiting distribution of the conditional excess over a threshold follows a gen-
eralized Pareto distribution. If the excess over a threshold of a random variable
is assumed to follow a generalized Pareto distribution, then, for the tail

of the (unconditional ) distribution of can be written as

( ) = Pr ( )

= Pr ( ) Pr ( | )

= ( )Pr ( | )

= ( ) ( )

where is the conditional random variable | , = and ( )
is the tail of the distribution of , which is given by

( ) =

µ
1 +

+

¶ 1

(5.15)

This distribution has mean

E( ) =

Z

0

( ) =

Z

0

µ
1 +

+

¶ 1

= ( + ) (1 )

=
1

+
1

which is a linear function in and exists only if 1. When = 0, we have the
exponential distribution and the memoryless property.
If the threshold is the Value-at-Risk = VaR ( ), then we can write the

Tail-Value-at-Risk as

TVaR ( ) = +
1

+
1

=
VaR ( )

1
+
1
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If the threshold is less than the Value-at-Risk, = VaR ( ), then from
(5.15), we can write the tail probability as

( ) = ( ) ( )

= ( )

µ
1 +

+

¶ 1

From this the quantile, =VaR ( ) can be obtained as

VaR ( ) = +
+

"µ
1

( )

¶
1

#

and the Tail-Value-at-Risk follows as

TVaR ( ) =
VaR ( )

1
+
1

5.6.10 Further reading

The theory of extreme values is treated relatively informally in this section. Nu-
merous recently published books are specially devoted to extreme value theory.
The book by Embrechts et al. [39] was published in 1997 and remains one of the
most comprehensive treatments of this topic. It provides a comprehensive treat-
ment of relevant theory. Numerous papers by Embrechts and his collaborators,
especially Alexander McNeil, (see, e.g., McNeil [117]) on various aspects of EVT
are the leading papers in this area.

5.6.11 Exercises

5.28 Show that when is positive, the cdf ( ) (5.11) has the form of a Fréchet
distribution. What is the left-hand endpoint of the support of the distribution?
Express it as a function of .

5.29 Show that when is negative, the cdf ( ) (5.11) has the form of a Weibull
distribution. What is the right-hand endpoint of the support of the distribution?
Express it as a function of .

5.30 Consider a Poisson process in which 10 losses are expected each year. Fur-
ther assume that losses are exponentially distributed with an average size of one
million dollars. Calculate the 99%-Value-at-Risk; that is, the 99th percentile of the
distribution of the maximum loss.

5.31 Redo the calculation in Exercise 5.30 using a Pareto loss distribution with the
same average loss of one million dollars. Do the calculation for each of the shape
parameters equal to 20, 10, 5, 2, 1.5, and 1.1.

5.32 Suppose there is additional uncertainty about the expected number of losses.
Suppose that the expected number of losses is given by a gamma prior distribu-
tion with mean 10 and standard deviation 5 and, therefore, losses have a negative
binomial distribution with parameters = 4 and = 2 5. Redo Exercise 5.30
incorporating this additional uncertainty.
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5.33 Redo the calculations in Exercise 5.31 incorporating the additional uncer-
tainty described in Exercise 5.32.

5.34 Consider the standardized half-Cauchy distribution with pdf

( ) =
1

2 (1 + 2)
0

Prove that this has the Fréchet distribution as the limiting distribution of the
maximum.

5.35 Show that when is positive, the cdf ( ) has the form of a Pareto
distribution. What is the left-hand endpoint of the support of the distribution?
Express it as a function of .





6

DISCRETE DISTRIBUTIONS AND
PROCESSES

6.1 INTRODUCTION

The purpose of this chapter is to introduce a large class of counting distributions.
Counting distributions are discrete distributions with probabilities only on the non-
negative integers; that is, probabilities are dened only at the points 0 1 2 3 4 .
In an insurance context, counting distributions describe the number of events such
as losses to the insured or claims to the insurance company. An understanding of
both the number of claims and the size of claims provides a deeper understanding
of a variety of issues surrounding insurance payments than if information is only
available about total losses. The description of total losses in terms of numbers
and amounts separately makes it possible to address issues of modication of an
insurance contract. Another reason for separating numbers and amounts of claims
is that models for the number of claims are fairly easy to obtain and experience
has shown that the commonly used distributions really do model the propensity to
generate losses.
We now formalize some of the notation used for models for discrete phenomena.

The probability function (pf) denotes the probability that exactly events (such

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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as claims or losses) occur. Let be a random variable representing the number of
such events. Then

= Pr( = ) = 0 1 2

As a reminder, the probability generating function (pgf) of a discrete random vari-
able with pf is

( ) = ( ) = E
¡ ¢

=
X

=0

(6.1)

As is true with the moment generating function, the pgf can be used to generate
moments. In particular, 0(1) = E( ) and 00(1) = E[ ( 1)] (see Exercise
6.1). To see that the pgf really does generate probabilities,

( )( ) = E
µ ¶

= E[ ( 1) · · · ( + 1) ]

=
X

=

( 1) · · · ( + 1)

( )(0) = ! or =
( )(0)

!

6.1.1 Exercise

6.1 The moment generating function (mgf) for discrete variables is dened as

( ) = E
¡ ¢

=
X

=0

Demonstrate that ( ) = (ln ). Use the fact that E( ) =
( )
(0) to show

that 0(1) = E( ) and 00(1) = E[ ( 1)].

6.2 THE POISSON DISTRIBUTION

The pf for the Poisson distribution is

=
!

= 0 1 2

The probability generating function from Example 3.6 is

( ) = ( 1) 0

The mean and variance can be computed from the probability generating function
as follows:

E( ) = 0(1) =

E[ ( 1)] = 00(1) = 2

Var( ) = E[ ( 1)] + E( ) [E( )]2

= 2 + 2

= .
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For the Poisson distribution, the variance is equal to the mean. The Poisson dis-
tribution can arise from a Poisson process (discussed in Chapter 11). The Poisson
distribution and Poisson processes are also discussed in many textbooks in statistics
and actuarial science, including Panjer and Willmot [138] and Ross [154].
The Poisson distribution has at least two additional useful properties. The rst

is given in the following theorem.

Theorem 6.1 Let 1 be independent Poisson variables with parameters
1 . Then = 1 + · · · + has a Poisson distribution with parameter
1 + · · ·+ .

Proof: The pgf of the sum of independent random variables is the product of the
individual pgfs. For the sum of Poisson random variables we have

( ) =
Y

=1

( ) =
Y

=1

exp[ ( 1)]

= exp
X

=1

( 1)

= ( 1)

where = 1+ · · ·+ . Just as is true with moment generating functions, the pgf
is unique and, therefore, must have a Poisson distribution with parameter . ¤

The second property is particularly useful in modeling insurance risks. Suppose
that the number of claims in a xed time period, such as one year, follows a Poisson
distribution. Further suppose that the claims can be classied into distinct types.
For example, claims could be classied by size, such as those below a xed limit
and those above the limit. It turns out that, if one is interested in studying the
number of claims above the limit, that distribution is also Poisson but with a new
Poisson parameter.
The second property is also useful when considering removing or adding a part

of an insurance coverage. Suppose that the number of claims for a complicated
medical benet coverage follows a Poisson distribution. Consider the �“types�” of
claims to be the di erent medical procedures or medical benets under the plan. If
one of the benets is removed from the plan, again it turns out that the distribution
of the number of claims under the revised plan will still have a Poisson distribution
but with a new parameter.
In each of the cases mentioned in the previous paragraph, the number of claims

of the di erent types will not only be Poisson distributed but also be independent
of each other; that is, the distributions of the number of claims above the limit and
the number below the limit will be independent. This is a somewhat surprising
result. For example, suppose we currently sell a policy with a deductible of 50 and
experience has indicated that a Poisson distribution with a certain parameter is a
valid model for the number of payments. Further suppose we are also comfortable
with the assumption that the number of losses in a period also has the Poisson
distribution but we do not know the parameter. Without additional information,
it is impossible to infer the value of the Poisson parameter should the deductible be
lowered or removed entirely. We now formalize these ideas in the following theorem.
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Theorem 6.2 Suppose that the number of events is a Poisson random variable
with mean . Further suppose that each event can be classied into one of types
with probabilities 1 independent of all other events. Then the number of
events 1 corresponding to event types 1 , respectively, are mutually
independent Poisson random variables with means 1 , respectively.

Proof: For xed = , the conditional joint distribution of ( 1 ) is
multinomial with parameters ( 1 ). Also, for xed = , the conditional
marginal distribution of is binomial with parameters ( ).
The joint pf of ( 1 ) is given by

Pr( 1 = 1 = ) = ( 1 = 1 = | = )

×Pr( = )

=
!

1! 2! · · · !
1
1 · · ·

!

=
Y

=1

( )

!

where = 1 + 2 + · · ·+ . Similarly, the marginal pf of is

Pr( = ) =
X

=

Pr( = | = )Pr( = )

=
X

=

µ ¶
(1 )

!

=
( )

!

X

=

[ (1 )]

( )!

=
( )

!
(1 )

=
( )

!

The joint pf is the product of the marginal pfs, establishing mutual independence.¤

EXAMPLE 6.1

In a study of medical insurance the expected number of claims per individual
policy is 2.3 and the number of claims is Poisson distributed. You are con-
sidering removing one medical procedure from the coverage under this policy.
Based on historical studies, this procedure accounts for approximately 10% of
the claims. Determine the new frequency distribution.

From Theorem 6.2, we know that the distribution of the number of claims
expected under the revised insurance policy after removing the procedure
from coverage is Poisson with mean 0 9(2 3) = 2 07. In carrying out studies
of the distribution of total claims, and, hence, the appropriate premium under
the new policy, there may be a change in the amounts of losses, the severity
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distribution, because the distribution of amounts of losses for the procedure
that was removed may be di erent from the distribution of amounts when all
procedures are covered. ¤

6.3 THE NEGATIVE BINOMIAL DISTRIBUTION

The negative binomial distribution has been used extensively as an alternative to
the Poisson distribution. Like the Poisson distribution, it has positive probabilities
on the nonnegative integers. Because it has two parameters, it has more exibility
in shape than the Poisson.

Denition 6.3 The probability function of the negative binomial distribution
is given by

Pr( = ) = =

µ
+ 1

¶µ
1

1 +

¶ µ

1 +

¶

= 0 1 2 0 0 (6.2)

The binomial coe cient is to be evaluated as
µ ¶

=
( 1) · · · ( + 1)

!

While must be an integer, may be any real number. When 1, it can
also be written as µ ¶

=
( + 1)

( + 1) ( + 1)

which may be useful because ln ( ) is available in many spreadsheets, programming
languages, and mathematics packages.

It is not di cult to show that the probability generating function for the negative
binomial distribution is

( ) = [1 ( 1)]

From this it follows that the mean and variance of the negative binomial distribution
are

E( ) = and Var( ) = (1 + )

Because is positive, the variance of the negative binomial distribution exceeds
the mean. This relationship is in contrast to the Poisson distribution for which the
variance is equal to the mean. Thus, for a particular set of data, if the observed
variance is larger than the observed mean, the negative binomial might be a better
candidate than the Poisson distribution as a model to be used.
The negative binomial distribution is a generalization of the Poisson in at least

two di erent ways, namely, as a mixed Poisson distribution with a gamma mix-
ing distribution (demonstrated later in this section) and as a compound Poisson
distribution with a logarithmic secondary distribution (see Section 6.8).
The geometric distribution is the special case of the negative binomial distri-

bution when = 1. The geometric distribution is, in some senses, the discrete
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analogue of the continuous exponential distribution. Both the geometric and ex-
ponential distributions have an exponentially decaying probability function and,
hence, the memoryless property. The memoryless property can be interpreted in
various contexts as follows. If the exponential distribution is a distribution of life-
times, then the expected future lifetime is constant for any age. If the exponential
distribution describes the size of insurance claims, then the memoryless property
can be interpreted as follows: Given that a claim exceeds a certain level , the
expected amount of the claim in excess of is constant and so does not depend
on . That is, if a deductible of is imposed, the expected payment per claim
will be unchanged, but, of course, the expected number of payments will decrease.
If the geometric distribution describes the number of claims, then the memoryless
property can be interpreted as follows: Given that there are at least claims,
the probability distribution of the number of claims in excess of does not de-
pend on . Among continuous distributions, the exponential distribution is used
to distinguish between subexponential distributions with heavy (or fat) tails and
distributions with light (or thin) tails. Similarly for frequency distributions, dis-
tributions that decay in the tail slower than the geometric distribution are often
considered to have heavy tails, whereas distributions that decay more rapidly than
the geometric have light tails. The negative binomial distribution has a heavy tail
(decays more slowly than the geometric distribution) when 1 and a lighter tail
than the geometric distribution when 1.
As noted earlier, one way to create the negative binomial distribution is as a

mixture of Poissons. Suppose that we know that a risk has a Poisson number of
claims distribution when the risk parameter is known. Now treat as being the
outcome of a random variable . We denote the pdf/pf of by ( ), where
may be continuous or discrete, and denote the cdf by ( ). The idea that is
the outcome of a random variable can be justied in several ways. First, we can
think of the population of risks as being heterogeneous with respect to the risk
parameter . In practice this makes sense. Consider a block of insurance policies
with the same premium, such as a group of automobile drivers in the same rating
category. Such categories are usually broad ranges such as 0�—7,500 miles per year,
garaged in a rural area, commuting less than 50 miles per week, and so on. We
know that not all drivers in the same rating category are the same even though
they may �“appear�” to be the same from the point of view of the insurer and are
charged the same premium. The parameter measures the expected number of
accidents for a given driver. If varies across the population of drivers, then we
can think of the insured individual as a sample value drawn from the population
of possible drivers. For a particular driver, is unknown to the insurer but follows
some distribution, in this case ( ), over the population of drivers. The true value
of is unobservable. All we observe are the number of accidents coming from the
driver. There is now an additional degree of uncertainty, that is, uncertainty about
the parameter.
This is the same mixing process that was discussed with regard to continuous

distributions in Section 5.2.4. In some contexts this is referred to as parameter
uncertainty. In the Bayesian context, the distribution of is called a prior distrib-
ution and the parameters of its distribution are sometimes called hyperparameters.
The role of the distribution (·) is very important in credibility theory, the subject
of Chapter 20. When the parameter is unknown, the probability that exactly
claims will arise can be written as the expected value of the same probability but
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conditional on = where the expectation is taken with respect to the distribution
of . From the law of total probability, we can write

= Pr( = )

= E[Pr( = | )]

=

Z

0

Pr( = | = ) ( )

=

Z

0 !
( )

Now suppose has a gamma distribution. Then

=

Z

0 !

1

( )
=
1

!

1

( )

Z

0

(1+ 1 ) + 1

From the denition of the gamma distribution in Appendix A, this expression
can be evaluated as

=
( + )

! ( ) (1 + ) +

=

µ
+ 1

¶µ

1 +

¶ µ
1

1 +

¶

This formula is of the same form as (6.2), demonstrating that the mixed Poisson,
with a gamma mixing distribution, is the same as a negative binomial distribution.
It is worth noting that the Poisson distribution is a limiting case of the negative

binomial distribution. To see this, let go to innity and go to zero while keeping
their product constant. Let = be that constant. Substituting = in the
pgf leads to (using L�’Hôpital�’s rule in lines 3 and 5)

lim 1
( 1)

¸
= exp

½
lim ln 1

( 1)
¸¾

= exp

½
lim

ln[1 ( 1) ]
1

¾

= exp

½
lim

[1 ( 1) ] 1 ( 1) 2

2

¾

= exp lim
( 1)

( 1)

¸

= exp
n
lim [ ( 1)]

o

= exp[ ( 1)]

which is the pgf of the Poisson distribution.

6.4 THE BINOMIAL DISTRIBUTION

The binomial distribution is another counting distribution that arises naturally in
claim number modeling. It possesses some properties di erent from the Poisson
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and the negative binomial that make it particularly useful. First, its variance is
smaller than its mean, making it useful for data sets in which the observed sample
variance is less than the sample mean. This property contrasts with the negative
binomial, where the variance exceeds the mean, and it also contrasts with the
Poisson distribution, where the variance is equal to the mean.
Second, it describes a physical situation in which risks are each subject to

claim or loss. We can formalize this situation as follows. Consider independent
and identical risks each with probability of making a claim.1 This might apply
to a life insurance situation in which all the individuals under consideration are
in the same mortality class; that is, they may all be male smokers at age 35 and
duration 5 of an insurance policy. In that case, is the probability that a person
with those attributes will die in the next year. Then the number of claims for a
single person follows a Bernoulli distribution, a distribution with probability 1
at 0 and probability at 1. The probability generating function of the number of
claims per individual is then given by

( ) = (1 ) 0 + 1 = 1 + ( 1)

Now, if there are such independent individuals, then the probability generating
functions can be multiplied together to give the probability generating function of
the total number of claims arising from the group of individuals. That probability
generating function is

( ) = [1 + ( 1)] 0 1

Then from this it is easy to show that the probability of exactly claims from the
group is

= Pr( = ) =

µ ¶
(1 ) = 0 1 (6.3)

the pf for a binomial distribution with parameters and . From this Bernoulli
trial framework, it is clear that at most events (claims) can occur. Hence, the
distribution only has positive probabilities on the nonnegative integers up to and
including .
Consequently, an additional attribute of the binomial distribution that is some-

times useful is that it has nite support; that is, the range of values for which
there exist positive probabilities has nite length. This attribute may be useful, for
instance, in modeling the number of individuals injured in an automobile accident
or the number of family members covered under a health insurance policy. In each
case it is reasonable to have an upper limit on the range of possible values. It is
useful also in connection with situations where it is believed that it is unreasonable
to assign positive probabilities beyond some point. For example, if one is modeling
the number of accidents per automobile during a one-year period, it is probably
physically impossible for there to be more than some number, say 12, of claims
during the year given the time it would take to repair the automobile between
accidents. If a model with probabilities that extend beyond 12 were used, those

1 It is more common to use for the parameter of this distribution. Because we have used for
the probabilities and because is the standard actuarial symbol for the probability of death, we
have elected to use as the parameter.
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Table 6.1 Members of the ( 0) class.

Distribution 0

Poisson 0
Binomial

1
( + 1)

1
(1 )

Negative binomial
1 +

( 1)
1 +

(1 + )

Geometric
1 +

0 (1 + ) 1

probabilities should be very small so that they have little impact on any decisions
that are made. The mean and variance of the binomial distribution are given by

E( ) = Var( ) = (1 )

6.5 THE (a, b, 0) CLASS

The following denition characterizes the members of this class of distributions.

Denition 6.4 Let be the pf of a discrete random variable. It is a member of
the (a b 0) class of distributions provided that there exists constants and
such that

1
= + = 1 2 3

This recursion describes the relative size of successive probabilities in the count-
ing distribution. The probability at zero, 0, can be obtained from the recursive
formula because the probabilities must add up to 1. The ( 0) class of distribu-
tions is a two-parameter class, the two parameters being and . By substituting
in the probability function for each of the Poisson, binomial, and negative binomial
distributions on the left-hand side of the recursion, it can be seen that each of these
three distributions satises the recursion and that the values of and are as given
in Table 6.1. In addition, the table gives the value of 0, the starting value for the
recursion. The geometric distribution, the one-parameter special case ( = 1) of
the negative binomial distribution is also in the table.
It can be shown (see Panjer and Willmot [138, Chapter 6]) that these are the

only possible distributions satisfying this recursive formula.
The recursive formula can be rewritten as

1
= + = 1 2 3

The expression on the left-hand side is a linear function in . Note from Table 6.1
that the slope of the straight line is 0 for the Poisson distribution, is negative
for the binomial distribution, and is positive for the negative binomial distribution,
including the geometric. This relationship suggests a graphical way of indicating
which of the three distributions might be selected for tting to data. Begin by
plotting

�ˆ

�ˆ 1
=

1
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Table 6.2 Accident prole from Thyrion [173].

Number of Number of
accidents, policies,

1

0 7,840
1 1,317 0.17
2 239 0.36
3 42 0.53
4 14 1.33
5 4 1.43
6 4 6.00
7 1 1.75
8+ 0
Total 9,461

against . The observed values should form approximately a straight line if one of
these models is to be selected, and the value of the slope should be an indication of
which of the models should be selected. Note that this cannot be done if any of the
are 0. Hence this procedure is less useful for a small number of observations.

EXAMPLE 6.2

Consider the accident data in Table 6.2, which is taken from Thyrion [173].
For the 9,461 automobile insurance policies studied, the number of accidents
under the policy is recorded in the table. Also recorded in the table is the
observed value of the quantity that should be linear.

Figure 6.1 plots the value of the quantity of interest against , the number
of accidents. It can be seen from the graph that the quantity of interest
looks approximately linear except for the point at = 6. The reliability of
the quantities as increases diminishes because the number of observations
becomes small and the variability of the results grows, illustrating a weakness
of this ad hoc procedure. Visually, all the points appear to have equal value.
However, the points on the left are more reliable than the points on the right.
From the graph, it can be seen that the slope is positive and the data appear
approximately linear, suggesting that the negative binomial distribution is an
appropriate model. Whether or not the slope is signicantly di erent from
0 is also not easily judged from the graph. By rescaling the vertical axis
of the graph, the slope can be made to look steeper and, hence, the slope
could be made to appear to be signicantly di erent from 0. Graphically,
it is di cult to distinguish between the Poisson and the negative binomial
distribution because the Poisson requires a slope of 0. However, we can say
that the binomial distribution is probably not a good choice since there is no
evidence of a negative slope. In this case it is advisable to t both the Poisson
and negative binomial distributions and conduct a more formal test to choose
between them. ¤



THE ( 0) CLASS 119

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

k

R
at

io

Figure 6.1 Plot of the ratio 1 against .

Table 6.3 Poisson�—negative binomial comparison.

Parameter
Distribution estimates Loglikelihood

Poisson �ˆ = 0 2143537 5,490.78

Negative binomial �ˆ = 0 3055594 5,348.04
�ˆ = 0 7015122

It is also possible to compare the appropriateness of the distributions by looking
at the relationship of the variance to the mean. For this data set, the mean number
of claims per policy is 0.2144. The variance is 0.2889. Because the variance exceeds
the mean, the negative binomial should be considered as an alternative to the
Poisson. Again, this is a qualitative comment because we have, at this point, no
formal way of determining whether the variance is su ciently larger than the mean
to warrant use of the negative binomial. To do some formal analysis, Table 6.3
gives the results of maximum likelihood estimation (discussed in Chapter 15) of
the parameters of the Poisson and negative binomial distributions and the negative
loglikelihood in each case. In Chapter 16, formal selection methods are presented.
They would indicate that the negative binomial is superior to the Poisson as a
model for this data set. However, those methods also indicate that the negative
binomial is not a particularly good model, and, thus, some of the distributions yet
to be introduced should be considered.
In subsequent sections we will expand the class of the distributions beyond the

three discussed in this section by constructing more general models related to the
Poisson, binomial, and negative binomial distributions.
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6.5.1 Exercises

6.2 For each of the data sets in Exercises 15.106 and 15.108 on page 459, calculate
values similar to those in Table 6.2. For each, determine the most appropriate
model from the ( 0) class.

6.3 Use your knowledge of the permissible ranges for the parameters of the Poisson,
negative binomial, and binomial to determine all possible values of and for these
members of the ( 0) class. Because these are the only members of the class,
all other pairs must not lead to a legitimate probability distribution (nonnegative
values that sum to 1). Show that the pair = 1 and = 1 5 (which is not on the
list of possible values) does not lead to a legitimate distribution.

6.6 COUNTING PROCESSES

6.6.1 Introduction and denitions

To this point the focus has been on the analysis of probability distributions of
random variables, such as the amount of a claim, or (in this chapter) the number
of claims over a xed period of time. For analyzing risk, the distribution of the
number of claims may not be su cient. At times it is important to know how
the claims develop over time. There may be relationships between the behavior in
di erent time intervals or the behavior may change over time.
To x these ideas, the concept of a random variable must be generalized to that

of a stochastic process.

Denition 6.5 A stochastic process { : 0} is a collection of random
variables, indexed by the variable (which often represents time).

We are interested in the marginal distribution of for a specic value of as
well as the joint distribution of ( 1 2 ) for di erent values of the s
as well as for di erent values of . At times it is useful to consider the change in
the process from one time to another, that is, we may be interested in the variable

. We refer to this variable as an increment added to the process in the
interval ( ), or, simply, an increment.

EXAMPLE 6.3

Suppose a driver buys an automobile insurance policy from a company at time
= 0 (measured in years). A stochastic process based on this policy could be
dened as equals the number of claims reported on this policy as of time
. Then, for example, 3 2 would be the number of claims in the third
year. ¤

There are some assumptions that can be made about a stochastic process which,
if true, can simplify the mathematical analysis. Two of them are dened here.

Denition 6.6 A stochastic process has stationary increments if the distrib-
ution of for depends only on the length of the interval, . A
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stochastic process has independent increments if increments for any set of dis-
joint intervals are independent.

One consequence of stationary increments is that the process does not change
over time. In the context of Example 6.3, that means that the distribution of the
number of accidents each year is unchanged. In that example, dependent increments
means that if you know the number of accidents in one year, that will imply a
di erent distribution for the next year then had there been some other number of
accidents.
Example 6.3 is an illustration of a specic type of stochastic process.

Denition 6.7 A counting process is a stochastic process in which must be
a nonnegative integer and for any , .

The name is appropriate because stochastic processes with these properties usu-
ally arise when events (such as automobile accidents) are being counted through
time.
In this section we only examine counting processes that are Markovian. A loose

denition is that for , the distribution of given is the same as if any
of the values 1 2 with all 1 2 were given. This means that
if you know = , then knowing additional values of the process prior to time
provides no additional information about the distribution of .2 In the context of
Example 6.3, this means that if you know the total number of accidents in the rst
three years, you know as much about the distribution of accidents in year four than
had you known the actual number of accidents in each of those three years. This
is a weaker assumption than having independent increments, because it allows the
number of accidents in year four to depend on certain previous outcomes.
For a Markovian counting process, the probabilities of greatest interest are the

transition probabilities, given by

+ ( ) = Pr( = | = ) 0 = 0 1 . (6.4)

In what follows, it is convenient to think of and as known constants, because
(6.4) is a conditional probability of the increment, , conditioned on = .
It is important to note that probabilities for the number of events between times
and can depend on both and . Such a process is called nonhomogeneous. If

the probabilities depend on and only through the di erence , the process is
called homogeneous.
Because we want to interpret as the number of claims that have occurred up

to time , it is convenient to dene 0 = 0. Then the marginal pf of is

( ) = 0 (0 ) = Pr( = ) = 0 1 . (6.5)

The marginal distribution of the increment may be obtained by an
application of the law of total probability. That is,

Pr( = ) =
X

=0

Pr( = | = )Pr( = ) =
X

=0

+ ( ) ( )

(6.6)

2General (discrete) processes with this property are called continuous-time Markov chains.
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As mentioned earlier, the process has stationary increments if (6.6) depends only on
the di erence , and not on the individual values of and . Being stationary is
not the same as being homogeneous. Stationarity is about unconditional probabili-
ties and homogeneity is about conditional probabilities. Also, if the increments are
independent, then, in particular, and 0 = must be independent.
Then,

Pr( = ) = Pr( = | = 0) = 0 ( )

Note that this is a necessary, but not su cient, condition for the process to have
independent increments because only two particular increments are considered.
In this section we further restrict attention to a particular type of counting

process called a nonhomogeneous birth process . This process imposes two additional
requirements. One is that in a short period of time, say of length , the probability
of one or more events is roughly proportional to the the length of the time period.
The constant of proportionality may depend on the current time or may depend
on the value of the process at time . A second requirement is that multiple events
are highly unlikely to occur in a short time interval.
To make these statements more precise, we need to dene what �“roughly propor-

tional�” and �“highly unlikely�” mean. This is done through the following denition.

Denition 6.8 The notation ( ) represents any function ( ) with the property

lim
0

( )
= 0

That is, the function goes to zero at a rate faster than .

Note that ( ) is not itself a function. Rather, it is notation that represents a
function with a certain property. As a result, a statement such as ( ) + ( ) =
( ) makes sense. It says if you take two, perhaps di erent, functions with this
property, multiply one by and the other by and then add them, the resulting
function has the same property. As examples, the function ( ) = 3 is ( )
because lim 0(

3 ) = lim 0
2 = 0, while ( ) = sin is not ( ) because

lim 1(sin ) = 1.
Now consider the probability of one event in a small period of time. Given that

there have been events as of time , we are interested in +1( + ). The
condition that the probability be roughly proportional to can be expressed as

+1( + ) = ( ) + ( ) = 0 1 . (6.7)

Letting the constant of proportionality depend on and is consistent with the
process being a Markovian counting process. The functions { 0( ) 1( ) } are
called transition intensity functions and must be nonnegative. If ( ) = , that
is, the function does not depend on , the process is homogeneous (you are asked
to demonstrate this in Exercise 6.6) and is therefore called a homogeneous birth
process. To ensure that the probability of multiple events in a small period of time
is highly unlikely, the remaining probabilities are

( + ) = 1 ( ) + ( ) (6.8)

and
+ ( + ) = ( ) = 2 3 (6.9)
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Thus, in a small time period there will almost always be either zero or one event.
For a nonhomogeneous birth process as dened by assumptions (6.7), (6.8), and

(6.9), a set of di erential equations for the transition probabilities can be con-
structed. They can be solved subject to the (intuitively obvious) initial conditions

( ) = 1 and + ( ) = 0 for 0. The following theorem expresses the
general solution in a recursive form. The proof is left as Exercise 6.4.

Theorem 6.9 The transition probabilities { + ( )} that satisfy (6.7), (6.8),
and (6.9), for given values of , , and , are given recursively by

( ) = exp

Z
( )

¸
(6.10)

and, for = 1 2 ,

+ ( ) =

Z
+ 1( ) + 1( ) exp

Z
+ ( )

¸
(6.11)

It does not appear possible3 to solve (6.11) to obtain an explicit solution for
+ ( ) for an arbitrary set of transition intensities. It should also be noted

that not all sets of transition intensities will lead to an acceptable result. It is
stated in [57, p. 60] that

P
=0[max 0 ( )] 1 = is required to ensure that the

process is not dishonest, that is, to ensure that
P

=0 + ( ) = 1.

6.6.2 Poisson processes

Fortunately, for some important and fairly general special cases, an explicit solu-
tion is possible. The following example is the simplest case and is also the most
important.

EXAMPLE 6.4

Obtain an explicit solution for + ( ) if the transition intensities are
constant for all and .

In this situation, the process is called the homogeneous Poisson process
(a process with stationary and independent increments). Let the constant
intensity be ( ) = . Then (6.10) becomes

( ) = ( )

An induction argument is used to show that

+ ( ) =
[ ( )] ( )

!
= 0 1 (6.12)

3That is, as of this writing, no one has gured out how to do it.
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a Poisson distribution with mean ( ). Clearly (6.12) holds with = 0.
Now assume that (6.12) holds with replaced with 1. Then (6.11) becomes

+ ( ) =

Z
[ ( )] 1 ( )

( 1)!
exp

Z ¸

=

Z
[ ( )] 1 ( )

( 1)!
( )

=
( )

( 1)!

Z
( ) 1

=
( )

( 1)!

"
( )

¯̄
¯̄
#

=
( )

( 1)!

( )

=
[ ( )] ( )

!

Then, by induction, the result holds for all = 0 1 .
Note that (6.12) does not depend on , which reects the fact that the

increments are independent. Furthermore (6.6) becomes

Pr( = ) =
X

=0

+ ( ) ( )

=
X

=0

[ ( )] ( )

!
( )

=
[ ( )] ( )

!

X

=0

( )

=
[ ( )] ( )

!

which depends only on . Therefore, this process is stationary and the Pois-
son process is a homogeneous birth process with stationary and independent
increments.
Finally, from (6.5), the marginal probabilities are

( ) = Pr( = ) = 0 (0 ) =
( )

!
= 0 1 (6.13)

that is, has a Poisson distribution with mean . ¤

In Exercise (6.5), you are asked to prove that if ( ) = ( ), then

+ =

hR
( )

i
exp

h R
( )

i

!
= 0 1 (6.14)

a Poisson distribution with mean
R

( ) . This is called the nonhomogeneous
Poisson process. It has independent, but not stationary, increments (note that the
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probability in (6.14) does not depend on ) and an intensity function that does not
depend on .
In Example 6.4, the Poisson process is homogeneous because ( ) does not

depend on , which, in turn, implies that the transition probability + ( )
depends only on (a proof for the case where ( ) = ) is given in Exercise
6.6). So, in this case, the process is both stationary and homogeneous. As noted
earlier, these do not always go together. In Section 6.11 we encounter a process
that is stationary, but nonhomogeneous.
A useful property of the Poisson process relates to what happens when a de-

ductible is applied. The result is called thinning and is discussed in detail in a
distributional (rather than a process) context in Section 8.6. The following exam-
ple considers this idea in the present stochastic process context.

EXAMPLE 6.5

Assume that the number of losses process { : 0} is a Poisson process
(as in Example 6.4) with rate . Suppose at each time the counting process is
incremented by one, there is a claim and these claim amounts are independent
of each other as well as independent of the Poisson process. Claim amounts all
have the same distribution function ( ), 0. Now suppose a deductible
of is applied to these losses. Consider a second process { : 0},
which is derived from the original process. This new process is incremented
by one only when there is a claim that exceeds the deductible. That is,
records the number of original losses as of time while records the number
of payments based on losses that exceed the deductible. Describe this new
process.

The probability that a loss becomes a payment is = 1 ( ). It can be
shown that the new process { : 0} is also a Poisson process, with the
rate changed to . See Ross [154, pp. 310�—311] for a proof of this fact. ¤

The thinned process of Example 6.5 can be generalized substantially to the
nonhomogeneous Poisson process (see, e.g., Ross [154, Section 5.4.1]) and also to
the mixed Poisson process to be discussed in Section 6.11 (see, e.g., Grandell [57,
p. 85])

6.6.3 Processes with contagion

The Poisson process is the simplest example of a birth process. Now consider one
that is slightly more complex. Let the intensity function now be

( ) = + = 0 1 (6.15)

with 6= 0 (when = 0 this reduces to the Poisson process). This process is
homogeneous (the intensities do not depend on ) and (6.15) is said to involve
linear contagion. When 0, positive contagion results, and in this case it is clear
from (6.7) that the probability of a claim occurring in the near future increases as
a function of the number of past claims. Conversely, when 0, more past claims
decreases the likelihood of a future claim, and negative contagion results.
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We can study both forms of contagion at the same time. The solution to Theorem
6.9 is stated in the following theorem.

Theorem 6.10 If ( ) = + 0 with 6= 0, the transition probabilities may
be expressed as

+ ( ) =

µ
+ + 1

¶
( + )( )

h
1 ( )

i
= 0 1 .

(6.16)

Proof: When = 0, (6.10) becomes

( ) = exp

Z
( + )

¸
= ( + )( )

and therefore (6.16) holds for = 0. To complete the proof by induction, we
assume that (6.16) holds for and then use (6.11) to show that (6.16) holds with
replaced by + 1. From (6.11) with replaced by + 1,

+ +1( ) =

Z
[ + ( + )] + ( )

× exp
Z
[ + ( + + 1)]

¸

=

Z
[ + ( + )]

µ
+ + 1

¶
( + )( )

×
h
1 ( )

i
[ + ( + +1)]( )

=

Q

=0

³
+ +

´

!

Z
( + )( )

h
1 ( )

i
( +1)( )

=

µ
+ +

+ 1

¶
( + )( )

Z
( + 1) ( )

h
( ) ( )

i

=

µ
+ +

+ 1

¶
( + )( )

(h
( ) ( )

i +1
¯̄
¯̄
=

=

)

=

µ
+ +

+ 1

¶
( + )( )

h
1 ( )

i +1

which is (6.16) with replaced by + 1. This completes the induction. ¤

The distribution of the probabilities can be determined, but will di er depending
on the sign of . We rst consider the case of positive contagion.

EXAMPLE 6.6

Demonstrate that in the positive contagion case ( 0) that, for xed , the
transition probabilities follow the negative binomial distribution.
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In this case, (6.16) may be expressed as

+ ( ) =

µ
+ + 1

¶h
( )

i + h
1 ( )

i
= 0 1 .

(6.17)
Comparison of (6.17) with (6.2) reveals that, for xed , this is a negative
binomial distribution as a function of with negative binomial parameters

= + , and replaced in (6.2) by ( ) 1

¤
This example provides an alternative explanation of why a driver may have a

negative binomial distribution for the number of claims in a year. Every time the
driver has an accident, the propensity for future accidents increases.
We now consider the case of negative contagion.

EXAMPLE 6.7

Demonstrate that in the negative contagion case ( 0) that, for xed , the
transition probabilities follow the binomial distribution.

Recall that the transition intensity function ( ) must never be negative.
Therefore, we require + 0 and so (6.15) can only hold for , for
some . Recall that to obtain a valid probability distribution, the condition

X

=0

1

max 0{ ( )}
=
X

=0

1

+
=

must hold. The only way this can happen is if and are such that is
an integer and = . We make this assumption to be assured that the
solution to (6.16) is a probability distribution. In this case the solution is

+ ( ) =

µ
+ + 1

¶
( + )( )

h
1 ( )

i

=

1Q

=0
( + + )

!
[ + ( + )]( )

h
( ) 1

i

=

( 1)
1Q

=0
( )

!
( )( )( 1) [1 ( )]

=

µ ¶h
( )

i
[1 ( )] (6.18)

As a function of , this is clearly a binomial probability function of the form
(6.3) with binomial parameters

= , and

= 1 ( )
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This analysis implicitly assumed {0 1 1}, which implies that
+ . This makes sense because ( ) = 0 implies from (6.11) that

+1( ) = 0 and thus (recursively using (6.11)) + + ( ) = 0 for
= 1 2 . That is, no more than claims can occur, in total. ¤

The three examples (6.4, 6.6, and 6.7) have involved the transition probabilities
being of the Poisson, negative binomial, and binomial forms. These are the complete
set of members of the ( 0) class discussed in Section 6.5, and thus we have a
theoretical justication for the use of the members of this class (an alternative, but
related, justication for using the negative binomial model is given in Sections 6.10
and 6.11).
The seemingly more general assumption, with (6.15) replaced by

( ) = ( + ) ( ) = 0 1 (6.19)

where ( ) 0 and 6= 0, does not o er any further qualitative insight to that
provided by (6.15) insofar as the distributional form of the transition probabilities in
(6.16) is concerned. This is because the transition probabilities are still of negative
binomial or binomial form, as proved in Exercise 6.7. Of course, if = 0 then these
probabilities are of the Poisson form in (6.14) because we may assume without loss
of generality that = 1 if = 0.
Although the distributional form of the transition probabilities in (6.16) is es-

sentially una ected by the presence of the factor ( ) in (6.19), the nature of the
process can be di erent. In particular, the homogeneous positive contagion model
of Example 6.6 has nonstationary increments, whereas a nonhomogeneous version
of the positive contagion model (see Example 6.27) has stationary increments.

6.6.4 Other processes

The transition intensity function given by (6.15) is of the form

( ) = ( ) = 0 1 (6.20)

where ( ) 0, and if a nonhomogeneous birth process has transition intensity
function of the form (6.20), then operational time is said to exist. That is, the
process may be viewed as being homogeneous in terms of the transformed time
variable ( ) =

R
0
( ) . See Bühlmann [23, pp. 49�—54] for a detailed discussion

of operational time.
If (6.20) holds with 6= for all 6= (as is the case with the contagion models

Section 6.6.3), then a solution for the transition probabilities is available. In this
case, (6.10) is given by

( ) = exp

Z
( )

¸
, (6.21)

and (6.11) is satised by

+ ( ) =
X

=0

( ) exp +

Z
( )

¸
= 1 2 (6.22)
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where

( ) =

1Q

=0
+

Q

=0
6=

( + + )
(6.23)

A proof of (6.22) is found in Exercise 6.8. As might be expected, (6.22) simplies
substantially in the special case with = + .
A detailed discussion of the results of this section may be found in the books

by Parzen [139, Chapter 7] and Bühlmann [23, Section 2.2]. The mixed Poisson
process (Section 6.11) may be formulated as a nonhomogeneous birth process, and
an in-depth treatment of this topic may be found in Grandell [57]. The Poisson
process has many attractive mathematical features (e.g., thinning, superposition,
decomposition), and detailed treatments may be found in Ross [154, Chapter 5] or
Taylor and Karlin [170, Chapter 5]. Compound processes may serve as models for
the associated aggregate claims, and a treatment of these processes (including the
important compound Poisson process) is given by Karlin and Taylor [89].

6.6.5 Exercises

6.4 The following steps provide the proof of Theorem 6.9:

(a) Prove that + ( + ) satises the Chapman�—Kolmogorov equation

+ ( + ) =
X

=0

+ ( ) + + ( + )

(b) Use (a) to prove that + ( ) satises the following di erential equa-
tion:

+ ( ) + + ( ) + ( ) = + 1( ) + 1( )

where 1( ) is dened to be zero.

(c) Solve the di erential equation in (b), subject to the initial conditions
( ) = 1 and + ( ) = 0 for 0, by multiplying by the

integrating factor exp
hR

+ ( )
i
, and thus prove Theorem 6.9.

6.5 (a) If ( ) = ( ), prove that (6.14) holds.

(b) If ( ) = ( ), explain why the increments are, in general, not station-
ary.

6.6 (a) If the process is homogeneous (i.e., ( ) = ), prove that + ( )
depends on and only through the di erence .

(b) If the process is homogeneous as in (a) and the increments are indepen-
dent, prove that the increments must also be stationary.
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6.7 (a) If ( ) = ( + ) ( ) 0 with 6= 0, prove that for = 0 1 ,

+ ( ) =

µ
+ + 1

¶
( + ) ( )

h
1 ( )

i

(b) If ( ) 0 and 0 are as in (a), prove that + ( ) is the negative
binomial pf (for = 0 1 )

+ ( ) =

µ
+ + 1

¶h
( )

i + h
1 ( )

i
.

(c) If ( ) 0 0, and = is a positive integer, prove that
+ ( ) is the binomial pf

+ ( ) =

µ ¶h
( )

i h
1 ( )

i

where and satisfy

{0 1 1} and {0 1 }

6.8 (a) Prove that (6.22) holds by induction on . (Hint: you may want to
consider Equation (3.19) in Example (3.7).)

(b) Verify that (6.22) reduces to the result in Exercise 6.7(a) in the special
case = + , 6= 0.

6.9 (*) A casino game makes payouts according to a homogeneous Poisson process
at a rate of 5 per hour. When there is a payout, the amounts are 1 2 and the
probability that a payout is for amount is 1 2 . Payout amounts are independent
of each other and of the Poisson process. Calculate the probability that there are
no payouts of 1, 2, or 3 in a given 20-minute period.

6.7 TRUNCATION AND MODIFICATION AT ZERO

At times, the distributions discussed previously do not adequately describe the
characteristics of some data sets encountered in practice. This may be because the
tail of the negative binomial is not heavy enough or because the distributions in
the ( 0) class cannot capture the shape of the data set in some other part of the
distribution.
In this section, we address the problem of a poor t at the left-hand end of the

distribution, in particular the probability at zero.
For insurance count data, the probability at zero is the probability that no

claims occur during the period under study. For applications in insurance where
the probability of occurrence of a loss is low, the probability at zero has the largest
value. Thus, it is important to pay special attention to the t at this point.
There are also situations that naturally occur which generate unusually large

probabilities at zero. Consider the case of group dental insurance. If, in a family,
both husband and wife have coverage with their employer-sponsored plans and both
group insurance contracts provide coverage for all family members, the claims will
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be made to the insurer of the plan that provides the better benets, and no claims
may be made under the other contract. Then, in conducting studies for a specic
insurer, one may nd a higher than expected number of individuals who made no
claim.
Similarly, it is possible to have situations in which there is less than the expected

number, or even zero, occurrences at zero. For example, if one is counting the
number of claims from accidents resulting in a claim, the minimum observed value
is 1.
An adjustment of the probability at zero is easily handled for the Poisson, bino-

mial, and negative binomial distributions.

Denition 6.11 Let be the pf of a discrete random variable. It is a member of
the (a,b,1) class of distributions provided that there exists constants and
such that

1
= + = 2 3 4

Note that the only di erence from the ( 0) class is that the recursion begins
at 1 rather than 0. The distribution from = 1 to = has the same shape as
the ( 0) class in the sense that the probabilities are the same up to a constant
of proportionality because

P
=1 can be set to any number in the interval (0 1].

The remaining probability is at = 0.
We distinguish between the situations in which 0 = 0 and those where 0 0.

The rst subclass is called the truncated (more specically, zero-truncated) distrib-
utions. The members are the zero-truncated Poisson, zero-truncated binomial, and
zero-truncated negative binomial (and its special case, the zero-truncated geomet-
ric) distributions.
The second subclass is referred to as the zero-modied distributions because the

probability is modied from that for the ( 0) class. These distributions can be
viewed as a mixture of an ( 0) distribution and a degenerate distribution with
all the probability at zero. Alternatively, they can be called truncated with zeros
distributions because the distribution can be viewed as a mixture of a truncated
distribution and a degenerate distribution with all the probability at zero. We now
show this equivalence more formally. Note that all zero-truncated distributions can
be considered as zero-modied distributions, with the particular modication being
to set 0 = 0.
With three types of distributions, notation can become confusing. When writing

about discrete distributions in general, we continue to let = Pr( = ). When
referring to a zero-truncated distribution, we use , and when referring to a zero-
modied distribution, we use . Once again, it is possible for a zero-modied
distribution to be a zero-truncated distribution.
Let ( ) =

P
=0 denote the pgf of a member of the ( 0) class. Let

( ) =
P

=0 denote the pgf of the corresponding member of the ( 1)
class; that is,

= = 1 2 3
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and 0 is an arbitrary number. Then

( ) = 0 +
X

=1

= 0 +
X

=1

= 0 + [ ( ) 0]

Because (1) = (1) = 1,

1 = 0 + (1 0)

resulting in

=
1 0

1 0
or 0 = 1 (1 0)

This relationship is necessary to ensure that the sum to 1. We then have

( ) = 0 +
1 0

1 0
[ ( ) 0]

=

µ
1

1 0

1 0

¶
1 +

1 0

1 0
( ) (6.24)

This is a weighted average of the pgfs of the degenerate distribution and the
corresponding ( 0) member. Furthermore,

=
1 0

1 0
= 1 2 (6.25)

Let ( ) denote the pgf of the zero-truncated distribution corresponding to an
( 0) pgf ( ). Then, by setting 0 = 0 in (6.24) and (6.25),

( ) =
( ) 0

1 0

and
=
1 0

= 1 2 (6.26)

Then from (6.25)

= (1 0 ) = 1 2 (6.27)

and
( ) = 0 (1) + (1 0 ) ( ) (6.28)

Then the zero-modied distribution is also the weighted average of a degenerate
distribution and the zero-truncated member of the ( 0) class. The following
example illustrates these relationships.
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EXAMPLE 6.8

Consider a negative binomial random variable with parameters = 0 5 and
= 2 5. Determine the rst four probabilities for this random variable. Then

determine the corresponding probabilities for the zero-truncated and zero-
modied (with 0 = 0 6) versions.

From Table 6.4 on page 135 we have, for the negative binomial distribution,

0 = (1 + 0 5) 2 5 = 0 362887

=
0 5

1 5
=
1

3

=
(2 5 1)(0 5)

1 5
=
1

2
.

The rst three recursions are

1 = 0 362887
¡
1
3 +

1
2
1
1

¢
= 0 302406

2 = 0 302406
¡
1
3 +

1
2
1
2

¢
= 0 176404

3 = 0 176404
¡
1
3 +

1
2
1
3

¢
= 0 088202

For the zero-truncated random variable, 0 = 0 by denition. The re-
cursions start with (from (6.26)) 1 = 0 302406 (1 0 362887) = 0 474651.
Then

2 = 0 474651
¡
1
3 +

1
2
1
2

¢
= 0 276880

3 = 0 276880
¡
1
3 +

1
2
1
3

¢
= 0 138440

If the original values were all available, then the zero-truncated probabilities
could have all been obtained by multiplying the original values by 1 (1
0 362887) = 1 569580.
For the zero-modied random variable, 0 = 0 6 arbitrarily. From (6.25),

1 = (1 0 6)(0 302406) (1 0 362887) = 0 189860. Then

2 = 0 189860
¡
1
3 +

1
2
1
2

¢
= 0 110752

3 = 0 110752
¡
1
3 +

1
2
1
3

¢
= 0 055376

In this case, each original negative binomial probability has been multiplied
by (1 0 6) (1 0 362887) = 0 627832. Also note that, for 1, =

0 4 . ¤

Although we have only discussed the zero-modied distributions of the ( 0)
class, the ( 1) class admits additional distributions. The ( ) parameter space
can be expanded to admit an extension of the negative binomial distribution to
include cases where 1 0. For the ( 0) class, 0 is required. By
adding the additional region to the sample space, the �“extended�” truncated negative
binomial (ETNB) distribution has parameter restrictions 0, 1, 6= 0.
To show that the recursive equation

= 1

µ
+

¶
= 2 3 (6.29)
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with 0 = 0 denes a proper distribution, it is su cient to show that for any value
of 1, the successive values of obtained recursively are each positive and thatP

=1 . For the ETNB, this must be done for the parameter space

=
1 +

0 and = ( 1)
1 +

1, 6= 0

(see Exercise 6.10).
When 0, the limiting case of the ETNB is the logarithmic distribution with

=
[ (1 + )]

ln(1 + )
= 1 2 3 (6.30)

(see Exercise 6.11). The pgf of the logarithmic distribution is

( ) = 1
ln[1 ( 1)]

ln(1 + )
(6.31)

(see Exercise 6.12). The zero-modied logarithmic distribution is created by as-
signing an arbitrary probability at zero and reducing the remaining probabilities.
It is also interesting that the special extreme case with 1 0 and

is a proper distribution and is sometimes called the Sibuya distribution. It has pgf
( ) = 1 (1 ) and no moments exist (see Exercise 6.13). Distributions with

no moments are not particularly interesting for modeling claim numbers (unless the
right tail is subsequently modied) because then an innite number of claims are
expected. An insurance covering such a case might be di cult to price!

EXAMPLE 6.9

Determine the probabilities for an ETNB distribution with = 0 5 and
= 1. Do this both for the truncated version and for the modied version

with 0 = 0 6 set arbitrarily.

We have = 1 (1+1) = 0 5 and = ( 0 5 1)(1) (1+ 1) = 0 75. From
Appendix B we also have 1 = 0 5(1) [(1 + 1)0 5 (1 + 1)] = 0 853553.
Subsequent values are

2 =

µ
0 5

0 75

2

¶
(0 853553) = 0 106694

3 =

µ
0 5

0 75

3

¶
(0 106694) = 0 026674

For the modied probabilities, the truncated probabilities need to be multi-
plied by 0.4 to produce 1 = 0 341421, 2 = 0 042678, and 3 = 0 010670.¤

It is reasonable to ask if there is a �“natural�” member of the ETNB distribution
for the example, that is, one for which the recursion would begin with 1 rather than
2. The natural value of 0 would have to satisfy 1 = (0 5 0 75 1) 0 = 0 25 0.
This would force one of the two probabilities to be negative and so there is no
acceptable solution. It is easy to show that this occurs for any 0.
There are no other members of the ( 1) class beyond the ones just discussed.

A summary is given in Table 6.4.



COMPOUND FREQUENCY MODELS 135

Table 6.4 Members of the ( 1) class.

Distribution 0 Parameter space

Poisson 0 0
ZT Poisson 0 0 0
ZM Poisson Arbitrary 0 0

Binomial (1 )
1

( + 1)
1

0 1

ZT binomial 0
1

( + 1)
1

0 1

ZM binomial Arbitrary
1

( + 1)
1

0 1

Negative binomial (1 + )
1 +

( 1)
1 +

0 0

ETNB 0
1 +

( 1)
1 +

1 0

ZM ETNB Arbitrary
1 +

( 1)
1 +

1 0

Geometric (1 + ) 1

1 +
0 0

ZT geometric 0
1 +

0 0

ZM geometric Arbitrary
1 +

0 0

Logarithmic 0
1 + 1 +

0

ZM logarithmic Arbitrary
1 + 1 +

0

ZT = zero truncated, ZM = zero modied.
Excluding = 0, which is the logarithmic distribution.

6.7.1 Exercises

6.10 Show that for the extended truncated negative binomial distribution with any
0 and 1, but 6= 0, the successive values of given by (6.29) are, for

any 1, positive and
P

=1 .

6.11 Show that when, in the zero-truncated negative binomial distribution, 0
the pf is as given in (6.30).

6.12 Show that the pgf of the logarithmic distribution is as given in (6.31).

6.13 Show that for the Sibuya distribution, which is the ETNB distribution with
1 0 and , the mean does not exist (i.e., the sum that denes

the mean does not converge). Because this random variable takes on nonnegative
values, this also shows that no other positive moments exist.

6.8 COMPOUND FREQUENCY MODELS

A larger class of distributions can be created by the processes of compounding any
two discrete distributions. The term compounding reects the idea that the pgf of
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the new distribution ( ) is written as

( ) = [ ( )] (6.32)

where ( ) and ( ) are called the primary and secondary distributions, re-
spectively.
The compound distributions arise naturally as follows. Let be a counting

random variable with pgf ( ). Let 1 2 be identically and independently
distributed counting random variables with pgf ( ). Assuming that the s do
not depend on , the pgf of the random sum = 1 + 2 + · · · + (where
= 0 implies that = 0) is ( ) = [ ( )]. This is shown as

( ) =
X

=0

Pr( = ) =
X

=0

X

=0

Pr( = | = )Pr( = )

=
X

=0

Pr( = )
X

=0

Pr( 1 + · · ·+ = | = )

=
X

=0

Pr( = )[ ( )]

= [ ( )]

In insurance contexts, this distribution can arise naturally. If represents the
number of accidents arising in a portfolio of risks and { : = 1 2 }
represents the number of claims (injuries, number of cars, etc.) from the accidents,
then represents the total number of claims from the portfolio. This kind of
interpretation is not necessary to justify the use of a compound distribution. If a
compound distribution ts data well, that may be enough justication itself. Also,
there are other motivations for these distributions, as presented in Section 6.13.

EXAMPLE 6.10

Demonstrate that any zero-modied distribution is a compound distribution.

Consider a primary Bernoulli distribution. It has pgf ( ) = 1 + .
Then consider an arbitrary secondary distribution with pgf ( ). Then,
from (6.32) we obtain

( ) = [ ( )] = 1 + ( )

From (6.24) this is the pgf of a ZM distribution with

=
1 0

1 0

That is, the ZM distribution has assigned arbitrary probability 0 at zero,
while 0 is the probability assigned at zero by the secondary distribution. ¤
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EXAMPLE 6.11

Consider the case where both and have the Poisson distribution. De-
termine the pgf of this distribution.

This distribution is called the Poisson�—Poisson or Neyman Type A distri-
bution. Let ( ) = 1( 1) and ( ) = 2( 1). Then

( ) = 1[ 2( 1) 1]

When 2 is a lot larger than 1�–for example, 1 = 0 1 and 2 = 10�–the
resulting distribution will have two local modes. ¤

The probability of exactly claims can be written as

Pr( = ) =
X

=0

Pr( = | = )Pr( = )

=
X

=0

Pr( 1 + · · ·+ = | = )Pr( = )

=
X

=0

Pr( 1 + · · ·+ = )Pr( = ) (6.33)

Letting = Pr( = ), = Pr( = ), and = Pr( = ), this is rewritten
as

=
X

=0

(6.34)

where = 0 1 , is the �“ -fold convolution�” of the function = 0 1 ,
that is, the probability that the sum of random variables which are each inde-
pendent and identically distributed (i.i.d.) with probability function will take
on value .
When ( ) is chosen to be a member of the ( 0) class,

=

µ
+

¶
1 = 1 2 (6.35)

then a simple recursive formula can be used. This formula avoids the use of convo-
lutions and thus reduces the computations considerably.

Theorem 6.12 If the primary distribution is a member of the ( 0) class, the
recursive formula is

=
1

1 0

X

=1

µ
+

¶
= 1 2 3 (6.36)

Proof: From (6.35),

= ( 1) 1 + ( + ) 1
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Multiplying each side by [ ( )] 1 0 ( ) and summing over yields

X

=1

[ ( )] 1 0 ( ) =
X

=1

( 1) 1[ ( )] 1 0 ( )

+( + )
X

=1

1[ ( )] 1 0 ( )

Because ( ) =
P

=0 [ ( )] , the previous equation is

0 ( ) =
X

=0

[ ( )] 0 ( ) + ( + )
X

=0

[ ( )] 0 ( )

Therefore
0 ( ) = 0 ( ) ( ) + ( + ) ( ) 0 ( )

Each side can be expanded in powers of . The coe cients of 1 in such an
expansion must be the same on both sides of the equation. Hence, for = 1 2
we have

=
X

=0

( ) + ( + )
X

=0

= 0 +
X

=1

( ) + ( + )
X

=1

= 0 +
X

=1

+
X

=1

Therefore,

= 0 +
X

=1

µ
+

¶

Rearrangement yields (6.36). ¤

In order to use (6.36), the starting value 0 is required and is given in Theorem
6.14. If the primary distribution is a member of the ( 1) class, the proof must
be modied to reect the fact that the recursion for the primary distribution begins
at = 2. The result is the following.

Theorem 6.13 If the primary distribution is a member of the ( 1) class, the
recursive formula is

=
[ 1 ( + ) 0] +

P
=1 ( + )

1 0
= 1 2 3 (6.37)

Proof: It is similar to the proof of Theorem 6.12 and is left to the reader. ¤



COMPOUND FREQUENCY MODELS 139

EXAMPLE 6.12

Develop the recursive formula for the case where the primary distribution is
Poisson.

In this case = 0 and = , yielding the recursive form

=
X

=1

The starting value is, from (6.32),

0 = Pr( = 0) = (0)

= [ (0)] = ( 0)

= (1 0) (6.38)

Distributions of this type are called compound Poisson distributions. When
the secondary distribution is specied, the compound distribution is called
Poisson�—X, where X is the name of the secondary distribution. ¤

The method used to obtain 0 applies to any compound distribution.

Theorem 6.14 For any compound distribution, 0 = ( 0), where ( ) is the
pgf of the primary distribution and 0 is the probability that the secondary distrib-
ution takes on the value zero.

Proof: See the second line of (6.38) ¤

Note that the secondary distribution is not required to be in any special form.
However, to keep the number of distributions manageable, secondary distributions
are selected from the ( 0) or the ( 1) class.

EXAMPLE 6.13

Calculate the probabilities for the Poisson�—ETNB distribution where = 3
for the Poisson distribution and the ETNB distribution has = 0 5 and
= 1.

From Example 6.9, the secondary probabilities are 0 = 0, 1 = 0 853553,
2 = 0 106694, and 3 = 0 026674. From (6.38), 0 = exp[ 3(1 0)] =
0 049787. For the Poisson primary distribution, = 0 and = 3. The
recursive formula in (6.36) becomes

=

P
=1(3 )

1 0(0)
=
X

=1

3
.
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Then,

1 =
3(1)

1
0 853553(0 049787) = 0 127488

2 =
3(1)

2
0 853553(0 127488) +

3(2)

2
0 106694(0 049787) = 0 179163

3 =
3(1)

3
0 853553(0 179163) +

3(2)

3
0 106694(0 127488)

+
3(3)

3
0 026674(0 049787) = 0 184114. ¤

EXAMPLE 6.14

Demonstrate that the Poisson�—logarithmic distribution is a negative binomial
distribution.

The negative binomial distribution has pgf

( ) = [1 ( 1)]

Suppose ( ) is Poisson( ) and ( ) is logarithmic( ). Then

[ ( )] = exp{ [ ( ) 1]}

= exp

½
1

ln[1 ( 1)]

ln(1 + )
1

¸¾

= exp

½

ln(1 + )
ln[1 ( 1)]

¾

= [1 ( 1)]
ln(1+ )

= [1 ( 1)] ,

where = ln(1+ ). This shows that the negative binomial distribution can
be written as a compound Poisson distribution with a logarithmic secondary
distribution. ¤

Example 6.14 shows that the �“Poisson�—logarithmic�” distribution does not create
a new distribution beyond the ( 0) and ( 1) classes. As a result, this com-
bination of distributions is not useful to us. Another combination that does not
create a new distribution beyond the ( 1) class is the compound geometric dis-
tribution where both the primary and secondary distributions are geometric. The
resulting distribution is a zero-modied geometric distribution, as shown in Exer-
cise 6.15. The following theorem shows that certain other combinations are also
of no use in expanding the class of distributions through compounding. Suppose
( ) = [ ( )] as before. Now, ( ) can always be written as

( ) = 0 + (1 0) ( ) (6.39)

where ( ) is the pgf of the conditional distribution over the positive range (in
other words, the zero-truncated version).
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Theorem 6.15 Suppose the pgf ( ; ) satises

( ; ) = [ ( 1)]

for some parameter and some function ( ) that is independent of . That is,
the parameter and the argument only appear in the pgf as ( 1). There
may be other parameters as well, and they may appear anywhere in the pgf. Then
( ) = [ ( ); ] can be rewritten as

( ) = [ ( ); (1 0)]

Proof:

( ) = [ ( ); ]

= [ 0 + (1 0) ( ); ]

= { [ 0 + (1 0) ( ) 1]}
= { (1 0)[ ( ) 1]}
= [ ( ); (1 0)] ¤

This shows that adding, deleting, or modifying the probability at zero in the
secondary distribution does not add a new distribution because it is equivalent to
modifying the parameter of the primary distribution. Thus, for example, a Pois-
son primary distribution with a Poisson, zero-truncated Poisson, or zero-modied
Poisson secondary distribution will still lead to a Neyman Type A (Poisson�—Poisson)
distribution.

EXAMPLE 6.15

Determine the probabilities for a Poisson�—zero-modied ETNB distribution
where the parameters are = 7 5, 0 = 0 6, = 0 5, and = 1.

From Example 6.9, the secondary probabilities are 0 = 0 6, 1 = 0 341421,
2 = 0 042678, and 3 = 0 010670. From (6.38), 0 = exp[ 7 5(1 0 6)] =
0 049787. For the Poisson primary distribution, = 0 and = 7 5. The
recursive formula in (6.36) becomes

=

P
=1(7 5 )

1 0(0 6)
=
X

=1

7 5
.

Then,

1 =
7 5(1)

1
0 341421(0 049787) = 0 127487

2 =
7 5(1)

2
0 341421(0 127487) +

7 5(2)

2
0 042678(0 049787) = 0 179161

3 =
7 5(1)

3
0 341421(0 179161) +

7 5(2)

3
0 042678(0 127487)

+
7 5(3)

3
0 010670(0 049787) = 0 184112.

Except for slight rounding di erences, these probabilities are the same as those
obtained in Example 6.13. ¤
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6.8.1 Exercises

6.14 Do all the members of the ( 0) class satisfy the condition of Theorem 6.15?
For those that do, identify the parameter (or function of its parameters) that plays
the role of in the theorem.

6.15 Show that the following three distributions are identical: (1) geometric�—
geometric, (2) Bernoulli�—geometric, (3) zero-modied geometric. That is, for any
one of the distributions with arbitrary parameters, show that there is a member of
the other two distribution types that has the same pf or pgf.

6.16 Show that the binomial�—geometric and negative binomial�—geometric (with
negative binomial parameter a positive integer) distributions are identical.

6.9 FURTHER PROPERTIES OF THE COMPOUND POISSON CLASS

Of central importance within the class of compound frequency models is the class
of compound Poisson frequency distributions. Physical motivation for this model
arises from the fact that the Poisson distribution is often a good model to describe
the number of claim-causing accidents, and the number of claims from an accident
is often itself a random variable. There are numerous convenient mathematical
properties enjoyed by the compound Poisson class. In particular, those involving
recursive evaluation of the probabilities were also discussed in Section 6.8. In addi-
tion, there is a close connection between the compound Poisson distributions and
the mixed Poisson frequency distributions that is discussed in more detail in Sec-
tion 6.10.2. Here we consider some other properties of these distributions. The
compound Poisson pgf may be expressed as

( ) = exp{ [ ( ) 1]} (6.40)

where ( ) is the pgf of the secondary distribution.

EXAMPLE 6.16

Obtain the pgf for the Poisson�—ETNB distribution and show that it looks like
the pgf of a Poisson�—negative binomial distribution.

The ETNB distribution has pgf

( ) =
[1 ( 1)] (1 + )

1 (1 + )

for 0, 1, and 6= 0. Then the Poisson�—ETNB distribution has as
the logarithm of its pgf

ln ( ) =

½
[1 ( 1)] (1 + )

1 (1 + )
1

¾

=

½
[1 ( 1)] 1

1 (1 + )

¾

= {[1 ( 1)] 1}
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where = [1 (1 + ) ]. This denes a compound Poisson distribution
with primary mean and secondary pgf [1 ( 1)] , which is the pgf of
a negative binomial random variable, as long as and, hence, are positive.
This observation illustrates that the probability at zero in the secondary dis-
tribution has no impact on the compound Poisson form. Also, the preceding
calculation demonstrates that the Poisson�—ETNB pgf ( ), with ln ( ) =
{[1 ( 1)] 1}, has parameter space { 0 1 0}, a useful
observation with respect to estimation and analysis of the parameters. ¤

We can compare the skewness (third moment) of these distributions to develop
an appreciation of the amount by which the skewness, and, hence, the tails of these
distributions, can vary even when the mean and variance are xed. From (6.40) (see
Exercise 6.18) and Denition 3.3, the mean and second and third central moments
of the compound Poisson distribution are

0
1 = = 0

1

2 = 2 = 0
2 (6.41)

3 = 0
3

where 0 is the th raw moment of the secondary distribution. The coe cient of
skewness is

1 =
3
3
=

0
3

1 2( 0
2)
3 2

For the Poisson�—binomial distribution, with a bit of algebra (see Exercise 6.19) we
obtain

=
2 = [1 + ( 1) ] (6.42)

3 = 3 2 2 +
2

1

( 2 )2

Carrying out similar exercises for the negative binomial, Polya�—Aeppli, Neyman
Type A, and Poisson�—ETNB distributions yields

Negative binomial: 3 = 3
2 2 + 2

( 2 )2

Polya�—Aeppli: 3 = 3
2 2 +

3

2

( 2 )2

Neyman Type A: 3 = 3
2 2 +

( 2 )2

Poisson�—ETNB: 3 = 3
2 2 +

+ 2

+ 1

( 2 )2

For the Poisson�—ETNB distribution, the range of is 1 , 6= 0. The
other three distributions are special cases. Letting 0, the secondary distribu-
tion is logarithmic, resulting in the negative binomial distribution. Setting = 1
denes the Polya�—Aeppli distribution. Letting , the secondary distribution
is Poisson, resulting in the Neyman Type A distribution.
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Note that for xed mean and variance, the third moment only changes through
the coe cient in the last term for each of the ve distributions. For the Poisson
distribution, 3 = = 3 2 2 , and so the third term for each expression for

3 represents the change from the Poisson distribution. For the Poisson�—binomial
distribution, if = 1, the distribution is Poisson because it is equivalent to a
Poisson�—zero-truncated binomial as truncation at zero leaves only probability at 1.
Another view is that from (6.42) we have

3 = 3 2 2 +
2

1

( 1)2 4 2 2

= 3 2 2 + ( 2)( 1) 3

which reduces to the Poisson value for 3 when = 1. Hence, it is necessary that
2 for non-Poisson distributions to be created. Then the coe cient satises

0
2

1
1

For the Poisson�—ETNB, because 1, the coe cient satises

1
+ 2

+ 1

noting that when = 0 this refers to the negative binomial distribution. For
the Neyman Type A distribution, the coe cient is exactly 1. Hence, these three
distributions provide any desired degree of skewness greater than that of the Poisson
distribution.

EXAMPLE 6.17

The data in Table 6.5 are taken from Hossack et al. [76] and give the distrib-
ution of the number of claims on automobile insurance policies in Australia.
Determine an appropriate frequency model based on the skewness results of
this section.

The mean, variance, and third central moment are 0.1254614, 0.1299599,
and 0.1401737, respectively. For these numbers,

3 3 2 + 2

( 2 )2
= 7 543865

From among the Poisson�—binomial, negative binomial, Polya�—Aeppli, Neyman
Type A, and Poisson�—ETNB distributions, only the latter is appropriate. For
this distribution, an estimate of can be obtained from

7 543865 =
+ 2

+ 1

resulting in = 0 8471851. In Example 16.12, a more formal estimation and
selection procedure is applied, but the conclusion is the same. ¤
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Table 6.5 Hossack et al. [76] data.

No. of claims Observed frequency

0 565,664
1 68,714
2 5,177
3 365
4 24
5 6
6+ 0

A very useful property of the compound Poisson class of probability distributions
is the fact that it is closed under convolution. We have the following theorem.

Theorem 6.16 Suppose that has a compound Poisson distribution with Pois-
son parameter and secondary distribution { ( ) : = 0 1 2 } for =
1 2 3 . Suppose also that 1 2 are independent random variables.
Then = 1+ 2+ · · ·+ also has a compound Poisson distribution with Poisson
parameter = 1 + 2 + · · ·+ and secondary distribution { : = 0 1 2 },
where = [ 1 (1) + 2 (2) + · · ·+ ( )] .

Proof: Let ( ) =
P

=0 ( ) for = 1 2 . Then has pgf ( ) =
E( ) = exp{ [ ( ) 1]}. Because the s are independent, has pgf

( ) =
Y

=1

( )

=
Y

=1

exp{ [ ( ) 1]}

= exp

"
X

=1

( )
X

=1

#

= exp{ [ ( ) 1]}

where =
P

=1 and ( ) =
P

=1 ( ) . The result follows by the unique-
ness of the generating function. ¤

One main advantage of this result is computational. If we are interested in the
sum of independent compound Poisson random variables, then we do not need to
compute the distribution of each compound Poisson random variable separately
(i.e., recursively using Example 6.12) because Theorem 6.16 implies that a single
application of the compound Poisson recursive formula in Example 6.12 will su ce.
The following example illustrates this idea.

EXAMPLE 6.18

Suppose that = 2 and 1 has a compound Poisson distribution with 1 = 2
and secondary distribution 1(1) = 0 2 2(1) = 0 7, and 3(1) = 0 1. Also,
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2 (independent of 1) has a compound Poisson distribution with 2 = 3 and
secondary distribution 2(2) = 0 25 3(2) = 0 6, and 4(2) = 0 15. Determine
the distribution of = 1 + 2.

We have = 1 + 2 = 2 + 3 = 5. Then

1 = 0 4(0 2) + 0 6(0) = 0 08

2 = 0 4(0 7) + 0 6(0 25) = 0 43

3 = 0 4(0 1) + 0 6(0 6) = 0 40

4 = 0 4(0) + 0 6(0 15) = 0 09

Thus, has a compound Poisson distribution with Poisson parameter = 5
and secondary distribution 1 = 0 08 2 = 0 43 3 = 0 40, and 4 = 0 09.
Numerical values of the distribution of may be obtained using the recursive
formula

Pr( = ) =
5X

=1

Pr( = ) = 1 2

beginning with Pr( = 0) = 5. ¤

In various situations, the convolution of negative binomial distributions is of
interest. The following example indicates how this distribution may be evaluated.

EXAMPLE 6.19

(Convolutions of negative binomial distributions) Suppose that has a neg-
ative binomial distribution with parameters and for = 1 2 and
that 1 2 are independent. Determine the distribution of =

1 + 2 + · · ·+ .

The pgf of is ( ) = [1 ( 1)] and that of is ( ) =Q
=1 ( ) =

Q
=1[1 ( 1)] . If = for = 1 2 , then

( ) = [1 ( 1)] ( 1+ 2+···+ ), and has a negative binomial distrib-
ution with parameters = 1 + 2 + · · ·+ and .
If not all the s are identical, however, we may proceed as follows. From

Example 6.14,

( ) = [1 ( 1)] = [ ( ) 1]

where = ln(1 + ) and

( ) = 1
ln[1 ( 1)]

ln(1 + )
=
X

=1

( )

with

( ) =
[ (1 + )]

ln(1 + )
= 1 2
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But Theorem 6.16 implies that = 1 + 2 + · · · + has a compound
Poisson distribution with Poisson parameter

=
X

=1

ln(1 + )

and secondary distribution

=
X

=1

( )

=

P
=1 [ (1 + )]
P

=1 ln(1 + )
= 1 2 3

The distribution of may be computed recursively using the formula

Pr( = ) =
X

=1

Pr( = ) = 1 2

beginning with Pr( = 0) = =
Q

=1(1 + ) and with and as
given previously. ¤

It is not hard to see that Theorem 6.16 is a generalization of Theorem 6.1, which
may be recovered with 1( ) = 1 for = 1 2 . Similarly, the decomposition
result of Theorem 6.2 may also be extended to compound Poisson random variables,
where the decomposition is on the basis of the region of support of the secondary
distribution. See Panjer and Willmot [138, Sec. 6.4] or Karlin and Taylor [89, Sec.
16.9] for further details.

6.9.1 Exercises

6.17 For = 1 let have independent compound Poisson frequency dis-
tributions with Poisson parameter and a secondary distribution with pgf 2( ).
Note that all of the variables have the same secondary distribution. Determine
the distribution of = 1 + · · ·+ .

6.18 Show that, for any pgf, ( )(1) = E[ ( 1) · · · ( + 1)] provided the
expectation exists. Here ( )( ) indicates the th derivative. Use this result to
conrm the three moments as given in (6.41).

6.19 Verify the three moments as given in (6.42).

6.10 MIXED FREQUENCY DISTRIBUTIONS

6.10.1 General mixed frequency distribution

Many compound distributions can arise in a way that is very di erent from com-
pounding. In this section, we examine mixture distributions by treating one or
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more parameters as being �“random�” in some sense. This section expands on the
ideas discussed in Section 6.3 in connection with the gamma mixture of the Poisson
distribution being negative binomial.
We assume that the parameter is distributed over the population under con-

sideration and that the sampling scheme that generates our data has two stages.
First, a value of the parameter is selected. Then, given that parameter value, an
observation is generated using that parameter value.
In automobile insurance, for example, classication schemes attempt to put indi-

viduals into (relatively) homogeneous groups for the purpose of pricing. Variables
used to develop the classication scheme might include age, experience, a history of
violations, accident history, and other variables. Because there will always be some
residual variation in accident risk within each class, mixed distributions provide a
framework for modeling this heterogeneity.
Let ( | ) denote the pgf of the number of events (e.g., claims) if the risk

parameter is known to be . The parameter, , might be the Poisson mean, for
example, in which case the measurement of risk is the expected number of events
in a xed time period.
Let ( ) = Pr( ) be the cdf of , where is the risk parameter, which is

viewed as a random variable. Then ( ) represents the probability that, when a
value of is selected (e.g., a driver is included in our sample), the value of the risk
parameter does not exceed . Let ( ) be the pf or pdf of . Then

( ) =

Z
( | ) ( ) or ( ) =

X
( | ) ( ) (6.43)

is the unconditional pgf of the number of events (where the formula selected depends
on whether is discrete or continuous).4 The corresponding probabilities are
denoted by

=

Z
( ) ( ) or =

X
( ) ( ) (6.44)

The mixing distribution denoted by ( ) may be of the discrete or continuous type
or even a combination of discrete and continuous types. Discrete mixtures are
mixtures of distributions when the mixing function is of the discrete type; similarly
for continuous mixtures. This phenomenon was introduced for continuous mixtures
of severity distributions in Section 5.2.4 and for nite discrete mixtures in Section
4.2.3.
It should be noted that the mixing distribution is unobservable because the data

are drawn from the mixed distribution.

EXAMPLE 6.20

Demonstrate that the zero-modied distributions may be created by using a
two-point mixture.

Suppose
( ) = (1) + (1 ) 2( )

4We could have written the more general ( ) = ( | ) ( ), which would include situations
where has a distribution that is partly continuous and partly discrete.
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This is a (discrete) two-point mixture of a degenerate distribution that places
all probability at zero and a distribution with pgf 2( ). From (6.39) this is
also a compound Bernoulli distribution. ¤

Many mixed models can be constructed beginning with a simple distribution.
Two examples are given here.

EXAMPLE 6.21

Determine the pf for a mixed binomial with a beta mixing distribution.
This distribution is called binomial�—beta, negative hypergeometric, or Polya�—
Eggenberger.

The beta distribution has pdf

( ) =
( + )

( ) ( )
1(1 ) 1 0 0

Then the mixed distribution has probabilities

=

Z 1

0

µ ¶
(1 )

( + )

( ) ( )
1(1 ) 1

=
( + ) ( + 1) ( + ) ( + )

( ) ( ) ( + 1) ( + 1) ( + + )

=

µ ¶µ ¶

µ ¶ = 0 1 2

¤

EXAMPLE 6.22

Determine the pf for a mixed negative binomial distribution with mixing on
the parameter = (1 + ) 1. Let have a beta distribution. The mixed
distribution is called the generalized Waring.

Arguing as in Example 6.21 we have

=
( + )

( ) ( + 1)

( + )

( ) ( )

Z 1

0

+ 1(1 ) + 1

=
( + )

( ) ( + 1)

( + )

( ) ( )

( + ) ( + )

( + + + )
= 0 1 2

When = 1, this distribution is called the Waring distribution. When =
= 1, it is termed the Yule distribution. ¤

6.10.2 Mixed Poisson distributions

If we let ( ) in (6.44) have the Poisson distribution, this leads to a class of
distributions with useful properties. A simple example of a Poisson mixture is the
two-point mixture.
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EXAMPLE 6.23

Suppose drivers can be classied as �“good drivers�” and �“bad drivers,�” each
group with its own Poisson distribution. Determine the pf for this model and
t it to the data from Example 15.31. This model and its application to the
data set are from Tröbliger [175].

From (6.44) the pf is

=
1
1

!
+ (1 )

2
2

!

The maximum likelihood estimates5 were calculated by Tröbliger to be �ˆ =
0 94 �ˆ1 = 0 11, and �ˆ2 = 0 70. This means that about 94% of drivers were
�“good�” with a risk of 1 = 0 11 expected accidents per year and 6% were
�“bad�” with a risk of 2 = 0 70 expected accidents per year. Note that it
is not possible to return to the data set and identify which were the bad
drivers. ¤

This example illustrates two important points about nite mixtures. First, the
model is probably oversimplied in the sense that risks (e.g., drivers) probably
exhibit a continuum of risk levels rather than just two. The second point is that
nite mixture models have a lot of parameters to be estimated. The simple two-
point Poisson mixture has three parameters. Increasing the number of distributions
in the mixture to will then involve 1 mixing parameters in addition to the total
number of parameters in the component distributions. Consequently, continuous
mixtures are frequently preferred.
The class of mixed Poisson distributions has some interesting properties that are

developed here.
Let ( ) be the pgf of a mixed Poisson distribution with arbitrary mixing dis-

tribution ( ). Then (with formulas given for the continuous case), by introducing
a scale parameter , we have

( ) =

Z
( 1) ( ) =

Z h
( 1)

i
( )

=

½h
( 1)

i ¾
= [ ( 1)] (6.45)

where ( ) is the mgf of the mixing distribution.
Therefore, 0( ) = 0 [ ( 1)] and with = 1 we obtain E( ) = E( ),

where has the mixed Poisson distribution. Also, 00( ) = 2 00 [ ( 1)],
implying that E[ ( 1)] = 2E( 2) and, therefore,

Var( ) = E[ ( 1)] + E( ) [E( )]2

= 2E( 2) + E( ) 2[E( )]2

= 2Var( ) + E( )

E( )

5Maximum likelihood estimation is discussed in Section 15.2.
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and thus for mixed Poisson distributions the variance is always greater than the
mean.
Douglas [33] proves that for any mixed Poisson distribution, the mixing distri-

bution is unique. This means that two di erent mixing distributions cannot lead
to the same mixed Poisson distribution and this allows us to identify the mixing
distribution in some cases.
There is also an important connection between mixed Poisson distributions and

compound Poisson distributions.

Denition 6.17 A distribution is said to be innitely divisible if for all values
of = 1 2 3 its characteristic function ( ) can be written as

( ) = [ ( )]

where ( ) is the characteristic function of some random variable.

In other words, taking the (1 )th power of the characteristic function still results
in a characteristic function. The characteristic function is dened as follows.

Denition 6.18 The characteristic function of a random variable is

( ) = E( ) = E(cos + sin )

where = 1.

In Denition 6.17, �“characteristic function�” could have been replaced by �“mo-
ment generating function�” or �“probability generating function,�” or some other
transform. That is, if the denition is satised for one of these transforms, it
will be satised for all others that exist for the particular random variable. We
choose the characteristic function because it exists for all distributions, while the
moment generating function does not exist for some distributions with heavy tails.
Because many earlier results involved probability generating functions, it is useful
to note the relationship between it and the characteristic function.

Theorem 6.19 If the probability generating function exists for a random variable
, then ( ) = ( ln ) and ( ) = ( ).

Proof:
( ) = E( ) = E( ln ) = E[ ( ln ) ] = ( ln )

and
( ) = E( ) = E[( ) ] = ( ) ¤

The following distributions, among others, are innitely divisible: normal, gamma,
Poisson, and negative binomial. The binomial distribution is not innitely divis-
ible because the exponent in its pgf must take on integer values. Dividing
by = 1 2 3 will result in nonintegral values. In fact, no distributions with
a nite range of support (the range over which positive probabilities exist) can be
innitely divisible. Now to the important result.
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Theorem 6.20 Suppose ( ) is a mixed Poisson pgf with an innitely divisible
mixing distribution. Then ( ) is also a compound Poisson pgf and may be ex-
pressed as

( ) = [ 2( ) 1]

where 2( ) is a pgf. If we insist that 2(0) = 0, then 2( ) is unique.

A proof can be found in Feller [43, Chapter 12]. If one chooses any innitely
divisible mixing distribution, the corresponding mixed Poisson distribution can be
equivalently described as a compound Poisson distribution. For some distributions,
this is a distinct advantage when carrying out numerical work because the recur-
sive formula (6.36) can be used in evaluating the probabilities once the secondary
distribution is identied. For most cases, this identication is easily carried out. A
second advantage is that, because the same distribution can be motivated in two
di erent ways, a specic explanation is not required in order to use it. Conversely,
the fact that one of these models ts well does not imply that it is the result of
mixing or compounding. For example, the fact that claims follow a negative bino-
mial distribution does not imply that individuals have the Poisson distribution and
the Poisson parameter has a gamma distribution.

EXAMPLE 6.24

Use the preceding results and (6.45) to demonstrate that a gamma mixture
of Poisson variables is negative binomial.

If the mixing distribution is gamma, it has the following moment generating
function (as derived in Example 3.5 and where plays the role of 1 ):

( ) =

µ ¶
0 0,

It is clearly innitely divisible because [ ( )]1 is the mgf of a gamma
distribution with parameters and . Then the pgf of the mixed Poisson
distribution is

( ) =
( 1)

¸
= 1 ( 1)

¸

which is the form of the pgf of the negative binomial distribution where the
negative binomial parameter is equal to and the parameter is equal to

. ¤

It is shown in Example 6.14 that a compound Poisson distribution with a loga-
rithmic secondary distribution is a negative binomial distribution. Therefore, the
theorem holds true for this case. It is not di cult to see that, if ( ) is the pf
for any discrete random variable with pgf ( ), then the pgf of the mixed Pois-
son distribution is

£
( 1)

¤
, a compound distribution with a Poisson secondary

distribution.
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EXAMPLE 6.25

Demonstrate that the Neyman Type A distribution can be obtained by mix-
ing.

If in (6.45) the mixing distribution has pgf

( ) = ( 1)

then the mixed Poisson distribution has pgf

( ) = exp{ [ ( 1) 1]}

the pgf of a compound Poisson with a Poisson secondary distribution, that is,
the Neyman Type A distribution. ¤

A further interesting result obtained by Holgate [74] is that, if a mixing distri-
bution is absolutely continuous and unimodal, then the resulting mixed Poisson
distribution is also unimodal. Multimodality can occur when discrete mixing func-
tions are used. For example, the Neyman Type A distribution can have more than
one mode. The reader should try this calculation for various combinations of the
two parameters.
Most continuous distributions in this book involve a scale parameter. This means

that scale changes to distributions do not cause a change in the form of the distrib-
ution, only in the value of its scale parameter. For the mixed Poisson distribution,
with pgf (6.45), any change in is equivalent to a change in the scale parameter of
the mixing distribution. Hence, it may be convenient to simply set = 1 where a
mixing distribution with a scale parameter is used.

EXAMPLE 6.26

Show that a mixed Poisson with an inverse Gaussian mixing distribution is
the same as a Poisson�—ETNB distribution with = 0 5.

The inverse Gaussian distribution is described in Appendix A. It has pdf

( ) =

µ

2 3

¶1 2

exp

"

2

µ ¶2#

0

which may be rewritten as

( ) =
(2 3)1 2

exp
( )2

2

¸
0

where = 2 . The mgf of this distribution is (see Exercise 5.20(c))

( ) = exp

½
[(1 2 )1 2 1]

¾

Hence, the inverse Gaussian distribution is innitely divisible ([ ( )]1 is
the mgf of an inverse Gaussian distribution with replaced by ). From
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Table 6.6 Pairs of compound and mixed Poisson distributions.

Compound secondary Mixing
Name distribution distribution

Negative binomial logarithmic gamma
Neyman�—A Poisson Poisson
Poisson�—inverse Gaussian ETNB ( = 0 5) inverse Gaussian

(6.45) with = 1, the pgf of the mixed distribution is

( ) =

Z

0

( 1) ( )

= exp

µ
{[1 + 2 (1 )]1 2 1}

¶

By setting
= [(1 + 2 )1 2 1]

and

2( ) =
[1 2 ( 1)]1 2 (1 + 2 )1 2

1 (1 + 2 )1 2

we see that
( ) = exp{ [ 2( ) 1]}

where 2( ) is the pgf of the extended truncated negative binomial distribu-
tion with = 1

2 .
Hence, the Poisson�—inverse Gaussian distribution is a compound Poisson

distribution with an ETNB ( = 1
2) secondary distribution. ¤

The relationships between mixed and compound Poisson distributions are given
in Table 6.6.
In this chapter, we focus on distributions that are easily handled computationally.

Although many other discrete distributions are available, we believe that those
discussed form a su ciently rich class for most problems.

6.10.3 Exercises

6.20 Show that the negative binomial�—Poisson compound distribution is the same
as a mixed Poisson distribution with a negative binomial mixing distribution.

6.21 For = 1 let have a mixed Poisson distribution with parameter .
Let the mixing distribution for have pgf ( ). Show that = 1 + · · · +
has a mixed Poisson distribution and determine the pgf of the mixing distribution.

6.22 Let have a Poisson distribution with (given that = ) parameter . Let
the distribution of the random variable have a scale parameter. Show that the
mixed distribution does not depend on the value of .
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6.23 Let have a Poisson distribution with (given that = ) parameter .
Let the distribution of the random variable have pdf ( ) = 2( + 1) 1( +
1) 0. Determine the pf of the mixed distribution. In addition, show that
the mixed distribution is also a compound distribution.

6.24 Consider the mixed Poisson distribution

= Pr( = ) =

Z 1

0

( )

!
0( ) = 0 1

where ( ) = 1 (1 ) 0 1 = 1 2 .

(a) Prove that

=
X

=0

+ ( + 1)!

!( + + )!
= 0 1

(b) Using Exercise 6.34 prove that

Pr( ) =
X

=0

+ +1( + )!

!( + + + 1)!

(c) When = 1, prove that

=
1

P
=0 !

= 0 1 2

6.25 Consider the mixed Poisson distribution

=

Z

0

( )

!
( ) = 0 1

where the pdf ( ) is that of the positive stable distribution (see, e.g., Feller [44,
pp. 448, 583]) given by

( ) =
1X

=1

( + 1)

!
( 1) 1 1 sin( ) 0

where 0 1. The Laplace transform is
R
0

( ) = exp( ) 0.
Prove that { ; = 0 1 } is a compound Poisson distribution with Sibuya sec-
ondary distribution (this mixed Poisson distribution is sometimes called a discrete
stable distribution).

6.26 Consider a mixed Poisson distribution with a reciprocal inverse Gaussian
distribution as the mixing distribution.

(a) Use Exercise 5.20 to show that this distribution is the convolution of a
negative binomial distribution and a Poisson�—ETNB distribution with
= 1

2 (i.e., a Poisson�—inverse Gaussian distribution).

(b) Show that the mixed Poisson distribution in (a) is a compound Poisson
distribution and identify the secondary distribution.
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6.27 Consider the Poisson�—inverse Gaussian distribution (Example 6.26) with pgf

( ) =
X

=0

= exp

½ h
1

p
1 + 2 (1 )

i¾

Use the results of Exercise 5.20(g) to prove that

0 = exp
³
1

p
1 + 2

´¸

and, for = 1 2 ,

= 0
!

1X

=0

( + 1)!

( 1)! !

µ

2

¶
(1 + 2 )

+
2

6.11 MIXED POISSON PROCESSES

In Section 6.10, the mixed Poisson distribution was motivated as a model to ad-
dress heterogeneity within the population. Mixing has a natural extension to the
counting process formulation discussed in Section 6.6 and allows for observation of
the development of claims over time.
There are two methods to dene the (same) mixed Poisson process, { : 0}.

The rst method is consistent with the mixing process in the Section 6.10. It
assumes that { | = : 0} is a Poisson process with rate , as discussed
in Example 6.4 with rate rather than . Thus, given that = , { : 0}
has stationary and independent increments, and the transition probabilities satisfy
(6.12) with replaced by . Let ( ) = Pr( ), 0, and assume that has
pdf ( ) = 0( ), 0.6 Then, assuming that 0 = 0, the marginal probabilities
may be obtained by conditioning on , and from (6.13) it follows that

( ) = Pr( = ) =

Z

0

Pr( = | = ) ( )

and, thus,

( ) =

Z

0

( )

!
( ) (6.46)

By Bayes�’ Theorem, the conditional pdf of , given = , is

( ) =
Pr( = | = ) ( )

( )
=
( ) ( )

! ( )
(6.47)

which implies that, as a function of , ( ) ( ).
The transition probabilities (6.4) satisfy

+ ( ) = Pr( = | = )

=
Pr( = = )

Pr( = )

6For ease of exposition, in this section, we assume that has a continuous distribution and,
thus, a density function. The same treatment applies if the distribution is discrete, with integrals
replaced by sums.
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and conditioning on = (recalling that, given = , and are
independent and employing the law of total probability) results in

+ ( ) =
1

( )

Z

0

Pr( = | = )Pr( = | = ) ( )

=
1

( )

Z

0

[ ( )] ( )

!

( )

!
( ) (6.48)

which, using (6.47), may be expressed as

+ ( ) =

Z

0

[ ( )] ( )

!
( ) (6.49)

Therefore (as a function of ), + ( ) is a mixed Poisson probability with
mixing pdf ( ). Also, (6.48) may be expressed as

+ ( ) =
( )

! ! ( )

Z

0

+ ( )

=
1

( )

µ
+

¶³ ´ ³
1

´ Z

0

( ) +

( + )!
( )

That is, using (6.46),

+ ( ) =

µ
+

¶³ ´ ³
1

´
+ ( )

( )
(6.50)

and, thus, the transition probabilities for the mixed Poisson process have the con-
venient property of being expressible in terms of the marginal probabilities. Note
that (6.50) depends on , and, therefore, the increments of the process are not
independent.
However, again by conditioning on = ,

Pr( = ) =

Z

0

Pr( = | = ) ( )

=

Z

0

[ ( )] ( )

!
( ) (6.51)

which depends on but not on or individually. Thus { : 0} has
stationary, but not independent, increments. In Exercise 6.28, (6.51) is derived by
conditioning on rather than and using (6.46) and (6.50).
Next, consider the conditional probability that = given that = +

with . By Bayes�’ Theorem,

Pr( = | = + ) =
Pr( = = )

Pr( = + )

=
Pr( = | = )Pr( = )

Pr( = + )

=
+ ( ) ( )

+ ( )
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But, from (6.50), this means

Pr( = | = + ) =

µ
+

¶³ ´ ³
1

´
(6.52)

To obtain further insight into (6.52), recall that if has the continuous uniform
distribution over (0 ), then Pr( ) = and Pr( ) = 1 . Then
(6.52) would be the result if the times of the + claims in (0 ) were independent
and uniformly distributed over (0 ). This is, in fact, the case. The mixed Poisson
process shares with the ordinary Poisson process the property that the times of
the + claims in (0 ), given that there were + claims in that interval, are
independently and uniformly distributed over (0 ). See Ross [154, Section 5.3] for
a detailed discussion of this issue in the Poisson situation, and see Grandell [57,
pp. 212�—213] and references therein for further discussions and applications of this
useful feature in the mixed Poisson setting.
Although it is not obvious, the mixed Poisson process may also be formulated as a

nonhomogeneous birth process, which is discussed in detail in Section 6.6. Following
this approach, consider the birth process with transition intensities dened by

( ) =

R
0

+1 ( )
R
0

( )
= 0 1 . (6.53)

In terms of the function

( ) =

Z

0

( ) (6.54)

(6.53) may be expressed as ( ) = +1( ) ( ), a convenient representation from
a notational standpoint. The equivalence of these two methods of dening a mixed
Poisson process is discussed in detail in Grandell [57, Chapter 6]. The equivalence
of the transition probabilities under the two methods is the subject of Exercise 6.29.
We end this section with a discussion of a commonly used mixed Poisson processes,

the Polya process, where ( ) has a gamma pdf.

EXAMPLE 6.27

Demonstrate the equivalence of the (negative binomial) transition probabil-
ities under the two approaches to dening the mixed Poisson process when
( ) is a gamma pdf.

Write the gamma pdf as

( ) =
( ) 1

( )
0

where the parameters 0 have been used to minimize notational confu-
sion. For the rst approach, from (6.49),

( ) ( ) + 1 ( + )

which is the kernel of a gamma pdf with replaced by + and replaced by
+ . The normalizing constant must therefore be such that (6.47) is given
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by the gamma pdf

( ) =
( + )[( + ) ] + 1 ( + )

( + )
0

Then, from (6.49),

+ ( ) =

Z

0

[ ( )] ( )

!

( + )[( + ) ] + 1 ( + )

( + )

=
( ) ( + ) +

! ( + )

Z

0

+ + 1 ( + )

=
( + + )

! ( + )

( ) ( + ) +

( + ) + +

Therefore,

+ ( ) =
( + + )

! ( + )

µ
+

+

¶ + µ

+

¶
= 0 1 (6.55)

which is the pf of a negative binomial distribution with parameters replaced
by + and by ( ) ( + ).
The second approach to evaluation (the birth process approach) requires

evaluation of the intensity function ( ) in (6.53). From (6.54),

( ) =

Z

0

( ) 1

( )

=
( )

Z

0

+ 1 ( + )

=
( + )

( ) ( + ) +

Because ( + + 1) = ( + ) ( + ), (6.53) becomes

( ) =
+1( )

( )
=

+

+
(6.56)

Because (6.56) is of the form (6.19), that is ( ) = ( + ) ( ) with = ,
= 1, and ( ) = ( + ) 1, the transition probabilities are given in Exercise

6.7(b). Note that in this case,

exp

Z
( )

¸
= exp

Z
( + ) 1

¸

= exp
h

ln( + )|
i

=
+

+

Then, substitution into the formula in Exercise 6.7(b) gives

+ ( ) =

µ
+ + 1

¶µ
+

+

¶ + µ
1

+

+

¶

=
( + + )

! ( + )

µ
+

+

¶ + µ

+

¶
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which is (6.55).
The Polya process is thus a nonhomogeneous birth process with stationary,

but not independent, increments, and exhibits the characteristics of positive
linear contagion. ¤

6.11.1 Exercises

6.28 Prove (6.51) directly by substituting (6.46) and (6.50) into (6.6), thus proving
that (6.51) holds under the nonhomogeneous birth process formulation of the mixed
Poisson process.

6.29 Consider the nonhomogeneous birth process with transition intensity function
given by (6.53).

(a) Prove that (6.50) may be restated as

+ ( ) =
( )

!
+ ( )

( )

where ( ) is given by (6.54).

(b) Show that 0 ( ) = +1( ) and hence that

exp

Z
2

1

( )

¸
=

( 2)

( 1)

(c) Prove that + ( ) as dened by (6.50) satises equations (6.10) and
(6.11).

6.30 Suppose that has the inverse Gaussian pdf from Appendix A (with para-
meter replaced by ),

( ) =

r

2 3 exp

"

2

µ ¶2#

0

Dene ( ) = + (2 2), and use Exercise 5.20(g) to prove each of the following:

(a) The random variable , given that = , has the generalized inverse
Gaussian pdf

( ) =

h
2 ( )

i
2

1
4 3

2 ( ) 2

2 1
2
(
p
2 ( )

0

(b) The increment , given that = , has the Sichel distribution

+ ( ) =
( )

! 2 ( )

¸
2 ( )

( )

¸
2

1
4 + 1

2

³p
2 ( )

´

1
2

³p
2 ( )

´
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(c) The transition intensity function is given by

( ) =

r

2 ( )

+ 1
2

³p
2 ( )

´

1
2

³p
2 ( )

´

6.31 Suppose that { : 0| = } is a nonhomogeneous Poisson process
(Example 6.4) with intensity function , where 0. Let have pdf ( ) and
dene =

R
.

(a) Prove that the marginal probabilities of are of the mixed Poisson
form

( ) = Pr( = ) =

Z

0

( 0 ) 0

!
( ) ,

and that this may be expressed as

( ) = 0 ( 0 ) !

where ( ) is given by (6.54).

(b) Prove that the pdf of , given that = , is given by

( ) =
( 0 ) 0

! ( )
( )

(c) Prove the following facts about the conditional distribution + ( ) =
Pr( = | = ) of the increment , given that = :
(i) The transition probabilities are of the mixed Poisson form

+ ( ) =

Z

0

( )

!
( )

(ii) The transition probabilities may be expressed in terms of the mar-
ginal probabilities as

+ ( ) =

µ
+

¶µ
0

0

¶ µ
1

0

0

¶
+ ( )

( )

(iii) The transition probabilities satisfy

+ ( ) =
!

( 0 )

( 0 )

(d) Prove that

Pr( = | = + ) =

µ
+

¶µ
0

0

¶ µ
1

0

0

¶

and interpret this formula.
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(e) Prove that the marginal distribution of the increments is given by

Pr( = ) =

Z

0

( )

!
( )

(f) Dene the nonhomogeneous birth process with transition intensity func-
tion

( ) =
+1( 0 )

( 0 )

where ( ) is given by (6.54). Use the approach of Exercise 6.29 to
prove that + ( ) as dened in part (c) satises equations (6.10)
and (6.11).

(g) Verify that in the gamma case with ( ) = ( ) 1 ( ), ( ) in
part (f) may be expressed in the form ( ) = ( + ) ( ).

6.12 EFFECT OF EXPOSURE ON FREQUENCY

Assume that the current portfolio consists of entities, each of which could produce
claims. Let be the number of claims produced by the th entity. Then =

1+· · ·+ . If we assume that the s are independent and identically distributed,
then

( ) = [ 1( )]

Now suppose the portfolio is expected to expand to entities with frequency
. Then

( ) = [
1
( )] = [ ( )]

Thus, if is innitely divisible, the distribution of will have the same form as
that of , but with modied parameters.

EXAMPLE 6.28

It has been determined from past studies that the number of workers com-
pensation claims for a group of 300 employees in a certain occupation class
has the negative binomial distribution with = 0 3 and = 10. Determine
the frequency distribution for a group of 500 such individuals.

The pgf of is

( ) = [ ( )]500 300 = {[1 0 3( 1)] 10}500 300

= [1 0 3( 1)] 16 67

which is negative binomial with = 0 3 and = 16 67. ¤

For the ( 0) class, all members except the binomial have this property. For
the ( 1) class, none of the members do. For compound distributions, it is the
primary distribution that must be innitely divisible. In particular, compound
Poisson and compound negative binomial (including the geometric) distributions
will be preserved under an increase in exposure. Earlier, some reasons were given
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Table 6.7 Relationships among discrete distributions.

Distribution Is a special case of Is a limiting case of

Poisson ZM Poisson negative binomial
Poisson�—binomial
Poisson�—inv. Gaussian
Polya�—Aeppli
Neyman�—A

ZT Poisson ZM Poisson ZT negative binomial
ZM Poisson ZM negative binomial
geometric negative binomial, geometric�—Poisson

ZM geometric
ZT geometric ZT negative binomial
ZM geometric ZM negative binomial
logarithmic ZT negative binomial
ZM logarithmic ZM negative binomial
binomial ZM binomial
negative binomial ZM negative binomial,

Poisson�—ETNB
Poisson�—inverse Gaussian Poisson�—ETNB
Polya�—Aeppli Poisson�—ETNB
Neyman�—A Poisson�—ETNB

Also called Poisson�—geometric.
Also called Poisson�—Poisson.

to support the use of zero-modied distributions. If exposure adjustments are
anticipated, it may be better to choose a compound model, even if the t is not
quite as good. It should be noted that compound models have the ability to place
large amounts of probability at zero.

6.13 AN INVENTORY OF DISCRETE DISTRIBUTIONS

We have introduced the simple ( 0) class, generalized to the ( 1) class, and
then used compounding and mixing to create a larger class of distributions. Calcu-
lation of the probabilities of these distributions can be carried out by using simple
recursive procedures. In this section we note that there are relationships among
the various distributions similar to those of Section 5.3.2. The specic relationships
are given in Table 6.7.
It is clear from earlier developments that members of the ( 0) class are spe-

cial cases of members of the ( 1) class and that zero-truncated distributions
are special cases of zero-modied distributions. The limiting cases are best discov-
ered through the probability generating function, as was done on page 115 where
the Poisson distribution is shown to be a limiting case of the negative binomial
distribution.
We have not listed compound distributions where the primary distribution is

one of the two parameter models such as the negative binomial or Poisson�—inverse
Gaussian. They are excluded because these distributions are often themselves com-
pound Poisson distributions and, as such, are generalizations of distributions al-
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ready presented. This collection forms a particularly rich set of distributions in
terms of shape. However, many other distributions are also possible and are dis-
cussed in Johnson, Kotz, and Kemp [86], Douglas [33], and Panjer and Willmot
[138].

6.13.1 Exercises

6.32 Calculate Pr( = 0), Pr( = 1), and Pr( = 2) for each of the following
distributions:

(a) Poisson( = 4)

(b) Geometric( = 4)

(c) Negative binomial( = 2 = 2)

(d) Binomial( = 8 = 0 5)

(e) Logarithmic( = 4)

(f) ETNB( = 0 5 = 4)

(g) Poisson�—inverse Gaussian( = 2 = 4)

(h) Zero-modied geometric( 0 = 0 5 = 4)

(i) Poisson�—Poisson(Neyman Type A)( = 4 = 1)

(j) Poisson�—ETNB( = 4 = 2 = 0 5)

(k) Poisson�—zero-modied geometric distribution( = 8 0 = 0 5 = 2 =
0 5)

6.33 A frequency model that has not been mentioned to this point is the zeta
distribution. It is a zero-truncated distribution with = ( +1) ( + 1) =
1 2 0. The denominator is the zeta function, which must be evaluated
numerically as ( + 1) =

P
=1

( +1). The zero-modied zeta distribution can
be formed in the usual way. More information can be found in Luong and Doray
[111]. Verify that the zeta distribution is not a member of the ( 1) class.

6.34 For the discrete counting random variable with probabilities = Pr( =
); = 0 1 2 let = Pr( ) =

P
= +1 ; = 0 1 2 .

(a) Demonstrate that E( ) =
P

=0 .

(b) Demonstrate that ( ) =
P

=0 and ( ) =
P

=0 are related
by ( ) = [1 ( )] (1 ). What happens as 1?

(c) Suppose that has the negative binomial distribution

=

µ
+ 1

¶µ
1

1 +

¶ µ

1 +

¶
= 0 1 2

where is a positive integer. Prove that

=
X

=1

µ
+ 1

¶µ
1

1 +

¶ µ

1 +

¶
= 0 1 2
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(d) Suppose that has the Sibuya distribution with pgf

( ) = 1 (1 ) 1 0

Prove that

=
( ) ( + )

! (1 + )
= 1 2 3

and that

=

µ
+
¶

= 0 1 2

(e) Suppose that has the mixed Poisson distribution with

=

Z

0

( )

!
( ) = 0 1 2

where ( ) is a cumulative distribution function. Prove that

=

Z

0

( )

!
[1 ( )] = 0 1 2

6.35 Suppose that = Pr( = ) = 0 1 2 , and = Pr( = )
= 0 1 2 . Let

¯ = Pr( ) =
X

= +1

¯ = Pr( ) =
X

= +1

( ) =
X

=0

and ( ) =
X

=0

Assume that and are independent.

(a) Prove, using Exercise 6.34(b) that

X

=0

Pr( + ) =
1 ( )

1
+ ( )

1 ( )

1

(b) Use part (a) to show that

Pr( + ) = ¯ +
X

=0

¯ = 0 1 2

Interpret this result probabilistically.

(c) Simplify the result in part (b) when = 1 (that is, Pr( = ) = 1)
and interpret this result in terms of shifted distributions.
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6.14 TVaR FOR DISCRETE DISTRIBUTIONS

In general, measuring risk is more useful for dollar losses and continuous models.
This section examines the risk inherent in discrete distributions, which is less likely
to be of interest. Recall from Section 3.2 that quantiles from discrete distributions
are not always uniquely dened. However, it is probably easier, from a pedagogical
perspective, to consider only the quantiles corresponding to the points of support of
the distribution. We then consider only the quantiles that are points of support
of the probability distribution ( ).7 Thus we consider only the probabilities that
correspond to those points of support through the relation8

= Pr ( )

This restriction will allow us to use the formulas that are in the same form as
for continuous distributions. Then the TVaR for any quantile can be computed
directly for any discrete distribution with a nite mean because, from Exercise 3.8,

TVaR ( ) = E ( | )

= +

P
( )+ ( )

1 ( )
(6.57)

where the sum needs only to be taken over all possible values of that are greater
than . The (possibly) innite sum in formula (6.57) is easily avoided by rewriting
that innite sum as

X
( )+ ( ) =

X
( ) ( ) +

X
( )+ ( )

= E( ) +
X

( )+ ( )

= E( ) +
X

( ) ( ) (6.58)

and noticing that this last summation has a nite number of nonzero terms. Hence,
TVaR is easily computed for any discrete distribution with nonnegative support
using formula (6.58) and substituting the result into (6.57).
As with the case of continuous distributions, the specic results for each distrib-

ution do not provide much insight into the relationship between the TVaR and the
shape of the distribution. Section 6.14.1 provides general formulas for large families
of discrete distributions.

6.14.1 TVaR for the discrete linear exponential family

In Section 5.4, the linear exponential family is introduced and formulas for the
mean and variance derived. The family includes discrete distributions as well and

7We use the letter to denote the pf for discrete distributions in this section rather than as in
earlier sections because of the use of the letter as a probability in this section.
8This is not very restrictive. For example, if you are interested in the 99% quantile, the nearest
points of support will correspond to quantiles close to and on either side of 99%.
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the requirement is the same, namely that the pf satisfy (5.6), repeated here for
convenience:

( ; ) = Pr( = ) =
( ) ( )

( )

Equations (5.8) and (5.9) still apply (in the proof just replace integrals by sums).
Those formulas were

E( ) = ( ) =
0( )

0( ) ( )
and

Var( ) = ( ) =
0( )
0( )

Similarly, Theorem 5.11, which states that

TVaR ( ) = E( | ) = ( ) +
1
0( )

ln ( ; )

is also valid in the discrete case, again replacing integrals with sums and recalling
that

( ; ) = Pr( ) =
X

( ; )

Commonly used discrete distributions such as the Poisson, binomial, and nega-
tive binomial are all members of the linear exponential family, as discussed in the
following examples.

EXAMPLE 6.29

Demonstrate that the Poisson distribution is a member of the linear exponen-
tial family and obtain a formula for TVaR ( ).

The pf is, using for the Poisson mean,

( ; ) =
!

which is of the form (5.6) with ( ) = 1 !, ( ) = ln , and ( ) = . The
tail is

( ; ) =
X

= +1
!

and, thus,

ln ( ; ) = + ln

Ã
X

= +1
!

!

Therefore,

ln ( ; ) = 1 +

P
= +1

1

( 1)!P
= +1 !

= 1 +
( 1; )

( ; )
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But ( ; ) = ( 1; ) ( ; ) and, therefore,

ln ( ; ) =
( ; )

( ; )

and, with replaced by ,

TVaR ( ) = 1 +
( ; )

( ; )

¸
=

( 1; )

( ; )

¤

EXAMPLE 6.30

Demonstrate that the negative binomial distribution is a member of the linear
exponential family and obtain a formula for TVaR ( ).

The pf is, with replaced by ,

( ; ) =

µ
+ 1

¶
(1 + ) [ (1 + )]

which is of the form (5.6) with ( ) =
¡
+ 1

¢
, ( ) = ln[ (1 + )], and

( ) = (1 + ) . To evaluate TVaR ( ) using Theorem 5.11, note that

0( ) = [ln ln(1 + )] =
1 1

1 +
=

1

(1 + )

and

( ) =
0( )

0( ) ( )
=

(1 + ) 1

1(1 + ) 1(1 + )
= .

Dene

( ; ) =
X

= +1

( ; )

and, because (1 + ) = 1 (1 + ) 1,
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ln ( ; ) = ln

(

(1 + )
X

= +1

µ
+ 1

¶
[1 (1 + ) 1]

)

= [ ln(1 + )] + ln

(
X

= +1

µ
+ 1

¶
[1 (1 + ) 1]

)

=
1 +

+

P
= +1

¡
+ 1

¢
[1 (1 + ) 1] 1(1 + ) 2

P
= +1

¡
+ 1

¢
[1 (1 + ) 1]

=
1 +

+

P
= +1

¡
+ 1

1

¢
[ (1 + )] 1(1 + ) 2

P
= +1

¡
+ 1

¢
[ (1 + )]

=
1 +

+
(1 + )2

P
=

¡
+
¢
[ (1 + )]

P
= +1

¡
+ 1

¢
[ (1 + )]

=
1 +

+
(1 + )

P
=

¡
+1+ 1

¢
(1 + ) ( +1)[ (1 + )]

P
= +1

¡
+ 1

¢
(1 + ) [ (1 + )]

=
1 +

+
(1 + )

( 1; + 1)

( ; )

=
1 +

( 1; + 1)

( ; )
1

¸

Therefore, replacing by ,

TVaR ( ) = + (1 + )
1 +

( 1; + 1)

( ; )
1

¸

=
( 1; + 1)

( ; )

From Exercise 6.34(c) we have that, if is a positive integer, then

( ; ) =
X

=1

( ; )

which leads to a simplied calculation of the TVaR ( ) in this case. ¤

EXAMPLE 6.31

Repeat Example 6.30 for the binomial distribution.

The linear exponential family elements are ( ) =
¡ ¢

, ( ) = ln[ (1 )],
and ( ) = (1 ) where the parameter is replaced by . For this example,
the derivation of TVaR ( ) is not provided. It is similar Example 6.30. The
result is

TVaR ( ) =
( 1; 1)

( ; )
¤
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The derivation of the TVaR in these examples illustrates the use of Theorem 5.11
in the discrete case, but it is instructive to note that the formulas follow directly
from the denition of TVaR ( ) as well. An alternative derivation is given in
Exercise 6.37 and, in part (d), an alternative (but equivalent) formula is presented.

6.14.2 Exercises

6.36 If ( ) = Pr( = ) for = 0 1 , ( ) = Pr( ) =
P

= +1 ( ),
and is a positive integer, use Exercise 6.34(a) to show that

X
( )+ ( ) = E( )

1X

=0

( )

6.37 Suppose that ( ) = Pr( = ), = 0 1 where the pf is from the
( ) class of distributions. That is,

( ) =

µ
+

¶
( 1) = + 1 + 2

with 6= 1. Let ( ) =
P

= +1 ( ) for = 1 0 1 .

(a) Show that for = + 1 ,

X

= +1

( ) =
( ) + ( + ) ( 1)

1

(b) Prove that

E( ) =
X

=0

( ) +
( ) + ( + ) ( 1)

1

(c) If = + 1 , show that

TVaR ( ) =
( ) + ( + ) ( 1)

(1 ) ( )

(d) If = 0, show that

TVaR ( ) =
( )

(1 ) ( )
+ E( )

( 1)

( )

6.38 For a Poisson distribution with = 2, 0 94735 = 4. Determine TVaR for
this security level rst by using (6.57) and (6.58) and then by using Example 6.29.
Verify that the answers are identical.

6.39 For a negative binomial distribution with = 4 and = 0 5, 0 95758 = 5.
Determine TVaR for this security level by using (6.57) and (6.58), by using Example
6.30, and by using Exercise 6.37(d). Verify that the answers are identical.
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MULTIVARIATE MODELS

7.1 INTRODUCTION

To this point, this book focuses on modeling using univariate distributions. This
chapter focuses on addressing the issue of possible dependencies between risks.
Some situations that may produce dependent variables are

�• The time to death of a husband and wife (due to being exposed to similar
risks plus possible emotional components).

�• The amount paid on an insured event and the amount spent by the insur-
ance company in processing the payment (cases with higher payment to the
insured will likely also involve more expenditure in verifying the claim and
determining the settlement).

�• The total paid in di erent lines of business (e.g., an epidemic may make the
annuity line more protable and the life insurance line less protable).

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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There are a variety of sources for bivariate and multivariate models. Among
them are the books by Hutchinson and Lai [79], Kotz, Balakrishnan, and Johnson
[99], and Mardia [113]. Most distributions in these and other texts usually focus on
multivariate distributions with marginal distributions of the same type. Of more
interest and practical value are methods that construct bivariate or multivariate
models from (possibly di erent) known marginal distributions and a dependence
between risks.
There are many ways of describing this dependence or association between ran-

dom variables. For example, the classical measure of dependence is the correlation
coe cient. The correlation coe cient is a measure of the linearity between random
variables. For two random variables and , the correlation coe cient is exactly
equal to 1 or 1 if there is a perfect linear relationship between and , that
is, if = + . If is positive, the correlation coe cient is equal to 1; if is
negative, the correlation coe cient is equal to 1. These relationships explain why
the correlation described here is often called linear correlation. Other measures
of dependence between random variables are Kendall�’s tau, , and Spearman�’s
rho, , both of which are discussed further in this chapter. Similar to the linear
correlation coe cient, these measures of dependence take on values of 1 for perfect
(though not necessarily linear) positive dependence and 1 for perfect negative
dependence.
As usual, we are especially interested in the behavior in the tails of the distri-

butions, that is, when very large losses occur. In particular, we are interested in
understanding dependencies between random variables in the tail. We would like to
be able to address questions like �“If one risk has a very large loss, is it more likely
that another risk will also have a large loss?�” and �“What are the odds of having
several large losses from di erent risk types?�” The dependence in the tail is gen-
erally referred to, naturally, as tail dependence. This chapter focuses on modeling
tail dependence.
Because all information about the relationship between random variables is cap-

tured in the multivariate distribution of those random variables, we begin our jour-
ney with the multivariate distribution and a very important theorem that allows
us to separate the dependence structure from the marginal distributions.

7.2 SKLAR�’S THEOREM AND COPULAS

A -variate copula is the joint distribution function of Uniform (0,1) random
variables. If we label the random variables as 1 2 , then we can write
the copula as

( 1 ) = Pr( 1 1 )

Now consider any continuous random variables 1 2 with distribution
functions 1 2 , respectively. Create a multivariate distribution function
as follows:

( 1 ) = [ 1( 1) ( )]

= Pr( 1 1( 1) ( ))

There are two things we must verify: rst, that is a legitimate multivariate
distribution function and, second, that the marginal distributions match those of
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the original variables. For the second, the marginal distribution of 1 (the same
argument works for the other ones) is

Pr( 1 1) = ( 1 )

= Pr[ 1 1( 1) 2 2( ) ( )]

= Pr[ 1 1( 1) 2 1 1]

= Pr[ 1 1( 1)]

= 1( 1)

For legitimacy, the most important consideration is that the function be non-
decreasing in each argument. If, for example, 1 is increased, then 1( 1) will
not decrease (because 1( 1) is itself a distribution function). Because is a
legitimate distribution function, it will also be no smaller.
The previous development indicates that, given the marginal distributions and

a copula, we can create a multivariate distribution. There is no assurance that the
copula function we use will actually produce the joint distribution of the s. There
is some hope through Sklar�’s Theorem [161] (and also see Nelsen [128]), which states
that for any joint distribution function , there is a unique copula that satises

( 1 ) = [ 1( 1) ( )]

Thus, we can create a good multivariate model if we can discover the correct copula
function.1

Sklar�’s Theorem proves that in examining multivariate distributions, we can
separate the dependence structure from the marginal distributions. Conversely,
we can construct a multivariate joint distribution from (i) a set of marginal dis-
tributions and (ii) a selected copula. The dependence structure is captured in the
copula function and is independent of the form of the marginal distributions. Typi-
cally, in practice, distributions of losses of various types are identied and modeled
separately. There is often very little understanding of possible associations or de-
pendencies among di erent risk type. However, there is a recognition of the fact
that there may be linkages. Sklar�’s theorem allows us to experiment with di erent
copulas while retaining identical marginal distributions.
In the rest of this chapter, we focus on bivariate copulas, or, equivalently, on

dependency structures between pairs of random variables. In the multivariate case,
we only consider pairwise dependence between variables, reducing consideration to
the bivariate case. It should be noted that in multivariate models, there could be
higher-level dependencies based on interactions between three or more variables.
From a practical point of view, this level of dependence is almost impossible to
observe without vast amounts of data. Hence, we restrict consideration to the
bivariate case.
Copulas are invariant under strictly increasing transformations of the underlying

random variables. Because the copula links the ranks of random variables, trans-
formations that preserve the ranks of random variable will also preserve the copula.

1For pedagogical reasons,we consider only distributions of the continuous type. It is possible to
extend Sklar�’s theorem to distributions of all types. However, doing so requires more technical
detail in the presentation. It is unusual for actuaries to be concerned with multivariate discrete
models.
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For example, it makes no di erence whether one models the random variables
or their logarithms ln( ). The resulting copulas for the multivariate distributions
are identical.
The copula approach allows us to separate the selection of the marginal distri-

butions from the selection of the copula. The marginal distributions contain the
information of the separate risks. The copula contains the information about the
structure of dependency. The marginals contain information for the separate risk
types and do not need to be of the same type. A good general introduction to
copulas can be found in the article by Frees and Valdez [48].

7.3 MEASURES OF DEPENDENCY

It is well known that the linear correlation coe cient is a function of the marginal
distributions. For example, changing the form of the marginals will necessarily
change the value of the correlation coe cient. In describing dependency using
copulas, it would be much more natural to have dependency measures that depend
only on the copula and not on the marginals, because the copula does not depend
on the form of the marginals and dependency is captured exclusively in the copula.
Fortunately, there are such measures of dependency available. The two most

popular measures of association are Spearman�’s rho and Kendall�’s tau which were
originally developed in the eld of nonparametric statistics.

7.3.1 Spearman�’s rho

Denition 7.1 Consider a continuous bivariate random variable ( 1 2) with
marginal distributions 1( 1) and 2( 2) The measure of association, Spearman�’s
rho, ( 1 2), is given by

( 1 2) = ( 1( 1) 2( 2))

where denotes (linear) correlation.

Thus Spearman�’s rho represents the ordinary linear correlation between the
variables and where the and are the transformed random variables
= 1( 1) and = 2( 2). Because and are both Uniform (0,1) ran-

dom variables with mean 1 2 and variance 1 12, we can rewrite Spearman�’s rho
as

( 1 2) =
E [ 1( 1) 2( 2)] E[ 1( 1)]E[ 2( 2)]p

Var( 1( 1))Var( 2( 2))

= 12E [ 1( 1) 2( 2)] 3

In terms of copulas, Spearman�’s rho is then

( 1 2) = 12E [ ] 3

= 12

Z 1

0

Z 1

0

( ) 3

= 12

Z 1

0

Z 1

0

( ) 3
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Spearman�’s rho is the (linear) correlation coe cient between the integral trans-
forms of the underlying random variables. This interpretation justies the descrip-
tion of as the Spearman�’s rank correlation coe cient. However, Kendall�’s tau
has become more popular in connection with modeling using copulas, which is
covered later in connection with Archimedean copulas.

7.3.2 Kendall�’s tau

Denition 7.2 Consider two independent and identically distributed continuous
bivariate random variables ( 1 2) and ( 1 2 ) with marginal distribution 1( 1)
for 1 and 1 and marginal distribution 2( 2) for 2 and 2 . The measure of
association, Kendall�’s tau, ( 1 2), is given by

( 1 2) = Pr [( 1 1 )( 2 2 ) 0] Pr [( 1 1 )( 2 2 ) 0]

The rst term measures concordance, in the sense that for each of the two di-
mensions, the di erences between the random variables have the same sign. The
second term then measures discordance. From the denition, it is easy to see that
Kendall�’s tau can be rewritten as

( 1 2) = E [sign( 1 1 )( 2 2 )] (7.1)

In terms of the copula function, Kendall�’s tau is

( 1 2) = 4

Z 1

0

Z 1

0

( ) ( ) 1

= 4E [ ( )] 1

If the copula is absolutely continuous, then the previous equation can be rewrit-
ten as

( 1 2) = 4

Z 1

0

Z 1

0

( ) ( ) 1

where ( ) =
2 ( ) is the density function.

7.4 TAIL DEPENDENCE

Extreme outcomes are among the main concerns of those who have responsibility to
manage risk and potential volatility. When there is dependence between loss ran-
dom variables, there is also a need to understand the joint behavior when extreme
outcomes occur. It has been observed that if extreme outcomes occur for one risk,
there may be an increased chance of extreme outcomes for other risks. It has been
suggested that, although in �“normal times�” there may be little correlation, in �“bad
times�” there may be signicant correlation between risks. (�“Everything seems to
go wrong at once.�”) The concept of tail dependence addresses this issue. Measures
of tail dependence have been developed to evaluate how strong the correlation is in
the upper (or lower) tails.
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Consider two continuous random variables and with marginal distributions
( ) and ( ). The index of upper tail dependence is dened as

= lim
1
Pr
©

1( ) | 1( )
ª

Roughly speaking, the index of upper tail dependence measures the chances that
is very large if it is known that is very large, where �“very large�” is measured

in terms of equivalent quantiles. This interpretation can be seen by rewriting
as

= lim
1
Pr { ( ) | ( ) }

= lim
1
Pr { | }

where and are both Uniform (0,1) random variables.
Thie formula can be further rewritten as

= lim
1

1 Pr { } Pr { }+Pr { }
1 Pr { }

= lim
1

1 2 + ( )

1

This formula demonstrates that tail dependency of and as previously dened
can be measured by looking at the copula rather than the original distribution.
Because was originally dened as a probability, it takes on values ranging from
0 to 1.
An index of lower dependence can be similarly dened. It is obtained by substi-

tuting 1 for in the previous formula, leading to

= lim
0
Pr { | }

= lim
0

( )

However, because our focus is on the right-tail of losses, we do not consider it
further except occasionally to compare it with the index of upper tail dependence.
The index of tail dependence is a very useful measure in describing a copula and
in terms of comparing copulas.
In the next sections, a variety of copula functions are presented. There are many

more, and a comprehensive listing can be found in Panjer [134].

7.5 ARCHIMEDEAN COPULAS

Archimedean copulas of dimension are those of the form

( 1 ) = 1 [ ( 1) + · · ·+ ( )]

where ( ) is called a generator. The generator is a strictly decreasing, convex,
and continuous function that maps [0 1] into [0 ] with (1) = 0. In addition,
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the inverse of the generator 1( ) must be completely monotonic on [0 ]. A
function ( ) is completely monotonic on [ ] if it satises

( 1) ( ) 0 = 1 2 3

From the denition of the bivariate Archimedean copula distribution ( ), its
support is the area in the unit square where ( )+ ( ) (0) Thus if (0) = ,
then the support is the entire unit square. Otherwise, it may be possible that a
contiguous region in the lower left region of the unit square has ( ) = 0 The
upper boundary of this region is the curve dened by ( ) + ( ) = (0)
The paper by Genest and McKay [51] introduced bivariate ( = 2) Archimedean

copulas and proved that it is also possible to characterize the measure of association,
Kendall�’s tau, directly from the generator function of a copula as

( 1 2) = 1 + 4

Z 1

0

( )
0 ( )

This formula allows very easy comparisons of Archimedean copulas based solely on
their generators.
The upper tail dependence of bivariate Archimedean copulas (or any two dimen-

sions of a multivariate Archimedean copula) can be obtained from

= lim
1

1 2 + ( )

1

or from the copula generator because

= lim
1

1 2 + 1 [2 ( )]

1

= 2 2 lim
1

1 [2 ( )]
1 [ ( )]

using L�’Hôpital�’s rule

= 2 2 lim
0

1(2 )
1( )

provided that lim 0
1( ) = . If lim 0

1( ) 6= , then there is no
upper tail dependence. It is also interesting to note that, in similar fashion, the
corresponding index of lower tail dependence has the form

= 2 lim
1(2 )
1( )

provided that lim 1( ) = 0. Otherwise, there is no lower tail dependence.

Independence copula
For independent random variables with common cumulative distribution func-

tion ( ) = 1 2 , the joint cdf is given by
Q

=1 ( ). The corresponding
copula is called the independence (or product) copula and is given by

( 1 ) =
Y

=1
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It is an Archimedean copula with generator ( ) = ln . This trivial example
is only included here to illustrate the fact that it is Archimedean. The measure of
association, Kendall�’s tau, can be computed to be 0 as we should expect due to
independence.
Note that in the bivariate case

= lim
1

1 2 + ( )

1

= lim
1

1 2 + 2

1

= lim
1
1

= 0

demonstrating that independence does indeed result in no upper tail dependence
as we would expect from the denition of independence. The corresponding index
of lower tail dependence is also equal to 0 Note that

lim
0

1( ) = lim
0

6=

Gumbel�—Hougaard copula
The Gumbel-Hougaard copula [59] has generator

( ) = ( ln ) 1

Hence, the Gumbel�—Hougaard copula is

( 1 ) = exp

½ h
( ln 1) + · · ·+ ( ln )

i1 ¾

The Gumbel�—Hougaard copula is tuned through a single parameter . In the
bivariate case, it is known as the Gumbel copula [59].
The measure of association, Kendall�’s tau, is

( 1 2) = 1 1

The index of upper tail dependence is = 2 21 . This upper tail dependence
is evident in the upper right corner of each panel in Figure 7.1. The left panel
shows the contours of the density function, and the right panel shows a simulation
of observations from this copula. There is no upper tail dependence when = 1,
and that tail dependence approaches 1 as becomes large.

Joe copula
The Joe copula [82] has generator

( ) = ln
£
1 (1 )

¤
1

The Joe copula is

( 1 ) = 1
X

=1

(1 )
Y

=1

(1 )

1
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Figure 7.1 Gumbel copula density ( = 3).

Figure 7.2 Joe copula density ( = 2).

Note that 1( ) = 1 (1 )
1 , which has a slope of as 0.

The measure of association, Kendall�’s tau, is very complicated, with no convenient
closed form. With a bit of calculus, it can be shown that the index of upper tail
dependence is 2 21 . The concentration in the upper right-hand corner is seen
in Figure 7.2

BB1 copula
The BB1 copula [83] is a two-parameter copula with generator

( ) = ( 1) 0 1

The copula is

( 1 ) = 1 +
X

=1

¡
1
¢

1 1

The upper tail dependence is 2 21 . Both upper and lower tail dependence
can be seen in Figure 7.3.
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Figure 7.3 BB1 copula density ( = 2, = 1 5).

Figure 7.4 BB3 copula density ( = 2, = 1 5).

BB3 copula
The BB3 copula [83] is a two-parameter copula with generator

( ) = exp
h
( ln )

i
1 1 0

The copula is

( 1 ) = exp
1
ln

X

=1

exp
h
( ln )

i
1

1

The BB3 copula has upper tail dependence of = 2 21 . The upper tail
dependence is evident in Figure 7.4.

BB6 copula
The BB6 copula [83] is a two-parameter copula with generator

( ) =
n

ln
h
1 (1 )

io
1 1
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Figure 7.5 BB6 copula density ( = 2, = 2).

The copula is

( 1 ) = 1 1 exp ln
X

=1

n
ln
h
1 (1 )

io
1 1

The BB6 copula has upper tail dependence of = 2 21 ( ). See Figure 7.5
to conrm the tail dependence.

BB7 copula
The BB7 copula [83] is a two-parameter copula with generator

( ) =
nh
1 (1 )

io
1 1 0

The copula is

( 1 ) = 1 1
X

=1

½h
1 (1 )

i ¾
1

1 1

The BB7 copula has upper tail dependence of 2 21 . The tail dependence is
evident from Figure 7.6.

7.5.1 Exercise

7.1 Prove that the Gumbel copula has index of upper tail dependence equal to
2 2 1 .

7.6 ELLIPTICAL COPULAS

Elliptical copulas are those associated with elliptical distributions. The two main
models are the Gaussian copula associated with the multivariate normal distribution
and the (Student) copula associated with the multivariate distribution.
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Figure 7.6 BB7 copula density ( = 2 7, = 1 8).

Gaussian copula
The Gaussian copula is given by

( 1 ) = P

¡
1 ( 1)

1 ( )
¢

where ( ) is the standard univariate normal cdf and P( 1 ) is the joint cdf
of the standard multivariate normal distribution (with zero mean and variance of
1 for each component) and correlation matrix P. Because the correlation matrix
contains ( 1) 2 pairwise correlations, this is the number of parameters in the
copula. There is no simple closed form for the copula. In the two-dimensional case
(with only one correlation element ), the Gaussian copula can be written as

( 1 2) =

Z 1( 1) Z 1( 2) 1

2
p
1 2

exp

½
2 2 + 2

2 (1 2)

¾

It should be noted that if all the correlations inP are zero, then the Gaussian copula
reduces to the independence copula. While evaluation is di cult, estimation is not
because there is a closed form for the density function. In addition, as shown in
Chapter 21, it is easy to simulate observations from this copula.
The measure of association, Kendall�’s tau, has been shown to be

( 1 2) =
2
arcsin ( )

by Fang and Fang [42] in the context of a much larger class. Then in the multivariate
case, the pairwise Kendall�’s tau is

( ) =
2
arcsin

¡ ¢

The Gaussian copula has no tail dependence ( = = 0) except in the special
case with = 1 where there is perfect correlation resulting in indices of upper and
lower tail dependence of 1. It is possible to construct copulas that are closely related
by using nite mixtures of normal distributions rather than normal distributions.
However, this approach does not introduce tail dependence.
Figure 7.7 illustrates the Gaussian copula density function. It is interesting to

note that it appears that there is some tail dependence. However, the denition of
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Figure 7.7 Gaussian copula density ( = 0 6).

tail dependence is asymptotic in nature, that is, when it is a limiting function as
the argument goes to either 0 or 1.

The copula
The copula is given by

( 1 ) = t P

¡
1 ( 1)

1 ( )
¢

where ( ) is the cdf of the standard univariate distribution with degrees of
freedom and t P( 1 ) is the joint cdf of the standard multivariate distrib-
ution with degrees of freedom for each component and where P is a correlation
matrix. In the two-dimensional case (with only one correlation element ), the
copula can be written as

( 1 2) =

Z 1( 1) Z 1( 2) 1

2
p
1 2

½
1 +

2 2 + 2

(1 2)

¾ 1 2

The measure of association, Kendall�’s tau, has been shown by Lindskog et al. [106]
to be

( 1 2) =
2
arcsin

identical to that of the Gaussian copula. It should be noted that, unlike the
Gaussian copula, having the correlation equal to zero does not result in the
independence copula. The copula has upper tail dependence of

= 2 +1

µ r
1

1 +
( + 1)

¶

Note that for = 0, the upper tail dependence is not zero.
In the multivariate case, we can obtain pairwise Kendall�’s tau and the pairwise

index of upper tail dependence for dimensions and as

( ) =
2
arcsin

= 2 +1

Ã s
1

1 +
( + 1)

!
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Figure 7.8 t copula density ( = 0 3 = 4).

Figure 7.8 illustrate the copula density function. It is interesting to note that
the density looks a lot like the Gaussian density but much more concentrated in
the upper and lower corners. This feature has made the copula the most popular
alternative to the Gaussian copula. For a xed correlation coe cient , the degree
of upper tail dependence can be tuned through the single parameter , known as
the �“number of degrees of freedom,�” a term that comes from the application of the
distribution in statistical sampling theory.
For further discussion of the copula and applications to actuarial work, see the

paper by Barnett et. al. [14].

7.6.1 Exercise

7.2 Prove that the Gaussian copula has no upper tail dependence. Hint: Begin by
obtaining the conditional distribution of given = from the bivariate normal
distribution.

7.7 EXTREME VALUE COPULAS

Another very important class of copulas is the extreme value class, which is asso-
ciated with the extreme value distributions discussed in Section 5.6. This class of
copulas is dened in terms of the scaling property of extreme value distributions.
A copula is an extreme value (EV) copula if it satises

( 1 ) = ( 1 )

for all ( 1 ) and for all 0 This scaling property results in the EV copula
having the stability of the maximum (or max-stable) property. To demonstrate this
property, we consider the bivariate case. Suppose that ( 1 1) ( 2 2) ( )
are independent and identically distributed random pairs (bivariate random vari-
ables) drawn from joint distribution ( ), with marginal distributions ( ) and
( ) and copula ( ). Let = max( 1 ) and = max( 1 )

denote the component-wise maxima. Then the distribution function of the random
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pair ( ) is

Pr ( ) = Pr ( Y for all )

= ( )

Similarly, the marginal distributions of and are ( ) and ( )
Then, because

( ) = [ ( ) ( )]

we can write the joint distribution of the maxima as

( ) = [ ( ) ( )]

=
n
[ ( )]1 [ ( )]1

o

Therefore, the copula of the maxima is given by

max ( 1 2) = (
1
1

1
2 )

or, equivalently,

max ( 1 2 ) = ( 1 2)

Thus if the copula for the maxima max is of the same form as the original copula
, then the copula has the max-stable property. Extreme value copulas are then

dened as those copulas with the max-stable property. Max-stability means that
the copula associated with the random pair ( ) is also ( ). The result
is illustrated for two dimensions in the preceding discussion, but can be extended
to the -dimensional copula.
In two dimensions, it can be shown [83] that the EV copula can be represented

as

( 1 2) = exp

½
ln ( 1 2)

µ
ln 1

ln ( 1 2)

¶¾

where is a dependence function satisfying

( ) =

Z 1

0

max [ (1 ) (1 )] ( )

for any [0 1] and is a distribution function on [0 1]. It turns out that ( )
must be a convex function satisfying

max( 1 ) ( ) 1 0 1

and that any di erentiable, convex function ( ) satisfying this inequality can be
used to construct a copula. Note that the independence copula results from setting
( ) to its upper bound ( ) = 1. At the other extreme, if ( ) = max( 1 ),
then there is perfect correlation and, hence, perfect dependency with ( ) = .
It is convenient to write the index of upper tail dependence in terms of the

dependence function ( ). The result is that
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= lim
1

1 2 + ( )

1

= lim
1

1 2 + 2 (1 2)

1

= lim
1
2 2 (1 2) 2 (1 2) 1

= 2 2 (1 2)

If a copula is specied through ( ) then the index of upper tail dependency
is easily calculated. There are several well-known copulas in this class.

Gumbel copula
The Gumbel copula, discussed previously as an example of an Archimedean

copula, is also an extreme value copula with dependence function

( ) =
£

+ (1 )
¤1

0

From this, by setting = 1 2, the Gumbel copula is seen to have index of upper
tail dependence of 2 21 .

Galambos copula
The Galambos copula [49] has the dependence function

( ) = 1
£

+ (1 )
¤ 1

0

Unlike the Gumbel copula, it is not Archimedean. It has index of upper tail de-
pendence of 2 1 . The bivariate copula is of the form

( 1 2) = 1 2 exp

½h
( ln 1) + ( ln 2)

i 1¾

An asymmetric version of the Galambos copula with three parameters has depen-
dence function

( ) = 1
n
( ) + [ (1 )]

o 1

0 1

It has index of upper tail dependence of ( + ) 1 The one-parameter version
is obtained by setting = = 1. The bivariate asymmetric Galambos copula has
the form

( 1 2) = 1 2 exp

½h
( ln 1) + ( ln 2)

i 1
¾

Figure 7.9 demonstrates the clear upper tail dependence.

Tawn copula
The Gumbel copula can be extended to a three-parameter asymmetric version

by introducing two additional parameters, and , into the dependence function
[169]
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Figure 7.9 Galambos copula density ( = 2 5).

( ) = (1 ) + (1 ) (1 ) +
n
( ) + [ (1 )]

1
o

0 1

This is called the Tawn copula. Note that the one-parameter version of ( ) is
obtained by setting = = 1 The bivariate asymmetric Gumbel copula has the
form

( 1 2) =
1
1

1
2 exp

½ h
( ln 1) + ( ln 2)

i1 ¾

BB5 copula
The BB5 copula [83] is another extension of the Gumbel copula but with only

two parameters. Its dependence function is

( ) =
n

+ (1 )
£

+ (1 )
¤ 1

o1
0 1

The BB5 copula has the form

( 1 2) = exp [ {( ln 1) + ( ln 2)
h
( ln 1) + ( ln 2)

i 1

}1 ]

7.7.1 Exercises

7.3 For the EV copula, show that if ( )=max( 1 ) the copula is the
straight line ( ) =

7.4 For the bivariate EV copula, show that ( ) = ln
¡

(1 )
¢
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Figure 7.10 BB4 copula density ( = 3 = 1 2).

7.8 ARCHIMAX COPULAS

Archimedean and extreme value copulas can be combined into a single class of
copulas called Archimax copulas. Archimax copulas are represented as

( 1 2) =
1 { ( 1) + ( 2)}

µ
( 1)

( 1) + ( 2)

¶¸

where ( ) is a valid Archimedean generator and ( ) is a valid dependence func-
tion. It can be shown [25] that that this is itself a valid copula. This general setup
allows for a wide range of copulas and, therefore, shapes of distributions. The BB4
copula is one such example.

BB4 copula
The BB4 copula [83] is an Archimax copula with

( ) = 1 0

as with the Clayton copula and

( ) = 1
©

+ (1 )
ª 1

0 0

leading to the copula of the form

( 1 2) =

½

1 + 2 1
h¡

1 1
¢

+
¡
2 1

¢ i 1
¾ 1

It is illustrated in Figure 7.10.



8
FREQUENCY AND SEVERITY
WITH COVERAGE
MODIFICATIONS

8.1 INTRODUCTION

We have seen a variety of examples that involve functions of random variables. In
this chapter we relate those functions to insurance applications. Throughout this
chapter we assume that all random variables have support on all or a subset of the
nonnegative real numbers. At times in this chapter and later in the text we need to
distinguish between a random variable that measures the payment per loss (so zero
is a possibility, taking place when there is a loss without a payment) and a variable
that measures the payment per payment (the random variable is not dened when
there is no payment). For notation, a per-loss variable is denoted and a per-
payment variable is noted . When the distinction is not material (e.g., setting
a maximum payment does not create a di erence), the superscript is left o .

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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8.2 DEDUCTIBLES

Insurance policies are often sold with a per-loss deductible of . When the loss, , is
at or below , the insurance pays nothing. When the loss is above , the insurance
pays . In the language of Chapter 3, such a deductible can be dened as
follows.

Denition 8.1 An ordinary deductible modies a random variable into either
the excess loss or left censored and shifted variable (see Denition 3.4). The di er-
ence depends on whether the result of applying the deductible is to be per payment
or per loss, respectively.

This concept has already been introduced along with formulas for determining
its moments. The per-payment variable is

=

½
undened

while the per-loss variable is

=

½
0

Note that the per-payment variable, = | 0. That is, the per-payment
variable is the per-loss variable conditioned on the loss being positive. For the
excess loss/per-payment variable, the density function is

( ) =
( + )

( )
0 (8.1)

noting that for a discrete distribution the density function need only be replaced
by the probability function. Other key functions are

( ) =
( + )

( )

( ) =
( + ) ( )

1 ( )

( ) =
( + )

( + )
= ( + )

Note that as a per-payment variable the excess loss variable places no probability
at 0.
The left censored and shifted variable has discrete probability at zero of ( ),

representing the probability that a payment of zero is made because the loss did
not exceed . Above zero, the density function is

( ) = ( + ) 0 (8.2)

while the other key functions are1 (for 0)

( ) = ( + )

( ) = ( + )

1The hazard rate function is not presented because it is not dened at zero, making it of limited
value. Note that for the excess loss variable, the hazard rate function is simply shifted.
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It is important to recognize that when counting claims on a per-payment basis,
changing the deductible will change the frequency with which payments are made
(while the frequency of losses will be unchanged). The nature of these changes is
discussed in Section 8.6.

EXAMPLE 8.1

Determine similar quantities for a Pareto distribution with = 3 and =
2,000 for an ordinary deductible of 500.

Using the preceding formulas, for the excess loss variable,

( ) =
3(2,000)3(2,000 + + 500) 4

(2,000)3(2,000 + 500) 3
=

3(2,500)3

(2,500 + )4

( ) =

µ
2,500

2,500 +

¶3

( ) = 1

µ
2,500

2,500 +

¶3

( ) =
3

2,500 +

Note that this is a Pareto distribution with = 3 and = 2,500. For the left
censored and shifted variable,

( ) =
0 488 = 0
3(2,000)3

(2,500 + )4
0

( ) =
0 512 = 0
(2,000)3

(2,500 + )3
0

( ) =
0 488 = 0

1
(2,000)3

(2,500 + )3
0

( ) =
undened = 0

3

2,500 +
0

Figure 8.1 contains a plot of the densities. The modied densities are created
as follows. For the excess loss variable, take the portion of the original density
from 500 and above. Then shift it to start at zero and multiply it by a constant
so that the area under it is still 1. The left censored and shifted variable also
takes the original density function above 500 and shifts it to the origin, but
then leaves it alone. The remaining probability is concentrated at zero, rather
than spread out. ¤

An alternative to the ordinary deductible is the franchise deductible. This de-
ductible di ers from the ordinary deductible in that, when the loss exceeds the
deductible, the loss is paid in full. One example is in disability insurance where,
for example, if a disability lasts seven or fewer days, no benets are paid. However,
if the disability lasts more than seven days, daily benets are paid retroactively to
the onset of the disability.

Denition 8.2 A franchise deductible modies the ordinary deductible by adding
the deductible when there is a positive amount paid.
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Figure 8.1 Densities for Example 8.1.

The terms left censored and shifted and excess loss are not used here. Because
this modication is unique to insurance applications, we use per-payment and per-
loss terminology. The per-loss variable is

=

½
0

while the per-payment variable is

=

½
undened

Note that, as usual, the per-payment variable is a conditional random variable. The
related functions are now

( ) =

½
( ) = 0
( )

( ) =

½
( ) 0
( )

( ) =

½
( ) 0
( )

( ) =

½
0 0
( )

for the per-loss variable and

( ) =
( )

( )
( ) =

1 0
( )

( )

( ) =
0 0

( ) ( )

1 ( )

( ) =

½
0 0
( )

for the per-payment variable.
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EXAMPLE 8.2

Repeat Example 8.1 for a franchise deductible.

Using the preceding formulas for the per-payment variable, for 500,

( ) =
3(2,000)3(2,000 + ) 4

(2,000)3(2,000 + 500) 3
=

3(2,500)3

(2,000 + )4

( ) =

µ
2,500

2,000 +

¶3

( ) = 1

µ
2,500

2,000 +

¶3

( ) =
3

2,000 +

For the per-loss variable,

( ) =
0 488 = 0
3(2,000)3

(2,000 + )4
500

( ) =
0 512 0 500
(2,000)3

(2,000 + )3
500

( ) =
0 488 0 500

1
(2,000)3

(2,000 + )3
500

( ) =
0 0 500

3

2,000 +
500

¤

Expected costs for the two types of deductible may also be calculated.

Theorem 8.3 For an ordinary deductible, the expected cost per loss is

( ) ( )

and the expected cost per payment is

( ) ( )

1 ( )

For a franchise deductible the expected cost per loss is

( ) ( ) + [1 ( )]

and the expected cost per payment is

( ) ( )

1 ( )
+
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Proof: For the per-loss expectation with an ordinary deductible, we have, from
(3.7) and (3.10) that the expectation is E( ) E( ). From (8.1) and (8.2) we
see that, to change to a per-payment basis, division by 1 ( ) is required. The
adjustments for the franchise deductible come from the fact that when there is a
payment, it will exceed that for the ordinary deductible by . ¤

EXAMPLE 8.3

Determine the four expectations for the Pareto distribution from Examples
8.1 and 8.2 using a deductible of 500.

Expectations could be derived directly from the density functions obtained
in Examples 8.1 and 8.2. Using Theorem 8.3 and recognizing that we have a
Pareto distribution, we can also look up the required values (the formulas are
in Appendix A). That is,

(500) = 1

µ
2,000

2,000 + 500

¶3
= 0 488

E( 500) =
2,000
2

"

1

µ
2,000

2,000 + 500

¶2#

= 360.

With E( ) = 1,000, for the ordinary deductible, the expected cost per loss is
1,000 360 = 640, while the expected cost per payment is 640 0 512 = 1,250.
For the franchise deductible the expectations are 640 + 500(1 0 488) = 896
and 1,250 + 500 = 1,750. ¤

8.2.1 Exercises

8.1 Perform the calculations in Example 8.1 for the following distribution (which
is Model 4 on page 13) using an ordinary deductible of 5,000:

4( ) =

½
0 0
1 0 3 0 00001 0

8.2 Repeat Exercise 8.1 for a franchise deductible.

8.3 Repeat Example 8.3 for the model in Exercise 8.1 and a 5,000 deductible.

8.4 (*) Risk 1 has a Pareto distribution with parameters 2 and . Risk 2 has a
Pareto distribution with parameters 0 8 and . Each risk is covered by a separate
policy, each with an ordinary deductible of . Determine the expected cost per loss
for risk 1. Determine the limit as goes to innity of the ratio of the expected cost
per loss for risk 2 to the expected cost per loss for risk 1.

8.5 (*) Losses (prior to any deductibles being applied) have a distribution as re-
ected in Table 8.1. There is a per-loss ordinary deductible of 10,000. The de-
ductible is then raised so that half the number of losses exceed the new deductible
as exceeded the old deductible. Determine the percentage change in the expected
cost per payment when the deductible is raised.
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Table 8.1 Data for Exercise 8.5.

( ) E( )

10,000 0.60 6,000
15,000 0.70 7,700
22,500 0.80 9,500
32,500 0.90 11,000

1.00 20,000

8.3 THE LOSS ELIMINATION RATIO AND THE EFFECT OF INFLATION
FOR ORDINARY DEDUCTIBLES

A ratio that can be meaningful in evaluating the impact of a deductible is the loss
elimination ratio.

Denition 8.4 The loss elimination ratio is the ratio of the decrease in the
expected payment with an ordinary deductible to the expected payment without the
deductible.

While many types of coverage modications can decrease the expected payment,
the term loss elimination ratio is reserved for the e ect of changing the deductible.
Without the deductible, the expected payment is E( ). With the deductible, the
expected payment (from Theorem 8.3) is E( ) E( ). Therefore, the loss
elimination ratio is

E( ) [E( ) E( )]

E( )
=
E( )

E( )

provided E( ) exists.

EXAMPLE 8.4

Determine the loss elimination ratio for the Pareto distribution with = 3
and = 2,000 with an ordinary deductible of 500.

From Example 8.3, we have a loss elimination ratio of 360 1,000 = 0 36.
Thus 36% of losses can be eliminated by introducing an ordinary deductible
of 500. ¤

Ination increases costs, but it turns out that when there is a deductible, the
e ect of ination is magnied. First, some events that formerly produced losses
below the deductible will now lead to payments. Second, the relative e ect of ina-
tion is magnied because the deductible is subtracted after ination. For example,
suppose an event formerly produced a loss of 600. With a 500 deductible, the pay-
ment is 100. Ination at 10% will increase the loss to 660 and the payment to 160,
a 60% increase in the cost to the insurer.

Theorem 8.5 For an ordinary deductible of after uniform ination of 1+ , the
expected cost per loss is

(1 + ){E( ) E[ (1 + )]}
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If [ (1 + )] 1, then the expected cost per payment is obtained by dividing by
1 [ (1 + )].

Proof: After ination, losses are given by the random variable = (1+ ) . From
Theorem 5.1, ( ) = [ (1 + )] (1 + ) and ( ) = [ (1 + )]. Using
(3.8),

E( ) =

Z

0

( ) + [1 ( )]

=

Z

0

[ (1 + )]

1 +
+ 1

µ

1 +

¶¸

=

Z (1+ )

0

(1 + ) ( ) + 1

µ

1 +

¶¸

= (1 + )

(Z (1+ )

0

( ) +
1 +

1

µ

1 +

¶¸)

= (1 + )E
µ

1 +

¶

where the third line follows from the substitution = (1 + ). Noting that
E( ) = (1 + )E( ) completes the rst statement of the theorem and the per-
payment result follows from the relationship between the distribution functions of
and . ¤

EXAMPLE 8.5

Determine the e ect of ination at 10% on an ordinary deductible of 500
applied to a Pareto distribution with = 3 and = 2,000.

From Example 8.3 the expected costs are 640 and 1,250 per loss and per
payment, respectively. With 10% ination we need

E
µ

500

1 1

¶
= E( 454 55)

=
2,000
2

"

1

µ
2,000

2,000 + 454 55

¶2#

= 336 08

The expected cost per loss after ination is 1 1(1,000 336 08) = 730 32, an
increase of 14.11%. On a per-payment basis we need

(500) = (454.55)

= 1

µ
2,000

2,000 + 454 55

¶3

= 0 459

The expected cost per payment is 730.32 (1 0 459) = 1,350, an increase of
8%. ¤
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Table 8.2 Data for Exercise 8.11.

( ) E( )

10,000 0.60 6,000
15,000 0.70 7,700
22,500 0.80 9,500

1.00 20,000

8.3.1 Exercises

8.6 Determine the loss elimination ratio for the distribution given here with an
ordinary deductible of 5,000. This is the same model used in Exercise 8.1.

4( ) =

½
0 0
1 0 3 0 00001 0

8.7 Determine the e ect of ination at 10% on an ordinary deductible of 5,000
applied to the distribution in Exercise 8.6.

8.8 (*) Losses have a lognormal distribution with = 7 and = 2. There is
a deductible of 2,000, and 10 losses are expected each year. Determine the loss
elimination ratio. If there is uniform ination of 20% but the deductible remains
at 2,000, how many payments will be expected?

8.9 (*) Losses have a Pareto distribution with = 2 and = . There is an
ordinary deductible of 2 . Determine the loss elimination ratio before and after
100% ination.

8.10 (*) Losses have an exponential distribution with a mean of 1,000. There is a
deductible of 500. Determine the amount by which the deductible would have to
be raised to double the loss elimination ratio.

8.11 (*) The values in Table 8.2 are available for a random variable . There is a
deductible of 15,000 per loss and no policy limit. Determine the expected cost per
payment using and then assuming 50% ination (with the deductible remaining
at 15,000).

8.12 (*) Losses have a lognormal distribution with = 6 9078 and = 1 5174.
Determine the ratio of the loss elimination ratio at 10,000 to the loss elimination
ratio at 1,000. Then determine the percentage increase in the number of losses that
exceed 1,000 if all losses are increased by 10%.

8.13 (*) Losses have a mean of 2,000. With a deductible of 1,000, the loss elimina-
tion ratio is 0.3. The probability of a loss being greater than 1,000 is 0.4. Determine
the average size of a loss given it is less than or equal to 1,000.

8.4 POLICY LIMITS

The opposite of a deductible is a policy limit. The typical policy limit arises in
a contract where for losses below the insurance pays the full loss, but for losses
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above the insurance pays only . The e ect of the limit is to produce a right
censored random variable. It will have a mixed distribution with distribution and
density function given by (where is the random variable after the limit has been
imposed)

( ) =

½
( )

1

and

( ) =

½
( )

1 ( ) =

The e ect of ination can be calculated as follows.

Theorem 8.6 For a policy limit of , after uniform ination of 1+ , the expected
cost is (1 + )E[ (1 + )]

Proof: The expected cost is E( ). The proof of Theorem 8.5 shows that this
equals the expression given in this theorem. ¤

For policy limits the concept of per payment and per loss is not relevant. All
losses that produced payments prior to imposing the limit will produce payments
after the limit is imposed.

EXAMPLE 8.6

Impose a limit of 3,000 on a Pareto distribution with = 3 and = 2,000.
Determine the expected cost per loss with the limit as well as the proportional
reduction in expected cost. Repeat these calculations after 10% uniform in-
ation is applied.

For this Pareto distribution, the expected cost is

E( 3,000) =
2,000
2

"

1

µ
2,000

2,000 + 3,000

¶2#

= 840

and the proportional reduction is (1,000 840) 1,000 = 0 16. After ination
the expected cost is

1 1E( 3,000 1 1) = 1 1
2,000
2

"

1

µ
2,000

2,000 + 3,000 1 1

¶2#

= 903 11

for a proportional reduction of (1,100 903 11) 1,100 = 0 179. Also note
that after ination the expected cost has increased 7.51%, less than the gen-
eral ination rate. The e ect is the opposite of the deductible�–ination is
tempered, not exacerbated.
Figure 8.2 shows the density function for the right censored random vari-

able. From 0 to 3,000 it matches the original Pareto distribution. The proba-
bility of exceeding 3,000, Pr( 3,000) = (2,000 5,000)3 = 0 064 is concen-
trated at 3,000. ¤
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Figure 8.2 Density function for Example 8.6.

A policy limit and an ordinary deductible go together in the sense that, whichever
applies to the insurance company�’s payments, the other applies to the policyholder�’s
payments. For example, when the policy has a deductible of 500, the cost per loss
to the policyholder is a random variable that is right censored at 500. When the
policy has a limit of 3,000, the policyholder�’s payments are a variable that is left
truncated and shifted (as in an ordinary deductible). The opposite of the franchise
deductible is a coverage that right truncates any losses (see Exercise 3.12). This
coverage is rarely, if ever, sold. (Would you buy a policy that pays you nothing if
your loss exceeds ?)

8.4.1 Exercises

8.14 Determine the e ect of 10% ination on a policy limit of 150,000 on the
following distribution. This is the same distribution used in Exercises 8.1 and 8.6.

4( ) =

½
0 0
1 0 3 0 00001 0

8.15 (*) Let have a Pareto distribution with = 2 and = 100. Determine the
range of the mean excess loss function ( ) as ranges over all positive numbers.
Then let = 1 1 . Determine the range of the ratio ( ) ( ) as ranges over
all positive numbers. Finally, let be right censored at 500 (i.e., a limit of 500
is applied to ). Determine the range of ( ) as ranges over the interval 0 to
500.

8.5 COINSURANCE, DEDUCTIBLES, AND LIMITS

The nal common coverage modication is coinsurance. In this case the insurance
company pays a proportion, , of the loss and the policyholder pays the remaining
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fraction. If coinsurance is the only modication, this changes the loss variable to
the payment variable, = . The e ect of multiplication has already been cov-
ered. When all four items covered in this chapter are present (ordinary deductible,
limit, coinsurance, and ination), we create the following per-loss random variable:

=

0
1 +

[(1 + ) ]
1 + 1 +

)

( )
1 +

For this denition, the quantities are applied in a particular order. In particular,
the coinsurance is applied last. For the illustrated contract, the policy limit is
( ), the maximum amount payable. In this denition, is the loss above
which no additional benets are paid and is called the maximum covered loss. For
the per-payment variable, is undened for (1 + ).
Previous results can be combined to produce the following theorem, given with-

out proof.

Theorem 8.7 For the per-loss variable,

E( ) = (1 + ) E
µ

1 +

¶
E
µ

1 +

¶¸

The expected value of the per-payment variable is obtained as

E( ) =
E( )

1
³
1+

´

Higher moments are more di cult. Theorem 8.8 gives the formula for the second
moment. The variance can then be obtained by subtracting the square of the mean.

Theorem 8.8 For the per-loss variable

E
£
( )2

¤
= 2(1 + )2{E[( )2] E[( )2]

2 E( ) + 2 E( )}

where = (1+ ) and = (1+ ). For the second moment of the per-payment
variable, divide this expression by 1 ( ).

Proof: From the denition of ,

= (1 + )[( ) ( )]

and, therefore,

( )2

[ (1 + )]2
= [( ) ( )]2

= ( )2 + ( )2 2( )( )

= ( )2 ( )2 2( )[( ) ( )]
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The nal term on the right-hand side can be written as

2( )[( ) ( )] = 2 [( ) ( )]

To see this, note that when , both sides equal zero; when , both
sides equal 2 ( ); and when , both sides equal 2 ( ). Make
this substitution and take expectation on both sides to complete the proof.2 ¤

EXAMPLE 8.7

Determine the mean and standard deviation per loss for a Pareto distribution
with = 3 and = 2,000 with a deductible of 500 and a policy limit of 2,500.
Note that the maximum covered loss is = 3,000.

From earlier examples, E( 500) = 360 and E( 3,000) = 840 The
second limited moment is

E[( )2] =

Z

0

2 3(2,000)3

( + 2,000)4
+ 2

µ
2,000
+ 2,000

¶3

= 3(2,000)3
Z +2,000

2,000
( 2,000)2 4 + 2

µ
2,000
+ 2,000

¶3

= 3(2,000)3
Ã

1 + 2,000 2 2,0002

3
3

¯̄
¯̄
+2,000

2,000

!

+ 2

µ
2,000
+ 2,000

¶3

= 3(2,000)3
1

+ 2,000
+

2,000
( + 2,000)2

2,0002

3( + 2,000)3

¸

+3(2,000)3
1

2,000
2,000
2,0002

+
2,0002

3(2,000)3

¸

+ 2

µ
2,000
+ 2,000

¶3

= (2,000)2
µ

2,000
+ 2,000

¶3
(2 + 2,000)( + 2,000)

Then, E[( 500)2] = 160,000 and E[( 3,000)2] = 1,440,000, and so

E( ) = 840 360 = 480

E( 2) = 1,440,000 160,000 2(500)(840) + 2(500)(360) = 800,000

for a variance of 800,000 4802 = 569,600 and a standard deviation of
754.72. ¤

8.5.1 Exercises

8.16 (*) You are given that (0) = 25, ( ) = 1 0 , and is the
excess loss variable for = 10. Determine the variance of .

2Thanks to Ken Burton for providing this improved proof.
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8.17 (*) The loss ratio ( ) is dened as total losses ( ) divided by earned premiums
( ). An agent will receive a bonus ( ) if the loss ratio on his business is less than
0.7. The bonus is given as = (0 7 ) 3 if this quantity is positive, otherwise
it is zero. Let = 500,000 and have a Pareto distribution with parameters = 3
and = 600,000. Determine the expected value of the bonus.

8.18 (*) Losses this year have a distribution such that E( ) = 0 025 2 +
1 475 2 25 for = 10 11 12 26. Next year, losses will be uniformly higher
by 10%. An insurance policy reimburses 100% of losses subject to a deductible
of 11 up to a maximum reimbursement of 11. Determine the ratio of next year�’s
reimbursements to this year�’s reimbursements.

8.19 (*) Losses have an exponential distribution with a mean of 1,000. An insur-
ance company will pay the amount of each claim in excess of a deductible of 100.
Determine the variance of the amount paid by the insurance company for one claim,
including the possibility that the amount paid is zero.

8.20 (*) Total claims for a health plan have a Pareto distribution with = 2 and
= 500. The health plan implements an incentive to physicians that will pay a

bonus of 50% of the amount by which total claims are less than 500; otherwise no
bonus is paid. It is anticipated that with the incentive plan, the claim distribution
will change to become Pareto with = 2 and = . With the new distribution, it
turns out that expected claims plus the expected bonus is equal to expected claims
prior to the bonus system. Determine the value of .

8.21 (*) In year , total expected losses are 10,000,000. Individual losses in year
have a Pareto distribution with = 2 and = 2,000. A reinsurer pays the excess
of each individual loss over 3,000. For this, the reinsurer is paid a premium equal
to 110% of expected covered losses. In year , losses will experience 5% ination
over year a, but the frequency of losses will not change. Determine the ratio of the
premium in year to the premium in year .

8.22 (*) Losses have a uniform distribution from 0 to 50,000. There is a per-loss
deductible of 5,000 and a policy limit of 20,000 (meaning that the maximum covered
loss is 25,000). Determine the expected payment given that a payment has been
made.

8.23 (*) Losses have a lognormal distribution with = 10 and = 1. For losses
below 50,000, no payment is made. For losses between 50,000 and 100,000, the full
amount of the loss is paid. For losses in excess of 100,000 the limit of 100,000 is
paid. Determine the expected cost per loss.

8.24 (*) The loss severity random variable has an exponential distribution with
mean 10,000. Determine the coe cient of variation of the variables and
based on = 30,000.

8.25 (*) The claim size distribution is uniform over the intervals (0 50), (50 100),
(100 200), and (200 400). Of the total probability, 30% is in the rst interval, 36%
in the second interval, 18% in the third interval, and 16% in the fourth interval.
Determine E[( 350)2].
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8.26 (*) Losses follow a two-parameter Pareto distribution with = 2 and =
5,000. An insurance policy pays the following for each loss. There is no insurance
payment for the rst 1,000. For losses between 1,000 and 6,000, the insurance pays
80%. Losses above 6,000 are paid by the insured until the insured has made a total
payment of 10,000. For any remaining part of the loss, the insurance pays 90%.
Determine the expected insurance payment per loss.

8.27 (*) The amount of a loss has a Poisson distribution with mean = 3. Consider
two insurance contracts. One has an ordinary deductible of 2. The second one has
no deductible and a coinsurance in which the insurance company pays of the loss.
Determine the value of so that the expected cost of the two contracts is the same.

8.28 (*) The amount of a loss has cdf ( ) = ( 100)2, 0 100. An insurance
pays 80% of the amount of a loss in excess of an ordinary deductible of 20. The
maximum payment is 60 per loss. Determine the expected payment, given that a
payment has been made.

8.6 THE IMPACT OF DEDUCTIBLES ON CLAIM FREQUENCY

An important component in analyzing the e ect of policy modications pertains to
the change in the frequency distribution of payments when the deductible (ordinary
or franchise) is imposed or changed. When a deductible is imposed or increased,
there will be fewer payments per period, while if a deductible is lowered, there will
be more payments.
We can quantify this process, providing it can be assumed that the imposition

of coverage modications does not a ect the process that produces losses or the
type of individual who will purchase insurance. For example, those who buy a
250 deductible on an automobile property damage coverage may (correctly) view
themselves as less likely to be involved in an accident than those who buy full
coverage. Similarly, an employer may nd that the rate of permanent disability
declines when reduced benets are provided to employees in the rst few years of
employment.
To begin, suppose , the severity, represents the ground-up loss on the th such

loss and there are no coverage modications. Let denote the number of losses.
Now consider a coverage modication such that is the probability that a loss will
result in a payment. For example, if there is a deductible of , = Pr( ).
Next, dene the indicator random variable by = 1 if the th loss results
in a payment and = 0 otherwise. Then has a Bernoulli distribution with
parameter and the pgf of is ( ) = 1 + . Then = 1 + · · · +
represents the number of payments. If 1 2 are mutually independent and are
also independent of , then has a compound distribution with as the
primary distribution and a Bernoulli secondary distribution. Thus

( ) = [ ( )] = [1 + ( 1)]

In the important special case in which the distribution of depends on a
parameter such that

( ) = ( ; ) = [ ( 1)]
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where ( ) is functionally independent of (as in Theorem 6.15), then

( ) = [ (1 + 1)]

= [ ( 1)]

= ( ; )

This result implies that and are both from the same parametric family and
only the parameter need be changed.

EXAMPLE 8.8

Demonstrate that the preceding result applies to the negative binomial dis-
tribution and illustrate the e ect when a deductible of 250 is imposed on a
negative binomial distribution with = 2 and = 3. Assume that losses have
a Pareto distribution with = 3 and = 1,000.

The negative binomial pgf is ( ) = [1 ( 1)] . Here takes on the
role of in the result and ( ) = (1 ) . Then must have a negative
binomial distribution with = and = . For the particular situation
described,

= 1 (250) =

µ
1,000

1,000 + 250

¶3
= 0 512

and so = 2 and = 3(0 512) = 1 536. ¤

This result may be generalized for zero-modied and zero-truncated distribu-
tions. Suppose depends on parameters and such that

( ) = ( ; ) = + (1 )
[ ( 1)] ( )

1 ( )
(8.3)

Note that = (0) = Pr( = 0), and so is the modied probability at zero. It
is also the case that, if [ ( 1)] is itself a pgf, then the pgf given in (8.3) is that
for the corresponding zero-modied distribution. However, it is not necessary for
[ ( 1)] to be a pgf in order for ( ) as given in (8.3) to be a pgf. In particular,
( ) = 1 + ln(1 ) yields the zero-modied (ZM) logarithmic distribution, even

though there is no distribution with ( ) as its pgf. Similarly, ( ) = (1 )
for 1 0 yields the ETNB distribution. A few algebraic steps reveal that for
(8.3)

( ) = ( ; )

where = Pr( = 0) = (0) = (1 ; ). It is expected that imposing
a deductible will increase the value of because periods with no payments will
become more likely. In particular, if is zero truncated, will be zero modied.

EXAMPLE 8.9

Repeat the Example 8.8, only now let the frequency distribution be zero-
modied negative binomial with = 2, = 3, and 0 = 0 4.
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The pgf is

( ) = 0 + (1 0 )
[1 ( 1)] (1 + )

1 (1 + )

Then = 0 and ( ) = (1 ) . We then have = , = , and

= 0 = 0 + (1 0 )
[1 + )] (1 + )

1 (1 + )

= 0 (1 + ) + (1 + ) 0 (1 + )

1 (1 + )

For the particular distribution given, the new parameters are = 2, =
3(0 512) = 1 536, and

0 =
0 4 4 2 + 2 536 2 0 4(2 536) 2

1 4 2
= 0 4595 ¤

In applications, it may be the case that we want to determine the distribution
of from that of . For example, data may have been collected on the number
of payments in the presence of a deductible and from that data the parameters of

can be estimated. We may then want to know the distribution of payments if
the deductible is removed. Arguing as before,

( ) = (1 1 + 1)

This result implies that the formulas derived previously hold with replaced by
1 . However, it is possible that the resulting pgf for is not valid. In this case
one of the modeling assumptions is invalid (e.g., the assumption that changing the
deductible does not change claim-related behavior).

EXAMPLE 8.10

Suppose payments on a policy with a deductible of 250 have the zero-modied
negative binomial distribution with = 2, = 1 536, and 0 = 0 4595.
Losses have the Pareto distribution with = 3 and = 1,000. Determine
the distribution of the number of payments when the deductible is removed.
Repeat this calculation assuming 0 = 0 002.

In this case the formulas use = 1 0 512 = 1 953125, and so = 2 and
= 1 953125(1 536) = 3. Also,

0 =
0 4595 2 536 2 + 4 2 0 4595(4) 2

1 2 536 2
= 0 4

as expected. For the second case,

0 =
0 002 2 536 2 + 4 2 0 002(4) 2

1 2 536 2
= 0 1079

which is not a legitimate probability. ¤
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Table 8.3 Frequency adjustments.

Parameters for

Poisson =

ZM Poisson 0 = 0 + 0

1
=

Binomial =

ZM binomial 0 = 0 (1 ) + (1 ) 0 (1 )

1 (1 )
=

Negative binomial = =

ZM negative binomial 0 = 0 (1 + ) + (1 + ) 0 (1 + )

1 (1 + )
= =

ZM logarithmic 0 = 1 (1 0 ) ln(1 + ) ln(1 + )
=

All members of the ( 0) and ( 1) classes meet the conditions of this section.
Table 8.3 indicates how the parameters change when moving from to . If
has a compound distribution, then we can write ( ) = 1[ 2( )] and therefore

( ) = [1 + ( 1)] = 1{ 2[1 + ( 1)]}

Thus will also have a compound distribution with the secondary distribution
modied as indicated. If the secondary distribution has an ( 0) distribution,
then it can modied as in Table 8.3. The following example indicates the adjustment
to be made if the secondary distribution has an ( 1) distribution.

EXAMPLE 8.11

Suppose is Poisson�—ETNB with = 5, = 0 3, and = 4. If = 0 5,
determine the distribution of .

From the preceding discussion, is compound Poisson with = 5, but
the secondary distribution is a zero-modied negative binomial with (from
Table 8.3) = 0 5(0 3) = 0 15,

0 =
0 1 3 4 + 1 15 4 0(1 15) 4

1 1 3 4
= 0 34103

and = 4. This would be su cient, except we have acquired the habit of us-
ing the ETNB as the secondary distribution. From Theorem 6.15, a compound
Poisson distribution with a zero-modied secondary distribution is equivalent
to a compound Poisson distribution with a zero-truncated secondary distrib-
ution. The Poisson parameter must be changed to (1 0 ) . Therefore,

has a Poisson�—ETNB distribution with = (1 0 34103)5 = 3 29485,
= 0 15, and = 4. ¤

The results can be further generalized to an increase or decrease in the deductible.
Let be the frequency when the deductible is and let be the frequency



THE IMPACT OF DEDUCTIBLES ON CLAIM FREQUENCY 207

when the deductible is . Let = [1 ( )] [1 ( )], and then Table 8.3
can be used to move from the parameters of to the parameters of . As
long as , we will have 1 and the formulas will lead to a legitimate
distribution for . This includes the special case of = 0 that was used at
the start of this section. If , then 1 and there is no assurance that a
legitimate distribution will result. This includes the special case = 0 (removal
of a deductible) covered earlier.
Finally, it should be noted that policy limits have no e ect on the frequency

distribution. Imposing, removing, or changing a limit will not change the number
of payments made.

8.6.1 Exercises

8.29 A group life insurance policy has an accidental death rider. For ordinary
deaths, the benet is 10,000; however, for accidental deaths, the benet is 20,000.
The insureds are approximately the same age, so it is reasonable to assume they
all have the same claim probabilities. Let them be 0.97 for no claim, 0.01 for
an ordinary death claim, and 0.02 for an accidental death claim. A reinsurer has
been asked to bid on providing an excess reinsurance that will pay 10,000 for each
accidental death.

(a) The claim process can be modeled with a frequency component that has
the Bernoulli distribution (the event is claim/no claim) and a two-point
severity component (the probabilities are associated with the two claim
levels, given that a claim occurred). Specify the probability distributions
for the frequency and severity random variables.

(b) Suppose the reinsurer wants to retain the same frequency distribution.
Determine the modied severity distribution that will reect the rein-
surer�’s payments.

(c) Determine the reinsurer�’s frequency and severity distributions when the
severity distribution is to be conditional on a reinsurance payment being
made.

8.30 Individual losses have a Pareto distribution with = 2 and = 1,000. With a
deductible of 500, the frequency distribution for the number of payments is Poisson�—
inverse Gaussian with = 3 and = 2. If the deductible is raised to 1,000,
determine the distribution for the number of payments. Also, determine the pdf of
the severity distribution (per payment) when the new deductible is in place.

8.31 Losses have a Pareto distribution with = 2 and = 1,000. The frequency
distribution for a deductible of 500 is zero-truncated logarithmic with = 4. De-
termine a model for the number of payments when the deductible is reduced to
0.

8.32 Suppose that the number of losses has the Sibuya distribution (see Exer-
cises 6.13 and 6.34) with pgf ( ) = 1 (1 ) , where 1 0. Demon-
strate that the number of payments has a zero-modied Sibuya distribution.

8.33 (*) The frequency distribution for the number of losses when there is no
deductible is negative binomial with = 3 and = 5. Loss amounts have a
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Weibull distribution with = 0 3 and = 1,000. Determine the expected number
of payments when a deductible of 200 is applied.

8.34 Consider the situation in Exercise 8.28. Suppose with the deductible in place,
the number of payments has a Poisson distribution with = 4. Determine the
expected number of payments if the deductible is removed.
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AGGREGATE LOSS MODELS

9.1 INTRODUCTION

An insurance enterprise exists because of its ability to pool risks. By insuring many
people the individual risks are combined into an aggregate risk that is manageable
and can be priced at a level that will attract customers. Consider the following
simple example.

EXAMPLE 9.1

An insurable event has a 10% probability of occurring and when it occurs
results in a loss of 5,000. Market research has indicated that consumers will
pay at most 550 to purchase insurance against this event. How many policies
must a company sell in order to have a 95% chance of making money (ignoring
expenses)?

Let be the number of policies sold. A reasonable model for the number
of claims, is a binomial distribution with = and = 0 1 and the total

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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paid will be 5000 . To achieve the desired outcome,

0 95 Pr(5000 550 )

= Pr( 0 11 )

= Pr

Ã
0 11 0 1
p
0 1(0 9)

!

where the approximation uses the Central Limit Theorem. With the normal
distribution

0 11 0 1
p
0 1(0 9)

= 1 96

which gives the answer = 3,457 44, and so at least 3,458 policies must be
sold. ¤

The goal of this chapter is to build a model for the total payments by an insurance
system (which may be the entire company, a line of business, or those covered by a
group insurance contract). The building blocks are random variables that describe
the number of claims and the amounts of those claims, subjects covered in the
previous chapters.
There are two ways to build a model for the amount paid on all claims occurring

in a xed time period on a dened set of insurance contracts. The rst is to record
the payments as they are made and then add them up. In that case we can represent
the aggregate losses as a sum, , of a random number, , of individual payment
amounts ( 1 2 ). Hence,

= 1 + 2 + · · ·+ = 0 1 2 (9.1)

where = 0 when = 0.

Denition 9.1 The collective risk model has the representation in (9.1) with
the s being independent and identically distributed (i.i.d.) random variables,
unless otherwise specied. More formally, the independence assumptions are

1. Conditional on = , the random variables 1 2 are i.i.d. random
variables.

2. Conditional on = , the common distribution of the random variables
1 2 does not depend on .

3. The distribution of does not depend in any way on the values of 1 2

.

The second model, the one used in Example 9.1, assigns a random variable to
each contract.

Denition 9.2 The individual risk model represents the aggregate loss as a
sum, = 1 + · · · + , of a xed number, , of insurance contracts. The loss
amounts for the contracts are ( 1 2 · · · ), where the s are assumed to
be independent but are not assumed to be identically distributed. The distribution
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of the s usually has a probability mass at zero, corresponding to the probability
of no loss or payment.

The individual risk model is used to add together the losses or payments from
a xed number of insurance contracts or sets of insurance contracts. It is used in
modeling the losses of a group life or health insurance policy that covers a group
of employees. Each employee can have di erent coverage (life insurance benet
as a multiple of salary) and di erent levels of loss probabilities (di erent ages and
health status).
In the special case where the s are identically distributed, the individual risk

model becomes the special case of the collective risk model, with the distribution
of being the degenerate distribution with all of the probability at = ; that
is, Pr( = ) = 1.
The distribution of in (9.1) is obtained from the distribution of and the

distribution of the s. Using this approach, the frequency and the severity of
claims are modeled separately. The information about these distributions is used
to obtain information about . An alternative to this approach is to simply gather
information about (e.g., total losses each month for a period of months) and to
use some model from the earlier chapters to model the distribution of . Modeling
the distribution of and the distribution of the s separately has seven distinct
advantages:

1. The expected number of claims changes as the number of insured policies
changes. Growth in the volume of business needs to be accounted for in
forecasting the number of claims in future years based on past years�’ data.

2. The e ects of general economic ination and additional claims ination are
reected in the losses incurred by insured parties and the claims paid by insur-
ance companies. Such e ects are often masked when insurance policies have
deductibles and policy limits that do not depend on ination and aggregate
results are used.

3. The impact of changing individual deductibles and policy limits is easily im-
plemented by changing the specication of the severity distribution.

4. The impact on claims frequencies of changing deductibles is better under-
stood.

5. Data that are heterogeneous in terms of deductibles and limits can be com-
bined to obtain the hypothetical loss size distribution. This approach is useful
when data from several years in which policy provisions were changing are
combined.

6. Models developed for noncovered losses to insureds, claim costs to insurers,
and claim costs to reinsurers can be mutually consistent. This feature is
useful for a direct insurer when studying the consequence of shifting losses to
a reinsurer.

7. The shape of the distribution of depends on the shapes of both distributions
of and . The understanding of the relative shapes is useful when modify-
ing policy details. For example, if the severity distribution has a much heavier
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tail than the frequency distribution, the shape of the tail of the distribution
of aggregate claims or losses will be determined by the severity distribution
and will be insensitive to the choice of frequency distribution.

In summary, a more accurate and exible model can be constructed by examining
frequency and severity separately.
In constructing the model (9.1) for , if represents the actual number of

losses to the insured, then the s can represent (i) the losses to the insured, (ii)
the claim payments of the insurer, (iii) the claim payments of a reinsurer, or (iv) the
deductibles (self-insurance) paid by the insured. In each case, the interpretation
of is di erent and the severity distribution can be constructed in a consistent
manner.
Because the random variables , 1 2 , and provide much of the focus

for this chapter and Chapters 10 and 11, we want to be especially careful when
referring to them. To that end, we refer to as the claim count random variable
and refer to its distribution as the claim count distribution. The expression number
of claims is also used, and, occasionally, just claims. Another term commonly
used is frequency distribution. The s are the individual or single-loss random
variables. The modier individual or single is dropped when the reference is clear.
In Chapter 8, a distinction is made between losses and payments. Strictly speaking,
the s are payments because they represent a real cash transaction. However, the
term loss is more customary, and we continue with it. Another common term for
the s is severity. Finally, is the aggregate loss random variable or the total loss
random variable.

EXAMPLE 9.2

Describe how a collective risk model could be used for the total payments
made in one year on an automobile physical damage policy with a deductible
of 250.

There are two ways to do this. First, let be the number of accidents,
including those that do not exceed the deductible. The individual loss vari-
ables are the variables from Chapter 8. The other way is to let count
the number of payments. In this case the individual loss variable is . ¤

9.1.1 Exercises

9.1 Show how the model in Example 9.1 could be written as a collective risk model.

9.2 For each of the following situations, which model (individual or collective) is
more likely to provide a better description of aggregate losses?

(a) A group life insurance contract where each employee has a di erent age,
gender, and death benet.

(b) A reinsurance contract that pays when the annual total medical mal-
practice costs at a certain hospital exceeds a given amount.

(c) A dental policy on an individual pays for at most two check-ups per year
per family member. A single contract covers any size family at the same
price.
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9.2 MODEL CHOICES

In many cases of tting frequency or severity distributions to data, several distri-
butions may be good candidates for models. However, some distributions may be
preferable for a variety of practical reasons.
In general, it is useful for the severity distribution to be a scale distribution (see

Denition 4.2) because the choice of currency (e.g., U.S. dollars or British pounds)
should not a ect the result. Also, scale families are easy to adjust for inationary
e ects over time (this is, in e ect, a change in currency; e.g., 1994 U.S. dollars to
1995 U.S. dollars). When forecasting the costs for a future year, the anticipated
rate of ination can be factored in easily by adjusting the parameters.
A similar consideration applies to frequency distributions. As a block of an

insurance company�’s business grows, the number of claims can be expected to grow,
all other things being equal. Models that have probability generating functions of
the form

( ; ) = ( ) (9.2)

for some parameter have the expected number of claims proportional to . In-
creasing the volume of business by 100 % results in expected claims being propor-
tional to = (1 + ) . This approach is discussed in Section 6.12. Because is
any value satisfying 1, the distributions satisfying (9.2) should allow to take
on any positive values. Such distributions can be shown to be innitely divisible
(see Denition 6.17).
A related consideration, the concept of invariance over the time period of the

study, also supports using frequency distributions that are innitely divisible. Ide-
ally the model selected should not depend on the length of the time period used
in the study of claims frequency. In particular, the expected frequency should be
proportional to the length of the time period after any adjustment for growth in
business. In this case, a study conducted over a period of 10 years can be used to
develop claims frequency distributions for periods of one month, one year, or any
other period. Furthermore, the form of the distribution for a one-year period is
the same as for a one-month period with a change of parameter. The parameter
corresponds to the length of a time period. For example, if = 1 7 in (9.2) for a
one-month period, then the identical model with = 20 4 is an appropriate model
for a one-year period.
Distributions that have a modication at zero are not of the form (9.2). However,

it may still be desirable to use a zero-modied distribution if the physical situation
suggests it. For example, if a certain proportion of policies never make a claim, due
to duplication of coverage or other reason, it may be appropriate to use this same
proportion in future periods for a policy selected at random.

9.2.1 Exercises

9.3 For pgfs satisfying (9.2), show that the mean is proportional to .

9.4 Which of the distributions in Appendix B satisfy (9.2) for any positive value
of ?



214 AGGREGATE LOSS MODELS

9.3 THE COMPOUND MODEL FOR AGGREGATE CLAIMS

Let denote aggregate losses associated with a set of observed claims 1 2 · · ·
satisfying the independence assumptions following (9.1). The approach in this

chapter involves the following three steps:

1. Develop a model for the distribution of based on data.

2. Develop a model for the common distribution of the s based on data.

3. Using these two models, carry out necessary calculations to obtain the distri-
bution of .

Completion of the rst two steps follows the ideas developed elsewhere in this
text. We now presume that these two models are developed and that we only need
to carry out numerical work in obtaining solutions to problems associated with the
distribution of . These might involve pricing a stop-loss reinsurance contract, and
they require analyzing the impact of changes in deductibles, coinsurance levels, and
maximum payments on individual losses.
The random sum

= 1 + 2 + · · ·+

(where has a counting distribution) has distribution function

( ) = Pr( )

=
X

=0

Pr( | = )

=
X

=0

( ) (9.3)

where ( ) = Pr( ) is the common distribution function of the s and
= Pr( = ). The distribution of is called a compound distribution. In (9.3),
( ) is the �“ -fold convolution�” of the cdf of . It can be obtained as

0( ) =

½
0 0
1 0

and

( ) =

Z
( 1)

( ) ( ) for = 1 2 (9.4)

The tail may then be written, for all 0, as

1 ( ) =
X

=1

[1 ( )] (9.5)

If is a continuous random variable with probability zero on nonpositive values,
(9.4) reduces to

( ) =

Z

0

( 1)
( ) ( ) for = 2 3
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For = 1 this equation reduces to 1( ) = ( ). By di erentiating, the pdf is

( ) =

Z

0

( 1)
( ) ( ) for = 2 3

Therefore, if is continuous, then has a pdf, which, for 0, is given by

( ) =
X

=1

( ), (9.6)

and a discrete mass point, Pr( = 0) = 0 at = 0. Note that Pr( = 0) 6=
(0) = lim 0+ ( ).
If has a discrete counting distribution, with probabilities at 0 1 2 , (9.4)

reduces to

( ) =
X

=0

( 1)
( ) ( ) for = 0 1 = 2 3

The corresponding pf is

( ) =
X

=0

( 1)
( ) ( ) for = 0 1 = 2 3

For notational purposes, let 0(0) = 1 and 0( ) = 0 for 6= 0. Then, in this
case, has a discrete distribution with pf

( ) = Pr( = ) =
X

=0

( ) = 0 1 . (9.7)

Arguing as in Section 6.8, the pgf of is

( ) = E[ ]

= E[ 0] Pr( = 0) +
X

=1

E[ 1+ 2+···+ | = ]Pr( = )

= Pr( = 0) +
X

=1

E
Y

=1

Pr( = )

=
X

=0

Pr( = )[ ( )]

= E[ ( ) ] = [ ( )] (9.8)

due to the independence of 1 for xed . The pgf is typically used when
is discrete.
A similar relationship exists for the other generating functions. It is sometimes

more convenient to use the characteristic function

( ) = E( ) = [ ( )]
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which always exists. Panjer and Willmot [138] use the Laplace transform

( ) = E( ) = [ ( )]

which always exists for random variables dened on nonnegative values. With
regard to the moment generating function, we have

( ) = [ ( )]

The pgf of compound distributions is discussed in Section 6.8 where the �“secondary�”
distribution plays the role of the claim size distribution in this chapter. In that
section the claim size distribution is always discrete.
In the case where ( ) = 1[ 2( )] (i.e., is itself a compound distribution),
( ) = 1{ 2[ ( )]}, which in itself produces no additional di culties.
From (9.8), the moments of can be obtained in terms of the moments of

and the s. The rst three moments are

E( ) = 0
1 =

0
1
0
1 = E( )E( )

Var( ) = 2 =
0
1 2 + 2(

0
1)
2 (9.9)

E{[ ( )]3} = 3 =
0
1 3 + 3 2

0
1 2 + 3(

0
1)
3

Here, the rst subscript indicates the appropriate random variable, the second
subscript indicates the order of the moment, and the superscript is a prime (0) for
raw moments (moments about the origin) and is unprimed for central moments
(moments about the mean). The moments can be used on their own to provide
approximations for probabilities of aggregate claims by matching the rst few model
and sample moments.

EXAMPLE 9.3

The observed mean (and standard deviation) of the number of claims and the
individual losses over the past 10 months are 6.7 (2.3) and 179,247 (52,141),
respectively. Determine the mean and variance of aggregate claims per month.

E( ) = 6 7(179,247) = 1,200,955

Var( ) = 6 7(52,141)2 + (2 3)2(179,247)2

= 1 88180× 1011

Hence, the mean and standard deviation of aggregate claims are 1,200,955
and 433,797, respectively. ¤

EXAMPLE 9.4

(Example 9.3 continued) Using normal and lognormal distributions as ap-
proximating distributions for aggregate claims, calculate the probability that
claims will exceed 140% of expected costs. That is,

Pr( 1 40× 1,200,955) = Pr( 1,681,337)
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For the normal distribution

Pr( 1 681 337) = Pr

Ã
E( )

p
Var( )

1,681,337 1,200,955
433,797

!

= Pr( 1 107) = 1 (1 107) = 0 134

For the lognormal distribution, from Appendix A, the mean and second
raw moment of the lognormal distribution are

E( ) = exp( + 1
2

2) and E( 2) = exp(2 + 2 2)

Equating these to 1 200955 × 106 and 1 88180 × 1011 + (1 200955 × 106)2 =
1 63047×1012 and taking logarithms results in the following two equations in
two unknowns:

+ 1
2

2 = 13 99863 2 + 2 2 = 28 11989.

From this = 13 93731 and 2 = 0 1226361 Then

Pr( 1,681,337) = 1
ln 1,681,337 13 93731

(0 1226361)0 5

¸

= 1 (1 135913) = 0 128

The normal distribution provides a good approximation when E( ) is large.
In particular, if has the Poisson, binomial, or negative binomial distribu-
tion, a version of the central limit theorem indicates that, as , , or ,
respectively, goes to innity, the distribution of becomes normal. In this
example, E( ) is small so the distribution of is likely to be skewed. In this
case the lognormal distribution may provide a good approximation, although
there is no theory to support this choice. ¤

EXAMPLE 9.5

(Group dental insurance) Under a group dental insurance plan covering em-
ployees and their families, the premium for each married employee is the
same regardless of the number of family members. The insurance company
has compiled statistics showing that the annual cost (adjusted to current dol-
lars) of dental care per person for the benets provided by the plan has the
distribution in Table 9.1 (given in units of 25 dollars).
Furthermore, the distribution of the number of persons per insurance cer-

ticate (i.e., per employee) receiving dental care in any year has the distrib-
ution given in Table 9.2.
The insurer is now in a position to calculate the distribution of the cost

per year per married employee in the group. The cost per married employee
is

( ) =
8X

=0

( )

Determine the pf of up to 525. Determine the mean and standard devi-
ation of total payments per employee.
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Table 9.1 Loss distribution for Example 9.5.

( )

1 0.150
2 0.200
3 0.250
4 0.125
5 0.075
6 0.050
7 0.050
8 0.050
9 0.025
10 0.025

Table 9.2 Frequency distribution for Example 9.5.

0 0.05
1 0.10
2 0.15
3 0.20
4 0.25
5 0.15
6 0.06
7 0.03
8 0.01

The distribution up to amounts of 525 is given in Table 9.3. For example,
3(4) = 1(1) 2(3) + 1(2) 2(2). In general, pick two columns whose

superscripts sum to the superscript of the desired column (in this case, 1+2 =
3). Then add all combinations from these columns where the arguments sum
to the desired argument (in this case 1 + 3 = 4 and 2 + 2 = 4). To obtain
( ), each row of the matrix of convolutions of ( ) is multiplied by the

probabilities from the row below the table and the products are summed. For
example, (2) = 0 05(0) + 0 10(0 2) + 0 15(0 225) = 0 2338.
The reader may wish to verify using (9.9) that the rst two moments of

the distribution ( ) are

E( ) = 12 58 Var( ) = 58 7464

Hence the annual cost of the dental plan has mean 12 58×25 = 314 50 dollars
and standard deviation 191.6155 dollars. (Why can�’t the calculations be done
from Table 9.3?) ¤

It is common for insurance to be o ered in which a deductible is applied to the
aggregate losses for the period. When the losses occur to a policyholder it is called
insurance coverage and when the losses occur to an insurance company it is called
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Table 9.3 Aggregate probabilities for Example 9.5.

0 1 2 3 4 5 6 7 8 ( )

0 1 0 0 0 0 0 0 0 0 .05000
1 0 .150 0 0 0 0 0 0 0 .01500
2 0 .200 .02250 0 0 0 0 0 0 .02338
3 0 .250 .06000 .00338 0 0 0 0 0 .03468
4 0 .125 .11500 .01350 .00051 0 0 0 0 .03258
5 0 .075 .13750 .03488 .00270 .00008 0 0 0 .03579
6 0 .050 .13500 .06144 .00878 .00051 .00001 0 0 .03981
7 0 .050 .10750 .08569 .01999 .00198 .00009 .00000 0 .04356
8 0 .050 .08813 .09750 .03580 .00549 .00042 .00002 .00000 .04752
9 0 .025 .07875 .09841 .05266 .01194 .00136 .00008 .00000 .04903
10 0 .025 .07063 .09338 .06682 .02138 .00345 .00031 .00002 .05190
11 0 0 .06250 .08813 .07597 .03282 .00726 .00091 .00007 .05138
12 0 0 .04500 .08370 .08068 .04450 .01305 .00218 .00022 .05119
13 0 0 .03125 .07673 .08266 .05486 .02062 .00448 .00060 .05030
14 0 0 .01750 .06689 .08278 .06314 .02930 .00808 .00138 .04818
15 0 0 .01125 .05377 .08081 .06934 .03826 .01304 .00279 .04576
16 0 0 .00750 .04125 .07584 .07361 .04677 .01919 .00505 .04281
17 0 0 .00500 .03052 .06811 .07578 .05438 .02616 .00829 .03938
18 0 0 .00313 .02267 .05854 .07552 .06080 .03352 .01254 .03575
19 0 0 .00125 .01673 .04878 .07263 .06573 .04083 .01768 .03197
20 0 0 .00063 .01186 .03977 .06747 .06882 .04775 .02351 .02832
21 0 0 0 .00800 .03187 .06079 .06982 .05389 .02977 .02479

.05 .10 .15 .20 .25 .15 .06 .03 .01

reinsurance coverage. The latter version is a common method for an insurance
company to protect itself against an adverse year (as opposed to protecting against
a single, very large claim). More formally, we present the following denition.

Denition 9.3 Insurance on the aggregate losses, subject to a deductible, is called
stop-loss insurance. The expected cost of this insurance is called the net stop-
loss premium and can be computed as E[( )+], where is the deductible and
the notation (·)+ means to use the value in parentheses if it is positive but to use
zero otherwise.

For any aggregate distribution,

E[( )+] =

Z
[1 ( )]

If the distribution is continuous, the net stop-loss premium can be computed directly
from the denition as

E[( )+] =

Z
( ) ( )

Similarly, for discrete random variables,

E[( )+] =
X
( ) ( )
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Any time there is an interval with no aggregate probability, the following result
may simplify calculations.

Theorem 9.4 Suppose Pr( ) = 0. Then, for ,

E[( )+] = E[( )+] + E[( )+].

That is, the net stop-loss premium can be calculated via linear interpolation.

Proof: From the assumption, ( ) = ( ), . Then,

E[( )+] =

Z
[1 ( )]

=

Z
[1 ( )]

Z
[1 ( )]

= E[( )+]

Z
[1 ( )]

= E[( )+] ( )[1 ( )] (9.10)

Then, by setting = in (9.10),

E[( )+] = E[( )+] ( )[1 ( )]

and, therefore,

1 ( ) =
E[( )+] E[( )+]

Substituting this formula in (9.10) produces the desired result. ¤

Further simplication is available in the discrete case, provided places proba-
bility at equally spaced values.

Theorem 9.5 Assume Pr( = ) = 0 for some xed 0 and = 0 1
and Pr( = ) = 0 for all other . Then, provided = , with a nonnegative
integer

E[( )+] =
X

=0

{1 [( + ) ]}

Proof:

E[( )+] =
X
( ) ( )

=
X

=

( )

=
X

=

1X

=0

=
X

=0

X

= + +1

=
X

=0

{1 [( + ) ]}
¤
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In the discrete case with probability at equally spaced values, a simple recursion
holds.

Corollary 9.6 Under the conditions of Theorem 9.5,

E{[ ( + 1) ]+} = E[( )+] [1 ( )]

This result is easy to use because, when = 0, E[( 0)+] = E( ) = E( )E( ),
which can be obtained directly from the frequency and severity distributions.

EXAMPLE 9.6

(Example 9.5 continued) The insurer is examining the e ect of imposing an
aggregate deductible per employee. Determine the reduction in the net pre-
mium as a result of imposing deductibles of 25, 30, 50, and 100 dollars.

From Table 9.3, the cdf at 0, 25, 50, and 75 dollars has values 0.05, 0.065,
0.08838, and 0.12306. With E( ) = 25(12 58) = 314 5 we have

E[( 25)+] = 314 5 25(1 0 05) = 290 75

E[( 50)+] = 290 75 25(1 0 065) = 267 375

E[( 75)+] = 267 375 25(1 0 08838) = 244 5845

E[( 100)+] = 244 5845 25(1 0 12306) = 222 661

From Theorem 9.4, E[( 30)+] =
20
25290 75 +

5
25267 375 = 286 07. When

compared to the original premium of 314.5, the reductions are 23.75, 28.43,
47.125, and 91.839 for the four deductibles. ¤

9.3.1 Exercises

9.5 From (9.8), show that the relationships between the moments in (9.9) hold.

9.6 (*) When an individual is admitted to the hospital, the hospital charges have
the following characteristics:

1. Standard
Charges Mean deviation

Room 1,000 500
Other 500 300

2. The covariance between an individual�’s room charges and other charges is
100,000.

An insurer issues a policy that reimburses 100% for room charges and 80% for
other charges. The number of hospital admissions has a Poisson distribution with
parameter 4. Determine the mean and standard deviation of the insurer�’s payout
for the policy.

9.7 Aggregate claims have been modeled by a compound negative binomial dis-
tribution with parameters = 15 and = 5. The claim amounts are uniformly
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distributed on the interval (0 10). Using the normal approximation, determine the
premium such that the probability that claims will exceed premium is 0.05.

9.8 Automobile drivers can be divided into three homogeneous classes. The num-
ber of claims for each driver follows a Poisson distribution with parameter . De-
termine the variance of the number of claims for a randomly selected driver, using
the following data.

Table 9.4 Data for Exercise 9.8.

Proportion
Class of population

1 0.25 5
2 0.25 3
3 0.50 2

9.9 (*) Assume 1, 2, and 3 are mutually independent loss random variables
with probability functions as given in Table 9.5. Determine the pf of = 1 +

2 + 3.

Table 9.5 Distributions for Exercise 9.9.

1( ) 2( ) 3( )

0 0.90 0.50 0.25
1 0.10 0.30 0.25
2 0.00 0.20 0.25
3 0.00 0.00 0.25

9.10 (*) Assume 1, 2, and 3 are mutually independent random variables with
probability functions as given in Table 9.6. If = 1+ 2+ 3 and (5) = 0 06,
determine .

Table 9.6 Distributions for Exercise 9.10.

1( ) 2( ) 3( )

0 0.6 0.25
1 1 0.2 0.25
2 0 0.1 0.25
3 0 0.1 0.25

9.11 (*) Consider the following information about AIDS patients:

1. The conditional distribution of an individual�’s medical care costs, given that
the individual does not have AIDS, has mean 1,000 and variance 250,000.

2. The conditional distribution of an individual�’s medical care costs, given that
the individual does have AIDS, has mean 70,000 and variance 1,600,000.
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3. The number of individuals with AIDS in a group of randomly selected
adults has a binomial distribution with parameters and = 0 01.

An insurance company determines premiums for a group as the mean plus 10% of
the standard deviation of the group�’s aggregate claims distribution. The premium
for a group of 10 independent lives for which all individuals have been proven not
to have AIDS is . The premium for a group of 10 randomly selected adults is .
Determine .

9.12 (*) You have been asked by a city planner to analyze o ce cigarette smok-
ing patterns. The planner has provided the information in Table 9.7 about the
distribution of the number of cigarettes smoked during a workday.

Table 9.7 Data for Exercise 9.12.

Male Female

Mean 6 3
Variance 64 31

The number of male employees in a randomly selected o ce of employees
has a binomial distribution with parameters and 0.4. Determine the mean plus
the standard deviation of the number of cigarettes smoked during a workday in a
randomly selected o ce of eight employees.

9.13 (*) For a certain group, aggregate claims are uniformly distributed over
(0 10) Insurer A proposes stop-loss coverage with a deductible of 6 for a pre-
mium equal to the expected stop-loss claims. Insurer B proposes group coverage
with a premium of 7 and a dividend (a premium refund) equal to the excess, if any,
of 7 over claims. Calculate such that the expected cost to the group is equal
under both proposals.

9.14 (*) For a group health contract, aggregate claims are assumed to have an
exponential distribution where the mean of the distribution is estimated by the
group underwriter. Aggregate stop-loss insurance for total claims in excess of 125%
of the expected claims is provided by a gross premium that is twice the expected
stop-loss claims. You have discovered an error in the underwriter�’s method of calcu-
lating expected claims. The underwriter�’s estimate is 90% of the correct estimate.
Determine the actual percentage loading in the premium.

9.15 (*) A random loss, has the probability function given in Table 9.8. You
are given that E( ) = 4 and E[( )+] = 2 Determine

9.16 (*) A reinsurer pays aggregate claim amounts in excess of , and in return
it receives a stop-loss premium E[( )+] You are given E[( 100)+] = 15
E[( 120)+] = 10, and the probability that the aggregate claim amounts are
greater than 80 and less than or equal to 120 is 0. Determine the probability that
the aggregate claim amounts are less than or equal to 80.
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Table 9.8 Data for Exercise 9.15.

( )

0 0.05
1 0.06
2 0.25
3 0.22
4 0.10
5 0.05
6 0.05
7 0.05
8 0.05
9 0.12

9.17 (*) A loss random variable has pdf ( ) = 1
100 , 0 100. Two policies

can be purchased to alleviate the nancial impact of the loss.

=

(
0 50

50 50

and
= 0 100

where and are the amounts paid when the loss is . Both policies have the
same net premium, that is, E( ) = E( ). Determine .

9.18 (*) For a nursing home insurance policy, you are given that the average length
of stay is 440 days and 30% of the stays are terminated in the rst 30 days. These
terminations are distributed uniformly during that period. The policy pays 20
per day for the rst 30 days and 100 per day thereafter. Determine the expected
benets payable for a single stay.

9.19 (*) An insurance portfolio produces claims, where

Pr( = )

0 0.5
1 0.4
3 0.1

Individual claim amounts have the following distribution:

( )

1 0.9
10 0.1

Individual claim amounts and are mutually independent. Calculate the prob-
ability that the ratio of aggregate claims to expected claims will exceed 3 0.
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9.20 (*) A company sells group travel-accident life insurance with payable in
the event of a covered individual�’s death in a travel accident. The gross premium
for a group is set equal to the expected value plus the standard deviation of the
group�’s aggregate claims. The standard premium is based on the following two
assumptions:

1. All individual claims within the group are mutually independent.

2. 2 (1 ) = 2,500, where is the probability of death by travel accident for
an individual.

In a certain group of 100 lives, the independence assumption fails because three
specic individuals always travel together. If one dies in an accident, all three are
assumed to die. Determine the di erence between this group�’s premium and the
standard premium.

9.21 (*) A life insurance company covers 16,000 lives for one-year term life insur-
ance, as follows:

Benet Number Probability of
amount covered claim

1 8,000 0.025
2 3,500 0.025
4 4,500 0.025

All claims are mutually independent. The insurance company�’s retention limit
is 2 units per life. Reinsurance is purchased for 0.03 per unit. The probability that
the insurance company�’s retained claims, , plus cost of reinsurance will exceed
1,000 is

Pr

"
E( )

p
Var( )

#

Determine using a normal approximation.

9.22 (*) The probability density function of individual losses is

( ) =

(
0 02

³
1

100

´
0 100

0 elsewhere.

The amount paid, , is 80% of that portion of the loss that exceeds a deductible
of 10. Determine E( ).

9.23 (*) An individual loss distribution is normal with = 100 and 2 = 9. The
distribution for the number of claims, , is given in Table 9.9. Determine the
probability that aggregate claims exceed 100.

9.24 (*) An employer self-insures a life insurance program with the following two
characteristics:

1. Given that a claim has occurred, the claim amount is 2,000 with probability
0.4 and 3,000 with probability 0.6,
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Table 9.9 Distribution for Exercise 9.23.

Pr( = )

0 0.5
1 0.2
2 0.2
3 0.1

Table 9.10 Distribution for Exercise 9.24.

( )

0 1 16
1 1 4
2 3 8
3 1 4
4 1 16

2. The number of claims has the distribution given in Table 9.10.

The employer purchases aggregate stop-loss coverage that limits the employer�’s
annual claims cost to 5,000. The aggregate stop-loss coverage costs 1,472. Deter-
mine the employer�’s expected annual cost of the program, including the cost of
stop-loss coverage.

9.25 (*) The probability that an individual admitted to the hospital will stay
days or less is 1 0 8 for = 0 1 2 . A hospital indemnity policy provides a
xed amount per day for the 4th day through the 10th day (i.e., for a maximum of
7 days). Determine the percentage increase in the expected cost per admission if
the maximum number of days paid is increased from 7 to 14.

9.26 (*) The probability density function of aggregate claims, , is given by
( ) = 3 4 1. The relative loading and the value are selected so

that
Pr[ (1 + )E( )] = Pr

h
E( ) +

p
Var( )

i
= 0 90

Calculate and .

9.27 (*) An insurance policy reimburses aggregate incurred expenses at the rate of
80% of the rst 1,000 in excess of 100, 90% of the next 1,000, and 100% thereafter.
Express the expected cost of this coverage in terms of = E[( )+] for di erent
values of .

9.28 (*) The number of accidents incurred by an insured driver in a single year has
a Poisson distribution with parameter = 2. If an accident occurs, the probability
that the damage amount exceeds the deductible is 0.25. The number of claims and
the damage amounts are independent. What is the probability that there will be
no damages exceeding the deductible in a single year?

9.29 (*) The aggregate loss distribution is modeled by an insurance company using
an exponential distribution. However, the mean is uncertain. The company uses
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a uniform distribution (2,000,000 4,000,000) to express its view of what the mean
should be. Determine the expected aggregate losses.

9.30 (*) A group hospital indemnity policy provides benets at a continuous rate
of 100 per day of hospital connement for a maximum of 30 days. Benets for
partial days of connement are prorated. The length of hospital connement in
days, , has the following continuance (survival) function for 0 30:

Pr( ) =

1 0 04 0 10

0 95 0 035 10 20

0 65 0 02 20 30

For a policy period, each member�’s probability of a single hospital admission is 0.1
and of more than one admission is 0. Determine the pure premium per member,
ignoring the time value of money.

9.31 (*) Medical and dental claims are assumed to be independent with compound
Poisson distributions as follows:

Claim type Claim amount distribution

Medical claims Uniform (0 1,000) 2
Dental claims Uniform (0 200) 3

Let be the amount of a given claim under a policy that covers both medical
and dental claims. Determine E[( 100)+], the expected cost (in excess of 100)
of any given claim.

9.32 (*) For a certain insured, the distribution of aggregate claims is binomial
with parameters = 12 and = 0 25. The insurer will pay a dividend, , equal
to the excess of 80% of the premium over claims, if positive. The premium is 5.
Determine E[ ].

9.33 (*) The number of claims in one year has a geometric distribution with mean
1.5. Each claim has a loss of 100. An insurance pays 0 for the rst three claims
in one year and then pays 100 for each subsequent claim. Determine the expected
insurance payment per year.

9.34 (*) A compound Poisson distribution has = 5 and claim amount distribution
(100) = 0 80, (500) = 0 16, and (1,000) = 0 04. Determine the probability that
aggregate claims will be exactly 600.

9.35 (*) Aggregate payments have a compound distribution. The frequency dis-
tribution is negative binomial with = 16 and = 6, and the severity distribution
is uniform on the interval (0 8). Use the normal approximation to determine the
premium such that the probability is 5% that aggregate payments will exceed the
premium.

9.36 (*) The number of losses is Poisson with = 3. Loss amounts have a Burr
distribution with = 3, = 2, and = 1. Determine the variance of aggregate
losses.
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9.4 ANALYTIC RESULTS

For most choices of distributions of and the s, the compound distributional
values can only be obtained numerically. Subsequent sections in this chapter are
devoted to such numerical procedures.
However, for certain combinations of choices, simple analytic results are available,

thus reducing the computational problems considerably.

EXAMPLE 9.7

(Compound negative binomial�—exponential) Determine the distribution of
when the frequency distribution is negative binomial with an integer value for
the parameter and the severity distribution is exponential.

The mgf of is

( ) = [ ( )]

= [(1 ) 1]

= {1 [(1 ) 1 1]}

With a bit of algebra, this can be rewritten as

( ) =

µ
1 +

1 +
{[1 (1 + ) ] 1 1}

¶

which is of the form
( ) = [ ( )]

where

( ) = 1 +
1 +

( 1)

¸

the pgf of the binomial distribution with parameters and (1 + ), and
( ) is the mgf of the exponential distribution with mean (1 + )
This transformation reduces the computation of the distribution function

to the nite sum, that is,

( ) = 1
X

=1

µ ¶µ

1 +

¶ µ
1

1 +

¶

×
1X

=0

[ 1(1 + ) 1]
1(1+ ) 1

!
.

When = 1, has a compound geometric distribution, and in this case
the preceding formula reduces to

( ) = 1
1 +

exp
(1 + )

¸
0

Hence, Pr( = 0) = (0) = (1 + ) 1, and because ( ) is di erentiable,
it has pdf ( ) = 0 ( ), for 0. That is, for 0, has pdf

( ) =
(1 + )2

exp
(1 + )

¸
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To summarize, if = 1, has a point mass of (1 + ) 1 at zero and an
exponentially decaying density over the positive axis. This example arises
again in Chapter 11 in connection with ruin theory. ¤

As is clear from Example 9.7, useful formulas may result with exponential claim
sizes. The following example considers this case in more detail.

EXAMPLE 9.8

(Exponential severities) Determine the cdf of for any compound distribution
with exponential severities.

The mgf of the sum of independent exponential random variables each
with mean is

1+ 2+···+ ( ) = (1 )

which is the mgf of the gamma distribution with cdf

( ) =
³
;
´

(see Appendix A). For integer values of the values of ( ; ) can be calcu-
lated exactly (see Appendix A for the derivation) as

( ; ) = 1
1X

=0
!

= 1 2 3 (9.11)

From (9.3)

( ) = 0 +
X

=1

³
;
´

(9.12)

The density function can be obtained by di erentiation,

( ) =
X

=1

1

( )
(9.13)

Returning to the distribution function, substituting (9.11) in (9.12) yields

( ) = 1
X

=1

1X

=0

( )

!
0 (9.14)

Interchanging the order of summation yields

( ) = 1
X

=0

( )

!

X

= +1

= 1
X

=0

¯ ( )

!
, 0 (9.15)

where ¯ =
P

= +1 for = 0 1 . ¤
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For frequency distributions that assign positive probability to all nonnegative
integers, (9.14) can be evaluated by taking su cient terms in the rst summation.
For distributions for which Pr( ) = 0, the rst summation becomes nite.
For example, for the binomial frequency distribution, (9.14) becomes

( ) = 1
X

=1

µ ¶
(1 )

1X

=0

( )

!
. (9.16)

The approach of Example 9.8 may be extended to the larger class of mixed
Erlang severity distributions, as shown in the next example.

EXAMPLE 9.9

Determine the distribution of for any compound distribution with mixed
Erlang severities.

Consider a severity distribution that is a discrete mixture of gamma distri-
butions with integer shape parameters (such gamma distributions are called
Erlang distributions). The pdf for this distribution may be expressed as

( ) =
X

=1

( )

where ( ) is the Erlang- pdf,

( ) =
1

( 1)!
0

The set of mixing weights { : = 1 2 } is a discrete probability distri-
bution (they must be nonnegative and sum to one). The pdf ( ) is very
exible in terms of its possible shapes. In fact, as shown by Tijms [174, pp.
163�—164], any nonnegative continuous distribution may be approximated with
arbitrarily small error by a distribution of this form.
Let ( ) =

P
=1 be the pgf of { : = 1 2 }. The moment

generating function of is

( ) =

Z

0

( ) =
X

=1

Z

0

( )

Because ( ) is a gamma pdf, we know that its mgf is (1 ) , 1
and, thus,

( ) =
X

=1

(1 ) = [(1 ) 1]

From its denition, ( ) is a pgf, and (1 ) 1 is the mgf of an exponential
random variable, and so ( ) may be viewed as the mgf of a compound
distribution with exponential severity distribution. Recall that we are working
with a compound distribution with arbitrary frequency distribution and
severity as previously dened. The mgf of is, therefore,

( ) = [ ( )] = [(1 ) 1]
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where ( ) =
P

=0 = [ ( )] is the pgf of a discrete compound distri-
bution with frequency distribution and a discrete severity distribution with
pgf ( ). If is a member of the ( 0) or ( 1) classes of distributions,
the probabilities 0 1 may be computed recursively.
The distribution of may thus be viewed as being of the compound form

with exponential severities and a frequency distribution that is itself of com-
pound form. The cdf of is then given by Example 9.8. That is,

( ) = 1
X

=0

¯ ( )

!
0 with

¯ =
X

= +1

Comparing (9.13) and (9.15) shows that the density function is also of mixed
Erlang form, that is,

( ) =
X

=1

1

( )
(9.17)

Further properties of the mixed Erlang class may be found in Exercises
9.40 and 9.41. ¤

Another useful type of analytic result is now presented.

EXAMPLE 9.10

(Severity distributions closed under convolution) A distribution is said to be
closed under convolution if adding i.i.d. members of a family produces another
member of that family. Further assume that adding members of a family
produces a member with all but one parameter unchanged and the remaining
parameter is multiplied by . Determine the distribution of when the
severity distribution has this property.

The condition means that, if ( ; ) is the pf of each , then the pf of
1 + 2 + · · ·+ is ( ; ). This means that

( ) =
X

=1

( ; )

=
X

=1

( ; )

eliminating the need to carry out evaluation of the convolution. Severity
distributions that are closed under convolution include the gamma and inverse
Gaussian distributions. See Exercise 9.37. ¤

The ideas of Example 9.10 may be extended from severity distributions to the
compound Poisson model for the aggregate distribution. The following theorem
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generalizes the results of Theorem 6.16 for a discrete severity distribution to distri-
butions with arbitrary support.

Theorem 9.7 Suppose that has a compound Poisson distribution with Poisson
parameter and severity distribution with cdf ( ) for = 1 2 . Suppose
also that 1 2 are independent. Then = 1 + · · ·+ has a compound
Poisson distribution with Poisson parameter = 1 + · · ·+ and severity distri-
bution with cdf

( ) =
X

=1

( )

Proof: Let ( ) be the mgf of ( ) for = 1 2 . Then, has mgf

( ) = E( ) = exp{ [ ( ) 1]}

and, by the independence of the s, has mgf

( ) =
Y

=1

( ) =
Y

=1

exp{ [ ( ) 1]}

= exp
X

=1

( )

= exp
X

=1

( ) 1

Because
P

=1 ( ) is the mgf of ( ) =
P

=1 ( ), ( ) is a compound
Poisson mgf and the result follows. ¤

The advantage of the use of Theorem 9.7 is of a computational nature. Consider
a company with several lines of business, each with a compound Poisson model for
aggregate losses. Or consider a group insurance contract in which each member
has a compound Poisson model for aggregate losses. In each case we are interested
in computing the distribution of total aggregate losses. The theorem implies that
it is not necessary to compute the distribution for each line or group member and
then determine the distribution of the sum. Instead, a weighted average of the loss
severity distributions of each component may be used as a severity distribution and
the Poisson parameters added to obtain the frequency distribution. Then a single
aggregate loss distribution calculation is su cient. Note that this is purely a com-
putational shortcut. The following example illustrates the theorem and Example
9.9.

EXAMPLE 9.11

A group of ten independent lives is insured for health benets. The th life has
a compound Poisson distribution for annual aggregate losses with frequency
parameter = and severity distribution with pdf

( ) =
1 10

10 ( 1)!
0
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and therefore the severity distributions are of Erlang form. Determine the
distribution of total aggregate claims for the ten lives.

Let = 1 + · · ·+ 10 = 55 and let = = 55. From Theorem 9.7
the total aggregate losses have a compound Poisson distribution with Poisson
parameter and severity distribution with pdf given by

( ) =
10X

=1

1 10

10 ( 1)!

This is exactly the setting of Example 9.9. The compound distribution
has a Poisson �“frequency distribution�” with parameter 55 and a �“severity
distribution�” that places probability 55 on the value .1 From Theorem
6.12, 0 = exp( 55) and for = 1 2 , the compound Poisson recursion
simplies to

=
1
min( 10)X

=1

2

Finally,

( ) = 1 10
X

=0

¯ ( 10)

!
and

( ) =
X

=1

1 10

10 ( 1)!

with ¯ =
P

= +1 = 1
P

=0 ¤

9.4.1 Exercises

9.37 The following questions concern closure under convolution:

(a) Show that the gamma and inverse Gaussian distributions are closed un-
der convolution. Show that the gamma distribution has the additional
property mentioned in Example 9.10.

(b) Discrete distributions can also be used as severity distributions. Which
of the distributions in Appendix B are closed under convolution? How
can this information be used in simplifying calculation of compound
probabilities of the form (6.34)?

9.38 A compound negative binomial distribution has parameters = 1, = 2,
and severity distribution { ( ); = 0 1 2 }. How do the parameters of the
distribution change if the severity distribution is { ( ) = ( ) [1 (0)]; =
1 2 } but the aggregate claims distribution remains unchanged?

1The words �“frequency�” and �“severity�” are in quotes because they are not referring to , the
compound random variable of interest. The random variable is an articial compound variable
used to solve this problem.
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9.39 Consider the compound logarithmic distribution with exponential severity
distribution.

(a) Show that the density of aggregate losses may be expressed as

( ) =
1

ln(1 + )

X

=1

1

! (1 + )

¸
1

(b) Reduce this to

( ) =
exp{ [ (1 + )]} exp ( )

ln(1 + )

9.40 This exercise concerns generalized Erlang distributions.

(a) Prove that (1 1 ) = [(1 2 )
1], where

( ) =
1 (1 )

¸

and = 2 1.

(b) Explain the implication of the identity in part (a) when is a positive
integer and 0 2 1 .

(c) Consider the generalization of Example 3.7 (involving the distribution
of the sum of independent exponentials with di erent means) where
has a gamma distribution (not necessarily Erlang) with mgf ( ) =
(1 ) for = 1 2 , and the s are independent. Then
= 1 + · · ·+ has mgf

( ) =
Y

=1

(1 )

and it is assumed, without loss of generality, that for =
1 2 1. If = 1 + · · · + is a positive integer, prove, using
(a), that has a mixed Erlang distribution (Example 9.9) with mgf

( ) = [(1 ) 1]

where

( ) =
X

=

=
1Y

=1
1 (1 )

¸

with = for = 1 2 1, and describe the distribution
with pgf ( ). Hence, show that has pdf

( ) =
X

=

1

( 1)!
0.

(d) Describe how the results of Example 6.19 may be used to recursively
compute the mixing weights +1 in part (c).
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9.41 Consider the compound distribution with mixed Erlang severities in Example
9.9 with pdf ( ) for 0 dened by

( ) =
X

=1

( ) =
X

=1

1

( 1)!
0

(a) Prove that

( + ) =
X

=0

X

=0

+ +1 +1( ) +1( )

(b) Use part (a) to prove that for 0 and 0,

Z
( ) ( ) =

X

=0

( )

!

where

=
X

=1

+
( + )

( )

(c) Interpret the result in (b) in terms of stop-loss insurance when 0,
and simplify it when = 1.

(d) What happens to the result in (b) when = 0?

9.42 Consider the random sum = 1 + · · · + (with = 0 if = 0). Let
( ) be the df of and recall that E( ) = E( )E( ) and ( ) = [ ( )].

(a) Let = Pr( ) =
P

= +1 , = 0 1 and dene 1 =
E( ), = 0 1 . Use Exercise 6.34 to show that { 1 : =

0 1 } is a counting distribution with pgf

1( ) =
X

=0

1 =
( ) 1

( 1)E( )

(b) Let be independent of with equilibrium df

( ) =

R
0
[1 ( )]

E( )

where ( ) is the severity distribution. Let be the equilibrium ran-
dom variable associated with , with df

( ) =

R
0
[1 ( )]

E( )

Use Exercise 3.28 to show that has mgf

( ) = ( ) 1[ ( )]

and explain what this implies about the distribution of .
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(c) If has the zero-modied geometric pf, = (1 0)(1 ) 1,
= 1 2 , prove, using (b) that
Z

[1 ( )] =
1 0

1

Z
[1 ( )]

+
1

Z

0

[1 ( )][1 ( )]

and interpret this result in terms of stop-loss insurance.

(d) Use part (b) to prove that

Z
[1 ( )] =

X

=0

½Z
[1 ( )]

+

Z

0

[1 ( )][1 ( )]

¾

9.5 COMPUTING THE AGGREGATE CLAIMS DISTRIBUTION

The computation of the compound distribution function

( ) =
X

=0

( ) (9.18)

or the corresponding probability (density) function is generally not an easy task,
even in the simplest of cases. In this section we discuss a number of approaches
to numerical evaluation of (9.18) for specic choices of the frequency and severity
distributions as well as for arbitrary choices of one or both distributions.
One approach is to use an approximating distribution to avoid direct calculation

of (9.18). This approach is used in Example 9.4 where the method of moments is
used to estimate the parameters of the approximating distribution. The advantage
of this method is that it is simple and easy to apply. However, the disadvantages
are signicant. First, there is no way of knowing how good the approximation is.
Choosing di erent approximating distributions can result in very di erent results,
particularly in the right-hand tail of the distribution. Of course, the approximation
should improve as more moments are used; but after four moments, one quickly
runs out of distributions!
The approximating distribution may also fail to accommodate special features of

the true distribution. For example, when the loss distribution is of the continuous
type and there is a maximum possible claim (e.g., when there is a policy limit), the
severity distribution may have a point mass (�“atom�” or �“spike�”) at the maximum.
The true aggregate claims distribution is of the mixed type with spikes at integral
multiples of the maximum corresponding to 1 2 3 claims at the maximum.
These spikes, if large, can have a signicant e ect on the probabilities near such
multiples. These jumps in the aggregate claims distribution function cannot be
replicated by a smooth approximating distribution.
The second method to evaluate (9.18) or the corresponding pdf is direct calcula-

tion. The most di cult (or computer intensive) part is the evaluation of the -fold
convolutions of the severity distribution for = 2 3 4 . In some situations,
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there is an analytic form�–for example, when the severity distribution is closed
under convolution, as dened in Example 9.10 and illustrated in Examples 9.7�—9.9.
Otherwise the convolutions need to be evaluated numerically using

( ) =

Z
( 1)

( ) ( ) (9.19)

When the losses are limited to nonnegative values (as is usually the case), the range
of integration becomes nite, reducing (9.19) to

( ) =

Z

0

( 1)
( ) ( ) (9.20)

These integrals are written in Lebesgue�—Stieltjes form because of possible jumps in
the cdf ( ) at zero and at other points.2 Evaluation of (9.20) usually requires
numerical integration methods. Because of the rst term inside the integral, (9.20)
needs to be evaluated for all possible values of . This approach quickly becomes
technically overpowering.
As seen in Example 9.5, when the severity distribution is discrete, the calcula-

tions reduce to numerous multiplications and additions. For continuous severities,
a simple way to avoid these technical problems is to replace the severity distrib-
ution by a discrete distribution dened at multiples 0 1 2 of some convenient
monetary unit such as 1,000.
In practice, the monetary unit can be made su ciently small to accommodate

spikes at maximum insurance amounts. The spike must be a multiple of the mon-
etary unit to have it located at exactly the right point. As the monetary unit of
measurement becomes small, the discrete distribution function needs to approach
the true distribution function. The simplest approach is to round all amounts to
the nearest multiple of the monetary unit; for example, round all losses or claims to
the nearest 1,000. More sophisticated methods are discussed later in this chapter.
When the severity distribution is dened on nonnegative integers 0 1 2 , cal-

culating ( ) for integral requires + 1 multiplications. Then, carrying out
these calculations for all possible values of and up to requires a number of
multiplications that are of order 3, written as ( 3), to obtain the distribution
of (9.18) for = 0 to = . When the maximum value, , for which the aggre-
gate claims distribution is calculated is large, the number of computations quickly
becomes prohibitive, even for fast computers. For example, in real applications
can easily be as large as 1,000 and requires about 109 multiplications. Further, if
Pr( = 0) 0 and the frequency distribution is unbounded, an innite number of
calculations is required to obtain any single probability. This is because ( ) 0
for all and all , and so the sum in (9.18) contains an innite number of terms.
When Pr( = 0) = 0, we have ( ) = 0 for and so (9.18) will have no
more than + 1 positive terms. Table 9.3 provides an example of this latter case.
Alternative methods to more quickly evaluate the aggregate claims distribution

are discussed in Sections 9.6 and 9.8. The rst such method, the recursive method,

2Without going into the formal denition of the Lebesgue�—Stieltjes integral, it su ces to interpret
( ) ( ) as to be evaluated by integrating ( ) ( ) over those values for which has a

continuous distribution and then adding ( ) Pr( = ) over those points where Pr( = ) 0.
This formulation allows for a single notation to be used for continuous, discrete, and mixed random
variables.
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reduces the number of computations discussed previously to ( 2), which is a con-
siderable savings in computer time, a reduction of about 99.9% when = 1,000
compared to direct calculation. However, the method is limited to certain fre-
quency distributions. Fortunately, it includes all frequency distributions discussed
in Chapter 6 and Appendix B.
The second such method, the inversion method, numerically inverts a transform,

such as the characteristic function, using a general or specialized inversion software
package. Two versions of this method are discussed in this chapter.

9.6 THE RECURSIVE METHOD

Suppose that the severity distribution ( ) is dened on 0 1 2 representing
multiples of some convenient monetary unit. The number represents the largest
possible payment and could be innite. Further, suppose that the frequency distri-
bution, , is a member of the ( 1) class and therefore satises

=

µ
+

¶
1 = 2 3 4

Then the following result holds.

Theorem 9.8 For the ( 1) class,

( ) =
[ 1 ( + ) 0] ( ) +

P
=1 ( + ) ( ) ( )

1 (0)
, (9.21)

noting that is notation for min( ).

Proof : This result is identical to Theorem 6.13 with appropriate substitution of
notation and recognition that the argument of ( ) cannot exceed . ¤

Corollary 9.9 For the ( 0) class, the result (9.21) reduces to

( ) =

P
=1 ( + ) ( ) ( )

1 (0)
(9.22)

Note that when the severity distribution has no probability at zero, the denomi-
nator of (9.21) and (9.22) equals 1. Further, in the case of the Poisson distribution,
(9.22) reduces to

( ) =
X

=1

( ) ( ) = 1 2 (9.23)

The starting value of the recursive schemes (9.21) and (9.22) is (0) = [ (0)]
following Theorem 6.14 with an appropriate change of notation. In the case of the
Poisson distribution we have

(0) = [1 (0)]

Starting values for other frequency distributions are found in Appendix D.
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9.6.1 Applications to compound frequency models

When the frequency distribution can be represented as a compound distribution
(e.g., Neyman Type A, Poisson�—inverse Gaussian) involving only distributions from
the ( 0) or ( 1) classes, the recursive formula (9.21) can be used two or more
times to obtain the aggregate claims distribution. If the frequency distribution can
be written as

( ) = 1[ 2( )]

then the aggregate claims distribution has pgf

( ) = [ ( )]

= 1{ 2[ ( )]}

which can be rewritten as
( ) = 1[ 1

( )] (9.24)

where

1( ) = 2[ ( )] (9.25)

Now (9.25) is the same form as an aggregate claims distribution. Thus, if 2( ) is
in the ( 0) or ( 1) class, the distribution of 1 can be calculated using (9.21).
The resulting distribution is the �“severity�” distribution in (9.25). Thus, a second
application of (9.21) to (9.24) results in the distribution of .
The following example illustrates the use of this algorithm.

EXAMPLE 9.12

The number of claims has a Poisson�—ETNB distribution with Poisson para-
meter = 2 and ETNB parameters = 3 and = 0 2. The claim size
distribution has probabilities 0.3, 0.5, and 0.2 at 0, 10, and 20, respectively.
Determine the total claims distribution recursively.

In the preceding terminology, has pgf ( ) = 1 [ 2( )], where 1( )
and 2( ) are the Poisson and ETNB pgfs, respectively. Then the total dol-
lars of claims has pgf ( ) = 1 [ 1( )], where 1( ) = 2 [ ( )] is a
compound ETNB pgf. We will rst compute the distribution of 1. We have
(in monetary units of 10) (0) = 0 3 (1) = 0 5, and (2) = 0 2. To use
the compound ETNB recursion, we start with

1(0) = 2 [ (0)]

=
{1 + [1 (0)]} (1 + )

1 (1 + )

=
{1 + 3(1 0 3)} 0 2 (1 + 3) 0 2

1 (1 + 3) 0 2

= 0 16369

The remaining values of 1( ) may be obtained from (9.21) with replaced
by 1. In this case we have

=
3

1 + 3
= 0 75 = (0 2 1) = 0 6

0 = 0 1 =
0 2(3)

(1 + 3)0 2+1 (1 + 3)
= 0 46947
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Then (9.21) becomes

1( ) =

[0 46947 (0 75 0 6)(0)] ( )
+
P

=1 (0 75 0 6 ) ( ) 1( )

1 (0 75)(0 3)

= 0 60577 ( ) + 1 29032
X

=1

³
0 75 0 6

´
( ) 1( )

The rst few probabilities are

1(1) = 0 60577(0 5) + 1 29032
£
0 75 0 6

¡
1
1

¢¤
(0 5)(0 16369)

= 0 31873

1(2) = 0 60577(0 2) + 1 29032
©£
0 75 0 6

¡
1
2

¢¤
(0 5)(0 31873)

+
£
0 75 0 6

¡
2
2

¢¤
(0 2)(0 16369)

ª
= 0 22002

1(3) = 1 29032
©£
0 75 0 6

¡
1
3

¢¤
(0 5)(0 22002)

+
£
0 75 0 6

¡
2
3

¢¤
(0 2)(0 31873)

ª
= 0 10686

1(4) = 1 29032
©£
0 75 0 6

¡
1
4

¢¤
(0 5)(0 10686)

+
£
0 75 0 6

¡
2
4

¢¤
(0 2)(0 22002)

ª
= 0 06692

We now turn to evaluation of the distribution of with compound Poisson
pgf

( ) = 1 [ 1( )] =
[ 1 ( ) 1]

Thus the distribution
{

1
( ); = 0 1 2 }

becomes the �“secondary�” or �“claim size�” distribution in an application of the
compound Poisson recursive formula. Therefore,

(0) = (0) = [ 1 (0) 1] = [ 1 (0) 1] = 2(0 16369 1) = 0 18775

The remaining probabilities may be found from the recursive formula

( ) =
2X

=1

1( ) ( ) = 1 2

The rst few probabilities are

(1) = 2
¡
1
1

¢
(0 31873)(0 18775) = 0 11968

(2) = 2
¡
1
2

¢
(0 31873)(0 11968) + 2

¡
2
2

¢
(0 22002)(0 18775) = 0 12076

(3) = 2
¡
1
3

¢
(0 31873)(0 12076) + 2

¡
2
3

¢
(0 22002)(0 11968)

+2
¡
3
3

¢
(0 10686)(0 18775) = 0 10090

(4) = 2
¡
1
4

¢
(0 31873)(0 10090) + 2

¡
2
4

¢
(0 22002)(0 12076)

+2
¡
3
4

¢
(0 10686)(0 11968) + 2

¡
4
4

¢
(0 06692)(0 18775)

= 0 08696 ¤
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When the severity distribution has a maximum possible value at , the compu-
tations are speeded up even more because the sum in (9.21) will be restricted to at
most nonzero terms. In this case, then, the computations can be considered to
be of order ( ).

9.6.2 Underow/overow problems

The recursion (9.21) starts with the calculated value of ( = 0) = [ (0)].
For large insurance portfolios, this probability is very small, sometimes smaller
than the smallest number that can be represented on the computer and is then
represented on the computer as zero and the recursion (9.21) fails. This problem
can be overcome in several di erent ways (see Panjer and Willmot [137]). One of
the easiest ways is to start with an arbitrary set of values for (0) (1) ( )
such as (0 0 0 0 1), where is su ciently far to the left in the distribution
so that the true value of ( ) is still negligible. Setting to a point that lies six
standard deviations to the left of the mean is usually su cient. Recursion (9.21) is
used to generate values of the distribution with this set of starting values until the
values are consistently less than ( ). The �“probabilities�” are then summed and
divided by the sum so that the �“true�” probabilities add to 1. Trial and error will
dictate how small should be for a particular problem.
Another method to obtain probabilities when the starting value is too small is

to carry out the calculations for a subset of the portfolio. For example, for the
Poisson distribution with mean , nd a value of = 2 so that the probability
at zero is representable on the computer when is used as the Poisson mean.
Equation (9.21) is now used to obtain the aggregate claims distribution when
is used as the Poisson mean. If ( ) is the pgf of the aggregate claims using
Poisson mean , then ( ) = [ ( )]2 . Hence one can obtain successively the
distributions with pgfs [ ( )]2, [ ( )]4, [ ( )]8 [ ( )]2 by convoluting the
result at each stage with itself. This approach requires an additional convolutions
in carrying out the calculations but involves no approximations. It can be carried
out for any frequency distributions that are closed under convolution. For the
negative binomial distribution, the analogous procedure starts with = 2 .
For the binomial distribution, the parameter must be integer valued. A slight
modication can be used. Let = b 2 c when b·c indicates the integer part of
function. When the convolutions are carried out, one still needs to carry out the
calculations using (9.21) for parameter 2 . This result is then convoluted
with the result of the convolutions. For compound frequency distributions, only
the primary distribution needs to be closed under convolution.

9.6.3 Numerical stability

Any recursive formula requires accurate computation of values because each such
value will be used in computing subsequent values. Recursive schemes su er the
risk of errors propagating through all subsequent values and potentially blowing
up. In the recursive formula (9.21), errors are introduced through rounding at
each stage because computers represent numbers with a nite number of signicant
digits. The question about stability is, �“How fast do the errors in the calculations
grow as the computed values are used in successive computations?�” This work has
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been done by Panjer and Wang [136]. The analysis is quite complicated and well
beyond the scope of this book. However, some general conclusions can be made.
Errors are introduced in subsequent values through the summation

X

=1

µ
+

¶
( ) ( )

in recursion (9.21). In the extreme right-hand tail of the distribution of , this
sum is positive (or at least nonnegative), and subsequent values of the sum will be
decreasing. The sum will stay positive, even with rounding errors, when each of the
three factors in each term in the sum is positive. In this case, the recursive formula
is stable, producing relative errors that do not grow fast. For the Poisson and
negative binomial based distributions, the factors in each term are always positive.
However, for the binomial distribution, the sum can have negative terms because
is negative, is positive, and is a positive function not exceeding 1. In this

case, the negative terms can cause the successive values to blow up with alter-
nating signs. When this occurs, the nonsensical results are immediately obvious.
Although it does not happen frequently in practice, the reader should be aware of
this possibility in models based on the binomial distribution.

9.6.4 Continuous severity

The recursive method as presented here requires a discrete severity distribution,
while it is customary to use a continuous distribution for severity. In the case of
continuous severities, the analog of the recursion (9.21) is an integral equation, the
solution of which is the aggregate claims distribution.

Theorem 9.10 For the ( 1) class of frequency distributions and any continuous
severity distribution with probability on the positive real line, the following integral
equation holds:

( ) = 1 ( ) +

Z

0

µ
+

¶
( ) ( ) (9.26)

The proof of this result is beyond the scope of this book. For a detailed proof, see
Theorems 6.14.1 and 6.16.1 of Panjer and Willmot [138], along with the associated
corollaries. They consider the more general ( ) class of distributions, which
allow for arbitrary modication of initial values of the distribution. Note that
the initial term is 1 ( ), not [ 1 ( + ) 0] ( ) as in (9.21). Also, (9.26) holds
for members of the ( 0) class as well.
Integral equations of the form (9.26) are Volterra integral equations of the sec-

ond kind. Numerical solution of this type of integral equation has been studied in
the text by Baker [12]. This book considers an alternative approach for continuous
severity distributions. It is to use a discrete approximation of the severity distrib-
ution in order to use the recursive method (9.21) and avoid the more complicated
methods of Baker [12].

9.6.5 Constructing arithmetic distributions

The easiest approach to construct a discrete severity distribution from a continuous
one is to place the discrete probabilities on multiples of a convenient unit of mea-



THE RECURSIVE METHOD 243

surement , the span. Such a distribution is called arithmetic because it is dened
on the nonnegative integers. In order to arithmetize a distribution, it is important
to preserve the properties of the original distribution both locally through the range
of the distribution and globally�–that is, for the entire distribution. This should
preserve the general shape of the distribution and at the same time preserve global
quantities such as moments.
The methods suggested here apply to the discretization (arithmetization) of con-

tinuous, mixed, and nonarithmetic discrete distributions.

9.6.5.1 Method of rounding (mass dispersal) Let denote the probability placed
at , = 0 1 2 . Then set3

0 = Pr

µ

2

¶
=

µ

2
0

¶

= Pr

µ

2
+
2

¶

=

µ
+
2

0

¶ µ

2
0

¶
= 1 2

This method concentrates all the probability one-half span either side of and
places it at . There is an exception for the probability assigned to 0 This, in
e ect, rounds all amounts to the nearest convenient monetary unit, , the span
of the distribution. When the continuous severity distribution is unbounded, it
is reasonable to halt the discretization process at some point once most all the
probability has been accounted for. If the index for this last point is , then

= 1 [( 0 5) 0]. With this method the discrete probabilities are never
negative and sum to 1, ensuring that the resulting distribution is legitimate.

9.6.5.2 Method of local moment matching In this method we construct an arith-
metic distribution that matches moments of the arithmetic and the true severity
distributions. Consider an arbitrary interval of length , denoted by [ + ).
We locate point masses 0 1 · · · at points , + · · · + so that
the rst moments are preserved. The system of + 1 equations reecting these
conditions is

X

=0

( + ) =

Z + 0

0

( ) = 0 1 2 (9.27)

where the notation �“ 0�” at the limits of the integral indicates that discrete proba-
bility at is to be included but discrete probability at + is to be excluded.
Arrange the intervals so that +1 = + and so the endpoints coincide.

Then the point masses at the endpoints are added together. With 0 = 0, the
resulting discrete distribution has successive probabilities:

0 =
0
0 1 =

0
1 2 =

0
2

= 0 + 1
0 +1 =

1
1 +2 =

1
2

(9.28)

3The notation ( 0) indicates that discrete probability at should not be included. For
continuous distributions, this will make no di erence. Another way to look at this is that when
there is discrete probability at one of the boundary points, it should be assigned to the value
one-half span above that point.
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By summing (9.27) for all possible values of , with 0 = 0, it is clear that the
rst moments are preserved for the entire distribution and that the probabilities
add to 1 exactly. It only remains to solve the system of equations (9.27).

Theorem 9.11 The solution of (9.27) is

=

Z + 0

0

Y

6=
( )

( ) = 0 1 . (9.29)

Proof : The Lagrange formula for collocation of a polynomial ( ) at points
0 1 is

( ) =
X

=0

( )
Y

6=

Applying this formula to the polynomial ( ) = over the points , +
+ yields

=
X

=0

( + )
Y

6=
( )

= 0 1 .

Integrating over the interval [ + ) with respect to the severity distribution
results in Z + 0

0

( ) =
X

=0

( + )

where is given by (9.29). Hence, the solution (9.29) preserves the rst mo-
ments, as required. ¤

EXAMPLE 9.13

Suppose has the exponential distribution with pdf ( ) = 0 1 0 1 . Use
a span of = 2 to discretize this distribution by the method of rounding and
by matching the rst moment.

For the method of rounding, the general formulas are

0 = (1) = 1 0 1(1) = 0 09516

= (2 + 1) (2 1) = 0 1(2 1) 0 1(2 +1)

The rst few values are given in Table 9.11.
For matching the rst moment we have = 1 and = 2 . The key

equations become

0 =

Z 2 +2

2

2 2

2
(0 1) 0 1 = 5 0 1(2 +2) 4 0 1(2 )

1 =

Z 2 +2

2

2

2
(0 1) 0 1 = 6 0 1(2 +2) + 5 0 1(2 )

and then

0 = 0
0 = 5

0 2 4 = 0 09365

= 1
1 + 0 = 5

0 1(2 2) 10 0 1(2 ) + 5 0 1(2 +2)
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Table 9.11 Discretization of the exponential distribution by two methods.

rounding matching

0 0.09516 0.09365
1 0.16402 0.16429
2 0.13429 0.13451
3 0.10995 0.11013
4 0.09002 0.09017
5 0.07370 0.07382
6 0.06034 0.06044
7 0.04940 0.04948
8 0.04045 0.04051
9 0.03311 0.03317
10 0.02711 0.02716

The rst few values also are given in Table 9.11. A more direct solution for
matching the rst moment is provided in Exercise 9.43. ¤

This method of local moment matching was introduced by Gerber and Jones
[54] and Gerber [53] and further studied by Panjer and Lutek [135] for a variety of
empirical and analytical severity distributions. In assessing the impact of errors on
aggregate stop-loss net premiums (aggregate excess-of-loss pure premiums), Panjer
and Lutek [135] found that two moments were usually su cient and that adding a
third moment requirement adds only marginally to the accuracy. Furthermore, the
rounding method and the rst-moment method ( = 1) had similar errors, while
the second-moment method ( = 2) provided signicant improvement. The specic
formulas for the method of rounding and the method of matching the rst moment
are given in Appendix E. A reason to favor matching zero or one moment is that
the resulting probabilities will always be nonnegative. When matching two or more
moments, this cannot be guaranteed.
The methods described here are qualitatively similar to numerical methods used

to solve Volterra integral equations such as (9.26) developed in numerical analysis
(see, e.g., Baker [12]).

9.6.6 Exercises

9.43 Show that the method of local moment matching with = 1 (matching total
probability and the mean) using (9.28) and (9.29) results in

0 = 1
E[ ]

=
2E[ ] E[ ( 1) ] E[ ( + 1) ]

= 1 2

and that { ; = 0 1 2 } forms a valid distribution with the same mean as
the original severity distribution. Using the formula given here, verify the formula
given in Example 9.13.
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9.44 You are the agent for a baseball player who desires an incentive contract that
will pay the amounts given in Table 9.12. The number of times at bat has a Poisson
distribution with = 200. The parameter is determined so that the probability
of the player earning at least 4,000,000 is 0.95. Determine the player�’s expected
compensation.

Table 9.12 Data for Exercise 9.44.

Probability of hit Compensation
Type of hit per time at bat per hit

Single 0.14
Double 0.05 2
Triple 0.02 3
Home run 0.03 4

9.45 A weighted average of two Poisson distributions

=
1
1

!
+ (1 )

2
2

!

has been used by some authors, for example, Tröbliger [175], to treat drivers as
either �“good�” or �“bad�” (see Example 6.23).

(a) Find the pgf ( ) of the number of losses in terms of the two pgfs 1( )
and 2( ) of the number of losses of the two types of drivers.

(b) Let ( ) denote a severity distribution dened on the nonnegative in-
tegers. How can (9.23) be used to compute the distribution of aggregate
claims for the entire group?

(c) Can your approach from (b) be extended to other frequency distribu-
tions?

9.46 (*) A compound Poisson aggregate loss model has ve expected claims per
year. The severity distribution is dened on positive multiples of 1,000. Given that
(1) = 5 and (2) = 5

2
5, determine (2).

9.47 (*) For a compound Poisson distribution, = 6 and individual losses have pf
(1) = (2) = (4) = 1

3 . Some of the pf values for the aggregate distribution
are given in Table 9.13. Determine (6).

Table 9.13 Data for Exercise 9.47.

( )

3 0.0132
4 0.0215
5 0.0271
6 (6)
7 0.0410
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9.48 Consider the ( 0) class of frequency distributions and any severity distrib-
ution dened on the positive integers {1 2 }, where is the maximum
possible single loss.

(a) Show that, for the compound distribution, the following backward re-
cursion holds:

( ) =

( + )
P 1

=1

µ
+

+

¶
( ) ( + )

µ
+

+

¶
( )

(b) For the binomial ( ) frequency distribution, how can the preceding
formula be used to obtain the distribution of aggregate losses? See Panjer
and Wang [136].

9.49 (*) Aggregate claims are compound Poisson with = 2 (1) = 1
4 , and

(2) = 3
4 . For a premium of 6, an insurer covers aggregate claims and agrees to

pay a dividend (a refund of premium) equal to the excess, if any, of 75% of the
premium over 100% of the claims. Determine the excess of premium over expected
claims and dividends.

9.50 On a given day, a physician provides medical care to adults and
children. Assume and have Poisson distributions with parameters 3 and 2,
respectively. The distributions of length of care per patient are as follows:

Adult Child

1 hour 0.4 0.9
2 hour 0.6 0.1

Let , and the lengths of care for all individuals be independent. The
physician charges 200 per hour of patient care. Determine the probability that the
o ce income on a given day is less than or equal to 800.

9.51 (*) A group policyholder�’s aggregate claims, , has a compound Poisson
distribution with = 1 and all claim amounts equal to 2. The insurer pays the
group the following dividend:

=

½
6 6
0 6

Determine E [ ].

9.52 You are given two independent compound Poisson random variables, 1 and
2, where ( ) = 1 2, are the two single-claim size distributions. You are given
1 = 2 = 1, 1(1) = 1, and 2(1) = 2(2) = 0 5. Let ( ) be the single-claim
size distribution function associated with the compound distribution = 1 + 2.
Calculate 4(6).
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9.53 (*) The variable has a compound Poisson claims distribution with the
following:

1. Individual claim amounts equal to 1, 2, or 3.

2. E( ) = 56.

3. Var( ) = 126.

4. = 29.

Determine the expected number of claims of size 2.

9.54 (*) For a compound Poisson distribution with positive integer claim amounts,
the probability function follows:

( ) =
1
[0 16 ( 1) + ( 2) + 0 72 ( 3)] = 1 2 3

The expected value of aggregate claims is 1 68. Determine the expected number of
claims.

9.55 (*) For a portfolio of policies you are given the following:

1. The number of claims has a Poisson distribution.

2. Claim amounts can be 1, 2, or 3.

3. A stop-loss reinsurance contract has net premiums for various deductibles as
given in Table 9.14.

Table 9.14 Data for Exercise 9.55.

Deductible Net premium

4 0.20
5 0.10
6 0.04
7 0.02

Determine the probability that aggregate claims will be either 5 or 6.

9.56 (*) For group disability income insurance, the expected number of disabilities
per year is 1 per 100 lives covered. The continuance (survival) function for the
length of a disability in days, , is

Pr( ) = 1
10

= 0 1 10

The benet is 20 per day following a ve-day waiting period. Using a compound
Poisson distribution, determine the variance of aggregate claims for a group of 1,500
independent lives.
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9.57 A population has two classes of drivers. The number of accidents per indi-
vidual driver has a geometric distribution. For a driver selected at random from
Class I, the geometric distribution parameter has a uniform distribution over the
interval (0 1). Twenty-ve percent of the drivers are in Class I. All drivers in Class
II have expected number of claims 0.25. For a driver selected at random from this
population, determine the probability of exactly two accidents.

9.58 (*) A compound Poisson claim distribution has = 5 and individual claim
amount distribution (5) = 0 6 and ( ) = 0 4 where 5. The expected cost
of an aggregate stop-loss insurance with a deductible of 5 is 28.03. Determine the
value of .

9.59 (*) Aggregate losses have a compound Poisson claim distribution with = 3
and individual claim amount distribution (1) = 0 4, (2) = 0 3, (3) = 0 2, and
(4) = 0 1. Determine the probability that aggregate losses do not exceed 3.

9.60 Repeat Exercise 9.59 with a negative binomial frequency distribution with
= 6 and = 0 5.

Note: Exercises 9.61 and 9.62 require the use of a computer.

9.61 A policy covers physical damage incurred by the trucks in a company�’s eet.
The number of losses in a year has a Poisson distribution with = 5. The amount
of a single loss has a gamma distribution with = 0 5 and = 2,500. The insurance
contract pays a maximum annual benet of 20,000. Determine the probability that
the maximum benet will be paid. Use a span of 100 and the method of rounding.

9.62 An individual has purchased health insurance for which he pays 10 for each
physician visit and 5 for each prescription. The probability that a payment will
be 10 is 0.25, and the probability that it will be 5 is 0.75. The total number of
payments per year has the Poisson�—Poisson (Neyman Type A) distribution with
1 = 10 and 2 = 4. Determine the probability that total payments in one year
will exceed 400. Compare your answer to a normal approximation.

9.63 Demonstrate that if the exponential distribution is discretized by the method
of rounding, the resulting discrete distribution is a ZM geometric distribution.

9.7 THE IMPACT OF INDIVIDUAL POLICY MODIFICATIONS ON
AGGREGATE PAYMENTS

In Section 8.6 the manner in which individual deductibles (both ordinary and fran-
chise) a ect both the individual loss amounts and the claim frequency distribution
is discussed. In this section we consider the impact on aggregate losses. It is worth
noting that both individual coinsurance and individual policy limits have an impact
on the individual losses but not on the frequency of such losses, so we focus primar-
ily on the deductible issues in what follows. We also remark that we continue to
assume that the presence of policy modications does not have an underwriting im-
pact on the individual loss distribution through an e ect on the risk characteristics
of the insured population, an issue discussed in Section 8.6. That is, the ground-up
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distribution of the individual loss amount is assumed to be una ected by the
policy modications, and only the payments themselves are a ected.
From the standpoint of the aggregate losses, the relevant facts are now described.

Regardless of whether the deductible is of the ordinary or franchise type, we shall as-
sume that an individual loss results in a payment with probability . The individual
ground-up loss random variable has policy modications (including deductibles)
applied, so that a payment is then made. Individual payments may then be viewed
on a per-loss basis, where the amount of such payment, denoted by , will be 0
if the loss results in no payment. Thus, on a per-loss basis, the payment amount is
determined on each and every loss. Alternatively, individual payments may also be
viewed on a per-payment basis. In this case, the amount of payment is denoted by
, and on this basis payment amounts are only determined on losses that actually

result in a nonzero payment being made. Therefore, by denition, Pr( = 0) = 0,
and the distribution of is the conditional distribution of given that 0.
Notationally, we write = | 0. Therefore, the cumulative distribution
functions are related by

( ) = (1 ) + ( ) 0

because 1 = Pr( = 0) = (0) (recall that has a discrete probability
mass point 1 at 0, even if , and hence and have continuous probability
density functions for 0). The moment generating functions of and are
thus related by

( ) = (1 ) + ( ) (9.30)

which may be restated in terms of expectations as

E( ) = E( | = 0)Pr
¡

= 0
¢
+ E( | 0)Pr

¡
0
¢

It follows from Section 8.6 that the number of losses and the number of
payments are related through their probability generating functions by

( ) = (1 + ) (9.31)

where ( ) = E
³ ´

and ( ) = E
³ ´

.

We now turn to the analysis of the aggregate payments. On a per-loss basis,
the total payments may be expressed as = 1 + 2 + · · · + with = 0
if = 0 and where is the payment amount on the th loss. Alternatively,
ignoring losses on which no payment is made, we may express the total payments on
a per-payment basis as = 1 + 2 + · · ·+ with = 0 if = 0, and is
the payment amount on the th loss, which results in a nonzero payment. Clearly,
may be represented in two distinct ways on an aggregate basis. Of course, the

moment generating function of on a per-loss basis is

( ) = E
¡ ¢

= [ ( )] (9.32)

whereas on a per-payment basis we have

( ) = E
¡ ¢

= [ ( )] (9.33)

Obviously, (9.32) and (9.33) are equal, as may be seen from (9.30) and (9.31). That
is,

[ ( )] = [1 + ( )] = [ ( )]
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Consequently, any analysis of the aggregate payments may be done on either
a per-loss basis (with compound representation (9.32) for the moment generating
function) or on a per-payment basis (with (9.33) as the compound moment gen-
erating function). The basis selected should be determined by whatever is more
suitable for the particular situation at hand. While by no means a hard-and-fast
rule, the authors have found it more convenient to use the per-loss basis to evaluate
moments of . In particular, the formulas given in Section 8.5 for the individual
mean and variance are on a per-loss basis, and the mean and variance of the aggre-
gate payments may be computed using these and (9.9) but with replaced by

and by .
If the (approximated) distribution of is of more interest than the moments,

then a per-payment basis is normally to be preferred. The reason for this choice
is that on a per-loss basis, underow problems may result if E( ) is large, and
computer storage problems may occur due to the presence of a large number of
zero probabilities in the distribution of , particularly if a franchise deductible is
employed. Also, for convenience, we normally elect to apply policy modications to
the individual loss distribution rst and then discretize (if necessary), rather than
discretizing and then applying policy modications to the discretized distributions.
This issue is only relevant if the deductible and policy limit are not integer multiples
of the discretization span, however. The following example illustrates these ideas.

EXAMPLE 9.14

The number of ground-up losses is Poisson distributed with mean = 3. The
individual loss distribution is Pareto with parameters = 4 and = 10. An
individual ordinary deductible of 6, coinsurance of 75%, and an individual
loss limit of 24 (before application of the deductible and coinsurance) are
all applied. Determine the mean, variance, and distribution of aggregate
payments.

We rst compute the mean and variance on a per-loss basis. The mean
number of losses is E( ) = 3, and the mean individual payment on a per-
loss basis is (using Theorem 8.7 with = 0 and the Pareto distribution)

E( ) = 0 75 [E( 24) E( 6)] = 0 75(3 2485 2 5195) = 0 54675

The mean of the aggregate payments is thus

( ) = E( )E( ) = (3)(0 54675) = 1 64

The second moment of the individual payments on a per-loss basis is, using
Theorem 8.8 with = 0 and the Pareto distribution,

E
£
( )2

¤
= (0 75)2{E

£
( 24)2

¤
E
£
( 6)2

¤

2(6)E( 24) + 2(6)E( 6)}
= (0 75)2 [26 3790 10 5469 12(3 2485) + 12(2 5195)]

= 3 98481

To compute the variance of aggregate payments, we do not need to explicitly
determine Var( ) because is compound Poisson distributed, which implies
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(using (6.41), e.g.) that

Var( ) = E
£
( )2

¤
= 3(3 98481) = 11 9544 = (3 46)2

To compute the (approximate) distribution of , we use the per-payment
basis. First note that = ( 6) = [10 (10 + 6)]4 = 0 15259, and the
number of payments is Poisson distributed with mean E( ) = =
3(0 15259) = 0 45776. Let = 6| 6, so that is the individual
payment random variable with only a deductible of 6. Then

Pr( ) =
Pr( + 6)

Pr( 6)

With coinsurance of 75%, = 0 75 has cumulative distribution function

( ) = 1 Pr(0 75 ) = 1
Pr( 6 + 0 75)

Pr( 6)

That is, for less than the maximum payment of (0 75)(24 6) = 13 5,

( ) =
Pr( 6) ( 6 + 0 75)

( 6)
13 5

and ( ) = 1 for 13 5. We then discretize the distribution of (we
thus apply the policy modications rst and then discretize) using a span of
2.25 and the method of rounding. This approach yields 0 = (1 125) =
0 30124 1 = (3 375) (1 125) = 0 32768, and so on. In this situation
care must be exercised in the evaluation of 6, and we have 6 = (14 625)

(12 375) = 1 0 94126 = 0 05874. Then = 1 1 = 0 for = 7 8 .
The approximate distribution of may then be computed using the compound
Poisson recursive formula, namely, (0) = 0 45776(1 0 30124) = 0 72625, and

( ) =
0 45776

6X

=1

( ) = 1 2 3

Thus, (1) = (0 45776)(1)(0 32768)(0 72625) = 0 10894, for example. ¤

9.7.1 Exercises

9.64 Suppose that the number of ground-up losses has probability generat-
ing function ( ) = [ ( 1)], where is a parameter and is functionally
independent of . The individual ground-up loss distribution is exponential with
cumulative distribution function ( ) = 1 0. Individual losses are
subject to an ordinary deductible of and coinsurance of . Demonstrate that the
aggregate payments, on a per-payment basis, have compound moment generating
function given by (9.33), where has the same distribution as but with
replaced by and has the same distribution as but with replaced by

.

9.65 A ground-up model of individual losses has the gamma distribution with
parameters = 2 and = 100. The number of losses has the negative binomial
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distribution with = 2 and = 1 5. An ordinary deductible of 50 and a loss limit
of 175 (before imposition of the deductible) are applied to each individual loss.

(a) Determine the mean and variance of the aggregate payments on a per-
loss basis.

(b) Determine the distribution of the number of payments.

(c) Determine the cumulative distribution function of the amount of a
payment given that a payment is made.

(d) Discretize the severity distribution from (c) using the method of rounding
and a span of 40.

(e) Use the recursive formula to calculate the discretized distribution of
aggregate payments up to a discretized amount paid of 120.

9.8 INVERSION METHODS

An alternative to the recursive formula is the inversion method. This is another
numerical approach and is based on the fact that there is a unique correspondence
between a random variables distribution and its transform (such as the pgf, mgf,
or cf). Compound distributions lend themselves naturally to this approach because
their transforms are compound functions and are easily evaluated when both fre-
quency and severity components are known. The pgf and cf of the aggregate loss
distribution are

( ) = [ ( )]

and
( ) = E[ ] = [ ( )] (9.34)

respectively. The characteristic function always exists and is unique. Conversely,
for a given characteristic function, there always exists a unique distribution. The
objective of inversion methods is to obtain the distribution numerically from the
characteristic function (9.34).
It is worth mentioning that there has recently been much research in other areas

of applied probability on obtaining the distribution numerically from the associated
Laplace�—Stieltjes transform. These techniques are applicable to the evaluation of
compound distributions in the present context but are not discussed further here.
A good survey is [2, pp. 257�—323].

9.8.1 Fast Fourier transform

The fast Fourier transform (FFT) is an algorithm that can be used for inverting
characteristic functions to obtain densities of discrete random variables. The FFT
comes from the eld of signal processing. It was rst used for the inversion of
characteristic functions of compound distributions by Bertram [18] and is explained
in detail with applications to aggregate loss calculations by Robertson [149].

Denition 9.12 For any continuous function ( ), the Fourier transform is
the mapping

�˜( ) =

Z
( ) (9.35)
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The original function can be recovered from its Fourier transform as

( ) =
1

2

Z
�˜( )

When ( ) is a probability density function, �˜( ) is its characteristic function.
For our applications, ( ) will be real valued. From (9.35), �˜( ) is complex valued.
When ( ) is a probability function of a discrete (or mixed) distribution, the de-
nitions can be easily generalized (see, e.g., Fisz [47]). For the discrete case, the
integrals become sums as given in the following denition.

Denition 9.13 Let denote a function dened for all integer values of that is
periodic with period length (i.e., + = for all ). For the vector ( 0 1 1),
the discrete Fourier transform is the mapping �˜ , = 1 0 1 , dened
by

�˜ =
1X

=0

exp

µ
2

¶
= 1 0 1 (9.36)

This mapping is bijective. In addition, �˜ is also periodic with period length . The
inverse mapping is

=
1

1X

=0

�˜ exp

µ
2

¶
= 1 0 1 (9.37)

This inverse mapping recovers the values of the original function.

Because of the periodic nature of and �˜, we can think of the discrete Fourier
transform as a bijective mapping of points into points. From (9.36), it is clear
that, to obtain values of �˜ , the number of terms that need to be evaluated is of
order 2, that is, ( 2).
The fast Fourier transform (FFT) is an algorithm that reduces the number of

computations required to be of order ( ln2 ). This can be a dramatic reduction
in computations when is large. The algorithm is not described here. The formulas
and algorithms can be found in Press et al. [144] and is implemented in most
computer packages including Excel R°. One requirement for using this method is
that the vector of discrete severity probabilities must be the same length as the
output vector and must be a power of 2.
In our applications, we use the FFT to invert the characteristic function when

discretization of the severity distribution is done. The steps are:

1. Discretize the severity distribution using some methods such as those de-
scribed in the previous section, obtaining the discretized severity distribution

(0) (1) ( 1)

where = 2 for some integer and is the number of points desired in the
distribution ( ) of aggregate claims.

2. Apply the FFT to this vector of values, obtaining ( ), the characteristic
function of the discretized distribution. The result is also a vector of = 2
values.
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3. Transform this vector using the pgf transformation of the claim frequency dis-
tribution, obtaining ( ) = [ ( )], which is the characteristic function,
that is, the discrete Fourier transform of the aggregate claims distribution, a
vector of = 2 values.

4. Apply the Inverse Fast Fourier Transform (IFFT), which is identical to the
FFT except for a sign change and a division by (see (9.37)). The result is a
vector of length = 2 values representing the exact distribution of aggregate
claims for the discretized severity model.

The FFT procedure requires a discretization of the severity distribution. When
the number of points in the severity distribution is less than = 2 , the severity
distribution vector must be padded with zeros until it is of length .
When the severity distribution places probability on values beyond = , as

is the case with most distributions discussed in Chapter 5, the probability that is
missed in the right-hand tail beyond can introduce some minor error in the nal
solution because the function and its transform are both assumed to be periodic
with period , when, in reality, they are not. The authors suggest putting all the
remaining probability at the nal point at = so that the probabilities add up
to 1 exactly. Doing so allows for periodicity to be used for the severity distribution
in the FFT algorithm and ensures that the nal set of aggregate probabilities will
sum to 1. However, it is imperative that be selected to be large enough so that
most all the aggregate probability occurs by the th point. The following example
provides an extreme illustration.

EXAMPLE 9.15

Suppose the random variable takes on the values 1, 2, and 3 with proba-
bilities 0.5, 0.4, and 0.1, respectively. Further suppose the number of claims
has the Poisson distribution with parameter = 3. Use the FFT to obtain
the distribution of using = 8 and = 4,096.

In either case, the probability distribution of is completed by adding
one zero at the beginning (because places probability at zero, the initial
representation of must also have the probability at zero given) and ei-
ther 4 or 4,092 zeros at the end. The rst 8 results from employing the
FFT and IFFT with = 4,096 appear in Table 9.15. The table shows
the intermediate steps for the rst few calculations. For example, consider
(5) = 0 99991176 0 0122713 .4 Recall that for the Poisson distribution,
( ) = exp[ ( 1)], and so

(0 99991176 0 0122713 ) = exp[3(0 99991176 0 0122713 1)]

= exp( 0 00026472)[cos( 0 0368139) + sin( 0 0368139)]

= 0 999058 0 036796

using Euler�’s formula. For the case = 8 is added in Table 9.16. The eight
probabilities sum to 1 as they should. For the case = 4,096, the probabilities

4 It is important to remember that we are not evaluating a function in the traditional sense. All
4,096 values of the FFT are found at once and the result depends on both the argument (5) and
(4,096).
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Table 9.15 FFT calculations for = 4,096.

( ) [ ( )] ( )

0 1 1 0.04979
1 0 99999647 0 0024544 0 99996230 0 0073630 0.07468
2 0 99998588 0 0049087 0 99984922 0 0147250 0.11575
3 0 99996823 0 0073630 0 99966078 0 0220851 0.13256
4 0 99994353 0 0098172 0 99939700 0 0294424 0.13597
5 0 99991176 0 0122714 0 99905794 0 0367961 0.12525
6 0 99987294 0 0147254 0 99864365 0 0441450 0.10558
7 0 99982706 0 0171793 0 99815421 0 0514883 0.08305

Table 9.16 Aggregate probabilities computed by the FFT and IFFT.

= 8 = 4,096
( ) ( )

0 0.11227 0.04979
1 0.11821 0.07468
2 0.14470 0.11575
3 0.15100 0.13256
4 0.14727 0.13597
5 0.13194 0.12525
6 0.10941 0.10558
7 0.08518 0.08305

also sum to 1, but there is not room here to show them all. It is easy to apply
the recursive formula to this problem, which veries that all of the entries for
= 4,096 are accurate to the ve decimal places presented. However, with
= 8, the FFT gives values that are clearly distorted. If any generalization

can be made, it is that more of the extra probability has been added to the
smaller values of . ¤

9.8.2 Direct numerical inversion

The inversion of the characteristic function (9.34) has been done using approximate
integration methods by Heckman and Meyers [64] in the case of Poisson, binomial,
and negative binomial claim frequencies and continuous severity distributions. The
method is easily extended to other frequency distributions.
In this method, the severity distribution function is replaced by a piecewise

linear distribution. It further uses a maximum single-loss amount so the cdf jumps
to 1 at the maximum possible individual loss. The range of the severity random
variable is divided into intervals of possibly unequal length. The remaining steps
parallel those of the FFT method. Consider the cdf of the severity distribution
( ), 0 . Let 0 = 0 1 · · · be arbitrarily selected loss

values. Then the probability that losses lie in the interval ( 1 ] is given by
= ( ) ( 1). Using a uniform density over this interval results in the
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approximating density function ( ) = = ( 1) for 1 .
Any remaining probability +1 = 1 ( ) is placed as a spike at . This
approximating pdf is selected to make evaluation of the cf easy. It is not required
for direct inversion. The cf of the approximating severity distribution is

( ) =

Z

0

( )

=
X

=1

Z

1

+ +1

=
X

=1

1

+ +1

The cf can be separated into real and imaginary parts by using Euler�’s formula

= cos( ) + sin( )

Then the real part of the cf is

( ) = Re[ ( )] =
1X

=1

[sin( ) sin( 1)]

+ +1 cos( )

and the imaginary part is

( ) = Im[ ( )] =
1X

=1

[cos( 1) cos( )]

+ +1 sin( )

The cf of aggregate losses (9.34) is obtained as

( ) = [ ( )] = [ ( ) + ( )]

which can be rewritten as
( ) = ( ) ( )

because it is complex valued.
The distribution of aggregate claims is obtained as

( ) =
1

2
+
1
Z

0

( )
sin

µ ¶
(9.38)

where is the standard deviation of the distribution of aggregate losses. Approx-
imate integration techniques are used to evaluate (9.38) for any value of . The
reader is referred to Heckman and Meyers [64] for details. They also obtain the net
stop-loss (excess pure) premium for the aggregate loss distribution as

( ) = E[( )+] =

Z
( ) ( )

=

Z

0

( )
2

cos

µ ¶
cos

µ ¶¸

+
2

(9.39)
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from (9.38), where is the mean of the aggregate loss distribution and is the
deductible.
Equation (9.38) provides only a single value of the distribution, while (9.39)

provides only one value of the premium, but it does so quickly. The error of
approximation depends on the spacing of the numerical integration method but is
controllable.

9.8.3 Exercise

9.66 Repeat Exercises 9.61 and 9.62 using the inversion method.

9.9 CALCULATIONS WITH APPROXIMATE DISTRIBUTIONS

Whenever the severity distribution is calculated using an approximate method, the
result is, of course, an approximation to the true aggregate distribution. In par-
ticular, the true aggregate distribution is often continuous (except, perhaps, with
discrete probability at zero or at an aggregate censoring limit) while the approxi-
mate distribution may be any of the following:

�• Discrete with probability at equally spaced values (as with recursion and
FFT),

�• discrete with probability 1 at arbitrary values (as with simulation, see
Chapter 21), or

�• a piecewise linear distribution function (as with Heckman�—Meyers).

In this section we introduce reasonable ways to obtain values of ( ) and E[(
) ] from those approximating distributions. In all cases we assume that the true
distribution of aggregate payments is continuous, except, perhaps, with discrete
probability at = 0.

9.9.1 Arithmetic distributions

For recursion and the FFT, the approximating distribution can be written as
0 1 , where = Pr( = ) and refers to the approximating distrib-
ution. While several methods of undiscretizing this distribution are possible, we
introduce only one. It assumes we can obtain 0 = Pr( = 0), the true probability
that aggregate payments are zero. The method is based on constructing a contin-
uous approximation to by assuming the probability is uniformly spread over
the interval ( 1

2 ) to ( + 1
2) for = 1 2 . For the interval from 0 to 2, a

discrete probability of 0 is placed at zero and the remaining probability, 0 0 is
spread uniformly over the interval. Let be the random variable with this mixed
distribution. All quantities of interest are then computed using .

EXAMPLE 9.16

Let have the geometric distribution with = 2 and let have the exponen-
tial distribution with = 100. Use recursion with a span of 2 to approximate
the aggregate distribution and then obtain a continuous approximation.
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Table 9.17 Discrete approximation to the aggregate payments distribution.

( ) = ( )

0 0 0.009934 0.335556
1 2 0.019605 0.004415
2 4 0.019216 0.004386
3 6 0.018836 0.004356
4 8 0.018463 0.004327
5 10 0.018097 0.004299
6 12 0.017739 0.004270
7 14 0.017388 0.004242
8 16 0.017043 0.004214
9 18 0.016706 0.004186
10 20 0.016375 0.004158

The exponential distribution was discretized using the method that pre-
serves the rst moment. The probabilities appear in Table 9.17. Also pre-
sented are the aggregate probabilities computed using the recursive formula.
We also note that 0 = Pr( = 0) = (1+ ) 1 = 1

3 . For = 1 2 the con-
tinuous approximation has pdf ( ) = (2 ) 2 2 1 2 +1. We
also have Pr( = 0) = 1

3 and ( ) = (0 335556 1
3) 1 = 0 002223 0

1. ¤

Returning to the original problem, it is possible to work out the general formulas
for the basic quantities. For the cdf,

( ) = 0 +

Z

0

0 0

2

= 0 +
2
( 0 0) 0

2

and

( ) =

1X

=0

+

Z

( 1 2)

=

1X

=0

+
( 1 2)

µ
1

2

¶ µ
+
1

2

¶

For the limited expected value (LEV),

E[( ) ] = 0 0 +

Z

0

0 0

2
+ [1 ( )]

=
2 +1( 0 0)

( + 1)
+ [1 ( )] 0

2
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and

E[( ) ] = 0 0 +

Z 2

0

0 0

2
+

1X

=1

Z ( +1 2)

( 1 2)

+

Z

( 1 2)

+ [1 ( )]

=
( 2) ( 0 0)

+ 1
+

1X

=1

[( + 1 2) +1 ( 1 2) +1]

+ 1

+
+1 [( 1 2) ] +1

( + 1)

+ [1 ( )]

µ
1

2

¶ µ
+
1

2

¶

For = 1, the preceding formula reduces to

E( ) =

(1 0)
2

( 0 0) 0
2

4
( 0 0) +

1P

=1
+

2 [( 1 2) ]2

2

+ [1 ( )]

µ
1

2

¶ µ
+
1

2

¶
(9.40)

These formulas are summarized in Appendix E.

EXAMPLE 9.17

(Example 9.16 continued) Compute the cdf and LEV at integral values from
1 to 10 using , , and the exact distribution of aggregate losses.

The exact distribution is available for this example. It was developed in
Example 9.7 where it was determined that Pr( = 0) = (1 + ) 1 = 1

3 and
the pdf for the continuous part is

( ) =
(1 + )2

exp
(1 + )

¸
=

2

900
300 0

Thus we have

( ) = 1
3 +

Z

0

2

900
300 = 1 2

3
300

and

E( ) =

Z

0

2

900
300 + 2

3
300 = 200(1 300)

The requested values are given in Table 9.18. ¤
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Table 9.18 Comparison of true aggregate payment values and two approximations.

cdf LEV

1 0.335552 0.335556 0.335556 0.66556 0.66444 0.66556
2 0.337763 0.339971 0.337763 1.32890 1.32889 1.32890
3 0.339967 0.339971 0.339970 1.99003 1.98892 1.99003
4 0.342163 0.344357 0.342163 2.64897 2.64895 2.64896
5 0.344352 0.344357 0.344356 3.30571 3.30459 3.30570
6 0.346534 0.348713 0.346534 3.96027 3.96023 3.96025
7 0.348709 0.348713 0.348712 4.61264 4.61152 4.61263
8 0.350876 0.353040 0.350876 5.26285 5.26281 5.26284
9 0.353036 0.353040 0.353039 5.91089 5.90977 5.91088
10 0.355189 0.357339 0.355189 6.55678 6.55673 6.55676

9.9.2 Empirical distributions

When the approximate distribution is obtained by simulation (the simulation process
is discussed in Chapter 21), the result is an empirical distribution. Unlike approx-
imations produced by recursion or the FFT, simulation does not place the prob-
abilities at equally spaced values. As a result, it less clear how the approximate
distribution should be smoothed. With simulation usually involving tens or hun-
dreds of thousands of points, the individual points are likely to be close to each
other. For these reasons it seems su cient to simply use the empirical distribution
as the answer. That is, all calculations should be done using the approximate em-
pirical random variable, . The formulas for the commonly required quantities
are very simple. Let 1 2 be the simulated values. Then

( ) =
number of

and

E[( ) ] =
1 X

+ [1 ( )]

EXAMPLE 9.18

(Example 9.16 continued) Simulate 1,000 observations from the compound
model with geometric frequency and exponential severity. Use the results to
obtain values of the cdf and LEV for the integers from 1 to 10. The small
sample size was selected so that only about 30 values between zero and 10
(not including zero) are expected.

The simulations produced an aggregate payment of zero 331 times. The set
of nonzero values that were less than 10 plus the rst value past 10 are pre-
sented in Table 9.19. Other than zero, none of the values appeared more than
once in the simulation. The requested values from the empirical distribution
along with the true values are given in Table 9.20. ¤
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Table 9.19 Simulated values of aggregate losses.

1�—331 0 346 6.15
332 0.04 347 6.26
333 0.12 348 6.58
334 0.89 349 6.68
335 1.76 350 6.71
336 2.16 351 6.82
337 3.13 352 7.76
338 3.40 353 8.23
339 4.38 354 8.67
340 4.78 355 8.77
341 4.95 356 8.85
342 5.04 357 9.18
343 5.07 358 9.88
344 5.81 359 10.12
345 5.94

Table 9.20 Empirical and smoothed values from a simulation.

( ) ( ) E( ) E( )

0 0.331 0.333 0.0000 0.0000
1 0.334 0.336 0.6671 0.6656
2 0.335 0.338 1.3328 1.3289
3 0.336 0.340 1.9970 1.9900
4 0.338 0.342 2.6595 2.6490
5 0.341 0.344 3.3206 3.3057
6 0.345 0.347 3.9775 3.9603
7 0.351 0.349 4.6297 4.6126
8 0.352 0.351 5.2784 5.2629
9 0.356 0.353 5.9250 5.9109
10 0.358 0.355 6.5680 6.5568

9.9.3 Piecewise linear cdf

When using the Heckman�—Meyers inversion method, the output is approximate
values of the cdf ( ) at any set of desired values. The values are approximate
because the severity distribution function is required to be piecewise linear and
because approximate integration is used. Let # denote an arbitrary random vari-
able with cdf values as given by the Heckman�—Meyers method at arbitrarily selected
points 0 = 1 2 · · · and let = #( ). Also, set = 1 so that
no probability is lost. The easiest way to complete the description of the smoothed
distribution is to connect these points with straight lines. Let ## be the random
variable with this particular cdf. Intermediate values of the cdf of ## are found
by interpolation.

##( ) =
( 1) + ( ) 1

1
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The formula for the limited expected value is (for 1 )

E[( ## ) ] =

1X

=2

Z

1

1

1

+

Z

1

1

1
+ [1 ##( )]

=

1X

=2

( +1 +1
1 )( 1)

( + 1)( 1)

+
( +1 +1

1)( 1)

( + 1)( 1)

+ 1
( 1) + ( ) 1

1

¸

and when = 1,

E( ## ) =

1X

=2

( + 1)( 1)

2
+
( 2 2

1)( 1)

2( 1)

+ 1
( 1) + ( ) 1

1

¸
.

9.9.4 Exercises

9.67 Let the frequency (of losses) distribution be negative binomial with = 2
and = 2. Let the severity distribution (of losses) have the gamma distribution
with = 4 and = 25. Determine (200) and E( 200) for an ordinary per-loss
deductible of 25. Use the recursive formula to obtain the aggregate distribution
and use a discretization interval of 5 with the method of rounding to discretize the
severity distribution.

9.68 (Exercise 9.61 continued) Recall that the number of claims has a Poisson
distribution with = 5 and the amount of a single claim has a gamma distribu-
tion with = 0 5 and = 2,500. Determine the mean, standard deviation, and
90th percentile of payments by the insurance company under each of the following
coverages. Any computational method may be used.

(a) A maximum aggregate payment of 20,000.

(b) A per-claim ordinary deductible of 100 and a per claim maximum pay-
ment of 10,000. There is no aggregate maximum payment.

(c) A per-claim ordinary deductible of 100 with no maximum payment.
There is an aggregate ordinary deductible of 15,000, an aggregate coin-
surance factor of 0.8, and a maximum insurance payment of 20,000. This
scenario corresponds to an aggregate reinsurance provision.

9.69 (Exercise 9.62 continued) Recall that the number of payments has the Poisson�—
Poisson distribution with 1 = 10 and 2 = 4, while the payment per claim by the
insured is 5 with probability 0.75 and 10 with probability 0.25. Determine the
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expected payment by the insured under each of the following situations. Any com-
putational method may be used.

(a) A maximum payment of 400.

(b) A coinsurance arrangement where the insured pays 100% up to an ag-
gregate total of 300 and then pays 20% of aggregate payments above
300.

9.10 COMPARISON OF METHODS

The recursive method has some signicant advantages. The time required to com-
pute an entire distribution of points is reduced to ( 2) from ( 3) for the direct
convolution method. Furthermore, it provides exact values when the severity distri-
bution is itself discrete (arithmetic). The only source of error is in the discretization
of the severity distribution. Except for binomial models, the calculations are guar-
anteed to be numerically stable. This method is very easy to program in a few lines
of computer code. However, it has a few disadvantages. The recursive method only
works for the classes of frequency distributions described in Chapter 6. Using dis-
tributions not based on the ( 0) and ( 1) classes requires modication of the
formula or developing a new recursion. Numerous other recursions have recently
been developed in the actuarial and statistical literature.
The FFT method is easy to use in that it uses standard routines available with

many software packages. It is faster than the recursive method when is large
because it requires calculations of order ln2 rather than 2. However, if the
severity distribution has a xed (and not too large) number of points, the recursive
method will require fewer computations because the sum in (9.21) will have at most
terms, reducing the order of required computations to be of order , rather than

2 in the case of no upper limit of the severity. The FFT method can be extended
to the case where the severity distribution can take on negative values. Like the
recursive method, it produces the entire distribution.
The direct inversion method has been demonstrated to be very fast in calculat-

ing a single value of the aggregate distribution or the net stop-loss (excess pure)
premium for a single deductible . However, it requires a major computer pro-
gramming e ort. It has been developed by Heckman and Meyers [64] specically
for ( 0) frequency models. It is possible to generalize the computer code to han-
dle any distribution with a pgf that is a relatively simple function. This method
is much faster than the recursive method when the expected number of claims is
large. The speed does not depend on the size of in the case of the Poisson fre-
quency model. In addition to being complicated to program, the method involves
approximate integration whose errors depend on the method and interval size.
Through the use of transforms, both the FFT and inversion methods are able

to handle convolutions e ciently. For example, suppose a reinsurance agreement
was to cover the aggregate losses of three groups, each with unique frequency and
severity distributions. If = 1 2 3, are the aggregate losses for each group, the
characteristic function for the total aggregate losses = 1 + 2 + 3 is ( ) =

1
( )

2
( )

3
( ), and so the only extra work is some multiplications prior to

the inversion step. The recursive method does not accommodate convolutions as
easily.
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The Heckman�—Meyers method has some technical di culties when being applied
to severity distributions that are of the discrete type or have some anomalies, such
as heaping of losses at some round number (e.g., 1,000,000). At any jump in the
severity distribution function, a very short interval containing the jump needs to
be dened in setting up the points ( 1 2 ).
We save a discussion of simulation for last because it di ers greatly from the other

methods. For those not familiar with this method, an introduction is provided in
Chapter 21. The major advantage is a big one. If you can carefully articulate the
model, you should be able to obtain the aggregate distribution by simulation. The
programming e ort may take a little time but can be done in a straightforward
manner. Today�’s computers will conduct the simulation in a reasonable amount of
time. Most of the analytic methods were developed as a response to the excessive
computing time that simulations used to require. That is less of a problem now.
However, it is di cult to write a general-purpose simulation program. Instead,
it is usually necessary to write a new routine as each problem occurs. Thus it is
probably best to save the simulation approach for those problems that cannot be
solved by the other methods. Then, of course, it is worth the e ort because there
is no alternative.
One other drawback of simulation occurs in extremely low frequency situations

(which is where recursion excels). For example, consider an individual excess-of-
loss reinsurance in which reinsurance benets are paid on individual losses above
1,000,000, an event that occurs about 1 time in 100, but when it does, the tail
is extremely heavy (e.g., a Pareto distribution with small ). The simulation will
have to discard 99% of the generated losses and then will need a large number of
those that exceed the deductible (due to the large variation in losses). It may take
a long time to obtain a reliable answer. One possible solution for simulation is to
work with the conditional distribution of the loss variable, given that a payment
has been made.
No method is clearly superior for all problems. Each method has both advantages

and disadvantages when compared with the others. What we really have is an
embarrassment of riches. Twenty-ve years ago, actuaries wondered if there would
ever be e ective methods for determining aggregate distributions. Today we can
choose from several.

9.11 THE INDIVIDUAL RISK MODEL

9.11.1 The model

The individual risk model represents the aggregate loss as a xed sum of indepen-
dent (but not necessarily identically distributed) random variables:

= 1 + 2 + · · ·+

This formula is usually thought of as the sum of the losses from insurance
contracts, for example, persons covered under a group insurance policy.
The individual risk model was originally developed for life insurance in which

the probability of death within a year is and the xed benet paid for the death
of the th person is . In this case, the distribution of the loss to the insurer for
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the th policy is

( ) =

½
1 = 0

= .

The mean and variance of aggregate losses are

E( ) =
X

=1

and

Var( ) =
X

=1

2 (1 )

because the s are assumed to be independent. Then, the pgf of aggregate losses
is

( ) =
Y

=1

(1 + ) (9.41)

In the special case where all the risks are identical with = and = 1, the
pgf reduces to

( ) = [1 + ( 1)]

and in this case has a binomial distribution.
The individual risk model can be generalized as follows. Let = , where

1 1 are independent. The random variable is an indicator vari-
able that takes on the value 1 with probability and the value 0 with probability
1 . This variable indicates whether the th policy produced a payment. The
random variable can have any distribution and represents the amount of the
payment in respect of the th policy given that a payment was made. In the life
insurance case, is degenerate, with all probability on the value .
The mgf corresponding to (9.41) is

( ) =
Y

=1

[1 + ( )] (9.42)

If we let = E( ) and 2 = Var( ), then

E( ) =
X

=1

(9.43)

and

Var( ) =
X

=1

[ 2 + (1 ) 2] (9.44)

You are asked to verify these formulas in Exercise 9.70. The following example is
a simple version of this situation.
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EXAMPLE 9.19

Consider a group life insurance contract with an accidental death benet.
Assume that for all members the probability of death in the next year is 0.01
and that 30% of deaths are accidental. For 50 employees, the benet for an
ordinary death is 50,000 and for an accidental death it is 100,000. For the
remaining 25 employees, the benets are 75,000 and 150,000, respectively.
Develop an individual risk model and determine its mean and variance.

For all 75 employees = 0 01. For 50 employees, takes on the value
50,000 with probability 0.7 and 100,000 with probability 0.3. For them, =
65,000 and 2 = 525,000,000. For the remaining 25 employees takes on
the value 75,000 with probability 0.7 and 150,000 with probability 0.3. For
them, = 97,500 and 2 = 1,181,250,000. Then

E( ) = 50(0 01)(65,000) + 25(0 01)(97,500)

= 56,875

and

Var( ) = 50(0 01)(525,000,000) + 50(0 01)(0 99)(65,000)2

+25(0 01)(1,181,250,000) + 25(0 01)(0 99)(97,500)2

= 5,001,984,375. ¤

With regard to calculating the probabilities, there are at least three options. One
is to do an exact calculation, which involves numerous convolutions and almost
always requires more excessive computing time. Recursive formulas have been
developed, but they are cumbersome and are not presented here. See De Pril [32]
for one such method. One alternative is a parametric approximation as discussed
for the collective risk model. Another alternative is to replace the individual risk
model with a similar collective risk model and then do the calculations with that
model. These two approaches are presented here.

9.11.2 Parametric approximation

A normal, gamma, lognormal, or any other distribution can be used to approximate
the distribution, usually done by matching the rst few moments. Because the
normal, gamma, and lognormal distributions each have two parameters, the mean
and variance are su cient.

EXAMPLE 9.20

(Group life insurance) A small manufacturing business has a group life in-
surance contract on its 14 permanent employees. The actuary for the insurer
has selected a mortality table to represent the mortality of the group. Each
employee is insured for the amount of his or her salary rounded up to the next
1,000 dollars. The group�’s data are given in Table 9.21.
If the insurer adds a 45% relative loading to the net (pure) premium, what

are the chances that it will lose money in a given year? Use the normal and
lognormal approximations.
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Table 9.21 Employee data for Example 9.20.

Employee, Age Benet, Mortality rate,
(years) Sex

1 20 M 15,000 0.00149
2 23 M 16,000 0.00142
3 27 M 20,000 0.00128
4 30 M 28,000 0.00122
5 31 M 31,000 0.00123
6 46 M 18,000 0.00353
7 47 M 26,000 0.00394
8 49 M 24,000 0.00484
9 64 M 60,000 0.02182
10 17 F 14,000 0.00050
11 22 F 17,000 0.00050
12 26 F 19,000 0.00054
13 37 F 30,000 0.00103
14 55 F 55,000 0.00479

Total 373,000

The mean and variance of the aggregate losses for the group are

E( ) =
14X

=1

= 2,054 41

and

Var( ) =
14X

=1

2 (1 ) = 1 02534× 108

The premium being charged is 1 45 × 2 054 41 = 2,978 89. For the normal
approximation (in units of 1,000), the mean is 2 05441 and the variance is
102 534. Then the probability of a loss is

Pr( 2 97889) = Pr
2 97889 2 05441

(102 534)1 2

¸

= Pr( 0 0913)

= 0 46 or 46%

For the lognormal approximation (as in Example 9.4)

+ 1
2

2 = ln 2 05441 = 0 719989

and
2 + 2 2 = ln(102 534 + 2 054412) = 4 670533

From this = 0 895289 and 2 = 3 230555. Then

Pr( 2 97889) = 1
ln 2 97889 + 0 895289

(3 230555)1 2

¸

= 1 (1 105)

= 0 13 or 13% ¤
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9.11.3 Compound Poisson approximation

Because of the computational complexity of calculating the distribution of total
claims for a portfolio of risks using the individual risk model, it has been popular
to attempt to approximate the distribution by using the compound Poisson distri-
bution. As seen in Section 9.5, use of the compound Poisson allows calculation of
the total claims distribution by using a very simple recursive procedure or by using
the FFT.
To proceed, note that the indicator random variable has pgf ( ) = 1 +
, and thus (9.42) may be expressed as

( ) =
Y

=1

[ ( )] (9.45)

Note that has a binomial distribution with parameters = 1 and = .
To obtain the compound Poisson approximation, assume that has a Poisson
distribution with mean . If = , then the Poisson mean is the same as the
binomial mean, which should provide a good approximation if is close to zero.
An alternative to equating the mean is to equate the probability of no loss. For the
binomial distribution, that probability is 1 and for the Poisson distribution, it
is exp( ). Equating these two probabilities gives the alternative approximation
= ln(1 ) . This second approximation is appropriate in the context

of a group life insurance contract where a life is �“replaced�” upon death, leaving
the Poisson intensity unchanged by the death. Naturally the expected number of
losses is greater than

P
=1 . An alternative choice is proposed by Kornya [98].

It uses = (1 ), and results in an expected number of losses that exceeds
that using the method that equates the no-loss probabilities (see Exercise 9.71).
Regardless of the approximation used, Theorem 9.7 yields, from (9.45) using
( ) = exp[ ( 1)],

( ) =
Y

=1

exp{ [ ( ) 1]} = exp{ [ ( ) 1]}

where

=
X

=1

, and

( ) = 1
X

=1

( )

and so has pf or pdf

( ) = 1
X

=1

( ) (9.46)

which is a weighted average of the individual severity densities.
If Pr( = ) = 1 as in life insurance, then (9.46) becomes

( ) = Pr( = ) = 1
X

{ : = }

(9.47)

The numerator sums all probabilities associated with amount .
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Table 9.22 Aggregate distribution for Example 9.21.

( ) ( ) ( ) ( )

0 0.9530099 20 0.9618348 40 0.9735771 60 0.9990974
1 0.9530099 21 0.9618348 41 0.9735850 61 0.9990986
2 0.9530099 22 0.9618348 42 0.9736072 62 0.9990994
3 0.9530099 23 0.9618348 43 0.9736133 63 0.9990995
4 0.9530099 24 0.9664473 44 0.9736346 64 0.9990995
5 0.9530099 25 0.9664473 45 0.9736393 65 0.9990996
6 0.9530099 26 0.9702022 46 0.9736513 66 0.9990997
7 0.9530099 27 0.9702022 47 0.9736541 67 0.9990997
8 0.9530099 28 0.9713650 48 0.9736708 68 0.9990998
9 0.9530099 29 0.9713657 49 0.9736755 69 0.9991022
10 0.9530099 30 0.9723490 50 0.9736956 70 0.9991091
11 0.9530099 31 0.9735235 51 0.9736971 71 0.9991156
12 0.9530099 32 0.9735268 52 0.9737101 72 0.9991179
13 0.9530099 33 0.9735328 53 0.9737102 73 0.9991341
14 0.9534864 34 0.9735391 54 0.9737195 74 0.9991470
15 0.9549064 35 0.9735433 55 0.9782901 75 0.9991839
16 0.9562597 36 0.9735512 56 0.9782947 76 0.9992135
17 0.9567362 37 0.9735536 57 0.9782994 77 0.9992239
18 0.9601003 38 0.9735604 58 0.9783006 78 0.9992973
19 0.9606149 39 0.9735679 59 0.9783021 79 0.9993307

EXAMPLE 9.21

(Example 9.20 continued) Consider the group life case of Example 9.20. De-
rive a compound Poisson approximation with the means matched.

Using the compound Poisson approximation of this section with Poisson
parameter =

P
= 0 04813, the distribution function given in Table

9.22 is obtained. When these values are compared to the exact solution (not
presented here), the maximum error of 0.0002708 occurs at = 0. ¤

EXAMPLE 9.22

(Example 9.19 continued) Develop compound Poisson approximations using
all three methods suggested here. Compute the mean and variance for each
approximation and compare it to the exact value.

Using the method that matches the mean, we have = 50(0 01)+25(0 01) =
0 75. The severity distribution is

(50,000) =
50(0 01)(0 7)

0 75
= 0 4667

(75,000) =
25(0 01)(0 7)

0 75
= 0 2333

(100,000) =
50(0 01)(0 3)

0 75
= 0 2000

(150,000) =
25(0 01)(0 3)

0 75
= 0 1000.
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The mean is E( ) = 0 75(75,833 33) = 56,875, which matches the exact
value, and the variance is E( 2) = 0 75(6,729,166,667) = 5,046,875,000,
which exceeds the exact value.
For the method that preserves the probability of no losses, = 75 ln(0 99)

= 0 753775. For this method, the severity distribution turns out to be exactly
the same as before (because all individuals have the same value of ). Thus
the mean is 57,161 and the variance is 5,072,278,876, both of which exceed
the previous approximate values.
Using Kornya�’s method, = 75(0 01) 0 99 = 0 757576 and again the

severity distribution is unchanged. The mean is 57,449 and the variance is
5,097,853,535, which are the largest values of all. ¤

9.11.4 Exercises

9.70 Derive (9.43) and (9.44).

9.71 Demonstrate that the compound Poisson model given by = and (9.47)
produces a model with the same mean as the exact distribution but with a larger
variance. Then show that the one using = ln(1 ) must produce a larger
mean and even larger variance, and, nally, show that the one using = (1 )
must produce the largest mean and variance of all.

9.72 (*) Individual members of an insured group have independent claims. Aggre-
gate payment amounts for males have mean 2 and variance 4, while females have
mean 4 and variance 10. The premium for a group with future claims is the mean
of plus 2 times the standard deviation of . If the genders of the members of
a group of members are not known, the number of males is assumed to have a
binomial distribution with parameters and = 0 4. Let be the premium for
a group of 100 for which the genders of the members are not known and let be
the premium for a group of 40 males and 60 females. Determine .

9.73 (*) An insurance company assumes the claim probability for smokers is 0.02
while for nonsmokers it is 0.01. A group of mutually independent lives has coverage
of 1,000 per life. The company assumes that 20% of the lives are smokers. Based
on this assumption, the premium is set equal to 110% of expected claims. If 30%
of the lives are smokers, the probability that claims will exceed the premium is less
than 0.20. Using the normal approximation, determine the minimum number of
lives that must be in the group.

9.74 (*) Based on the individual risk model with independent claims, the cumula-
tive distribution function of aggregate claims for a portfolio of life insurance policies
is as in Table 9.23. One policy with face amount 100 and probability of claim 0.20
is increased in face amount to 200. Determine the probability that aggregate claims
for the revised portfolio will not exceed 500.

9.75 (*) A group life insurance contract covering independent lives is rated in the
three age groupings as given in Table 9.24. The insurer prices the contract so that
the probability that claims will exceed the premium is 0.05. Using the normal
approximation, determine the premium that the insurer will charge.
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Table 9.23 Distribution for Exercise 9.74.

( )

0 0.40
100 0.58
200 0.64
300 0.69
400 0.70
500 0.78
600 0.96
700 1.00

Table 9.24 Data for Exercise 9.75.

Mean of the
Probability exponential

Age Number in of claim distribution
group age group per life of claim amounts

18�—35 400 0.03 5
36�—50 300 0.07 3
51�—65 200 0.10 2

Table 9.25 Data for Exercise 9.76.

Distribution of annual charges
Probability given that a claim occcurs

Service of claim Mean Variance

O ce visits 0.7 160 4,900
Surgery 0.2 600 20,000
Other services 0.5 240 8,100

9.76 (*) The probability model for the distribution of annual claims per member in
a health plan is shown in Table 9.25. Independence of costs and occurrences among
services and members is assumed. Using the normal approximation, determine the
minimum number of members that a plan must have such that the probability that
actual charges will exceed 115% of the expected charges is less than 0.10.

9.77 (*) An insurer has a portfolio of independent risks as given in Table 9.26.
The insurer sets and such that aggregate claims have expected value 100,000
and minimum variance. Determine .

9.78 (*) An insurance company has a portfolio of independent one-year term life
policies as given in Table 9.27. The actuary approximates the distribution of claims
in the individual model using the compound Poisson model in which the expected
number of claims is the same as in the individual model. Determine the maximum
value of such that the variance of the compound Poisson approximation is less
than 4,500.
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9.79 (*) An insurance company sold one-year term life insurance on a group of
2,300 independent lives as given in Table 9.28. The insurance company reinsures
amounts in excess of 100,000 on each life. The reinsurer wishes to charge a premium
that is su cient to guarantee that it will lose money 5% of the time on such groups.
Obtain the appropriate premium by each of the following ways:

(a) Using a normal approximation to the aggregate claims distribution.

(b) Using a lognormal approximation.

(c) Using a gamma approximation.

(d) Using the compound Poisson approximation that matches the means.

9.80 A group insurance contract covers 1,000 employees. An employee can have at
most one claim per year. For 500 employees, there is a 0.02 probability of a claim
and when there is a claim, the amount has an exponential distribution with mean
500. For 250 other employees, there is a 0.03 probability of a claim and amounts
are exponential with mean 750. For the remaining 250 employees, the probability
is 0.04 and the mean is 1,000. Determine the exact mean and variance of total
claims payments. Next, construct a compound Poisson model with the same mean
and determine the variance of this model.

9.12 TVaR FOR AGGREGATE LOSSES

The calculation of the TVaR for continuous and discrete distributions is discussed
in Sections 5.5 and 6.14. So far in the current chapter, we have dealt with the
calculation of the exact (or approximating) distribution of the sum of a random
number of losses. Clearly, the shape of this distribution depends on the shape of
both the discrete frequency distribution and the continuous (or possibly discrete)
severity distribution. On one hand, if the severity distribution is light-tailed and
the frequency distribution is not, then the tail of the aggregate loss distribution
will be largely determined by the frequency distribution. Indeed, in the extreme
case where all losses are of equal size, the shape of the aggregate loss distribution

Table 9.26 Data for Exercise 9.77.

Probability Number
Class of claim Benet of risks

Standard 0.2 3,500
Substandard 0.6 2,000

Table 9.27 Data for Exercise 9.78.

Number Benet Probability
Class in class amount of a claim

1 500 0.01
2 500 2 0.02
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Table 9.28 Data for Exercise 9.79.

Class Benet amount Probability of death Number of policies

1 100,000 0.10 500
2 200,000 0.02 500
3 300,000 0.02 500
4 200,000 0.10 300
5 200,000 0.10 500

is completely determined by the frequency distribution. On the other hand, if the
severity distribution is heavy-tailed and the frequency is not, then the shape of the
tail of the aggregate loss distribution will be determined by the shape of the severity
distribution because extreme outcomes will be determined with high probability by
a single, or at least very few, large losses. In practice, if both the frequency and
severity distribution are specied, it is easy to compute the TVaR at a specied
quantile.

9.12.1 TVaR for discrete aggregate loss distributions

We discuss in earlier sections in this chapter the numerical evaluation of the aggre-
gate loss distribution requires a discretization of the severity distribution resulting
in a discretized aggregate loss distribution. We, therefore, give formulas for the dis-
crete case. Consider the random variable representing the aggregate losses. The
overall mean is the product of the means of the frequency and severity distributions.
Then the TVaR at quantile for this distribution is5

TVaR ( ) = E ( | )

= +

P
( )+ ( )

1 ( )
(9.48)

Noting that

X
( )+ ( ) =

X
( ) ( ) +

X
( )+ ( )

= E( ) +
X

( )+ ( )

= E( ) +
X

( ) ( ) (9.49)

we see that, because 0, the last sum in equation (9.49) is taken over a nite
number of points, the points of support up to the quantile

5The quantile must be one of the points of support of the aggregate loss distributions. If the
selected quantile is not such a point, the TVaR can be calculated at the two adjacent points and
the results interpolated to get an approximate value of the desired TVaR.
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Then the result of the equation (9.49) can be substituted into equation (9.48) to
obtain the value of the TVaR. The value of the TVaR at high quantiles depends on
the shape of the aggregate loss distribution. For certain distributions, we have ana-
lytic results that can give us very good estimates of the TVaR. To get those results,
we rst need to analyze the extreme tail behavior of the aggregate loss distribution.
We rst focus on frequency distributions and then on severity distributions.

9.12.2 Aggregate TVaR for some frequency distributions

We use the notation ( ) ( ), to denote that

lim
( )

( )
= 1

Denition 9.14 A function ( ) is said to be slowly varying at innity if
( ) ( ), for all 0

The logarithm function ln( ) and any constant function are slowly varying at
innity while the exponential function exp( ) is not.
We now consider frequency distributions that satisfy

( ) (9.50)

where 0 1 and ( ) is slowly varying at innity. Distributions satisfying
formula (9.50) include the negative binomial (see Exercise 9.81), the geometric,
the logarithmic, Poisson�—ETNB (when 1 0) (see Teugels and Willmot
[172]) including the Poisson�—inverse Gaussian, and mixed Poisson distributions with
mixing distributions that are su ciently heavy-tailed (see Willmot [186]) and many
compound distributions (see Willmot [185]).
We also consider severity distributions that have a moment generating function.

In addition, we assume that there exists a number 0 satisfying

( ) =
1

(9.51)

In very general terms, this condition ensures that the severity distribution is not
too heavy-tailed. For distributions whose moment generating functions increase
indenitely, the condition is always satised. However, some distributions (e.g.,
inverse Gaussian) have moment generating functions that have an upper limit, in
which case condition (9.51) is satised only for some values of .
The following theorem of Embrechts, Maejima, and Teugels [40] gives the as-

ymptotic shape of the tail of the aggregate loss distribution for large quantiles.

Theorem 9.15 Let denote that probability function of a counting distribution
satisfying condition (9.50), and let ( ) denote the mgf of a nonarithmetic sever-
ity distribution satisfying condition (9.51). Then if 0( ) , the tail of the
corresponding aggregate loss distribution satises

1 ( )
( )

[ 0( )]
+1 (9.52)
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This theorem shows that the tail of the aggregate loss distribution looks like
the product of a gamma density and a slowly varying function. The terms in the
denominator form the necessary normalizing constant. The asymptotic formula for
the tail in Theorem 9.15 can be used as an approximation for the tail for high
quantiles. Having obtained this, we can obtain approximate values of the TVaR
from

TVaR ( ) = E ( | )

= +

R
( ) ( )

1 ( )

= +

R
[1 ( )]

1 ( )

In this situation we can get an asymptotic formula for the TVaR. Formula (9.52)
may be expressed as

1 ( ) ( ) (9.53)

where

( ) =
( )

[ 0( )] +1

and ( ) varies slowly at innity because ( ) does. From Grandell [57, p. 181], it
follows from (9.53) that

Z
[1 ( )]

( )

Therefore, R
[1 ( )]

1 ( )

1

and we obtain the TVaR approximately as

TVaR ( ) = E ( | )

+
1

which is exactly the TVaR for the exponential distribution with mean 1 . In this
case, the extreme tail becomes approximately exponential, and so the conditional
expected excess over the quantile is constant.

9.12.3 Aggregate TVaR for some severity distributions

In this subsection, we consider the aggregate TVaR based on properties of the
severity distribution rather than the frequency distribution. Explicit expressions
are normally not available (the case with mixed Erlang severity distributions is a
notable exception, as follows from Exercise 9.85), but using di erent arguments
than those used in Section 9.12.2, we can still obtain asymptotic results for the tail
and the TVaR of the aggregate loss distribution.
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We consider the class of severity distributions satisfying, for some 0, the
conditions

lim
1 2( )

1 ( )
= 2 ( ) (9.54)

and

lim
1 ( )

1 ( )
= 0 (9.55)

When = 0, the subclass is referred to as the class of subexponential distributions.
They are heavy tailed and can be shown to have no moment generating function so
that Theorem 9.15 cannot be used. The subexponential class is broad and includes
many of the distributions discussed in Chapter 5. A notable subclass of the class of
subexponential distributions is the class of distribution with regularly varying tails,
that is, those which satisfy

( ) ( ) (9.56)

where ( ) is slowly varying at innity and 0
The transformed beta family of distributions satises (9.56) with in (9.56)

replaced by and ( ) constant (see Exercise 9.82).
If 0, distributions satisfying (9.54) and (9.55) are sometimes calledmedium-

tailed. This includes distributions with pdf satisfying

( ) 1 (9.57)

with 0. The inverse Gaussian distribution satises (9.57) with = 0 5 and
= (2 2) (see Exercise 9.83).
Teugels [171] shows that if (9.54) and (9.55) hold, then

1 ( ) 0[ ( )] ( ) (9.58)

as long as ( ) for some ( ). In the subexponential case, (0) = 1
and 0(1) =E[ ]
The class of medium-tailed distributions may or may not determine the tail of

the aggregate loss distribution. As an illustration, suppose the claim frequency
distribution satises (9.50) and the severity distribution is medium-tailed. If ( )
is the claim frequency pgf, then by the ratio test for convergence, its radius of
convergence is 1 , that is, | ( )| if | | 1 and | ( )| = if | | 1 .
Note that the niteness of (1 ) is not specied. Therefore, if ( ) 1 , then
0[ ( )] and the preceding medium-tailed result applies. If ( ) 1 ,

however, 0 satisfying (9.51) may be found, and Theorem 9.15 applies.
The asymptotic formula (9.58) allows for asymptotic estimates of the TVaR.

EXAMPLE 9.23

Derive an asymptotic formula for the aggregate TVaR in the case where the
severity distribution has regularly varying tails given by (9.56).

If (9.56) holds, then using Grandell [57, p. 181], if 1,
Z

[1 ( )] ( )
1

1
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Therefore R
[1 ( )]

1 ( ) 1

and with =

lim
TVaR ( )

= 1 + lim
TVaR ( )

= 1 +
1

1

That is, if 1,
TVaR ( )

1

Now, suppose that the claim severity distribution has pdf ( ) and hazard
rate function ( ) = ( ) ( ) that satises

( ) ( )

where ( ) is a (simpler) limiting hazard rate function. Then, by L�’Hôpital�’s
rule,

lim

R
[1 ( )]

1 ( )
= lim

R
[1 ( )]
0[ ( )] ( )

= lim
1 ( )
0[ ( )] ( )

= lim
( )

( )

=
1

( )

Thus, with replaced by ,

TVaR ( )
1

( )
(9.59)

yielding the approximate formula for large ,

TVaR ( ) +
1

( )
(9.60)

In any particular application, it remains to identify ( ). ¤

EXAMPLE 9.24

Approximate the aggregate TVaR if the claim severity pdf satises (9.57) with
0.

By L�’Hôpital�’s rule,

lim
1

( )
= lim

( 1) 2 1

( )

= lim
1

( )

µ
1
¶

=
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Thus, ( ) ( ) 1 , and consequently

( ) =
( )

( )

1

( ) 1
=

This result means that ( ) = , yielding the approximation

TVaR ( ) +
1

for large values of . ¤

EXAMPLE 9.25

Approximate the aggregate TVaR in the case with a lognormal severity dis-
tribution.

Embrechts, Goldie, and Veraverbeke [38] show that the lognormal distrib-
ution is subexponential. The pdf is

( ) =
1

2
exp

1

2 2
(ln )2

¸
0

To identify ( ), consider the function

( ) =
exp

£
1
2 2 (ln )2

¤

ln
= 2

µ

ln

¶
( )

Note that

0( ) =
1
(ln ) 2 1

2

¸
exp

1

2 2
(ln )2

¸

= 2
1
2
+ (ln ) 2

¸
( )

Because ( ) 0 as , L�’Hôpital�’s rule yields

lim
( )

( )
= lim

( )
0( )

=
1

2
lim

1
2
+ (ln ) 2

¸ 1

=
2

Thus,

( )
2

( ) =
1

2

µ

ln

¶
exp

1

2 2
(ln )2

¸

In turn,

( ) =
( )

( )

2 ( )

( )
=
ln

2
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That is, the lognormal distribution has asymptotic hazard rate

( ) =
ln

2

Finally, the asymptotic approximation for the TVaR of the lognormal distri-
bution is

TVaR ( ) = ( | ) +
2

ln

which increases at a rate faster than linear. ¤

9.12.4 Summary

Section 9.12 and related results suggest that the tail behavior of the aggregate loss
distribution is essentially determined by the heavier of the frequency and severity
distributions. In particular,

1. If the frequency distribution is su ciently heavy-tailed and the severity distri-
bution is light-tailed, the tail of the aggregate loss distribution is determined
by the frequency distribution through Theorem 9.15.

2. If the severity distribution is su ciently heavy-tailed and if the frequency
distribution has a moment generating function, and is thus light-tailed, the
tail of the aggregate loss distribution looks like a rescaled severity distribution.

3. For medium-tailed severity distributions, such as the inverse Gaussian, the
tail of the aggregate loss distribution may or may not be determined by the
severity distribution, depending on the parameter values of that severity dis-
tribution.

9.12.5 Exercises

9.81 Use Stirling�’s formula,

( ) 2 0 5

to show that the negative binomial pf (Appendix B) satises

(1 + )

( )
1

µ

1 +

¶

9.82 Prove that the transformed beta tail (Appendix A) satises

( )
( + )

( + 1) ( )

³ ´

9.83 Prove that the inverse Gaussian pdf (Appendix A) satises

( )

r

2
1 5 (2 2)
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9.84 Let be an arbitrary claim severity random variable. Prove that (9.59)
implies that

E( | ) E( | )

which means that the aggregate mean excess loss function is the same asymptoti-
cally as that of the claim severity.

9.85 Consider a compound distribution with mixed Erlang severities from Example
9.9. Prove, using Exercise 9.41 that

TVaR ( ) = +

P
=0

³P
=
¯
´
( )

!
P

=0
¯ ( )

!

where ( ) =
³P

=0

´
=
P

=0 , and ¯ =
P

= +1 = 1
P

=0
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DISCRETE-TIME RUIN MODELS

10.1 INTRODUCTION

The risk assumed with a portfolio of insurance contracts is di cult to assess, but
it is, nevertheless, important to attempt to do so in order to ensure the viability
of an insurance operation. The distribution of total claims over a xed period of
time is an obvious input parameter to such a process, and this quantity has been
the subject of the previous chapters.
In this chapter we take a multiperiod approach in which the fortunes of the

policy, portfolio, or company are followed over time. The most common use of this
approach is ruin theory, in which the quantity of interest is the amount of surplus,
with ruin occurring when the surplus becomes negative. To track surplus we must
model more than the claim payments. We must include premiums, investment
income, and expenses, along with any other item that impacts the cash ow.
The models described here and in Chapter 11 are quite simple and idealized

in order to maintain mathematical simplicity. Consequently, the output from the
analysis should not be viewed as a representation of absolute reality, but, rather, as
important additional information on the risk associated with the portfolio of busi-

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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284 DISCRETE-TIME RUIN MODELS

ness. Such information is useful for long-run nancial planning and maintenance of
the insurer�’s solvency.
This chapter is organized into two parts. The rst part (Section 10.2) introduces

process models. The appropriate denitions are made and the terms of ruin theory
dened. The second part (Section 10.3) analyzes discrete-time models using tools
presented in the previous chapters. An analysis of continuous-time models is cov-
ered in Chapter 11 and requires the use of stochastic processes. Two processes are
analyzed: the compound Poisson process and Brownian motion. The compound
Poisson process has been the standard model for ruin analysis in actuarial science,
while Brownian motion has found considerable use in modern nancial theory and
also can be used as an approximation to the compound Poisson process.

10.2 PROCESS MODELS FOR INSURANCE

10.2.1 Processes

We now want to view the evolution of the portfolio over time. With that in mind,
we dene two kinds of processes. We note that, while processes that involve ran-
dom events are usually called stochastic processes, we do not employ the modier
�“stochastic�” and, instead, trust that the context makes it clear which processes are
random and which are not.

Denition 10.1 A continuous-time process is denoted { : 0}.

In general, as discussed in Section 6.6, it is insu cient to describe the process by
specifying the distribution of for arbitrary . Many processes have correlations
between the values observed at di erent times.

EXAMPLE 10.1

Let { : 0} be the total losses paid from time 0 to time . Indicate how
the collective risk model of Chapter 9 may be used to describe this process.

For the joint distribution of ( 1 ), suppose 1 · · · . Let
= 1 with 0 = 0 = 0. Let the have independent distri-

butions given by the collective risk model. The individual loss distributions
could be identical, while the frequency distribution would have a mean that
is proportional to the length of the time period, 1. An example of a
realization of this process (called a sample path) is given in Figure 10.1. ¤

A discrete-time process can be derived from a continuous-time process by just
writing down the values of at integral times. In this chapter, all discrete-time
processes take measurements at the end of each observation period, such as a month,
quarter, or year.

EXAMPLE 10.2

(Example 10.1 continued) Convert the process to a discrete time process with
stationary, independent increments.
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Figure 10.1 Continuous total loss process, .
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Figure 10.2 Discrete total loss process, �˜ .

Let 1 2 be the amount of the total losses in each period where the
s are i.i.d. and each has a compound distribution. Then let the total

loss process be = 1 + · · · + . The process has stationary increments
because = +1 + · · · + and its distribution depends only on the
number of s, which is . The property of independent increments follows
directly from the independence of the s. Figure 10.2 is the discrete-time
version of Figure 10.1. ¤

10.2.2 An insurance model

The earlier examples have already illustrated most of the model we will use for the
insurance process. We are interested in the surplus process { : 0} (or perhaps
its discrete-time version, { : = 0 1 }), which measures the surplus of the
portfolio at time . We begin at time zero with = 0, the initial surplus. We
think of the surplus in the accounting sense in that it represents excess funds that
would not be needed if the portfolio terminated today. For an ongoing concern, a
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positive value provides protection against adversity. The surplus at time is

= 0 +

where { : 0} is the premium process, which measures all premiums (net of
expenses) collected up to time , and { : 0} is the loss process, which measures
all losses paid up to time . We make the following three observations:

1. may be written or earned premiums, as appropriate;

2. may be paid or incurred losses, again, as appropriate;

3. may depend on for . For example, dividends based on favorable
past loss experience may reduce the current premium.

It is possible, though not necessary, to separate the frequency and severity com-
ponents of . Let { : 0} be the claims process that records the number of
claims as of time . Then let = 1+ · · ·+ . The sequence { 1 2 } need
not consist of i.i.d. variables. However, if it does and the sequence is independent
of for all , then will have a compound distribution.
We now look at two special cases of the surplus process. These are the only ones

that will be studied.

10.2.2.1 A discrete-time model Let the increment in the surplus process in year
be dened as

= 1 + 1 = 1 2

Then the progression of surplus is

= 1 + = 1 2

It will be relatively easy to learn about the distribution of { : = 1 2 }
provided that the random variable either is independent of the other s or
only depends on the value of 1. The dependency of on 1 allows us to
pay a dividend based on the surplus at the end of the previous year (because
depends on ).
In Section 10.3, two methods of determining the distribution of the s are pre-

sented. These are computationally intensive, but given enough time and resources,
the answers are easy to obtain.

10.2.2.2 A continuous-time model In most cases it is extremely di cult to analyze
continuous-time models, because the joint distribution must be developed at every
time point, not just at a countable set of time points. One model that has been
extensively analyzed is the compound Poisson claim process where premiums are
collected at a constant continuous nonrandom rate,

= (1 + )E( 1)

and the total loss process is = 1+ · · ·+ , where { : 0} is the Poisson
process. This process is discussed in Section 6.6.2. It su ces for now to note that
for any period, the number of losses has the Poisson distribution with a mean that
is proportional to the length of the time period.
Because this model is more di cult to work with, Chapter 11 is entirely devoted

to its development and analysis. We are now ready to dene the quantity of interest,
the one that measures the portfolio�’s chance for success.
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10.2.3 Ruin

The main purpose for building a process model is to determine if the portfolio will
survive over time. The probability of survival can be dened in four di erent ways.

Denition 10.2 The continuous-time, innite-horizon survival probabil-
ity is given by

( ) = Pr( 0 for all 0| 0 = ).

Here we continuously check the surplus and demand that the portfolio be solvent
forever. Both continuous checking and a requirement that the portfolio survive
forever are unrealistic. In practice, it is more likely that surplus is checked at
regular intervals. While we would like our portfolio to last forever, it is too much to
ask that our model be capable of forecasting innitely far into the future. A more
useful quantity follows.

Denition 10.3 The discrete-time, nite-horizon survival probability is
given by

�˜( ) = Pr( 0 for all = 0 1 | 0 = ).

Here the portfolio is required to survive periods (usually years), and we only
check at the end of each period. There are two intermediate cases.

Denition 10.4 The continuous-time, nite-horizon survival probability
is given by

( ) = Pr( 0 for all 0 | 0 = )

and the discrete-time, innite-horizon survival probability is given by

�˜( ) = Pr( 0 for all = 0 1 | 0 = ).

It should be clear that the following inequalities hold:

�˜( ) �˜( ) ( )

and
�˜( ) ( ) ( ).

There are also some limits that should be equally obvious. They are

lim ( ) = ( )

and
lim �˜( ) = �˜( ).

In many cases, convergence is rapid, meaning that the choice of a nite or innite
horizon should depend as much on the ease of calculation as on the appropriateness
of the model. We will nd that, if the Poisson process holds, innite-horizon prob-
abilities are easier to obtain. For other cases, the nite-horizon calculation may be
easier.
Although we have not dened notation to express them, there is another pair

of limits. As the frequency with which surplus is checked increases (i.e., the num-
ber of times per year), the discrete-time survival probabilities converge to their
continuous-time counterparts.
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As this subsection refers to ruin, we close by dening the probability of ruin.

Denition 10.5 The continuous-time, innite-horizon ruin probability is
given by

( ) = 1 ( )

and the other three ruin probabilities are dened and denoted in a similar manner.

10.3 DISCRETE, FINITE-TIME RUIN PROBABILITIES

10.3.1 The discrete-time process

Let be the premium collected in the th period and let be the losses paid in
the th period. We also add one generalization. Let be any cash ow other than
the collection of premiums and the payment of losses. The most signicant cash
ow is the earning of investment income on the surplus available at the beginning
of the period. The surplus at the end of the th period is then

= +
X

=1

( + ) = 1 + +

The nal assumption is that, given 1, the random variable = +
depends only on 1 and not on any other previous experience. This assumption
makes { : = 1 2 } a Markov process.
To evaluate ruin probabilities, we consider a second process dened as follows.

First, dene

=

½
0 1 0

1 0

= 1 + (10.1)

where the new process starts with 0 = . In this case, the nite-horizon survival
probability is

�˜( ) = Pr( 0)

The reason we need only check at time is that, once ruined, this process is not
allowed to become nonnegative. The following example illustrates this distinction
and is a preview of the method presented in detail in Section 10.3.2.

EXAMPLE 10.3

Consider a process with an initial surplus of 2, a xed annual premium of 3,
and losses of either 0 or 6 with probabilities 0.6 and 0.4, respectively. There
are no other cash ows. Determine �˜(2 2).

There are only two possible values for 1 5 and 1, with probabilities 0.6
and 0.4. In each year, takes the values 3 and 3 with probabilities 0.6
and 0.4. For year 2, there are four possible ways for the process to end. They
are listed in Table 10.1. Then, �˜(2 2) = 0 36+0 24 = 0 60. Note that for 2,
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Table 10.1 Calculations for Example 10.3.

Case 1 2 2 2 Probability

1 5 3 3 8 0.36
2 5 3 3 2 0.24
3 1 3 0 1 0.24
4 1 3 0 1 0.16

the process would continue for cases 3 and 4, producing values of 2 and 4.
But our process is not allowed to recover from ruin, and so case 3 must be
forced to remain negative. ¤

10.3.2 Evaluating the probability of ruin

There are three ways to evaluate the ruin probability. One way that is always
available is simulation. Just as the aggregate loss distribution can be simulated, the
progress of surplus can also be simulated. For extremely complicated models (e.g.,
one encompassing medical benets, including hospitalization, prescription drugs,
and outpatient visits as well as random ination, interest rates, and utilization
rates), this may be the only way to proceed. For more modest settings, a brute
force method using convolutions can be used. It is the only one that is illustrated
in this section. In some cases it is also possible to use the inversion method.
For any practical use of this method, the distributions of all the random variables

involved should be discrete and have nite support. If they are not, some discrete
approximation should be constructed. The calculation is done recursively, using
(10.1). Rather than develop intricate notation and formulas, it is easier to illustrate
the process with an example. This is a situation where it is easier to just do the
work than to explain it through formulas.

EXAMPLE 10.4

Suppose that annual losses can assume the values 0, 2, 4, and 6, with prob-
abilities 0.4, 0.3, 0.2, and 0.1, respectively. Further suppose that the initial
surplus is 2 and a premium of 2.5 is collected at the beginning of each year.
Interest is earned at 10% on any surplus available at the beginning of the
year because losses are paid at the end of the year. In addition, a rebate of
0.5 is given in any year in which there are no losses. Determine the survival
probability at the end of each of the rst two years.

First note that the rebate cannot be such that it is applied to the next
year�’s premium. Doing so would require that we begin the year not only
knowing the surplus but also if a rebate were to be provided.
At time zero, �˜(2 0) = 0. The rst year ends with four possible surplus

values. Those values and their probabilities are
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Surplus at time 1 Probability
(2 + 2 5)(1 1) 0 0 5 = 4 45 0 4
(2 + 2 5)(1 1) 2 = 2 95 0 3
(2 + 2 5)(1 1) 4 = 0 95 0 2
(2 + 2 5)(1 1) 6 = 1 05 0 1

The only case producing ruin is the last one, and so �˜(2 1) = 0 1. Year two
has twelve possible outcomes (three ways the year can start times four ways
the year can unfold). A summary follows:

Initial surplus Loss Ending surplus Probability
4 95 0 7 695 0 4(0 4) = 0 16
4 95 2 6 195 0 4(0 3) = 0 12
4 95 4 4 195 0 4(0 2) = 0 08
4 95 6 2 195 0 4(0 1) = 0 04
2 95 0 5 495 0 3(0 4) = 0 12
2 95 2 3 995 0 3(0 3) = 0 09
2 95 4 1 995 0 3(0 2) = 0 06
2 95 6 0 005 0 3(0 1) = 0 03
0 95 0 3 295 0 2(0 4) = 0 08
0 95 2 1 795 0 2(0 3) = 0 06
0 95 4 0 205 0 2(0 2) = 0 04
0 95 6 2 205 0 2(0 1) = 0 02

For example, the ending surplus in the rst row is (4 95+2 5)1 1 0 5 = 7 695.
There are three cases of ruin in the second year with probabilities totalling
0.09. Thus, �˜(2 2) = 0 1 + 0 09 = 0 19. ¤

It should be easy to see that the number of possible ending surplus values as
well as the number of decimal places can increase rapidly. At some point, rounding
would seem to be a good idea. A simple way to do this is to demand that at each
period the only allowable values are some multiple of , a span that may need
to increase from period to period. When probability is assigned to some value that
is not a multiple of , it is distributed to the two nearest values in a way that will
preserve the mean (spreading to more values could preserve higher moments).

EXAMPLE 10.5

(Example 10.4 continued) Distribute the probabilities for the surplus at the
end of year 2 using a span of = 2.

The probability of 0.04 at 1.645 must be distributed to the points 0 and
2. To preserve the mean, 0 355(0 04) 2 = 0 0071 is placed at zero and the
remaining 0 0329 is placed at 2. The expected value is 0 0071(0)+0 0329(2) =
0 0658, which matches the original value of 0 04(1 645). The value 0.355 is
the distance from the point in question (1.645) to the next span point (2), and
the denominator is the span. The probability is then placed at the previous
span point. The resulting approximate distribution is given in Table 10.2. ¤
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Table 10.2 Probabilities for Example 10.5.

1 0 0.0134
2 2 0.189225
3 4 0.258975
4 6 0.2568
5 8 0.0916

10.3.3 Exercises

10.1 The total claims paid in a year can be 0, 5, 10, 15, or 20 with probabilities
0.4, 0.3, 0.15, 0.1, and 0.05, respectively. Annual premiums of 6 are collected at
the beginning of each year. Interest of 10% is earned on any funds available at the
beginning of the year, and claims are paid at the end of the year. Determine �˜(2 3)
exactly.

10.2 (*) An insurance company has an initial surplus of 1, and a premium of 2
is collected at the beginning of each year. Annual losses, paid at the end of the
year, are 0 with probability 0.6, 2 with probability 0.3, and 6 with probability 0.1.
Capital available at the beginning of each year earns 10% interest received at the
end of the year. Determine �˜(1 3).
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CONTINUOUS-TIME RUIN
MODELS

11.1 INTRODUCTION

In this chapter we turn to models that examine surplus continuously over time.
Because these models tend to be di cult to analyze, we begin by restricting at-
tention to models in which the number of claims has a Poisson distribution. In
the discrete-time case we found that answers could be obtained by brute force.
For the continuous case we nd that exact, analytic solutions can be obtained for
some situations, and that approximations and an upper bound can be obtained
for many situations. In this section we review the Poisson process and discuss the
continuous-time approach to ruin.

11.1.1 The Poisson process

We recall from Section 6.6.2 some of the basic properties of the Poisson process
{ : 0} representing the number of claims on a portfolio of business. Thus,
is the number of claims in (0 ]. The following three properties hold:

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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1. 0 = 0.

2. The process has stationary and independent increments.

3. The number of claims in an interval of length is Poisson distributed with
mean . That is, for all 0 we have

Pr( + = ) =
( )

!
= 0 1 (11.1)

As discussed earlier, stationary and independent increments imply that the
process can be thought of intuitively as starting over at any point in time.
An important property of the Poisson process is that the times between claims

are independent and identically exponentially distributed, each with mean 1 . To
see this, let be the time between the ( 1)th and th claims for = 1 2 ,
where 1 is the time of the rst claim. Then,

Pr( 1 ) = Pr( = 0) =

and so 1 is exponential with mean 1 . Also,

Pr( 2 | 1 = ) = Pr( 1 + 2 + | 1 = )

= Pr( + = 1| = 1)

= Pr( + = 0| = 1)

= Pr( + = 0)

because the increments are independent. From (11.1), we then have

Pr( 2 | 1 = ) =

Because the equation is true for all , Pr( 2 ) = and 2 is independent of
1. Similarly, 3 4 5 are independent and exponentially distributed, each

with mean 1 .
Finally, we remark that, from a xed point in time 0 0, the time until the next

claim occurs is also exponentially distributed with mean 1 due to the memoryless
property of the exponential distribution. That is, if the th claim occurred time
units before 0, the probability that the next claim occurs at least time units after
0 is Pr( +1 + | +1 ) = , which is the same exponential survival
function no matter what and happen to be.

11.1.2 The continuous-time problem

The model for claims payments is the compound Poisson process. A formal deni-
tion follows.

Denition 11.1 Let the number of claims process { : 0} be a Poisson process
with rate . Let the individual losses { 1 2 } be independent and identically
distributed positive random variables, independent of , each with cumulative dis-
tribution function ( ) and mean . Thus is the amount of the th loss.
Let be the total loss in (0 ]. It is given by = 0 if = 0 and =

P
=1
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if 0. Then, for xed , has a compound Poisson distribution. The process
{ : 0} is said to be a compound Poisson process. Because { : 0}
has stationary and independent increments, so does { : 0}. Also,

E( ) = E( )E( ) = ( )( ) =

We assume that premiums are payable continuously at constant rate per unit
time. That is, the total net premium in (0 ] is and we ignore interest for
mathematical simplicity. We further assume that net premiums have a positive
loading, that is, E( ), which implies that . Thus let

= (1 + ) (11.2)

where 0 is called the relative security loading or premium loading factor.
For our model, we have now specied the loss and premium processes. The

surplus process is thus
= + 0

where = 0 is the initial surplus. We say that ruin occurs if ever becomes
negative, and survival occurs otherwise. Thus, the innite-time survival probability
is dened as

( ) = Pr( 0 for all 0| 0 = )

and the innite-time ruin probability is

( ) = 1 ( )

Our goal is to analyze ( ) and/or ( ).

11.2 THE ADJUSTMENT COEFFICIENT AND LUNDBERG�’S
INEQUALITY

In this section we determine a special quantity and then show that it can be used
to obtain a bound on the value of ( ). While it is only a bound, it is easy to
obtain, and as an upper bound it provides a conservative estimate.

11.2.1 The adjustment coe cient

It is di cult to motivate the denition of the adjustment coe cient from a physical
standpoint, so we just state it. We adopt the notational convention that is an
arbitrary claim size random variable in what follows.

Denition 11.2 Let = be the smallest positive solution to the equation

1 + (1 + ) = ( ) (11.3)

where ( ) = E( ) is the moment generating function of the claim severity
random variable . If such a value exists, it is called the adjustment coe cient.

To see that there may be a solution, consider the two lines in the ( ) plane
given by 1( ) = 1+(1+ ) and 2( ) = ( ) = E( ). Now, 1( ) is a straight
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Figure 11.1 Left and right sides of the adjustment coe cient equation.

line with positive slope (1+ ) . The mgf may not exist at all or may exist only for
some values of . Assume for this discussion that the mgf exists for all nonnegative .
Then 0

2( ) = E( ) 0 and 00
2 ( ) = E(

2 ) 0. Because 1(0) = 2(0) = 1,
the two curves intersect when = 0. But 0

2(0) = E( ) = (1 + ) = 0
1(0).

Thus, as increases from 0 the curve 2( ) initially falls below 1( ), but because
0
2( ) 0 and 00

2 ( ) 0, eventually 2( ) will cross 1( ) at a point 0. The
point is the adjustment coe cient.
We remark that there may not be a positive solution to (11.3), for example, if the

single claim amount distribution has no moment generating function (e.g., Pareto,
lognormal).

EXAMPLE 11.1

(Exponential claim amounts) If has an exponential distribution with mean
determine the adjustment coe cient.

We have ( ) = 1 0 Then, ( ) = (1 ) 1 1

Thus, from (11.3), satises

1 + (1 + ) = (1 ) 1 (11.4)

As noted earlier, = 0 is one solution and the positive solution is =
[ (1 + )]. The graph in Figure 11.1 displays plots of the left- and right-

hand sides of (11.4) for the case = 0 2 and = 1. They intersect at 0 and
at the adjustment coe cient, = 0 2 1 2 = 0 1667 ¤

EXAMPLE 11.2

(A gamma distribution) Suppose that the relative security loading is = 2
and the gamma distribution has = 2. To avoid confusion, let be the scale
parameter for the gamma distribution. Determine the adjustment coe cient.
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The single claim size density is

( ) = 2 0

For the gamma distribution = 2 and

( ) =

Z

0

( ) = (1 ) 2 1

Then, from (11.3) we obtain

1 + 6 = (1 ) 2

which may be rearranged as

6 3 3 11 2 2 + 4 = 0

The left-hand side is easily factored as

(2 1)(3 4) = 0

The adjustment coe cient is the only root that solves the original equation,1

namely, = 1 (2 ). ¤

For general claim amount distributions, it is not possible to explicitly solve for
as was done in the previous two examples. Normally, one must resort to numerical
methods, many of which require an initial guess as to the value of . To nd such
a value, note that for (11.3) we may write

1 + (1 + ) = E( )

= E(1 + + 1
2

2 2 + · · · )

E(1 + + 1
2

2 2)

= 1 + + 1
2

2E( 2)

Then, subtraction of 1 + from both sides of the inequality and division by
results in

2

E( 2)
(11.5)

The right-hand side of (11.5) is usually a satisfactory initial value of . Other
inequalities for are given in the exercises.

EXAMPLE 11.3

The aggregate loss random variable has variance equal to three times the
mean. Determine a bound on the adjustment coe cient.

For the compound Poisson distribution, E( ) = Var( ) = E( 2)
and so E( 2) = 3 Hence, from (11.5), 2 3 ¤

1Of the two roots, the larger one, 4 (3 ), is not a legitimate argument for the mgf. The mgf exists
only for values less than 1 . When solving such equations, the adjustment coe cient will always
be the smallest positive solution.
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Dene
( ) = 1 + (1 + ) ( ) (11.6)

and observe that the adjustment coe cient 0 satises ( ) = 0. To solve this
equation, use the Newton�—Raphson formula,

+1 =
( )
0( )

where
0( ) = (1 + ) 0 ( )

beginning with an initial value 0. Because (0) = 0, care must be taken so as not
to converge to the value 0.

EXAMPLE 11.4

Suppose the Poisson parameter is = 4 and the premium rate is = 7.
Further suppose the individual loss amount distribution is given by

Pr( = 1) = 0 6 Pr( = 2) = 0 4

Determine the adjustment coe cient.

We have
= ( ) = (1)(0 6) + (2)(0 4) = 1 4

and
E( 2) = (1)2(0 6) + (2)2(0 4) = 2 2.

Then = ( ) 1 1 = 7(5 6) 1 1 = 0 25. From (11.5), we know that
must be less than 0 = 2(0 25)(1 4) 2 2 = 0 3182 Now,

( ) = 0 6 + 0 4 2

and so from (11.6)

( ) = 1 + 1 75 0 6 0 4 2

We also have
0 ( ) = (1 )(0 6) + (2 2 )(0 4)

and so
0( ) = 1 75 0 6 0 8 2

Our initial guess is 0 = 0 3182 Then ( 0) = 0 02381 and 0( 0) =
0 5865 Thus, an updated estimate of is

1 = 0 3182
0 02381

0 5865
= 0 2776

Then (0 2776) = 0 003091 0(0 2776) = 0 4358 and

2 = 0 2776
0 003091

0 4358
= 0 2705
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Continuing in this fashion, we get 3 = 0 2703 4 = 0 2703 and so the
adjustment coe cient = 0 2703 to four decimal places of accuracy. ¤

There is another form for the adjustment coe cient equation (11.3) that is often
useful. In particular, the following is an alternative denition of :

1 + =

Z

0

( ) (11.7)

where

( ) =
1 ( )

0 (11.8)

is called the equilibrium probability density function.
To see that (11.7) is equivalent to (11.3), note that

Z

0

( ) =
( ) 1

which is obtained by integration by parts. Thus replacement of ( ) by 1+ (1+
) in this expression yields (11.7).

11.2.2 Lundberg�’s inequality

The rst main use of the adjustment coe cient lies in the following result.

Theorem 11.3 Suppose 0 satises (11.3). Then the probability of ruin ( )
satises

( ) 0 (11.9)

Proof : Let ( ) be the probability that ruin occurs on or before the th claim
for = 0 1 2 . We will prove by induction on that ( ) . Obviously,

0( ) = 0 . Now assume that ( ) and we wish to show that

+1( ) . Let us consider what happens on the rst claim. The time until
the rst claim occurs is exponential with probability density function . If the
claim occurs at time 0, the surplus available to pay the claim at time is + .
Thus, ruin occurs on the rst claim if the amount of the claim exceeds + . The
probability that this happens is 1 ( + ). If the amount of the claim is , where
0 + , ruin does not occur on the rst claim. After payment of the claim,
there is still a surplus of + remaining. Ruin can still occur on the next
claims. Because the surplus process has stationary and independent increments,

this is the same probability as if we had started at the time of the rst claim with
initial reserve + and been ruined in the rst claims. Thus, by the law of
total probability, we have the recursive equation2

+1( ) =

Z

0

1 ( + ) +

Z +

0

( + ) ( )

¸

2The Stieltjes integral notation �“ ( )�” may be viewed as a notational convention to cover the
situation where is discrete, continuous, or mixed. In the continuous case, replace ( ) by
( ) and proceed in the usual Riemann integral fashion. In the discrete case, the integral is
simply notation for the usual sum involving the probability mass function.
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Thus, using the inductive hypothesis,

+1( ) =

Z

0

Z

+

( ) +

Z +

0

( + ) ( )

¸

Z

0

Z

+

( + ) ( )

+

Z +

0

( + ) ( )

¸

where we have also used the fact that ( + ) 0 when + . Combining
the two inner integrals gives

+1( )

Z

0

Z

0

( + ) ( )

¸

=

Z

0

Z

0

( )

¸

=

Z

0

( + ) [ ( )]

= ( )

Z

0

( + )

=
( )

+

But from (11.3) and (11.2),

( ) = [1 + (1 + ) ] = + (1 + ) = +

and so +1( ) . Therefore, ( ) for all , and so ( ) =
lim ( ) . ¤

This result is important because it may be used to examine the interplay between
the level of surplus and the premium loading , both parameters that are under
the control of the insurer. Suppose one is willing to tolerate a probability of ruin
of (e.g., = 0 01) and a surplus of is available. Then a loading of

=

½
E exp

µ
ln

¶¸
1

¾

ln
1

ensures that (11.3) is satised by = ( ln ) . Then, by Theorem 11.3, ( )
= ln = . Similarly, if a specied loading of is desired, the surplus

required to ensure a ruin probability of no more than is given by

=
ln

because ( ) = ln = as before.
Also, (11.9) allows us to show that

( ) = lim ( ) = 0 (11.10)
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Because the ruin probability is also nonnegative, we have

0 ( ) (11.11)

and thus
0 lim ( ) lim = 0

which establishes (11.10). We then have the survival probability

( ) = 1 (11.12)

11.2.3 Exercises

11.1 Calculate the adjustment coe cient if = 0 32 and the claim size distribution
is the same as that of Example 11.2.

11.2 Calculate the adjustment coe cient if the individual loss size density is ( ) =p
( ) 0

11.3 Calculate the adjustment coe cient if = 3, = 4, and the individual loss
size density is ( ) = 2 + 3

2
3 0 Do not use an iterative numerical

procedure.

11.4 If = 2 99, = 1, and the individual loss size distribution is given by
Pr( = 1) = 0 2 Pr( = 2) = 0 3 and Pr( = 3) = 0 5 use the Newton�—
Raphson procedure to numerically obtain the adjustment coe cient.

11.5 Repeat Exercise 11.3 using the Newton�—Raphson procedure beginning with
an initial estimate based on (11.5).

11.6 Suppose that E( 3) is known where is a generic individual loss amount
random variable. Prove that the adjustment coe cient satises

3E( 2) +
p
9[E( 2)]2 + 24 E( 3)

2E( 3)

Also prove that the right-hand side of this inequality is strictly less than the bound
given in (11.5), namely, 2 E( 2)

11.7 Recall that, if 00( ) 0 Jensen�’s inequality implies E[ ( )] [E( )] Also,
from Section 3.4.3, Z

0

( ) =
E( 2)

2

where ( ) is dened by (11.8).

(a) Use (11.7) and the preceding results to show that

2 ln(1 + )

E( 2)

(b) Show that ln(1+ ) for 0, and thus the inequality in (a) is tighter
than that from (11.5). Hint : Consider ( ) = ln(1 + ) 0
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(c) If there is a maximum claim size of show that (11.7) becomes

1 + =

Z

0

( )

Show that the right-hand side of this equality satises
Z

0

( )

and, hence, that
1
ln(1 + )

11.8 In Section 3.4.3 it was shown that, if ( ) has an increasing mean excess loss
function (which is implied if ( ) has a decreasing hazard rate), then

Z
( ) 1 ( ) 0

(a) Let have probability density function ( ), 0, and let have
cumulative distribution function ( ). Show that

Pr( ) Pr( ) 0

and, hence, that

Pr( ) Pr( ) 1

(b) Use (a) to show that ( ) E( ).

(c) Use (b) to show that [ (1 + )].

(d) Prove that, if the preceding inequality is reversed,

(1 + )

11.9 Suppose that 0 satises (11.3) and also that

( )

Z
( ) (11.13)

for 0 1, where ( ) = 1 ( ) Prove that ( ) 0 Hint : Use
the method of Theorem 11.3.

11.10 Continue the previous exercise. Use integration by parts to show that
Z

( ) = ( ) +

Z
( ) 0

11.11 Suppose ( ) has a decreasing hazard rate (Section 3.4.3). Prove that
( ) ( ) ( ) 0 Then use Exercise 11.10 to show that (11.13)
is satised with 1 =E( ) Use (11.3) to conclude that

( ) [1 + (1 + ) ] 1 0
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11.12 Suppose ( ) has a hazard rate ( ) = ( ) ln ( ) that satises ( )
0 Use the result in Exercise 11.10 to show that (11.13) is satised

with = 1 and, thus,

( ) (1 ) 0

Hint : Show that, for ( ) ( ) ( )

11.3 AN INTEGRODIFFERENTIAL EQUATION

We now consider the problem of nding an explicit formula for the ruin probability
( ) or (equivalently) the survival probability ( ). It is useful in what follows to
consider a slightly more general function.

Denition 11.4 ( ) = Pr(ruin occurs with initial reserve and decit imme-
diately after ruin occurs is at most ), 0 0.

For the event described, the surplus immediately after ruin is between 0 and .
We then have

( ) = lim ( ) 0 (11.14)

We have the following result.

Theorem 11.5 The function ( ) satises the equation

( ) = ( )

Z

0

( ) ( ) [ ( + ) ( )]

0 (11.15)

Proof: Let us again consider what happens with the rst claim. The time of the
rst claim has the exponential probability density function , and the surplus
available to pay the rst claim at time is + . If the amount of the claim is ,
where 0 + , then the rst claim does not cause ruin but reduces the surplus
to + . By the stationary and independent increments property, ruin with a
decit of at most would then occur thereafter with probability ( + ).
The only other possibility for ruin to occur with a decit of at most is that the
rst claim does cause ruin, that is, it occurs for an amount where +
but + + because, if + + , the decit would then exceed
. The probability that the claim amount satises + + + is
( + + ) ( + ). Consequently, by the law of total probability, we have

( ) =

Z

0

Z +

0

( + ) ( )

+ ( + + ) ( + )

¸

We wish to di erentiate this expression with respect to , and to do so, it is conve-
nient to change the variable of integration from to = + . Thus, = ( )
and = . Then with this change of variable we have

( ) = ( )

Z
( )

Z

0

( ) ( ) + ( + ) ( )

¸



304 CONTINUOUS-TIME RUIN MODELS

Recall from the fundamental theorem of calculus that, if is a function, thenR
( ) = ( ), and we may di erentiate with the help of the product rule

to obtain

( ) = ( ) + ( )

½
( )

Z

0

( ) ( )

+ ( + ) ( )

¸¾

from which the result follows. ¤

We now determine an explicit formula for (0 ).

Theorem 11.6 The function (0 ) is given by

(0 ) =

Z

0

[1 ( )] 0 (11.16)

Proof: First note that

0 ( ) ( )

and thus
0 ( ) = lim ( ) lim = 0

and therefore ( ) = 0. Also,
Z

0

( )

Z

0

= 1

Thus let ( ) =
R
0

( ) and we know that 0 ( ) . Then, integrate
(11.15) with respect to from 0 to to get, using the preceding facts,

(0 ) = ( )

Z

0

Z

0

( ) ( )

Z

0

[ ( + ) ( )]

Interchanging the order of integration in the double integral yields

(0 ) = ( ) +

Z

0

Z
( ) ( )

+

Z

0

[ ( + ) ( )]

and changing the variable of integration from to = in the inner integral
of the double integral results in

(0 ) = ( ) +

Z

0

Z

0

( ) ( )

+

Z

0

[ ( + ) ( )]

= ( ) +

Z

0

( ) ( ) +

Z

0

[ ( + ) ( )]
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Because
R
0

( ) = 1, the rst two terms on the right-hand side cancel, and so

(0 ) =

Z

0

[ ( + ) ( )]

=

Z

0

[1 ( )]

Z

0

[1 ( + )]

Then change the variable from to = in the rst integral and from to
= + in the second integral. The result is

(0 ) =

Z

0

[1 ( )]

Z
[1 ( )] =

Z

0

[1 ( )]
¤

We remark that (11.16) holds even if there is no adjustment coe cient. Also,
the function (0 ) is of considerable interest in its own right, but for now we shall
return to the analysis of ( ).

Theorem 11.7 The survival probability with no initial reserve satises

(0) =
1 +

(11.17)

Proof: Recall that =
R
0
[1 ( )] and note that from (11.16)

(0) = lim (0 ) =

Z

0

[1 ( )] = =
1

1 +

Thus, (0) = 1 (0) = (1 + ) ¤

The general solution to ( )may be obtained from the following integrodi erential
equation subject to the initial condition (11.17).

Theorem 11.8 The probability of ultimate survival ( ) satises

0( ) = ( )

Z

0

( ) ( ) 0 (11.18)

Proof: From (11.15) with and (11.14),

0( ) = ( )

Z

0

( ) ( ) [1 ( )] 0 (11.19)

In terms of the survival probability ( ) = 1 ( ), (11.19) may be expressed as

0( ) = [1 ( )]

Z

0

[1 ( )] ( ) [1 ( )]

= ( )

Z

0

( ) +

Z

0

( ) ( ) + ( )

= ( ) +

Z

0

( ) ( )
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because ( ) =
R
0

( ). The result then follows. ¤

It is largely a matter of taste whether one uses (11.18) or (11.19). We often use
(11.18) because it is slightly simpler algebraically. Unfortunately, the solution for
general ( ) is rather complicated and we defer this general solution to Section
11.4. At this point we obtain the solution for one special choice of ( ).

EXAMPLE 11.5

(The exponential distribution) Suppose, as in Example 11.1, that ( ) =
1 0. Determine ( ).

In this case (11.18) becomes

0( ) = ( )

Z

0

( )

Change variables in the integral from to = to obtain

0( ) = ( )

Z

0

( ) (11.20)

We wish to eliminate the integral term in (11.20), so we di erentiate with
respect to . This gives

00( ) = 0( ) +
2

Z

0

( ) ( )

The integral term can be eliminated using (11.20) to produce

00( ) = 0( ) ( ) +
1

( ) 0( )

¸

which simplies to

00( ) =

µ
1
¶

0( ) =
(1 + )

0( )

After multiplication by the integrating factor [ (1+ )], this equation may
be rewritten as h

[ (1+ )] 0( )
i
= 0

Integrating with respect to gives

[ (1+ )] 0( ) = 1

From (11.20) with = 0 and using (11.17), we thus have

1 =
0(0) =

1 +
=

(1 + ) 1 +
=

(1 + )2

Thus,
0( ) =

(1 + )2
exp

(1 + )

¸
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which may be integrated again to give

( ) =
1

1 +
exp

(1 + )

¸
+ 2

Now (11.17) gives (0) = (1+ ), and so with = 0 we have 2 = 1. Thus,

( ) = 1
1

1 +
exp

(1 + )

¸
(11.21)

is the required probability. ¤

11.3.1 Exercises

11.13 Suppose that the claim size distribution is exponential with ( ) = 1
as in Example 11.5.

(a) Prove, using (11.15), that ( ) = ( ) ( ) in this case.

(b) Prove that the distribution of the decit immediately after ruin occurs,
given that ruin does occur, has the same exponential distribution given
in (11.21).

11.14 This exercise involves the derivation of integral equations called defective
renewal equations for ( ) and ( ). These may be used to derive various
properties of these functions.

(a) Integrate (11.15) over from 0 to and use (11.16) to show that

( ) = ( )

Z

0

( ) ( )

+

Z

0

[1 ( )]

Z

0

[1 ( )]

+

Z

0

[1 ( + )]

where ( ) =
R
0

( ) .

(b) Use integration by parts on the integral
R
0
( ) ( ) to show from

(a) that

( ) = ( )

Z

0

( ) ( )

+

+Z

0

[1 ( )]

Z

0

[1 ( )]
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(c) Using (b) prove that

( ) =

Z

0

( )[1 ( )] +

Z +

[1 ( )]

(d) Prove that

( ) =

Z

0

( )[1 ( )] +

Z
[1 ( )]

11.4 THE MAXIMUM AGGREGATE LOSS

We now derive the general solution to the integrodi erential equation (11.18) sub-
ject to the boundary conditions (11.12) and (11.17).
Beginning with an initial reserve , the probability that the surplus will ever

fall below the initial level is (0) because the surplus process has stationary and
independent increments. Thus the probability of dropping below the initial level
is the same for all , but we know that when = 0, it is (0).
The key result is that, given that there is a drop below the initial level , the

random variable representing the amount of this initial drop has the equilibrium
probability density function ( ), where ( ) is given by (11.8).

Theorem 11.9 Given that there is a drop below the initial level , the random
variable representing the amount of this initial drop has probability density func-
tion ( ) = [1 ( )] .

Proof: Recall the function ( ) from Denition 11.4. Because the surplus
process has stationary and independent increments, (0 ) also represents the
probability that the surplus drops below its initial level, and the amount of this
drop is at most . Thus, using Theorem 11.6, the amount of the drop, given that
there is a drop, has cumulative distribution function

Pr( ) =
(0 )

(0)

=
(0)

Z

0

[1 ( )]

=
1
Z

0

[1 ( )]

and the result follows by di erentiation. ¤

If there is a drop of , the surplus immediately after the drop is , and
because the surplus process has stationary and independent increments, ruin occurs
thereafter with probability ( ) provided is nonnegative; otherwise ruin
would have already occurred. The probability of a second drop is (0), and the
amount of the second drop also has density ( ) and is independent of the rst
drop. Due to the memoryless property of the Poisson process, the process �“starts
over�” after each drop. Therefore, the total number of drops is geometrically
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distributed, that is, Pr( = 0) = 1 (0), Pr( = 1) = [1 (0)] (0), and, more
generally,

Pr( = ) = [1 (0)][ (0)] =
1 +

µ
1

1 +

¶
= 0 1 2

because (0) = 1 (1 + ). The usual geometric parameter (in Appendix B) is
thus 1 in this case.
After a drop, the surplus immediately begins to increase again. Thus, the lowest

level of the surplus is , where , called the maximum aggregate loss, is the
total of all the drop amounts. Let be the amount of the th drop, and because
the surplus process has stationary and independent increments, { 1 2 } is a
sequence of i.i.d. random variables (each with density ( )). Because the number
of drops is , it follows that

= 1 + 2 + · · ·+

with = 0 if = 0. Thus, is a compound geometric random variable with
�“claim size density�” ( ).
Clearly, ultimate survival beginning with initial reserve occurs if the maximum

aggregate loss does not exceed , that is,

( ) = Pr( ) 0

Let 0( ) = 0 if 0 and 1 if 0. Also ( ) = Pr{ 1 + 2 + · · ·+ }
is the cumulative distribution function of the -fold convolution of the distribution
of with itself. We then have the general solution, namely,

( ) =
X

=0
1 +

µ
1

1 +

¶
( ) 0

In terms of the ruin probability, this general solution may be expressed as

( ) =
X

=1
1 +

µ
1

1 +

¶
( ) 0

where ( ) = 1 ( ). Evidently, ( ) is the survival function associated
with the compound geometric random variable , and analytic solutions may be
obtained in a manner similar manner to those obtained in Section 9.4. An analytic
solution for the important Erlang mixture claim severity pdf3

( ) =
X

=1

1

( 1)!

where the are positive weights that sum to 1, may be found in Exercise 11.17,
and for some other claim severity distributions in the next section.
We may also compute ruin probabilities numerically by computing the cumula-

tive distribution function of a compound geometric distribution using any of the
techniques described in Chapter 9.

3Any continuous positive probability density function may be approximated arbitrarily accurately
by an Erlang mixture pdf, as shown by Tijms [174, p. 163]. An Erlang distribution is a gamma
distribution for which the shape parameter must be an integer.
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Table 11.1 Survival probabilites, Pareto losses.

( ) ( )

100 0.193 5,000 0.687
200 0.216 7,500 0.787
300 0.238 10,000 0.852
500 0.276 15,000 0.923

1,000 0.355 20,000 0.958
2,000 0.473 25,000 0.975
3,000 0.561

EXAMPLE 11.6

Suppose the individual loss distribution is Pareto with = 3 and a mean
of 500. Let the security loading be = 0 2. Determine ( ) for =
100 200 300 .

We rst require the cdf, ( ). It can be found from its pdf

( ) =
1 ( )

=

1

"

1

µ
1 000

1 000 +

¶3#

500

=
1

500

µ
1,000

1,000 +

¶3

which happens to be the density function of a Pareto distribution with = 2
and a mean of 1,000. This new Pareto distribution is the severity distribution
for a compound geometric distribution where the parameter is = 1 =
5. The compound geometric distribution can be evaluated using any of the
techniques in Chapter 9. We used the recursive formula with a discretization
that preserves the mean and a span of = 5. The cumulative probabilities
are then obtained by summing the discrete probabilities generated by the
recursive formula. The values appear in Table 11.1. ¤

11.4.1 Exercises

11.15 Suppose the number of claims follows the Poisson process and the amount of
an individual claim is exponentially distributed with mean 100. The relative secu-
rity loading is = 0 1. Determine (1,000) by using the method of this section. Use
the method of rounding with a span of 50 to discretize the exponential distribution.
Compare your answer to the exact ruin probability (see Example 11.5).

11.16 Consider the problem of Example 11.2 with = 50. Use the method of this
section (with discretization by rounding and a span of 1) to approximate (200).
Compare your answer to the exact ruin probability found in Example 11.8.

11.17 Suppose that the claim severity pdf is given by

( ) =
X

=1

1

( 1)!
0



THE MAXIMUM AGGREGATE LOSS 311

where
P

=1 = 1. Note that this is a mixture of Erlang densities (see Example
9.9).

(a) Show that

( ) =
X

=1

1

( 1)!
0

where

=

P
=P
=1

= 1 2

and also show that
P

=1 = 1.

(b) Dene

( ) =
X

=1

and use the results of Example 9.9 to show that

( ) =
X

=1

1X

=0

( )

!
0

where

( ) =

½
1

1
[ ( ) 1]

¾ 1

is a compound geometric pgf, with probabilities that may be computed
recursively by 0 = (1 + ) 1 and

=
1

1 +

X

=1

, = 1 2

(c) Use (b) to show that

( ) =
X

=0

¯ ( )

!
0

where ¯ =
P

= +1 = 0 1 . Then use (b) to show that the ¯ s
may be computed recursively from

¯ =
1

1 +

X

=1

¯ +
1

1 +

X

= +1

= 1 2

beginning with ¯0 = (1 + ) 1.

11.18 (a) Using Exercise 11.14(c) prove that

( ) =
1

1 +

Z

0

( ) ( ) +
1

1 +

Z +

( )
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where ( ) is dened in Section 11.3. Then use Exercise 11.14(d) to
prove that

( ) =
1

1 +

Z

0

( ) ( ) +
1

1 +

Z
( )

where ( ) is given by (11.8).
(b) Prove the results in (a) directly by using probabilistic arguments. Hint:

Condition on the amount of the rst drop in surplus and use the law of
total probability.

11.5 CRAMER�’S ASYMPTOTIC RUIN FORMULA AND TIJMS�’
APPROXIMATION

There is another very useful piece of information regarding the ruin probability that
involves the adjustment coe cient . The following theorem gives a result known
as Cramér�’s asymptotic ruin formula. The notation ( ) ( ), , means
lim ( ) ( ) = 1.

Theorem 11.10 Suppose 0 satises (11.3). Then the ruin probability satises

( ) (11.22)

where

= 0 ( ) (1 + )
(11.23)

and ( ) =E( ) =
R
0

( ) is the moment generating function of the
claim severity random variable .

Proof: The proof of this result is complicated and utilizes the key renewal theorem
together with a defective renewal equation for ( ) that may be found in Exercise
11.14(d) or, equivalently, in Exercise 11.18(a). The interested reader should see
Rolski et al. [151, Sec. 5.4.2] for details. ¤

Thus, in addition to Lundberg�’s inequality given by Theorem 11.3, the ruin prob-
ability behaves like an exponential function for large . Note that, for Lundberg�’s
inequality (11.9) to hold, it must be the case that given by (11.23) must satisfy

1. Also, although (11.22) is an asymptotic approximation, it is known to be
quite accurate even for that are not too large (particularly if the relative security
loading is itself not too large). Before continuing, let us consider an important
special case.

EXAMPLE 11.7

(The exponential distribution) If ( ) = 1 0 determine the
asymptotic ruin formula.

We found in Example 11.1 that the adjustment coe cient was given by
= [ (1 + )] and ( ) = (1 ) 1 Thus,

0 ( ) = (1 ) 1 = (1 ) 2
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Also,

0 ( ) = (1 ) 2 = [1 (1 + ) 1] 2 = (1 + )2

Thus, from (11.23),

=
(1 + )2 (1 + )

=
(1 + )(1 + 1)

=
1

1 +

The asymptotic formula (11.22) becomes

( )
1

1 +
exp

(1 + )

¸

This is the exact ruin probability as was demonstrated in Example 11.5. ¤

In cases other than when ( ) is the exponential distribution, the exact solu-
tion for ( ) is more complicated (including, in particular, the general compound
geometric solution given in Section 11.4). A simple analytic approximation was
suggested by Tijms [174, pp. 271�—272] to take advantage of the accuracy for large
of Cramér�’s asymptotic ruin formula given in Theorem 11.10. The idea is to add

an exponential term to (11.22) to improve the accuracy for small as well. Thus,
the Tijms approximation is dened as

( ) =

µ
1

1 +

¶
+ 0 (11.24)

where is chosen so that the approximation also matches the compound geometric
mean of the maximum aggregate loss. As shown in Section 3.4.3, the mean of
the amount of the drop in surplus (in the terminology of Section 11.4) is E( ) =R
0

( ) = E( 2) (2 ), where = E( ) and is a generic claim severity
random variable. Similarly, the number of drops in surplus is geometrically
distributed with parameter 1 , so from Appendix B we have E( ) = 1 . Because
the maximum aggregate loss is the compound geometric random variable , it
follows from (9.9) that its mean is

E( ) = E( )E( ) =
E( 2)

2

But ( ) = Pr( ), and from (3.9) on page 28 with = 1 and = , we have
E( ) =

R
0

( ) . Therefore, for the Tijms approximation to match the mean,
we need to replace ( ) by ( ) in the integral. Thus from (11.24)

Z

0

( ) =

µ
1

1 +

¶Z

0

+

Z

0

=

µ
1

1 +

¶
+

and equating this to E( ) yields
µ

1

1 +

¶
+ =

E( 2)

2
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which may be solved for to give

=
E( 2) (2 )

1 (1 + )
(11.25)

To summarize, Tijms�’ approximation to the ruin probability is given by (11.24),
with given by (11.25).
In addition to providing a simple analytic approximation of good quality, Tijms�’

approximation ( ) has the added benet of exactly reproducing the true value
of ( ) in some cases. (Some insight into this phenomenon is provided by Exercise
11.22.) In particular, it can be shown that ( ) = ( ) if the claim size pdf is
of the form ( ) = ( 1 ) + (1 )( 2 ) 0, with 0 1 (of
course, if = 1, this is the exponential density for which Tijms�’ approximation is
not used). We have the following example.

EXAMPLE 11.8

(A gamma distribution with a shape parameter4 of 2 ) As in Example 11.2,
suppose that = 2, and the single claim size density is ( ) = 2 ,

0. Determine the Tijms approximation to the ruin probability.

The moment generating function is ( ) = (1 ) 2 1 , from
which one nds that 0 ( ) = 2 (1 ) 3 and = 0 (0) = 2 . As shown
in Example 11.2, the adjustment coe cient 0 satises 1 + (1 + ) =

( ), which in this example becomes 1+6 = (1 ) 2 and is given by
= 1 (2 ). We rst compute Cramér�’s asymptotic ruin formula. We have
0 ( ) = 0 [1 (2 )] = 2 (1 1

2)
3 = 16 . Thus, (11.23) yields

=
(2 )(2)

16 (2 )(1 + 2)
=
2

5

and from (11.22), ( ) 2
5

(2 ) . We next turn to Tijms�’ approx-
imation given by (11.24), which becomes in this case

( ) =

µ
1

1 + 2

2

5

¶
+
2

5
(2 ) =

2

5
(2 ) 1

15

It remains to compute . We have 00 ( ) = 6 2(1 ) 4, from which it
follows that E( 2) = 00 (0) = 6 2. The amount of the drop in surplus
has mean E( ) =E( 2) (2 ) = 6 2 (4 ) = 3 2. Because the number of
drops has mean E( ) = 1 = 1

2 , the maximum aggregate loss has mean
E( ) = E( )E( ) = 3 4, and must satisfy E( ) =

R
0

( ) or,
equivalently, (11.25). That is, is given by5

=
3
4

2
5(2 )

1
1+2

2
5

=
3

4

4For a gamma distribution, the shape parameter is the one denoted by in Appendix A and is
not to be confused with the value of in the Tijms approximation.
5 It is actually not a coincidence that 1 is the other root of the adjustment coe cient equation, as
may be seen from Example 11.2. It is instructive to compute in this manner, however, because
this approach is applicable in general for arbitrary claim size distributions, including those in
which Tijms�’ approximation does not exactly reproduce the true ruin probability.
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Tijms�’ approximation thus becomes

( ) = 2
5

(2 ) 1
15

4 (3 ) 0

As mentioned previously, ( ) = ( ) in this case. ¤

Another class of claim severity distributions for which the Tijms approximation
is exactly equal to the true ruin probability is that, with probability density function
of the form ( ) = ( 1

1 ) + (1 )( 2
2 ) 0. If 0 1, then this

distribution is a mixture of two exponentials, whereas if = 2 ( 2 1) then the
distribution, referred to as a combination of two exponentials, is that of the sum
of two independent exponential random variables with means 1 and 2, where

1 6= 2. The next example illustrates these ideas.

EXAMPLE 11.9

(A mixture of exponential distributions) Suppose that = 4
11 and the single

claim size density is ( ) = 3 + 10 5 3 0. Determine the Tijms
approximation to the ruin probability.

First we note that the moment generating function is

( ) =

Z

0

( ) = (3 ) 1 + 10
3 (5 ) 1

Thus, 0 ( ) = (3 ) 2 + 10
3 (5 ) 2, from which it follows that =

0 (0) = 1
9 +

10
75 =

11
45 . Equation (11.3) then implies that the adjustment

coe cient 0 satises 1+ 1
3 = (3 ) 1+ 10

3 (5 ) 1. Multiplication by
3(3 )(5 ) yields

3( 3)( 5) + ( 3)( 5) = 3(5 ) + 10(3 )

That is,
3( 2 8 + 15) + 3 8 2 + 15 = 45 13

Rearrangement yields

0 = 3 5 2 + 4 = ( 1)( 4)

and = 1 because it is the smallest positive root.
Next, we determine Cramér�’s asymptotic formula. Equation (11.23) be-

comes, with 0 ( ) = 0 (1) = 1
4 +

10
3
1
16 =

11
24 ,

=

¡
11
45

¢ ¡
4
11

¢

11
24

¡
11
45

¢ ¡
15
11

¢ =
32

45

and thus Cramér�’s asymptotic formula is ( ) 32
45 .

Equation (11.24) then becomes

( ) =

µ
1

1 + 4
11

32

45

¶
+
32

45
=
1

45
+
32

45
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To compute , we note that 00 ( ) = 2(3 ) 3 + 20
3 (5 ) 3, and thus

E( 2) = 00 (0) = 2
27 +

20
3 (

1
125) =

86
675 . The mean of the maximum aggregate

loss is, therefore,

E( ) =
( 2)

2
=

86
675

2
¡
11
45

¢ ¡
4
11

¢ =
43

60

Equation (11.25) then yields

=
43
60

32
45

1
1+ 4

11

32
45

=
1

4

and so Tijms�’ approximation becomes ( ) = 1
45

4 + 32
45 . As mentioned

previously, ( ) = ( ) in this case also. ¤

It is not hard to see from (11.24) that ( ) , if 1 .
In this situation, ( ) will equal ( ) when = 0 and when as well
as matching the compound geometric mean. It can be shown that a su cient
condition for the asymptotic agreement between ( ) and ( ) to hold as
is that the nonexponential claim size cumulative distribution function ( ) has
either a nondecreasing or nonincreasing mean excess loss function (which is implied
if ( ) has a nonincreasing or nondecreasing hazard rate, as discussed in Section
3.4.3). It is also interesting to note that ( ) in the former case and
( ) in the latter case. See Willmot [187] for proofs of these facts.
The following example illustrates the accuracy of Cramér�’s asymptotic formula

and Tijms�’ approximation.

EXAMPLE 11.10

(A gamma distribution with a shape parameter of 3 ) Suppose the claim sever-
ity distribution is a gamma distribution with a mean of 1 and density given
by ( ) = 27 2 3 2, 0. Determine the exact ruin probability, Cramér�’s
asymptotic ruin formula, and Tijms�’ approximation when the relative security
loading in each is 0 25 1, and 4, and the initial surplus is 0 10 0 25 0 50 0 75
and 1.

The moment generating function is ( ) = (1 3) 3. The exact values
of ( )may be obtained using the algorithm presented in Exercise 11.17. That
is, ( ) = 3

P
=0
¯ (3 ) ! 0, where the ¯ s may be computed

recursively using

¯ =
1

1 +

X

=1

¯ +
1

1 +

X

= +1

= 1 2 3

with ¯
0 = 1 (1 + ) 1 = 2 = 3 =

1
3 , and = 0 otherwise. The required

values are listed in Table 11.2 in the �“Exact�” column.
Cramér�’s asymptotic ruin probabilities are given by the approximation

(11.22), with obtained from (11.3) numerically for each value of using
the Newton�—Raphson approach described in Section 11.2.1. The coe cient
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Table 11.2 Ruin probabilities with gamma losses.

Exact Cramér Tijms

0.25 0.10 0.7834 0.8076 0.7844
0.25 0.7562 0.7708 0.7571
0.50 0.7074 0.7131 0.7074
0.75 0.6577 0.6597 0.6573
1.00 0.6097 0.6103 0.6093

1.00 0.10 0.4744 0.5332 0.4764
0.25 0.4342 0.4700 0.4361
0.50 0.3664 0.3809 0.3665
0.75 0.3033 0.3088 0.3026
1.00 0.2484 0.2502 0.2476

4.00 0.10 0.1839 0.2654 0.1859
0.25 0.1594 0.2106 0.1615
0.50 0.1209 0.1432 0.1212
0.75 0.0882 0.0974 0.0875
1.00 0.0626 0.0663 0.0618

is then obtained from (11.23). The required values are listed in Table 11.2 in
the �“Cramér�” column.
Tijms�’ approximation is obtained using (11.24) with satisfying (11.25),

and the values are listed in Table 11.2 in the �“Tijms�” column.
The values in the table, which may also be found in Tijms [174, p. 272]

and Willmot [187], demonstrate that Tijms�’ approximation is an accurate
approximation to the true value in this situation, particularly for small .
Cramér�’s asymptotic formula is also remarkably accurate for small and .
Because this gamma distribution has an increasing hazard rate (as discussed
in Example 3.10), Tijms�’ approximate ruin probabilities are guaranteed to be
smaller than Cramér�’s asymptotic ruin probabilities, as can be seen from the
table. It also follows that the exact values, Cramér�’s asymptotic values, and
Tijms�’ approximate values all must converge as , but the agreement
can be seen to be fairly close even for = 1. ¤

11.5.1 Exercises

11.19 Show that (11.23) may be reexpressed as

=
( )

where has pdf ( ). Hence prove for the problem of Exercise 11.17 that

( ) P
=1 (1 ) 1

where 0 satises

1 + = [(1 ) 1] =
X

=1

(1 )
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11.20 Suppose that the claim severity cdf is

( ) = 1 (1 ) 0 0

(a) Show that the equilibrium pdf (11.8) is given by

( ) =
+ 1

(1 ) 0

(b) Prove that
£
(1 )

¤
=

(1 + )

1 +

where is dened in (11.7) and is the adjustment coe cient.

(c) Use these results to show that

( )
(1 + ) (1 + )

11.21 Recall the function ( ) dened in Section 11.3. It can be shown us-
ing the result of Exercise 11.14(c) that Cramér�’s asymptotic ruin formula may be
generalized to

( ) ( )

where

( ) =

R
0

R +
( )

0 ( ) (1 + )

(a) Demonstrate that Cramér�’s asymptotic ruin formula is recovered as
.

(b) Demonstrate using Exercise 11.13 that the preceding asymptotic formula
for ( ) is an equality for all in the exponential claims case with
( ) = 1 .

11.22 Suppose that the following formula for the ruin probability is known to hold:

( ) = 1
1 + 2

2 0

where 1 6= 0 2 6= 0, and (without loss of generality) 0 1 2.

(a) Determine the relative security loading .

(b) Determine the adjustment coe cient .

(c) Prove that 0 1 1.

(d) Determine Cramér�’s asymptotic ruin formula.

(e) Prove that ( ) = ( ), where ( ) is Tijms�’ approximation to the
ruin probability.

11.23 Suppose that = 4
5 and the claim size density is given by ( ) = (1 +

6 ) 3 0.

(a) Determine Cramér�’s asymptotic ruin formula.
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(b) Determine the ruin probability ( ).

11.24 Suppose that = 3
11 and the claim size density is given by ( ) = 2 4 +

7
2

7 0.

(a) Determine Cramér�’s asymptotic ruin formula.

(b) Determine the ruin probability ( ).

11.25 Suppose that = 3
5 and the claim size density is given by ( ) = 3 4 +

1
2

2 0.

(a) Determine Cramér�’s asymptotic ruin formula.

(b) Determine the ruin probability ( ).

11.26 Suppose that = 7
5 and the claim size density is the convolution of two

exponential distributions given by ( ) =
R
0
3 3( )2 2 0.

(a) Determine Cramér�’s asymptotic ruin formula.

(b) Determine the ruin probability ( ).

11.6 THE BROWNIAN MOTION RISK PROCESS

In this section, we study the relationship between Brownian motion (the Wiener
process) and the surplus process { : 0}, where

= + 0 (11.26)

and { : 0} is the total loss process dened by

= 1 + 2 + · · ·+ 0

where { : 0} is a Poisson process with rate and = 0 when = 0. As
earlier in this chapter, we assume that the individual losses { 1 2 } are i.i.d.
positive random variables whose moment generating function exists. The surplus
process { : 0} increases continuously with slope , the premium rate per unit
time, and has successive downward jumps of { 1 2 } at random jump times
{ 1 2 }, as illustrated by Figure 11.2. In that gure, = 20, = 35, = 3,
and has an exponential distribution with mean 10.
Let

= = 0 (11.27)

Then 0 = 0. Because has a compound distribution, the process { : 0}
has mean

E( ) = E( )

= E( )

and variance
Var( ) = E( 2)
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Figure 11.2 Sample path for a Poisson surplus process.

We now introduce the corresponding stochastic process based on Brownian mo-
tion.

Denition 11.11 A continuous-time stochastic process { : 0} is a Brown-
ian motion process if the following three conditions hold:

1. 0 = 0,

2. { : 0} has stationary and independent increments,

3. for every 0, is normally distributed with mean 0 and variance 2 .

The Brownian motion process, also called theWiener process or white noise, has
been used extensively in describing various physical phenomena. When 2 = 1, it is
called standard Brownian motion. The English botanist Robert Brown discovered
the process in 1827 and used it to describe the continuous irregular motion of a
particle immersed in a liquid or gas. In 1905 Albert Einstein explained this motion
by postulating perpetual collision of the particle with the surrounding medium.
Norbert Wiener provided the analytical description of the process in a series of
papers beginning in 1918. Since then it has been used in many areas of application,
from quantum mechanics to describing price levels on the stock market. It has
become the key model underpinning modern nancial theory.

Denition 11.12 A continuous-time stochastic process { : 0} is called a
Brownian motion with drift process if it satises the properties of a Brownian
motion process except that has mean rather than 0, for some 0.

A Brownian motion with drift is illustrated in Figure 11.3. This process has
= 20, = 5, and 2 = 600. The illustrated process has an initial surplus of 20,

so the mean of is 20+ 5 . Technically, 20 is a Brownian motion with drift
process.
We now show how the surplus process (11.27) based on the compound Poisson

risk process is related to the Brownian motion with drift process. We take a limit of
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Figure 11.3 Sample path for a Brownian motion with drift.

the process (11.27) as the expected number of downward jumps becomes large and,
simultaneously, the size of the jumps becomes small. Because the Brownian motion
with drift process is characterized by the innitesimal mean and innitesimal
variance 2, we force the mean and variance functions to be the same for the
two processes. In this way, the Brownian motion with drift can be thought of as
an approximation to the compound Poisson�—based surplus process. Similarly, the
compound Poisson process can be used as an approximation for Brownian motion.
Let

= E[ ]

and
2 = E[ 2]

denote the innitesimal mean and variance of the Brownian motion with drift
process. Then

=
2

E[ 2]
(11.28)

and

= + 2 E[ ]

E[ 2]
(11.29)

Now, to take limits, we can treat the jump size as a scaled version of some other
random variable , so that = , where has xed mean and variance. Then

=
2

E[ 2]
·
1
2

and

= + 2 E[ ]
E[ 2]

·
1

Then, in order for , we let 0.
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Because the process { : 0} is a continuous-time process with stationary
and independent increments, so are the processes { : 0} and { : 0}.
Then the limiting process will also have stationary and independent increments.
Because 0 = 0, we only need to establish that for every , in the limit, is
normally distributed with mean and variance 2 according to Denitions 11.11
and 11.12. We do this by looking at the moment generating function of .

( ) = ( )

= E{exp[ ( )]}
= exp( { + [ ( ) 1]})

Then

ln ( )
= + [ ( ) 1]

= [ + E( )]

+ 1 E( ) +
2

2!
E( 2)

3

3!
E( 3) + · · · 1

¸

= +
2

2
E( 2)

3

3!
E( 3)

4

4!
E( 4) + · · ·

¸

= +
2

2
2 2

3

3!
E( 3) 2

4

4!
E( 4) + · · ·

¸

= +
2

2
2 2

3

3!

E( 3)

E( 2)
2
4

4!

E( 4)

E( 2)
+ · · ·

¸

Because all terms except are xed, as 0, we have

lim
0

( ) = exp

µ
+

2

2
2

¶

which is the mgf of the normal distribution with mean and 2 . This result
establishes that the limiting process is Brownian motion with drift.
From Figure 11.2, it is clear that the process is di erentiable everywhere

except at jump points. As the number of jump points increases indenitely, the
process becomes nowhere di erentiable. Another property of a Brownian motion
process is that its paths are continuous functions of with probability 1. Intuitively,
this continuity occurs because the jump sizes become small as 0.
Finally, the total distance traveled in (0 ] by the process is

= +

= + 1 + · · ·+

which has expected value

E[ ] = + E[ ]

= + 2 E( )

E( 2)

1
+ 2 E( )

E( 2)

1
¸

= + 2 2 E( )

E( 2)

1
¸



BROWNIAN MOTION AND THE PROBABILITY OF RUIN 323

This quantity becomes indenitely large as 0. Hence, we have

lim
0
E[ ] =

This result means that the expected distance traveled in a nite time interval is
innitely large! For a more rigorous discussion of the properties of the Brownian
motion process, the text by Karlin and Taylor [88, Ch. 7] is recommended.
Because = , we can just add to the Brownian motion with drift

process and then use (11.28) and (11.29) to develop an approximation for the
process (11.27). Of course, the larger the value of and the smaller the jumps
(a situation that may likely hold for a very large block of insurance policies), the
better the approximation will be. In this case, the probability of ultimate ruin
and the distribution of time until ruin are easily obtained from the approximating
Brownian motion with drift process (see Section 11.7). Similarly, if a process is
known to be Brownian motion with drift, a compound Poisson surplus process can
be used as an approximation.

11.7 BROWNIAN MOTION AND THE PROBABILITY OF RUIN

Let { : 0} denote the Brownian motion with drift process with mean function
and variance function 2 . Let = + denote the Brownian motion with

drift process with initial surplus 0 = .
We consider the probability of ruin in a nite time interval (0 ) as well as the

distribution of time until ruin if ruin occurs. Let = min 0{ : 0} be the
time at which ruin occurs (with = if ruin does not occur). Letting
will give ultimate ruin probabilities.
The probability of ruin before time can be expressed as

( ) = 1 ( )

= Pr{ }

= Pr

½
min
0

0

¾

= Pr

½
min
0

0

¾

= Pr

½
min
0

¾

Theorem 11.13 For the process just described, the ruin probability is given by

( ) =

µ
+
2

¶
+ exp

µ
2
2

¶ µ

2

¶
(11.30)

where (·) is the cdf of the standard normal distribution.

Proof: Any sample path of with a nal level 0 must have rst crossed the
barrier = 0 at some time . For any such path , we dene a new path
, which is the same as the original sample path for all but is the reection

about the barrier = 0 of the original sample path for all . Then

=

½
(11.31)
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Figure 11.4 Type B sample path and its reection.

The reected path has nal value = . These are illustrated in Figure
11.4, which is based on the sample path in Figure 11.3.
Now consider any path that crosses the barrier = 0 in the time interval (0 ).

Any such path is one of two possible types:
Type A: One that has a nal value of 0
Type B: One that has a nal value of 0.

Any path of Type B is a reection of some other path of Type A. Hence, sample
paths can be considered in reecting pairs. The probability of ruin at some time in
(0 ) is the total probability of all such pairs:

( ) = Pr{ } = Pr
½
min
0

0

¾

where it is understood that all probabilities are conditional on 0 = . This
probability is obtained by considering all original paths of Type A with nal values
= 0. By adding all the corresponding reecting paths as well, all possible

paths that cross the ruin barrier are considered. Note that the case = 0 has
been left out. The probability of this happening is zero, and so this event can be
ignored. In Figure 11.4 the original sample path ended at a positive surplus value
and so is of Type B. The reection is of Type A.
Let and denote the sets of all possible paths of Types A and B, respec-

tively, which end at = for Type A and = for Type B. Further, let
Pr{ } and Pr{ } denote the total probability associated with the paths in the
sets.6 Hence, the probability of ruin is

Pr{ } =
Z 0

Pr{ = }
Pr{ }+Pr{ }
Pr{ = }

(11.32)

6We are abusing probability notation here. The actual probability of these events is zero. What
is being called a probability is really a probability density that can be integrated to produce
probabilities for sets having positive probability.
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Because is the set of all possible paths ending at ,

Pr{ } = Pr{ = }

where the right-hand side is the pdf of . Then

Pr{ } =
Z 0

Pr{ = } 1 +
Pr{ }
Pr{ }

¸
(11.33)

Because is a Brownian motion with drift process, is normally distributed
with mean + and variance 2 , and so

Pr{ = } = (2 2 ) 1 2 exp
( )2

2 2

¸

To obtain Pr{ } Pr{ }, we condition on all possible ruin times . Then

Pr{ }
Pr{ }

=

R
0
Pr{ | = }Pr{ = }

R
0
Pr{ | = }Pr{ = }

=

R
0
Pr{ = | = }Pr{ = }

R
0
Pr{ = | = }Pr{ = }

The conditional pdf of | = is the same as the pdf of because =
implies = 0. The process has independent increments, and so has a
normal distribution. Then,

Pr{ = | = } = Pr{ = }

=

exp

½
[ ( )]2

2 2( )

¾

p
2 2( )

=

exp

½
2 2 ( ) + 2( )2

2 2( )

¾

p
2 2( )

= exp
³

2

´ exp
½

2 + 2( )2

2 2( )

¾

p
2 2( )

Similarly, by replacing with ,

Pr{ = | = } =
exp

³
2

´
exp

½
2 + 2( )2

2 2( )

¾

p
2 2( )
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We then have

Pr{ }
Pr{ }

=

Z

0

exp
³

2

´
exp

½
2 + 2( )2

2 2( )

¾

p
2 2( )

Pr{ = }

Z

0

exp
³

2

´
exp

½
2 + 2( )2

2 2( )

¾

p
2 2( )

Pr{ = }

= exp

µ
2
2

¶

Then from (11.32)

( ) = Pr{ }

=

Z 0

Pr{ = } 1 +
Pr{ }
Pr{ }

¸

=

µ

2

¶

+

Z 0

(2 2 ) 1 2 exp
( )2

2 2

2
2

¸

=

µ
+
2

¶

+

Z 0

(2 2 ) 1 2 exp
( + )2 + 4

2 2

¸

=

µ
+
2

¶
+ exp

µ
2
2

¶ µ

2

¶

¤

Corollary 11.14 The probability of ultimate ruin is given by

( ) = 1 ( ) = Pr{ } = exp
µ

2
2

¶
(11.34)

By letting , this result follows from Theorem 11.13. It should be noted
that the distribution (11.30) is a defective distribution because the cdf does not
approach 1 as . The corresponding proper distribution is obtained by
conditioning on ultimate ruin.

Corollary 11.15 The distribution of the time until ruin given that it occurs is

( )

( )
= Pr{ | }

= exp

µ
2
2

¶ µ
+
2

¶
+

µ

2

¶
0 (11.35)

Corollary 11.16 The probability density function of the time until ruin given that
it occurs is

( ) =
2 2

3 2 exp
( )2

2 2

¸
0 (11.36)
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This equation is obtained by di erentiation of (11.35) with respect to . It is not
hard to see, using Appendix A, that if 0, then (11.36) is the pdf of an inverse
Gaussian distribution with mean and variance 2 3. It is worth noting that
the preceding proof is also valid when = 0. It follows from (11.34) that ruin is
certain and the time until ruin (11.36) has pdf

( ) =
2 2

3 2 exp

µ
2

2 2

¶
0

and cdf (from (11.35))

( ) = 2
³

1 2

´
0

This distribution is the one-sided stable law with index 1/2.
These results can be used as approximations for the original surplus process

(11.27) based on the compound Poisson model. In this situation, = (1+ ) E( ),
where is the relative premium loading. Use (11.28) and (11.29) to eliminate 2

and then from (11.30), (11.34), and (11.36), we have

( ) =

"
+ E( )
p

E( 2)

#

+exp
2E( )

E( 2)

¸ "
E( )

p
E( 2)

#

0 0

( ) = exp
2E( )

E( 2)

¸
0

and

( ) =p
2 E( 2)

3 2 exp

½
[ E( )]2

2 E( 2)

¾
0

Then, for any compound Poisson-based process, it is easy to get simple numerical
approximations. For example, the expected time until ruin, given that it occurs, is

E( ) = =
E( )

(11.37)

Naturally, the accuracy of this approximation depends on the relative sizes of the
quantities involved.
It should be noted from (11.37) that the expected time of ruin, given that it

occurs, depends (as we might expect) on the four key quantities that describe
the surplus process. A higher initial surplus ( ) increases the time to ruin, while
increasing any of the other components decreases the expected time. This result
may appear surprising at rst, but, for example, increasing the loading increases
the rate of expected growth in surplus, making ruin di cult. Therefore, if ruin
should occur, it will have to happen soon, before the high loading leads to large
gains. If is large, the company is essentially much larger and events happen more
quickly. Therefore, ruin, if it happens, will occur sooner. Finally, a large value of
E( ) makes it easier for an early claim to wipe out the initial surplus.
All these are completely intuitive. However, formula (11.37) shows how each

factor can have an inuence on the expected ruin time.
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On a nal note, it is also possible to use the compound Poisson-based risk process
as an approximation for a Brownian motion process. For known drift and vari-

ance parameters and 2, one can use (11.28) and (11.29) to obtain

= E( ) (11.38)
2 = E( 2) (11.39)

It is convenient to x the jump sizes so that E( ) = , say, and E( 2) = 2.
Then we have

=
2

2
(11.40)

= =
2

(11.41)

When and 2 are xed, choosing a value of xes and . Hence, the Poisson-
based process can be used to approximate the Brownian motion with accuracy
determined only by the parameter . The smaller the value of , the smaller the
jump sizes and the larger the number of jumps per unit time.
Hence, simulation of the Brownian motion process can be done using the Poisson-

based process. To simulate the Poisson-based process, the waiting times between
successive events are generated rst because these are exponentially distributed
with mean 1 . As becomes small, becomes large and the mean waiting time
becomes small.
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12

REVIEW OF MATHEMATICAL
STATISTICS

12.1 INTRODUCTION

Before studying empirical models and then parametric models, we review some
concepts from mathematical statistics. Mathematical statistics is a broad subject
that includes many topics not covered in this chapter. For those that are covered,
it is assumed that the reader has had some prior exposure. The topics of greatest
importance for constructing actuarial models are estimation and hypothesis testing.
Because the Bayesian approach to statistical inference is often either ignored or
treated lightly in introductory mathematical statistics texts and courses, it receives
more in-depth coverage in this text in Section 15.5. Bayesian methodology also
provides the basis for the credibility methods covered in Chapter 20.
To see the need for methods of statistical inference, consider the case where your

boss needs a model for basic dental payments. One option is to simply announce
the model. You announce that it is the lognormal distribution with = 5 1239
and = 1 0345 (the many decimal places are designed to give your announcement
an aura of precision). When your boss, or a regulator, or an attorney who has put
you on the witness stand asks you how you know that to be so, it will likely not be

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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su cient to answer that �“I just know these things,�” or �“trust me, I am a trained
statistician,�” or �“it is too complicated, you wouldn�’t understand.�” It may not even
be su cient to announce that your friend at Gamma Dental uses that model.
An alternative is to collect some data and use it to formulate a model. Most

distributional models have two components. The rst is a name, such as �“Pareto.�”
The second is the set of values of parameters that complete the specication. Mat-
ters would be simpler if modeling could be done in that order. Most of the time we
need to x the parameters that go with a named model before we can decide if we
want to use that type of model.
Because the parameter estimates are based on a sample from the population and

not the entire population, the results will not be the true values. It is important
to have an idea of the potential error. One way to express this error is with an
interval estimate. That is, rather than announcing a particular value, a range of
plausible values is presented.
When named parametric distributions are used, the parameterizations used are

those from Appendixes A and B.

12.2 POINT ESTIMATION

12.2.1 Introduction

Regardless of how a model is estimated, it is extremely unlikely that the estimated
model will exactly match the true distribution. Ideally, we would like to be able to
measure the error we will be making when using the estimated model. But doing so
is clearly impossible! If we knew the amount of error we had made, we could adjust
our estimate by that amount and then have no error at all. The best we can do is
discover how much error is inherent in repeated use of the procedure, as opposed
to how much error we made with our current estimate. Therefore, this section is
about the quality of the ensemble of answers produced from the procedure, not
about the quality of a particular answer.
This is a critical point with regard to actuarial practice. What is important is

that an appropriate procedure be used, with everyone understanding that even the
best procedure can lead to a poor result once the random future outcome has been
revealed. This point is stated nicely in a Society of Actuaries principles draft [163,
pp. 779�—780] regarding the level of adequacy of a provision for a block of life risk
obligations (i.e., the probability that the company will have enough money to meet
its contractual obligations):

The indicated level of adequacy is prospective, but the actuarial model is
generally validated against past experience. It is incorrect to conclude on the
basis of subsequent experience that the actuarial assumptions were inappro-
priate or that the indicated level of adequacy was overstated or understated.

When constructing models, there are several types of error. Some, such as model
error (choosing the wrong model) and sampling frame error (trying to draw infer-
ences about a population that di ers from the one sampled), are not covered here.
An example of model error is selecting a Pareto distribution when the true distri-
bution is Weibull. An example of sampling frame error is sampling claims from
policies sold by independent agents to price policies sold over the Internet.
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The type of error we can measure is that due to using a sample from the popu-
lation to make inferences about the entire population. Errors occur when the items
sampled do not represent the population. As noted earlier, we cannot know if the
particular items sampled today do or do not represent the population. We can,
however, estimate the extent to which estimators are a ected by the possibility of
a nonrepresentative sample.
The approach taken in this section is to consider all the samples that might be

taken from the population. Each such sample leads to an estimated quantity (e.g.,
a probability, a parameter value, or a moment). We do not expect the estimated
quantities to always match the true value. For a sensible estimation procedure, we
do expect that for some samples the quantity will match the true value, for many
it will be close, and for only a few it will be quite di erent. If we can construct a
measure of how well the set of potential estimates matches the true value, we have
a handle on the quality of our estimation procedure. The approach outlined here
is often called the classical or frequentist approach to estimation.
Finally, we need a word about the di erence between estimate and estimator.

The former refers to the specic value obtained when applying an estimation pro-
cedure to a set of numbers. The latter refers to a rule or formula that produces
the estimate. An estimate is a number or function, while an estimator is a random
variable or a random function. Usually, both the words and the context will make
clear which is being referred to.

12.2.2 Measures of quality

12.2.2.1 Introduction There are a variety of ways to measure the quality of an
estimator. Three of them are discussed here. Two examples are used throughout
to illustrate them.

EXAMPLE 12.1

A population contains the values 1, 3, 5, and 9. We want to estimate the
population mean by taking a sample of size 2 with replacement. ¤

EXAMPLE 12.2

A population has the exponential distribution with a mean of . We want to
estimate the population mean by taking a sample of size 3 with replacement.¤

Both examples are clearly articial in that we know the answers prior to sampling
(4.5 and ). However, that knowledge will make apparent the error in the procedure
we select. For practical applications, we need to be able to estimate the error when
we do not know the true value of the quantity being estimated.

12.2.2.2 Unbiasedness When constructing an estimator, it would be good if, on
average, the errors we make cancel each other out. More formally, let be the
quantity we want to estimate. Let �ˆ be the random variable that represents the
estimator and let E(�ˆ| ) be the expected value of the estimator �ˆ when is the true
parameter value.
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Denition 12.1 An estimator, �ˆ, is unbiased if E(�ˆ| ) = for all . The bias
is bias�ˆ( ) = E(�ˆ| ) .

The bias depends on the estimator being used and may also depend on the
particular value of .

EXAMPLE 12.3

For Example 12.1 determine the bias of the sample mean as an estimator of
the population mean.

The population mean is = 4 5. The sample mean is the average of the two
observations. It is also the estimator we would use employing the empirical
approach. In all cases, we assume that sampling is random. In other words,
every sample of size has the same chance of being drawn. Such sampling
also implies that any member of the population has the same chance of being
observed as any other member. For this example, there are 16 equally likely
ways the sample could have turned out:

1,1 1,3 1,5 1,9 3,1 3,3 3,5 3,9
5,1 5,3 5,5 5,9 9,1 9,3 9,5 9,9

These samples lead to the following 16 equally likely values for the sample
mean:

1 2 3 5 2 3 4 6
3 4 5 7 5 6 7 9

Combining the common values, the sample mean, usually denoted ¯ , has
the following probability distribution:

1 2 3 4 5 6 7 9
¯ ( ) 1/16 2/16 3/16 2/16 3/16 2/16 2/16 1/16

The expected value of the estimator is

E( ¯) = [1(1) + 2(2) + 3(3) + 4(2) + 5(3) + 6(2) + 7(2) + 9(1)] 16 = 4 5

and so the sample mean is an unbiased estimator of the population mean for
this example. ¤

EXAMPLE 12.4

For Example 12.2 determine the bias of the sample mean and the sample
median as estimators of the population mean.
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The sample mean is ¯ = ( 1+ 2+ 3) 3, where each represents one
of the observations from the exponential population. Its expected value is

E( ¯) = E
µ

1 + 2 + 3

3

¶
= 1

3 [E( 1) + E( 2) + E( 3)]

= 1
3( + + ) =

and, therefore, the sample mean is an unbiased estimator of the population
mean.
Investigating the sample median is a bit more di cult. The distribution

function of the middle of three observations can be found as follows, using
as the random variable of interest and as the random variable for an

observation from the population:

( ) = Pr( ) = Pr( 1 2 3 ) + Pr( 1 2 3 )

+Pr( 1 3 2 ) + Pr( 2 3 1 )

= ( )3 + 3 ( )2[1 ( )]

= [1 ]3 + 3[1 ]2

The rst two lines follow because for the median to be less than or equal to
, either all three observations or exactly two of them must be less than or
equal to . The density function is

( ) = 0 ( ) =
6 ³ 2 3

´

The expected value of this estimator is

E( | ) =

Z

0

6 ³ 2 3
´

=
5

6

This estimator is clearly biased,1 with

bias ( ) = 5 6 = 6

On average, this estimator underestimates the true value. It is also easy to
see that the sample median can be turned into an unbiased estimator by
multiplying it by 1.2. ¤

For Example 12.2 we have two estimators (the sample mean and 1.2 times the
sample median) that are both unbiased. We need additional criteria to decide which
one we prefer.
Some estimators exhibit a small amount of bias, which vanishes as the sample

size goes to innity.

1The sample median is not likely to be a good estimator of the population mean. This example
studies it for comparison purposes. Because the population median is ln 2, the sample median
is also biased for the population median.
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Denition 12.2 Let �ˆ be an estimator of based on a sample size of . The
estimator is asymptotically unbiased if

lim E(�ˆ | ) =

for all .

EXAMPLE 12.5

Suppose a random variable has the uniform distribution on the interval (0 ).
Consider the estimator �ˆ = max( 1 ). Show that this estimator is
asymptotically unbiased.

Let be the maximum from a sample of size . Then

( ) = Pr( ) = Pr( 1 )

= [ ( )]

= ( )

( ) =
1

0 .

The expected value is

E( | ) =
Z

0

=
+ 1

+1

¯̄
¯̄
0

=
+ 1

As , the limit is , making this estimator asymptotically unbiased. ¤

12.2.2.3 Consistency A second desirable property of an estimator is that it works
well for extremely large samples. Slightly more formally, as the sample size goes to
innity, the probability that the estimator is in error by more than a small amount
goes to zero. A formal denition follows.

Denition 12.3 An estimator is consistent (often called, in this context, weakly
consistent) if, for all 0 and any ,

lim Pr(|�ˆ | ) = 0

A su cient (although not necessary) condition for weak consistency is that the
estimator be asymptotically unbiased and Var(�ˆ ) 0.

EXAMPLE 12.6

Prove that, if the variance of a random variable is nite, the sample mean is
a consistent estimator of the population mean.
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From Exercise 12.2, the sample mean is unbiased. In addition,

Var( ¯) = Var
1X

=1

=
1
2

X

=1

Var( )

=
Var( )

0

The second step follows from assuming that the observations are indepen-
dent. ¤

EXAMPLE 12.7

Show that the maximum observation from a uniform distribution on the in-
terval (0 ) is a consistent estimator of .

From Example 12.5, the maximum is asymptotically unbiased. The second
moment is

E( 2) =

Z

0

+1 =
+ 2

+2

¯̄
¯̄
0

=
2

+ 2

and then

Var( ) =
2

+ 2

µ

+ 1

¶2
=

2

( + 2)( + 1)2
0

¤

12.2.2.4 Mean-squared error While consistency is nice, most estimators have this
property. What would be truly impressive is an estimator that is not only correct
on average but comes very close most of the time and, in particular, comes closer
than rival estimators. One measure for a nite sample is motivated by the denition
of consistency. The quality of an estimator could be measured by the probability
that it gets within of the true value�–that is, by measuring Pr(|�ˆ | ). But
the choice of is arbitrary, and we prefer measures that cannot be altered to suit
the investigator�’s whim. Then we might consider E(|�ˆ |), the average absolute
error. But we know that working with absolute values often presents unpleasant
mathematical challenges, and so the following has become widely accepted as a
measure of accuracy.

Denition 12.4 The mean-squared error (MSE) of an estimator is

MSE�ˆ( ) = E[(�ˆ )2| ]

Note that the MSE is a function of the true value of the parameter. An estimator
may perform extremely well for some values of the parameter but poorly for others.
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EXAMPLE 12.8

Consider the estimator �ˆ = 5 of an unknown parameter . The MSE is (5 )2,
which is very small when is near 5 but becomes poor for other values. Of
course this estimate is both biased and inconsistent unless is exactly equal
to 5. ¤

A result that follows directly from the various denitions is

MSE�ˆ( ) = E{[�ˆ E(�ˆ| ) + E(�ˆ| ) ]2| } = Var(�ˆ| ) + [bias�ˆ( )]2. (12.1)

If we restrict attention to only unbiased estimators, the best such estimator could
be dened as follows.

Denition 12.5 An estimator, �ˆ, is called a uniformly minimum variance
unbiased estimator (UMVUE) if it is unbiased and for any true value of
there is no other unbiased estimator that has a smaller variance.

Because we are looking only at unbiased estimators, it would have been equally
e ective to make the denition in terms of MSE. We could also generalize the
denition by looking for estimators that are uniformly best with regard to MSE, but
the previous example indicates why that is not feasible. There are a few theorems
that can assist with the determination of UMVUEs. However, such estimators are
di cult to determine. Nevertheless, MSE is still a useful criterion for comparing
two alternative estimators.

EXAMPLE 12.9

For Example 12.2 compare the MSEs of the sample mean and 1.2 times the
sample median.

The sample mean has variance

Var( )

3
=

2

3

When multiplied by 1.2, the sample median has second moment

E[(1.2 )2] = 1 44

Z

0

2 6
³

2 3
´

= 1 44
6 2

µ

2
2 +

3
3

¶

2

µ 2

4
2

2

9
3

¶

+2

µ 3

8
2 +

3

27
3

¶¸¯̄
¯̄
0

=
8 64

µ
2 3

8

2 3

27

¶
=
38 2

25
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for a variance of
38 2

25
2 =

13 2

25

2

3

The sample mean has the smaller MSE regardless of the true value of .
Therefore, for this problem, it is a superior estimator of . ¤

EXAMPLE 12.10

For the uniform distribution on the interval (0 ) compare the MSE of the
estimators 2 ¯ and [( + 1) ]max( 1 ). Also evaluate the MSE of
max( 1 ).

The rst two estimators are unbiased, so it is su cient to compare their
variances. For twice the sample mean,

Var(2 ¯) =
4
Var( ) =

4 2

12
=

2

3
.

For the adjusted maximum, the second moment is

E

"µ
+ 1

¶2#

=
( + 1)2

2

2

+ 2
=
( + 1)2 2

( + 2)

for a variance of
( + 1)2 2

( + 2)
2 =

2

( + 2)

Except for the case = 1 (and then the two estimators are identical), the one
based on the maximum has the smaller MSE. The third estimator is biased.
For it, the MSE is

2

( + 2)( + 1)2
+

µ

+ 1

¶2
=

2 2

( + 1)( + 2)

which is also larger than that for the adjusted maximum. ¤

12.2.3 Exercises

12.1 For Example 12.1, show that the mean of three observations drawn without
replacement is an unbiased estimator of the population mean, while the median of
three observations drawn without replacement is a biased estimator of the popula-
tion mean.

12.2 Prove that for random samples the sample mean is always an unbiased esti-
mator of the population mean.

12.3 Let have the uniform distribution over the range ( 2 + 2). That is,
( ) = 0.25, 2 + 2. Show that the median from a sample of size 3 is

an unbiased estimator of .

12.4 Explain why the sample mean may not be a consistent estimator of the pop-
ulation mean for a Pareto distribution.
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12.5 For the sample of size 3 in Exercise 12.3, compare the MSE of the sample
mean and median as estimates of .

12.6 (*) You are given two independent estimators of an unknown quantity .
For estimator , E(�ˆ ) = 1,000 and Var(�ˆ ) = 160,000 while for estimator ,
E(�ˆ ) = 1,200 and Var(�ˆ ) = 40,000. Estimator is a weighted average, �ˆ =
�ˆ + (1 )�ˆ . Determine the value of that minimizes Var(�ˆ ).

12.7 (*) A population of losses has the Pareto distribution (see Appendix A) with
= 6,000 and unknown. Simulation of the results from maximum likelihood

estimation based on samples of size 10 has indicated that E(�ˆ) = 2 2 and MSE(�ˆ) =
1. Determine Var(�ˆ) if it is known that = 2.

12.8 (*) Two instruments are available for measuring a particular nonzero distance.
The random variable represents a measurement with the rst instrument, and the
random variable with the second instrument. Assume and are independent
with E( ) = 0 8 , E( ) = , Var( ) = 2, and Var( ) = 1 5 2, where
is the true distance. Consider estimators of that are of the form = +
. Determine the values of and that make a UMVUE within the class of

estimators of this form.

12.9 A population contains six members, with values 1, 1, 2, 3, 5, and 10. A
random sample of size 3 is drawn without replacement. In each case the objective
is to estimate the population mean. Note: A spreadsheet with an optimization
routine may be the best way to solve this problem.

(a) Determine the bias, variance, and MSE of the sample mean.

(b) Determine the bias, variance, and MSE of the sample median.

(c) Determine the bias, variance, and MSE of the sample midrange (the
average of the largest and smallest observations).

(d) Consider an arbitrary estimator of the form (1)+ (2)+ (3), where
(1) (2) (3) are the sample order statistics.

i. Determine a restriction on the values of , , and that will assure
that the estimator is unbiased.

ii. Determine the values of , , and that will produce the unbiased
estimator with the smallest variance.

iii. Determine the values of , , and that will produce the (possibly
biased) estimator with the smallest MSE.

12.10 (*) Two di erent estimators, �ˆ1 and �ˆ2, are being considered. To test their
performance, 75 trials have been simulated, each with the true value set at = 2.
The following totals were obtained:

75X

=1

�ˆ
1 = 165

75X

=1

�ˆ2
1 = 375

75X

=1

�ˆ
2 = 147

75X

=1

�ˆ2
2 = 312

where �ˆ is the estimate based on the j th simulation using estimator �ˆ . Estimate
the MSE for each estimator and determine the relative e ciency (the ratio of
the MSEs).
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12.3 INTERVAL ESTIMATION

All of the estimators discussed to this point have been point estimators. That
is, the estimation process produces a single value that represents our best attempt
to determine the value of the unknown population quantity. While that value may
be a good one, we do not expect it to exactly match the true value. A more useful
statement is often provided by an interval estimator. Instead of a single value,
the result of the estimation process is a range of possible numbers, any of which is
likely to be the true value. A specic type of interval estimator is the condence
interval.

Denition 12.6 A 100(1 )% condence interval for a parameter is a pair
of random values, and , computed from a random sample such that Pr(
) 1 for all .

Note that this denition does not uniquely specify the interval. Because the
denition is a probability statement and must hold for all , it says nothing about
whether or not a particular interval encloses the true value of from a particular
population. Instead, the level of condence, 1 , is a property of the method
used to obtain and and not of the particular values obtained. The proper
interpretation is that, if we use a particular interval estimator over and over on a
variety of samples, at least 100(1 )% of the time our interval will enclose the
true value.
Constructing condence intervals is usually very di cult. For example, we know

that, if a population has a normal distribution with unknown mean and variance,
a 100(1 )% condence interval for the mean uses

= ¯
2 1 = ¯ + 2 1 (12.2)

where =
qP

=1(
¯)2 ( 1) and 2 is the 100(1 2)th percentile of

the distribution with degrees of freedom. But it takes a great deal of e ort to
verify that (12.2) is correct (see, e.g., [73, p. 186]).
However, there is a method for constructing approximate condence intervals

that is often accessible. Suppose we have a point estimator �ˆ of parameter such
that E(�ˆ) = , Var(�ˆ) = ( ), and �ˆ has approximately a normal distribution.
Theorem 15.5 shows that these three properties are often the case. With all these
approximations, we have that approximately

1 = Pr

Ã

2

�ˆ
p

( )
2

!

(12.3)

where 2 is the 100(1 2)th percentile of the standard normal distribution.
Solving for produces the desired interval. Sometimes obtaining the solution is
di cult to do (due to the appearance of in the denominator), and so, if necessary,
replace ( ) in (12.3) with (�ˆ) to obtain a further approximation:

1 = Pr

µ
�ˆ

2

q
(�ˆ) �ˆ + 2

q
(�ˆ)

¶
(12.4)
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EXAMPLE 12.11

Use (12.4) to construct an approximate 95% condence interval for the mean
of a normal population with unknown variance.

Use �ˆ = ¯ and then note that E(�ˆ) = , Var(�ˆ) = 2 , and �ˆ does have a
normal distribution. The condence interval is then ¯ ± 1 96 . Because
025 1 1 96, this approximate interval must be narrower than the exact
interval given by (12.2), which implies our level of condence is something less
than 95%. ¤

EXAMPLE 12.12

Use (12.3) and (12.4) to construct approximate 95% condence intervals for
the mean of a Poisson distribution. Obtain intervals for the particular case
where = 25 and ¯ = 0 12.
Here = , the mean of the Poisson distribution. Let �ˆ = ¯ , the sample

mean. For the Poisson distribution, E(�ˆ) = E( ) = and ( ) = Var( ¯) =
Var( ) = . For the rst interval,

0 95 = Pr

Ã

1 96
¯
p 1 96

!

is true if and only if

| ¯ | 1 96

r

which is equivalent to

( ¯ )2
3 8416

or
2

µ
2 ¯ +

3 8416
¶
+ ¯2 0

Solving the quadratic produces the interval

¯ +
1 9208

±
1

2

r
15 3664 ¯ + 3 84162

and for this problem the interval is 0 197± 0 156
For the second approximation, the interval is ¯ ± 1 96

p
¯ and for the

example, it is 0 12 ± 0 136. This interval extends below zero (which is not
possible for the true value of ) because (12.4) is too crude an approximation
in this case. ¤

12.3.1 Exercises

12.11 Let 1 be a random sample from a population with pdf ( ) =
1 , 0. This exponential distribution has a mean of and a variance of

2. Consider the sample mean, ¯ , as an estimator of . It turns out that ¯ has
a gamma distribution with = and = 1 , where in the second expression the
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�“ �” on the left is the parameter of the gamma distribution. For a sample of size 50
and a sample mean of 275, develop 95% condence intervals by each of the following
methods. In each case, if the formula requires the true value of , substitute the
estimated value.

(a) Use the gamma distribution to determine an exact interval.

(b) Use a normal approximation, estimating the variance prior to solving
the inequalities as in (12.4).

(c) Use a normal approximation, estimating after solving the inequalities
as in Example 12.12.

12.12 (*) A sample of 2,000 policies had 1,600 with no claims and 400 with one
or more claims. Using the normal approximation, determine the symmetric 95%
condence interval for the probability that a single policy has one or more claims.

12.4 TESTS OF HYPOTHESES

Hypothesis testing is covered in detail in most mathematical statistics texts. This
review is fairly straightforward and does not address philosophical issues or consider
alternative approaches. A hypothesis test begins with two hypotheses, one called
the null and one called the alternative. The traditional notation is 0 for the
null hypothesis and 1 for the alternative hypothesis. The two hypotheses are not
treated symmetrically. Reversing them may alter the results. To illustrate this
process, a simple example is used.

EXAMPLE 12.13

Your company has been basing its premiums on an assumption that the av-
erage claim is 1,200. You want to raise the premium, and a regulator has
insisted that you provide evidence that the average now exceeds 1,200. To
provide such evidence, the following numbers have been obtained:

27 82 115 126 155 161 243 294 340 384
457 680 855 877 974 1,193 1,340 1,884 2,558 15,743

What are the hypotheses for this problem?

Let be the population mean. One hypothesis (the one you claim is true) is
that 1,200. Because hypothesis tests must present an either/or situation,
the other hypothesis must be 1,200. The only remaining task is to decide
which of them is the null hypothesis. Whenever the universe of continuous
possibilities is divided in two, there is likely to be a boundary that needs
to be assigned to one hypothesis or the other. The hypothesis that includes
the boundary must be the null hypothesis. Therefore, the problem can be
succinctly stated as:

0 : 1,200

1 : 1,200.
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¤

The decision is made by calculating a quantity called a test statistic. It is a
function of the observations and is treated as a random variable. That is, in de-
signing the test procedure, we are concerned with the samples that might have
been obtained and not with the particular sample that was obtained. The test
specication is completed by constructing a rejection region. It is a subset of the
possible values of the test statistic. If the value of the test statistic for the observed
sample is in the rejection region, the null hypothesis is rejected and the alternative
hypothesis is announced as the result that is supported by the data. Otherwise, the
null hypothesis is not rejected (more on this later). The boundaries of the rejection
region (other than plus or minus innity) are called the critical values.

EXAMPLE 12.14

(Example 12.13 continued) Complete the test using the test statistic and
rejection region that is promoted in most statistics books. Assume that the
population has a normal distribution with standard deviation 3,435.

The traditional test statistic for this problem (normal population and stan-
dard deviation known) is

=
¯ 0 ¯ 1,200

3,435 20
= 0 292

where 0 is the value that separates the null and alternative hypotheses. The
null hypothesis is rejected if 1 645. Because 0.292 is less than 1.645, the
null hypothesis is not rejected. The data do not support the assertion that
the average claim exceeds 1,200. ¤

The test in the previous example was constructed to meet certain objectives.
The rst objective is to control what is called the Type I error. It is the error made
when the test rejects the null hypothesis in a situation where it happens to be true.
In the example, the null hypothesis can be true in more than one way. As a result,
a measure of the propensity of a test to make a Type I error must be carefully
dened.

Denition 12.7 The signicance level of a hypothesis test is the probability of
making a Type I error given that the null hypothesis is true. If it can be true in
more than one way, the level of signicance is the maximum of such probabilities.
The signicance level is usually denoted by .

This is a conservative denition in that it looks at the worst case. It is typically
a case that is on the boundary between the two hypotheses.

EXAMPLE 12.15

Determine the level of signicance for the test in Example 12.14.
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Begin by computing the probability of making a Type I error when the null
hypothesis is true with = 1,200. Then,

Pr( 1 645| = 1,200) = 0 05,

because the assumptions imply that has a standard normal distribution.
Now suppose has a value that is below 1,200. Then

Pr

µ ¯ 1,200

3,435 20
1 645

¶

= Pr

µ ¯ + 1,200

3,435 20
1 645

¶

= Pr

µ ¯

3,435 20
1 645

1,200

3,435 20

¶

The random variable on the left has a standard normal distribution. Because
is known to be less than 1,200, the right-hand side is always greater than

1.645. Therefore the probability is less than 0.05, and so the signicance level
is 0.05. ¤

The signicance level is usually set in advance and is often between 1% and 10%.
The second objective is to keep the Type II error (not rejecting the null hypothesis
when the alternative is true) probability small. Generally, attempts to reduce the
probability of one type of error increase the probability of the other. The best
we can do once the signicance level has been set is to make the Type II error as
small as possible, though there is no assurance that the probability will be a small
number. The best test is one that meets the following requirement.

Denition 12.8 A hypothesis test is uniformly most powerful if no other test
exists that has the same or lower signicance level and, for a particular value within
the alternative hypothesis, has a smaller probability of making a Type II error.

EXAMPLE 12.16

(Example 12.15 continued) Determine the probability of making a Type II
error when the alternative hypothesis is true with = 2,000.

Pr

µ ¯ 1,200

3,435 20
1 645| = 2,000

¶

= Pr( ¯ 1,200 1,263 51| = 2,000)

= Pr( ¯ 2,463 51| = 2,000)

= Pr

µ ¯ 2,000

3,435 20

2,463 51 2,000

3,435 20
= 0 6035

¶
= 0 7269.

For this value of , the test is not very powerful, having over a 70% chance of
making a Type II error. Nevertheless (though this is not easy to prove), the
test used is the most powerful test for this problem. ¤
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Because the Type II error probability can be high, it is customary to not make
a strong statement when the null hypothesis is not rejected. Rather than say we
choose or accept the null hypothesis, we say that we fail to reject it. That is, there
was not enough evidence in the sample to make a strong argument in favor of the
alternative hypothesis, so we take no stand at all.
A common criticism of this approach to hypothesis testing is that the choice of

the signicance level is arbitrary. In fact, by changing the signicance level, any
result can be obtained.

EXAMPLE 12.17

(Example 12.16 continued) Complete the test using a signicance level of
= 0 45. Then determine the range of signicance levels for which the null

hypothesis is rejected and for which it is not rejected.

Because Pr( 0 1257) = 0 45, the null hypothesis is rejected when

¯ 1,200

3,435 20
0 1257.

In this example, the test statistic is 0.292, which is in the rejection region,
and thus the null hypothesis is rejected. Of course, few people would place
condence in the results of a test that was designed to make errors 45% of
the time. Because Pr( 0 292) = 0 3851, the null hypothesis is rejected for
those who select a signicance level that is greater than 38.51% and is not
rejected by those who use a signicance level that is less than 38.51%. ¤

Few people are willing to make errors 38.51% of the time. Announcing this gure
is more persuasive than the earlier conclusion based on a 5% signicance level.
When a signicance level is used, readers are left to wonder what the outcome
would have been with other signicance levels. The value of 38.51% is called a
-value. A working denition follows.

Denition 12.9 For a hypothesis test, the p-value is the probability that the test
statistic takes on a value that is less in agreement with the null hypothesis than
the value obtained from the sample. Tests conducted at a signicance level that is
greater than the p-value will lead to a rejection of the null hypothesis, while tests
conducted at a signicance level that is smaller than the p-value will lead to a failure
to reject the null hypothesis.

Also, because the -value must be between 0 and 1, it is on a scale that carries
some meaning. The closer to zero the value is, the more support the data give to
the alternative hypothesis. Common practice is that values above 10% indicate that
the data provide no evidence in support of the alternative hypothesis, while values
below 1% indicate strong support for the alternative hypothesis. Values in between
indicate uncertainty as to the appropriate conclusion and may call for more data
or a more careful look at the data or the experiment that produced it.
This approach to hypothesis testing has some consequences that can create di -

culties when answering actuarial questions. The following example illustrate these
problems.
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EXAMPLE 12.18

You believe that the lognormal model is appropriate for the problem you
are investigating. You have collected some data and would like to test this
hypothesis. What are the null and alternative hypotheses and what will you
learn after completing the test?

Methods for conducting this test are presented in Section 16.4. One hy-
pothesis is that the population has the lognormal distribution and the other
is that it does not. The rst one is the statement of equality and so must
be the null hypothesis. The problem is that while data can conrm that the
population is not lognormal, the method does not allow you to assert that the
population is lognormal. A second problem is that often the null hypothesis
is known to be false. In this case we know that the population is unlikely to
be exactly lognormal. If our sample size is large enough, the hypothesis test
will discover this, and it is likely that all models will be rejected. ¤

It is important to keep in mind that hypothesis testing was invented for situations
where collecting data was either expensive or inconvenient. For example, in deciding
if a new drug cures a disease, it is important to conrm this fact with the smallest
possible sample so that, if the results are favorable, the drug can be approved and
made available. Or, consider testing a new crop fertilizer. Every test acre planted
costs time and money. In contrast, in many types of actuarial problems, there is a
large amount of data available from historical records. In this case, unless the data
follow a parametric model extremely closely, almost any model can be rejected by
using a su ciently large set of data.

12.4.1 Exercise

12.13 (Exercise 12.11 continued) Test 0 : 325 versus 1 : 325 using a
signicance level of 5% and the sample mean as the test statistic. Also, compute
the -value. Do this using the exact distribution of the test statistic and a normal
approximation.





13

ESTIMATION FOR COMPLETE
DATA

13.1 INTRODUCTION

The material here and in Chapter 14 has traditionally been presented under the
heading of �“survival models�” with the accompanying notion that the techniques
are useful only when studying lifetime distributions. Standard texts on the subject
such as Klein and Moeschberger [92] and Lawless [102] contain examples that are
exclusively oriented in that direction. However, as is shown in Chapters 13 and
14, the same problems that occur when modeling lifetime occur when modeling
payment amount. The examples we present are of both types. To emphasize that
point, some of the starred exercises were taken from the former Society of Actuaries
Course 160 exam, but the setting was changed to a payment environment. Only a
handful of references are presented, most of the results being well developed in the
survival models literature. Readers wanting more detail and proofs should consult
a text dedicated to the subject, such as the ones just mentioned,.
In this chapter it is assumed that the type of model is known but not the full

description of the model. In Chapter 4, models were divided into two types�–data-
dependent and parametric. The denitions are repeated here.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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Table 13.1 Data Set A.

Number of accidents Number of drivers

0 81,714
1 11,306
2 1,618
3 250
4 40
5 or more 7

Denition 13.1 A data-dependent distribution is at least as complex as the
data or knowledge that produced it, and the number of �“parameters�” increases as
the number of data points or amount of knowledge increases.

Denition 13.2 A parametric distribution is a set of distribution functions,
each member of which is determined by specifying one or more values called para-
meters. The number of parameters is xed and nite.

Here, only two data-dependent distributions are considered. They depend on the
data in similar ways. The simplest denitions follow for the two types considered.

Denition 13.3 The empirical distribution is obtained by assigning probability
1 to each data point.

Denition 13.4 A kernel smoothed distribution is obtained by replacing each
data point with a continuous random variable and then assigning probability 1 to
each such random variable. The random variables used must be identical except for
a location or scale change that is related to its associated data point.

Note that the empirical distribution is a special type of kernel smoothed dis-
tribution in which the random variable assigns probability 1 to the data point.
An alternative to the empirical distribution that is similar in spirit but produces
di erent numbers is presented later. Chapter 14 shows how the denition can be
modied to account for data that have been altered through censoring and trunca-
tion. With regard to kernel smoothing, there are several distributions that could
be used, a few of which are introduced in Section 14.3.
Throughout Chapters 13 and 14, four examples are used repeatedly. Because

they are simply data sets, they are referred to as Data Sets A, B, C and D.

Data Set A This data set is well-known in the casualty actuarial literature. It
was rst analyzed in the paper [34] by Dropkin in 1959. He collected data from
1956�—1958 on the number of accidents by one driver in one year. The results for
94,935 drivers are in Table 13.1.

Data Set B These numbers are articial. They represent the amounts paid on
workers compensation medical benets but are not related to any particular policy
or set of policyholders. These payments are the full amount of the loss. A random
sample of 20 payments is given in Table 13.2.

Data Set C These observations represent payments on 227 claims from a general
liability insurance policy. The data are in Table 13.3.
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Table 13.2 Data Set B.

27 82 115 126 155 161 243 294 340 384
457 680 855 877 974 1,193 1,340 1,884 2,558 15,743

Table 13.3 Data Set C.

Payment range Number of payments

0�—7,500 99
7,500�—17,500 42
17,500�—32,500 29
32,500�—67,500 28
67,500�—125,000 17
125,000�—300,000 9
Over 300,000 3

Data Set D These numbers are articial. They represent the time at which a ve-
year term insurance policy terminates. For some policyholders, termination is by
death, for some it is by surrender (the cancellation of the insurance contract), and
for the remainder it is expiration of the ve-year period. Two separate versions are
presented. For Data Set D1 (Table 13.4) there were 30 policies observed from issue.
For each, both the time of death and time of surrender are presented, provided they
were before the expiration of the ve-year period. Of course, normally we do not
know the time of death of policyholders who surrender and we do not know when
policyholders who died would have surrendered had they not died. Note that the
nal 12 policyholders survived both death and surrender to the end of the ve-year
period.
For Data Set D2 (Table 13.5), only the time of the rst event is observed. In

addition, there are 10 more policyholders who were rst observed at some time
after the policy was issued. The table presents the results for all 40 policies. The
column headed �“First observed�” gives the duration at which the policy was rst
observed and the column headed �“Last observed�” gives the duration at which the
policy was last observed.

When observations are collected from a probability distribution, the ideal sit-
uation is to have the (essentially) exact1 value of each observation. This case is
referred to as �“complete, individual data,�” and applies to Data Sets B and D1.
There are two reasons why exact data may not be available. One is grouping, in
which all that is recorded is the range of values in which the observation belongs.
Grouping applies to Data Set C and for Data Set A for those with ve or more
accidents.
A second reason that exact values may not be available is the presence of censor-

ing or truncation. When data are censored from below, observations below a given

1Some measurements are never exact. Ages may be rounded to the nearest whole number, mon-
etary amounts to the nearest dollar, car mileage to the nearest mile, and so on. This text is not
concerned with such rounding errors. Rounded values will be treated as if they are exact.
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Table 13.4 Data Set D1.

Policyholder Time of death Time of surrender

1 �— 0.1
2 4.8 0.5
3 �— 0.8
4 0.8 3.9
5 3.1 1.8
6 �— 1.8
7 �— 2.1
8 �— 2.5
9 �— 2.8
10 2.9 4.6
11 2.9 4.6
12 �— 3.9
13 4.0 �—
14 �— 4.0
15 �— 4.1
16 4.8 �—
17 �— 4.8
18 �— 4.8
19�—30 �— �—

Table 13.5 Data Set D2.

First Last First Last
Policy observed observed Event Policy observed observed Event
1 0 0.1 s 16 0 4.8 d
2 0 0.5 s 17 0 4.8 s
3 0 0.8 s 18 0 4.8 s
4 0 0.8 d 19-30 0 5.0 e
5 0 1.8 s 31 0.3 5.0 e
6 0 1.8 s 32 0.7 5.0 e
7 0 2.1 s 33 1.0 4.1 d
8 0 2.5 s 34 1.8 3.1 d
9 0 2.8 s 35 2.1 3.9 s
10 0 2.9 d 36 2.9 5.0 e
11 0 2.9 d 37 2.9 4.8 s
12 0 3.9 s 38 3.2 4.0 d
13 0 4.0 d 39 3.4 5.0 e
14 0 4.0 s 40 3.9 5.0 e
15 0 4.1 s
�“s�” indicates surrender, �“d�” indicates death, �“e�” indicates expiration of the 5-year period.

value are known to be below that value but the exact value is unknown. When
data are censored from above, observations above a given value are known to be
above that value but the exact value is unknown. Note that censoring e ectively
creates grouped data. When the data are grouped in the rst place, censoring has
no e ect. For example, the data in Data Set C may have been censored from above
at 300,000, but we cannot know for sure from the data set and that knowledge has
no e ect on how we treat the data. In contrast, were Data Set B to be censored at
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1,000, we would have 15 individual observations and then 5 grouped observations
in the interval from 1,000 to innity.
In insurance settings, censoring from above is fairly common. For example, if a

policy pays no more than 100,000 for an accident any time the loss is above 100,000
the actual amount will be unknown but we will know that it happened. In Data
Set D2 we have random censoring. Consider the fth policy in Table 13.5. When
the �“other information�” is not available, all that is known about the time of death
is that it will be after 1.8 years. All of the policies are censored at 5 years by the
nature of the policy itself. Also, note that Data Set A has been censored from
above at 5. This is more common language than to say that Data Set A has some
individual data and some grouped data.
When data are truncated from below, observations below a given value are not

recorded. Truncation from above implies that observations above a given value are
not recorded. In insurance settings, truncation from below is fairly common. If an
automobile physical damage policy has a per claim deductible of 250, any losses
below 250 will not come to the attention of the insurance company and so will not
appear in any data sets. Data Set D2 has observations 31�—40 truncated from below
at varying values. Data sets may have truncation forced on them. For example, if
Data Set B were to be truncated from below at 250, the rst 7 observations would
disappear and the remaining 13 would be unchanged.

13.2 THE EMPIRICAL DISTRIBUTION FOR COMPLETE, INDIVIDUAL
DATA

As noted in Denition 13.3, the empirical distribution assigns probability 1 to
each data point. That denition works well when the value of each data point is
recorded. An alternative denition follows.

Denition 13.5 The empirical distribution function is

( ) =
number of observations

where is the total number of observations.

EXAMPLE 13.1

Provide the empirical probability functions for the data in Data Sets A and
B. For Data Set A also provide the empirical distribution function. For Data
Set A assume all seven drivers who had ve or more accidents had exactly
ve accidents.

For notation, a subscript of the sample size (or of if the sample size is
not known) is used to indicate an empirical function. Without the subscript,
the function represents the true function for the underlying random variable.
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For Data Set A, the estimated probability function is

94 935( ) =

81,714 94,935 = 0 860736 = 0
11,306 94,935 = 0 119092 = 1
1,618 94,935 = 0 017043 = 2
250 94,935 = 0 002633 = 3
40 94,935 = 0 000421 = 4
7 94,935 = 0 000074 = 5

where the values add to 0.999999 due to rounding. The distribution function
is a step function with jumps at each data point.

94 935( ) =

0 94,935 = 0 000000 0
81,714 94,935 = 0 860736 0 1
93,020 94,935 = 0 979828 1 2
94,638 94,935 = 0 996872 2 3
94,888 94,935 = 0 999505 3 4
94,928 94,935 = 0 999926 4 5
94,935 94,935 = 1 000000 5

For Data Set B,

20( ) =

0 05 = 27
0 05 = 82
0 05 = 115
...

...
0 05 = 15,743 ¤

As noted in the example, the empirical model is a discrete distribution. There-
fore, the derivative required to create the density and hazard rate functions cannot
be taken. The closest we can come, in an empirical sense, to estimating the hazard
rate function is to estimate the cumulative hazard rate function, dened as follows.

Denition 13.6 The cumulative hazard rate function is dened as

( ) = ln ( )

The name comes from the fact that, if ( ) is di erentiable,

0( ) =
0( )

( )
=

( )

( )
= ( )

and then

( ) =

Z
( ) .

The distribution function can be obtained from ( ) = 1 ( ) = 1 ( ).
Therefore, estimating the cumulative hazard function provides an alternative way
to estimate the distribution function.
To dene empirical estimates, some additional notation is needed. For a sample

of size , let 1 2 · · · be the unique values that appear in the
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Table 13.6 Values for Example 13.2.

1 1.0 1 8
2 1.3 1 7
3 1.5 2 6
4 2.1 3 4
5 2.8 1 1

sample, where must be less than or equal to . Let be the number of times
the observation appears in the sample. Thus,

P
=1 = . Also of interest

is the number of observations in the data set that are greater than or equal to a
given value. Both the observations themselves and the number of observations are
referred to as the risk set. Let =

P
= be the number of observations greater

than or equal to . Using this notation, the empirical distribution function is

( ) =
0 1

1 1 = 2
1

EXAMPLE 13.2

Consider a data set containing the numbers 1.0, 1.3, 1.5, 1.5, 2.1, 2.1, 2.1, and
2.8. Determine the quantities described in the previous paragraph and then
obtain the empirical distribution function.

There are ve unique values and, thus, = 5. Values of , , and are
given in Table 13.6.

8( ) =

0 1.0

1 7
8 = 0.125 1.0 1.3

1 6
8 = 0.250 1.3 1.5

1 4
8 = 0.500 1.5 2.1

1 1
8 = 0.875 2.1 2.8

1 2.8

¤

Denition 13.7 The Nelson�—Åalen estimate ([1],[129]) of the cumulative haz-
ard rate function is

�ˆ ( ) =

0 1

P 1
=1 1 = 2

P
=1
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Because this is a step function, its derivatives (which would provide an estimate
of the hazard rate function) are not interesting. An intuitive derivation of this
estimator can be found on page 368.

EXAMPLE 13.3

Determine the Nelson�—Åalen estimate for the previous example.

We have

�ˆ ( ) =

0 1 0

1
8 = 0.125 1.0 1.3

0 125 + 1
7 = 0.268 1.3 1.5

0 268 + 2
6 = 0.601 1.5 2.1

0 601 + 3
4 = 1.351 2.1 2.8

1.351 + 1
1 = 2.351 2.8

These values can be used to produce an alternative estimate of the distribution
function via exponentiation. For example, for 1.5 2.1, the estimate is
�ˆ( ) = 1 0 601 = 0.452, which is not equal to the empirical estimate of
0.5. When a function is estimated by other methods, the function has a caret
(hat) placed on it. ¤

EXAMPLE 13.4

Determine the empirical survival function and Nelson�—Åalen estimate of the
cumulative hazard rate function for the time to death for Data Set D1. Esti-
mate the survival function from the Nelson�—Åalen estimate. Assume that the
death time is known for those who surrender.

The calculations are in Table 13.7. For the empirical functions, the values
given are for the interval from (and including) the current value to (but not
including) the next value. ¤

For this particular problem, where it is known that all policyholders terminate
at time 5, results past 5 are not interesting. The methods of obtaining an empirical
distribution that have been introduced work only when the individual observations
are available and there is no truncation or censoring. Chapter 14 introduces modi-
cations for those situations.

13.2.1 Exercises

13.1 Obtain the empirical distribution function and the Nelson�—Åalen estimate of
the distribution function for the time to surrender using Data Set D1. Assume that
the surrender time is known for those who die.
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Table 13.7 Data for Example 13.4.

30( ) �ˆ ( ) �ˆ( ) =
�ˆ ( )

1 0.8 1 30 29
30 = 0.9667

1
30 = 0.0333 0.9672

2 2.9 2 29 27
30
= 0.9000 0.0333 + 2

29
= 0.1023 0.9028

3 3.1 1 27 26
30
= 0.8667 0.1023 + 1

27
= 0.1393 0.8700

4 4.0 1 26 25
30
= 0.8333 0.1393 + 1

26
= 0.1778 0.8371

5 4.8 2 25 23
30
= 0.7667 0.1778 + 2

25
= 0.2578 0.7727

Table 13.8 Trended hurricane losses.

Year Loss (103) Year Loss (103) Year Loss (103)
1964 6,766 1964 40,596 1975 192,013
1968 7,123 1949 41,409 1972 198,446
1971 10,562 1959 47,905 1964 227,338
1956 14,474 1950 49,397 1960 329,511
1961 15,351 1954 52,600 1961 361,200
1966 16,983 1973 59,917 1969 421,680
1955 18,383 1980 63,123 1954 513,586
1958 19,030 1964 77,809 1954 545,778
1974 25,304 1955 102,942 1970 750,389
1959 29,112 1967 103,217 1979 863,881
1971 30,146 1957 123,680 1965 1,638,000
1976 33,727 1979 140,136

13.2 The data in Table 13.8 are from Loss Distributions [72, p. 128]. It represents
the total damage done by 35 hurricanes between the years 1949 and 1980. The
losses have been adjusted for ination (using the Residential Construction Index)
to be in 1981 dollars. The entries represent all hurricanes for which the trended
loss was in excess of 5,000,000.
The federal government is considering funding a program that would provide

100% payment for all damages for any hurricane causing damage in excess of
5,000,000. You have been asked to make some preliminary estimates.

(a) Estimate the mean, standard deviation, coe cient of variation, and
skewness for the population of hurricane losses.

(b) Estimate the rst and second limited moments at 500,000,000.

13.3 (*) There have been 30 claims recorded in a random sampling of claims. There
were 2 claims for 2,000, 6 for 4,000, 12 for 6,000, and 10 for 8,000. Determine the
empirical skewness coe cient.

13.3 EMPIRICAL DISTRIBUTIONS FOR GROUPED DATA

For grouped data, construction of the empirical distribution as dened previously is
not possible. However, it is possible to approximate the empirical distribution. The
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strategy is to obtain values of the empirical distribution function wherever possible
and then connect those values in some reasonable way. For grouped data, the
distribution function is usually approximated by connecting the points with straight
lines. Other interpolation methods are discussed in Chapter 19. For notation,
let the group boundaries be 0 1 · · · , where often 0 = 0 and =
. The number of observations falling between 1 and is denoted withP
=1 = . For such data, we are able to determine the empirical distribution

at each group boundary. That is, ( ) = (1 )
P

=1 . Note that no rule
is proposed for observations that fall on a group boundary. There is no correct
approach, but whatever approach is used, consistency in assignment of observations
to groups should be used. Note that in Data Set C it is not possible to tell how
the assignments were made. If we had that knowledge, it would not a ect any
subsequent calculations.2

Denition 13.8 For grouped data, the distribution function obtained by connecting
the values of the empirical distribution function at the group boundaries with straight
lines is called the ogive. The formula is

( ) =
1

( 1) +
1

1
( ) 1

This function is di erentiable at all values except group boundaries. Therefore
the density function can be obtained. To completely specify the density function,
it is arbitrarily be made right-continuous.

Denition 13.9 For grouped data, the empirical density function can be obtained
by di erentiating the ogive. The resulting function is called a histogram. The
formula is

( ) =
( ) ( 1)

1
=

( 1)
1

Many computer programs that produce histograms actually create a bar chart
with bar heights proportional to . A bar chart is acceptable if the groups have
equal width, but if not, then the preceding formula is needed. The advantage of
this approach is that the histogram is indeed a density function, and, among other
things, areas under the histogram can be used to obtain empirical probabilities.

EXAMPLE 13.5

Construct the ogive and histogram for Data Set C.

2Technically, for the interval from 1 to , = should be included and = 1 excluded
in order for ( ) to be the empirical distribution function.
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Figure 13.1 Ogive for general liability losses.

The distribution function is

227( ) =

0.000058150 0 7,500
0.29736 + 0.000018502 7,500 17,500
0.47210 + 0.000008517 17,500 32,500
0.63436 + 0.000003524 32,500 67,500
0.78433 + 0.000001302 67,500 125,000
0.91882 + 0.000000227 125,000 300,000
undened, 300,000

where, for example, for the range 32,500 67,500 the calculation is

227( ) =
67,500

67,500 32,500
170

227
+

32,500
67,500 32,500

198

227

The value is undened above 300,000 because the last interval has a width of
innity. A graph of the ogive for values up to 125,000 appears in Figure 13.1.
The derivative is simply a step function with the following values:

227( ) =

0.000058150 0 7,500
0.000018502 7,500 17,500
0.000008517 17,500 32,500
0.000003524 32,500 67,500
0.000001302 67,500 125,000
0.000000227 125,000 300,000
undened, 300,000

A graph of the function up to 125,000 appears in Figure 13.2. ¤

13.3.1 Exercises

13.4 Construct the ogive and histogram for the data in Table 13.9.

13.5 (*) The following 20 wind losses (in millions of dollars) were recorded in one
year:

1 1 1 1 1 2 2 3 3 4
6 6 8 10 13 14 15 18 22 25
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Figure 13.2 Histogram of general liability losses.

Table 13.9 Data for Exercise 13.4.

Payment range Number of payments

0�—25 6
25�—50 24
50�—75 30
75�—100 31
100�—150 57
150�—250 80
250�—500 85
500�—1,000 54
1,000�—2,000 15
2,000�—4,000 10
Over 4,000 0

(a) Construct an ogive based on using class boundaries at 0.5, 2.5, 8.5, 15.5,
and 29.5.

(b) Construct a histogram using the same boundaries as in part (a).

13.6 The data in Table 13.10 are from Herzog and Laverty [66]. A certain class
of 15-year mortgages was followed from issue until December 31, 1993. The issues
were split into those that were renances of existing mortgages and those that
were original issues. Each entry in the table provides the number of issues and the
percentage of them that were still in e ect after the indicated number of years. Draw
as much of the two ogives (on the same graph) as is possible from the data. Does
it appear from the ogives that the lifetime variable (time to mortgage termination)
has a di erent distribution for renanced versus original issues?

13.7 (*) The data in Table 13.11 were collected (units are millions of dollars).
Construct the histogram.

13.8 (*) Forty losses have been observed. Sixteen are between 1 and 4
3 , and those

16 losses total 20. Ten losses are between 4
3 and 2 with a total of 15. Ten more
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Table 13.10 Data for Exercise 13.6.

Renances Original
Years No. issued Survived No. issued Survived

1.5 42,300 99.97 12,813 99.88
2.5 9,756 99.82 18,787 99.43
3.5 1,550 99.03 22,513 98.81
4.5 1,256 98.41 21,420 98.26
5.5 1,619 97.78 26,790 97.45

Table 13.11 Data for Exercise 13.7.

Loss No. of observations

0�—2 25
2�—10 10
10�—100 10
100�—1,000 5

are between 2 and 4 with a total of 35. The remaining 4 losses are greater than 4.
Using the empirical model based on these observations, determine E( 2).

13.9 (*) A sample of size 2,000 contains 1,700 observations that are no greater
than 6,000, 30 that are greater than 6,000 but no greater than 7,000, and 270
that are greater than 7,000. The total amount of the 30 observations that are
between 6,000 and 7,000 is 200,000. The value of E( 6,000) for the empirical
distribution associated with these observations is 1,810. Determine E( 7,000)
for the empirical distribution.

13.10 (*) A random sample of unknown size produced 36 observations between 0
and 50; between 50 and 150; between 150 and 250; 84 between 250 and 500; 80
between 500 and 1,000; and none above 1,000. Two values of the ogive constructed
from these observations are (90) = 0 21 and (210) = 0 51. Determine the
value of .





14

ESTIMATION FOR MODIFIED
DATA

14.1 POINT ESTIMATION

It is not unusual for data to be incomplete due to censoring or truncation. The
formal denitions are as follows.

Denition 14.1 An observation is truncated from below (also called left trun-
cated) at if when it is below it is not recorded, but when it is above it is recorded
at its observed value.
An observation is truncated from above (also called right truncated) at if
when it is above it is not recorded, but when it is below it is recorded at its
observed value.
An observation is censored from below (also called left censored) at if when
it is below it is recorded as being equal to , but when it is above it is recorded
at its observed value.
An observation is censored from above (also called right censored) at if when
it is above it is recorded as being equal to , but when it is below it is recorded
at its observed value.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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The most common occurrences are left truncation and right censoring. Left
truncation occurs when an ordinary deductible of is applied. When a policyholder
has a loss below , he or she knows no benets will be paid and so does not inform
the insurer. When the loss is above , the amount of the loss will be reported. A
policy limit is an example of right censoring. When the amount of the loss exceeds
, benets beyond that value are not paid, and so the exact value is not recorded.
However, it is known that a loss of at least has occurred.
When constructing a mortality table, it is impractical to follow people from birth

to death. It is more common to follow a group of people of varying ages for a few
years. When a person joins a study, he or she is alive at that time. This person�’s
age at death must be at least as great as the age at entry to the study and thus
has been left truncated. If the person is alive when the study ends, right censoring
has occurred. The person�’s age at death is not known, but it is known that it is at
least as large as the age when the study ended. Right censoring also a ects those
who leave the study prior to its end due to surrender.
Because left truncation and right censoring are the most common occurrences

in actuarial work, they are the only cases that are covered in this chapter. To save
words, truncated always means truncated from below and censored always means
censored from above.
When trying to construct an empirical distribution from truncated or censored

data, the rst task is to create notation to summarize the data. For individual
data, there are three facts that are needed. First is the truncation point for that
observation. Let that value be for the th observation. If there was no truncation,
= 0. The second is the observation itself. The notation used depends on whether

or not that observation was censored. If it was not censored, let its value be
. If it was censored, let its value be . When this subject is presented more

formally, a distinction is made between the case where the censoring point is known
in advance and where it is not. For example, a liability insurance policy with
a policy limit usually has the censoring point known prior to the receipt of any
claims. By comparison, in a mortality study of insured lives, those that surrender
their policy do so at an age that was not known when the policy was sold. In this
chapter no distinction is made between the two cases.
To perform the estimation, the raw data must be summarized in a useful manner.

The most interesting values are the uncensored observations. Let 1 2 · · ·
be the unique values of the s that appear in the sample, where must be less
than or equal to the number of uncensored observations. Let be the number of
times the uncensored observation appears in the sample. The nal important
quantity is the risk set at the th ordered observation and is denoted . When
thinking in terms of a mortality study, the risk set comprises the individuals who
are under observation at that age. Included are all who die (have values) at that
age or later and all who are censored (have values) at that age or later. However,
those who are rst observed (have values) at that age or later were not under
observation at that time. The formula is

= (number of s )+ (number of s ) (number of s ).

Alternatively, because the total number of s is equal to the total number of s
and s, we also have

= (number of s ) (number of s ) (number of s ). (14.1)



POINT ESTIMATION 365

Table 14.1 Values for Example 14.1.

1 0 �— 0.1 16 0 4.8 �—
2 0 �— 0.5 17 0 �— 4.8
3 0 �— 0.8 18 0 �— 4.8
4 0 0.8 �— 19�—30 0 �— 5.0
5 0 �— 1.8 31 0.3 �— 5.0
6 0 �— 1.8 32 0.7 �— 5.0
7 0 �— 2.1 33 1.0 4.1 �—
8 0 �— 2.5 34 1.8 3.1 �—
9 0 �— 2.8 35 2.1 �— 3.9
10 0 2.9 �— 36 2.9 �— 5.0
11 0 2.9 �— 37 2.9 �— 4.8
12 0 �— 3.9 38 3.2 4.0 �—
13 0 4.0 �— 39 3.4 �— 5.0
14 0 �— 4.0 40 3.9 �— 5.0
15 0 �— 4.1

This latter version is a bit easier to conceptualize because it includes all who have
entered the study prior to the given age less those who have already left. The key
point is that the risk set is the number of people observed alive at age . If the
data are loss amounts, the risk set is the number of policies with observed loss
amounts (either the actual amount or the maximum amount due to a policy limit)
greater than or equal to less those with deductibles greater than or equal to .
These relationships lead to a recursive version of the formula,

= 1 + (number of s between 1 and )

(number of s equal to 1)

(number of s between 1 and ), (14.2)

where between is interpreted to mean greater than or equal to 1 and less than
, and 0 is set equal to 0.

EXAMPLE 14.1

Using Data Set D2, calculate the values using both (14.1) and (14.2).

The calculations appear in Tables 14.1 and 14.2. ¤

Despite all the work we have done to this point, we have yet to produce an
estimator of the survival function. The one most commonly used is called the
Kaplan�—Meier product-limit estimator [87]. Begin with (0) = 1. Because no one
died prior to 1, the survival function remains at 1 until this value. Thinking
conditionally, just before 1, there were 1 people available to die, of which 1 did
so. Thus, the probability of surviving past 1 is ( 1 1) 1. This becomes the value
of ( 1) and the survival function remains at that value until 2. Again, thinking
conditionally, the new survival value at 2 is ( 1)( 2 2) 2 The general formula
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Table 14.2 Risk set calculations for Example 14.1.

1 0.8 1 32 0 2 = 30 or 0 + 32 0 2 = 30
2 2.9 2 35 1 8 = 26 or 30 + 3 1 6 = 26
3 3.1 1 37 3 8 = 26 or 26 + 2 2 0 = 26
4 4.0 2 40 4 10 = 26 or 26 + 3 1 2 = 26
5 4.1 1 40 6 11 = 23 or 26 + 0 2 1 = 23
6 4.8 1 40 7 12 = 21 or 23 + 0 1 1 = 21

is

( ) =

1 0 1

Y 1

=1

µ ¶
1 = 2

Y
=1

µ ¶
or 0

If = , then ( ) = 0 for makes sense. Everyone in the sample has died by
that value and so, empirically, survival past that age is not possible. However, due
to censoring, it is possible that at the age of the last death there were still people
alive but all were censored prior to death. We know that survival past the last
observed death age is possible, but there is no empirical data available to complete
the survival function. One option (the rst one used in the preceding formula) is
to keep the function at its last value. This is clearly the largest reasonable choice.
Another option is to declare the function to be zero past the last observed age,
whether it is an observed death or a censored age. This is the smallest reasonable
choice and makes it possible to calculate moments. An intermediate option is to
use an exponential curve to reduce the value from its current level to zero. Let
= max{ 1 1 }. Then, for ,

( ) = ( ) ln = ( ) where =
Y

=1

µ ¶

There is an alternative method of obtaining the values of and that is more
suitable for Excel R° spreadsheet work.1 The nine steps are as follows:

1. There should be one row for each data point. The points need not be in any
particular order.

2. Each row should have three entries. The rst entry should be , and the
second entry should be or (there can be only one of these). The third
entry should be the letter �“ �” (without the quotes) if the second entry is an
-value (an observed value) and should be the letter �“ �” if the second entry is
a -value (a censored value). Assume, for example, that the s occupy cells
B6:B45, the s and s occupy C6:C45, and the letters occupy D6:D45.

1This scheme was devised by Charles Thayer and improved by Margie Rosenberg. These instruc-
tions work with O ce XP and should work in a similar manner for other versions.
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3. Create the columns for , , and as follows in steps 4 through 7.

4. For the ordered observed values (say they should begin in cell F2), start with
the lowest -value. The formula in F2 is =MIN(B6:B45).

5. Then in cell F3 enter the formula

=MIN(IF(C$6:C$45 F2,IF(D$6:D$45=�“x�”,C$6:C$45,1E36),1E36)).

Because this is an array formula, it must be entered with Ctrl-Shift-Enter.
Copy this formula into cells F4, F5, and so on until the value 1E36 appears.
Column F should now contain the unique, ordered, -values.

6. In cell G3 enter the formula

=COUNTIF(B$6:B$45,�“ �”&F3)-COUNTIF(C$6:C$45,�“ �”&F3).

Copy this formula into cells G4, G5, and so on until values appear across from
all but the last value in column F. This column contains the risk set values.

7. In cell H3 enter the formula

=SUM(IF(C$6:C$45=F3,IF(D$6:D$45=�“x�”,1,0),0)).

Enter this array formula with Ctrl-Shift-Enter and then copy it into H4, H5,
and so on to match the rows of column G. This column contains the -values.

8. Begin the calculation of ( ) by entering a 1 in cell I2

9. Calculate the next ( ) value by entering the following formula in cell I3.

=I2*(G3 H3)/G3.

Then copy this formula into cells I4, I5, and so on to complete the process.

EXAMPLE 14.2

Determine the Kaplan�—Meier estimate for Data Set D2.

Based on the previous example, we have

40( ) =

1 0 0.8

30 1
30 = 0.9667 0.8 2.9

0.966726 2
26 = 0.8923 2.9 3.1

0.892326 1
26 = 0.8580 3.1 4.0

0.858026 2
26 = 0.7920 4.0 4.1

0.792023 1
23 = 0.7576 4.1 4.8

0.757621 1
21 = 0.7215 4.8 5.0

0.7215 or 0 or 0.7215 5 0 5 0
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¤

An alternative to the Kaplan�—Meier estimate is a modication of the Nelson�—
Åalen estimate introduced earlier. As before, this method directly estimates the
cumulative hazard rate function. The following is an intuitive derivation of this
estimator. Let ( ) be the risk set at any time and let ( ) be the hazard rate
function. Also, let ( ) be the expected total number of observed deaths prior to
time . It is reasonable to conclude that

( ) =

Z

0

( ) ( )

Taking derivatives,

( ) = ( ) ( )

Then,

( )

( )
= ( )

Integrating both sides yields

Z

0

( )

( )
=

Z

0

( ) = ( )

Now replace the true expected count ( ) by �ˆ( ), the observed number of deaths
by time . It is a step function, increasing by at each death time. Therefore, the
left-hand side becomes

X

which denes the estimator, �ˆ ( ). The Nelson�—Åalen estimator is

�ˆ ( ) =

0 0 1P 1
=1 1 = 2

P
=1

and then

�ˆ( ) =
�ˆ( )

For , alternative estimates are �ˆ( ) = 0 and �ˆ( ) = �ˆ( ) .

EXAMPLE 14.3

Determine the Nelson�—Åalen estimate of the survival function for Data Set
D2.
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�ˆ ( ) =

0 0 0.8

1
30 = 0.0333 0.8 2 9

0.0333 + 2
26 = 0.1103 2.9 3.1

0.1103 + 1
26 = 0.1487 3.1 4.0

0.1487 + 2
26 = 0.2256 4.0 4.1

0.2256 + 1
23 = 0.2691 4.1 4.8

0.2691 + 1
21 = 0.3167 4.8

�ˆ( ) =

1 0 0.8
0 0333 = 0.9672 0.8 2 9
0 1103 = 0.8956 2.9 3.1
0 1487 = 0.8618 3.1 4.0
0 2256 = 0.7980 4.0 4.1
0 2691 = 0.7641 4.1 4.8
0 3167 = 0.7285 4.8 5.0

0.7285 or 0 or 0.7285 5 0 5.0 ¤

It is important to note that when the data are truncated, the resulting distrib-
ution function is the distribution function for payments given that they are above
the smallest truncation point (i.e., the smallest value). Empirically, there is no
information about observations below that value, and thus there can be no infor-
mation for that range. It should be noted that all the notation and formulas in
this section are consistent with those in Section 13.2. If it turns out that there was
no censoring or truncation, using the formulas in this section will lead to the same
results as when using the empirical formulas in Section 13.2.

14.1.1 Exercises

14.1 Repeat Example 14.1, treating �“surrender�” as �“death.�” The easiest way to
do this is to reverse the and labels. In this case death produces censoring
because those who die are lost to observation and thus their surrender time is never
observed. Treat those who lasted the entire ve years as surrenders at that time.

14.2 Determine the Kaplan�—Meier estimate for the time to surrender for Data Set
D2. Treat those who lasted the entire ve years as surrenders at that time.

14.3 Determine the Nelson�—Åalen estimate of ( ) and ( ) for Data Set D2 where
the variable is time to surrender.

14.4 Determine the Kaplan�—Meier and Nelson�—Åalen estimates of the distribution
function of the amount of a workers compensation loss. First use the raw data from
Data Set B. Then repeat the exercise, modifying the data by left truncation at 100
and right censoring at 1,000.
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Table 14.3 Data for Exercise 14.6.

Time Number of deaths, Number at risk,

5 2 15
7 1 12
10 1 10
12 2 6

14.5 (*) You are given the following times of rst claim for ve randomly selected
auto insurance policies: 1, 2, 3, 4, 5. You are later told that one of the ve times
given is actually the time of policy lapse but you are not told which one. The
smallest product-limit estimate of (4), the probability that the rst claim occurs
after time 4, would result if which of the given times arose from the lapsed policy?

14.6 (*) For a mortality study with right censored data, you are given the infor-
mation in Table 14.3. Calculate the estimate of the survival function at time 12
using the Nelson�—Åalen estimate.

14.7 (*) Three hundred mice were observed at birth. An additional 20 mice were
rst observed at age 2 (days) and 30 more were rst observed at age 4. There were
6 deaths at age 1, 10 at age 3, 10 at age 4, at age 5, at age 9, and 6 at age
12. In addition, 45 mice were lost to observation at age 7, 35 at age 10, and 15 at
age 13. The following product-limit estimates were obtained: 350(7) = 0.892 and
350(13) = 0.856. Determine the values of and .

14.8 (*) Let be the number of lives observed from birth. None were censored and
no two lives died at the same age. At the time of the ninth death, the Nelson�—Åalen
estimate of the cumulative hazard rate is 0.511, and at the time of the tenth death
it is 0.588. Estimate the value of the survival function at the time of the third
death.

14.9 (*) All members of a study joined at birth; however, some may leave the study
by means other than death. At the time of the third death, there was one death
(i.e., 3 = 1); at the time of the fourth death, there were two deaths; and at the
time of the fth death, there was one death. The following product-limit estimates
were obtained: ( 3) = 0.72, ( 4) = 0.60, and ( 5) = 0.50. Determine the
number of censored observations between times 4 and 5. Assume no observations
were censored at the death times.

14.10 (*) A mortality study has right censored data and no left truncated data.
Uncensored observations occurred at ages 3, 5, 6, and 10. The risk sets at these ages
were 50, 49, , and 21, respectively, while the number of deaths observed at these
ages were 1, 3, 5, and 7, respectively. The Nelson�—Åalen estimate of the survival
function at time 10 is 0.575. Determine .

14.11 (*) Consider the observations 2,500, 2,500, 2,500, 3,617, 3,662, 4,517, 5,000,
5,000, 6,010, 6,932, 7,500, and 7,500. No truncation is possible. First, determine the
Nelson�—Åalen estimate of the cumulative hazard rate function at 7,000 assuming all
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the observations are uncensored. Second, determine the same estimate, assuming
the observations at 2,500, 5,000, and 7,500 were right censored.

14.12 (*) No observations in a data set are truncated. Some are right censored.
You are given 3 = 1, 4 = 3 and the Kaplan�—Meier estimates ( 3) = 0 65,
( 4) = 0 50, ( 5) = 0 25. Also, between the observations 4 and 5 there are

six right censored observations and no observations were right censored at the same
value as an uncensored observation. Determine 5.

14.2 MEANS, VARIANCES, AND INTERVAL ESTIMATION

When all of the information is available, working with the empirical estimate of the
survival function is straightforward.

EXAMPLE 14.4

Demonstrate that for complete data the empirical estimator of the survival
function is unbiased and consistent.

Recall that the empirical estimate of ( ) is ( ) = , where is the
number of observations in the sample that are greater than . Then must
have a binomial distribution with parameters and ( ). Then,

E[ ( )] = E
µ ¶

=
( )

= ( )

demonstrating that the estimator is unbiased. The variance is

Var[ ( )] = Var

µ ¶
=

( )[1 ( )]

which has a limit of zero, thus verifying consistency. ¤

To make use of the result, the best we can do for the variance is estimate it. It
is unlikely we know the value of ( ) because that is the quantity we are trying to
estimate. The estimated variance is given by

dVar[ ( )] =
( )[1 ( )]

.

The same results hold for empirically estimated probabilities. Let = Pr(
). The empirical estimate of is �ˆ = ( ) ( ). Arguments similar to

those used in Example 14.4 verify that �ˆ is unbiased and consistent, with Var(�ˆ) =
(1 ) .
When doing mortality studies or evaluating the e ect of deductibles, we some-

times are more interested in estimating conditional quantities.

EXAMPLE 14.5

Using the full information from the observations in Data Set D1, empirically
estimate 2 and estimate the variance of this estimator.
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For this data set, = 30. By duration 2, one had died, and by duration 3,
three had died. Thus, 30(2) =

29
30 and 30(3) =

27
30 . The empirical estimate

is

�ˆ2 =
30(2) 30(3)

30(2)
=
2

29
.

The challenge is in trying to evaluate the mean and variance of this estimator.
Let be the number of deaths between durations 0 and 2 and let be the
number of deaths between durations 2 and 3. Then �ˆ2 = (30 ). It
should be clear that it is not possible to evaluate E(�ˆ2) because with positive
probability will equal 30 and the estimator will not be dened.2 The usual
solution is to obtain a conditional estimate of the variance. That is, given
there were 29 people alive at duration 2, determine the variance. Then the
only random quantity is and we have

dVar
£
�ˆ2| 30(2) =

29
30

¤
=
(2 29)(27 29)

29
.

¤

In general, let be the initial sample, the number alive at age , and the
number alive at age . Then,

dVar( �ˆ | ) =dVar( �ˆ | ) =
( )( )

3
.

EXAMPLE 14.6

Using Data Set B, empirically estimate the probability that a payment will
be at least 1,000 when there is a deductible of 250.

Empirically, there were 13 losses above the deductible, of which 4 exceeded
1,250 (the loss that produces a payment of 1,000). The empirical estimate
is 4

13 . Using survival function notation, the estimator is 20(1250) 20(250).
Once again, only a conditional variance can be obtained. The estimated
variance is 4(9) 133. ¤

For grouped data, there is no problem if the survival function is to be estimated
at a boundary. For interpolated values using the ogive, it is a bit more complex.

EXAMPLE 14.7

Determine the expected value and variance of the estimators of the survival
function and density function using the ogive and histogram, respectively.

Suppose the value of is between the boundaries 1 and . Let be
the number of observations at or below 1, and let be the number of

2This is a situation where the Bayesian approach (introduced in Section 15.5) works better.
Bayesian analyses proceed from the data as observed and are not concerned with other values
that might have been observed. If = 30, there is no estimate to worry about, while if 30,
analysis can proceed.
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observations above 1 and at or below . Then

( ) = 1
( 1) + ( 1)

( 1)

and

E[ ( )] = 1
[1 ( 1)]( 1) + [ ( 1) ( )]( 1)

( 1)

= ( 1)
1
+ ( )

1

1
.

This estimator is biased (although it is an unbiased estimator of the true
interpolated value). The variance is

Var[ ( )] =

( 1)
2Var( ) + ( 1)

2Var( )
+2( 1)( 1)Cov( )

[ ( 1)]2

where

Var( ) = ( 1)[1 ( 1)]

Var( ) = [ ( 1) ( )][1 ( 1) + ( )] and

Cov( ) = [1 ( 1)][ ( 1) ( )]

For the density estimate,

( ) =
( 1)

and

E[ ( )] =
( 1) ( )

1

which is biased for the true density function. The variance is

Var[ ( )] =
[ ( 1) ( )][1 ( 1) + ( )]

( 1)2
.

¤

EXAMPLE 14.8

For Data Set C estimate (10,000), (10,000), and the variance of your esti-
mators.

The point estimates are

227(10 000) = 1
99(17,500 7,500) + 42(10,000 7,500)

227(17,500 7,500)
= 0.51762

227(10,000) =
42

227(17,500 7,500)
= 0.000018502.
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The estimated variances are

dVar[ 227(10,000)] =
1

227(10,000)2
10,0002

99

227

128

227
+ 2,5002

42

227

185

227

2(10,000)(2,500)
99

227

42

227

¸

= 0.00094713

and

dVar[ 227(10,000)] =

42

227

185

227
227(10,000)2

= 6.6427× 10 12.
¤

Discrete data such as in Data Set A can be considered a special form of grouped
data. Each discrete possibility is similar to an interval.

EXAMPLE 14.9

Demonstrate that for a discrete random variable the empirical estimator of a
particular outcome is unbiased and consistent and derive its variance.

Let be the number of times the value was observed in the sam-
ple. Then has a binomial distribution with parameters and ( ). The
empirical estimator is ( ) = and

E[ ( )] = E
µ ¶

=
( )

= ( )

demonstrating that it is unbiased. Also,

Var[ ( )] = Var

µ ¶
=

( )[1 ( )]
2

=
( )[1 ( )]

which goes to zero as , demonstrating consistency. ¤

EXAMPLE 14.10

For Data Set A determine the empirical estimate of (2) and estimate its
variance.

The empirical estimate is

94 935(2) =
1,618
94,935

= 0 017043

and its estimated variance is

0 017043(0 982957)

94,935
= 1 76466× 10 7

¤

It is possible to use the variances to construct condence intervals for the un-
known probability.
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EXAMPLE 14.11

Use (12.3) and (12.4) to construct approximate 95% condence intervals for
(2) using Data Set A.

From (12.3),

0.95 = Pr

Ã

1 96
(2) (2)

p
(2)[1 (2)]

1 96

!

Solve this by making the inequality an equality and then squaring both sides
to obtain (dropping the argument of (2) for simplicity),

( )2

(1 )
= 1 962

2 2 + 2 = 1 962 1 962 2

0 = ( + 1 962) 2 (2 + 1 962) + 2

The solution is

=
2 + 1 962 ±

p
(2 + 1 962)2 4( + 1 962) 2

2( + 1 962)

which provides the two endpoints of the condence interval. Inserting the
numbers from Data Set A ( = 0.017043, = 94,935) produces a condence
interval of (0.016239 0.017886).
Equation (12.4) provides the condence interval directly as

± 1 96

r
(1 )

.

Inserting the numbers from Data Set A gives 0.017043 ± 0.000823 for an
interval of (0.016220 0.017866). The answers for the two methods are very
similar, which is to be expected when the sample size is large. The results
are reasonable because it is well-known that the normal distribution is a good
approximation to the binomial. ¤

When data are censored or truncated, the matter becomes more complex. Counts
no longer have the binomial distribution and, therefore, the distribution of the
estimator is harder to obtain. While there are proofs available to back up the
results presented here, they are not provided. Instead, an attempt is made to
indicate why the results are reasonable.
Consider the Kaplan�—Meier product-limit estimator of ( ). It is the product of

a number of terms of the form ( ) , where was viewed as the number
available to die at age and is the number who actually did so. Assume that
the death ages and the number available to die are xed, so that the value of is
the only random quantity. As a random variable, has a binomial distribution
based on a sample of lives and success probability [ ( 1) ( )] ( 1).
The probability arises from the fact that those available to die were known to be
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alive at the previous death age. For one of these terms,

E
µ ¶

=
[ ( 1) ( )] ( 1)

=
( )

( 1)
.

That is, this ratio is an unbiased estimator of the probability of surviving from one
death age to the next one. Furthermore,

Var

µ ¶
=

( 1) ( )

( 1)
1

( 1) ( )

( 1)

¸

2

=
[ ( 1) ( )] ( )

( 1)2
.

Now consider the estimated survival probability at one of the death ages. Its
expected value is

E[ �ˆ( )] = E

"
Y

=1

µ ¶#

=
Y

=1

µ ¶

=
Y

=1

( )

( 1)
=

( )

( 0)

where 0 is the smallest observed age in the sample. To bring the expectation
inside the product, it was assumed that the values are independent. The result
demonstrates that at the death ages the estimator is unbiased.
With regard to the variance, we rst need a general result concerning the variance

of a product of independent random variables. Let 1 be independent
random variables where E( ) = and Var( ) = 2. Then,

Var( 1 · · · ) = E( 2
1 · · ·

2) E( 1 · · · )2

= E( 2
1 ) · · ·E(

2) E( 1)
2 · · ·E( )2

= ( 2
1 +

2
1) · · · (

2 + 2 ) 2
1 · · ·

2 .

For the product-limit estimator,

Var[ ( )] = Var

"
Y

=1

µ ¶#

=
Y

=1

( )2

( 1)2
+
[ ( 1) ( )] ( )

( 1)2

¸
( )2

( 0)2

=
Y

=1

( )2 + [ ( 1) ( )] ( )

( 1)2

¸
( )2

( 0)2

=
Y

=1

( )2

( 1)2
( ) + [ ( 1) ( )]

( )

¸
( )2

( 0)2

=
( )2

( 0)2

(
Y

=1

1 +
( 1) ( )

( )

¸
1

)

.
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This formula is unpleasant to work with, so the following approximation is often
used. It is based on the fact that for any set of small numbers 1 , the
product (1+ 1) · · · (1+ ) is approximately 1+ 1+ · · ·+ . This approximation
follows because the missing terms are all products of two or more of the s. If
they are all small to begin with, the products will be even smaller and so can be
ignored. Applying this approximation produces

Var[ ( )] =
( )

( 0)

¸2X

=1

( 1) ( )

( )
.

Because it is unlikely that the survival function is known, an estimated value needs
to be inserted. Recall that the estimated value of ( ) is actually conditional on
being alive at age 0. Also, ( ) is an estimate of ( ) ( 1). Then,

dVar[ ( )] = ( )2
X

=1
( )

. (14.3)

Equation (14.3) is known as Greenwood�’s approximation. It is the only version
used in this text.

EXAMPLE 14.12

Using Data Set D1, estimate the variance of 30(3) both directly and using
Greenwood�’s formula. Do the same for 2�ˆ3.

Because there is no censoring or truncation, the empirical formula can
be used to directly estimate this variance. There were 3 deaths out of 30
individuals, and, therefore,

dVar[ 30(3)] =
(3 30)(27 30)

30
=
81

303
.

For Greenwood�’s approximation, 1 = 30, 1 = 1, 2 = 29, and 2 = 2. The
approximation is

µ
27

30

¶2µ
1

30(29)
+

2

29(27)

¶
=
81

303
.

It can be demonstrated that when there is no censoring or truncation, the two
formulas will always produce the same answer. Recall that the development
of Greenwood�’s formula produced the variance only at death ages. The con-
vention for non-death ages is to take the sum up to the last death age that is
less than or equal to the age under consideration.
With regard to 2�ˆ3, arguing as in Example 14.5 produces an estimated

(conditional) variance of

dVar(2�ˆ3) =
(4 27)(23 27)

27
=
92

273
.

For Greenwood�’s formula, we rst must note that we are estimating

2 3 =
(3) (5)

(3)
= 1

(5)

(3)
.
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As with the empirical estimate, all calculations must be done given the 27
people alive at duration 3. Furthermore, the variance of 2�ˆ3 is the same as the
variance of �ˆ(5) using only information from duration 3 and beyond. Starting
from duration 3 there are three death times, 3.1, 4.0, and 4.8, with 1 = 27,
2 = 26, 3 = 25, 1 = 1, 2 = 1, and 3 = 2. Greenwood�’s approximation is

µ
23

27

¶2µ
1

27(26)
+

1

26(25)
+

2

25(23)

¶
=
92

273
.

¤

EXAMPLE 14.13

Repeat Example 14.12, this time using all 40 observations in Data Set D2 and
the incomplete information due to censoring and truncation.

For this example, the direct empirical approach is not available because
it is unclear what the sample size is (it varies over time as subjects enter
and leave due to truncation and censoring). From Example 14.1, the relevant
values within the rst three years are 1 = 30, 2 = 26, 1 = 1, and 2 = 2.
From Example 14.2, 40(3) = 0.8923. Then, Greenwood�’s estimate is

(0 8923)2
µ

1

30(29)
+

2

26(24)

¶
= 0.0034671.

An approximate 95% condence interval can be constructed using the normal
approximation. It is

0.8923± 1 96 0.0034671 = 0 8923± 0.1154

which corresponds to the interval (0.7769 1.0077). For small sample sizes, it
is possible that the condence intervals admit values less than 0 or greater
than 1.
With regard to 2�ˆ3, the relevant quantities are (starting at duration 3, but

using the subscripts from the earlier examples for these data) 3 = 26, 4 = 26,
5 = 23, 6 = 21, 3 = 1, 4 = 2, 5 = 1, and 6 = 1. This gives an estimated
variance of

µ
0.7215
0.8923

¶2µ
1

26(25)
+

2

26(24)
+

1

23(22)
+

1

21(20)

¶
= 0.0059502. ¤

The previous example indicated that the usual method of constructing a con-
dence interval can lead to an unacceptable result. An alternative approach can
be constructed as follows. Let = ln[ ln ( )]. Using the delta method (see
Theorem 15.6), the variance of can be approximated as follows. The function of
interest is ( ) = ln( ln ). Its derivative is

0( ) =
1

ln

1
=

1

ln

According to the delta method, the variance of can be approximated by

{ 0[E( ( ))]}2 Var[ ( )] =
Var[ ( )]

[ ( ) ln ( )]2
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where we have used the fact that ( ) is an unbiased estimator of ( ). Then, an
estimated 95% condence interval for = ln[ ln ( )] is

ln[ ln ( )]± 1 96

q
dVar[ ( )]

( ) ln ( )
.

Because ( ) = exp( ), putting each endpoint through this formula provides a
condence interval for ( ). For the upper limit we have (where �ˆ =dVar[ ( )])

exp
n

ln[ ln ( )]+1 96 �ˆ [ ( ) ln ( )]
o

= exp
n
[ln ( )] 1 96 �ˆ [ ( ) ln ( )]

o

= ( ) , = exp

"
1 96 �ˆ

( ) ln ( )

#

.

Similarly, the lower limit is ( )1 . This interval will always be inside the range
zero to 1 and is referred to as the log-transformed condence interval.

EXAMPLE 14.14

Obtain the log-transformed condence interval for (3) as in Example 14.13.

We have

= exp

"
1 96 0.0034671
0.8923 ln(0.8923)

#

= 0.32142.

The lower limit of the interval is 0.89231 0 32142 = 0.70150 and the upper limit
is 0.89230 32142 = 0.96404. ¤

Similar results are available for the Nelson�—Åalen estimator. An intuitive deriva-
tion of a variance estimate proceeds as follows. As in the derivation for the Kaplan�—
Meier estimator, all results are obtained assuming the risk set numbers are known,
not random. The number of deaths at death time has approximately a Poisson
distribution3 with parameter ( ), and so its variance is ( ), which can be
approximated by ( ) = . Then (also assuming independence),

dVar[ �ˆ ( )] =dVar

Ã
X

=1

!

=
X

=1

dVar( )
2 =

X

=1
2 .

The linear condence interval is simply

�ˆ ( )± 2

q
dVar[ �ˆ ( )].

3A binomial assumption (as was used for the Kaplan�—Meier derivation) could also have been
made. Similarly, a Poisson assumption could have been used for the Kaplan�—Meier derivation.
The formulas given here are the ones most commonly used.
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A log-transformed interval similar to the one developed for the survival function4

is

�ˆ ( ) , where = exp ±
2

q
d [ �ˆ ( )]

�ˆ ( )
.

EXAMPLE 14.15

Construct an approximate 95% condence interval for (3) by each formula
using all 40 observations in Data Set D2.

The point estimate is �ˆ (3) = 1
30 +

2
26 = 0.11026. The estimated variance

is 1
302 +

2
262 = 0.0040697. The linear condence interval is

0.11026± 1.96 0.0040697 = 0 11026± 0.12504

for an interval of ( 0.01478 0.23530). For the log-transformed interval,

= exp ±
1.96(0.0040697)1 2

0.11026

¸
= exp(±1.13402) = 0.32174 to 3.10813.

The interval is 0.11026(0.32174) = 0.03548 to 0.11026(3.10813) = 0.34270. ¤

14.2.1 Exercises

14.13 Using the full information from Data Set D1, empirically estimate for
= 0 4 and 5 0 where the variable of interest is time of surrender. Estimate

the variance of each of your estimators. Identify which estimated variances are
conditional. Interpret 5 0 as the probability of surrendering before the ve years
expire.

14.14 For Data Set A determine the empirical estimate of the probability of having
two or more accidents and estimate its variance.

14.15 Repeat Example 14.12 using time to surrender as the variable.

14.16 Repeat Example 14.13 using time to surrender as the variable. Interpret 2 3

as the probability of surrendering before the ve years expire.

14.17 Obtain the log-transformed condence interval for (3) in Exercise 14.16.

14.18 Construct 95% condence intervals for (3) by each formula using all 40
observations in Data Set D2 with surrender being the variable of interest.

14.19 (*) Ten individuals were observed from birth. All were observed until death.
Table 14.4 gives the death ages. Let 1 denote the estimated conditional variance of
3�ˆ7 if calculated without any distribution assumption. Let 2 denote the conditional
variance of 3�ˆ7 if calculated knowing that the survival function is ( ) = 1 15.
Determine 1 2.

4The derivation of this interval uses the transformation = ln �ˆ( ).
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Table 14.4 Data for Exercise 14.19.

Age Number of deaths

2 1
3 1
5 1
7 2
10 1
12 2
13 1
14 1

Table 14.5 Data for Exercise 14.24.

1 100 15
8 65 20
17 40 13
25 31 31

14.20 (*) For the interval from zero to one year, the exposure ( ) is 15 and the
number of deaths ( ) is 3. For the interval from one to two years, the exposure is
80 and the number of deaths is 24. For two to three years, the values are 25 and
5; for three to four years, they are 60 and 6; and for four to ve years, they are 10
and 3. Determine Greenwood�’s approximation to the variance of �ˆ(4).

14.21 (*) Observations can be censored, but there is no truncation. Let and
+1 be consecutive death ages. A 95% linear condence interval for ( ) using the

Nelson�—Åalen estimator is (0 07125 0 22875) while a similar interval for ( +1) is
(0 15607 0 38635). Determine +1.

14.22 (*) A mortality study is conducted on 50 lives, all observed from age 0. At
age 15 there were two deaths; at age 17 there were three censored observations;
at age 25 there were four deaths; at age 30 there were censored observations; at
age 32 there were eight deaths; and at age 40 there were two deaths. Let be
the product-limit estimate of (35) and let be the Greenwood estimate of this
estimator�’s variance. You are given 2 = 0.011467. Determine the value of .

14.23 (*) Fifteen cancer patients were observed from the time of diagnosis until
the earlier of death or 36 months from diagnosis. Deaths occurred as follows: At 15
months there were two deaths; at 20 months there were three deaths; at 24 months
there were two deaths; at 30 months there were deaths; at 34 months there were
two deaths; and at 36 months there was one death. The Nelson�—Åalen estimate of
(35) is 1.5641. Determine the variance of this estimator.

14.24 (*) You are given the values in Table 14.5. Determine the standard deviation
of the Nelson�—Åalen estimator of the cumulative hazard function at time 20.

14.25 (*) Ten payments were recorded as follows: 4, 4, 5, 5, 5, 8, 10, 10, 12, and
15, with the italicized values representing payments at a policy limit. There were
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no deductibles. Determine the product-limit estimate of (11) and Greenwood�’s
approximation of its variance.

14.26 (*) All observations begin on day zero. Eight observations were 4, 8, 8, 12,
12, 12, 22, and 36, with the italicized values representing right censored observa-
tions. Determine the Nelson�—Åalen estimate of (12) and then determine a 90%
linear condence interval for the true value.

14.3 KERNEL DENSITY MODELS

One problem with empirical distributions is that they are always discrete. If it is
known that the true distribution is continuous, the empirical distribution may be
viewed as a poor approximation. In this section, a method of obtaining a smooth,
empirical-like distribution is introduced. Recall from Denition 13.4 that the idea is
to replace each discrete piece of probability by a continuous random variable. While
not necessary, it is customary that the continuous variable have a mean equal to
the value of the point it replaces, ensuring that the kernel estimate has the same
mean as the empirical estimate. One way to think about such a model is that it
produces the nal observed value in two steps. The rst step is to draw a value
at random from the empirical distribution. The second step is to draw a value at
random from a continuous distribution whose mean is equal to the value drawn at
the rst step. The selected continuous distribution is called the kernel.
For notation, let ( ) be the probability assigned to the value ( = 1 )

by the empirical distribution. Let ( ) be a distribution function for a continu-
ous distribution such that its mean is . Let ( ) be the corresponding density
function.

Denition 14.2 A kernel density estimator of a distribution function is

�ˆ( ) =
X

=1

( ) ( )

and the estimator of the density function is

�ˆ( ) =
X

=1

( ) ( )

The function ( ) is called the kernel. Three kernels are now introduced: uni-
form, triangular, and gamma.

Denition 14.3 The uniform kernel is given by

( ) =

0

1

2
+

0 +

( ) =

0

+

2
+

1 +
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The triangular kernel is given by

( ) =

0

+
2

+
2

+

0 +

( ) =

0

( + )2

2 2

1
( + )2

2 2
+

1 +

The gamma kernel is given by letting the kernel have a gamma distribution with
shape parameter and scale parameter . That is,

( ) =
1

( ) ( )

Note that the gamma distribution has a mean of ( ) = and a variance of
( )2 = 2 .

In each case there is a parameter that relates to the spread of the kernel. In the
rst two cases it is the value of 0, which is called the bandwidth. In the gamma
case, the value of controls the spread, with a larger value indicating a smaller
spread. There are other kernels that cover the range from zero to innity.

EXAMPLE 14.16

Determine the kernel density estimate for Example 13.2 using each of the
three kernels.

The empirical distribution places probability 1
8 at 1.0,

1
8 at 1.3,

2
8 at 1.5,

3
8 at 2.1, and

1
8 at 2.8. For a uniform kernel with a bandwidth of 0.1 we do

not get much separation. The data point at 1.0 is replaced by a horizontal
density function running from 0.9 to 1.1 with a height of 1

8
1

2(0 1) = 0.625.
In comparison, with a bandwidth of 1.0, that same data point is replaced
by a horizontal density function running from 0.0 to 2.0 with a height of
1
8

1
2(1) = 0.0625. Figures 14.1 and 14.2 provide plots of the density functions.
It should be clear that the larger bandwidth provides more smoothing.

In the limit, as the bandwidth approaches zero, the kernel density estimate
matches the empirical estimate. Note that, if the bandwidth is too large,
probability will be assigned to negative values, which may be an undesirable
result. Methods exist for dealing with that issue, but they are not presented
here.
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Figure 14.1 Uniform kernel density with bandwidth 0.1.
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Figure 14.2 Uniform kernel density with bandwidth 1.0.

For the triangular kernel, each point is replaced by a triangle. Pictures for
the same two bandwidths used previously appear in Figures 14.3 and 14.4.
Once again, the larger bandwidth provides more smoothing. The gamma

kernel simply provides a mixture of gamma distributions where each data
point provides the mean and the empirical probabilities provide the weights.
The density function is

( ) =
5X

=1

( )
1

( ) ( )

and is graphed in Figures 14.5 and 14.6 for two values.5 For this kernel,
decreasing the value of increases the amount of smoothing. Further discus-

5When computing values of the density function, overow and underow problems can be reduced
by computing the logarithm of the elements of the ratio, that is, ( 1) ln ln( )
ln ( ), and then exponentiating the result.
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Figure 14.3 Triangular kernel density with bandwidth 0.1.
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Figure 14.4 Triangular kernel density with bandwidth 1.0.

sion of the gamma kernel can be found in [28], where the author recommends
= (�ˆ

0

4 �ˆ
0

2 1)1 2. ¤

14.3.1 Exercises

14.27 Provide the formula for the Pareto kernel.

14.28 Construct a kernel density estimate for the time to surrender for Data Set
D2. Be aware of the fact that this is a mixed distribution (probability is continuous
from 0 to 5 but is discrete at 5).

14.29 (*) You are given the data in Table 14.6 on time to death. Using the uniform
kernel with a bandwidth of 60, determine �ˆ(100).

14.30 (*) You are given the following ages at time of death for 10 individuals: 25,
30, 35, 35, 37, 39, 45, 47, 49, and 55. Using a uniform kernel with a bandwidth of
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Figure 14.5 Gamma kernel density with = 500.
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Figure 14.6 Gamma kernel density with = 50.

Table 14.6 Data for Exercise 14.29.

10 1 20
34 1 19
47 1 18
75 1 17
156 1 16
171 1 15

= 10, determine the kernel density estimate of the probability of survival to age
40.

14.31 (*) Given the ve observations: 82, 126, 161, 294, and 384, determine each
of the following estimates of (150):

(a) The empirical estimate.
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(b) The kernel density estimate based on a uniform kernel with bandwidth
= 50.

(c) The kernel density estimate based on a triangular kernel with bandwidth
= 50.

14.4 APPROXIMATIONS FOR LARGE DATA SETS

14.4.1 Introduction

When there are large amounts of data, constructing the Kaplan�—Meier estimate may
require more sorting and counting than can be justied by the results. The extra
work is particularly likely to add little value if values of the distribution function
are only needed at a few points. For example, if the goal is to construct a mortality
table, values are needed only at integral ages. The ner details of mortality table
construction and alternative methods can be found in the texts by Batten [15] and
London [108]. While the context for the examples presented here is the construction
of mortality tables, the methods can apply anytime the data have been rounded.
The study of human mortality by insurance companies or other agencies is usu-

ally carried out over a short period time such as three to ve years. For example, all
persons who are covered by an insurance company�’s policies at time from January
1, 2000, through December 31, 2004, might be included. Some of them may have
purchased their policies prior to 2000, but were still covered when the study period
started. During the study period some will die, some will cancel their policy, some
will have their policy expire due to policy provisions (such as term insurance), and
some will still be insured when the study ends. It is assumed that if a policy is
cancelled or expires, the eventual age at death will never be known. Others will
purchase their policy during the study period and from that point will be subject
to the same possibilities.
With regard to age at death, almost every life in the study will be left truncated.6

If the policy was issued prior to 2000, the truncation point will be the age on January
1, 2000. For those who buy insurance during the study period, the truncation point
is the age at which the contract begins. For any life that exits the study due to
a cause other than death, their observation is right censored at the age of exit,
because all we know about those lives is that death will be at some unknown age
afterward. Only those who are observed to die while insured and during the study
period can be recorded as uncensored observations.
It is certainly possible to use the Kaplan�—Meier approach for this problem, but

there may be thousands of observations (consider a mortality table derived from a
national census) to be recorded and then sorted. In this section, the data collection
process is simplied. Instead of recording the exact age at which an event happens,
all that is recorded is the age interval in which it took place and the nature of the
event. Then, only running totals need to be recorded, and the end result is just three
numbers for each age interval (number entering in that interval, number leaving by
death, and number leaving by other than death). With a few assumptions about the
patterns of these events during the interval, an approximation to the Kaplan�—Meier
approach can be constructed.

6The only exception would be a policy issued during the study period to someone just born.
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In what follows, it is useful, but not necessary, to think in terms of a mortality
study with one-year age intervals. The objective is to develop a model (represented
as a mortality table) for the age at death of a randomly selected person in a setting
where the censoring mechanism (termination of the study or of coverage) is assumed
to not be in e ect.
Suppose there are intervals given as 0 1 · · · . Let be the number of

observations that are left truncated at a value somewhere in the interval [ +1).
In a mortality study, is a count of the lives that were rst observed at an age in the
given range. Similarly, let be the number of observations that are right censored
at a value somewhere in the interval ( +1]. The interval endpoints di er because
truncation is possible at the left end of the rst interval but not at the right end
of the last interval. The reverse is true for censoring. Note that each observation
contributes to exactly one , but only observations that are actually censored can
contribute to some . Let be the number of uncensored observations in the
interval ( +1]. Then =

P 1
=0 =

P 1
=0 ( + ), where is the sample size.

The computational advantage is that one pass through the data set allows these
values to be accumulated and from there only this reduced set of values needs to
be processed.

14.4.2 Kaplan�—Meier type approximations

To apply the Kaplan�—Meier formula, assumptions must be made about the loca-
tion of the values within each interval. While there are many choices, only two are
presented here, and then a third is introduced in Exercise 14.33. They are the two
most commonly used for mortality table construction and one of them works very
well for working with multiple deductibles and limits in loss distribution develop-
ment. In either case, the method determines the survival function only at interval
boundaries. An interpolation method is then used to connect the points. The usual
one is a simple linear interpolation.
The rst method assumes that all truncation points occur at the beginning of the

interval and all censored observations were censored at the end of the interval. It
does not matter where the uncensored observations fall, but it is easiest to assume
none of them are at the end points. To determine the formulas, begin with �ˆ( 0) =
1. Then note that at the time of the rst uncensored observation, the risk set is 0.
Recall that the risk set is the number of observations available at a given time that
could produce an uncensored observation at that time. During the interval, there
is complete data (uncensored observations only), and so �ˆ( 1) = 1 0 0. The
second interval begins with a risk set of 1 = 0 0 0 + 1. Once again, there
is complete data within the interval. Thus, �ˆ( 2) = �ˆ( 1)(1 1 1). The general
formulas are

0 = 0

=
X

=0

1X

=0

( + ) = 1 2

�ˆ( 0) = 1

�ˆ( ) =

1Y

=0

µ
1

¶
= 1 2 (14.4)
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A quantity of particular interest in life insurance is the probability that, given
that someone is alive at age , that person does not survive past age +1. Using
the standard actuarial notation, this probability is

Pr( +1| ) =
( ) ( +1)

( )
= +1

For simplicity, we denote it by . From (14.4),

�ˆ =

Y 1

=0

µ
1

¶ Y
=0

µ
1

¶

Y 1

=0

µ
1

¶ = 1

µ
1

¶
= . (14.5)

This is the traditional form of a life table estimator where the numerator has the
number of observed deaths and the denominator is a measure of exposure (the
number of lives available to die). For this formula, all who enter the study prior to
or during the current interval are given a chance to die, and all who have left prior to
the interval are removed from consideration. If dollar amounts are being studied and
the boundaries include all the possible values for deductibles and limits, this formula
produces the exact product-limit estimate at the given values. For mortality studies,
this situation is equivalent to having all lives enter on their birthdays (which may
be true if insuring ages are used, see Exercise 14.33) and surrender on birthdays.
The second approach is more useful if truncation and censoring take place

throughout the interval. Assume that the truncation points (the s) and the censor-
ing points (the s) occur uniformly through each interval but that the uncensored
observations (the s) all occur at the midpoint. Then argue as in the rst method
to produce the following formulas for the risk set:

0 = ( 0 0) 2

= ( ) 2 +

1X

=0

( ) = 1 2

Note that (14.5) still holds. However, for the second approach, the values of are
reduced by ( + ) 2. At times it may be necessary to make di erent assumptions
for di erent intervals, as is illustrated in Example 14.17.
The goal of all the estimation procedures in this text is to deduce the prob-

ability distribution for the variable of interest in the absence of truncation and
censoring. For loss data, that would be the probabilities if there were no deductible
or limit. For lifetime data it would be the probabilities if we could follow people
from birth to death. In the language of Actuarial Mathematics [20], these are called
single-decrement probabilities and are denoted 0 . In the life insurance context, the
censoring rates are often as important as the mortality rates. For example, in the
context of Data Set D2, both time to death and time to withdrawal may be of
interest. In the former case, withdrawals cause observations to be censored. In the
latter case, censoring is caused by death. A superscript identies the decrement of
interest. For example, suppose the decrements were death ( ) and withdrawal ( ).
Then 0( ) is the probability that a person alive and insured at age withdraws
prior to age +1 in an environment where death is not possible.
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Table 14.7 Single-decrement mortality probabilities for Example 14.17.

0( )

0 32 3 1 29.5 0.0339
1 2 2 0 28.0 0.0000
2 3 3 2 28.0 0.0714
3 3 3 3 26.0 0.1154
4 0 21 2 21.0 0.0952

Table 14.8 Single-decrement withdrawal probabilities for Example 14.17.

0( )

0 32 1 3 30.5 0.0984
1 2 0 2 29.0 0.0690
2 3 2 3 28.5 0.1053
3 3 3 3 26.0 0.1154
4 0 19 4 22.0 0.1818

EXAMPLE 14.17

Estimate single-decrement probabilities using Data Set D2 and the methods
of this section. Make reasonable assumptions.

First consider the decrement death. In the notation of this section, the
relevant quantities are in Table 14.7. For this setting, more than one assump-
tion is needed. For 0 = 32 it is clear that the 30 values that are exactly zero
should be treated as such (policies followed from the beginning), while the 2
policies that entered after issue require an assumption. It makes sense to the
second set of assumptions. Then 0 = 30+0 5(2) 0 5(3) = 29 5. The other
values are calculated using the second set of assumptions, noting that policy
33 is assigned to the interval (1 2). Also note that the 17 policies that were
still active after ve years are all assumed to be censored at time 5, rather
than be spread uniformly through the fth year.
For withdrawals, the values of 0( ) are given in Table 14.8. ¤

EXAMPLE 14.18

Loss data for policies with deductibles of 0, 250, and 500 and policy limits of
5,000, 7,500, and 10,000 were collected. The data are in Table 14.9. Use the
methods of this section to estimate the distribution function for losses.

The calculations appear in Table 14.10. Because the deductibles and limits
are at the endpoints of intervals, the only reasonable assumption is the rst
one presented. ¤
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Table 14.9 Data for Example 14.18.

Deductible
Range 0 250 500 Total

0�—100 15 15
100�—250 16 16
250�—500 34 96 130
500�—1,000 73 175 251 499
1,000�—2,500 131 339 478 948
2,500�—5,000 83 213 311 607
5,000�—7,500 12 48 88 148
7,500�—10,000 1 4 11 16
At 5,000 7 17 18 42
At 7,500 5 10 15 30
At 10,000 2 1 4 7

Total 379 903 1,176 2,458

Table 14.10 Calculations for Example 14.18.

0( ) �ˆ( )

0 379 0 15 379 0.0396 0.0000
100 0 0 16 364 0.0440 0.0396
250 903 0 130 1,251 0.1039 0.0818
500 1,176 0 499 2,297 0.2172 0.1772

1,000 0 0 948 1,798 0.5273 0.3560
2,500 0 42 607 850 0.7141 0.6955
5,000 0 30 148 201 0.7363 0.9130
7,500 0 7 16 23 0.6957 0.9770
10,000 0.9930

14.4.3 Exercises

14.32 Verify the calculations in Table 14.8.

14.33 When life insurance policies are issued, it is customary to assign a whole-
number age to the insured, and then the premium associated with that age is
charged. The interpretation of changes from �“What is the probability someone
having their th birthday dies in the next year?�” to �“What is the probability that
a person who was assigned age at issue years ago dies in the next year?�”
Such age assignments are called �“insuring ages�” and e ectively move the birthday
to the policy issue date. As a result, insured lives tend to enter observation on
their birthday (articially assigned as the policy issue date), meaning that all trun-
cation occurs at the beginning of the interval. However, withdrawal can take place
at any time, making it reasonable to assume that censoring takes place uniformly
throughout the year.7 These assumptions requires a modication of the two formu-

7However, just as in Example 14.17 where di erent values received di erent treatment, here
there can be values that deserve di erent treatment. Observation of an individual can end
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Table 14.11 Data for Exercise 14.33.

45 46.0 45 45.8
45 46.0 46 47.0
45 45.3 46 47.0
45 46.7 46 46.3
45 45.4 46 46.2
45 47.0 46 46.4
45 45.4 46 46.9

Table 14.12 Data for Exercise 14.34.

Deductible Payment Deductible Payment

250 2,221 500 3,660
250 2,500 500 215
250 207 500 1,302
250 3,735 500 10,000
250 5,000 1,000 1,643
250 517 1,000 3,395
250 5,743 1,000 3,981
500 2,500 1,000 3,836
500 525 1,000 5,000
500 4,393 1,000 1,850
500 5,000 1,000 6,722

Numbers in italics indicate that the amount paid was at the policy limit.

las presented in this section. For the data in Table 14.11, estimate 0( )
45 and 0( )

46

using both the exact Kaplan�—Meier estimate and the method of this section.

14.34 Twenty-two insurance payments are recorded in Table 14.12. Use the fewest
reasonable number of intervals and the method of this section to estimate the
probability that a policy with a deductible of 500 will have a payment in excess of
5,000.

14.35 (*) Nineteen losses were observed. Six had a deductible of 250, six had a de-
ductible of 500, and seven had a deductible of 1,000. Three losses were paid at a pol-
icy limit, those values being 1,000, 2,750, and 5,500. For the 16 losses not paid at the
limit, one was in the interval (250 500), two in (500 1,000), four in (1,000 2,750),
seven in (2,750 5,500), one in (5,500 6,000), and one in (6,000 10,000). Estimate
the probability that a policy with a deductible of 500 will have a claim payment in
excess of 5,500.

because the individual leaves or because the observation period ends. For studies of insured lives,
it is common for observation to end at a policy anniversary and, thus, at a whole number insuring
age. For them it makes sense to assume the censoring is at the end of the period.
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PARAMETER ESTIMATION

If a phenomenon is to be modeled using a parametric model, it is necessary to
assign values to the parameters. The assignment could be done arbitrarily, but it
would seem to be more reasonable to base the assignment on observations from that
phenomenon. In particular, we assume that independent observations have been
collected. For some of the techniques it is further assumed that all the observations
are from the same random variable. For others, that restriction is relaxed.
The methods introduced in Section 15.1 are relatively easy to implement but

tend to give poor results. Section 15.2 covers maximum likelihood estimation.
This method is more di cult to use but has superior statistical properties and is
considerably more exible.

15.1 METHOD OF MOMENTS AND PERCENTILE MATCHING

For these methods we assume that all observations are from the same parametric
distribution. In particular, let the distribution function be given by

( | ), = ( 1 2 )

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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where is the transpose of . That is, is a column vector containing the
parameters to be estimated. Furthermore, let 0 ( ) = E( | ) be the th raw
moment, and let ( ) be the 100 th percentile of the random variable. That is,
[ ( )| ] = . If the distribution function is continuous, there will be at least one

solution to that equation.
For a sample of independent observations from this random variable, let �ˆ0 =

1
P

=1 be the empirical estimate of the th moment and let �ˆ be the empirical
estimate of the 100 th percentile

Denition 15.1 A method-of-moments estimate of is any solution of the
equations

0 ( ) = �ˆ0 , = 1 2 .

The motivation for this estimator is that it produces a model that has the same
rst raw moments as the data (as represented by the empirical distribution). The
traditional denition of the method of moments uses positive integers for the mo-
ments. Arbitrary negative or fractional moments could also be used. In particular,
when estimating parameters for inverse distributions, matching negative moments
may be a superior approach.1

EXAMPLE 15.1

Use the method of moments to estimate parameters for the exponential,
gamma, and Pareto distributions for Data Set B from Chapter 13.

The rst two sample moments are

�ˆ01 = 1
20(27 + · · ·+ 15,743) = 1,424 4

�ˆ02 = 1
20(27

2 + · · ·+ 15,7432) = 13,238,441 9

For the exponential distribution, the equation is

= 1,424 4

with the obvious solution �ˆ = 1,424 4.
For the gamma distribution, the two equations are

E( ) = = 1,424 4

E( 2) = ( + 1) 2 = 13,238,441 9.

Dividing the second equation by the square of the rst equation yields

+ 1
= 6 52489 1 = 5 52489

and so �ˆ = 1 5 52489 = 0 18100 and �ˆ = 1,424 4 0 18100 = 7,869 61.

1One advantage is that, with appropriate moments selected, the equations may have a solution
within the range of allowable parameter values.
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For the Pareto distribution, the two equations are

E( ) =
1
= 1,424 4

E( 2) =
2 2

( 1)( 2)
= 13,238,441 9

Dividing the second equation by the square of the rst equation yields

2( 1)

( 2)
= 6 52489

with a solution of �ˆ = 2 442 and then �ˆ = 1,424 4(1 442) = 2,053 985. ¤

There is no guarantee that the equations will have a solution or, if there is a
solution, that it will be unique.

Denition 15.2 A percentile matching estimate of is any solution of the
equations

( ) = �ˆ , = 1 2

where 1 2 are arbitrarily chosen percentiles. From the denition of per-
centile, the equations can also be written

(�ˆ | ) = , = 1 2 .

The motivation for this estimator is that it produces a model with percentiles
that match the data (as represented by the empirical distribution). As with the
method of moments, there is no guarantee that the equations will have a solution
or, if there is a solution, that it will be unique. One problem with this denition is
that percentiles for discrete random variables (such as the empirical distribution)
are not always well dened. For example, Data Set B has 20 observations. Any
number between 384 and 457 has 10 observations below and 10 above and so could
serve as the median. The convention is to use the midpoint. However, for other
percentiles, there is no �“o cial�” interpolation scheme.2 The following denition is
used here.

Denition 15.3 The smoothed empirical estimate of a percentile is found by

�ˆ = (1 ) ( ) + ( +1), where

= b( + 1) c and = ( + 1)

Here b·c indicates the greatest integer function and (1) (2) · · · ( ) are the
order statistics from the sample.

Unless there are two or more data points with the same value, no two percentiles
will have the same value. One feature of this denition is that �ˆ cannot be obtained
for 1 ( + 1) or ( + 1). This seems reasonable as we should not expect
to be able to infer the value of very large or small percentiles from small samples.
We use the smoothed version whenever an empirical percentile estimate is called
for.

2Hyndman and Fan [80] present nine di erent methods. They recommend a slight modication
of the one presented here using = b ( + 1

3
) + 1

3
c and = ( + 1

3
) + 1

3
.
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EXAMPLE 15.2

Use percentile matching to estimate parameters for the exponential and Pareto
distributions for Data Set B.

For the exponential distribution, select the 50th percentile. The empirical
estimate is the traditional median of �ˆ0 5 = (384 + 457) 2 = 420 5 and the
equation to solve is

0 5 = (420 5| ) = 1 420 5

ln 0 5 =
420 5

�ˆ =
420 5

ln 0 5
= 606 65.

For the Pareto distribution, select the 30th and 80th percentiles. The
smoothed empirical estimates are found as follows:

30th: = b21(0 3)c = b6 3c = 6, = 6 3 6 = 0 3
�ˆ0 3 = 0 7(161) + 0 3(243) = 185 6

80th: = b21(0 8)c = b16 8c = 16, = 16 8 16 = 0 8
�ˆ0 8 = 0 2(1,193) + 0 8(1,340) = 1,310 6.

The equations to solve are

0 3 = (185 6) = 1

µ

185 6 +

¶
,

0 8 = (1,310 6) = 1
µ

1,310 6 +

¶

ln 0 7 = 0 356675 = ln

µ

185 6 +

¶
,

ln 0 2 = 1 609438 = ln

µ

1,310 6 +

¶

1 609438

0 356675
= 4 512338 =

ln
³
1,310 6+

´

ln
³
185 6+

´

Any of the methods from Appendix F can be used to solve this equation for
�ˆ = 715 03. Then, from the rst equation,

0 3 = 1

µ
715 03

185 6 + 715 03

¶

which yields �ˆ = 1 54559. ¤

The estimates are much di erent from those obtained in Example 15.1, which is
one indication that these methods may not be particularly reliable.
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15.1.1 Exercises

15.1 Determine the method-of-moments estimate for an exponential model for
Data Set B with observations censored at 250.

15.2 Determine the method-of-moments estimate for a lognormal model for Data
Set B.

15.3 (*) The 20th and 80th percentiles from a sample are 5 and 12, respectively.
Using the percentile matching method, estimate (8) assuming the population has
a Weibull distribution.

15.4 (*) From a sample you are given that the mean is 35,000, the standard devi-
ation is 75,000, the median is 10,000, and the 90th percentile is 100,000. Using the
percentile matching method, estimate the parameters of a Weibull distribution.

15.5 (*) A sample of size 5 produced the values 4, 5, 21, 99, and 421. You t a
Pareto distribution using the method of moments. Determine the 95th percentile
of the tted distribution.

15.6 (*) In year 1 there are 100 claims with an average size of 10,000, and
in year 2 there are 200 claims with an average size of 12,500. Ination increases
the size of all claims by 10% per year. A Pareto distribution with = 3 and
unknown is used to model the claim size distribution. Estimate for year 3 using
the method of moments.

15.7 (*) From a random sample the 20th percentile is 18.25 and the 80th percentile
is 35.8. Estimate the parameters of a lognormal distribution using percentile match-
ing and then use these estimates to estimate the probability of observing a value in
excess of 30.

15.8 (*) A claim process is a mixture of two random variables and , where
has an exponential distribution with a mean of 1 and has an exponential

distribution with a mean of 10. A weight of is assigned to distribution and
1 to distribution . The standard deviation of the mixture is 2. Estimate by
the method of moments.

15.9 (*) A random sample of 20 observations has been ordered as follows:

12 16 20 23 26 28 30 32 33 35
36 38 39 40 41 43 45 47 50 57

Determine the 60th sample percentile using the smoothed empirical estimate.

15.10 (*) The following 20 wind losses (in millions of dollars) were recorded in one
year:

1 1 1 1 1 2 2 3 3 4
6 6 8 10 13 14 15 18 22 25

Determine the sample 75th percentile using the smoothed empirical estimate.

chen yiya


chen yiya
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15.11 (*) The observations 1,000, 850, 750, 1,100, 1,250, and 900 were obtained
as a random sample from a gamma distribution with unknown parameters and
. Estimate these parameters by the method of moments.

15.12 (*) A random sample of claims has been drawn from a loglogistic distribu-
tion. In the sample, 80% of the claims exceed 100 and 20% exceed 400. Estimate
the loglogistic parameters by percentile matching.

15.13 (*) Let 1 be a random sample from a population with cdf ( ) =
0 1. Determine the method-of-moments estimate of .

15.14 (*) A random sample of 10 claims obtained from a gamma distribution is
given as follows:

1,500 6,000 3,500 3,800 1,800 5,500 4,800 4,200 3,900 3,000

Estimate and by the method of moments.

15.15 (*) A random sample of ve claims from a lognormal distribution is given
as follows:

500 1,000 1,500 2,500 4,500.

Estimate and by the method of moments. Estimate the probability that a
loss will exceed 4,500.

15.16 (*) The random variable has pdf ( ) = 2 exp( 0 5 2 2) 0.
For this random variable, E( ) = ( 2) 2 and Var( ) = 2 2 2 2. You are
given the following ve observations:

4 9 1 8 3 4 6 9 4 0

Determine the method-of-moments estimate of .

15.17 The random variable has pdf ( ) = ( + ) 1 0. It is
known that = 1,000. You are given the following ve observations:

43 145 233 396 775

Determine the method-of-moments estimate of .

15.18 Use the data in Table 15.1 to determine the method-of-moments estimate
of the parameters of the negative binomial model.

15.19 Use the data in Table 15.2 to determine the method-of-moments estimate
of the parameters of the negative binomial model.

15.20 (*) Losses have a Burr distribution with = 2. A random sample of 15
losses is 195, 255, 270, 280, 350, 360, 365, 380, 415, 450, 490, 550, 575, 590, and
615. Use the smoothed empirical estimates of the 30th and 65th percentiles and
percentile matching to estimate the parameters and .

15.21 (*) Losses have a Weibull distribution. A random sample of 16 losses is
54, 70, 75, 81, 84, 88, 97, 105, 109, 114, 122, 125, 128, 139, 146, and 153. Use
the smoothed empirical estimates of the 20th and 70th percentiles and percentile
matching to estimate the parameters and .

15.22 (*) Losses follow a distribution with pdf ( ) = 1 exp[ ( ) ], .
The sample mean is 300 and the sample median is 240. Estimate and by
matching these two quantities.
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Table 15.1 Data for Exercise 15.18.

No. of claims No. of policies

0 9,048
1 905
2 45
3 2
4+ 0

Table 15.2 Data for Exercise 15.19.

No. of claims No. of policies

0 861
1 121
2 13
3 3
4 1
5 0
6 1
7+ 0

15.2 MAXIMUM LIKELIHOOD ESTIMATION

15.2.1 Introduction

Estimation by the method of moments and percentile matching is often easy to do,
but these estimators tend to perform poorly mainly because they use a few features
of the data, rather than the entire set of observations. It is particularly important
to use as much information as possible when the population has a heavy right tail.
For example, when estimating parameters for the normal distribution, the sample
mean and variance are su cient.3 However, when estimating parameters for a
Pareto distribution, it is important to know all the extreme observations in order
to successfully estimate . Another drawback of these methods is that they require
that all the observations are from the same random variable. Otherwise, it is not
clear what to use for the population moments or percentiles. For example, if half
the observations have a deductible of 50 and half have a deductible of 100, it is not
clear to what the sample mean should be equated.4 Finally, these methods allow
the analyst to make arbitrary decisions regarding the moments or percentiles to
use.
There are a variety of estimators that use the individual data points. All of them

are implemented by setting an objective function and then determining the parame-
ter values that optimize that function. For example, we could estimate parameters

3This applies both in the formal statistical denition of su ciency (not covered here) and in the
conventional sense. If the population has a normal distribution, the sample mean and variance
convey as much information as the original observations.
4One way to rectify that drawback is to rst determine a data-dependent model such as the
Kaplan�—Meier estimate. Then use percentiles or moments from that model.
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by minimizing the maximum di erence between the distribution function for the
parametric model and the distribution function for the Nelson�—Åalen estimate. Of
the many possibilities, the only one used here is the maximum likelihood estimator.
The general form of this estimator is presented in this introduction, with useful
special cases following.
To dene the maximum likelihood estimator, let the data set consist of events
1 , where is whatever was observed for the th observation. For exam-
ple, may consist of a single point or an interval. The latter arises with grouped
data or when there is censoring. For example, when there is censoring at and a
censored observation is observed, the observed event is the interval from to inn-
ity. Further assume that the event results from observing the random variable
. The random variables 1 need not have the same probability distri-

bution, but their distributions must depend on the same parameter vector, . In
addition, the random variables are assumed to be independent.

Denition 15.4 The likelihood function is

( ) =
Y

=1

Pr( | )

and the maximum likelihood estimate of is the vector that maximizes the
likelihood function.5

There is no guarantee that the function has a maximum at eligible parameter
values. It is possible that as various parameters become zero or innite, the likeli-
hood function will continue to increase. Care must be taken when maximizing this
function because there may be local maxima in addition to the global maximum.
Often, it is not possible to analytically maximize the likelihood function (by setting
partial derivatives equal to zero). Numerical approaches, such as those outlined in
Appendix F, will usually be needed.
Because the observations are assumed to be independent, the product in the

denition represents the joint probability Pr( 1 1 | ), that is,
the likelihood function is the probability of obtaining the sample results that were
obtained, given a particular parameter value. The estimate is then the parameter
value that produces the model under which the actual observations are most likely
to be observed. One of the major attractions of this estimator is that it is almost
always available. That is, if you can write an expression for the desired probabilities,
you can execute this method. If you cannot write and evaluate an expression for
probabilities using your model, there is no point in postulating that model in the
rst place because you will not be able to use it to solve your problem.

EXAMPLE 15.3

Suppose the data in Data Set B were censored at 250. Determine the maxi-
mum likelihood estimate of for an exponential distribution.

5 Some authors write the likelihood function as ( |x), where the vector x represents the observed
data. Because observed data can take many forms, the dependence of the likelihood function on
the data is suppressed in the notation.
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The rst seven data points are uncensored. For them, the set contains
the single point equal to the observation . When calculating the likelihood
function for a single point for a continuous model, it is necessary to interpret
Pr( = ) = ( ). That is, the density function should be used. Thus the
rst seven terms of the product are

(27) (82) · · · (243) = 1 27 1 82 · · · 1 243 = 7 909 .

For the nal 13 terms, the set is the interval from 250 to innity and,
therefore, Pr( ) = Pr( 250) = 250 . There are 13 such factors
making the likelihood function

( ) = 7 909 ( 250 )13 = 7 4 159 .

It is easier to maximize the logarithm of the likelihood function. Because it
occurs so often, we denote the loglikelihood function as ( ) = ln ( ).
Then

( ) = 7 ln 4,159 1

0( ) = 7 1 + 4,159 2 = 0

�ˆ =
4,159
7

= 594 14.

In this case, the calculus technique of setting the rst derivative equal to zero
is easy to do. Also, evaluating the second derivative at this solution produces
a negative number, verifying that this solution is a maximum. ¤

15.2.2 Complete, individual data

When there is no truncation and no censoring, and the value of each observation is
recorded, it is easy to write the loglikelihood function:

( ) =
Y

=1

( | ), ( ) =
X

=1

ln ( | ).

The notation indicates that it is not necessary for each observation to come from
the same distribution.

EXAMPLE 15.4

Using Data Set B, determine the maximum likelihood estimates for an expo-
nential distribution, for a gamma distribution where is known to equal 2,
and for a gamma distribution where both parameters are unknown.

For the exponential distribution, the general solution is

( ) =
X

=1

¡
ln 1

¢
= ln ¯ 1

0( ) = 1 + ¯ 2 = 0

= ¯
�ˆ = ¯.
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For Data Set B, �ˆ = ¯ = 1,424 4. The value of the loglikelihood function is
165 23. For this situation the method-of-moments and maximum likelihood

estimates are identical.
For the gamma distribution with = 2,

( | ) =
2 1

(2) 2 = 2

ln ( | ) = ln 2 ln 1

( ) =
X

=1

ln 2 ln ¯ 1

0( ) = 2 1 + ¯ 2 = 0

�ˆ = 1
2 ¯.

For Data Set B, �ˆ = 1,424 4 2 = 712 2 and the value of the loglikelihood func-
tion is 179 98. Again, this estimate is the same as the method-of-moments
estimate.
For the gamma distribution with unknown parameters, the equation is not

as simple:

( | ) =
1

( )

ln ( | ) = ( 1) ln 1 ln ( ) ln .

The partial derivative with respect to requires the derivative of the gamma
function. The resulting equation cannot be solved analytically. Using numer-
ical methods, the estimates are �ˆ = 0 55616 and �ˆ = 2,561 1 and the value
of the loglikelihood function is 162 29. These do not match the method-of-
moments estimates. ¤

15.2.3 Complete, grouped data

When data are complete and grouped, the observations may be summarized as
follows. Begin with a set of numbers 0 1 · · · , where 0 is the smallest
possible observation (often zero) and is the largest possible observation (often
innity). From the sample, let be the number of observations in the interval
( 1 ]. For such data, the likelihood function is

( ) =
Y

=1

[ ( | ) ( 1| )]

and its logarithm is

( ) =
X

=1

ln[ ( | ) ( 1| )].
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EXAMPLE 15.5

From Data Set C, determine the maximum likelihood estimate for an expo-
nential distribution.

The loglikelihood function is

( ) = 99 ln[ (7,500) (0)] + 42 ln[ (17,500) (7,500)] + · · ·
+3 ln[1 (300,000)]

= 99 ln(1 7 500 ) + 42 ln( 7 500 17 500 ) + · · ·
+3 ln 300 000 .

A numerical routine is needed to produce �ˆ = 29,721, and the value of the
loglikelihood function is 406 03. ¤

15.2.4 Truncated or censored data

When data are censored, there is no additional complication. As noted in Example
15.3, right censoring simply creates an interval running from the censoring point to
innity. In that example, data below the censoring point are individual data, and
so the likelihood function contains both density and distribution function terms.
Truncated data present more of a challenge. There are two ways to proceed.

One is to shift the data by subtracting the truncation point from each observation.
The other is to accept the fact that there is no information about values below the
truncation point but then attempt to t a model for the original population.

EXAMPLE 15.6

Assume the values in Data Set B had been truncated from below at 200.
Using both methods, estimate the value of for a Pareto distribution with
= 800 known. Then use the model to estimate the cost per payment with

deductibles of 0, 200, and 400.

Using the shifting approach, the values become 43, 94, 140, 184, 257, 480,
655, 677, 774, 993, 1,140, 1,684, 2,358, and 15,543. The likelihood function is

( ) =
14Y

=1

(800 )

(800 + ) +1

( ) =
14X

=1

[ln + ln 800 ( + 1) ln( + 800)]

= 14 ln + 93 5846 103 969( + 1)

= 14 ln 103 969 10 384
0( ) = 14 1 10 384

�ˆ =
14

10 384
= 1 3482.

Because the data have been shifted, it is not possible to estimate the cost with
no deductible. With a deductible of 200, the expected cost is the expected
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value of the estimated Pareto distribution, 800 0 3482 = 2,298. Raising the
deductible to 400 is equivalent to imposing a deductible of 200 on the modeled
distribution. From Theorem 8.7, the expected cost per payment is

E( ) E( 200)

1 (200)
=

800

0 3482

µ
800

200 + 800

¶0 3482

µ
800

200 + 800

¶1 3482 =
1,000
0 3482

= 2,872.

For the unshifted approach, we need to ask the key question required when
constructing the likelihood function. That is, what is the probability of ob-
serving each value knowing that values under 200 are omitted from the data
set? This becomes a conditional probability and therefore the likelihood func-
tion is (where the values are now the original values)

( ) =
14Y

=1

( | )
1 (200| )

=
14Y

=1

(800 )

(800 + ) +1

Áµ
800

800 + 200

¶ ¸

=
14Y

=1

(1,000 )
(800 + ) +1

( ) = 14 ln + 14 ln 1,000 ( + 1)
14X

=1

ln(800 + )

= 14 ln + 96 709 ( + 1)105 810
0( ) = 14 1 9 101

�ˆ = 1 5383.

This model is for losses with no deductible, and therefore the expected pay-
ment without a deductible is 800 0 5383 = 1,486. Imposing deductibles of
200 and 400 produces the following results:

E( ) E( 200)

1 (200)
=

1,000
0 5383

= 1,858

E( ) E( 400)

1 (400)
=

1,200
0 5383

= 2,229
¤

It should now be clear that the contribution to the likelihood function can be
written for most any observation. The following two steps summarize the process:

1. For the numerator, use ( ) if the exact value, , of the observation is known.
If it is only known that the observation is between and , use ( ) ( ).

2. For the denominator, let be the truncation point (use zero if there is no
truncation). The denominator is then 1 ( ).
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Table 15.3 Likelihood function for Example 15.7.

Obs. Obs.

1 = 0 1 0 1 (0 1) 16 = 4 8 0 (4 8)

2 = 0 5 0 1 (0 5) 17 = 4 8 0 1 (4 8)

3 = 0 8 0 1 (0 8) 18 = 4 8 0 1 (4 8)

4 = 0 8 0 (0 8) 19�—30 = 5 0 0 1 (5 0)

5 = 1 8 0 1 (1 8) 31 = 5 0 0.3 1 (5 0)
1 (0 3)

6 = 1 8 0 1 (1 8) 32 = 5 0 0.7 1 (5 0)
1 (0 7)

7 = 2 1 0 1 (2 1) 33 = 4 1 1.0 (4 1)
1 (1 0)

8 = 2 5 0 1 (2 5) 34 = 3 1 1.8 (3 1)
1 (1 8)

9 = 2 8 0 1 (2 8) 35 = 3 9 2.1 1 (3 9)
1 (2 1)

10 = 2 9 0 (2 9) 36 = 5 0 2.9 1 (5 0)
1 (2 9)

11 = 2 9 0 (2 9) 37 = 4 8 2.9 1 (4 8)
1 (2 9)

12 = 3 9 0 1 (3 9) 38 = 4 0 3.2 (4 0)
1 (3 2)

13 = 4 0 0 (4 0) 39 = 5 0 3.4 1 (5 0)
1 (3 4)

14 = 4 0 0 1 (4 0) 40 = 5 0 3.9 1 (5 0)
1 (3 9)

15 = 4 1 0 1 (4 1)

EXAMPLE 15.7

Determine Pareto and gamma models for the time to death for Data Set D2.

Table 15.3 shows how the likelihood function is constructed for these values.
For deaths, the time is known, and so the exact value of is available. For
surrenders or those reaching time 5, the observation is censored, and therefore
death is known to be some time in the interval from the surrender time, , to
innity. In the table, = is not noted because all interval observations end
at innity. The likelihood function must be maximized numerically. For the
Pareto distribution, there is no solution. The likelihood function keeps getting
larger as and get larger.6 For the gamma distribution, the maximum is
at �ˆ = 2 617 and �ˆ = 3 311. ¤

Discrete data present no additional problems.

EXAMPLE 15.8

For Data Set A, assume that the seven drivers with ve or more accidents all
had exactly ve accidents. Determine the maximum likelihood estimate for a
Poisson distribution and for a binomial distribution with = 8.

6For a Pareto distribution, the limit as the parameters and become innite with the ratio being
held constant is an exponential distribution. Thus, for this example, the exponential distribution
is a better model (as measured by the likelihood function) than any Pareto model.
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In general, for a discrete distribution with complete data, the likelihood
function is

( ) =
Y

=1

[ ( | )]

where is one of the observed values, ( | ) is the probability of observing
, and is the number of times was observed in the sample. For the

Poisson distribution

( ) =
Y

=0

µ

!

¶
=
Y

=0
( !)

( ) =
X

=0

( + ln ln !) = + ¯ ln
X

=0

ln !

0( ) = +
¯
= 0

�ˆ = ¯

For the binomial distribution

( ) =
Y

=0

µ ¶
(1 )

¸
=
Y

=0

! (1 )( )

( !) [( )!]

( ) =
X

=0

[ ln ! + ln + ( ) ln(1 )]

X

=0

[ ln ! + ln( )!]

0( ) =
X

=0

( )

1
=

¯ ¯

1
= 0

�ˆ =
¯
.

For this problem, ¯ = [81,714(0) + 11,306(1) + 1,618(2) + 250(3) + 40(4) +
7(5)] 94,935 = 0 16313. Therefore, for the Poisson distribution, �ˆ = 0 16313
and for the binomial distribution, �ˆ= 0 16313 8 = 0 02039. ¤

In Exercise 15.28 you are asked to estimate the Poisson parameter when the
actual values for those with ve or more accidents are not known.

15.2.5 Exercises

15.23 Repeat Example 15.4 using the inverse exponential, inverse gamma with
= 2, and inverse gamma distributions. Compare your estimates with the method-

of-moments estimates.

15.24 From Data Set C, determine the maximum likelihood estimates for gamma,
inverse exponential, and inverse gamma distributions.
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Table 15.4 Data for Exercise 15.30.

Age last observed Cause

1.7 Death
1.5 Censoring
2.6 Censoring
3.3 Death
3.5 Censoring

15.25 Determine maximum likelihood estimates for Data Set B using the inverse
exponential, gamma, and inverse gamma distributions. Assume the data have been
censored at 250 and then compare your answers to those obtained in Example 15.4
and Exercise 15.23.

15.26 Repeat Example 15.6 using a Pareto distribution with both parameters un-
known.

15.27 Repeat Example 15.7, this time nding the distribution of the time to sur-
render.

15.28 Repeat Example 15.8, but this time assume that the actual values for the
seven drivers who have ve or more accidents are unknown. Note that this is a case
of censoring.

15.29 (*) Lives are observed in order to estimate 35. Ten lives are rst observed
at age 35.4: 6 die prior to age 36 while the other 4 survive to age 36. An additional
20 lives are rst observed at age 35: 8 die prior to age 36 with the other 12 surviving
to age 36. Determine the maximum likelihood estimate of 35 given that the time
to death from age 35 has density function ( ) = , 0 1, with ( ) unspecied
for 1.

15.30 (*) The model has hazard rate function ( ) = 1, 0 2 and ( ) = 2,
2. Five items are observed from age zero, with the results in Table 15.4.

Determine the maximum likelihood estimates of 1 and 2.

15.31 (*) Your goal is to estimate . The time to death for a person age has
a constant density function. In a mortality study, 10 lives were rst observed at
age . Of them, 1 died and 1 was removed from observation alive at age + 0 5.
Determine the maximum likelihood estimate of .

15.32 (*) Ten lives are subject to the survival function

( ) =

µ
1

¶1 2

0

where is time since birth. There are 10 lives observed from birth. At time 10,
2 of the lives die and the other 8 are withdrawn from observation. Determine the
maximum likelihood estimate of .

15.33 (*) Five hundred losses are observed. Five of the losses are 1,100, 3,200,
3,300, 3,500, and 3,900. All that is known about the other 495 losses is that

chen yiya
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they exceed 4,000. Determine the maximum likelihood estimate of the mean of an
exponential model.

15.34 (*) One hundred people are observed at age 35. Of them, 15 leave the study
at age 35.6, 10 die sometime between ages 35 and 35.6, and 3 die sometime after
age 35.6 but before age 36. The remaining 72 people survive to age 36. Determine
the product-limit estimate of 35 and the maximum likelihood estimate of 35. For
the latter, assume the time to death is uniform between ages 35 and 36.

15.35 (*) The survival function is ( ) = 1 0 . Five claims
were studied in order to estimate the distribution of the time from reporting to
settlement. After ve years, four of the claims were settled, the times being 1, 3, 4,
and 4. Actuary X then estimates using maximum likelihood. Actuary Y prefers
to wait until all claims are settled. The fth claim is settled after six years, at which
time actuary Y estimates by maximum likelihood. Determine the two estimates.

15.36 (*) Four automobile engines were rst observed when they were three years
old. They were then observed for additional years. By that time, three of the
engines had failed, with the failure ages being 4, 5, and 7. The fourth engine was
still working at age 3 + . The survival function has the uniform distribution on
the interval 0 to . The maximum likelihood estimate of is 13.67. Determine .

15.37 (*) Ten claims were observed. The values of seven of them (in thousands)
were 3, 7, 8, 12, 12, 13, and 14. The remaining three claims were all censored at
15. The proposed model has a hazard rate function given by

( ) =
1 0 5

2 5 10

3 10.

Determine the maximum likelihood estimates of the three parameters.

15.38 (*) You are given the ve observations 521, 658, 702, 819, and 1,217. Your
model is the single-parameter Pareto distribution with distribution function

( ) = 1

µ
500

¶
500, 0.

Determine the maximum likelihood estimate of .

15.39 (*) You have observed the following ve claim severities: 11.0, 15.2, 18.0,
21.0, and 25.8. Determine the maximum likelihood estimate of for the following
model:

( ) =
1

2
exp

1

2
( )2

¸
0.

15.40 (*) A random sample of size 5 is taken from a Weibull distribution with
= 2. Two of the sample observations are known to exceed 50 and the three

remaining observations are 20, 30, and 45. Determine the maximum likelihood
estimate of .

chen yiya
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15.41 (*) Phil and Sylvia are competitors in the lightbulb business. Sylvia adver-
tises that her lightbulbs burn twice as long as Phil�’s. You were able to test 20 of
Phil�’s bulbs and 10 of Sylvia�’s. You assumed that both of their bulbs have an ex-
ponential distribution with time measured in hours. You have separately estimated
the parameters as �ˆ = 1,000 and �ˆ = 1,500 for Phil and Sylvia, respectively,
using maximum likelihood. Using all 30 observations, determine �ˆ , the maximum
likelihood estimate of restricted by Sylvia�’s claim that = 2 .

15.42 (*) A sample of 100 losses revealed that 62 were below 1,000 and 38 were
above 1,000. An exponential distribution with mean is considered. Using only the
given information, determine the maximum likelihood estimate of . Now suppose
you are also given that the 62 losses that were below 1,000 totalled 28,140, while the
total for the 38 above 1,000 remains unknown. Using this additional information,
determine the maximum likelihood estimate of .

15.43 (*) The following values were calculated from a random sample of 10 losses:

P10
=1

2 = 0 00033674
P10

=1
1 = 0 023999

P10
=1

0 5 = 0 34445
P10

=1
0 5 = 488 97

P10
=1 = 31,939

P10
=1

2 = 211,498,983

Losses come from a Weibull distribution with = 0 5 (so ( ) = 1 ( )0 5

).
Determine the maximum likelihood estimate of .

15.44 (*) For claims reported in 1997, the number settled in 1997 (year 0) was
unknown, the number settled in 1998 (year 1) was 3, and the number settled in
1999 (year 2) was 1. The number settled after 1999 is unknown. For claims reported
in 1998, there were 5 settled in year 0, 2 settled in year 1, and the number settled
after year 1 is unknown. For claims reported in 1999, there were 4 settled in year
0 and the number settled after year 0 is unknown. Let be the year in which
a randomly selected claim is settled and assume that it has probability function
Pr( = ) = = (1 ) = 0 1 2 . Determine the maximum likelihood
estimate of .

15.45 (*) A sample of independent observations 1 came from a dis-
tribution with a pdf of ( ) = 2 exp( 2) 0. Determine the maximum
likelihood estimator (mle) of .

15.46 (*) Let 1 be a random sample from a population with cdf ( ) =
0 1. Determine the mle of .

15.47 A random sample of 10 claims obtained from a gamma distribution is given
as follows:

1,500 6,000 3,500 3,800 1,800 5,500 4,800 4,200 3,900 3,000

(a) (*) Suppose it is known that = 12. Determine the maximum likelihood
estimate of .

chen yiya
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(b) Determine the maximum likelihood estimates of and .

15.48 A random sample of ve claims from a lognormal distribution is given as
follows:

500 1,000 1,500 2,500 4,500

Estimate and by maximum likelihood. Estimate the probability that a loss
will exceed 4,500.

15.49 (*) Let 1 be a random sample from a random variable with pdf
( ) = 1 0. Determine the mle of .

15.50 (*) The random variable has pdf ( ) = 2 exp( 0 5 2 2) 0.
For this random variable, E( ) = ( 2) 2 and Var( ) = 2 2 2 2. You are
given the following ve observations:

4 9 1 8 3 4 6 9 4 0

Determine the maximum likelihood estimate of .

15.51 (*) Let 1 be a random sample from a random variable with cdf
( ) = 1 1 0. Determine the mle of .

15.52 (*) Losses follow a distribution with cdf ( ) = 1 , . A sample
of 20 losses contained 9 below 10, 6 between 10 and 25, and 5 in excess of 25.
Determine the maximum likelihood estimate of .

15.53 (*) Losses have a uniform distribution on the interval (0 ). Five losses are
observed, all with a deductible of 4. Three losses are observed with values of 5,
9, and 13. The other two losses are censored at a value of 4 + . The maximum
likelihood estimate of is 29. Determine the value of .

15.54 (*) Three losses are observed with values 66, 91, and 186. Seven other
losses are known to be less than or equal to 60. Losses have an inverse exponential
distribution with cdf ( ) = , 0. Determine the maximum likelihood
estimate of the population mode.

15.55 (*) Policies have a deductible of 100. Seven losses are observed, with values
120, 180, 200, 270, 300, 1,000, and 2,500. Ground-up losses have a Pareto distrib-
ution with = 400 and unknown. Determine the maximum likelihood estimate
of .

15.56 (*) The random variable has pdf ( ) = ( + ) 1 0. It
is known that = 1,000. You are given the following ve observations:

43 145 233 396 775

Determine the maximum likelihood estimate of .

15.57 The following 20 observations were collected. It is desired to estimate
Pr( 200). When a parametric model is called for, use the single-parameter
Pareto distribution for which ( ) = 1 (100 ) 100 0.

132 149 476 147 135 110 176 107 147 165
135 117 110 111 226 108 102 108 227 102

chen yiya


chen yiya


chen yiya




MAXIMUM LIKELIHOOD ESTIMATION 413

Table 15.5 Data for Exercise 15.58.

Loss No. of observations Loss No. of observations
0�—25 5 350�—500 17
25�—50 37 500�—750 13
50�—75 28 750�—1000 12
75�—100 31 1,000�—1,500 3
100�—125 23 1,500�—2,500 5
125�—150 9 2,500�—5,000 5
150�—200 22 5,000�—10,000 3
200�—250 17 10,000�—25,000 3
250�—350 15 25,000�— 2

(a) Determine the empirical estimate of Pr( 200).

(b) Determine the method-of-moments estimate of the single-parameter Pareto
parameter and use it to estimate Pr( 200).

(c) Determine the maximum likelihood estimate of the single-parameter
Pareto parameter and use it to estimate Pr( 200).

15.58 The data in Table 15.5 presents the results of a sample of 250 losses. Consider
the inverse exponential distribution with cdf ( ) = 0 0. Deter-
mine the maximum likelihood estimate of

15.59 Consider the inverse Gaussian distribution with density given by

( ) =

µ

2 3

¶1 2

exp

"

2

µ ¶2#

0

(a) Show that

X

=1

( )2
= 2

X

=1

µ
1 1

¶
+ ( )2

where = (1 )
P

=1 .

(b) For a sample ( 1 ), show that the maximum likelihood estimates
of and are

�ˆ = ¯

and
�ˆ = P

=1

µ
1 1

¶

15.60 Suppose that 1 are independent and normally distributed with
mean E( ) = and Var( ) = ( ) 1, where 0 is a known constant.
Prove that the maximum likelihood estimates of and are

�ˆ = ¯

and

�ˆ =
X

=1

( ¯)2

1
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where ¯ = (1 )
P

=1 and =
P

=1 .

15.61 Suppose 1 are i.i.d. with distribution (5.6). Prove that the max-
imum likelihood estimate of the mean is the sample mean. In other words, if �ˆ is
the mle of , prove that

d( ) = (�ˆ) = ¯

15.3 VARIANCE AND INTERVAL ESTIMATION

In general, it is not easy to determine the variance of complicated estimators such as
the mle. However, it is possible to approximate the variance. The key is a theorem
that can be found in most mathematical statistics books. The particular version
stated here and its multiparameter generalization is taken from [150] and stated
without proof. Recall that ( ) is the likelihood function and ( ) its logarithm.
All of the results assume that the population has a distribution that is a member
of the chosen parametric family.

Theorem 15.5 Assume that the pdf (pf in the discrete case) ( ; ) satises the
following for in an interval containing the true value (replace integrals by sums
for discrete variables):

(i) ln ( ; ) is three times di erentiable with respect to .

(ii)
R

( ; ) = 0. This formula implies that the derivative may be taken

outside the integral and so we are just di erentiating the constant 1.7

(iii)
R 2

2 ( ; ) = 0. This formula is the same concept for the second deriva-

tive.

(iv)
R
( ; )

2

2 ln ( ; ) 0. This inequality establishes that the

indicated integral exists and that the location where the derivative is zero is a
maximum.

(v) There exists a function ( ) such that

Z
( ) ( ; ) with

¯̄
¯̄

3

3 ln ( ; )

¯̄
¯̄ ( )

This inequality makes sure that the population is not overpopulated with regard
to extreme values.

Then the following results hold:

(a) As , the probability that the likelihood equation [ 0( ) = 0] has a
solution goes to 1.

7The integrals in (ii) and (iii) are to be evaluated over the range of values for which ( ; ) 0.
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(b) As the distribution of the mle �ˆ converges to a normal distribution
with mean and variance such that ( )Var(�ˆ ) 1, where

( ) = E
2

2 ln ( ; )

¸
=

Z
( ; )

2

2 ln ( ; )

= E

"µ
ln ( ; )

¶2#

=

Z
( ; )

µ
ln ( ; )

¶2

For any , the last statement is to be interpreted as

lim Pr

Ã
�ˆ

[ ( )] 1 2

!

= ( )

and therefore [ ( )] 1 is a useful approximation for Var(�ˆ ). The quantity ( )
is called the information (sometimes more specically, Fisher�’s information). It
follows from this result that the mle is asymptotically unbiased and consistent. The
conditions in statements (i)�—(v) are often referred to as �“mild regularity conditions.�”
A skeptic would translate this statement as �“conditions that are almost always true
but are often di cult to establish, so we�’ll just assume they hold in our case.�”
Their purpose is to ensure that the density function is fairly smooth with regard
to changes in the parameter and that there is nothing unusual about the density
itself.8

The preceding results assume that the sample consists of i.i.d. random obser-
vations. A more general version of the result uses the logarithm of the likelihood
function:

( ) = E
2

2 ( )

¸
= E

"µ
( )

¶2#

The only requirement here is that the same parameter value apply to each obser-
vation.
If there is more than one parameter, the only change is that the vector of maxi-

mum likelihood estimates now has an asymptotic multivariate normal distribution.
The covariance matrix9 of this distribution is obtained from the inverse of the
matrix with ( )th element,

I( ) = E
2

( )

¸
= E

2

ln ( ; )

¸

= E ( ) ( )

¸
= E ln ( ; ) ln ( ; )

¸

The rst expression on each line is always correct. The second expression assumes
that the likelihood is the product of identical densities. This matrix is often
called the information matrix. The information matrix also forms the Cramér�—Rao
lower bound. That is, under the usual conditions, no unbiased estimator has a
smaller variance than that given by the inverse of the information. Therefore, at
least asymptotically, no unbiased estimator is more accurate than the mle.

8For an example of a situation where these conditions do not hold, see Exercise 15.63.
9For any multivariate random variable, the covariance matrix has the variances of the individual
random variables on the main diagonal and covariances in the o -diagonal positions.
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EXAMPLE 15.9

Estimate the covariance matrix of the mle for the lognormal distribution.
Then apply this result to Data Set B.

The likelihood function and its logarithm are

( ) =
Y

=1

1

2
exp

(ln )2

2 2

¸

( ) =
X

=1

"

ln ln
1

2
ln(2 )

1

2

µ
ln

¶2#

The rst partial derivatives are

=
X

=1

ln
2

and = +
X

=1

(ln )2

3
.

The second partial derivatives are

2

2
=

2

2

= 2
X

=1

ln
3

2

2
=

2
3
X

=1

(ln )2

4

The expected values are (ln has a normal distribution with mean and
standard deviation )

E
µ

2

2

¶
=

2

E
µ

2
¶

= 0

E
µ

2

2

¶
=

2
2

Changing the signs and inverting produce an estimate of the covariance matrix
(it is an estimate because Theorem 15.5 only provides the covariance matrix
in the limit). It is

2

0

0
2

2
For the lognormal distribution, the maximum likelihood estimates are the
solutions to the two equations

X

=1

ln
2

= 0 and +
X

=1

(ln )2

3
= 0
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From the rst equation �ˆ = (1 )
P

=1 ln , and from the second equation,
�ˆ2 = (1 )

P
=1(ln �ˆ)2. For Data Set B, the values are �ˆ = 6 1379 and

�ˆ2 = 1 9305, or �ˆ = 1 3894. With regard to the covariance matrix, the true
values are needed. The best we can do is substitute the estimated values to
obtain

dVar(�ˆ �ˆ) = 0 0965 0
0 0 0483

¸
(15.1)

The multiple �“hats�” in the expression indicate that this is an estimate of the
variance of the estimators. ¤

The zeros o the diagonal indicate that the two parameter estimators are as-
ymptotically uncorrelated. For the particular case of the lognormal distribution,
the estimators are uncorrelated for any sample size. One thing we could do with
this information is construct approximate 95% condence intervals for the true
parameter values. These would be 1.96 standard deviations on either side of the
estimate:

: 6 1379± 1 96(0 0965)1 2 = 6 1379± 0 6089
: 1 3894± 1 96(0 0483)1 2 = 1 3894± 0 4308

To obtain the information matrix, it is necessary to take both derivatives and
expected values, which is not always easy to do. A way to avoid this problem is
to simply not take the expected value. Rather than working with the number that
results from the expectation, use the observed data points. The result is called the
observed information.

EXAMPLE 15.10

Estimate the covariance in Example 15.9 using the observed information.

Substituting the observations into the second derivatives produces

2

2
=

2
=

20
2

2

= 2
X

=1

ln
3

= 2
122 7576 20

3

2

2
=

2
3
X

=1

(ln )2

4
=
20
2

3
792 0801 245 5152 + 20 2

4

Inserting the parameter estimates produces the negatives of the entries of the
observed information,

2

2
= 10 3600

2

= 0
2

2
= 20 7190

Changing the signs and inverting produce the same values as in (15.1). This is
a feature of the lognormal distribution that need not hold for other models.¤
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Sometimes it is not even possible to take the derivative. In that case, an approx-
imate second derivative can be used. A reasonable approximation is

2 ( )
=

1
[ ( + 1

2 e + 1
2 e ) ( + 1

2 e 1
2 e )

( 1
2 e + 1

2 e ) + ( 1
2 e 1

2 e )]

where e is a vector with all zeros except for a 1 in the th position and = 10 ,
where is one-third the number of signicant digits used in calculations.

EXAMPLE 15.11

Repeat Example 15.10 using approximate derivatives.

Assume that there are 15 signicant digits being used. Then 1 = 6 1379 10
5

and 2 = 1 3894 10
5. Reasonably close values are 0.00006 and 0.00001. The

rst approximation is

2

2
=

(6 13796 1 3894) 2 (6 1379 1 3894) + (6 13784 1 3894)

(0 00006)2

=
157 71389308198 2( 157 71389304968) + ( 157 71389305468)

(0 00006)2

= 10 3604

The other two approximations are

2

= 0 0003 and
2

2
= 20 7208

We see that here the approximation works very well. ¤

The information matrix provides a method for assessing the quality of the mles
of a distribution�’s parameters. However, we are often more interested in a quantity
that is a function of the parameters. For example, we might be interested in the
lognormal mean as an estimate of the population mean. That is, we want to use
exp(�ˆ+�ˆ2 2) as an estimate of the population mean, where the maximum likelihood
estimates of the parameters are used. It is very di cult to evaluate the mean and
variance of this random variable because it is a complex function of two variables
that already have complex distributions. The following theorem (from [145]) can
help. The method is often called the delta method.

Theorem 15.6 Let X = ( 1 ) be a multivariate random variable of
dimension based on a sample of size . Assume that X is asymptotically normal
with mean and covariance matrix , where neither nor depend on . Let
be a function of variables that is totally di erentiable. Let = ( 1 ).
Then is asymptotically normal with mean ( ) and variance ( g) ( g) ,
where g is the vector of rst derivatives, that is, g = ( 1 ) and
it is to be evaluated at , the true parameters of the original random variable.

The statement of the theorem is hard to decipher. The s are the estimators and
is the function of the parameters that are being estimated. For a model with one
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parameter, the theorem reduces to the following statement: Let �ˆ be an estimator
of that has an asymptotic normal distribution with mean and variance 2 .
Then (�ˆ) has an asymptotic normal distribution with mean ( ) and asymptotic
variance [ 0( )]( 2 )[ 0( )] = 0( )2 2 .

EXAMPLE 15.12

Use the delta method to approximate the variance of the mle of the probability
that an observation from an exponential distribution exceeds 200. Apply this
result to Data Set B.

From Example 15.4 we know that the maximum likelihood estimate of
the exponential parameter is the sample mean. We are asked to estimate
= Pr( 200) = exp( 200 ). The maximum likelihood estimate is

�ˆ = exp( 200 �ˆ) = exp( 200 ¯). Determining the mean and variance of
this quantity is not easy. But we do know that Var( ¯) = Var( ) = 2 .
Furthermore,

( ) = 200 0( ) = 200 2 200

and therefore the delta method gives

Var(�ˆ) =
(200 2 200 )2 2

=
40,000 2 400

.

For Data Set B,

¯ = 1,424 4

�ˆ = exp

µ
200

1,424 4

¶
= 0 86900

dVar(�ˆ) =
40,000(1 424 4) 2 exp( 400 1,424 4)

20
= 0 0007444.

A 95% condence interval for is 0 869±1 96 0 0007444, or 0 869±0 053.¤

EXAMPLE 15.13

Construct a 95% condence interval for the mean of a lognormal population
using Data Set B. Compare this to the more traditional condence interval
based on the sample mean.
From Example 15.9 we have �ˆ = 6 1379, �ˆ = 1 3894, and an estimated

covariance matrix of
�ˆ
=

0 0965 0
0 0 0483

¸

The function is ( ) = exp( + 2 2). The partial derivatives are

= exp
¡
+ 1

2
2
¢

= exp
¡
+ 1

2
2
¢
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and the estimates of these quantities are 1,215.75 and 1,689.16, respectively.
The delta method produces the following approximation:

dVar[ (�ˆ �ˆ)] =
£
1,215 75 1,689 16

¤ 0 0965 0
0 0 0483

¸
1,215 75
1,689 16

¸

= 280,444

The condence interval is 1,215 75± 1 96 280 444, or 1,215 75± 1,037 96.
The customary condence interval for a population mean is ¯± 1 96 ,

where is 2 is the sample variance. For Data Set B the interval is 1 424 4 ±
1 96(3,435 04) 20, or 1,424 4 ± 1,505 47. It is not surprising that this is a
wider interval because we know that (for a lognormal population) the mle is
asymptotically UMVUE. ¤

15.3.1 Exercises

15.62 Determine 95% condence intervals for the parameters of exponential and
gamma models for Data Set B. The likelihood function and maximum likelihood
estimates were determined in Example 15.4.

15.63 Let have a uniform distribution on the interval from 0 to . Show that
the maximum likelihood estimator is �ˆ = max( 1 ). Use Examples 12.5
and 12.7 to show that this estimator is asymptotically unbiased and to obtain its
variance. Show that Theorem 15.5 yields a negative estimate of the variance and
that item (ii) in the conditions does not hold.

15.64 Use the delta method to construct a 95% condence interval for the mean
of a gamma distribution using Data Set B. Preliminary calculations are in Exercise
15.62.

15.65 (*) For a lognormal distribution with parameters and , you are given that
the maximum likelihood estimates are �ˆ = 4 215 and �ˆ = 1 093. The estimated
covariance matrix of (�ˆ �ˆ) is

0 1195 0
0 0 0597

¸
.

The mean of a lognormal distribution is given by exp( + 2 2). Estimate the
variance of the maximum likelihood estimator of the mean of this lognormal distri-
bution using the delta method.

15.66 (*) A distribution has two parameters, and . A sample of size 10 pro-
duced the following loglikelihood function:

( ) = 2 5 2 3 2 + 50 + 2 +

where is a constant. Estimate the covariance matrix of the mle (�ˆ �ˆ).

15.67 In Exercise 15.42 two maximum likelihood estimates were obtained for the
same model. The second estimate was based on more information than the rst
one. It would be reasonable to expect that the second estimate is more accurate.
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Conrm this expectation by estimating the variance of each of the two estimators.
Do your calculations using the observed likelihood.

15.68 This is a continuation of Exercise 15.46. Let 1 be a random sample
from a population with cdf ( ) = 0 1.

(a) Determine the asymptotic variance of the mle of .

(b) Use your answer to obtain a general formula for a 95% condence interval
for .

(c) Determine the mle of E( ) and obtain its asymptotic variance and a
formula for a 95% condence interval.

15.69 This is a continuation of Exercise 15.49. Let 1 be a random sample
from a population with pdf ( ) = 1 0.

(a) Determine the asymptotic variance of the mmle of .

(b) (*) Use your answer to obtain a general formula for a 95% condence
interval for .

(c) Determine the mle of Var( ) and obtain its asymptotic variance and a
formula for a 95% condence interval.

15.70 (*) A sample of size 40 has been taken from a population with pdf ( ) =

(2 ) 1 2 2 (2 ) 0. The mle of is �ˆ = 2. Approximate the
MSE of �ˆ.

15.71 (*) Losses have an exponential distribution. Five observations from this
distribution are 100, 200, 400, 800, 1,400, and 3,100. Use the delta method to
approximate the variance of the mle of (1,500). Then construct a symmetric 95%
condence interval for the true value.

15.72 Four observations were made from a random variable having the density
function ( ) = 2

2

0. Exactly one of the four observations was less
than 2.

(a) (*) Determine the mle of .

(b) Approximate the variance of the mle of .

15.73 Estimate the covariance matrix of the mles for the data in Exercise 15.47
with both and unknown. Do so by computing approximate derivatives of the
loglikelihood. Then construct a 95% condence interval for the mean.

15.74 Estimate the variance of the mle for Exercise 15.56 and use it to construct
a 95% condence interval for E( 500).

15.75 Consider a random sample of size from a Weibull distribution. For this
exercise, write the Weibull survival function as

( ) = exp

½
(1 + 1)

¸ ¾

chen yiya
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For this exercise, assume that is known and that only is to be estimated.

(a) Show that E( ) = .

(b) Show that the maximum likelihood estimate of is

�ˆ = (1 + 1)
1X

=1

1

(c) Show that using the observed information produces the variance estimate

�ˆ (�ˆ) =
�ˆ2

2

where is replaced by �ˆ.

(d) Show that using the information (again replacing with �ˆ) produces the
same variance estimate as in part (c).

(e) Show that �ˆ has a transformed gamma distribution with = =
1 , and = . Use this result to obtain the exact variance of �ˆ (as

a function of ). Hint : The variable has an exponential distribu-
tion, and so the variable

P
=1 has a gamma distribution with rst

parameter equal to and second parameter equal to the mean of the
exponential distribution.

15.4 NON-NORMAL CONFIDENCE INTERVALS

Section 15.3 created condence intervals based on two assumptions. The rst was
that the normal distribution is a reasonable approximation of the true distribution
of the maximum likelihood estimator. We know this assumption is asymptotically
true, but may not hold for small or even moderate samples. Second, it was assumed
that when there is more than one parameter, separate condence intervals should
be constructed for each parameter. Separate intervals in cases like the lognormal
distribution where the parameter estimates are independent, but in most cases that
is not true. When there is high correlation, it is better to postulate a condence
region, which could be done using the asymptotic covariances and a multivariate
normal distribution. However, there is an easier method that does not require a
normal distribution assumption (though is still based on asymptotic results).
One way to motivate a condence region is to consider the meaning of the like-

lihood function. The parameter value that maximizes this function is our best
choice. It is reasonable that alternative values of the parameter that produce likeli-
hood function values close to the maximum are good alternative choices for the true
parameter value. Thus, for some choice of , a condence region for the parameter
might be

{ : ( ) }

the set of all parameters for which the loglikelihood exceeds . The discussion of the
likelihood ratio test in Section 16.4.4 conrms that the loglikelihood is the correct
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function to use and also indicates how should be selected to produce a 100(1 )%
condence region. The value is

= (�ˆ) 0 5 2
2

where the rst term is the loglikelihood value at the maximum likelihood estimate
and the second term is the 1 percentile from the chi-square distribution with
degrees of freedom equal to the number of estimated parameters.

EXAMPLE 15.14

Use this method to construct a 95% condence interval for the parameter of an
exponential distribution. Compare the answer to the normal approximation,
using Data Set B

We know that �ˆ = ¯ and for a sample of size , (¯) = ln ¯. With
one degree of freedom, the 95th percentile of the chi-square distribution is
3.84. The condence region is

{ :
¯

ln ln ¯ 1 92}

which must be evaluated numerically. For Data Set B, the equation is

20(1,424 4)
20 ln 20 20 ln(1,424 4) 1 92

28,488
20 ln 167 15

and the solution is 946 85 2,285 05.
For the normal approximation, the asymptotic variance of the mle is 2 ,

which happens to be the true variance. Inserting sample values, the normal
condence interval is

1,424 4± 1 96
p
1,424 42 20

1,424 4± 624 27

which is 800 14 2,048 76. Note that the widths of the two intervals are
similar, but the rst one is not symmetric about the sample mean. This asym-
metry is reasonable in that a sample of size 20 is unlikely to be large enough
to have the sample mean remove the skewness of the underlying exponential
distribution. ¤

The extension to two parameters is similar, as illustrated in Example 15.15.

EXAMPLE 15.15

In Example 15.4, the maximum likelihood estimates for a gamma model for
Data Set B were �ˆ = 0 55616 and �ˆ = 2,561 1. Determine a 95% condence
region for the true values.
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Figure 15.1 95% condence region for gamma parameters.

The region consists of all pairs ( ) that satisfy

( 1)
20X

=1

ln
1

20X

=1

20 ln ( ) 20 ln

(0 55616 1)
20X

=1

ln
1

2,561 1

20X

=1

20 ln (0 55616)

20(0 55616) ln 2,561 1 2 996 = 165 289

where 2.996 is one-half of the 95th percentile of a chi-square distribution with
two degrees of freedom. Figure 15.1 shows the resulting condence region. If
the normal approximation were appropriate, this region would be elliptical in
shape. ¤

For functions of parameters, the same method can be applied as illustrated in
Example 15.16.

EXAMPLE 15.16

Determine a 95% condence interval for the mean of the gamma distribution
in Example 15.15.

First, reparameterize the gamma density so that the mean is a parameter,
which can be done by setting = and leaving unchanged. The density
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function is now

( ) =
1

( )( )

Due to the invariance of mles, we have �ˆ = �ˆ�ˆ = 1,424 4. We then look for
alternative values that produce loglikelihood values that are within 1.92 of
the maximum (there is only one degree of freedom because there is only one
parameter, the mean, being evaluated). When we try a -value, to give it
the best chance to be accepted, the accompanying -value should be the one
that maximizes the likelihood given . Numerical maximizations and trial
and error reveal the condence interval 811 2,846. ¤

15.4.1 Exercise

15.76 Use the method of this section to determine a 95% condence interval for
the probability that an observation exceeds 200 using the exponential model and
Data Set B. Compare your answer to that from Example 15.12.

15.5 BAYESIAN ESTIMATION

All of the previous discussion on estimation has assumed a frequentist approach.
That is, the population distribution is xed but unknown, and our decisions are
concerned not only with the sample we obtained from the population, but also
with the possibilities attached to other samples that might have been obtained.
The Bayesian approach assumes that only the data actually observed are relevant
and it is the population that is variable. For parameter estimation, the following
denitions describe the process and then Bayes�’ theorem provides the solution.

15.5.1 Denitions and Bayes�’ theorem

Denition 15.7 The prior distribution is a probability distribution over the
space of possible parameter values. It is denoted ( ) and represents our opin-
ion concerning the relative chances that various values of are the true value of
the parameter.

As before, the parameter may be scalar or vector valued. Determination of the
prior distribution has always been one of the barriers to the widespread acceptance
of Bayesian methods. It is almost certainly the case that your experience has
provided some insights about possible parameter values before the rst data point
has been observed. (If you have no such opinions, perhaps the wisdom of the person
who assigned this task to you should be questioned.) The di culty is translating
this knowledge into a probability distribution. An excellent discussion about prior
distributions and the foundations of Bayesian analysis can be found in Lindley
[105], and for a discussion about issues surrounding the choice of Bayesian versus
frequentist methods, see Efron [36]. The book by Klugman [95] contains more detail
on the Bayesian approach along with several actuarial applications. More recent
articles applying Bayesian methods to actuarial problems include [31], [120], [122],
[131], [158], [178], and [189]. A good source for a thorough mathematical treatment
of Bayesian methods is the text by Berger [17]. In recent years, many advancements
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in Bayesian calculations have occurred. A good resource is [27]. Scollnik [157] has
demonstrated how the free computer program WINBUGS can be used to provide
Bayesian solutions to actuarial problems.
Due to the di culty of nding a prior distribution that is convincing (you will

have to convince others that your prior opinions are valid) and the possibility that
you may really have no prior opinion, the denition of prior distribution can be
loosened.

Denition 15.8 An improper prior distribution is one for which the probabil-
ities (or pdf ) are nonnegative but their sum (or integral) is innite.

A great deal of research has gone into the determination of a so-called nonin-
formative or vague prior. Its purpose is to reect minimal knowledge. Universal
agreement on the best way to construct a vague prior does not exist. However,
there is agreement that the appropriate noninformative prior for a scale parameter
is ( ) = 1 0. Note that this is an improper prior.
For a Bayesian analysis, the model is no di erent than before.

Denition 15.9 The model distribution is the probability distribution for the
data as collected given a particular value for the parameter. Its pdf is denoted
X| (x| ), where vector notation for x is used to remind us that all the data appear
here. Also note that this is identical to the likelihood function, and so that name
may also be used at times.

If the vector of observations x = ( 1 ) consists of i.i.d. random variables,
then

X| (x| ) = | ( 1| ) · · · | ( | )

We use concepts from multivariate statistics to obtain two more denitions. In
both cases, as well as in the following, integrals should be replaced by sums if the
distributions are discrete.

Denition 15.10 The joint distribution has pdf

X (x ) = X| (x| ) ( )

Denition 15.11 The marginal distribution of x has pdf

X(x) =

Z
X| (x| ) ( )

Note that if there is more than one parameter, this equation will be a multi-
ple integral. Compare this denition to that of a mixture distribution given by
(5.2) on page 69. The nal two quantities of interest are posterior and predictive
distributions.

Denition 15.12 The posterior distribution is the conditional probability dis-
tribution of the parameters given the observed data. It is denoted |X( |x)

Denition 15.13 The predictive distribution is the conditional probability dis-
tribution of a new observation given the data x. It is denoted |X( |x).10

10 In this section and in any subsequent Bayesian discussions, we reserve (·) for distributions
concerning observations (such as the model and predictive distributions) and (·) for distributions
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These last two items are the key output of a Bayesian analysis. The posterior
distribution tells us how our opinion about the parameter has changed once we
have observed the data. The predictive distribution tells us what the next ob-
servation might look like given the information contained in the data (as well as,
implicitly, our prior opinion). Bayes�’ theorem tells us how to compute the posterior
distribution.

Theorem 15.14 The posterior distribution can be computed as

|X( |x) =
X| (x| ) ( )Z
X| (x| ) ( )

(15.2)

while the predictive distribution can be computed as

|X( |x) =
Z

| ( | ) |X( |x) (15.3)

where | ( | ) is the pdf of the new observation, given the parameter value.

The predictive distribution can be interpreted as a mixture distribution where
the mixing is with respect to the posterior distribution. Example 15.17 illustrates
the preceding denitions and results. The setting, though not the data, is taken
from Meyers [119].

EXAMPLE 15.17

The following amounts were paid on a hospital liability policy:

125 132 141 107 133 319 126 104 145 223

The amount of a single payment has the single-parameter Pareto distribu-
tion with = 100 and unknown. The prior distribution has the gamma
distribution with = 2 and = 1. Determine all of the relevant Bayesian
quantities.

The prior density has a gamma distribution and is

( ) = 0

while the model is (evaluated at the data points)

X| (x| ) =
10(100)10³Q10
=1

+1
´ = 10 3 801121 49 852823

The joint density of x and is (again evaluated at the data points)

X (x ) = 11 4 801121 49 852823

concerning parameters (such as the prior and posterior distributions). The arguments will usually
make it clear which particular distribution is being used. To make matters explicit, we also employ
subscripts to enable us to keep track of the random variables.
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The posterior distribution of is

|X( |x) =
11 4 801121 49 852823

R
0

11 4 801121 49 852823
=

11 4 801121

(11!)(1 4 801121)12
(15.4)

There is no need to evaluate the integral in the denominator. Because we
know that the result must be a probability distribution, the denominator is
just the appropriate normalizing constant. A look at the numerator reveals
that we have a gamma distribution with = 12 and = 1 4 801121.
The predictive distribution is

|X( |x) =

Z

0

100
+1

11 4 801121

(11!)(1 4 801121)12

=
1

(11!)(1 4 801121)12

Z

0

12 (0 195951+ln )

=
1

(11!)(1 4 801121)12
(12!)

(0 195951 + ln )13

=
12(4 801121)12

(0 195951 + ln )13
100 (15.5)

While this density function may not look familiar, you are asked to show in
Exercise 15.77 that ln ln 100 has the Pareto distribution. ¤

15.5.2 Inference and prediction

In one sense the analysis is complete. We begin with a distribution that quanties
our knowledge about the parameter and/or the next observation, and we end with
a revised distribution. But we suspect that your boss may not be satised if you
produce a distribution in response to his or her request. No doubt a specic number,
perhaps with a margin for error, is what is desired. The usual Bayesian solution is
to pose a loss function.

Denition 15.15 A loss function (�ˆ ) describes the penalty paid by the
investigator when �ˆ is the estimate and is the true value of the th parameter.

It would also be possible to have a multidimensional loss function (b ) that
allowed the loss to depend simultaneously on the errors in the various parameter
estimates.

Denition 15.16 The Bayes estimate for a given loss function is the one that
minimizes the expected loss given the posterior distribution of the parameter in
question.

The three most commonly used loss functions are dened as follows.

Denition 15.17 For squared-error loss, the loss function is (all subscripts are
dropped for convenience) (�ˆ ) = (�ˆ )2. For absolute loss, it is (�ˆ ) = |�ˆ |.
For zero�—one loss it is (�ˆ ) = 0 if �ˆ = and is 1 otherwise.

The following theorem indicates the Bayes estimates for these three common loss
functions.
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Theorem 15.18 For squared-error loss, the Bayes estimate is the mean of the
posterior distribution; for absolute loss, it is a median; and for zero�—one loss, it is
a mode.

Note that there is no guarantee that the posterior mean exists or that the poste-
rior median or mode will be unique. When not otherwise specied, the term Bayes
estimate refers to the posterior mean.

EXAMPLE 15.18

(Example 15.17 continued) Determine the three Bayes estimates of

The mean of the posterior gamma distribution is = 12 4 801121 =
2 499416. The median of 2 430342 must be determined numerically, while the
mode is ( 1) = 11 4 801121 = 2 291132. Note that the used here is
the parameter of the posterior gamma distribution, not the for the single-
parameter Pareto distribution that we are trying to estimate. ¤

For forecasting purposes, the expected value of the predictive distribution is
often of interest. It can be thought of as providing a point estimate of the ( +1)th
observation given the rst observations and the prior distribution. It is

E( |x) =

Z
|X( |x)

=

Z Z
| ( | ) |X( |x)

=

Z
|X( |x)

Z
| ( | )

=

Z
E( | ) |X( |x) (15.6)

Equation (15.6) can be interpreted as a weighted average using the posterior dis-
tribution as weights.

EXAMPLE 15.19

(Example 15.17 continued) Determine the expected value of the 11th obser-
vation, given the rst 10.

For the single-parameter Pareto distribution, E( | ) = 100 ( 1) for
1. Because the posterior distribution assigns positive probability to values

of 1, the expected value of the predictive distribution is not dened. ¤

The Bayesian equivalent of a condence interval is easy to construct. The fol-
lowing denition su ces.

Denition 15.19 The points dene a 100(1 )% credibility interval for
provided that Pr( |x) 1 .
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The use of the term credibility has no relationship to its use in actuarial analyses
as developed in Chapter 20. The inequality is present for the case where the poste-
rior distribution of is discrete. Then it may not be possible for the probability to
be exactly 1 . This denition does not produce a unique solution. The following
theorem indicates one way to produce a unique interval.

Theorem 15.20 If the posterior random variable |x is continuous and unimodal,
then the 100(1 )% credibility interval with smallest width is the unique
solution to

Z
|X( |x) = 1

|X( |x) = |X( |x)

This interval is a special case of a highest posterior density (HPD) credibility set.

The following example may clarify the theorem.

EXAMPLE 15.20

(Example 15.17 continued) Determine the shortest 95% credibility interval for
the parameter . Also determine the interval that places 2.5% probability at
each end.

The two equations from Theorem 15.20 are

Pr( |x) = (12; 4 801121 ) (12; 4 801121 ) = 0 95
11 4 801121 = 11 4 801121

Numerical methods can be used to nd the solution = 1 1832 and = 3 9384.
The width of this interval is 2.7552.
Placing 2.5% probability at each end yields the two equations

(12; 4 801121 ) = 0 975 and (12; 4 801121 ) = 0 025

This solution requires either access to the inverse of the incomplete gamma
function or the use of root-nding techniques with the incomplete gamma
function itself. The solution is = 1 2915 and = 4 0995. The width is
2.8080, wider than the rst interval. Figure 15.2 shows the di erence in the
two intervals. The thinner vertical bars represent the HPD interval. The
total area to the left and right of these bars is 0.05. Any other 95% interval
must also have this probability. To create the interval with 0.025 probability
on each side, both bars must be moved to the right. To subtract the same
probability on the right end that is added on the left end, the right limit must
be moved a greater distance because the posterior density is lower over that
interval than it is on the left end. These adjustments must lead to a wider
interval. ¤

The following denition provides the equivalent result for any posterior distrib-
ution.
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Figure 15.2 Two Bayesian credibility intervals.

Denition 15.21 For any posterior distribution, the 100(1 )% HPD credi-
bility set is the set of parameter values such that

Pr( ) 1 (15.7)

and
= { : |X( |x) } for some

where is the largest value for which the inequality (15.7) holds.

This set may be the union of several intervals (which can happen with a multi-
modal posterior distribution). This denition produces the set of minimum total
width that has the required posterior probability. Construction of the set is done
by starting with a high value of and then lowering it. As it decreases, the set
gets larger, as does the probability. The process continues until the probability

reaches 1 . It should be obvious to see how the denition can be extended to
the construction of a simultaneous credibility set for a vector of parameters, .
Sometimes it is the case that, while computing posterior probabilities is di cult,

computing posterior moments may be easy. We can then use the Bayesian central
limit theorem. The following theorem is a paraphrase from Berger [17, p. 224].

Theorem 15.22 If ( ) and X| (x| ) are both twice di erentiable in the elements
of and other commonly satised assumptions hold, then the posterior distribution
of given X = x is asymptotically normal.

The �“commonly satised assumptions�” are like those in Theorem 15.5. As in that
theorem, it is possible to do further approximations. In particular, the asymptotic
normal distribution also results if the posterior mode is substituted for the posterior
mean and/or if the posterior covariance matrix is estimated by inverting the matrix
of second partial derivatives of the negative logarithm of the posterior density.

EXAMPLE 15.21

(Example 15.17 continued) Construct a 95% credibility interval for using
the Bayesian central limit theorem.
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The posterior distribution has a mean of 2 499416 and a variance of 2 =
0 520590. Using the normal approximation, the credibility interval is 2 499416±
1 96(0 520590)1 2, which produces = 1 0852 and = 3 9136. This interval
(with regard to the normal approximation) is HPD due to the symmetry of
the normal distribution.
The approximation is centered at the posterior mode of 2 291132 (see Ex-

ample 15.18). The second derivative of the negative logarithm of the posterior
density (from (15.4)) is

2

2
ln

11 4 801121

(11!)(1 4 801121)12

¸
=
11
2

The variance estimate is the reciprocal. Evaluated at the modal estimate of
, we get (2 291132)2 11 = 0 477208 for a credibility interval of 2 29113 ±
1 96(0 477208)1 2, which produces = 0 9372 and = 3 6451. ¤

The same concepts can apply to the predictive distribution. However, the
Bayesian central limit theorem does not help here because the predictive sample has
only one member. The only potential use for it is that, for a large original sample
size, we can replace the true posterior distribution in (15.3) with a multivariate
normal distribution.

EXAMPLE 15.22

(Example 15.17 continued) Construct a 95% highest density prediction inter-
val for the next observation.

It is easy to see that the predictive density function (15.5) is strictly de-
creasing. Therefore the region with highest density runs from = 100 to .
The value of is determined from

0 95 =

Z

100

12(4 801121)12

(0 195951 + ln )13

=

Z ln( 100)

0

12(4 801121)12

(4 801121 + )13

= 1
4 801121

4 801121 + ln( 100)

¸12

and the solution is = 390 1840. It is interesting to note that the mode of the
predictive distribution is 100 (because the pdf is strictly decreasing), while
the mean is innite (with = and an additional in the integrand, after
the transformation, the integrand is like 13, which goes to innity as
goes to innity). ¤

The following example revisits a calculation done in Section 6.3. There the
negative binomial distribution was derived as a gamma mixture of Poisson variables.
Example 15.23 shows how the same calculations arise in a Bayesian context.
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EXAMPLE 15.23

The number of claims in one year on a given policy is known to have a Poisson
distribution. The parameter is not known, but the prior distribution has a
gamma distribution with parameters and . Suppose in the past year the
policy had claims. Use Bayesian methods to estimate the number of claims
in the next year. Then repeat these calculations assuming claim counts for
the past years, 1 .

The key distributions are (where = 0 1 , 0):

Prior: ( ) =
1

( )

Model: ( | ) = !

Joint: ( ) =
+ 1 (1+1 )

! ( )

Marginal: ( ) =
R
0

+ 1 (1+1 )

! ( )

= ( + )
! ( ) (1+1 ) +

=
¡
+ 1

¢ ³
1
1+

´ ³
1+

´

Posterior: ( | ) =
+ 1 (1+1 )

! ( )

.
( + )

! ( ) (1+1 ) +

=
+ 1 (1+1 ) (1+1 ) +

( + )

The marginal distribution is negative binomial with = and = . The
posterior distribution is gamma with shape parameter �“ �” equal to + and
scale parameter �“ �” equal to (1 + 1 ) 1 = (1 + ). The Bayes estimate
of the Poisson parameter is the posterior mean, ( + ) (1 + ). For the
predictive distribution, (15.3) gives

( | ) =

Z

0 !

+ 1 (1+1 ) (1 + 1 ) +

( + )

=
(1 + 1 ) +

! ( + )

Z

0

+ + 1 (2+1 )

=
(1 + 1 ) + ( + + )

! ( + )(2 + 1 ) + +
= 0 1

and some rearranging shows this to be a negative binomial distribution with
= + and = (1 + ). The expected number of claims for the next

year is ( + ) (1 + ). Alternatively, from (15.6),

E( | ) =
Z

0

+ 1 (1+1 ) (1 + 1 ) +

( + )
=
( + )

1 +

For a sample of size , the key change is that the model distribution is now

(x| ) =
1+···+

1! · · · !
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Using the same development as for a single observation, the posterior distri-
bution is still gamma, now with shape parameter 1 + · · ·+ + = ¯+
and scale parameter (1 + ). The predictive distribution is still negative
binomial, now with = ¯ + and = (1 + ). ¤

When only moments are needed, the double-expectation formulas can be very
useful. Provided the moments exist, for any random variables and ,

E( ) = E[E( | )] (15.8)

Var( ) = E[Var( | )] + Var[E( | )] (15.9)

For the predictive distribution,

E( |x) = E |x[E( | x)]

= E |x[E( | )]

and

Var( |x) = E |x[Var( | x)] + Var |x[E( | x)]

= E |x[Var( | )] + Var |x[E( | )]

The simplication on the inner expected value and variance results from the fact
that, if is known, the value of x provides no additional information about the
distribution of . This is simply a restatement of (15.6).

EXAMPLE 15.24

Apply these formulas to obtain the predictive mean and variance for Example
15.23. Then anticipate the credibility formulas of Chapter 20.

The predictive mean uses E( | ) = . Then,

E( |x) = E( |x) =
( ¯ + )

1 +

The predictive variance uses Var( | ) = , and then

Var( |x) = E( |x) + Var( |x)

=
( ¯ + )

1 +
+
( ¯ + ) 2

(1 + )2

= ( ¯ + )
1 +

µ
1 +

1 +

¶

These agree with the mean and variance of the known negative binomial
distribution for . However, these quantities were obtained from moments
of the model (Poisson) and posterior (gamma) distributions. The predictive
mean can be written as

1 +
¯ +

1

1 +
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which is a weighted average of the mean of the data and the mean of the
prior distribution. Note that, as the sample size increases, more weight is
placed on the data and less on the prior opinion. The variance of the prior
distribution can be increased by letting become large. As it should, this also
increases the weight placed on the data. The credibility formulas in Chapter
20 generally consist of weighted averages of an estimate from the data and a
prior opinion. ¤

15.5.3 Conjugate prior distributions and the linear exponential family

The linear exponential family introduced in Section 5.4 is used in connection with
analysis of Tail-Value-at-Risk in Sections 5.5.2 and 6.14.1. It is also extremely
useful in connection with Bayesian analysis, as is demonstrated in this section.
In Example 15.23 it turned out the posterior distribution was of the same type

as the prior distribution (gamma). A denition of this concept follows.

Denition 15.23 A prior distribution is said to be a conjugate prior distribu-
tion for a given model if the resulting posterior distribution is from the same family
as the prior (but perhaps with di erent parameters).

The following theorem shows that, if the model is a member of the linear expo-
nential family, a conjugate prior distribution is easy to nd.

Theorem 15.24 Suppose that given = the random variables 1 are
i.i.d. with pf

| ( | ) =
( ) ( )

( )

where has pdf

( ) =
[ ( )] ( ) 0( )

( )

where and are parameters of the distribution and ( ) is the normalizing
constant. Then the posterior pf |X( |x) is of the same form as ( ).

Proof: The posterior distribution is

( |x)

hQ
=1 ( )

i
( )

[ ( )]

[ ( )] ( ) 0( )

( )

[ ( )] ( + ) exp

µ
( )

+
P

+

¶
( + )

¸
0( )

= [ ( )] exp[ ( ) ] 0( )

which is of the same form as ( ) with parameters

= +

=
+
P

+
=

+
+

+ ¤
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EXAMPLE 15.25

Show that, for the Poisson model, the conjugate prior as given in Theorem
15.24 is the gamma distribution.

From Section 6.14.1 we have that ( ) = and ( ) = ln . The prior as
given by the theorem is

( ) ln 1

which can be rewritten

( ) 1

which is the kernel of a gamma distribution with = and scale parameter
1 . ¤

Other well-known examples of linear exponential family members include the
binomial and negative binomial distributions both with beta conjugate prior (see
Exercises 15.82 and 15.84, respectively). Similarly, for the exponential distribution,
the gamma distribution is the conjugate prior (see Exercise 15.83).

15.5.4 Computational issues

It should be obvious by now that all Bayesian analyses proceed by taking integrals
or sums. So at least conceptually it is always possible to do a Bayesian analysis.
However, only in rare cases are the integrals or sums easy to do, and that means
most Bayesian analyses will require numerical integration. While one-dimensional
integrations are easy to do to a high degree of accuracy, multidimensional integrals
are much more di cult to approximate. A great deal of e ort has been expended
with regard to solving this problem. A number of ingenious methods have been
developed. Some of them are summarized in Klugman [95]. However, the one
that is widely used today is called Markov chain Monte Carlo simulation. A good
discussion of this method can be found in [157] and actuarial applications can be
found in [26] and [158].
There is another way that completely avoids computational problems. This

method is illustrated using the example (in an abbreviated form) from Meyers
[119], which also employes this technique. The example also shows how a Bayesian
analysis is used to estimate a function of parameters.

EXAMPLE 15.26

Data were collected on 100 losses in excess of 100,000. The single-parameter
Pareto distribution is to be used with = 100,000 and unknown. The
objective is to estimate the layer average severity (LAS) for the layer from
1,000,000 to 5,000,000. For the observations,

P100
=1 ln = 1,208 4354.
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The model density is

X| (x| ) =
100Y

=1

(100,000)
+1

= exp 100 ln + 100 ln 100,000 ( + 1)
100X

=1

ln

= exp

µ
100 ln

100

1 75
1,208 4354

¶

The density appears in column 3 of Table 15.6. To prevent computer overow,
the value 1,208.4354 was not subtracted prior to exponentiation, making the
entries proportional to the true density function. The prior density is given in
the second column. It was chosen based on a belief that the true value is in the
range 1�—2.5 and is more likely to be near 1.5 than at the ends. The posterior
density is then obtained using (15.2). The elements of the numerator are
found in column 4. The denominator is no longer an integral but a sum. The
sum is at the bottom of column 4 and then the scaled values are in column 5.
We can see from column 5 that the posterior mode is at = 1 7, as

compared to the maximum likelihood estimate of 1.75 (see Exercise 15.79).
The posterior mean of could be found by adding the product of columns 1
and 5. Here we are interested in a LAS. For this problem it is

LAS( ) = E( 5,000,000) E( 1,000,000)

=
100,000

1

µ
1

1,000,000 1

1

5,000,000 1

¶
6= 1

= 100,000 (ln 5,000,000 ln 1,000,000) = 1

Values of LAS( ) for the 16 possible values of appear in column 6. The
last two columns are then used to obtain the posterior expected values of the
layer average severity. The point estimate is the posterior mean, 18,827. The
posterior standard deviation is

p
445,198,597 18,8272 = 9 526

We can also use columns 5 and 6 to construct a credibility interval. Discard-
ing the rst ve rows and the last four rows eliminates 0.0406 of posterior
probability. That leaves (5,992 34,961) as a 96% credibility interval for the
layer average severity. Part of Meyers�’ paper was the observation that, even
with a fairly large sample, the accuracy of the estimate is poor.
The discrete approximation to the prior distribution could be rened by

using many more than 16 values. Doing so adds little to the spreadsheet
e ort. The number was kept small here only for display purposes. ¤

15.5.5 Exercises

15.77 Show that, if is the predictive distribution in Example 15.17, then ln
ln 100 has the Pareto distribution.
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Table 15.6 Bayesian estimation of a layer average severity.

( ) (x| ) ( ) (x| ) ( |x) LAS( ) ×L ( |x)l( )2

1.0 0.0400 1.52×10 25 6.10×10 27 0.0000 160,944 0 6,433
1.1 0.0496 6.93×10 24 3.44×10 25 0.0000 118,085 2 195,201
1.2 0.0592 1.37×10 22 8.13×10 24 0.0003 86,826 29 2,496,935
1.3 0.0688 1.36×10 21 9.33×10 23 0.0038 63,979 243 15,558,906
1.4 0.0784 7.40×10 21 5.80×10 22 0.0236 47,245 1,116 52,737,840
1.5 0.0880 2.42×10 20 2.13×10 21 0.0867 34,961 3,033 106,021,739
1.6 0.0832 5.07×10 20 4.22×10 21 0.1718 25,926 4,454 115,480,050
1.7 0.0784 7.18×10 20 5.63×10 21 0.2293 19,265 4,418 85,110,453
1.8 0.0736 7.19×10 20 5.29×10 21 0.2156 14,344 3,093 44,366,353
1.9 0.0688 5.29×10 20 3.64×10 21 0.1482 10,702 1,586 16,972,802
2.0 0.0640 2.95×10 20 1.89×10 21 0.0768 8,000 614 4,915,383
2.1 0.0592 1.28×10 20 7.57×10 22 0.0308 5,992 185 1,106,259
2.2 0.0544 4.42×10 21 2.40×10 22 0.0098 4,496 44 197,840
2.3 0.0496 1.24×10 21 6.16×10 23 0.0025 3,380 8 28,650
2.4 0.0448 2.89×10 22 1.29×10 23 0.0005 2,545 1 3,413
2.5 0.0400 5.65×10 23 2.26×10 24 0.0001 1,920 0 339

1.0000 2.46×10 20 1.0000 18,827 445,198,597

* ( |x)LAS( ).

15.78 Determine the posterior distribution of in Example 15.17 if the prior
distribution is an arbitrary gamma distribution. To avoid confusion, denote the
rst parameter of this gamma distribution by . Next, determine a particular
combination of gamma parameters so that the posterior mean is the maximum
likelihood estimate of regardless of the specic values of 1 . Is this prior
improper?

15.79 For Example 15.26, demonstrate that the maximum likelihood estimate of
is 1.75.

15.80 Let 1 be a random sample from a lognormal distribution with un-
known parameters and . Let the prior density be ( ) = 1.

(a) Write the posterior pdf of and up to a constant of proportionality.

(b) Determine Bayesian estimators of and by using the posterior mode.

(c) Fix at the posterior mode as determined in part (b) and then determine
the exact (conditional) pdf of . Then use it to determine a 95% HPD
credibility interval for

15.81 A random sample of size 100 has been taken from a gamma distribution
with known to be 2, but unknown. For this sample,

P100
=1 = 30,000. The

prior distribution for is inverse gamma with taking the role of and taking
the role of .

(a) Determine the exact posterior distribution of . At this point the values
of and have yet to be specied.
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(b) The population mean is 2 . Determine the posterior mean of 2 using the
prior distribution rst with = = 0 (this is equivalent to ( ) = 1)
and then with = 2 and = 250 (which is a prior mean of 250). Then,
in each case, determine a 95% credibility interval with 2.5% probability
on each side.

(c) Determine the posterior variance of 2 and use the Bayesian central limit
theorem to construct a 95% credibility interval for 2 using each of the
two prior distributions given in part (b).

(d) Determine the maximum likelihood estimate of and then use the esti-
mated variance to construct a 95% condence interval for 2 .

15.82 Suppose that, given = , the random variables 1 are indepen-
dent and binomially distributed with pf

| ( | ) =
µ ¶

(1 ) = 0 1 ,

and itself is beta distributed with parameters and and pdf

( ) =
( + )

( ) ( )
1(1 ) 1 0 1

(a) Verify that the marginal pf of is

( ) =

µ ¶µ ¶

µ ¶ = 0 1

and E( ) = ( + ). This distribution is termed the binomial�—beta
or negative hypergeometric distribution.

(b) Determine the posterior pdf |X( |x) and the posterior mean E( |x).

15.83 Suppose that, given = , the random variables 1 are indepen-
dent and identically exponentially distributed with pdf

| ( | ) = 0

and is itself gamma distributed with parameters 1 and 0,

( ) =
1

( )
0

(a) Verify that the marginal pdf of is

( ) = ( 1 + ) 1 0

and
E( ) =

1

( 1)

This distribution is one form of the Pareto distribution.

chen yiya
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(b) Determine the posterior pdf |X( |x) and the posterior mean E( |x).

15.84 Suppose that, given = , the random variables 1 are indepen-
dent and identically negative binomially distributed with parameters and with
pf

| ( | ) =
µ
+ 1

¶
(1 ) = 0 1 2

and itself is beta distributed with parameters and and pdf

( ) =
( + )

( ) ( )
1(1 ) 1 0 1

(a) Verify that the marginal pf of is

( ) =
( + )

( ) !

( + )

( ) ( )

( + ) ( + )

( + + + )
= 0 1 2

and

E( ) =
1

This distribution is termed the generalized Waring distribution. The
special case where = 1 is the Waring distribution and is the Yule
distribution if = 1 and = 1.

(b) Determine the posterior pdf |X( |x) and the posterior mean E( |x)

15.85 Suppose that, given = , the random variables 1 are indepen-
dent and identically normally distributed with mean and variance 1 and is
gamma distributed with parameters and ( replaced by) 1 .

(a) Verify that the marginal pdf of is

( ) =
( + 1

2)

2 ( )
1 +

1

2
( )2

¸ 1 2

which is a form of the -distribution.

(b) Determine the posterior pdf |X( |x) and the posterior mean E( |x).

15.86 Suppose that, for = 1 2 , the random variable 1 has (conditional
on = ) the Poisson pf

1 | ( 1 | ) =
1

( 1 )!
1 = 0 1

and 2 has (conditional on = ) the binomial pf

2 | ( 2 | ) =
µ

2

¶µ

1 +

¶
2
µ

1

1 +

¶
2

2 = 0 1

with 0 and a known positive integer. Further assume that all random
variables are independent (conditional on = ). Let = 1 + 2 for =
1 2 .

chen yiya
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(a) Show that has (conditional on = ), the Poisson�—binomial pf

| ( | ) =
( )

( )
= 0 1

where

( ) =
X

=0

µ ¶
1

( )!
and ( ) = (1 + )

(b) If 1 2 have the pf in (a), demonstrate that the conjugate
prior for this situation is

( ) =
1(1 + )

( )
0

where 0 and 0. Show further that

( ) = ( ) ( + 1 )

where ( ) is the conuent hypergeometric function of the second
kind, which can be expressed as

( ) =
1

( )

Z

0

1(1 + ) 1

15.87 Let 1 be i.i.d. random variables, conditional on , with pf

| ( | ) =
( ) ( )

( )

Let = 1+ · · ·+ . Use Exercise 5.26(a) to prove that the posterior distribution
|X ( |x) is the same as the (conditional) distribution of | ,

|X( |x) =
| ( | ) ( )

( )

where ( ) is the pf of and ( ) is the marginal pf of .

15.88 Suppose that, given , the random variable is binomially distributed
with parameters and .

(a) Show that, if is Poisson distributed, so is (unconditionally) and
identify the parameters.

(b) Show that, if is binomially distributed, so is (unconditionally) and
identify the parameters.

(c) Show that, if is negative binomially distributed, so is (uncondition-
ally) and identify the parameters.

15.89 (*) A die is selected at random from an urn that contains two six-sided
dice. Die number 1 has three faces with the number 2, while one face each has the
numbers 1, 3, and 4. Die number 2 has three faces with the number 4, while one
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face each has the numbers 1, 2, and 3. The rst ve rolls of the die yielded the
numbers 2, 3, 4, 1, and 4 in that order. Determine the probability that the selected
die was die number 2.

15.90 (*) The number of claims in a year, , has a distribution that depends on a
parameter . As a random variable, has the uniform distribution on the interval
(0 1). The unconditional probability that is 0 is greater than 0.35. For each or
the following conditional pfs, determine if it is possible that it is the true conditional
pf of :

(a) Pr( = | ) = !

(b) Pr( = | ) = ( + 1) 2(1 )

(c) Pr( = | ) =
¡
2
¢
(1 )2

15.91 (*) Your prior distribution concerning the unknown value of is Pr( =
1
4) =

4
5 and Pr( = 1

2) =
1
5 . The observation from a single experiment has

distribution Pr( = | = ) = (1 )1 for = 0 1. The result of a single
experiment is = 1. Determine the posterior distribution of .

15.92 (*) The number of claims in one year, , has the Poisson distribution with
parameter . The parameter has the exponential distribution with pdf ( ) = .
A particular insured had no claims in one year. Determine the posterior distribution
of for this insured.

15.93 (*) The number of claims in one year, , has the Poisson distribution with
parameter . The prior distribution has the gamma distribution with pdf ( ) =

. There was one claim in one year. Determine the posterior pdf of .

15.94 (*) Each individual car�’s claim count has a Poisson distribution with para-
meter . All individual cars have the same parameter. The prior distribution is
gamma with parameters = 50 and = 1 500. In a two-year period, the insurer
covers 750 and 1,100 cars in years 1 and 2, respectively. There were 65 and 112
claims in years one and two, respectively. Determine the coe cient of variation of
the posterior gamma distribution.

15.95 (*) The number of claims, , made by an individual in one year has the
binomial distribution with pf ( ) =

¡
3
¢
(1 )3 . The prior distribution for

has pdf ( ) = 6( 2). There was one claim in a one-year period. Determine the
posterior pdf of .

15.96 (*) The number of claims for an individual in one year has a Poisson distri-
bution with parameter . The prior distribution for has the gamma distribution
with mean 0.14 and variance 0.0004. During the past two years, a total of 110
claims has been observed. In each year there were 310 policies in force. Determine
the expected value and variance of the posterior distribution of .

15.97 (*) The number of claims for an individual in one year has a Poisson dis-
tribution with parameter . The prior distribution for is exponential with an
expected value of 2. There were three claims in the rst year. Determine the
posterior distribution of .

chen yiya
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15.98 (*) The number of claims in one year has the binomial distribution with
= 3 and unknown. The prior distribution for is beta with pdf ( ) =

280 3(1 )4 0 1. Two claims were observed. Determine each of the
following:

(a) The posterior distribution of .

(b) The expected value of from the posterior distribution.

15.99 (*) An individual risk has exactly one claim each year. The amount of the
single claim has an exponential distribution with pdf ( ) = 0. The
parameter has a prior distribution with pdf ( ) = . A claim of 5 has been
observed. Determine the posterior pdf of .

15.100 (*) The number of claims is binomial with = 4 and unknown. The
prior distribution is ( ) = 6 (1 ), 0 1. A single observation has a value
of 2. Determine the mean and mode of the posterior distribution of .

15.101 (*) Given = , 1 are i.i.d. Bernoulli random variables with
parameter . Let = 1 + · · · + . The prior distribution of is beta with
= 1, = 99, and = 1. Determine the smallest value of such that the mean of

the marginal distribution of is greater than or equal to 50.

15.102 (*) Given , a loss has the exponential pdf ( ) = 1 , 0. The
prior distribution is ( ) = 100 3 10 , 0, an inverse gamma distribution. A
single loss of has been observed. Determine the mean of the posterior distribution
as a function of .

15.103 Suppose that, given 1 = 1 and 2 = 2, the random variables 1

are independent and identically normally distributed with mean 1 and variance
1

2 . Suppose also that the conditional distribution of 1 given 2 = 2 is a normal
distribution with mean and variance 2

2 and 2 is gamma distributed with
parameters and = 1 .

(a) Show that the posterior conditional distribution of 1 given 2 = 2 is
normally distributed with mean

=
1

1 + 2
+

2

1 + 2

and variance
2 =

2

2(1 + 2)

and the posterior marginal distribution of 2 is gamma distributed with
parameters

= +
2

and

= +
1

2

X

=1

( )
2
+

( )2

2 (1 + 2)

(b) Find the posterior marginal means E( 1|x) and E( 2|x)
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Table 15.7 Number of hospital liability claims by year.

Year Number of claims

1985 6
1986 2
1987 3
1988 0
1989 2
1990 1
1991 2
1992 5
1993 1
1994 3

Table 15.8 Hospital liability claims by frequency.

Frequency ( ) Number of observations ( )

0 1
1 2
2 3
3 2
4 0
5 1
6 1
7+ 0

15.6 ESTIMATION FOR DISCRETE DISTRIBUTIONS

15.6.1 Poisson

The principles of estimation discussed earlier in this chapter for continuous models
can be applied equally to frequency distributions. We now illustrate the methods
of estimation by tting a Poisson model.

EXAMPLE 15.27

A hospital liability policy has experienced the number of claims over a 10-year
period given in Table 15.7. Estimate the Poisson parameter using the method
of moments and the method of maximum likelihood.

These data can be summarized in a di erent way. We can count the number
of years in which exactly zero claims occurred, one claim occurred, and so on,
as in Table 15.8.
The total number of claims for the period 1985�—1994 is 25. Hence, the

average number of claims per year is 2.5. The average can also be computed
from Table 15.8. Let denote the number of years in which a frequency of
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exactly claims occurred. The expected frequency (sample mean) is

¯ =

P
=0P
=0

where represents the number of observed values at frequency . Hence the
method-of-moments estimate of the Poisson parameter is �ˆ = 2 5 .
Maximum likelihood estimation can easily be carried out on these data.

The likelihood contribution of an observation of is . Then, the likelihood
for the entire set of observations is

=
Y

=0

and the loglikelihood is

=
X

=0

ln

The likelihood and loglikelihood functions are considered to be functions of
the unknown parameters. In the case of the Poisson distribution, there is only
one parameter, making the maximization easy.
For the Poisson distribution,

=
!

and
ln = + ln ln !

The loglikelihood is

=
X

=0

( + ln ln !)

= +
X

=0

ln
X

=0

ln !

where =
P

=0 is the sample size. Di erentiating the loglikelihood with
respect to , we obtain

= +
X

=0

1

By setting the derivative of the loglikelihood to zero, the maximum likelihood
estimate is obtained as the solution of the resulting equation. The estimator
is then

�ˆ =

P
=0 = ¯

and, thus, for the Poisson distribution, the maximum likelihood and the
method-of-moments estimators are identical.
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If has a Poisson distribution with mean , then

E(�ˆ) = E( ) =

and

Var(�ˆ) =
Var( )

=

Hence, �ˆ is unbiased and consistent. From Theorem 15.5, the mle is asymp-
totically normally distributed with mean and variance

Var(�ˆ) =

½
E

2

2 ln

¸¾ 1

=

½
E

2

2 ( + ln ln !)

¸¾ 1

=
£
E( 2)

¤ 1

=
¡

1
¢ 1

=

In this case, the asymptotic approximation to the variance is equal to its
true value. From this information, we can construct an approximate 95%
condence interval for the true value of the parameter. The interval is �ˆ ±
1 96(�ˆ )1 2. For this example, the interval becomes (1.52, 3.48). This con-
dence interval is only an approximation because it relies on large sample
theory. The sample size is very small and such a condence interval should
be used with caution. ¤

The formulas presented so far have assumed that the counts at each observed
frequency are known. Occasionally, data are collected so that all these counts are
not given. The most common example is to have a nal entry given as +, where
the count is the number of times or more claims were observed. If + is that
number of times, the contribution to the likelihood function is

( + +1 + · · · ) + = (1 0 · · · 1) +

The same adjustments apply to grouped frequency data of any kind. Suppose
there were ve observations at frequencies 3�—5. The contribution to the likelihood
function is

( 3 + 4 + 5)
5

EXAMPLE 15.28

For the data in Table 15.911 determine the maximum likelihood estimate for
the Poisson distribution.

11This is the same data analyzed in Example 16.13, except the observations at 6 or more have
been combined.
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Table 15.9 Data for Example 15.28.

No. of claims/day Observed no. of days

0 47
1 97
2 109
3 62
4 25
5 16
6+ 9

The likelihood function is

= 47
0

97
1

109
2

62
3

25
4

16
5 (1 0 1 2 3 4 5)

9

and when written as a function of , it becomes somewhat complicated. While
the derivative can be taken, solving the equation when it is set equal to zero
requires numerical methods. It may be just as easy to use a numerical method
to directly maximize the function. A reasonable starting value can be obtained
by assuming that all nine observations were exactly at 6 and then using the
sample mean. Of course, this assumption will understate the true maximum
likelihood estimate, but should be a good place to start. For this particular
example, the maximum likelihood estimate is �ˆ = 2.0226, which is very close
to the value obtained when all the counts were recorded. ¤

15.6.2 Negative binomial

The moment equations are

=

P
=0 = ¯ (15.10)

and

(1 + ) =

P
=0

2
µP

=0

¶2
= 2 (15.11)

with solutions �ˆ = ( 2 ¯) 1 and �ˆ = ¯ �ˆ. Note that this variance estimate is
obtained by dividing by , not 1. This is a common, though not required,
approach when using the method of moments. Also note that, if 2 ¯, the
estimate of will be negative, an inadmissible value.

EXAMPLE 15.29

(Example 15.27 continued) Estimate the negative binomial parameters by the
method of moments.

The sample mean and the sample variance are 2.5 and 3.05 (verify this),
respectively, and the estimates of the parameters are �ˆ = 11 364 and �ˆ =
0 22. ¤
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When compared to the Poisson distribution with the same mean, it can be seen
that is a measure of �“extra-Poisson�” variation. A value of = 0 means no extra-
Poisson variation, while a value of = 0 22 implies a 22% increase in the variance
when compared to the Poisson distribution with the same mean.
We now examine maximum likelihood estimation. The loglikelihood for the

negative binomial distribution is

=
X

=0

ln

=
X

=0

ln

µ
+ 1

¶
ln(1 + ) + ln ln(1 + )

¸

The loglikelihood is a function of the two parameters and . To nd the maximum
of the loglikelihood, we di erentiate with respect to each of the parameters, set the
derivatives equal to zero, and solve for the parameters. The derivatives of the
loglikelihood are

=
X

=0

µ
+

1 +

¶
(15.12)

and

=
X

=0

ln(1 + ) +
X

=0

ln
( + 1) · · ·

!

= ln(1 + ) +
X

=0

ln
1Y

=0

( + )

= ln(1 + ) +
X

=0

1X

=0

ln( + )

= ln(1 + ) +
X

=1

1X

=0

1

+
(15.13)

Setting these equations to zero yields

�ˆ = �ˆ�ˆ =

P
=0 = ¯ (15.14)

and

ln(1 + �ˆ) =
X

=1

Ã
1X

=0

1

�ˆ+

!

(15.15)

Note that the mle of the mean is the sample mean (as, by denition, in the method
of moments). Equations (15.14) and (15.15) can be solved numerically. Replacing
�ˆ in (15.15) by �ˆ �ˆ yields the equation

(�ˆ) = ln
³
1 +

¯

�ˆ

´ X

=1

Ã
1X

=0

1

�ˆ+

!

= 0 (15.16)
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If the right-hand side of (15.11) is greater than the right-hand side of (15.10), it
can be shown that there is a unique solution of (15.16). If not, then the negative
binomial model is probably not a good model to use because the sample variance
does not exceed the sample mean.12

Equation (15.16) can be solved numerically for �ˆ using the Newton�—Raphson
method. The required equation for the th iteration is

= 1
( 1)
0( 1)

A useful starting value for 0 is the moment-based estimator of . Of course, any
numerical root-nding method (e.g., bisection, secant) may be used.
The loglikelihood is a function of two variables. It can be maximized directly

using methods such as those described in Appendix F. For the case of the negative
binomial distribution with complete data, because we know the estimator of the
mean must be the sample mean, setting = ¯ reduces this to a one-dimensional
problem.

EXAMPLE 15.30

Determine the maximum likelihood estimates of the negative binomial para-
meters for the data in Example 15.27.

The maximum occurs at �ˆ = 10 9650 and �ˆ = 0 227998. ¤

EXAMPLE 15.31

Tröbliger [175] studied the driving habits of 23,589 automobile drivers in a
class of automobile insurance by counting the number of accidents per driver
in a one-year time period. The data as well as tted Poisson and negative
binomial distributions are given in Table 15.10. Based on the information
presented, which distribution appears to provide a better model?

The expected counts are found by multiplying the sample size (23,589) by
the probability assigned by the model. It is clear that the negative binomial
probabilities produce expected counts that are much closer to those that were
observed. In addition, the loglikelihood function is maximized at a signi-
cantly higher value. Formal procedures for model selection (including what
it means to be signicantly higher) are discussed in Chapter 16. However, in
this case, the superiority of the negative binomial model is apparent. ¤

15.6.3 Binomial

The binomial distribution has two parameters, and . Frequently, the value of
is known and xed. In this case, only one parameter, , needs to be estimated.

12 In other words, when the sample variance is less than or equal to the mean, the loglikelihood
function will not have a maximum. The function will keep increasing as goes to innity and
goes to zero with the product remaining constant. This e ectively says that the negative binomial
distribution that best matches the data is the Poisson distribution that is a limiting case.
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Table 15.10 Two models for automobile claims frequency.

No. of No. of Poisson Negative binomial
claims/year drivers expected expected

0 20,592 20,420.9 20,596.8
1 2,651 2,945.1 2,631.0
2 297 212.4 318.4
3 41 10.2 37.8
4 7 0.4 4.4
5 0 0.0 0.5
6 1 0.0 0.1
7+ 0 0.0 0.0

Parameters = 0 144220 = 1 11790
= 0 129010

Loglikelihood 10,297.84 10,223.42

In many insurance situations, is interpreted as the probability of some event such
as death or disability. In such cases, the value of is usually estimated as

�ˆ=
number of observed events

maximum number of possible events

which is the method-of-moments estimator when is known.
In situations where frequency data are in the form of the previous examples in

this chapter, the value of the parameter , the largest possible observation, may be
known and xed or unknown. In any case, must be no smaller than the largest
observation. The loglikelihood is

=
X

=0

ln

=
X

=0

ln

µ ¶
+ ln + ( ) ln(1 )

¸

When is known and xed, one need only maximize with respect to :

=
1X

=0

1

1

X

=0

( )

Setting this expression equal to zero yields

�ˆ=
1
P

=0P
=0

which is the sample proportion of observed events. For the method of moments,
with xed, the estimator of is the same as the mle because the moment equation
is

=

P
=0P
=0
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Table 15.11 Number of claims per policy.

No. of claims/policy No. of policies

0 5,367
1 5,893
2 2,870
3 842
4 163
5 23
6 1
7 1
8+ 0

When is unknown, the maximum likelihood estimator of is

�ˆ=
1

�ˆ

P
=0P
=0

(15.17)

where �ˆ is the maximum likelihood estimate of . An easy way to approach the
maximum likelihood estimation of and is to create a likelihood prole for various
possible values of as follows:

Step 1: Start with �ˆ equal to the largest observation.
Step 2: Obtain �ˆ using (15.17).
Step 3: Calculate the loglikelihood at these values.
Step 4: Increase �ˆ by 1.
Step 5: Repeat steps 2�—4 until a maximum is found.

As with the negative binomial, there need not be a pair of parameters that maxi-
mizes the likelihood function. In particular, if the sample mean is less than or equal
to the sample variance, this procedure will lead to ever-increasing loglikelihood val-
ues as the value of �ˆ is increased. Once again, the trend is toward a Poisson model.
This phenomenon can be checked out using the data from Example 15.27.

EXAMPLE 15.32

The numbers of claims per policy during a one-year period for a block of
15,160 insurance policies are given in Table 15.11. Obtain moment-based and
maximum likelihood estimators.

The sample mean and variance are 0 985422 and 0 890355, respectively.
The variance is smaller than the mean, suggesting the binomial as a reasonable
distribution to try. The method of moments leads to

= 0 985422

and
(1 ) = 0 890355

Hence, �ˆ = 0 096474 and �ˆ = 10 21440. However, can only take on
integer values. We choose �ˆ = 10 by rounding. Then we adjust the es-
timate of �ˆ to 0 0985422 from the rst moment equation. Doing so will
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Table 15.12 Binomial likelihood prole.

�ˆ �ˆ Loglikelihood

7 0.140775 19,273.56
8 0.123178 19,265.37
9 0.109491 19,262.02
10 0.098542 19,260.98
11 0.089584 19,261.11
12 0.082119 19,261.84

result in a model variance that di ers from the sample variance because
10(0 0985422)(1 0 0985422) = 0 888316. This di erence shows one of the
pitfalls of using the method of moments with integer-valued parameters.
We now turn to maximum likelihood estimation. From the data, 7.

If is known, then only needs to be estimated. If is unknown, then we
can produce a likelihood prole by maximizing the likelihood for xed values
of starting at 7 and increasing until a maximum is found. The results are
in Table 15.12.
The largest loglikelihood value occurs at = 10. If, a priori, the value of
is unknown, then the maximum likelihood estimates of the parameters are

�ˆ = 10 and �ˆ = 0 0985422. This result is the same as the adjusted moment
estimates, but it is not necessarily the case for all data sets. ¤

15.6.4 The (a, b, 1) class

Estimation of the parameters for the ( 1) class follows the same general princi-
ples used in connection with the ( 0) class.
Assuming that the data are in the same form as the previous examples, the

likelihood is, using (6.27),

=
¡
0

¢
0
Y

=1

( ) =
¡
0

¢
0
Y

=1

£
(1 0 )

¤

The loglikelihood is

= 0 ln 0 +
X

=1

[ln(1 0 ) + ln ]

= 0 ln 0 +
X

=1

ln(1 0 ) +
X

=1

[ln ln(1 0)]

where the last statement follows from = (1 0). The three parameters of
the ( 1) class are 0 , , and , where and determine 1 2 .
Then it can be seen that

= 0 + 1



ESTIMATION FOR DISCRETE DISTRIBUTIONS 453

with

0 = 0 ln 0 +
X

=1

ln(1 0 )

1 =
X

=1

[ln ln(1 0)]

where 0 depends only on the parameter 0 and 1 is independent of 0 , depending
only on and . This separation simplies the maximization because

0

=
0

0

=
0

0

X

=1
1 0

=
0

0

0

1 0

resulting in

�ˆ0 =
0

the proportion of observations at zero. This is the natural estimator because 0

represents the probability of an observation of zero.
Similarly, because the likelihood factors conveniently, the estimation of and

is independent of 0 . Note that, although and are parameters, maximization
should not be done with respect to them because not all values of and produce
admissible probability distributions.13 For the zero-modied Poisson distribution,
the relevant part of the loglikelihood is

1 =
X

=1

"

ln
!

ln(1 )

#

= ( 0) +

Ã
X

=1

!

ln ( 0) ln(1 ) +

= ( 0)[ + ln(1 )] + ¯ ln +

where ¯ = 1
P

=0 is the sample mean, =
P

=0 , and is independent of
. Hence,

1
= ( 0) ( 0)

1
+

¯

=
0

1
+

¯

Setting this expression equal to zero yields

¯(1 ) =
0 (15.18)

13Maximization can be done with respect to any parameterization because maximum likelihood
estimation is invariant under parameter transformations. However, it is more di cult to maximize
over bounded regions because numerical methods are di cult to constrain and analytic methods
will fail due to a lack of di erentiability. Therefore, estimation is usually done with respect to
particular class members, such as the Poisson.



454 PARAMETER ESTIMATION

By graphing each side as a function of , it is clear that, if 0 0, there exist
exactly two roots: one is = 0, the other is 0. Equation (15.18) can be solved
numerically to obtain �ˆ. Note that, because �ˆ0 = 0 and 0 = , (15.18) can
be rewritten as

¯ =
1 �ˆ0
1 0

(15.19)

Because the right-hand side of (15.19) is the theoretical mean of the zero-modied
Poisson distribution (when �ˆ0 is replaced with 0 ), (15.19) is a moment equation.
Hence, an alternative estimation method yielding the same results as the maximum
likelihood method is to equate 0 to the sample proportion at zero and the theo-
retical mean to the sample mean. This approach suggests that, by xing the zero
probability to the observed proportion at zero and equating the low order moments,
a modied moment method can be used to get starting values for numerical maxi-
mization of the likelihood function. Because the maximum likelihood method has
better asymptotic properties, it is preferable to use the modied moment method
only to obtain starting values.
For the purpose of obtaining estimates of the asymptotic variance of the mle of
, it is easy to obtain

2
1
2 = ( 0)

(1 )2
¯
2

and the expected value is obtained by observing that E(¯) = (1 0 ) (1 ).
Finally, 0 may be replaced by its estimator, 0 . The variance of �ˆ0 is obtained
by observing that the numerator, 0, has a binomial distribution and, therefore,
the variance is 0 (1 0 ) .
For the zero-modied binomial distribution,

1 =
X

=1

½
ln

µ ¶
(1 )

¸
ln[1 (1 ) ]

¾

=

Ã
X

=1

!

ln +
X

=1

( ) ln(1 )

X

=1

ln[1 (1 ) ] +

= ¯ ln + ( 0) ln(1 ) ¯ ln(1 )

( 0) ln[1 (1 ) ] +

where does not depend on and

1
=

¯ ( 0)

1
+

¯

1

( 0) (1 ) 1

1 (1 )

Setting this expression equal to zero yields

¯ =
1 �ˆ0
1 0

(15.20)

where we recall that 0 = (1 ) . This equation matches the theoretical mean
with the sample mean.
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If is known and xed, the mle of 0 is still

�ˆ0 =
0

However, even with known, (15.20) must be solved numerically for . When
is unknown and also needs to be estimated, this procedure can be followed for

di erent values of until the maximum of the likelihood function is obtained.
The zero-modied negative binomial (or extended truncated negative binomial)

distribution is a bit more complicated because three parameters need to be esti-
mated. Of course, the mle of 0 is �ˆ0 = 0 as before, reducing the problem to
the estimation of and . The part of the loglikelihood relevant to and is

1 =
X

=1

ln ( 0) ln(1 0). (15.21)

Hence,

1 =
X

=1

ln

"µ
+ 1

¶µ
1

1 +

¶ µ

1 +

¶ #

( 0) ln 1

µ
1

1 +

¶ ¸
(15.22)

This function needs to be maximized over the ( ) plane to obtain the mles, which
can be done numerically using maximization procedures such as those described in
Appendix F. Starting values can be obtained by the modied moment method by
setting �ˆ0 = 0 and equating the rst two moments of the distribution to the
rst two sample moments. It is generally easier to use raw moments (moments
about the origin) than central moments for this purpose. In practice, it may be
more convenient to maximize (15.21) rather than (15.22) because one can take
advantage of the recursive scheme

= 1

µ
+

¶

in evaluating (15.21). This approach makes computer programming a bit easier.
For zero-truncated distributions, there is no need to estimate the probability at

zero because it is known to be zero. The remaining parameters are estimated using
the same formulas developed for the zero-modied distributions.

EXAMPLE 15.33

The data set in Table 15.13 comes from Beard et al. [16]. Determine a model
that adequately describes the data.

When a Poisson distribution is tted to it, the resulting t is very poor.
There is too much probability for one accident and two little at subsequent
values. The geometric distribution is tried as a one-parameter alternative. It
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Table 15.13 Fitted distributions to Beard data.

Accidents Observed Poisson Geometric ZM Poisson ZM geom.

0 370,412 369,246.9 372,206.5 370,412.0 370,412.0
1 46,545 48,643.6 43,325.8 46,432.1 46,555.2
2 3,935 3,204.1 5,043.2 4,138.6 3,913.6
3 317 140.7 587.0 245.9 329.0
4 28 4.6 68.3 11.0 27.7
5 3 0.1 8.0 0.4 2.3
6+ 0 0.0 1.0 0.0 0.2

Parameters : 0.13174 : 0.13174 0 : 0.87934 0 : 0.87934
: 0.17827 : 0.091780

Loglikelihood 171,373 171,479 171,160 171,133

has loglikelihood

= ln(1 + ) +
X

=1

ln

µ

1 +

¶

= ln(1 + ) +
X

=1

[ln ln(1 + )]

= ln(1 + ) + ¯[ln ln(1 + )]

= ( + ¯) ln(1 + ) + ¯ ln

where ¯ =
P

=1 and =
P

=0 .
Di erentiation reveals that the loglikelihood has a maximum at

�ˆ = ¯

A qualitative look at the numbers indicates that the zero-modied geometric
distribution matches the data better than the other three models considered.
A formal analysis is done in Example 16.14. ¤

15.6.5 Compound models

For the method of moments, the rst few moments can be matched with the sample
moments. The system of equations can be solved to obtain the moment-based
estimators. Note that the number of parameters in the compound model is the
sum of the number of parameters in the primary and secondary distributions. The
rst two theoretical moments for compound distributions are

E( ) = E( )E( )

Var( ) = E( )Var( ) + E( )2Var( ).

These results are developed in Chapter 9. The rst three moments for the compound
Poisson distribution are given in (6.41).
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Maximum likelihood estimation is also carried out as before. The loglikelihood
to be maximized is

=
X

=0

ln

When is the probability of a compound distribution, the loglikelihood can be
maximized numerically. The rst and second derivatives of the loglikelihood can be
obtained by using approximate di erentiation methods as applied directly to the
loglikelihood function at the maximum value.

EXAMPLE 15.34

Determine various properties of the Poisson�—zero-truncated geometric distri-
bution. This distribution is also called the Polya�—Aeppli distribution.

For the zero-truncated geometric distribution, the pgf is

2( ) =
[1 ( 1)] 1 (1 + ) 1

1 (1 + ) 1

and therefore the pgf of the Polya�—Aeppli distribution is

( ) = 1[ 2( )] = exp

µ ½
[1 ( 1)] 1 (1 + ) 1

1 (1 + ) 1
1

¾¶

= exp

½
[1 ( 1)] 1 1

1 (1 + ) 1

¾

The mean is
0(1) = (1 + )

and the variance is

00(1) + 0(1) [ 0(1)]2 = (1 + )(1 + 2 )

Alternatively, E( ) = Var( ) = , E( ) = 1 + , and Var( ) = (1 + ).
Then,

E( ) = (1 + )

Var( ) = (1 + ) + (1 + )2 = (1 + )(1 + 2 ).

From Theorem 6.14, the probability at zero is

0 = 1(0) =

The successive values of are computed easily using the compound Poisson
recursion

=
X

=1

= 1 2 3 (15.23)

where = 1 (1 + ) , = 1 2 . For any values of and , the
loglikelihood function can be easily evaluated. ¤
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Table 15.14 Automobile claims by year.

Year Exposure Claims

1986 2,145 207
1987 2,452 227
1988 3,112 341
1989 3,458 335
1990 3,698 362
1991 3,872 359

Example 16.15 provides a data set for which the Polya�—Aeppli distribution is a
good choice.
Another useful compound Poisson distribution is the Poisson�—extended truncated

negative binomial (Poisson�—ETNB) distribution. Although it does not matter if the
secondary distribution is modied or truncated, we prefer the truncated version
here so that the parameter may be extended.14 Special cases are = 1, which
is the Poisson�—geometric (also called Polya�—Aeppli); 0, which is the Poisson�—
logarithmic (negative binomial); and = 0 5, which is called the Poisson�—inverse
Gaussian. This name is not consistent with the others. Here the inverse Gaussian
distribution is a mixing distribution (see Section 6.10). Example 16.16 provides a
data set for which the Poisson�—inverse Gaussian distribution is a good choice.

15.6.6 E ect of exposure on maximum likelihood estimation

In Section 6.12, the e ect of exposure on discrete distributions is discussed. When
aggregate data from a large group of insureds is obtained, maximum likelihood es-
timation is still possible. The following example illustrates this fact for the Poisson
distribution.

EXAMPLE 15.35

Determine the maximum likelihood estimate of the Poisson parameter for the
data in Table 15.14.

Let be the Poisson parameter for a single exposure. If year has ex-
posures, then the number of claims has a Poisson distribution with parameter

. If is the number of claims in year , the likelihood function is

=
6Y

=1

( )

!

The maximum likelihood estimate is found by

= ln =
6X

=1

[ + ln( ) ln( !)]

14This preference does not contradict Theorem 6.15. When 1 0, it is still the case that
changing the probability at zero will not produce new distributions. What is true is that there is no
probability at zero that will lead to an ordinary ( 0) negative binomial secondary distribution.
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Table 15.15 Data for Exercise 15.106.

No. of claims No. of policies

0 9,048
1 905
2 45
3 2
4+ 0

=
6X

=1

¡
+ 1

¢
= 0

�ˆ =

P6
=1P6
=1

=
1,831
18,737

= 0 09772

¤
In this example the answer is what we expected it to be: the average number of

claims per exposure. This technique will work for any distribution in the ( 0)15

and compound classes. But care must be taken in the interpretation of the model.
For example, if we use a negative binomial distribution, we are assuming that each
exposure unit produces claims according to a negative binomial distribution. This
is di erent from assuming that total claims have a negative binomial distribution
because they arise from individuals who each have a Poisson distribution but with
di erent parameters.

15.6.7 Exercises

15.104 Assume that the binomial parameter is known. Consider the mle of .

(a) Show that the mle is unbiased.

(b) Determine the variance of the mle.

(c) Show that the asymptotic variance as given in Theorem 15.5 is the same
as that developed in part (b).

(d) Determine a simple formula for a condence interval using (12.4) on page
341 that is based on replacing with �ˆ in the variance term.

(e) Determine a more complicated formula for a condence interval using
(12.3) that is not based on such a replacement. Proceed in a manner
similar to that used in Example 14.11 on page 375.

15.105 Use (15.14) to determine the mle of for the geometric distribution. In ad-
dition, determine the variance of the mle and verify that it matches the asymptotic
variance as given in Theorem 15.5.

15.106 A portfolio of 10,000 risks produced the claim counts in Table 15.15.

15For the binomial distribution, the usual problem that must be an integer remains.
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Table 15.16 Data for Exercise 15.107.

No. of claims Underinsured Uninsured

0 901 947
1 92 50
2 5 2
3 1 1
4 1 0
5+ 0 0

Table 15.17 Data for Exercise 15.108

No. of claims No. of policies

0 861
1 121
2 13
3 3
4 1
5 0
6 1
7+ 0

(a) Determine the mle of for a Poisson model and then determine a 95%
condence interval for .

(b) Determine the mle of for a geometric model and then determine a 95%
condence interval for .

(c) Determine the mle of and for a negative binomial model.

(d) Assume that = 4. Determine the mle of of the binomial model.

(e) Construct 95% condence intervals for using the methods developed
in parts (d) and (e) of Exercise 15.104.

(f) Determine the mle of and by constructing a likelihood prole.

15.107 An automobile insurance policy provides benets for accidents caused by
both underinsured and uninsured motorists. Data on 1,000 policies revealed the
information in Table 15.16.

(a) Determine the mle of for a Poisson model for each of the variables
1 = number of underinsured claims and 2 = number of uninsured

claims.

(b) Assume that 1 and 2 are independent. Use Theorem 6.1 on page 111
to determine a model for = 1 + 2.

15.108 An alternative method of obtaining a model for in Exercise 15.107 would
be to record the total number of underinsured and uninsured claims for each of the
1,000 policies. Suppose this was done and the results are as in Table 15.17.

(a) Determine the mle of for a Poisson model.
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Table 15.18 Data for Exercise 15.109.

No. of prescriptions Frequency No. of prescriptions Frequency

0 82 16�—20 40
1�—3 49 21�—25 38
4�—6 47 26�—35 52
7�—10 47 36�— 91
11�—15 57

(b) The answer to part (a) matched the answer to part (c) of the previous
exercise. Demonstrate that this must always be so.

(c) Determine the mle of for a geometric model.

(d) Determine the mle of and for a negative binomial model.

(e) Assume that = 7. Determine the mle of of the binomial model.

(f) Determine the mles of and by constructing a likelihood prole.

15.109 The data in Table 15.18 represent the number of prescriptions lled in one
year for a group of elderly members of a group insurance plan.

(a) Determine the mle of for a Poisson model.

(b) Determine the mle of for a geometric model and then determine a 95%
condence interval for .

(c) Determine the mle of and for a negative binomial model.

15.110 (*) A sample of 3,000 policies contained 1,000 with no claims, 1,200 with
one claim, 600 with two claims, and 200 with three claims. Use maximum likelihood
estimation and a normal approximation to construct a 90% condence interval for
the mean of a Poisson model.

15.111 (*) A sample of size 10 from a Poisson distribution contained the values
10, 2, 4, 0, 6, 2, 4, 5, 4, and 2. Estimate the coe cient of variation of the mle of
the Poisson parameter.
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MODEL SELECTION

16.1 INTRODUCTION

When using data to build a model, the process must end with the announcement of
a �“winner.�” While qualications, limitations, caveats, and other attempts to escape
full responsibility are appropriate, and often necessary, a commitment to a solution
is often required. In this chapter we look at a variety of ways to evaluate a model
and compare competing models. But we must also remember that whatever model
we select, it is only an approximation of reality. This observation is reected in the
following modeler�’s motto:

All models are wrong, but some models are useful.1

Thus, our goal is to determine a model that is good enough to use to answer the
question. The challenge here is that the denition of �“good enough�” will depend
on the particular application. Another important modeling point is that a solid

1 It is usually attributed to George Box.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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understanding of the question will guide you to the answer. The following quote
from John Tukey [176, pp. 13�—14] sums up this point:

Far better an approximate answer to the right question, which is often vague,
than an exact answer to the wrong question, which can always be made pre-
cise.

In this chapter, a specic modeling strategy is considered. Our preference is to
have a single approach that can be used for any probabilistic modeling situation.
A consequence is that for any particular modeling situation, there may be a better
(more reliable or more accurate) approach. For example, while maximum likelihood
is a good estimation method for most settings, it may not be the best2 for certain
distributions. A literature search will turn up methods that have been optimized
for specic distributions, but they are not mentioned here. Similarly, many of
the hypothesis tests used here give approximate results. For specic cases, better
approximations, or maybe even exact results, are available. They are also bypassed.
The goal here is to outline a method that will give reasonable answers most of the
time and be adaptable to a variety of situations.
This chapter assumes the reader has a basic understanding of statistical hypoth-

esis testing as reviewed in Chapter 12. The remaining sections cover a variety of
evaluation and selection tools. Each tool has its own strengths and weaknesses,
and it is possible for di erent tools to lead to di erent models, making modeling as
much art as science. At times, in real-world applications, the model�’s purpose may
lead the analyst to favor one tool over another.

16.2 REPRESENTATIONS OF THE DATA AND MODEL

All the approaches to be presented attempt to compare the proposed model to the
data or to another model. The proposed model is represented by either its density
or distribution function or perhaps some functional of these quantities such as the
limited expected value function or the mean excess loss function. The data can
be represented by the empirical distribution function or a histogram. The graphs
are easy to construct when there is individual, complete data. When there is
grouping or observations have been truncated or censored, di culties arise. Here,
the only cases covered are those where all the data have been truncated at the
same value (which could be zero) and are all censored at the same value (which
could be innity). Extensions to the case of multiple truncation or censoring points
are detailed in [97].3 It should be noted that the need for such representations
applies only to continuous models. For discrete data, issues of censoring, truncation,
and grouping rarely apply. The data can easily be represented by the relative or
cumulative frequencies at each possible observation.
With regard to representing the data, the empirical distribution function is used

for individual data and the histogram will be used for grouped data.

2There are many denitions of �“best.�” Combining the Cramér�—Rao lower bound with Theorem
15.5 indicates that maximum likelihood estimators are asymptotically optimal using unbiasedness
and minimum variance as the denition of �“best.�”
3Because the Kaplan-Meier estimate can be used to represent data with multiple truncation or
censoring points, constructing graphical comparisons of the model and data is not di cult. The
major challenge is generalizing the hypothesis tests to this situation.
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Table 16.1 Data Set B with highest value changed.

27 82 115 126 155 161 243 294 340 384
457 680 855 877 974 1,193 1,340 1,884 2,558 3,476

To compare the model to truncated data, we begin by noting that the empirical
distribution begins at the truncation point and represents conditional values (i.e.,
they are the distribution and density function given that the observation exceeds
the truncation point). To make a comparison to the empirical values, the model
must also be truncated. Let the truncation point in the data set be . The modied
functions are

( ) =
0
( ) ( )

1 ( )

( ) =
0

( )

1 ( )

In this chapter, when a distribution function or density function is indicated, a
subscript equal to the sample size indicates that it is the empirical model (from
Kaplan�—Meier, Nelson�—Åalen, the ogive, etc.), while no adornment or the use of an
asterisk (*) indicates the estimated parametric model. There is no notation for the
true, underlying distribution because it is unknown and unknowable.

16.3 GRAPHICAL COMPARISON OF THE DENSITY AND
DISTRIBUTION FUNCTIONS

The most direct way to see how well the model and data match up is to plot the
respective density and distribution functions.

EXAMPLE 16.1

Consider Data Sets B and C as given in Tables 16.1 and 16.2. For this example
and all that follow, in Data Set B replace the value at 15,743 with 3,476 (to
allow the graphs to t comfortably on a page). Truncate Data Set B at 50
and Data Set C at 7,500. Estimate the parameter of an exponential model for
each data set. Plot the appropriate functions and comment on the quality of
the t of the model. Repeat this for Data Set B censored at 1,000 (without
any truncation).

For Data Set B, there are 19 observations (the rst observation is re-
moved due to truncation). A typical contribution to the likelihood function
is (82) [1 (50)]. The maximum likelihood estimate of the exponential
parameter is �ˆ = 802 32. The empirical distribution function starts at 50 and
jumps 1/19 at each data point. The distribution function, using a truncation
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Table 16.2 Data Set C.

Payment range Number of payments

0�—7,500 99
7,500�—17,500 42
17,500�—32,500 29
32,500�—67,500 28
67,500�—125,000 17
125,000�—300,000 9
Over 300,000 3

Exponential fit
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Figure 16.1 Model versus data cdf plot for Data Set B truncated at 50.

point of 50, is

( ) =
1 802 32 (1 50 802 32)

1 (1 50 802 32)
= 1 ( 50) 802 32

Figure 16.1 presents a plot of these two functions. The t is not as good as we
might like because the model understates the distribution function at smaller
values of and overstates the distribution function at larger values of . This
result is not good because it means that tail probabilities are understated.
For Data Set C, the likelihood function uses the truncated values. For

example, the contribution to the likelihood function for the rst interval is

(17,500) (7,500)
1 (7,500)

¸42
.

The maximum likelihood estimate is �ˆ = 44,253. The height of the rst
histogram bar is

42

128(17,500 7,500)
= 0 0000328
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Exponential fit
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Figure 16.2 Model versus data density plot for Data Set C truncated at 7,500.

and the last bar is for the interval from 125,000 to 300,000 (a bar cannot be
constructed for the interval from 300,000 to innity). The density function
must be truncated at 7,500 and becomes

( ) =
( )

1 (7,500)
=

44 253 1 44 253

1 (1 7 500 44 253)

=
( 7 500) 44 253

44,253
, 7,500.

The plot of the density function versus the histogram is given Figure 16.2.
The exponential model understates the early probabilities. It is hard to tell
from the picture how the curves compare above 125,000.
For Data Set B modied with a limit, the maximum likelihood estimate

is �ˆ = 718 00. When constructing the plot, the empirical distribution func-
tion must stop at 1,000. The plot appears in Figure 16.3. Once again, the
exponential model does not t well. ¤

When the model�’s distribution function is close to the empirical distribution
function, it is di cult to make small distinctions. Among the many ways to amplify
those distinctions, two are presented here. The rst is to simply plot the di erence
of the two functions. That is, if ( ) is the empirical distribution function and
( ) is the model distribution function, plot ( ) = ( ) ( ).

EXAMPLE 16.2

Plot ( ) for the previous example.

For Data Set B truncated at 50, the plot appears in Figure 16.4. The lack
of t for this model is magnied in this plot.
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Exponential fit
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Figure 16.3 Model versus data cdf plot for Data Set B censored at 1,000.
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Figure 16.4 Model versus data ( ) plot for Data Set B truncated at 50.

There is no corresponding plot for grouped data. For Data Set B censored
at 1,000, the plot must again end at that value. It appears in Figure 16.5.
The lack of t continues to be apparent. ¤

Another way to highlight any di erences is the �— plot, which is also called a
probability plot. The plot is created by ordering the observations as 1 · · · .
A point is then plotted corresponding to each value. The coordinates to plot are
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Exponential fit
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Figure 16.5 Model versus data ( ) plot for Data Set B censored at 1,000.

( ( ) ( )).4 If the model ts well, the plotted points will be near the 45o line
running from (0 0) to (1 1). However, for this to be the case, a di erent denition
of the empirical distribution function is needed. It can be shown that the expected
value of ( ) is ( +1) and, therefore, the empirical distribution should be that
value and not the usual . If two observations have the same value, either plot
both points (they would have the same �“ �” value but di erent �“ �” values) or plot
a single value by averaging the two �“ �” values.

EXAMPLE 16.3

Create a �— plot for the continuing example.

For Data Set B truncated at 50, = 19 and one of the observed values is
= 82. The empirical value is (82) = 1

20 = 0 05. The other coordinate is

(82) = 1 (82 50) 802 32 = 0 0391

One of the plotted points will be (0 05 0 0391). The complete picture appears
in Figure 16.6. From the lower left part of the plot, it is clear that the
exponential model places less probability on small values than the data call
for. A similar plot can be constructed for Data Set B censored at 1,000 and
it appears in Figure 16.7. This plot ends at about 0.75 because that is the
highest probability observed prior to the censoring point at 1,000. There are
no empirical values at higher probabilities. Again, the exponential model
tends to underestimate the empirical values. ¤

4 In the rst edition of this text, this plot was incorrectly called a - plot. There is a plot that
goes by that name, but it is not introduced here.
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Exponential fit
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Figure 16.6 �— for Data Set B truncated at 50.
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Figure 16.7 �— plot for Data Set B censored at 1,000.

16.3.1 Exercises

16.1 Repeat Example 16.1 using aWeibull model in place of the exponential model.

16.2 Repeat Example 16.2 for a Weibull model.

16.3 Repeat Example 16.3 for a Weibull model.
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16.4 HYPOTHESIS TESTS

A picture may be worth many words, but sometimes it is best to replace the impres-
sions conveyed by pictures with mathematical demonstrations. One such demon-
stration is a test of the hypotheses

0 : The data came from a population with the stated model.

1 : The data did not come from such a population.

The test statistic is usually a measure of how close the model distribution function
is to the empirical distribution function. When the null hypothesis completely
species the model (e.g., an exponential distribution with mean 100), critical values
are well-known. However, it is more often the case that the null hypothesis states
the name of the model but not its parameters. When the parameters are estimated
from the data, the test statistic tends to be smaller than it would have been had the
parameter values been prespecied. This relationship occurs because the estimation
method itself tries to choose parameters that produce a distribution that is close to
the data. When parameters are estimated from data, the tests become approximate.
Because rejection of the null hypothesis occurs for large values of the test statistic,
the approximation tends to increase the probability of a Type II error (declaring
the model is acceptable when it is not), while lowering the probability of a Type
I error (rejecting an acceptable model).5 For actuarial modeling this tendency is
likely to be an acceptable trade-o .
One method of avoiding the approximation is to randomly divide the sample

in half. Use one half to estimate the parameters and then use the other half to
conduct the hypothesis test. Once the model is selected, the full data set could be
used to reestimate the parameters.

16.4.1 Kolmogorov�—Smirnov test

Let be the left truncation point ( = 0 if there is no truncation) and let be the
right censoring point ( = if there is no censoring). Then, the test statistic is

= max | ( ) ( )|

This test as presented here should only be used on individual data to ensure
that the step function ( ) is well dened.6 Also, the model distribution function
( ) is assumed to be continuous over the relevant range.

EXAMPLE 16.4

Calculate for Example 16.1.

Table 16.3 provides the needed values. Because the empirical distribution
function jumps at each data point, the model distribution function must be

5Among the tests presented here, only the chi-square test has a built-in correction for this situation.
Modications for the other tests have been developed, but they are not presented here.
6 It is possible to modify the Kolmogorov�—Smirnov test for use with grouped data. See [141] for
one approach to making the modications.
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Table 16.3 Calculation of for Example 16.4.

Maximum
( ) ( ) ( ) di erence

82 0.0391 0.0000 0.0526 0.0391
115 0.0778 0.0526 0.1053 0.0275
126 0.0904 0.1053 0.1579 0.0675
155 0.1227 0.1579 0.2105 0.0878
161 0.1292 0.2105 0.2632 0.1340
243 0.2138 0.2632 0.3158 0.1020
294 0.2622 0.3158 0.3684 0.1062
340 0.3033 0.3684 0.4211 0.1178
384 0.3405 0.4211 0.4737 0.1332
457 0.3979 0.4737 0.5263 0.1284
680 0.5440 0.5263 0.5789 0.0349
855 0.6333 0.5789 0.6316 0.0544
877 0.6433 0.6316 0.6842 0.0409
974 0.6839 0.6842 0.7368 0.0529
1,193 0.7594 0.7368 0.7895 0.0301
1,340 0.7997 0.7895 0.8421 0.0424
1,884 0.8983 0.8421 0.8947 0.0562
2,558 0.9561 0.8947 0.9474 0.0614
3,476 0.9860 0.9474 1.0000 0.0386

compared both before and after the jump. The values just before the jump
are denoted ( ) in the table. The maximum is = 0 1340.
For Data Set B censored at 1,000, 15 of the 20 observations are uncensored.

Table 16.4 illustrates the needed calculations. The maximum is = 0 0991.¤

All that remains is to determine the critical value. Commonly used critical
values for this test are 1 22 for = 0 10, 1 36 for = 0 05, and 1 63
for = 0 01. When , the critical value should be smaller because there is less
opportunity for the di erence to become large. Modications for this phenomenon
exist in the literature (see [165], e.g., which also includes tables of critical values
for specic null distribution models), and one such modication is given in [97] but
is not introduced here.

EXAMPLE 16.5

Complete the Kolmogorov�—Smirnov test for the previous example.

For Data Set B truncated at 50, the sample size is 19. The critical value
at a 5% signicance level is 1 36 19 = 0 3120. Because 0 1340 0 3120, the
null hypothesis is not rejected and the exponential distribution is a plausible
model. While it is unlikely that the exponential model is appropriate for
this population, the sample size is too small to lead to that conclusion. For
Data Set B censored at 1,000, the sample size is 20, and so the critical value
is 1 36 20 = 0 3041 and the exponential model is again viewed as being
plausible. ¤
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Table 16.4 Calculation of with censoring for Example 16.4.

Maximum
( ) ( ) ( ) di erence

27 0.0369 0.00 0.05 0.0369
82 0.1079 0.05 0.10 0.0579
115 0.1480 0.10 0.15 0.0480
126 0.1610 0.15 0.20 0.0390
155 0.1942 0.20 0.25 0.0558
161 0.2009 0.25 0.30 0.0991
243 0.2871 0.30 0.35 0.0629
294 0.3360 0.35 0.40 0.0640
340 0.3772 0.40 0.45 0.0728
384 0.4142 0.45 0.50 0.0858
457 0.4709 0.50 0.55 0.0791
680 0.6121 0.55 0.60 0.0621
855 0.6960 0.60 0.65 0.0960
877 0.7052 0.65 0.70 0.0552
974 0.7425 0.70 0.75 0.0425

1,000 0.7516 0.75 0.75 0.0016

For both this test and the Anderson�—Darling test that follows, the critical values
are correct only when the null hypothesis completely species the model. When
the data set is used to estimate parameters for the null hypothesized distribution
(as in the example), the correct critical value is smaller. For both tests, the change
depends on the particular distribution that is hypothesized and maybe even on the
particular true values of the parameters. An indication of how simulation can be
used for this situation is presented in Section 21.2.6.

16.4.2 Anderson�—Darling test

This test is similar to the Kolmogorov�—Smirnov test, but uses a di erent measure
of the di erence between the two distribution functions. The test statistic is

2 =

Z
[ ( ) ( )]2

( )[1 ( )]
( )

That is, it is a weighted average of the squared di erences between the empirical
and model distribution functions. Note that when is close to or to , the weights
might be very large due to the small value of one of the factors in the denominator.
This test statistic tends to place more emphasis on good t in the tails than in the
middle of the distribution. Calculating with this formula appears to be challenging.
However, for individual data (so this is another test that does not work for grouped
data), the integral simplies to

2 = ( ) +
X

=0

[1 ( )]2{ln[1 ( )] ln[1 ( +1)]}

+
X

=1

( )2[ln ( +1) ln ( )]
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Table 16.5 Anderson�—Darling test for Example 16.6.

( ) ( ) Summand

0 50 0.0000 0.0000 0.0399
1 82 0.0391 0.0526 0.0388
2 115 0.0778 0.1053 0.0126
3 126 0.0904 0.1579 0.0332
4 155 0.1227 0.2105 0.0070
5 161 0.1292 0.2632 0.0904
6 243 0.2138 0.3158 0.0501
7 294 0.2622 0.3684 0.0426
8 340 0.3033 0.4211 0.0389
9 384 0.3405 0.4737 0.0601
10 457 0.3979 0.5263 0.1490
11 680 0.5440 0.5789 0.0897
12 855 0.6333 0.6316 0.0099
13 877 0.6433 0.6842 0.0407
14 974 0.6839 0.7368 0.0758
15 1,193 0.7594 0.7895 0.0403
16 1,340 0.7997 0.8421 0.0994
17 1,884 0.8983 0.8947 0.0592
18 2,558 0.9561 0.9474 0.0308
19 3,476 0.9860 1.0000 0.0141
20 1.0000 1.0000

where the unique noncensored data points are = 0 1 · · · +1 = .
Note that when = , the last term of the rst sum is zero (evaluating the formula
as written will ask for ln(0)). The critical values are 1.933, 2.492, and 3.857 for 10%,
5%, and 1% signicance levels, respectively. As with the Kolmogorov�—Smirnov test,
the critical value should be smaller when .

EXAMPLE 16.6

Perform the Anderson�—Darling test for the continuing example.

For Data Set B truncated at 50, there are 19 data points. The calculation
is in Table 16.5, where �“summand�” refers to the sum of the corresponding
terms from the two sums. The total is 1.0226 and the test statistic is 19(1)+
19(1 0226) = 0 4292. Because the test statistic is less than the critical value
of 2.492, the exponential model is viewed as plausible.
For Data Set B censored at 1,000, the results are in Table 16.6. The total

is 0.7602 and the test statistic is 20(0 7516)+20(0 7602) = 0 1713. Because
the test statistic does not exceed the critical value of 2.492, the exponential
model is viewed as plausible. ¤

16.4.3 Chi-square goodness-of-t test

Unlike the Kolmogorov�—Smirnov and Anderson �—Darling tests, this test allows for
some discretion. It begins with the selection of 1 arbitrary values, = 0
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Table 16.6 Anderson�—Darling calculation for Example 16.6 with censored data.

( ) ( ) Summand

0 0 0.0000 0.00 0.0376
1 27 0.0369 0.05 0.0718
2 82 0.1079 0.10 0.0404
3 115 0.1480 0.15 0.0130
4 126 0.1610 0.20 0.0334
5 155 0.1942 0.25 0.0068
6 161 0.2009 0.30 0.0881
7 243 0.2871 0.35 0.0493
8 294 0.3360 0.40 0.0416
9 340 0.3772 0.45 0.0375
10 384 0.4142 0.50 0.0575
11 457 0.4709 0.55 0.1423
12 680 0.6121 0.60 0.0852
13 855 0.6960 0.65 0.0093
14 877 0.7052 0.70 0.0374
15 974 0.7425 0.75 0.0092
16 1,000 0.7516 0.75

1 · · · = . Let �ˆ = ( ) ( 1) be the probability a truncated
observation falls in the interval from 1 to . Similarly, let = ( )
( 1) be the same probability according to the empirical distribution. The test

statistic is then

2 =
X

=1

(�ˆ )2

�ˆ

where is the sample size. Another way to write the formula is to let = �ˆ be
the number of expected observations in the interval (assuming that the hypothesized
model is true) and = be the number of observations in the interval. Then,

2 =
X

=1

( )2

The critical value for this test comes from the chi-square distribution with degrees
of freedom equal to the number of terms in the sum ( ) minus 1 minus the number
of estimated parameters. There are a number of rules that have been proposed for
deciding when the test is reasonably accurate. They center around the values of
= �ˆ . The most conservative states that each must be at least 5. Some authors

claim that values as low as 1 are acceptable. All agree the test works best when the
values are about equal from term to term. If the data are grouped, there is little
choice but to use the groups as given, although adjacent groups could be combined
to increase . For individual data, the data can be grouped for the purpose of
performing this test.7

7Moore [124] cites a number of rules. Among them are (1) an expected frequency of at least 1 for
all cells and and an expected frequency of at least 5 for 80% of the cells; (2) an average count per
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Table 16.7 Data Set B truncated at 50 for Example 16.7.

Range �ˆ Expected Observed 2

50�—150 0.1172 2.227 3 0.2687
150�—250 0.1035 1.966 3 0.5444
250�—500 0.2087 3.964 4 0.0003
500�—1,000 0.2647 5.029 4 0.2105
1,000�—2,000 0.2180 4.143 3 0.3152
2,000�— 0.0880 1.672 2 0.0644

Total 1 19 19 1.4034

Table 16.8 Data Set B censored at 1,000 for Example 16.7.

Range �ˆ Expected Observed 2

0�—150 0.1885 3.771 4 0.0139
150�—250 0.1055 2.110 3 0.3754
250�—500 0.2076 4.152 4 0.0055
500�—1,000 0.2500 5.000 4 0.2000
1,000�— 0.2484 4.968 5 0.0002

Total 1 20 20 0.5951

EXAMPLE 16.7

Perform the chi-square goodness-of-t test for the exponential distribution for
the continuing example.

All three data sets can be evaluated with this test. For Data Set B trun-
cated at 50, establish boundaries at 50, 150, 250, 500, 1,000, 2,000, and inn-
ity. The calculations appear in Table 16.7. The total is 2 = 1 4034. With
four degrees of freedom (6 rows minus 1 minus 1 estimated parameter), the
critical value for a test at a 5% signicance level is 9.4877 (this value can be
obtained with the Excel R° function CHIINV(.05,4)) and the -value is 0.8436
(from CHIDIST(1.4034,4)). The exponential model is a good t.
For Data Set B censored at 1,000, the rst interval is from 0�—150 and the

last interval is from 1,000�— . Unlike the previous two tests, the censored
observations can be used. The calculations are in Table 16.8. The total is
2 = 0 5951. With three degrees of freedom (5 rows minus 1 minus 1 estimated
parameter), the critical value for a test at a 5% signicance level is 7.8147 and
the -value is 0.8976. The exponential model is a good t.
For Data Set C the groups are already in place. The results are given Table

16.9. The test statistic is 2 = 61 913. There are four degrees of freedom, for
a critical value of 9.488. The -value is about 10 12. There is clear evidence
that the exponential model is not appropriate. A more accurate test would

cell of at least 4 when testing at the 1% signicance level and an average count of at least 2 when
testing at the 5% signicance level; and (3) a sample size of at least 10, at least 3 cells, and the
ratio of the square of the sample size to the number of cells of at least 10.
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Table 16.9 Data Set C for Example 16.7.

Range �ˆ Expected Observed 2

7,500�—17,500 0.2023 25.889 42 10.026
17,500�—32,500 0.2293 29.356 29 0.004
32,500�—67,500 0.3107 39.765 28 3.481
67,500�—125,000 0.1874 23.993 17 2.038
125,000�—300,000 0.0689 8.824 9 0.003
300,000�— 0.0013 0.172 3 46.360

Total 1 128 128 61.913

Table 16.10 Automobile claims by year for Example 16.8.

Year Exposure Claims

1986 2,145 207
1987 2,452 227
1988 3,112 341
1989 3,458 335
1990 3,698 362
1991 3,872 359

combine the last two groups (because the expected count in the last group is
less than 1). The group from 125,000 to innity has an expected count of 8.997
and an observed count of 12 for a contribution of 1.002. The test statistic is
now 16.552, and with three degrees of freedom the -value is 0.00087. The
test continues to reject the exponential model. ¤

Sometimes, the test can be modied to t di erent situations. The following
example illustrates this for aggregate frequency data.

EXAMPLE 16.8

Conduct an approximate goodness-of-t test for the Poisson model determined
in Example 15.35. The data are repeated in Table 16.10.

For each year, we are assuming that the number of claims is the result of
the sum of a number (given by the exposure) of independent and identical
random variables. In that case, the central limit theorem indicates that a
normal approximation may be appropriate. The expected count ( ) is the
exposure times the estimated expected value for one exposure unit, while the
variance ( ) is the exposure times the estimated variance for one exposure
unit. The test statistic is then

=
X ( )2

and has an approximate chi-square distribution with degrees of freedom equal
to the number of data points less the number of estimated parameters. The
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expected count is = and the variance is = also. The test
statistic is

=
(207 209 61)2

209 61
+
(227 239 61)2

239 61
+
(341 304 11)2

304 11

+
(335 337 92)2

337 92
+
(362 361 37)2

361 37
+
(359 378 38)2

378 38
= 6 19

With ve degrees of freedom, the 5% critical value is 11.07 and the Poisson
hypothesis is accepted. ¤

There is one important point to note about these tests. Suppose the sample size
were to double but sampled values were not much di erent (imagine each number
showing up twice instead of once). For the Kolmogorov�—Smirnov test, the test
statistic would be unchanged, but the critical value would be smaller. For the
Anderson�—Darling and chi-square tests, the test statistic would double while the
critical value would be unchanged. As a result, for larger sample sizes, it is more
likely that the null hypothesis (and, thus, the proposed model) will be rejected. This
outcome should not be surprising. We know that the null hypothesis is false (it is
extremely unlikely that a simple distribution using a few parameters can explain
the complex behavior that produced the observations) and, with a large enough
sample size we will have convincing evidence of that truth. When using these tests
we must remember that, although all our models are wrong, some may be useful.

16.4.4 Likelihood ratio test

An alternative question to �“Could the population have distribution ?�” is �“Is the
population more likely to have distribution than distribution ?�” More formally:

0 : The data came from a population with distribution .

1 : The data came from a population with distribution .

To perform a formal hypothesis test, distribution must be a special case of dis-
tribution , for example, exponential versus gamma. An easy way to complete this
test is given as follows.

Denition 16.1 The likelihood ratio test is conducted thus:. First, let the like-
lihood function be written as ( ). Let 0 be the value of the parameters that
maximizes the likelihood function. However, only values of the parameters that
are within the null hypothesis may be considered. Let 0 = ( 0). Let 1 be the
maximum likelihood estimator where the parameters can vary over all possible val-
ues from the alternative hypothesis and then let 1 = ( 1). The test statistic is
= 2 ln( 1 0) = 2(ln 1 ln 0). The null hypothesis is rejected if , where
is calculated from = Pr( ), where has a chi-square distribution with

degrees of freedom equal to the number of free parameters in the model from the
alternative hypothesis less the number of free parameters in the model from the null
hypothesis.

This test makes some sense. When the alternative hypothesis is true, forcing
the parameter to be selected from the null hypothesis should produce a likelihood
value that is signicantly smaller.
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Table 16.11 Six useful models for Example 16.10.

Number of Negative
Model parameters loglikelihood 2 p-value

Negative binomial 2 5,348.04 8.77 0.0125
ZM logarithmic 2 5,343.79 4.92 0.1779
Poisson�—inverse Gaussian 2 5,343.51 4.54 0.2091
ZM negative binomial 3 5,343.62 4.65 0.0979
Geometric�—negative binomial 3 5,342.70 1.96 0.3754
Poisson�—ETNB 3 5,342.51 2.75 0.2525

EXAMPLE 16.9

You want to test the hypothesis that the population that produced Data
Set B (using the original largest observation) has a mean that is other than
1,200. Assume that the population has a gamma distribution and conduct the
likelihood ratio test at a 5% signicance level. Also, determine the p-value.
The hypotheses are

0 : gamma with = 1,200

1 : gamma with 6= 1,200.

From earlier work, the maximum likelihood estimates are �ˆ = 0 55616 and
�ˆ = 2,561 1. The loglikelihood at the maximum is ln 1 = 162 293. Next,
the likelihood must be maximized, but only over those values and for which

= 1,200. This restriction means can be free to range over all positive
numbers, but = 1 200 . Thus, under the null hypothesis, there is only
one free parameter. The likelihood function is maximized at �ˆ = 0 54955
and �ˆ = 2,183 6. The loglikelihood at this maximum is ln 0 = 162 466.
The test statistic is = 2( 162 293 + 162 466) = 0 346. For a chi-square
distribution with one degree of freedom, the critical value is 3.8415. Because
0 346 3 8415, the null hypothesis is not rejected. The probability that a
chi-square random variable with one degree of freedom exceeds 0.346 is 0.556,
a -value that indicates little support for the alternative hypothesis. ¤

EXAMPLE 16.10

(Example 6.2 continued) Members of the ( 0) class were not su cient to
describe these data. Determine a suitable model.

Thirteen di erent distributions were t to the data. The results of that
process revealed six models with p-values above 0.01 for the chi-square good-
ness-of-t test. Information about those models is given in Table 16.11. The
likelihood ratio test indicates that the three-parameter model with the small-
est negative loglikelihood (Poisson�—ETNB) is not signicantly better than the
two-parameter Poisson�—inverse Gaussian model. The latter appears to be an
excellent choice. ¤
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It is tempting to use this test when the alternative distribution simply has more
parameters than the null distribution. In such cases the test is not appropriate.
For example, it is possible for a two-parameter lognormal model to have a higher
loglikelihood value than a three-parameter Burr model, resulting in a negative test
statistic, indicating that a chi-square distribution is not appropriate. When the null
distribution is a limiting (rather than special) case of the alternative distribution,
the test may still be used, but the test statistic�’s distribution is now a mixture
of chi-square distributions (see [159]). Regardless, it is still reasonable to use the
�“test�” to make decisions in these cases, provided it is clearly understood that a
formal hypothesis test was not conducted. Further examples and exercises using
this test to make decisions appear in both the next section and the next chapter.

16.4.5 Exercises

16.4 Use the Kolmogorov�—Smirnov test to see if a Weibull model is appropriate
for the data used in Example 16.5.

16.5 (*) Five observations are made from a random variable. They are 1, 2, 3, 5,
and 13. Determine the value of the Kolmogorov�—Smirnov test statistic for the null
hypothesis that ( ) = 2 2 2 , 0.

16.6 (*) You are given the following ve observations from a random sample: 0.1,
0.2, 0.5, 1.0, and 1.3. Calculate the Kolmogorov�—Smirnov test statistic for the null
hypothesis that the population density function is ( ) = 2(1 + ) 3, 0.

16.7 Perform the Anderson�—Darling test of the Weibull distribution for Example
16.6.

16.8 Repeat Example 16.7 for the Weibull model.

16.9 (*) One hundred and fty policyholders were observed from the time they
arranged a viatical settlement until their death. No observations were censored.
There were 21 deaths in the rst year, 27 deaths in the second year, 39 deaths in
the third year, and 63 deaths in the fourth year. The survival model

( ) = 1
( + 1)

20
0 4

is being considered. At a 5% signicance level, conduct the chi-square goodness-of-
t test.

16.10 (*) Each day, for 365 days, the number of claims is recorded. The results
were 50 days with no claims, 122 days with one claim, 101 days with two claims, 92
days with three claims, and no days with four or more claims. For a Poisson model
determine the maximum likelihood estimate of and then perform the chi-square
goodness-of-t test at a 2.5% signicance level.

16.11 (*) During a one-year period, the number of accidents per day was distrib-
uted as given in Table 16.12. Test the hypothesis that the data are from a Poisson
distribution with mean 0.6 using the maximum number of groups such that each
group has at least ve expected observations. Use a signicance level of 5%.
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Table 16.12 Data for Exercise 16.11.

No. of accidents Days

0 209
1 111
2 33
3 7
4 3
5 2

16.12 (*) One thousand values were simulated from a uniform (0 1) distribution.
The results were grouped into 20 ranges of equal width. The observed counts in
each range were squared and added, resulting in a sum of 51,850. Determine the
-value for the chi-square goodness-of-t test.

16.13 (*) Twenty claim amounts were sampled from a Pareto distribution with =

2 and unknown. The maximum likelihood estimate of is 7.0. Also,
P20

=1 ln( +

7 0) = 49 01 and
P20

=1 ln( + 3 1) = 39 30. The likelihood ratio test is used to
test the null hypothesis that = 3 1. Determine the -value for this test.

16.14 Redo Example 16.8 assuming that each exposure unit has a geometric distri-
bution. Conduct the approximate chi-square goodness-of-t test. Is the geometric
preferable to the Poisson model?

16.15 Using Data Set B (with the original largest value), determine if a gamma
model is more appropriate than an exponential model. Recall that an exponential
model is a gamma model with = 1. Useful values were obtained in Example 15.4.

16.16 Use Data Set C to choose a model for the population that produced those
numbers. Choose from the exponential, gamma, and transformed gamma mod-
els. Information for the rst two distributions was obtained in Example 15.5 and
Exercise 15.24, respectively.

16.17 Conduct the chi-square goodness-of-t test for each of the models obtained
in Exercise 15.106.

16.18 Conduct the chi-square goodness-of-t test for each of the models obtained
in Exercise 15.108.

16.19 Conduct the chi-square goodness-of-t test for each of the models obtained
in Exercise 15.109.

16.20 For the data in Table 16.20 on page 489, determine the method of moments
estimates of the parameters of the Poisson�—Poisson distribution where the secondary
distribution is the ordinary (not zero-truncated) Poisson distribution. Perform the
chi-square goodness-of-t test using this model.

16.21 You are given the data in Table 16.13, which represent results from 23,589
automobile insurance policies. The third column, headed �“Fitted model,�” repre-
sents the expected number of losses for a tted (by maximum likelihood) negative
binomial distribution.
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Table 16.13 Data for Exercise 16.21.

Number of Number of Fitted
losses, policies, model

0 20,592 20,596.76
1 2,651 2,631.03
2 297 318.37
3 41 37.81
4 7 4.45
5 0 0.52
6 1 0.06
7 0 0.00

(a) Perform the chi-squared goodness-of-t test at a signicance level of 5%.

(b) Determine the maximum likelihood estimates of the negative binomial
parameters and . This can be done from the given numbers without
actually maximizing the likelihood function.

16.5 SELECTING A MODEL

16.5.1 Introduction

At this point in the text, almost all of the tools are in place for choosing a model.
Before outlining a recommended approach, two important concepts must be intro-
duced. The rst is parsimony. The principle of parsimony states that unless there
is considerable evidence to do otherwise, a simpler model is preferred. The reason
for this prefernce is that a complex model may do a great job of matching the data,
but that is no guarantee the model matches the population from which the obser-
vations were sampled. For example, given any set of 10 ( ) pairs with unique
values, there will always be a polynomial of degree 9 or less that goes through all
10 points. But if these points were a random sample, it is highly unlikely that the
population values all lie on that polynomial. However, there may be a straight line
that comes close to the sampled points as well as the other points in the population.
This observation matches the spirit of most hypothesis tests. That is, do not reject
the null hypothesis (and thus claim a more complex description of the population
holds) unless there is strong evidence to do so.
The second concept does not have a name. It states that, if you try enough

models, one will look good, even if it is not. Suppose I have 900 models at my
disposal. For most data sets, it is likely that one of them will t extremely well,
but it may not help us learn about the population.
Thus, in selecting models, there are two things to keep in mind:

1. Use a simple model if at all possible.

2. Restrict the universe of potential models.

The methods outlined in the remainder of this section helps with the rst point;
the second one requires some experience. Certain models make more sense in certain
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situations, but only experience can enhance the modeler�’s senses so that only a short
list of quality candidates is considered.
The section is split into two types of selection criteria. The rst set is based on

the modeler�’s judgment, while the second set is more formal in the sense that most
of the time all analysts will reach the same conclusions because the decisions are
made based on numerical measurements rather than charts or graphs.

16.5.2 Judgment-based approaches

Using one�’s own judgment to select models involves one or more of the three con-
cepts outlined herein. In all cases, the analyst�’s experience is critical.
First, the decision can be based on the various graphs (or tables based on the

graphs) presented in this chapter, allowing the analyst to focus on aspects of the
model that are important for the proposed application.8 For example, it may be
more important to t the tail well or it may be more important to match the mode
or modes. Even if a score-based approach is used, it may be appropriate to present
a convincing picture to support the chosen model.
Second, the decision can be inuenced by the success of particular models in

similar situations or the value of a particular model for its intended use. For
example, the 1941 CSO mortality table follows a Makeham distribution for much
of its range of ages. In a time of limited computing power, such a distribution
allowed for easier calculation of joint life values. As long as the t of this model
was reasonable, this advantage outweighed the use of a di erent, but better tting,
model. Similarly, if the Pareto distribution has been used to model a particular line
of liability insurance both by the analyst�’s company and by others, it may require
more than the usual amount of evidence to change to an alternative distribution.
Third, the situation may completely determine the distribution. For example,

suppose a dental insurance contract provides for at most two checkups per year and
suppose that individuals make two independent choices each year as to whether to
have a checkup. If each time the probability is , then the distribution must be
binomial with = 2.
Finally, it should be noted that the more algorithmic approaches outlined in this

section do not always agree. In that case, judgment is most denitely required, if
only to decide which algorithmic approach to use.

16.5.3 Score-based approaches

Some analysts might prefer an automated process for selecting a model. An easy
way to do that would be to assign a score to each model and let the model with
the best value win. The following scores are worth considering:

1. Lowest value of the Kolmogorov�—Smirnov test statistic.

2. Lowest value of the Anderson�—Darling test statistic.

3. Lowest value of the chi-square goodness-of-t test statistic.

8Besides the ones discussed here, there are other plots/tables that could be used, including the
- plot and a comparison of model and empirical limited expected values or mean excess loss
functions.



484 MODEL SELECTION

4. Highest -value for the chi-square goodness-of-t test.

5. Highest value of the likelihood function at its maximum.

All but the chi-square -value have a deciency with respect to parsimony. First,
consider the likelihood function. When comparing, say, an exponential to a Weibull
model, the Weibull model must have a likelihood value that is at least as large
as the exponential model. They would only be equal in the rare case that the
maximum likelihood estimate of the Weibull parameter is equal to 1. Thus, the
Weibull model would always win over the exponential model, a clear violation of
the principle of parsimony. For the three test statistics, there is no assurance that
the same relationship will hold, but it seems likely that, if a more complex model is
selected, the t measure is likely to be better. The only reason the chi-square test
-value is immune from this problem is that with more complex models, the test
has fewer degrees of freedom. It is then possible that the more complex model will
have a smaller -value. There is no comparable adjustment for the rst two test
statistics listed.
With regard to the likelihood value, there are two ways to proceed. One is to

perform the likelihood ratio test and the other is to extract a penalty for employing
additional parameters. The likelihood ratio test is technically only available when
one model is a special case of another (e.g., Pareto versus generalized Pareto). The
concept can be turned into an algorithm by using the test at a 5% signicance level.
Begin with the best one-parameter model (the one with the highest loglikelihood
value). Add a second parameter only if the two-parameter model with the highest
loglikelihood value shows an increase of at least 1.92 (so twice the di erence exceeds
the critical value of 3.84). Then move to three-parameter models. If the comparison
is to a two-parameter model, a 1.92 increase is again needed. If the early comparison
led to keeping the one-parameter model, an increase of 3.00 is needed (because
the test has two degrees of freedom). To add three parameters requires a 3.91
increase; four parameters, a 4.74 increase; and so on. In the spirit of this chapter,
this algorithm can be used even for nonspecial cases. However, it would not be
appropriate to claim that a likelihood ratio test was being conducted.
Aside from the issue of special cases, the likelihood ratio test has the same prob-

lem as the other hypothesis tests. Were the sample size to double, the loglikelihoods
would also double, making it more likely that a model with a higher number of pa-
rameters will be selected, tending to defeat the parsimony principle. Conversely,
it could be argued that, if we possess a lot of data, we have the right to consider
and t more complex models. A method that e ects a compromise between these
positions is the Schwarz Bayesian criterion (SBC) [156], which recommends that,
when ranking models, a deduction of ( 2) ln should be made from the loglike-
lihood value, where is the number of estimated parameters and is the sample
size.9 Thus, adding a parameter requires an increase of 0 5 ln in the loglikelihood.
For larger sample sizes, a greater increase is needed, but it is not proportional to
the sample size itself.10

9 In the rst edition, not only was Schwarz�’s name misspelled, but the formula for the penalty was
incorrect. This edition has the correct version.
10There are other information-based decision rules. Section 3 of Brockett [21] promotes the Akaike
information criterion. In a discussion to that paper, B. Carlin provides support for the SBC.
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Table 16.14 Results for Example 16.11.

B truncated at 50 B censored at 1,000

Criterion Exponential Weibull Exponential Weibull

K�—S* 0.1340 0.0887 0.0991 0.0991
A�—D* 0.4292 0.1631 0.1713 0.1712
2 1.4034 0.3615 0.5951 0.5947
-value 0.8436 0.9481 0.8976 0.7428
Loglikelihood 146.063 145.683 113.647 113.647
SBC 147.535 148.628 115.145 116.643

C

2 61.913 0.3698
-value 10 12 0.9464
Loglikelihood 214.924 202.077
SBC 217.350 206.929

*K�—S and A�—D refer to the Kolmogorov�—Smirnov and Anderson�—Darling
test statistics, respectively.

EXAMPLE 16.11

For the continuing example in this chapter, choose between the exponential
and Weibull models for the data.

Graphs were constructed in the various examples and exercises. Table 16.14
summarizes the numerical measures. For the truncated version of Data Set B,
the SBC is calculated for a sample size of 19, while for the version censored at
1,000, there are 20 observations. For both versions of Data Set B, while the
Weibull o ers some improvement, it is not convincing. In particular, neither
the likelihood ratio test nor the SBC indicates value in the second parameter.
For Data Set C, it is clear that the Weibull model is superior and provides an
excellent t. ¤

EXAMPLE 16.12

In Example 6.17 an ad hoc method was used to demonstrate that the Poisson�—
ETNB distribution provided a good t. Use the methods of this chapter to
determine a good model.

The data set is very large and, as a result, requires a very close correspon-
dence of the model to the data. The results are given in Table 16.15.
From Table 16.15, it is seen that the negative binomial distribution does

not t well, while the t of the Poisson�—inverse Gaussian is marginal at best
( = 2 88%). The Poisson�—inverse Gaussian is a special case ( = 0 5) of
the Poisson�—ETNB. Hence, a likelihood ratio test can be formally applied to
determine if the additional parameter is justied. Because the loglikelihood
increases by 5, which is more than 1.92, the three-parameter model is a signif-
icantly better t. The chi-square test shows that the Poisson�—ETNB provides
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Table 16.15 Results for Example 16.12

Fitted distributions
No. of Observed Negative Poisson�— Poisson�—
claims frequency binomial inverse Gaussian ETNB

0 565,664 565,708.1 565,712.4 565,661.2
1 68,714 68,570.0 68,575.6 68,721.2
2 5,177 5,317.2 5,295.9 5,171.7
3 365 334.9 344.0 362.9
4 24 18.7 20.8 29.6
5 6 1.0 1.2 3.0
6+ 0 0.0 0.1 0.4

Parameters = 0 0350662 = 0 123304 = 0 123395
= 3 57784 = 0 0712027 = 0 233862

= 0 846872

Chi square 12.13 7.09 0.29
Degrees of freedom 2 2 1
-value 1% 2.88% 58.9%
Loglikelihood 251,117 251,114 251,109

SBC 251,130 251,127 251,129

Table 16.16 Data for Example 16.13

No. of claims/day Observed no. of days

0 47
1 97
2 109
3 62
4 25
5 16
6 4
7 3
8 2
9+ 0

an adequate t. In contrast, the SBC favors the Poisson�—inverse Gaussian dis-
tribution. Given the improved t in the tail for the three-parameter model,
it seems to be the best choice. ¤

EXAMPLE 16.13

This example is taken from Douglas [33, p. 253]. An insurance company�’s
records for one year show the number of accidents per day that resulted in
a claim to the insurance company for a particular insurance coverage. The
results are in Table 16.16. Determine if a Poisson model is appropriate.
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Table 16.17 Chi-square goodness-of-t test for Example 16.13.

Claims/day Observed Expected Chi square

0 47 47.8 0.01
1 97 97.2 0.00
2 109 98.8 1.06
3 62 66.9 0.36
4 25 34.0 2.39
5 16 13.8 0.34
6 4 4.7 0.10
7+ 5 1.8 5.66

Totals 365 365 9.93

A Poisson model is tted to these data. The method of moments and the
maximum likelihood method both lead to the estimate of the mean,

�ˆ =
742

365
= 2 0329

The results of a chi-square goodness-of-t test are in Table 16.17. Any time
such a table is made, the expected count for the last group is

+ = �ˆ + = (1 �ˆ0 · · · �ˆ 1)

The last three groups are combined to ensure an expected count of at least
one for each row. The test statistic is 9.93 with six degrees of freedom. The
critical value at a 5% signicance level is 12.59 and the -value is 0.1277.
By this test, the Poisson distribution is an acceptable model; however, it
should be noted that the t is poorest at the large values, and with the model
understating the observed values, this may be a risky choice. ¤

EXAMPLE 16.14

The data set in Table 15.13 come from Beard et al. [16] and are analyzed in
Example 15.33. Determine a model that adequately describes the data.

Parameter estimates from tting four models are in Table 15.13. Various
t measures are given in Table 16.18. Only the zero-modied geometric dis-
tribution passes the goodness-of-t test. It is also clearly superior according
to the SBC. A likelihood ratio test against the geometric has a test statistic
of 2(171,479 171,133) = 692, which with one degree of freedom is clearly
signicant. This result conrms the qualitative conclusion in Example 15.33.¤

EXAMPLE 16.15

The data in Table 16.19, from Simon [160], represent the observed number of
claims per contract for 298 contracts. Determine an appropriate model.

The Poisson, negative binomial, and Polya�—Aeppli distributions are tted
to the data. The Polya�—Aeppli and the negative binomial are both plausible
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Table 16.18 Test results for Example 16.14.

Poisson Geometric ZM Poisson ZM geometric

Chi square 543.0 643.4 64.8 0.58
Degrees of freedom 2 4 2 2
p-value 1% 1% 1% 74 9%
Loglikelihood 171,373 171,479 171,160 171,133
SBC 171,379.5 171,485.5 171,173 171,146

Table 16.19 Fit of Simon data for Example 16.15.

Fitted distributions
Number of Number of Negative
claims/contract contracts Poisson binomial Polya�—Aeppli

0 99 54.0 95.9 98.7
1 65 92.2 75.8 70.6
2 57 78.8 50.4 50.2
3 35 44.9 31.3 32.6
4 20 19.2 18.8 20.0
5 10 6.5 11.0 11.7
6 4 1.9 6.4 6.6
7 0 0.5 3.7 3.6
8 3 0.1 2.1 2.0
9 4 0.0 1.2 1.0
10 0 0.0 0.7 0.5
11 1 0.0 0.4 0.3
12+ 0 0.0 0.5 0.3

Parameters = 1 70805 = 1 15907 = 1 10551
= 1 47364 = 0 545039

Chi square 72.64 4.06 2.84
Degrees of freedom 4 5 5
-Value 1% 54.05% 72.39%
Loglikelihood 577.0 528.8 528.5
SBC 579.8 534.5 534.2

distributions. The -value of the chi-square statistic and the loglikelihood both
indicate that the Polya�—Aeppli is slightly better than the negative binomial.
The SBC veries that both models are superior to the Poisson distribution.
The ultimate choice may depend on familiarity, prior use, and computational
convenience of the negative binomial versus the Polya�—Aeppli model. ¤

EXAMPLE 16.16

Consider the data in Table 16.20 on automobile liability policies in Switzerland
taken from Bühlmann [23]. Determine an appropriate model.

Three models are considered in Table 16.20. The Poisson distribution is
a very bad t. Its tail is far too light compared with the actual experience.
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Table 16.20 Fit of Buhlmann data for Example 16.16.

No. of Observed Fitted distributions
accidents frequency Poisson Negative binomial P.�—i.G.

0 103,704 102,629.6 103,723.6 103,710.0
1 14,075 15,922.0 13,989.9 14,054.7
2 1,766 1,235.1 1,857.1 1,784.9
3 255 63.9 245.2 254.5
4 45 2.5 32.3 40.4
5 6 0.1 4.2 6.9
6 2 0.0 0.6 1.3
7+ 0 0.0 0.1 0.3

Parameters = 0 155140 = 0 150232 = 0 144667
= 1 03267 = 0 310536

Chi square 1,332.3 12.12 0.78
Degrees of freedom 2 2 3
-Values 1% 1% 85.5%
Loglikelihood 55,108.5 54,615.3 54,609.8
SBC 55,114.3 54,627.0 54,621.5

P.�—i.G. stands for Poisson�—inverse Gaussian.

The negative binomial distribution appears to be much better but cannot be
accepted because the -value of the chi-square statistic is very small. The large
sample size requires a better t. The Poisson�—inverse Gaussian distribution
provides an almost perfect t ( -value is large). Note that the Poisson�—inverse
Gaussian has two parameters, like the negative binomial. The SBC also favors
this choice. This example shows that the Poisson�—inverse Gaussian can have
a much heavier right-hand tail than the negative binomial. ¤

EXAMPLE 16.17

Comprehensive medical claims were studied by Bevan [19] in 1963. Male (955
payments) and female (1,291 payments) claims were studied separately. The
data appear in Table 16.21 where there was a deductible of 25. Can a common
model be used?

When using the combined data set, the lognormal distribution is the best
two-parameter model. Its negative loglikelihood (NLL) is 4,580.20. This value
is 19.09 better than the one-parameter inverse exponential model and 0.13
worse than the three-parameter Burr model. Because none of these models
is a special case of the other, the likelihood ratio test (LRT) cannot be used,
but it is clear that, using the 1.92 di erence as a standard, the lognormal is
preferred. The SBC requires an improvement of 0 5 ln(2,246) = 3 86 and again
the lognormal is preferred. The parameters are = 4 5237 and = 1 4950.
When separate lognormal models are t to males ( = 3 9686 and = 1 8432)
and females ( = 4 7713 and = 1 2848), the respective NLLs are 1,977.25
and 2,583.82 for a total of 4,561.07. This result is an improvement of 19.13
over a common lognormal model, which is signicant by both the LRT (3.00
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Table 16.21 Comprehensive medical losses for Example 16.17.

Loss Male Female

25�—50 184 199
50�—100 270 310
100�—200 160 262
200�—300 88 163
300�—400 63 103
400�—500 47 69
500�—1,000 61 124
1,000�—2,000 35 40
2,000�—3,000 18 12
3,000�—4,000 13 4
4,000�—5,000 2 1
5,000�—6,667 5 2
6,667�—7,500 3 1
7,500�—10,000 6 1

Table 16.22 Number of actuaries per company for Example 16.18.

Number of Number of Number of
actuaries companies�–1949 companies�–1957

1 17 23
2 7 7
3�—4 3 3
5�—9 2 3
10+ 0 1

needed) and SBC (7.72 needed). Sometimes it is useful to be able to use the
same nonscale parameter in both models. When a common value of is used,
the NLL is 4,579.77, which is signicantly worse than using separate models.¤

EXAMPLE 16.18

In 1958 Longley-Cook [109] examined employment patterns of casualty ac-
tuaries. One of his tables listed the number of members of the Casualty
Actuarial Society employed by casualty companies in 1949 (55 actuaries) and
1957 (78 actuaries). Using the data in Table 16.22, determine a model for the
number of actuaries per company that employs at least one actuary and nd
out whether the distribution has changed over the eight-year period.

Because a value of zero is impossible, only zero-truncated distributions
should be considered. In all three cases (1949 data only, 1957 data only,
combined data), the ZT logarithmic and ZT (extended) negative binomial
distributions have acceptable goodness-of-t test values. The improvement
in NLL is 0.52, 0.02, and 0.94. The LRT can be applied (except that the
ZT logarithmic distribution is a limiting case of the ZT negative binomial
distribution with 0), and the improvement is not signicant in any of
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Table 16.23 Data for Exercise 16.22.

No. of accidents No. of policies

0 100
1 267
2 311
3 208
4 87
5 23
6 4
Total 1,000

Table 16.24 Results for Exercise 16.25.

Model No. of parameters Negative loglikelihood

Generalized Pareto 3 219.1
Burr 3 219.2
Pareto 2 221.2
Lognormal 2 221.4
Inverse exponential 1 224.3

the cases. The same conclusions apply if the SBC is used. The parameter
estimates (where is the only parameter) are 2.0227, 2.8114, and 2.4479,
respectively. The NLL for the combined data set is 74.35, while the total for
the two separate models is 74.15. The improvement is only 0.20, which is
not signicant (there is one degree of freedom). Even though the estimated
mean has increased from 2 0227 ln(3 0227) = 1 8286 to 2 8114 ln(3 8114) =
2 1012, there is not enough data to make a convincing case that the true mean
has increased. ¤

16.5.4 Exercises

16.22 (*) One thousand policies were sampled and the number of accidents for each
recorded. The results are in Table 16.23. Without doing any formal tests, determine
which of the following ve models is most appropriate: binomial, Poisson, negative
binomial, normal, gamma.

16.23 For Example 16.1, determine if a transformed gamma model is more appro-
priate than either the exponential model or the Weibull model for each of the three
data sets.

16.24 (*) From the data in Exercise 16.11, the maximum likelihood estimates are
�ˆ = 0 60 for the Poisson distribution and �ˆ = 2 9 and �ˆ = 0 21 for the negative
binomial distribution. Conduct the likelihood ratio test for choosing between these
two models.

16.25 (*) From a sample of size 100, ve models are t with the results given in
Table 16.24. Use the SBC to select the best model.
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Table 16.25 Data for Exercise 16.31.

No. of medical claims No. of accidents

0 529
1 146
2 169
3 137
4 99
5 87
6 41
7 25
8+ 0

16.26 Refer to Exercise 15.41. Use both the likelihood ratio test (at a 5% signi-
cance level) and the SBC to decide if Sylvia�’s claim is true.

16.27 (*) Five models were t to a sample of 260 observations. The following are
the number of parameters in the model followed by the loglikelihood value: 1 414,
2 412, 3 411, 4 409, 6 409. According to the SBC, which model (identied
by the number of parameters) should be selected?

16.28 Using results from Exercises 15.106 and 16.17, use the chi-square goodness-
of-t test, the likelihood ratio test, and the SBC to determine the best model from
the members of the ( 0) class.

16.29 Using results from Exercises 15.108 and 16.18, use the chi-square goodness-
of-t test, the likelihood ratio test, and the SBC to determine the best model from
the members of the ( 0) class.

16.30 Using results from Exercises 15.109 and 16.19, use the chi-square goodness-
of-t test, the likelihood ratio test, and the SBC to determine the best model from
the members of the ( 0) class.

16.31 Table 16.25 gives the number of medical claims per reported automobile
accident.

(a) Construct a plot similar to Figure 6.1. Does it appear that a member of
the ( 0) class will provide a good model? If so, which one?

(b) Determine the maximum likelihood estimates of the parameters for each
member of the ( 0) class.

(c) Based on the chi-square goodness-of-t test, the likelihood ratio test,
and the Schwarz Bayesian criterion, which member of the ( 0) class
provides the best t? Is this model acceptable?

16.32 For the four data sets introduced in Exercises 15.106, 15.108, 15.109, and
16.31, you have determined the best model from among members of the ( 0)
class. For each data set, determine the maximum likelihood estimates of the zero-
modied Poisson, geometric, logarithmic, and negative binomial distributions. Use
the chi-square goodness-of-t test and likelihood ratio tests to determine the best
of the eight models considered and state whether the selected model is acceptable.
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Table 16.26 Data for Excercise 16.35(a).

No. of claims No. of policies

0 96,978
1 9,240
2 704
3 43
4 9
5+ 0

16.33 A frequency model that has not been mentioned to this point is the zeta
distribution. It is a zero-truncated distribution with = ( +1) ( + 1) =
1 2 0. The denominator is the zeta function, which must be evaluated
numerically as ( + 1) =

P
=1

( +1). The zero-modied zeta distribution can
be formed in the usual way. More information can be found in Luong and Doray
[111].

(a) Determine the maximum likelihood estimates of the parameters of the
zero-modied zeta distribution for the data in Example 15.33.

(b) Is the zero-modied zeta distribution acceptable?

16.34 In Exercise 16.32, the best model from among the members of the ( 0)
and ( 1) classes was selected for the data sets in Exercises 15.106, 15.108, 15.109,
and 16.31. Fit the Poisson�—Poisson, Polya�—Aeppli, Poisson�—inverse Gaussian, and
Poisson�—ETNB distributions to these data and determine if any of these distribu-
tions should replace the one selected in Exercise 16.32. Is the current best model
acceptable?

16.35 The ve data sets presented in this problem are all taken from Lemaire
[104]. For each data set, compute the rst three moments and then use the ideas
in Section 6.9 to make a guess at an appropriate model from among the compound
Poisson collection (Poisson, geometric, negative binomial, Poisson�—binomial [with
= 2 and = 3], Polya�—Aeppli, Neyman Type A, Poisson�—inverse Gaussian, and

Poisson�—ETNB). From the selected model (if any) and members of the ( 0) and
( 1) classes, determine the best model.

(a) The data in Table 16.26 represent counts from third-party automobile
liability coverage in Belgium.

(b) The data in Table 16.27 represent the number of deaths due to horse
kicks in the Prussian army between 1875 and 1894. The counts are the
number of deaths in a corps (there were 10 of them) in a given year,
and thus there are 200 observations. This data set is often cited as the
inspiration for the Poisson distribution. For using any of our models,
what additional assumption about the data must be made?

(c) The data in Table 16.28 represent the number of major international
wars per year from 1500 through 1931.

(d) The data in Table 16.29 represent the number of runs scored in each
half-inning of World Series baseball games played from 1947 through
1960.
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Table 16.27 Data for Excercise 16.35(b).

No. of deaths No. of corps

0 109
1 65
2 22
3 3
4 1
5+ 0

Table 16.28 Data for Excercise 16.35(c).

No. of wars No. of years

0 223
1 142
2 48
3 15
4 4
5+ 0

Table 16.29 Data for Excercise 16.35(d).

No. of runs No. of half innings

0 1,023
1 222
2 87
3 32
4 18
5 11
6 6
7+ 3

(e) The data in Table 16.30 represent the number of goals per game per
team in the 1966�—1967 season of the National Hockey League.

16.36 Verify that the estimates presented in Example 6.23 are the maximum likeli-
hood estimates. (Because only two decimals are presented, it is probably su cient
to observe that the likelihood function takes on smaller values at each of the nearby
points.) The negative binomial distribution was t to these data in Example 15.31.
Which of these two models is preferable?
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Table 16.30 Data for Excercise 16.35(e).

No. of goals No. of games

0 29
1 71
2 82
3 89
4 65
5 45
6 24
7 7
8 4
9 1
10+ 3





17

ESTIMATION AND MODEL
SELECTION FOR MORE
COMPLEX MODELS

17.1 EXTREME VALUE MODELS

17.1.1 Introduction

The purpose of this chapter is to focus attention on specic issues for modeling
large losses. The probability theory aspects of extreme value theory are discussed
in Section 5.6. In this section, we discuss a number of techniques that are especially
useful in the modeling of large losses. The methods described in Chapters 12�—16
can be used in building and selecting models involving extreme outcomes. However,
if the primary interest is in studying extreme outcomes, there are some additional
diagnostic and estimation procedures that are especially useful.
In this chapter, we begin with standard estimation procedures for distributions

associated with extreme value theory. When we use extreme value models for only
the tail of the distribution, we will also be interested in determining from data the
point at which we are able to rely on the extreme value model for the tail; that
is, we want to answer the question �“Where does the right-hand tail begin?�” This is

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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an important question because we rely on asymptotic results from extreme value
theory to capture the shape of the tail without reference to the underlying model
of ground-up losses.

17.1.2 Parameter estimation

17.1.2.1 Maximum likelihood estimation from the extreme value distribution We
begin by assuming that we have a sample of size of values of extreme outcomes.
An example might be daily maximum losses of a certain type of insurance. For the
purpose of this theory, we treat the observations as being outcomes of i.i.d. random
variables.1 Also note that even if the data do not arise from maximums, one of the
extreme value distributions may be a good choice. As in earlier chapters, we denote
the sample by 1 2 . From Section 5.6.4, the distribution of extreme values
for large samples is given by one of the three distributions that form the special
cases of the generalized extreme value (GEV) distribution. The standardized cdf
of the GEV distribution is written as

( ) = exp
h
(1 + )

1
i

When is positive, the cdf ( ) has the form of a standardized Fréchet distrib-
ution. When is negative, the cdf ( ) has the form of a standardized Weibull
distribution. When = 0, the cdf is the standardized Gumbel distribution function

0( ) = exp [ exp ( )]

Inserting location and scale parameters results in the GEV distribution function

( ) = ( ) = exp

" µ
1 +

¶ 1
#

The corresponding GEV probability density function is

( ) = ( ) =
1
µ
1 +

¶ (1+1 )

exp

" µ
1 +

¶ 1
#

When = 0, the density function is the Gumbel density

( ) = 0 ( ) =
1
exp exp

µ ¶¸

The contribution of an observation from the GEV to the log likelihood is

ln ( ) = ln ( )

= ln

µ
1 +

1
¶
ln

µ
1 +

¶ µ
1 +

¶ 1

which can be written as

ln ( ) = ln ( ) = ln (1 + ) exp( )

1The assumption of identical distributions may be violated, for example, if the maximum losses
each period arise from di erent numbers of actual losses in each period.
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where

=
1
ln

µ
1 +

¶

For a set of observations, the negative loglikelihood function is then

( ) = ln + (1 + )
X

=1

+
X

=1

exp( ) (17.1)

Maximum likelihood estimates of the three parameters are obtained by minimiz-
ing the negative loglikelihood (17.1), which can be done in several di erent ways.
If the shape parameter is expected to be close to zero; that is, if the underlying
distribution is close to Gumbel, then it would be wise to start by tting a Gumbel
model, which has only two parameters. This procedure provides initial estimates
for tting the full three-parameter GEV model. In the Gumbel case, the negative
loglikelihood function reduces to

( ) = ln +
X

=1

+
X

=1

exp

µ ¶
(17.2)

The negative loglikelihood (17.2) can be minimized by any standard optimization
routine. Alternatively, we can obtain the estimates by di erentiating (17.2), setting
those derivatives to zero, and solving the resulting likelihood equations

X

=1

exp

µ
b

b

¶
=

X

=1

( b) 1 exp

µ
b

b

¶¸
= b

which can be rewritten as

b = b ln
1X

=1

exp

µ

b

¶
(17.3)

b =
X

=1

P
=1 exp

³ ´

P
=1 exp

³ ´ (17.4)

Because (17.4) does not involve b, it can be solved iteratively by starting with an
initial guess of b on the right-hand side. The result is then substituted into (17.3)
to obtain b. The resulting parameter estimates b and b (along with = 0) for
this special case of the Gumbel distribution are useful starting values for numerical
minimization of the negative loglikelihood (17.1).
The hypothesis that = 0 can be formally tested using the likelihood ratio test.

To justify adding the parameter , the di erence between optimized values of (17.1)
and (17.2) should be su ciently large. Twice the di erence follows a chi-square
distribution with one degree of freedom. For example, at the 5% signicance level,
the chi-square distribution with one degree of freedom has a critical value of 3.84.
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In this case, we would expect the di erence between the maximized loglikelihood
functions to be at least 1.92 in order to include a nonzero value of in the model.
The precision of mles can be obtained approximately from asymptotic results.

Theorem 15.5 shows that, if the regularity conditions are satised, the maximum
likelihood estimates of the parameters are asymptotically unbiased and normally
distributed with a covariance matrix that is the inverse of the Fisher information
matrix I( ). In the case of the GEV distribution with = ( ), the elements
of the Fisher information matrix have been obtained by Prescott and Walden [143]
as

I( )11 = 2

I( )22 = 2 2
[1 2 (2 + ) + ]

I( )33 = 2

"
2

6
+

µ
1 +

1
¶2

2
+

2

#

(17.5)

I( )12 = 2 [ (2 + )]

I( )13 =

¸

I( )23 = 2
1 +

1 (2 + )
+

¸

where (·) is the gamma function (see Appendix A),

= (1 + )2 (1 + 2 )

= (2 + ) (1 + ) +
1 +

¸

where

( ) = log ( )

is the digamma (psi) function, and = 0 5772157 is Euler�’s constant. The digamma
function can be evaluated in a number of ways. The simplest is to obtain the gamma
function, take its logarithm, and evaluate the derivative numerically using a nite
di erence approximation to the derivative.
The regularity conditions are satised only if 0 5. Note that this condition

ensures that all the gamma functions in the Fisher information matrix have positive
arguments. Because we are only interested in the Fréchet distribution (for which

0) as the alternative to the Gumbel distribution, the regularity conditions are
satised and the asymptotic results hold.
In the special case of the Gumbel distribution with = ( ), the elements of

the Fisher information matrix reduce to

I( )11 = 2

I( )22 = 2

2

6
+ (1 )2

¸
(17.6)

I( )12 = 2 (1 )
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17.1.2.2 Maximum likelihood estimation from the generalized Pareto distribution We
begin by assuming the we have a sample of size of values of excesses over a thresh-
old , which is a requirement for this aspect of extreme value theory.2 Data on
excesses is not unusual in reinsurance situations where the only interesting losses
are those above the deductible. For the purpose of this theory, we treat the ob-
servations as being outcomes of i.i.d. random variables. We denote the sample
by 1 2 . (These are denoted as 1 2 in Section 5.6.7 where they
are denoted as conditional excesses, conditional on the underlying random variable
exceeding the threshold. The e ect is that we ignore all observed losses that are
less than the threshold and consider only the exceedences). From Section 5.6.7, the
distribution of excesses for large samples is given by one of the three distributions
that are the special cases of the generalized Pareto distribution. The standardized
cdf of the generalized Pareto distribution is written as

( ) = 1 (1 + )
1

When is positive, the cdf ( ) has the form of a standardized Pareto distribu-
tion. When is negative, the cdf ( ) has the form of a beta distribution. When
= 0, the cdf is the standardized exponential distribution function

0( ) = 1 exp ( )

Inserting location and scale parameters results in the generalized Pareto distribution
function

( ) = ( ) = 1

µ
1 +

¶ 1

When = 0 and = 0, we have the exponential distribution

( ) = 0 ( ) = 1 exp
³ ´

0

When 0 and = , we have, replacing 1 by and by , the Pareto
distribution, as dened in Appendix A,

( ) = 1 ( ) = 1
³
1 +

´
0

The contribution of an observation from the generalized Pareto distribution to
the log likelihood is

ln ( ) = ln ( ) = ln

µ
1 +

1
¶
ln

µ
1 +

¶

which can be written as

ln ( ) = ln ( ) = ln (1 + )

where

2While the GEV models are derived from maximums, they are ground-up distributions that can
be applied to any data set. The generalized Pareto distribution arises from the special case of
excess losses and should only be applied in that situation.
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=
1
ln

µ
1 +

¶

For a set of observations, the negative loglikelihood function is then

( ) = ln + (1 + )
X

=1

(17.7)

When = 0 and = 0, the model is the exponential distribution 0 ( ) and
equation (17.7) reduces to

( ) = ln +
1X

=1

(17.8)

resulting in the maximum likelihood estimate b = the sample mean.
Maximum likelihood estimates of the two parameters and ( is normally xed

in advance) of the generalized Pareto distribution are obtained by minimizing the
negative loglikelihood (17.7) with respect to and , which can be done in several
di erent ways. If the shape parameter is expected to be close to zero, that is, if
the underlying distribution is close to exponential, then the sample mean can serve
as a useful initial estimate of . In the Pareto case starting at zero (with =
and writing for 1 ) , the negative loglikelihood function (17.7) is reduced to

( ) = ln + (1 + )
X

=1

ln
³
1 +

´
(17.9)

The negative loglikelihood (17.9) is easily minimized numerically.
The hypothesis that = 0 can be formally tested using the likelihood ratio

test. To justify choosing the generalized Pareto over the exponential, the di erence
between optimized values of the negative loglikelihoods (17.8) and (17.9) should
be su ciently large. Twice the di erence follows a chi-square distribution with
one degree of freedom. For example, at the 5% signicance level, the chi-square
distribution with one degree of freedom has a critical value of 3.84. In this case,
we would expect the di erence between the maximized loglikelihood functions to
be at lease 1.92 in order to include a nonzero value of in the model.
The precision of an mle can be obtained approximately from asymptotic results.

For the Pareto distribution with = ( ), the elements of the Fisher information
matrix are

I( )11 = 2

I( )22 = 2( + 2)
(17.10)

I( )12 = I( )21 =
( + 1)

yielding an asymptotic covariance matrix

+ 1
µ

3( + 1) 2( + 2)
2( + 2) ( + 1)( + 2) 2

¶
(17.11)

When = 0, the generalized Pareto distribution reduces to the exponential distri-
bution with asymptotic variance 2 .
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17.1.2.3 Estimating the Pareto shape parameter One of the major issues in using
extreme value methods is determining when such methods are appropriate. Because
extreme value theory focuses only on the very large (or very small) outcomes, it is
only necessary to consider the tail of the distribution that generates those extreme
outcomes.
We consider any distribution with a tail that behaves like a Pareto distribution.

From (5.28), the Pareto distribution is tail-equivalent to
¡ ¢

To develop an
estimator for , we assume initially that we have some threshold above which
the tail is Pareto-equivalent. Consider a sample of of i.i.d. random variables 1

2 coming from the distribution

( ) =
³ ´

(17.12)

It is easy to show that the mle of from this distribution is

b =
1X

=1

ln

1

We now allow the sample size to be random rather than xed. The number of
observations in excess of the threshold is represented by the random variable .
The estimator, conditional on , becomes

b =
1 X

=1

ln

1

The Hill estimator [70] of is based on the preceding ideas. We now complete
the development of the Hill estimator. Consider a continuous distribution with a
Pareto-equivalent tail and with a unspecied form below the threshold:

( ) = unspecied, 0

= 1
³ ´

Note that represents the expected proportion of observations in excess of .
Suppose that the original sample drawn from this distribution is of size . Now

consider only the observations in excess of . As before, let the number of excee-
dences be , and let the individual values of the largest individual observations
be 1 2 Conditional on , these values constitute an i.i.d. sample from
a distribution of the form

( ) =
³ ´

The joint pdf of ( 1 2 ) can then be written as the product of the pf of
and the conditional pdf of ( 1 2 | ). The number of observations

in excess of has a binomial distribution with parameters ( ) and is independent
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of the parameter . Then the likelihood functions is

( ) = ( 1 2 )

= ( 1 2 | ) ( )

=
Y

( )
Y

=1

1 µ ¶
(1 )

=
Y

( )
Y

=1

1 µ ¶
2 (1 )

¸

Observe that the rst term involves only the unspecied part of the distribution,
the second term involves only , and the third term involves only . Thus the mle
of con be determined by maximizing the middle term. Consequently, the mle of
is

b =
1 X

=1

ln

1

Because the observations are the largest values of the sample of observa-
tions drawn from the distribution ( ), we label them from largest to smallest
as the order statistics 1 2 · · · The preceding estimator can be
rewritten as

b =
1 X

=1

ln

1

In practice the point at which the tail is Pareto-equivalent is not known in
advance. The idea of the Hill estimator is to consider the above estimate to be
a function of the number and to use the high-order statistics as thresholds
replacing . The Hill estimator is the above estimator based on the th largest
observations using the ( + 1)st largest observation as the threshold

b( ) =
1X

=1

ln
+1

1

When considered as a function of , the Hill estimator gives a prole of the shape
parameter for all possible values of The Hill estimate is a consistent estimator
when and 0 (see [114])
In practice there is no precise way of choosing . Most authors recommend

choosing a value of in a region where the Hill estimator is at so that small
changes in the choice of the threshold do not materially a ect the result.

EXAMPLE 17.1

One hundred losses were observed from a heavy-tailed distribution. The 15
largest losses are given in Table 17.1. The second column has the Hill estimate
calculated using that observed value as . From the table, it appears that the
values begin to stabilize around 72,425 at a value of = 0 85. ¤
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Table 17.1 Hill estimates for Example 17.1.

Loss/Threshold Hill estimate

1,073,751 �–
560,276 1.537
350,498 1.259
221,480 1.012
208,116 1.244
200,432 1.469
174,773 1.420
168,604 1.564
165,399 1.728
125,638 1.267
101,547 1.083
72,425 0.849
72,185 0.924
60,312 0.848
53,595 0.825

Another approach to the estimation problem considers the median of the losses
over a threshold of . It is the solution to

0 5 =
( ) ( + )

( )

When the tail is Pareto-equivalent, substituting (17.12) gives

0 5 = 1

µ
+

¶

= (21 1)

This result indicates that the median is proportional to the threshold and the slope
can be used to estimate .

EXAMPLE 17.2

Plot medians against the thresholds for the previous example and use the
slope to estimate .

The medians are plotted in Figure 17.1. The slope of 1.9465 indicates
= 0 6414, a smaller value than that from the Hill estimator. The degree to

which these points follow a straight line can also inuence our condence that
the Pareto model is appropriate. ¤

17.1.2.4 Estimating extreme probabilities Fitting generalized Pareto distributions
to excesses tells us about the shape of the tail of the distribution of losses but does
not give us the probabilities because we have not used the information about losses
below the threshold. We can obtain the extreme probabilities without imposing any
model restrictions on the portion of the distribution below the selected threshold
. The tail of the unconditional distribution of can be written as
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y = 1.9465x + 13652
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Figure 17.1 Medians above threshold for Example 17.2.

( ) = ( ) ( ) 0

where is the conditional random variable | , = and ( )
is the tail of the distribution of , which is given by

( ) =

µ
1 +

+

¶ 1

0

We are interested in obtaining the estimate \( ) for large values of If we
have obtained estimates of the parameters of the generalized Pareto distribution of
the tail beyond threshold using maximum likelihood or some other procedure, we
can obtain an estimate

\( ) =

µ
1 + bb+ b

¶ 1

A simple nonparametric estimate of ( ) is the proportion of observed values in
excess of , which can be written as

\( ) =

P
=1 { }

where the numerator is simply all -values that are greater than . The resulting
estimate of the extreme tail probability is then

\( ) =

P
=1 { }

µ
1 + bb+ b

¶ 1

An advantage of using the nonparametric estimate is that the estimation of the
tail is not complicated by estimation errors arising from model tting to the left of
the threshold, an area where we have much less interest.
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EXAMPLE 17.3

(Examples 17.1 and 17.2 continued) Use a threshold of 75,000 and maxi-
mum likelihood to estimate the unconditional distribution for values above
the threshold.

There are 11 values above the threshold, and so the rst part is 89/100 =
0.89. To obtain the mle, subtract 75,000 from each value and use numerical
methods to maximize the likelihood function, obtaining �ˆ = 0 19314 and
�ˆ = 171,476, leading to �ˆ = 1 0 19314 = 5 1773 which is markedly di erent
from the previous two estimates. ¤

17.1.2.5 Mean excess loss plots A very useful graphical procedure in modeling the
right-hand tail is to plot the mean excess loss at against the threshold . The
observed mean excess at threshold for a sample of size is

d( ) =

P
=1( )+P
=1 { }

which is the total of all excesses divided by the number of excesses. This value can
be calculated easily using each of the observed values as threshold. The resulting
plot should assist in choosing which of the generalized Pareto distributions should
be selected as a model. From Section 5.6, for large thresholds, the graph should be
approximately linearly increasing for the generalized Pareto with a positive shape
parameter. If the plot looks rather at, then the underlying distribution of the
conditional tail is more like an exponential distribution. If it is decreasing, then
a Weibull with a nite upper limit is the best choice, although we have generally
ruled out this possibility in Section 5.6.
It is not advisable to use any numerical estimates (e.g., the slope of a tted mean

excess loss) of this exercise directly. The mean excess plot can by used to identify
at what threshold value the plot becomes approximately linear, providing guidance
on the point at which the generalized Pareto distribution can be relied on for the
remainder of the distribution. Once the threshold is chosen, the estimates of the
generalized Pareto distribution can be obtained using the maximum likelihood (or
some other) method.

EXAMPLE 17.4

For the continuing example, construct the mean excess loss plot and interpret
the result.

The plot is in Figure 17.2. It is similar to Figure 17.1. The slope is an
estimate of 1 ( 1), which leads to �ˆ = 2 415. In this case, there is no obvious
range over which the plot is linear, which may indicate that the generalized
Pareto distribution is not an appropriate model. ¤
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y = 0.7067x + 160582
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Figure 17.2 Mean excess loss for Example 17.4.

17.2 COPULA MODELS

17.2.1 Introduction

Chapter 7 provides a large number of copulas, each containing one or a small num-
ber of parameters. In practice, the data are usually from the marginal distributions
of each risk type or from the corresponding joint multivariate distribution. If data
are from each risk separately, there is usually no information about the joint dis-
tribution. In this case, the estimation and selection of a model for each of the risk
types is done using the univariate methods described in previous chapters. The
question of the impact of dependence is still important: If things go really wrong
for one type of risk, are they more likely to go wrong for other risk types and what
is the impact does on the tail of the aggregate loss distribution? This section is
devoted to the study of dependence models. With these tools, the risk analyst can
experiment with di erent models and develop an understanding of the sensitivity
of results to the choice of dependence model.
In this section, we rst assume that multivariate data are available and that we

will need to estimate the full multivariate distribution. As in other areas of statisti-
cal estimation, we can use parametric, nonparametric, or semiparametric methods.
We begin by using fully parametric methods in which we assume some distributions
for the marginals and the copula and attempt to estimate the parameters simul-
taneously. Within the class of parametric methods, as in earlier chapters dealing
with univariate distributions, we prefer to use maximum likelihood estimation, the
advantages of which have been described in earlier chapters.

17.2.2 Maximum likelihood estimation

Consider the joint distribution of a -variate random variable ( 1 2 ) with
continuous marginal distributions with pdfs 1( 1) 2( 2) ( ) respectively,
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and continuous multivariate joint distribution with pdf ( 1 2 ) Using the
usual convention of using uppercase letters for the corresponding cdfs, we write the
joint cdf from the copula model as

( 1 ) = [ 1( 1) ( )]

where ( 1 ) is the copula cdf evaluated at the point ( 1 ). By di er-
entiation, the corresponding pdf is given by

( 1 ) = 1( 1) 2( 2) · · · ( ) [ 1( 1) ( )]

where ( 1 ) is the copula pdf evaluated at the point ( 1 )
It is clear that the estimation of the copula is dependent on the estimation of the

marginal distributions, because the arguments of the copula density are the cdfs of
the marginal distributions. The number of parameters to be estimated is the sum
of the parameters in the marginals plus the number of parameters in the copula.
This total can be quite large if the number of dimensions is large. Typically the
marginals will have two or three parameters each. Similarly, the copula can have
at least one additional parameter. Thus if = 5, then the number of parameters
is likely to be at least 11. With so many parameters, it is necessary to have large
amounts of data in order to get reasonably accurate estimates of the parameters.
Furthermore, maximization of a function in a high number of dimensions can be
quite challenging. Maximum likelihood estimates of the copula parameter(s) can
be unstable because of the additional uncertainty introduced by the estimation of
the parameters of the marginal distributions.
The logarithm of the pdf is

ln ( 1 ) =
X

=1

ln ( ) + ln [ 1( 1) ( )]

Now consider a sample of i.i.d. observations in dimensions. To index the
observations, we add a second subscript. Thus, represents the th dimension of
the th outcome. Then the loglikelihood function is

=
X

=1

ln ( 1 )

=
X

=1

X

=1

ln ( ) +
X

=1

ln [ 1( 1 ) ( )] (17.13)

= + (17.14)

The maximum likelihood estimates are the values of the parameters that max-
imize the loglikelihood function. This form of the loglikelihood suggests obtain-
ing approximate estimates of the parameters by rst maximizing the rst term
(the �“marginals�” term) and then maximizing the second term (the �“copula�” term).
Maximizing the marginals term involves maximizing the di erent terms in of
the form

=
X

=1

ln ( ) = 1 2 (17.15)
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where (17.15) is the loglikelihood function of the th marginal distribution. Thus,
we can rst obtain all the parameter estimates for the marginal distributions using
the univariate methods described earlier. It should be noted that these are not the
ultimate maximum likelihood estimates because the ultimate estimates depend also
on the estimates of the copula parameter(s) that have not yet been obtained. We
shall refer to the estimates arising from the maximization of (17.15) as �“pseudo-
mles.�” The e ciency of these estimates may be low because the information about
the parameters contained in the second term of the loglikelihood (17.14) is ignored
[164].
There are several approaches to maximizing the second term of loglikelihood

(17.14). One way is to use the pseudo-mles. Let e = e ( ) denote the pseudo-
estimates of the cdf of the marginal distributions at each observed value. Then the
pseudo-likelihood of the copula function is

e =
X

=1

ln (e1 e ) (17.16)

This equation is then maximized with respect to the copula parameters to obtain
the pseudo-mles of the copula parameters. This maximization can be done by any
method, although we prefer the simplex method (see Appendix F.2) because it is
very stable and works well (though no method works perfectly) when there are many
parameters. We expect that in most cases in applications, where there are not large
amounts of data, the principle of parsimony will dictate that very few parameters
should be used for the copula. Most typically, this will be only one parameter. The
second stage is to maximize the loglikelihood (17.14) overall, which can be done by
using all the pseudo-mles as starting values for the maximization procedure. This
will lead to the true mles of all parameters.
Song et al. [164] suggest another algorithm for obtaining the mles. We denote the

vector of parameters by and the true value of the parameter by 0. They suggest
rst obtaining the pseudo-estimates 1 by maximizing as we did previously or,
by solving the equations

( ) = 0.

Because the true mles satisfy

( ) = ( )

they recommend solving

( ) = ( 1)

for iteratively for = 2 3 , leading to the mle b = . They show that
if the derivatives of the loglikelihoods are wellbehaved, this iterative scheme will
converge.

17.2.3 Semiparametric estimation of the copula

There are several semiparametric or nonparametric procedures that can be used
for estimating the copula parameters directly from the data without reference to
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the form of the marginal distributions. The rst way is to use a nonparametric
estimate of the cdf terms ( ) using an empirical cdf estimator

e = e ( ) =
rank( )

+ 1
=

P
=1 { }

+ 1

where rank( ) is the rank (from lowest to highest) of the observed values 1 2

from the th marginal distribution.
The empirical cdf assigns the values 1

+1
2
+1 +1 to the ordered values (from

smallest to largest).3 The copula pseudo-mles are obtained by maximizing the
pseudo-likelihood (17.16). This method for estimating the copula parameters does
not depend on the values of the parameters of the marginal distributions (only the
observed ranks) and the resulting uncertainty introduced by estimation process of
the marginals.
Another approach to obtaining the copula parameter in the single-parameter

case, is to obtain an estimate of the measure of association, Kendall�’s tau, directly
from the data. From formula (7.1) in the bivariate case, Kendall�’s tau can be
written as

( 1 2) = [sign( 1 1 )( 2 2 )]

where ( 1 2) and ( 1 2 ) are i.i.d. random variables. Consider a sample ( 1 2 )
= 1 2 for each dimension, there are ( 1) 2 distinct pairs of points. Thus
a natural estimator of Kendall�’s tau is

b ( 1 2) =
2
P

[sign( 1 1 )( 2 2 )]

( 1)

which is easily calculated. Because there is a one-to-one correspondence between
and the single copula parameter we then can obtain the an estimate b.
Other techniques, or variations of the preceding techniques, along with their

properties have been discussed in detail by numerous authors including Genest and
Rivest [52] and Genest, Ghoudri, and Rivest [50].

17.2.4 The role of deductibles

Earlier in this chapter we discuss the importance of thresholds in modeling extreme
values distributions. In Section 15.2.4, we discuss maximum likelihood when ob-
servations have been truncated by the application of deductibles. When studying
dependent risks, there may be di erent deductibles for each variable. We now con-
sider the impact on the likelihood function of deductibles either when the data are
individual observations or when the data are grouped.
Consider two ground-up loss random variable 1 and 2 with thresholds 1 and

2, respectively. The joint cdf is

( ) = [ 1( 1) 2( 2)]

and the pdf is
( ) = 1( 1) 2( 2)[ 1( 1) 2( 2)]

3Using +1 in the denominator provides a continuity correction and keeps the probabilities away
from 0 and 1. The same adjustment was used earlier when constructing plots.
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where ( 1 2) is the copula density function. We denote the derivatives of the
copula function as

1( 1 2) =
1
( 1 2)

2( 1 2) =
2
( 1 2)

( 1 2) = 12( 1 2) =
1 2

( 1 2)

For grouped (interval) data in setting up the likelihood function, we need to
consider only the interval into which an observation falls. We denote the lower and
upper limits of the interval for 1by 1 and 1 and for 2 by 2 and 2

We now consider the four possible cases and express the contribution to the like-
lihood function by a single bivariate observation expressed in terms of the distrib-
utions of and and also expressed in terms of the copula distribution functions
and derivatives. Writing down the likelihood contribution is a nontrivial. One
needs to be careful about conditioning. If the outcome 1 falls below its thresh-
old 1 then the outcome ( 1 2) is not observed. Hence, observations need to be
conditioned on 1 1 and also on 2 2 Also note that even when individ-
ual data are collected, the presence of a limit (censoring) will create some grouped
observations.
Case 1. Individual observation for both 1 and 2

If the outcome 1 falls below its threshold 1 or if 2 falls below 2, then the
outcome ( 1 2) is not observed. Hence, observations need to be conditioned on
both 1 1 and 2 2

( 1 2)

1 1( 1) 2( 2) + ( 1 2)
(17.17)

=
1( 1) 2( 2) [ 1( 1) 2( 2)]

1 1( 1) 2( 2) + [ 1( 1) 2( 2)]

Case 2. Individual observation for 1 and grouped observation for 2

1
( 1 2)

1
( 1 2)

1 1( 1) 2( 2) + ( 1 2)

=
1( 1){ 1[ 1( 1) 2( 2)] 1[ 1( 1) 2( 2)]}
1 1( 1) 2( 2) + [ 1( 1) 2( 2)]

(17.18)

Case 3. Individual observation for 2 and grouped observation for 1

2
( 1 2)

2
( 1 2)

1 1( 1) 2( 2) + ( 1 2)

=
2( 2){ 2[ 1( 1) 2( 2)] 1[ 1( 1) 2( 2)]}
1 1( 1) 1( 2) + [ 1( 1) 2( 2)]

(17.19)
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Case 4. Grouped observations for both 1 and 2

( 1 2) ( 1 2) ( 1 2) + ( 1 2)

1 1( 1) 2( 2) + ( 1 2)

=

{ [ 1( 1) 2( 2)] [ 1( 1) 2( 2)]
[ 1( 1) 2( 2)] + [ 1( 1) 2( 2)]}

1 1( 1) 2( 2) + [ 1( 1) 2( 2))]
(17.20)

The likelihood function is the product of the contributions of all observations,
in this case bivariate observations. The separation into two terms that allow a
two-stage process (as in the previous section) to get approximate estimates of the
parameters is not possible. In this case, it may be advisable to choose a repre-
sentative point within each interval for each grouped observation, simplifying the
problem considerably. This approach leads to approximate estimates using the two-
stage process. Then these estimates can be used as initial values for maximizing
the likelihood function using the simplex method.

17.2.5 Goodness-of-t testing

Klugman and Parsa [96] address the issue of testing the t of a bivariate copula.
They point out that it is possible to use a standard chi-square test of t. However,
to do so requires that we group data into intervals, in this case rectangles over the
unit square. Because the data may be concentrated in certain parts of the square,
there are likely to be large areas where there are too few observations falling into a
rectangle. It would seem logical to group adjacent intervals into larger areas until
a reasonable number of observations is expected. In two dimensions, there is no
obviously logical way of combining intervals. Thus we try a di erent strategy.
Consider two random variables 1 and 2 with cdfs 1( ) and 2( ), respec-

tively. The random variables 1 = 1( 1) and 2 = 2( 2) are both uniform
(0,1) random variables. (The uniform distribution is a key to simulation, as noted
in Chapter 21) Now introduce the conditional random variables 1 = 12( 1 | 2)
and 2 = 21( 2 | 1) Then the random variables 1 and 2 are mutually inde-
pendent uniform (0, 1) random variables, which can be argued as follows. Consider
the random variable 1 = 12( 1 | 2 = ). Because it is a cdf applied to a ran-
dom variable with that cdf, it must have a uniform (0,1) distribution. This result
is true for any value of . Thus, the distribution of 1 does not depend on the
value of 2 and therefore does not depend on 2 = 2( 2) An identical argument
shows that the random variables 2 and 1 are mutually independent uniform (0,
1) random variables.
The observed value of distribution function of the conditional random variable
2 given 1 = 1 is

21( 2 | 1 = 1) = 1[ 1( 1) 2( 2)] (17.21)

The observed value 2 of the random variable 2 can be obtained from the
observed values of the bivariate random variables ( 1 2) from

2 = b
21( 2 | 1 = 1) = b

1

h
b

1( 1) b
2( 2)

i
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Thus, we can generate a univariate set of data that should look like a sample
from a uniform (0,1) distribution if the combination of marginal distributions and
the copula ts the data well.
Klugman and Parsa [96] suggest the following procedure for testing the t based

entirely on univariate methods:

Step 1. Fit and select the marginal distributions using univariate methods.
Step 2. Test the conditional distribution of 1 for uniformity.
Step 3. Test the conditional distribution of 2 for uniformity.

The tests for uniformity can be done using a formal goodness-of-t test such as
a Kolmogorov�—Smirnov test. Alternatively, one can plot the cdf of the empirical
distributions, which should be linear (or close to it). This is equivalent to doing a

plot for the uniform distribution.
In higher dimensions, the problems become more complicated. However, by fol-

lowing the above procedures for all pairs of random variables, one can be reasonably
satised about the overall t of the model (both marginals and copula). Completing
these steps requires a signicant e ort, but can be automated relatively easily.

17.2.6 An example

We illustrate some of the concepts in this chapter using simulated data. The data
consist of 100 pairs {( ) = 1 2 100} that are simulated from the bivariate
distribution with a Gumbel ( = 3) copula and marginal distributions loglogistic
( = 1 = 3) and Weibull ( = 1 = 3). This is a ve-parameter model. We
rst use maximum likelihood to t the �“correct�” ve-parameter distribution but
with all parameters treated as unknown. We then attempt to t an �“incorrect�”
distribution with marginals of the same form but a misspecied copula.
Given the 100 points, the ve-parameter joint distribution is easy to t directly

using maximum likelihood. The loglikelihood function is

=
100X

=1

ln ( 1 2 )

=
100X

=1

2X

=1

ln ( ) +
100X

=1

ln [ 1( 1 ) 2( 2 )]

where 1( ) and 2( ) are the marginal distributions and ( 1 2) is the copula
density function. The rst term was maximized with the following results:

Distribution
Loglogistic 1.00035 3.27608
Weibull 0.74106 3.22952
Gumbel copula �– �–

These are the maximum likelihood estimates of the marginal distributions and
are thus pseudo-mles for the joint distribution. The entire likelihood was then
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maximized, resulting in the following estimates of the ve parameters.

Distribution
Loglogistic 1.00031 3.25611
Weibull 0.75254 3.08480
Gumbel copula 2.84116 �–

Note that the parameter estimates for the marginal distribution changed slightly
as a result of simultaneously estimating the copula parameter. The overall negative
loglikelihood was 10.06897. We repeat this exercise but using the Joe copula as an
alternative. The results of the simultaneous maximum likelihood estimation of all
ve parameters gave the following estimates:

Distribution
Loglogistic 0.98330 3.12334
Weibull 0.74306 2.89547
Joe copula 3.85403 �–

The overall negative loglikelihood increased to 15.68361, a quite large increase
over that using the Gumbel copula that generated the data. Note also that the
estimates of the parameters of the marginal distributions are also changed.
For the same data, we also used the semiparametric approach. Rather than use

the observed values of the marginal distribution to estimate the copula parameter,
we used the ranks of those values. The ranks are independent of the choice of
marginal distribution. Using these values, together with the �“correct�” specication
of the copula, we also calculated the value of the negative loglikelihood with these
estimates. Of course, the negative loglikelihood will be higher because the mle
method gives the lowest possible value. It is 13.67761, which is somewhat greater
than the minimum of 10.06897. The new estimate of the Gumbel copula parameter
is 2.69586.
Finally, we also used the nonparametric approach with the misspecied copula

function, the Joe copula. The estimate of the Joe copula parameter is 3.31770
with a corresponding likelihood of 21.58245, which is much larger than the other
likelihood values.

17.2.7 Exercise

17.1 Consider the data set in Table 17.2. which illustrates a sample insurer�’s
losses as well as the corresponding insurer�’s associated expenses (Allocated Loss
Adjustment Expenses).

(a) Obtain an estimate of Kendall�’s tau, , for this data set.

(b) Use the estimate from (a) to estimate the value of for a Gumbel copula.

(c) Using the semi-parametric approach of Section 17.2.3, obtain the maxi-
mum likelihood estimate of for the bivariate Gumbel copula.

(d) Which of these two estimates of is preferable? Why?
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Table 17.2 Twenty-four losses with ALAE for Exercise 17.1.

Loss ALAE Loss ALAE

1,500 301 11,750 2,530
2,000 3,043 12,500 165
2,500 415 14,000 175
3,500 4,940 14,750 28,217
4,500 395 15,000 2,072
5,000 25 17,500 6,328
5,750 34,474 19,833 212
7,000 50 30,000 2,172
7,100 10,593 33,033 7,845
7,500 100 44,887 2,178
9,000 406 62,500 12,251
10,000 1,174 210,000 7,357

17.3 MODELS WITH COVARIATES

17.3.1 Introduction

It may be that the distribution of the random variable of interest depends on certain
characteristics of the underlying situation. For example, the distribution of time
to death may be related to the individual�’s age, gender, smoking status, blood
pressure, height, and weight. Or consider the number of automobile accidents a
vehicle has in a year. The distribution of this variable might be related to the
number of miles it is driven, where it is driven, and various characteristics of the
primary driver such as age, gender, marital status, and driving history.

EXAMPLE 17.5

Suppose we believe that the distribution of the number of accidents a driver
has in a year is related to the driver�’s age and gender. Provide three ap-
proaches to modeling this situation.

Of course, there is no limit to the number of models that could be consid-
ered. Three that might be used are as follows.
1. Construct a model for each combination of gender and age. Collect data

separately for each combination and construct each model separately. Either
parametric or data-dependent models could be selected.
2. Construct a single, fully parametric model for this situation. As an

example, the number of accidents for a given driver could be assumed to have
the Poisson distribution with parameter . The value of is then assumed to
depend on the age and the gender ( = 1 for males, = 0 for females) in
some way such as

= ( 0 + 1 + 2
2)

3. Begin with a model for the density, distribution, or hazard rate function
that is similar to a data-dependent model. Then use the age and gender to
modify this function. For example, select a survival function 0( ), and then
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the survival function for a particular driver might be

( | ) = [ 0( )]
( 0+ 1 + 2

2) ¤

While there is nothing wrong with the rst approach, it is not very interesting.
It just asks us to repeat the modeling process over and over as we move from
one combination to another. The second approach is a single parametric model
that can also be analyzed with techniques already discussed, but it is clearly more
parsimonious. The third model�’s hybrid nature implies that additional e ort will
be needed to implement it.
The third model would be a good choice when there is no obvious distributional

model for a given individual. In the case of automobile drivers, the Poisson distri-
bution is a reasonable choice, and so the second model may be the best approach.
If the variable is time to death, a data-dependent model such as a life table may
be appropriate.
The advantage of the second and third approaches over the rst one is that

for some of the combinations there may be very few observations. In this case,
the parsimony a orded by the second and third models may allow the limited
information to still be useful. For example, suppose our task was to estimate the
80 entries in a life table running from age 20 through age 99 for four gender/smoker
combinations. Using the ideas in model 1 there are 320 items to estimate. Using
the ideas in model 3, there would be 83 items to estimate.4

17.3.2 Proportional hazards models

A particular model that is relatively easy to work with is the Cox proportional
hazards model.

Denition 17.1 Given a baseline hazard rate function 0( ) and values 1

associated with a particular individual, the Cox proportional hazards model for
that person is given by the hazard rate function

( |z) = 0( ) ( 1 1 + · · ·+ ) = 0( ) ( z)

where ( ) is any function that takes on only positive values; z = ( 1 ) is
a column vector of the values (called covariates); and = ( 1 ) is a
column vector of coe cients.

The only function that is used here is ( ) = . One advantage of this function
is that it must be positive. The name for this model is tting because if the ratio
of the hazard rate functions for two individuals is taken, the ratio will be constant.
That is, one person�’s hazard rate function is proportional to any other person�’s
hazard rate function. Our goal is to estimate the baseline hazard rate function
0( ) and the vector of coe cients .

4There would be 80 items needed to estimate the survival function for one of the four combinations.
The other three combinations each add one more item, the power to which the survival function
is to be raised.
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EXAMPLE 17.6

Suppose the size of a homeowner�’s re insurance claim as a percentage of the
house�’s value depends on the age of the house and the type of construction
(wood or brick). Develop a Cox proportional hazards model for this situation.
Also, indicate the di erence between wood and brick houses of the same age.

Let 1 = (a nonnegative whole number) and 2 = 1 if the construction
is wood or 2 = 0 if the construction is brick. Then the hazard rate function
for a given house is

( | 1 2) = 0( ) 1 1+ 2 2

One consequence of this model is that, regardless of the age, the e ect of
switching from brick to wood is the same. For two houses of age 1 we have

( ) = 0( ) 1 1+ 2 = ( ) 2

The e ect on the survival function is

( ) = exp

Z

0

( )

¸
= exp

Z

0

( ) 2

¸

= [ ( )]exp( 2) ¤

The baseline hazard rate function can be estimated using either a parametric
model or a data-dependent model. The remainder of the model is parametric. In
the spirit of this text, we use maximum likelihood for estimation of 1 and 2. We
begin with a fully parametric example.

EXAMPLE 17.7

For the re insurance example, 10 payments are listed in Table 17.3. All values
are expressed as a percentage of the house�’s value. Estimate the parameters
of the Cox proportional hazards model using maximum likelihood and both
an exponential and a beta distribution for the baseline hazard rate function.
There is no deductible on these policies, but there is a policy limit (which
di ers by policy).

To construct the likelihood function, we need the density and survival func-
tions. Let = exp( z) be the Cox multiplier for the th observation. Then,
as noted in the previous example, ( ) = 0( ) , where 0( ) is the baseline
distribution. The density function is

( ) =
0
( ) = 0( )

1 0

0( )

= 0( )
1
0( ).

For the exponential distribution,

( ) = [ ] = and ( ) =
³ ´
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Table 17.3 Fire insurance payments for Example 17.7.

1 2 Payment

10 0 70
20 0 22
30 0 90*
40 0 81
50 0 8
10 1 51
20 1 95*
30 1 55
40 1 85*
50 1 93

*The payment was made at the policy limit.

and for the beta distribution,

( ) = [1 ( ; )] , and

( ) = [1 ( ; )] 1 ( + )

( ) ( )
1(1 ) 1

where ( ; ) is the distribution function for a beta distribution with pa-
rameters and (available in Excel R° as BETADIST(x,a,b)). The gamma
function is available in Excel R° as EXP(GAMMALN(a)). For policies with
payments not at the limit, the contribution to the likelihood function is the
density function, while, for those paid at the limit, it is the survival function.
In both cases, the likelihood function is su ciently complex that it is not
worth writing out. The parameter estimates for the exponential model are
�ˆ
1 = 0 00319, �ˆ2 = 0 63722, and �ˆ = 0 74041. The value of the logarithm
of the likelihood function is 6 1379. For the beta model, the estimates are
�ˆ
1 = 0 00315, �ˆ2 = 0 77847, �ˆ = 1 03706, and �ˆ = 0 81442. The value
of the logarithm of the likelihood function is 4 2155. Using the Schwarz
Bayesian criterion (see Section 16.5.3), an improvement of ln(10) 2 = 1 1513
is needed to justify a fourth parameter. The beta model is preferred. If an
estimate of the information matrix is desired, the only reasonable strategy is
to take numerical derivatives of the loglikelihood. ¤

An alternative is to construct a data-dependent model for the baseline hazard
rate. Let ( ) be the set of observations that are in the risk set for uncensored
observation .5 Rather than obtain the true likelihood value, it is easier to ob-
tain what is called the partial likelihood value. It is a conditional value. Rather
than asking, �“What is the probability of observing a value of ?�” we ask, �“Given
that it is known there is an uncensored observation of , what is the probability
that it was that particular policy that had that value? Do this conditioned on
equalling or exceeding that value.�” This change in approach allows us to estimate

5Recall from Section 14.1 that 1 2 represent the ordered, unique values from the set of
uncensored observations. The risk set is also dened in that section.
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Table 17.4 Fire insurance likelihood for Example 17.8.

Value Contribution to

8 8 1 = exp(50 1)
1

1+···+ 10

22 22 2 = exp(20 1)
2

2+···+ 10

51 51 3 = exp(10 1 + 2)
3

3+···+ 10

55 55 4 = exp(30 1 + 2)
4

4+···+ 10

70 70 5 = exp(10 1)
5

5+···+ 10

81 81 6 = exp(40 1)
6

6+···+ 10

85 7 = exp(40 1 + 2)

90 8 = exp(30 1)

93 93 9 = exp(50 1 + 2)
9

9+ 10

95 10 = exp(20 1 + 2)

the coe cients separately from the baseline hazard rate. Notation can become
a bit awkward here. Let identify the observation that produced the uncensored
observation of . Then the contribution to the likelihood function for that policy
is

( ) ( )P
( ) ( ) ( )

=
0( ) 0( )P

( ) 0( ) 0( )
= P

( )

EXAMPLE 17.8

Use the partial likelihood to estimate 1 and 2.

The ordered, uncensored values are 8, 22, 51, 55, 70, 81, and 93. The
calculation of the contribution to the likelihood function is in Table 17.4.
The product is maximized when �ˆ1 = 0 00373 and �ˆ2 = 0 91994 and

the logarithm of the partial likelihood is 11 9889. When 1 is forced to
be zero, the maximum is at �ˆ2 = 0 93708 and the logarithm of the partial
likelihood is 11 9968. There is no evidence in this sample that age of the
house has an impact when using this model. ¤

Three issues remain. One is to estimate the baseline hazard rate function, one is
to deal with the case where there are multiple observations at the same value, and
the nal one is to estimate the variances of estimators. For the second problem,
there are a number of approaches in the literature. The question raised earlier
could be rephrased as �“Given that it is known there are uncensored observations
of , what is the probability that it was those particular policies that actually
had that value? Do this conditioned on equalling or exceeding that value.�” A direct
interpretation of this statement would have the numerator reect the probability
of the observations that were observed. The denominator would be based on
all subsets of ( ) with members. This is a lot of work. A simplied version
attributed to Breslow treats each of the observations separately but, for the
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denominator, uses the same risk set for all of them. The e ect is to require no
change from the algorithm prevously introduced.

EXAMPLE 17.9

In the previous example, suppose that the observation of 81 had actually
been 70. Give the contribution to the partial likelihood function for these two
observations.

Using the notation from Example 17.8, the contribution for the rst obser-
vation of 70 would still be 5 ( 5+ · · ·+ 10). However, the second observation
of 70 would now contribute 6 ( 5 + · · ·+ 10). Note that the numerator has
not changed (it is still 6); however, the denominator reects the fact that
there are six observations in (70). ¤

With regard to estimating the hazard rate function, we rst note that the cu-
mulative hazard rate function is

( |z) =
Z

0

( |z) =

Z

0
0( ) = 0( )

To employ an analog of the Nelson�—Åalen estimate, we use

�ˆ
0( ) =

X
P

( )

That is, the outer sum is taken over all uncensored observations less than or equal to
. The numerator is the number of observations having an uncensored value equal to
and the denominator, rather than having the number in the risk set, adds their

values. As usual, the baseline survival function is estimated as �ˆ0( ) = exp[ �ˆ
0( )].

EXAMPLE 17.10

For the continuing example (using the original values), estimate the baseline
survival function and then estimate the probability that a claim for a 35-year-
old wood house will exceed 80% of the house�’s value. Compare this result to
the value obtained from the beta distribution model obtained earlier.

Using the estimates obtained earlier, the 10 values are as given in Table
17.5. Also included is the jump in the cumulative hazard estimate, followed by
the estimate of the cumulative hazard function itself. Values for that function
apply from the given value up to, but not including, the next value.
For the house as described, = exp[ 0 00373(35) 0 91994(1)] = 0 34977.

The estimated probability is 0 34150 34977 = 0 68674. From the beta distrib-
ution, �ˆ0(0 8) = 0 27732 and = exp[ 0 00315(35) 0 77847(1)] = 0 41118,
which gives an estimated probability of 0 277320 41118 = 0 59015. ¤

With regard to variance estimates, the logarithm of the partial likelihood func-
tion is

( ) =
X

lnP
( )
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Table 17.5 Fire insurance baseline survival function for Example 17.10.

Value Jump �ˆ
0( ) �ˆ

0( )

8 8 0.8300 1
0 8300+···+0 3699 = 0 1597 0.1597 0.8524

22 22 0.9282 1
0 9282+···+0 3699 = 0 1841 0.3438 0.7091

51 51 0.3840 1
0 3840+···+0 3699 = 0 2220 0.5658 0.5679

55 55 0.3564 1
0 3564+···+0 3699 = 0 2427 0.8086 0.4455

70 70 0.9634 1
0 9634+···+0 3699 = 0 2657 1.0743 0.3415

81 81 0.8615 1
0 8615+···+0 3699 = 0 3572 1.4315 0.2390

85 0.3434

90 0.8942

93 93 0.3308 1
0 3308+0 3699

= 1 4271 2.8586 0.0574

95 0.3699

where the sum is taken over all observations that produced an uncensored value.
Taking the rst partial derivative with respect to produces

( ) =
X 1 1P

( )

X

( )

.

To simplify this expression, note that

=
1 1+ 2 2+···+

=

where is the value of for subject . The derivative is

( ) =
X

" P
( )P
( )

#

The negative second partial derivative is

2

( )

=
X

P
( )P

( )

³P
( )

´³P
( )

´

³P
( )

´2

Using the estimated values, these partial derivatives provide an estimate of the
information matrix.
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EXAMPLE 17.11

Obtain the information matrix and estimated covariance matrix for the con-
tinuing example. Then use this matrix to produce a 95% condence interval
for the relative risk of a wood house versus a brick house of the same age.

Consider the entry in the outer sum for the observation with 1 = 50
and 2 = 1. The risk set contains this observation (with a value of 93 and
= 0 330802) and the censored observation with 1 = 20 and 2 = 1 (with a
value of 95 and = 0 369924). For the derivative with respect to 1 and 2,
the entry is

50(1)(0 330802) + 20(1)(0 369924)

0 330802 + 0 369924
[50(0 330802) + 20(0 369924)][1(0 330802) + 1(0 369924)]

(0 330802 + 0 369924)2
= 0

Summing such items and doing the same for the other partial derivatives yield
the information matrix and its inverse, the covariance matrix:

=
1171 054 5 976519
5 976519 1 322283

¸
dVar = 0 000874 0 00395

0 00395 0 774125

¸

The relative risk is the ratio of the values for the two cases. For a house of
age , the relative risk of wood versus brick is 1 1+ 2 1 1 = 2 . A 95%
condence interval for 2 is 0 91994± 1 96 0 774125 or ( 2 6444 0 80455).
Exponentiating the endpoints gives the condence interval for the relative
risk, (0 07105 2 2357). ¤

17.3.3 The generalized linear and accelerated failure time models

The proportional hazards model requires a particular relationship between survival
functions. For actuarial purposes, it may not be the most appropriate because
it is di cult to interpret the meaning of multiplying a hazard rate function by
a constant (or, equivalently, raising a survival function to a power).6 It may be
more useful to relate the covariates to a quantity of direct interest, such as the
expected value. Linear models, such as the standard multiple regression model,
are inadequate because they tend to rely on the normal distribution, a model not
suitable for most phenomena of interest to actuaries. The generalized linear model
drops that restriction and, so, may be more useful. A comprehensive reference is
[115] and actuarial papers using the model include [58], [75], [121], and [126]. The
denition of this model given here is slightly more general than the usual one.

Denition 17.2 Suppose a parametric distribution has parameters and , where
is the mean and is a vector of additional parameters. Let its cdf be ( | ).

The mean must not depend on the additional parameters and the additional parame-
ters must not depend on the mean. Let z be a vector of covariates for an individual,

6However, it is not uncommon in life insurance to incorporate a given health risk (such as obesity)
by multiplying the values of by a constant, which is not much di erent from multiplying the
hazard rate function by a constant.
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let be a vector of coe cients, and let ( ) and ( ) be functions. The general-
ized linear model then states that the random variable, , has as its distribution
function

( |z ) = ( | )

where is such that ( ) = ( z).

The model indicates that the mean of an individual observation is related to the
covariates through a particular set of functions. Normally, these functions do not
involve parameters but, instead, are used to provide a good t or to ensure that
only legitimate values of are encountered.

EXAMPLE 17.12

Demonstrate that the ordinary linear regression model is a special case of the
generalized linear model.

For ordinary linear regression, has a normal distribution with = and
= 2. Both and are the identity function, resulting in = z. ¤

The model presented here is more general than the one usually used where only
a few distributions are allowed for . The reason is that, for these distributions,
it has been possible to develop the full set of regression tools, such as residual
(called deviances) analysis. Computer packages that implement the generalized
linear model use only these distributions.
For many of the distributions we have been using, the mean is not a parameter.

However, it could be. For example, we could parameterize the Pareto distribution
by setting = ( 1) or, equivalently, replacing with ( 1). The distribution
function is now

( | ) = 1
( 1)

( 1) +

¸
0 1

Note the restriction on in the parameter space.

EXAMPLE 17.13

Construct a generalized linear model for the data set in Example 17.7 using
a beta distribution for the loss model.

The beta distribution as parameterized in Appendix A has a mean of =
( + ). Let the other parameter be = . One way of linking the covariates

to the mean is to use ( ) = (1 ) and ( z) = exp( z). Setting these
equal and solving yields

=
exp( z)

1 + exp( z)

Solving the rst two equations yields = (1 ) = exp( z). Maximum
likelihood estimation proceeds by using a factor of ( ) for each uncensored
observation and 1 ( ) for each censored observation. For each observation,
the beta distribution uses the parameter directly, and the parameter from
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the value of and the covariates for that observation. Because there is no
baseline distribution, the expression z must include a constant term. Max-
imizing the likelihood function yields the estimates �ˆ = 0 5775, �ˆ0 = 0 2130,
�ˆ
1 = 0 0018, and �ˆ2 = 1 0940. As in Example 17.7, the impact of age is
negligible. One advantage of this model is that the mean is directly linked to
the covariates. ¤

A model that is similar in spirit to the generalized linear model is the accelerated
failure time model, as follows.

Denition 17.3 The accelerated failure time model is dened from

( |z ) = 0(
z) (17.22)

To see that, provided the mean exists, it is a generalized linear model, rst note
that, (assuming (0) = 1),

E( |z ) =

Z

0
0(

z) =

Z

0

z
0( ) = exp( z) 0( )

thus relating the mean of the distribution to the covariates. The name comes
from the fact that the covariates e ectively change the age. A person age whose
covariates are z has a future lifetime with the same distribution as a person for
whom z = 0 and is age z. If the baseline distribution has a scale parameter,
then the e ect of the covariates is to multiply that scale parameter by a constant.
So, if is the scale parameter for the baseline distribution, then a person with
covariate z will have the same distribution, but with scale parameter exp( z) .
Unlike the generalized linear model, it is not necessary for the mean to exist before
this model can be used.

EXAMPLE 17.14

A mortality study at ages 50�—59 included people of both genders and with
systolic blood pressure of 100, 125, or 150. For each of the 6 combinations
and at each of the 10 ages, 1,000 people were observed and the number of
deaths recorded. The data appear in Table 17.6. Develop and estimate the
parameters for an accelerated failure time model based on the Gompertz dis-
tribution.

The Gompertz distribution has hazard rate function ( ) = , which
implies a survival function of 0( ) = exp[ ( 1) ln ] as the baseline
distribution. Let the covariates be 1 = 0 for males and 1 = 1 for females,
and let 2 be the blood pressure. For an individual insured, let = exp( 1 1+

2 2). The accelerated failure time model implies that

( | ) = 0

µ ¶
= exp

( 1)

ln

¸

Let = 1 and let = . Then,

( | ) = exp
( 1)

ln

¸
= exp

( 1)

ln

¸
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Table 17.6 Data for Example 17.14.

Male (0) Female (1)

Age 100 125 150 100 125 150

50 13 12 85 3 12 49
51 11 21 95 7 13 53
52 8 8 105 8 13 69
53 10 20 113 12 16 61
54 8 11 109 12 15 60
55 13 22 126 8 12 68
56 19 16 142 11 11 96
57 9 19 145 5 19 97
58 17 23 155 5 17 93
59 14 28 182 9 14 96

and so the distribution remains Gompertz with new parameters as indicated.
For each age,

| = 1
( + 1| )
( | )

= 1 exp
( 1)

ln

¸

If there are deaths at age , the contribution to the loglikelihood function
(where a binomial distribution has been assumed for the number of deaths) is

ln + (1000 ) ln(1 ).

The likelihood function is maximized at = 0 000243, = 1 00866, 1 =
0 110, and 2 = 0 0144. Being female multiplies the expected lifetime (from
birth) by a factor of exp(0 110) = 1 116. An increase of 25 in blood pressure
lowers the expected lifetime by 1 exp[ 25(0 0144)] = 0 302, or a 30.2%
decrease. ¤

17.3.4 Exercises

17.2 Suppose the 40 observations in Data Set D2 in Chapter 13 were from four
types of policyholders. Observations 1, 5, ... are from male smokers; observations
2, 6, ... are from male nonsmokers; observations 3, 7, ... are from female smokers;
and observations 4, 8, ... are from female nonsmokers. You are to construct a
model for the time to surrender and then use the model to estimate the probability
of surrendering in the rst year for each of the four cases. Construct each of the
following three models:

(a) Use four di erent Nelson�—Åalen estimates, keeping the four groups sep-
arate.

(b) Use a proportional hazards model where the baseline distribution has
the exponential distribution.

(c) Use a proportional hazards model with an empirical estimate of the
baseline distribution.
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17.3 (*) The duration of a strike follows a Cox proportional hazards model in
which the baseline distribution has an exponential distribution. The only variable
used is the index of industrial production. When the index has a value of 10, the
mean duration of a strike is 0.2060 years. When the index has a value of 25, the
median duration is 0.0411 years. Determine the probability that a strike will have
a duration of more than one year if the index has a value of 5.

17.4 (*) A Cox proportional hazards model has 1 = 1 for males and 1 = 0 for
females, and 2 = 1 for adults and 2 = 0 for children. The maximum likelihood
estimates of the coe cients are �ˆ1 = 0 25 and �ˆ2 = 0 45. The covariance matrix
of the estimators is

0 36 0 10
0 10 0 20

¸

Determine a 95% linear condence interval for 1 2 and then use the result
to obtain a condence interval for the relative risk of a male child compared to a
female adult.

17.5 (*) Four insureds were observed from birth to death. The two from Class
A died at times 1 and 9, while the two from Class B died at times 2 and 4. A
proportional hazards model uses 1 = 1 for Class B and 0 for Class A. Let = �ˆ1.
Estimate the cumulative hazard rate at time 3 for a member of Class A as a function
of .

17.6 (*) A Cox proportional hazards model has three covariates. The life that died
rst has values 1 0 0 for 1 2 3. The second to die has values 0 1 0 and the third
to die has values 0 0 1. Determine the partial likelihood function (as a function of

1 2 and 3).

17.7 (*) A Cox proportional hazards model was used to compare the fuel economy
of traditional and hybrid cars. There is a single covariate, = 0 for traditional cars
and = 1 for hybrid cars. Samples of size ve were taken of the miles per gallon
for each type of car. Traditional: 22, 25, 28, 33, and 39; Hybrid: 27, 31, 35, 42, 45.
The partial maximum likelihood estimate of the coe cient is 1. Determine the
estimate of the baseline cumulative hazard function 0(32) using an analog of the
Nelson-Åalen estimator that is appropriate for proportional hazard models.

17.8 (*) A Cox proportional hazards model is used to study losses from two groups.
Group 1 has = 0 and group 2 has = 1. A sample of size three is taken from
each group. Group 1: 275, 325, 520; Group 2: 215, 250, 300. The baseline survival
function is 0( ) = (200 ) , 200, 0. Determine the maximum likelihood
estimate of the coe cient .

17.9 Repeat Example 17.13 using only construction type and not age.

17.10 Repeat Example 17.14 using a proportional hazards model with a Gompertz
baseline distribution.

17.11 Repeat Example 17.14 using an accelerated failure time model with a gamma
baseline distribution.
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FIVE EXAMPLES

18.1 INTRODUCTION

In this chapter we present ve examples that illustrate many of the concepts dis-
cussed to this point. The rst is a model for the time to death. The second model
is for the time from when a medical malpractice incident occurs to when it is re-
ported. The third model is for the amount of a liability payment. This model is
also continuous but most likely has a decreasing failure rate (typical of payment
amount variables). In contrast, time to event variables tend to have an increasing
failure rate. The last two examples add aggregate loss calculations from Chapter 9
to the mix.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.

529
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Table 18.1 1900 female mortality.

( ) ( ) ( )

0 1.000 35 0.681 75 0.233
1 0.880 40 0.650 80 0.140
5 0.814 45 0.617 85 0.062
10 0.796 50 0.580 90 0.020
15 0.783 55 0.534 95 0.003
20 0.766 60 0.478 100 0.000
25 0.739 65 0.410
30 0.711 70 0.328

0
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1
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Figure 18.1 Survival function for Society of Actuaries data.

18.2 TIME TO DEATH

18.2.1 The data

A variety of mortality tables are available from the Society of Actuaries at www.soa.org.
The typical mortality table provides values of the survival function at each whole-
number age at death. Table 18.1 represents female mortality in 1900, with only
some of the data points presented. Figure 18.1 is a graph of the survival function
obtained by connecting the given points with straight lines.
In actuarial studies of the length of human life, the mean residual life (or expected

future lifetime) function is analogous to the mean excess loss function in actuarial
studies of the amount of loss. The mean residual life function can be obtained by
assuming that the survival function is indeed a straight line connecting each of the
available points. From (3.5) it can be computed as the area under the curve beyond
the given age divided by the value of the survival function at that age. Figure 18.2
shows a plot of the mean residual life function. The slight increase shortly after
birth indicates that in 1900 infant mortality was high. Surviving the rst year after
birth adds about ve years to one�’s expected remaining lifetime. After that, the
mean residual life steadily decreases, which is the e ect of aging that we would have
expected.
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Figure 18.2 Mean residual life function for Society of Actuaries data.

18.2.2 Some calculations

Items such as deductibles, limits, and coinsurances are not particularly interest-
ing with regard to insurances on human lifetimes. We consider the following two
problems:

1. For a person age 65, determine the expected present value of providing 1,000
at the beginning of each year in which the person is alive. The interest rate
is 6%.

2. For a person age 20, determine the expected present value of providing 1,000
at the moment of death. The interest rate is 6%.

For the rst problem, the present value random variable can be written as
= 1,000( 0 + · · ·+ 34), where is the present value of that part of the benet

that pays 1 at age 65 + if the person is alive at that time. Then,

=
1 06 with probability

(65 + )

(65)

0 with probability 1
(65 + )

(65)
.

The answer is then

E( ) = 1,000
34X

=0

1 06 (65 + )

0 410

= 8,408 07

where linear interpolation was used for intermediate values of the survival function.
For the second problem, let = 1,000(1 06 ) be the present value random

variable, where is the time in years to death of the 20-year old. The calculation
is

E( ) = 1,000
Z 80

0

1 06 (20 + )

(20)
.
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When linear interpolation is used to obtain the survival function at intermediate
ages, the density function becomes the slope. That is, if is a multiple of 5, then

( ) =
( ) ( + 5)

5
+ 5.

Breaking the range of integration into 16 pieces gives

E( ) =
1,000
0 766

15X

=0

(20 + 5 ) (25 + 5 )

5

Z 5+5

5

1 06

=
200

0 766

15X

=0

[ (20 + 5 ) (25 + 5 )]
1 06 5 1 06 5 5

ln 1 06

= 155 10.

While it is unusual for a parametric model to be used, we do so anyway. Consider
the Makeham distribution with hazard rate function ( ) = + . Then

( ) = exp
( 1)

ln

¸
.

Maximum likelihood estimation cannot be used because no sample size is given.
Because it is unlikely that this model will be e ective below age 20, only infor-
mation beyond that age is used. Assume that that there were 1,000 lives at age
0 who died according to the survival function in Table 18.1. Then, for example,
the contribution to the likelihood function for the interval from age 30 to 35 is
30 ln{[ (30) (35)] (20)} with the survival function using the Makeham dis-
tribution. The sample size comes from 1,000(0.711 0.681) with these survival
function values taken from the �“data.�”1 The values that maximize this likelihood
function are �ˆ = 0.006698, �ˆ = 0.00007976, and �ˆ = 1 09563. In Figure 18.3 the
diamonds represent the �“data�” and the solid curve is the Makeham survival func-
tion (both have been conditioned on being alive at age 20). The t is almost too
good, suggesting that perhaps this mortality table was already smoothed to follow
a Makeham distribution at adult ages.
The same calculations can be done. For the annuity, no interpolation is needed

because the Makeham function provides the survival function values at each age.
The answer is 8,405.24. For the insurance, it is di cult to do the integral analyti-
cally. Linear interpolation was used between integral ages to produce an answer of
154.90. The agreement with the answers obtained earlier is not surprising.

18.2.3 Exercise

18.1 From ages 5 through 100, the mean excess life function is essentially linear.
Because insurances are rarely sold under age 5, it would be reasonable to extend
the graph linearly back to 0. Then a reasonable approximation is ( ) = 60 0 6 .
Using this function, determine the density and survival function for the age at death
and then solve the two problems.

1Aside from not knowing the sample size, the values in Table 18.1 are probably not random
observations. It is possible the values in the table were smoothed using techniques of the kind
discussed in Chapter 19.
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Figure 18.3 Comparison of data and Makeham model.

18.3 TIME FROM INCIDENCE TO REPORT

Consider an insurance contract that provides payment when a certain event (such
as death, disability, re) occurs. There are three key dates. The rst is when
the event occurs, the second is when it is reported to the insurance company, and
the third is when the claim is settled. The time between these dates is important
because it a ects the amount of interest that can be earned on the premium prior
to paying the claim and because it provides a mechanism for estimating unreported
claims. This example concerns the time from incidence to report. The particular
example used here is based on a paper by Accomando and Weissner [4].

18.3.1 The problem and some data

This example concerns medical malpractice claims that occurred in a particular
year. One hundred sixty-eight months after the beginning of the year under study,
there have been 463 claims reported that were known to have occurred in that year.
The distribution of the times from occurrence to report (by month in six-month
intervals) is given in Table 18.2. A graph of the mean residual life function appears
in Figure 18.4.2

Your task is to t a model to these observations and then use the model to
estimate the total number of claims that occurred in the year under study. A look
at the mean residual life function indicates a decreasing pattern, and so a lighter
than exponential tail is expected. A Weibull model can have such a tail and, so,
can be used here.

2Because of the right truncation of the data, there are some items missing for calculation of the
mean residual life. It is not clear from the data what the e ect will be. This picture gives a
guide, but the model ultimately selected should both t the data and be reasonable based on the
analyst�’s experience and judgment.
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Figure 18.4 Mean residual life function for report lag data.

Table 18.2 Medical malpractice report lags.

Lag in months No. of claims Lag in months No. of claims

0�—6 4 84�—90 11
6�—12 6 90�—96 9
12�—18 8 96�—102 7
18�—24 38 102�—108 13
24�—30 45 108�—114 5
30�—36 36 114�—120 2
36�—42 62 120�—126 7
42�—48 33 126�—132 17
48�—54 29 132�—138 5
54�—60 24 138�—144 8
60�—66 22 144�—150 2
66�—72 24 150�—156 6
72�—78 21 156�—162 2
78�—84 17 162�—168 0

18.3.2 Analysis

Using maximum likelihood to estimate the Weibull parameters, the result is �ˆ =
1 71268 and �ˆ = 67 3002. According to the Weibull distribution, the probability
that a claim is reported by time 168 is

(168) = 1 (168 )

If is the unknown total number of claims, the number observed by time 168 is
the result of binomial sampling, and thus on an expected value basis we obtain

Expected number of reported claims by time 168 = [1 (168 ) ]

Setting this expectation equal to the observed number reported of 463 and then
solving for yields

=
463

1 (168 )
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Table 18.3 Losses up to 200 (thousand).

Loss range Number of Loss range Number of
(thousands) losses (thousands) losses

1�—5 3 41�—50 19
6�—10 12 51�—75 28
11�—15 14 76�—100 21
16�—20 9 101�—125 15
21�—25 7 126�—150 10
26�—30 7 151�—200 15
31�—40 18

Inserting the parameter estimates yields the value 466.88. Thus, after 14 years, we
expect to have about four more claims reported.
The delta method (Theorem 15.6) can be used to produce a 95% condence

interval. It is 466 88± 2 90, indicating that there could reasonably be between one
and seven additional claims reported.

18.4 PAYMENT AMOUNT

You are the consulting actuary for a reinsurer and have been asked to determine
the expected cost and the risk (as measured by the coe cient of variation) for
various coverages. To help you out, losses from 200 claims have been supplied.
The reinsurer also estimates (and you may condently rely on its estimate) that
there will be 21 losses per year and the number of losses has a Poisson distribution.
The coverages it is interested in are full coverage, 1 million excess of 250,000 and 2
million excess of 500,000. The phrase �“ excess of �” is to be interpreted as =
and = + in the notation of Theorem 8.7.

18.4.1 The data

One hundred seventy-eight losses that were 200,000 or below (all expressed in whole
numbers of thousands of dollars) that were supplied are summarized in Table 18.3.
In addition, there were 22 losses in excess of 200. They are

206 219 230 235 241 272 283 286 312 319 385
427 434 555 562 584 700 711 869 980 999 1,506

Finally, the 178 losses in the table sum to 11,398 and their squares sum to
1,143,164.
To get a feel for the data in the table, the histogram in Figure 18.5 was con-

structed. Keep in mind that the height of a histogram bar is the count in the cell
divided by the sample size (200) and then further divided by the interval width.
Therefore, the rst bar has a height of 3 [200(5)] = 0 003.
It can be seen from the histogram that the underlying distribution has a nonzero

mode. To check the tail, we can compute the empirical mean excess loss function
at a number of values. They are presented in Table 18.4. The function appears to
be fairly constant, and so an exponential model seems reasonable.
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Figure 18.5 Histogram of losses.

Table 18.4 Mean excess loss for losses above 200 (thousand).

Loss Mean residual life

200 314
300 367
400 357
500 330
600 361
700 313
800 289
900 262

18.4.2 The rst model

A two-component spliced model was selected. The empirical model is used through
200 (thousand) and an exponential model thereafter. There are (at least) two
ways to choose the exponential model. One is to restrict the parameter by forcing
the distribution to place 11% (22 out of 200) of probability at points above 200.
The other option is to estimate the exponential model independent of the 11%
requirement and then multiply the density function to make the area above 200
be 0.11. The latter was selected and the resulting parameter estimate is = 314.
For values below 200, the empirical distribution places probability 1/200 at each
observed value. The resulting exponential density function (for 200) is

( ) = 0 000662344 314

For a coverage that pays all losses, the th moment is (where the 200 losses in
the sample have been ordered from smallest to largest)

E( ) =
1

200

178X

=1

+

Z

200

( )

Then,
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E( ) =
11,398
200

+ 0 000662344[314(200) + 3142] 200 314 = 113 53

E( 2) =
1,143,164
200

+0 000662344[314(200)2 + 2(314)2(200) + 2(314)3] 200 314

= 45,622 93

The variance is 45,622 93 113 532 = 32,733 87, for a coe cient of variation of
1.59. However, these values are for one loss only. The distribution of annual losses
follows a compound Poisson distribution. The mean is

E( ) = E( )E( ) = 21(113 53) = 2,384 13

and the variance is

Var( ) = E( )Var( ) + Var( )E( )2

= 21(32,733 87) + 21(113 53)2 = 958,081 53

for a coe cient of variation of 0.41.
For the other coverages, we need general formulas for the rst two limited ex-

pected moments. For 200,

E( ) = 56 99 +

Z

200

( ) +

Z
( )

= 56 99 +

Z

200

314 +

Z
314

= 56 99 +
³
314 314 3142 314

´¯̄
¯
200

+ 314 314
¯̄
¯

= 56 99 +
³
161,396 200 314 3142 314

´

where = 0 000662344 and, similarly,

E[( )2] = 5,715 82 +
Z

200

2 314 +

Z
2 314

5,715 82 +
£
314 2 3142(2 ) 3143(2)

¤
314
¯̄
¯
200

2314 314
¯̄
¯

= 5,715 82 +
h
113,916,688 200 314

(197,192 + 61,918,288) 314
i

Table 18.5 gives the quantities needed to complete the assignment. The requested
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Table 18.5 Limited moment calculations.

E( ) E[( )2]

250 84.07 12,397.08
500 100.24 23,993.47

1,250 112.31 41,809.37
2,500 113.51 45,494.83

moments for the 1,000 excess of 250 coverage are, for one loss,

Mean = 112 31 84 07 = 28 24

Second moment = 41,809 37 12,397 08 2(250)(28 24)

= 15,292 29

Variance = 15,292 29 28 242 = 14,494 79

Coe cient of variation =
14,494 79
28 24

= 4 26.

It is interesting to note that while, as expected, the coverage limitations reduce
the variance, the risk, as measured by the coe cient of variation, has increased
considerably. For a full year, the mean is 593.04, the variance is 321,138.09, and
the coe cient of variation is 0.96.
For the 2,000 excess of 500 coverage, we have, for one loss,

Mean = 113 51 100 24 = 13 27

Second moment = 45,494 83 23,993 47 2(500)(13 27)

= 8,231 36

Variance = 8,231 36 13 272 = 8,055 27

Coe cient of variation =
8,055 27
13 27

= 6 76.

Moving further into the tail increases our risk. For one year, the three items are
278.67, 172,858.56, and 1.49.

18.4.3 The second model

From Figure 18.5, if a single parametric distribution is to be used, one with a
nonzero mode should be tried. Because the data were rounded to the nearest
1,000, the intervals should be treated as 0.5�—5.5, 5.5�—10.5, and so on. After con-
sidering lognormal, Weibull, gamma, and mixture models (adding an exponential
distribution), the lognormal distribution is clearly superior (using the SBC). The
parameters are �ˆ = 4 0626 and �ˆ = 1 1466. The chi-square goodness-of-t test
(placing the observations above 200 into a single group) statistic is 7.77 for a -
value of 0.73. Figure 18.6 compares the lognormal model to the empirical model.
The graph conrms the good t.
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Figure 18.6 Distribution function plot.

18.5 AN AGGREGATE LOSS EXAMPLE

The example presented in this section summarizes many of the techniques intro-
duced up to this point. The coverage is, perhaps, more complex than those found
in practice but gives us a chance to work through a variety of tasks.
You are a consulting actuary and have been retained to assist in the pricing of a

group hospitalization policy. Your task is to determine the expected payment to be
made by the insurer. The terms of the policy (per covered employee) are as follows:

1. For each hospitalization of the employee or a member of the employee�’s family,
the employee pays the rst 500 plus any losses in excess of 50,500. On any
one hospitalization, the insurance will pay at most 50,000.

2. In any calendar year, the employee will pay no more than 1,000 in deductibles,
but there is no limit on how much the employee will pay in respect of losses
exceeding 50,500.

3. Any particular hospitalization is assigned to the calendar year in which the in-
dividual entered the hospital. Even if hospitalization extends into subsequent
years, all payments are made in respect to the policy year assigned.

4. The premium is the same, regardless of the number of family members.

Experience studies have provided the data contained in Tables 18.6 and 18.8.
The data in Table 18.7 represent the prole of the current set of employees.
The rst step is to t parametric models to each of the three data sets. For

the data in Table 18.6, 12 distributions were tted. The best one-parameter dis-
tribution is the geometric with a negative loglikelihood (NLL) of 969.251 and a
chi-square goodness-of-t p-value of 0.5325. The best two-parameter model is the
zero-modied geometric. The NLL improves to 969.058, but by the likelihood ratio
test, the second parameter cannot be justied. The best three-parameter distribu-
tion is the zero-modied negative binomial, which has an NLL of 969.056, again not
enough to dislodge the geometric as our choice. For the two- and three-parameter
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Table 18.6 Hospitalizations, per family member, per year.

No. of hospitalizations
per family member No. of family members

0 2,659
1 244
2 19
3 2
4 or more 0

Total 2,924

Table 18.7 Number of family members per employee.

No. of family members
per employee No. of employees

1 84
2 140
3 139
4 131
5 73
6 42
7 27
8 or more 33

Total 669

Table 18.8 Losses per hospitalization.

Loss per hospitalization No. of hospitalizations

0�—250 36
250�—500 29
500�—1,000 43
1,000�—1,500 35
1,500�—2,500 39
2,500�—5,000 47
5,000�—10,000 33
10,000�—50,000 24
50,000�— 2

Total 288

models, there were not enough degrees of freedom to conduct the chi-square test.
We choose the geometric distribution with = 0 098495.
For the data in Table 18.7, only zero-truncated distributions should be consid-

ered. The best one-parameter model is the zero-truncated Poisson with an NLL of
1,298.725 and a p-value near zero. The two-parameter zero-truncated negative bi-
nomial has an NLL of 1,292.532, a signicant improvement. The p-value is 0.2571,
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indicating that this is an acceptable choice. The parameters are = 13 207 and
= 0 25884.
For the data in Table 18.8, 15 continuous distributions were tted. The four best

models for a given number of parameters are listed in Table 18.9. It should be clear
that the best choice is the Pareto distribution. The parameters are = 1 6693 and
= 3,053 0.
The remaining calculations are done using the recursive method, but inversion

or simulation would work equally well.
The rst step is to determine the distribution of payments by the employee per

family member with regard to the deductible. The frequency distribution is the
geometric distribution, while the individual loss distribution is the Pareto distrib-
ution, limited to the maximum deductible of 500. That is, any losses in excess of
500 are assigned to the value 500. With regard to discretization for recursion, the
span should divide evenly into 500, and then all probability not accounted for by
the time 500 is reached is placed there. For this example, a span of 1 was used.
The rst few and last few values of the discretized distribution appear in Table
18.10. After applying the recursive formula, it is clear that there is nonzero prob-
ability beyond 3,000. However, looking ahead, we know that, with regard to the
employee aggregate deductible, payments beyond 1,000 have no impact. A few of
these probabilities appear in Table 18.11.
We next must obtain the aggregate distribution of deductibles paid per employee

per year. This is another compound distribution. The frequency distribution is the
truncated negative binomial, and the individual loss distribution is the one for losses
per family member that was just obtained. Recursions can again be used to obtain
this distribution. Because there is a 1,000 limit on deductibles, all probability to the
right of 1,000 is placed at 1,000. Selected values from this aggregate distribution are

Table 18.9 Four best models for loss per hospitalization.

Name No. of parameters NLL p-value

Inverse exponential 1 632.632 Near 0
Pareto 2 601.642 0.9818
Burr 3 601.612 0.9476
Transformed beta 4 601.553 0.8798

Table 18.10 Discretized Pareto distribution with 500 limit.

Loss Probability

0 0.000273
1 0.000546
2 0.000546
3 0.000545
...

...
498 0.000365
499 0.000365
500 0.776512
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Table 18.11 Probabilities for aggregate deductibles per family member.

Loss Probability

0 0.910359
1 0.000045
2 0.000045
3 0.000045
...

...
499 0.000031
500 0.063386
501 0.000007
...

...
999 0.000004
1,000 0.004413
1,001 0.000001
...

...

Table 18.12 Probabilities for aggregate deductibles per employee.

Loss Probability

0 0.725517
1 0.000116
2 0.000115
3 0.000115
...

...
499 0.000082
500 0.164284
501 0.000047
...

...
999 0.000031
1,000 0.042343

given in Table 18.12. Note that the chance that more than 1,000 in deductibles will
be paid is very small. The cost to the insurer of limiting the insured�’s costs is also
small. Using this discrete distribution, it is easy to obtain the mean and standard
deviation of aggregate deductibles. They are 150.02 and 274.42, respectively.
We next require the expected value of aggregate costs to the insurer for individ-

ual losses below the upper limit of 50,000. This value can be found analytically.
The expected payment per loss is E( 50,500) = 3,890 87 for the Pareto dis-
tribution. The expected number of losses per family member is the mean of the
geometric distribution, which is the parameter 0.098495. The expected number of
family members per employee comes from the zero-truncated negative binomial dis-
tribution and is 3.59015. This results imply that the expected number of losses per
employee is 0 098495(3 59015) = 0 353612. Then the expected aggregate dollars in
payments up to the individual limit is 0 353612(3,890 87) = 1,375 86.
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Then the expected cost to the insurer is the di erence 1,375 86 150 02 =
1,225 84. As a nal note, it is not possible to use any method other than simulation
if the goal is to obtain the probability distribution of the insurer�’s payments. This
situation is similar to that of Example 21.7, where it is easy to get the overall
distribution, as well as the distribution for the insured (in this case, if payments
for losses over 50,500 are ignored), but not for the insurer.

18.6 ANOTHER AGGREGATE LOSS EXAMPLE

Careful modeling has revealed that individual losses have the lognormal distribution
with = 10 5430 and = 2 31315. It has also been determined that the number
of losses has the Poisson distribution with = 0 0154578.
Begin by considering excess of loss reinsurance in which the reinsurance pays the

excess over a deductible, , up to a maximum payment , where is the limit
established in the primary coverage. There are two approaches available to create
the distribution of reinsurer payments. The rst is to work with the distribution of
payments per payment. On this basis, the severity distribution is mixed, with pdf

( ) =
( + )

1 ( )
0

and discrete probability

Pr( = ) =
1 ( )

1 ( )

This distribution would then be discretized for use with the recursive formula or the
FFT, or approximated by a histogram for use with the Heckman�—Meyers method.
Regardless, the frequency distribution must be adjusted to reect the distribution
of the number of payments as opposed to the number of losses. The new Poisson
parameter is [1 ( )].

18.6.1 Distribution for a single policy

We consider the distribution of losses for a single policy for various combinations of
and . We use the Poisson parameter for the combined group and have employed

the recursive algorithm with a discretization interval of 10,000 and the method of
rounding. In all cases, the 90th and 99th percentiles are zero, indicating that most of
the time the excess of loss reinsurance will involve no payments. This nding is not
surprising because the probability that there will be no losses is exp( 0 0154578) =
0 985 and, with the deductible, this probability is even higher. The mean, standard
deviation, and coe cient of variation (c.v.) for various combinations of and are
given in Table 18.13.
It is not surprising that the risk (as measured by the c.v.) increases when either

the deductible or the limit is increased. It is also clear that the risk of writing one
policy is extreme.

18.6.2 One hundred policies�–excess of loss

We next consider the possibility of reinsuring 100 policies. If we assume that the
same deductible and limit apply to all of them, the aggregate distribution requires
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Table 18.13 Excess of loss reinsurance, one policy.

Standard
Deductible (106) Limit (106) Mean Deviation C.V.

0.5 1 778 18,858 24.24
0.5 5 2,910 94,574 32.50
0.5 10 3,809 144,731 38.00
0.5 25 4,825 229,284 47.52
0.5 50 5,415 306,359 56.58
1.0 5 2,132 80,354 37.69
1.0 10 3,031 132,516 43.72
1.0 25 4,046 219,475 54.24
1.0 50 4,636 298,101 64.30
5.0 10 899 62,556 69.58
5.0 25 1,914 162,478 84.89
5.0 50 2,504 249,752 99.74
10.0 25 1,015 111,054 109.41
10.0 50 1,605 205,939 128.71

Table 18.14 Excess of loss reinsurance, 100 policies.

Deductible Limit Mean Standard Percentiles (103)
(106) (106) (103) deviation (103) C.V. 90 99

0.5 5 291 946 3.250 708 4,503
0.5 10 381 1,447 3.800 708 9,498
0.5 25 482 2,293 4.752 708 11,674
1.0 5 213 804 3.769 190 4,002
1.0 10 303 1,325 4.372 190 8,997
1.0 25 405 2,195 5.424 190 11,085
5.0 10 90 626 6.958 0 4,997
5.0 25 191 1,625 8.489 0 6,886
10.0 25 102 1,111 10.941 0 1,854

only that the frequency be changed. When 100 independent Poisson random vari-
ables are added, the sum has a Poisson distribution with the original parameter
multiplied by 100. The process used for a single policy is repeated with the revised
Poisson parameter. The results appear in Table 18.14.
As must be the case with independent policies, the mean is 100 times the mean

for one policy and the standard deviation is 10 times the standard deviation for
one policy. Together they imply that the coe cient of variation will be one-tenth
of its previous value. In all cases, the 99th percentile is now above zero, which may
make it appear that there is more risk, but in reality it just indicates that it is now
more likely that a claim will be paid.

18.6.3 One hundred policies�–aggregate stop-loss

We now turn to aggregate reinsurance. Assume policies have no individual de-
ductible but do have a policy limit of . There are again 100 policies and this time
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Table 18.15 Aggregate stop-loss reinsurance, 100 policies

Deductible Limit Mean Standard Percentiles (103)
(106) (106) (103) deviation (103) C.V. 90 99

0.5 5 322 1,003 3.11 863 4,711
0.5 10 412 1,496 3.63 863 9,504
0.5 25 513 2,331 4.54 863 11,895
1.0 5 241 879 3.64 363 4,211
1.0 10 331 1,389 4.19 363 9,004
1.0 25 433 2,245 5.19 363 11,395
2.5 5 114 556 4.86 0 2,711
2.5 10 204 1,104 5.40 0 7,504
2.5 25 306 2,013 6.58 0 9,895
5.0 5 13 181 13.73 0 211
5.0 10 103 714 6.93 0 5,004
5.0 25 205 1,690 8.26 0 7,395

the reinsurer pays all aggregate losses in excess of an aggregate deductible of . For
a given limit, the severity distribution is modied as before, the Poisson parame-
ter is multiplied by 100, and then some algorithm is used to obtain the aggregate
distribution. Let this distribution have cdf ( ) or, in the case of a discretized
distribution (as will be the output from the recursive algorithm or the FFT), a pf
( ) for = 1 . For a deductible of , the corresponding functions for the

reinsurance distribution are

( ) = ( + ) 0

(0) = ( ) =
X

( )

( ) = ( + ) = = 1

Moments and percentiles may be determined in the usual manner.
Using the recursive formula with an interval of 10,000, results for various stop-

loss deductibles and individual limits are given in Table 18.15. The results are
similar to those for the excess of loss coverage. For the most part, as either the
individual limit or the aggregate deductible is increased, the risk, as measured by
the coe cient of variation, increases. The exception is when both the limit and the
deductible are 5,000,000. This is a risky setting because it is the only one in which
two losses are required before the reinsurance will take e ect.
Now suppose the 100 policies are known to have di erent Poisson parameters

(but the same severity distribution). Assume 30 have = 0 0162249, and so the
number of claims from this subgroup is Poisson with mean

30(0 0162249) = 0 486747

For the second group (50 members), the parameter is 50(0 0174087) = 0 870435 and
for the third group (20 members), it is 20(0 0096121) = 0 192242. There are three
methods for obtaining the distribution of the sum of the three separate aggregate
distributions:

1. Because the sum of independent Poisson random variables is still Poisson, the
total number of losses has the Poisson distribution with parameter 1.549424.
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The common severity distribution remains the lognormal. This reduces to a
single compound distribution, which can be evaluated by any method.

2. Obtain the three aggregate distributions separately. If the recursive or FFT
algorithms are used, the results are three discrete distributions. The distrib-
ution of their sum can be obtained by using convolutions.

3. If the FFT or Heckman�—Meyers algorithms are used, the three transforms
can be found and then multiplied. The inverse transform is then taken of the
product.

Each of the methods has advantages and drawbacks. The rst method is re-
stricted to those frequency distributions for which the sum has a known form. If
the severity distributions are not identical, it may not be possible to combine them
to form a single model. The major advantage is that, if it is available, this method
requires only one aggregate calculation.
The advantage of method 2 is that there is no restriction on the frequency and

severity components of the components. The drawback is the expansion of computer
storage. For example, if the rst distribution requires 3,000 points, the second one
5,000 points, and the third one 2,000 points (with the same discretization interval
being used for the three distributions), the combined distribution will require 10,000
points. More will be said about this issue at the end of this section.
The third method also has no restriction on the separate models. It has the same

drawback as the second method, but here the expansion must be done in advance.
That is, in the example, all three components must work with 10,000 points. There
is no way to avoid this.

18.6.4 Numerical convolutions

The remaining problem is expansion of the number of points required when perform-
ing numerical convolutions. The problem arises when the individual distributions
use a large number of discrete points, to the point where the storage capacity of
the computer becomes an obstacle. The following example is a small-scale version
of the problem and indicates a simple solution.

EXAMPLE 18.1

The probability functions for two discrete distributions are given in Table
18.16. Suppose the maximum vector allowed by the computer program being
used is of length 6. Determine an approximation to the probability function
for the sum of the two random variables.

The maximum possible value for the sum of the two random variables is 14
and would require a vector of length 8 to store. Usual convolutions produce
the answer as given in Table 18.17.
With 6 points available, the span must be increased to 14 5 = 2 8. We then

do a sort of reverse interpolation, taking the probability at each point that is
not a multiple of 2.8 and allocating it to the two nearest multiples of 2.8. For
example, the probability of 0.16 at = 8 is allocated to the points 5.6 and 8.4.
Because 8 is 2.4/2.8 of the way from 5.6 to 8.4, six-sevenths of the probability
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Table 18.16 Two probability distributions for Example 18.1.

1( ) 2( )

0 0.3 0.4
2 0.2 0.3
4 0.2 0.2
6 0.2 0.1
8 0.1 0.0

Table 18.17 True convolution probabilities for Example 18.1.

0 2 4 6 8 10 12 14

( ) 0.12 0.17 0.20 0.21 0.16 0.09 0.04 0.01

Table 18.18 Allocation of probabilities for Example 18.1

( ) Lower point Probability Upper point Probability

0 0.12 0 0.1200
2 0.17 0 0.0486 2.8 0.1214
4 0.20 2.8 0.1143 5.6 0.0857
6 0.21 5.6 0.1800 8.4 0.0300
8 0.16 5.6 0.0229 8.4 0.1371
10 0.09 8.4 0.0386 11.2 0.0514
12 0.04 11.2 0.0286 14.0 0.0114
14 0.01 14.0 0.0100

Table 18.19 Allocated probabilities for Example 18.1.

0 2.8 5.6 8.4 11.2 14.0

( ) 0.1686 0.2357 0.2886 0.2057 0.0800 0.0214

is placed at 8.4 and the remaining one-seventh is placed at 5.6. The complete
allocation process appears in Table 18.18. The probabilities allocated to each
multiple of 2.8 are then combined to produce the approximation to the true
distribution of the sum. The approximating distribution is given in Table
18.19. ¤

This method preserves both the total probability of one and the mean (both the
true distribution and the approximating distribution have a mean of 5.2).
One renement that can eliminate some of the need for storage is to note that

when a distribution requires a large vector, the probabilities at the end are likely to
be very small. When they are multiplied to create the convolution, the probabilities
at the ends of the new, long vector may be so small that they can be ignored. Thus
those cells need not be retained and do not add to the storage problem.
Many more renements are possible. In the appendix to the article by Bailey

[11], a method that preserves the rst three moments is presented. He also provides
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Table 18.20 Time to reopening of a workers compensation claim for Exercise 18.2.

Years No. reopened Years No. reopened

7�—8 27 15�—16 13
8�—9 43 16�—17 9
9�—10 42 17�—18 7
10�—11 37 18�—19 4
11�—12 25 19�—20 4
12�—13 19 20�—21 1
13�—14 23 21+ 0
14�—15 10

Total 264

guidance with regard to the elimination or combination of storage locations with
exceptionally small probability.

18.7 COMPREHENSIVE EXERCISES

The exercises in this section are similar to the examples presented earlier in this
chapter. They are based on questions that arose in published papers.

18.2 In New York there were special funds for some infrequent occurrences under
workers compensation insurance. One was the event of a case being reopened. Hipp
[71] collected data on the time from an accident to when the case was reopened.
These covered cases reopened between April 24, 1933, and December 31, 1936.
The data appear in Table 18.20. Determine a parametric model for the time from
accident to reopening. By denition, at least seven years must elapse before a claim
can qualify as a reopening, so the model should be conditioned on the time being
at least seven years.

18.3 In the rst of two papers by Arthur Bailey [8], written in 1942 and 1943, he
observed on page 51 that �“Another eld where a knowledge of sampling distribu-
tions could be used to advantage is that of rating procedures for deductibles and
excess coverages.�” In the second paper [9], he presented some data (Table 18.21)
on the distribution of loss ratios. In that paper he made the statement that the
popular lognormal model provided a good t and passed the chi-square test. Does
it? Is there a better model?

18.4 In 1979, Hewitt and Lefkowitz [69] looked at automobile bodily injury liability
data (Table 18.22) and concluded that a two-point mixture of the gamma and
loggamma distributions (If has a gamma distribution, then = exp( ) has
the loggamma distribution; note that its support begins at 1) was superior to the
lognormal. Do you agree? Also consider the gamma and loggamma distributions.

18.5 A 1980 paper by Patrik [140] contained many of the ideas recommended in
this text. One of his examples was data supplied by the Insurance Services O ce
on Owners, Landlords, and Tenants bodily injury liability. Policies at two di erent
limits were studied. Both were for policy year 1976 with losses developed to the
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Table 18.21 Loss ratio data for Exercise 18.3.

Loss ratio Number

0.0�—0.2 16
0.2�—0.4 27
0.4�—0.6 22
0.6�—0.8 29
0.8�—1.0 19
1.0�—1.5 32
1.5�—2.0 10
2.0�—3.0 13
3.0+ 5

Total 173

Table 18.22 Automobile bodily injury liability losses for Exercise 18.4.

Loss Number Loss Number

0�—50 27 750�—1,000 8
50�—100 4 1,000�—1,500 16
100�—150 1 1,500�—2,000 8
150�—200 2 2,000�—2,500 11
200�—250 3 2,500�—3,000 6
250�—300 4 3,000�—4,000 12
300�—400 5 4,000�—5,000 9
400�—500 6 5,000�—7,500 14
500�—750 13 7,500�— 40

Total 189

end of 1978. The groupings in Table 18.23 have been condensed from those in the
paper. Can the same model (with or without identical parameters) be used for the
two limits?

18.6 The data in Table 18.24 were collected by Fisher [45] on coal mining disasters
in the United States over 25 years ending about 1910. This particular compilation
counted the number of disasters per year that claimed the lives of ve to nine miners.
In the article, Fisher claimed that a Poisson distribution was a good model. Is it?
Is there a better model?

18.7 Harwayne [62] was curious as to the relationship between driving record and
number of accidents. His data on California drivers included the number of vio-
lations. For each of the six data sets represented by each column in Table 18.25,
is a negative binomial distribution appropriate? If so, are the same parameters
appropriate? Is it reasonable to conclude that the expected number of accidents
increases with the number of violations?

18.8 In 1961, Simon [160] proposed using the zero-modied negative binomial dis-
tribution. His data set was the number of accidents in one year along various
one-mile stretches of Oregon highway. The data appear in Table 18.26. Simon
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Table 18.23 OLT bodily injury liability losses for Exercise 18.5.

Loss (103) 300 Limit 500 Limit Loss (103) 300 Limit 500 Limit

0�—0.2 10,075 3,977 11�—12 56 22
0.2�—0.5 3,049 1,095 12�—13 47 23
0.5�—1 3,263 1,152 13�—14 20 6
1�—2 2,690 991 14�—15 151 51
2�—3 1,498 594 15�—20 151 54
3�—4 964 339 20�—25 109 44
4�—5 794 307 25�—50 154 53
5�—6 261 103 50�—75 24 14
6�—7 191 79 75�—100 19 5
7�—8 406 141 100�—200 22 6
8�—9 114 52 200�—300 6 9
9�—10 279 89 300�—500 10 3
10�—11 58 23 500�— 0

Totals 24,411 9,232

losses for 300+.

Table 18.24 Mining disasters per year for Exercise 18.6.

No. of disasters No. of years No. of disasters No. of years

0 1 7 3
1 1 8 1
2 3 9 0
3 4 10 1
4 5 11 1
5 2 12 1
6 2 13+ 0

Table 18.25 Number of accidents by number of violations for Exercise 18.7.

Number of No. of violations
Accidents 0 1 2 3 4 5+

0 51,365 17,081 6,729 3,098 1,548 1,893
1 3,997 3,131 1,711 963 570 934
2 357 353 266 221 138 287
3 34 41 44 31 34 66
4 4 6 6 6 4 14
5+ 0 1 1 1 3 1

claimed that the zero-modied negative binomial distribution was superior to the
negative binomial. Is he correct? Is there a better model?



COMPREHENSIVE EXERCISES 551

Table 18.26 Number of accidents per year for Exercise 18.8.

No. of accidents No. of stretches No. of accidents No. of stretches

0 99 6 4
1 65 7 0
2 57 8 3
3 35 9 4
4 20 10 0
5 10 11 1
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INTERPOLATION AND
SMOOTHING

19.1 INTRODUCTION

Methods of model building discussed to this point are based on ideas that come
primarily from the elds of probability and statistics. Data are considered to be
observations from a sample space associated with a probability distribution. The
quantities to be estimated are functions of that probability distribution, for exam-
ple, pdf, cdf, hazard rate (force of mortality), mean, variance.
In contrast, the methods described in this chapter have their origins in the

eld of numerical analysis, without specic considerations of probabilistic statistical
concepts.
In practice, many of these numerical methods have been subsequently adapted

to a probability and statistics framework. Although the key ideas of the methods
are easy to understand, most of these techniques are computationally demanding,
thus requiring computer programs. The techniques described in this chapter are at
the lowest end of the complexity scale.
The objective is to t a smooth curve through a set of data according to some

specied criteria. Curve tting has many applications in actuarial science as it has

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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in many other elds. We begin with a set of distinct points in the plane. In practice,
these points represent a sequence of successive observations of some quantity, for
example, a series of successive monthly ination rates, a set of successive average
annual claim costs, or a set of successive observed mortality rates by age. The
methods in this chapter are considered to be nonparametric in nature in the sense
that the underlying model is not prespecied by a simple mathematical function
with a small number of parameters. The methods in this chapter allow for great
exibility in the shape of the resulting curve. They are especially useful in situations
where the shape is complex.
One such example is the curve representing the probabilities of death within

a short period for humans, such as the function . These probabilities decrease
sharply at the youngest ages as a result of neonatal deaths, are relatively at until
the early teens, rise slowly during the teens, rise and then fall (especially for males)
during the 18�—25 age range (as a result of accidents), then continue to rise slowly
but at an increasing rate for higher ages. This curve is not captured adequately
by a simple function (although there are models with eight or more parameters
available).
Historically, the process of smoothing a set of observed irregular points is called

graduation. The set of points typically represents observed rates of mortality (prob-
ability of death within one year) or rates of some other contingency such as dis-
ablement, unemployment, or accident. The methods described in this chapter are
not restricted to these kinds of applications. Indeed, they can be applied to any set
of successive points.
In graduation theory, it is assumed that there is some underlying, but unobserv-

able, true curve or function that is to be estimated or approximated. Graduation
depends on a trade-o between the high degree of t that is obtained by a �“noisy�”
curve, such as a high-degree polynomial that ts the data well, and the high degree
of smoothness that is obtained by a simple curve, such as a straight line or an
exponential curve.
There are a number of classical methods described in older actuarial textbooks

such as Miller [123]. These include simple graphical methods using an engineering
draftsman�’s French curve or a spline and weights. A French curve is a at piece of
wood with a smooth outside edge, with the diameter of the outside edge changing
gradually, which could be used to draw curves through specied points. A spline is a
thin rod of exible metal or plastic anchored by attaching lead weights called ducks
at specied points along the rod. By altering the position of the ducks on the rod
and moving the rod relative to the drafting surface, smooth curves could be drawn
through successive sets of points. The resulting shape of the rod is the one that
minimizes the energy of deection subject to the rod passing through the specied
points. In that sense, it is a very natural method for developing the shape of a
structure so that it has maximal strength. Methods developed by actuaries include
mathematical methods based on running averages, methods based on interpolation,
and methods based directly on nding a balance between t and smoothness. All
these methods were developed in the early 1900s, some even earlier. They were
developed using methods of nite di erences, in which it was frequently assumed
that fourth and higher di erences should be set to zero, implicitly forcing the use of
third-degree polynomials. Formulas involving di erences were developed so that an
actuary could develop smooth functions using only pencil and paper. Remember,
these formulas were developed long before calculators (mechanical or electronic!)
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and very long before computers were developed. A more recent summary of these
methods along with some updated variations can be found in London [107].
With the advent of computers in the 1950s and 1960s, many computerized math-

ematical procedures were developed. Among them is the theory of splines, this time
not mechanical in nature. As with graduation, the objective of splines is to nd
an appropriate balance between t and smoothness. The solutions that were de-
veloped were in terms of linear systems of equations that could be easily solved on
a computer. The modern theory of splines dates back to Schoenberg [155].
In this chapter, we focus only on the modern techniques of spline interpolation

and smoothing. These techniques are so powerful and exible that they have largely
superseded the older methods.

19.2 POLYNOMIAL INTERPOLATION AND SMOOTHING

Consider +1 distinct points labeled ( 0 0) ( 1 1) ( ) with 0 1

2 · · · . A unique polynomial of degree can be passed through these
points. This polynomial is called a collocation polynomial and can be expressed as

( ) =
X

=0

(19.1)

where
( ) = = 0 1 (19.2)

Equations (19.2) form a system of + 1 equations in + 1 unknowns { ; =
0 1 }. However, when is large, the numerical exercise of solving the system
of equations may be di cult.
Fortunately, the solution can be explicitly written without solving the system of

equations. The solution is known as Lagrange�’s formula:

( ) = 0
( 1)( 2) ( )

( 0 1)( 0 2) ( 0 )

+ 1
( 0)( 2) ( )

( 1 0)( 1 2) ( 1 )
+

+
( 0)( 1) ( 1)

( 0)( 1) ( 1)

=
X

=0

( 0) ( 1)( +1) ( )

( 0) ( 1)( +1) ( )
(19.3)

To verify that (19.3) is the collocation polynomial, note that each term is a poly-
nomial of degree and that when = , the right-hand side of (19.3) takes on
value for each of = 0 1 2 .
The -degree polynomial ( ) provides interpolation between ( 0 0) and ( )

and passes through all interior points {( ); = 1 1}. However, for large
, the function ( ) can exhibit excessive oscillation; that is to say, it can be very
�“wiggly.�” This oscillation is particularly problematic when there is some �“noise�” in
the original series {( ); = 0 }. Such noise can be caused by measurement
error or random uctuation.
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Table 19.1 Mortality rates for Example 19.1.

Estimated
Exposed Actual mortality rate

Ages to risk deaths per 1,000

0 25�—29 35,700 139 3.89
1 30�—34 244,066 599 2.45
2 35�—39 741,041 1,842 2.49
3 40�—44 1,250,601 4,771 3.81
4 45�—49 1,746,393 11,073 6.34
5 50�—54 2,067,008 21,693 10.49
6 55�—59 1,983,710 31,612 15.94
7 60�—64 1,484,347 39,948 26.91
8 65�—69 988,980 40,295 40.74
9 70�—74 559,049 33,292 59.55
10 75�—79 241,497 20,773 86.02
11 80�—84 78,229 11,376 145.42
12 85�—89 15,411 2,653 172.15
13 90�—94 2,552 589 230.80
14 95�— 162 44 271.60

Total 11,438,746 220,699

EXAMPLE 19.1

The data in Table 19.1 are from Miller [123, p. 62]. They are observed mortal-
ity rates in ve-year age groups. The estimated mortality rates are obtained
as the ratio of the dollars of death claims paid to the total dollars exposed to
death.1 The rates are plotted in Figure 19.1.

The estimates of mortality rates at each age are the maximum likelihood
estimates of the true rates assuming mutually independent binomial models
at each age. Note that there is considerable variability in successive estimates.
Of course, mortality rates are expected to be relatively smooth from age to
age. Figure 19.1 shows the observed mortality rates connected by straight
lines, while Figure 19.2 shows a collocation polynomial tted through the
observed rates. Notice its wiggly form and its extreme oscillation near the
ends. ¤

To avoid the excessive oscillatory behavior or wiggliness, lower order polynomials
could be used for interpolation. For example, successive values could be joined
by straight lines. However, the successive interpolating lines form a jagged series
because of the �“kinks�” at the points of juncture.

1Deaths and exposures are in units of $1,000. It is common in mortality studies to count dollars
rather than lives in order to give more weight to the larger policies. The mortality rates in the
table are the ratios of the given deaths and exposures. The last entry di ers from Miller�’s table
due to rounding.
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Figure 19.1 Mortality rates for Example 19.1.
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Figure 19.2 Collocation polynomial for mortality data.

Another method is to piece together a sequence of low-degree polynomials.
For example, a quadratic function can be collocated with successive points at
( 0 1 2) ( 2 3 4) . However, there will not be smoothness at the points
of juncture 2 4 in the sense that the interpolating function will have kinks
at these points with slopes and curvature not matching. One way to get rid of
the kinks is to force some left-hand and right-hand derivatives to be equal at these
points. This method creates apparent smoothness at the points of juncture of the
successive polynomials and is the key idea behind splines. Interpolating splines are
piecewise polynomial functions that pass through the given data points but that
have the added feature that they are smooth at the points of juncture of the succes-
sive pieces. The order of the polynomial is kept low to minimize �“wiggly�” behavior.
Interpolation using cubic splines is introduced in Section 19.3.
An alternative to interpolation is smoothing, or, more precisely, tting a smooth

function to the observed data but not requiring that the function pass through
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Figure 19.3 Second-degree polynomial t.
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Figure 19.4 Third-degree polynomial t.

each data point. Polynomials allow for great exibility of shapes. However, this
exibility of shape also makes polynomials quite risky to use for extrapolation,
especially for polynomials of high degree. This was the case in Figure 19.2, where
the extrapolated values, even for one year, were completely unreliable. As with the
tting of other models earlier in this book, a tting criterion needs to be selected
in order to t a model. We illustrate the use of polynomial smoothing by using a
least squares criterion. Figures 19.3�—19.6 show the ts of polynomials of degree 2,
3, 4, and 5 to the data of Example 19.1. It should be noted that the t improves
with each increase in degree because there is one additional degree of freedom in
carrying out the t. However, it can be seen that, as each degree is added, the
behavior of the extrapolated values for only a few years below age 27 and above
age 97 changes quite signicantly. Smoothing splines provide one solution to this
dilemma. Smoothing splines are just like interpolating splines except that the spline
is not required to pass through the data points but, rather, should be close to the
data points. Cubic splines limit the degree of the polynomial to 3.
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Figure 19.5 Fourth-degree polynomial t.
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Figure 19.6 Fifth-degree polynomial t.

19.2.1 Exercises

19.1 Determine the equation of the polynomial that interpolates the points (2 50),
(4 25), and (5 20).

19.2 Determine the equation of the straight line that best ts the data of Exercise
19.1 using the least squares criterion.

19.3 (*) Determine (3) using the second-degree polynomial that interpolates the
points (2 25), (4 20), and (5 30).

19.3 CUBIC SPLINE INTERPOLATION

Cubic splines are piecewise cubic functions that have the property that the rst and
second derivatives can be forced to be continuous, unlike the approach of successive
polynomials with jagged points of juncture.
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Cubic splines are used extensively in computer-aided design and manufacturing
in creating surfaces that are smooth to the touch and to the eye. The cubic spline
is tted to a series of points, called knots, that give the basic shape of the object
being designed or manufactured.
In the terminology of graduation theory as developed by actuaries in the early

1900s, cubic spline interpolation is called osculatory interpolation.2

Programs for cubic splines are included in many mathematical and engineering
software packages, and so, are very easy to apply.

Denition 19.1 Suppose that {( ) : = 0 } are +1 distinct knots with
0 1 2 · · · . The function ( ) is a cubic spline if there exist
cubic polynomials ( ) with coe cients , and that satisfy:

I. ( ) = ( ) = + ( )+ ( )2 + ( )3 for +1

and = 0 1 1.

II. ( ) = = 0 1

III. ( +1) = +1( +1) = 0 1 2 2

IV. 0( +1) =
0
+1( +1) = 0 1 2 2

V. 00( +1) =
00
+1( +1) = 0 1 2 2

Property I states that ( ) consists of piecewise cubics. Property II states that
the piecewise cubics pass through the given set of data points. Property III requires
the spline to be continuous at the interior data points. Properties IV and V provide
smoothness at the interior data points by forcing the rst and second derivatives
to be continuous.

19.3.1 Construction of cubic splines

Each cubic polynomial has four unknown constants: , and . Because
there are such cubics, there are 4 coe cients to be determined. Properties
II�—V provide + 1 1 1, and 1 conditions, respectively, for a total
of 4 2 conditions. To determine the 4 coe cients, we need exactly two more
conditions, which can be done by adding two endpoint constraints involving some of
0( ) 00( ), or 000( ) at 0 and . Di erent choices of endpoint constraints lead
to di erent results. Various possible endpoint constraints are discussed in Section
19.4.
To construct the cubic segments in the successive intervals, rst consider the

second derivative 00( ). It is a linear function because ( ) is cubic. Therefore,
the Lagrangian representation of the second derivatives is

00( ) = 00( )
+1

+1
+ 00( +1)

+1
(19.4)

2The word osculation means �“the act of kissing.�” Successive cubic polynomials exhibit osculatory
behavior by �“kissing�” each other smoothly at the knots!
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To simplify notation, let = 00( ) and = +1 , so that

00( ) = ( +1 ) +
+1
( ) (19.5)

for +1 and = 0 1 1.
Integrating this function twice leads to

( ) =
6

( +1 )3 +
+1

6
( )3 + ( +1 ) + ( ) (19.6)

where and are undetermined constants of integration. (To check this, just
di erentiate (19.6) twice.)
Substituting and +1 into (19.6) yields

=
6

2 + (19.7)

and
+1 =

+1

6
2 + (19.8)

because ( ) = and ( +1) = +1.
We now obtain the constants and from (19.7) and (19.8). When they are

substituted into (19.6), we obtain

( ) =
6

( +1 )3 +
+1

6
( )3

+

µ

6

¶
( +1 )

+

µ
+1 +1

6

¶
( ) (19.9)

Note that the = 00( ) terms are still unknown. To obtain them, di erentiate
(19.9):

0( ) =
2

( +1 )2 +
+1

2
( )2

µ

6

¶
+

+1 +1

6
(19.10)

Now, setting = yields, after simplication,

0( ) =
3

+1

6
+

+1 (19.11)

Replacing by 1 in (19.10) and setting =

0
1( ) =

3
1 +

1

6
1 +

1

1
(19.12)

Now, Property IV forces the slopes to be equal at each knot, requiring us to equate
the right-hand sides of (19.11) and (19.12), yielding the following relation between
successive values 1 and +1:

1 1 + 2( 1 + ) + +1 = 6

µ
+1 1

1

¶
(19.13)
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for = 1 2 1.
The system of equations (19.13) consists of 1 equations in + 1 unknowns
0 1 . Two endpoint constraints can be added to determine 0 and
. Obtaining the 1 remaining unknowns in (19.13) then allows for complete

determination of the cubic (19.9) for = 0 1 2 1 and, therefore, the entire
cubic spline.
For purpose of notational simplicity, we can rewrite (19.13) as

1 1 + + +1 = = 1 2 1 (19.14)

where

= 6

µ
+1 1

1

¶
and = 2( 1 + ) (19.15)

When the endpoints 0 and are determined externally, the system (19.14)
can be rewritten in matrix notation as

1 1 0 0

1 2 2 0 0
0 2 3 3 0 0

0
...

. . .
. . . 3 0

3 2 2

0 0 0 2 1

( 1)×( 1)

1

2

...

...
2

1

( 1)×1

=

1 0 0

2

...

...
2

1 1

( 1)×1

(19.16)
or as

Hm = v (19.17)

The matrixH is tridiagonal and invertible. Thus the system (19.17) has a unique so-
lutionm =H 1v. Alternatively, the system can be solved manually using Gaussian
elimination.
Once the values 1 2 1 are determined, the values of are deter-

mined by

=
2

= 1 1

Property II species that

= = 0 1

Property V species that

+ 6 = +1 = 0 2

yielding

=
+1

6
= 0 2

Property III species that

+ + 2 + 3 = +1 = 0 2
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Substituting for and yields

=
+1 (2 + +1)

6
= 0 2

Summarizing, the spline coe cients for the rst 1 spline segments are computed
as

=

=
+1 (2 + +1)

6

=
2

=
+1

6
= 0 2 (19.18)

The only remaining issue in order to obtain the cubic spline is the choice of the two
endpoint constraints. There are several possible choices. Once the two endpoint
constraints are selected, the cubics are fully specied. Thus the values of 1,

1, and 1 can also be obtained using (19.18).

Case 1: Natural Cubic Spline ( 0 = = 0)
The natural spline is obtained by setting 0 and to zero in (19.16). Because
0 and are the second derivatives at the endpoints, the choice of zero minimizes

the oscillatory behavior at both ends. It also makes the spline linear beyond the
boundary knots, a property that minimizes oscillatory behavior beyond both ends
of the data. This case is probably safest for extrapolation beyond the data points
in most applications. Note that the second-derivative endpoint constraints do not
in themselves restrict the slopes at the endpoints.

Case 2: Curvature-Adjusted Cubic Spline ( 0 and xed)
It is similarly possible to x the endpoint second derivatives 0 and to

prespecied values 00( 0) and 00( ), respectively. Then (19.16) can again be used
directly to obtain the values of 1 2 1. However, in practice, selecting
these values is di cult to do without some judgment. It is suggested that the
natural spline is a good place to start. If more curvature at the ends is wanted, it
can be added using this procedure.

Other endpoint constraints may be a bit more complicated and may require
modication of the rst and last of the system of equations (19.14), which will
result in changes in the matrix H and the vector v in (19.17).

Case 3: Parabolic Runout Spline ( 0 = 1 = 1)
Reducing the cubic functions on the rst and last intervals to quadratics adds

two more constraints, 0 = 0 and = 0. These constraints result in the second
derivatives being identical at both ends of the rst and last intervals; that is, 0 =

1 and = 1. As a result, the rst and last equations of (19.14) are replaced
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by

(3 0 + 2 1) 1 + 1 2 = 1,

2 2 + (2 2 + 3 1) 1 = 1 (19.19)

Case 4: Cubic Runout Spline
This method requires the cubic over [ 0 1] to be an extension of that over

[ 1 2], thus imposing the same cubic function over the entire interval [ 0 2].
This is also known as the not-a-knot condition. A similar condition is imposed at
the other end.
This condition can be achieved by requiring that the third derivatives at the

endpoints also agree at 1 and 1; that is,

000
0 ( 1) =

000
1 ( 1)

and
000
2( 1) =

000
1( 1)

Because the third derivative is then constant throughout [ 0 2] and also through-
out [ 2 ], the second derivative will be a linear function throughout the same
two intervals. Hence, the slope of the second derivative will be the same in any
subintervals within [ 0 2] and within [ 2 ]. Thus, we can write

1 0

0
=

2 1

1

1

1
=

1 2

2

or, equivalently,

0 = 1
0( 2 1)

1

= 1 +
1( 1 2)

2
(19.20)

Then the rst and last equations of (19.14) are replaced by
µ
3 0 + 2 1 +

2
0

1

¶
1 +

µ
1

2
0

1

¶
2 = 1

µ
2

2
1

2

¶
2 +

µ
2 2 + 3 1 +

2
1

2

¶
1 = 1

(19.21)

Case 5: Clamped Cubic Spline
This procedure xes the slope 0

0( 0) and 0
1( ) of the spline at each endpoint.

In this case, from (19.11) and (19.12), the second derivatives are

0 =
3

0

µ
1 0

0

0
0( 0)

¶
1

2
,

=
3

1

µ
0
1( )

1

1

¶
1

2
(19.22)
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As a result, the rst and last equations of (19.14) are replaced by

¡
3
2 0 + 2 1

¢
1 + 1 2 = 1 3

µ
1 0

0

0
0( 0)

¶

and

2 2 +
¡
2 2 +

3
2 1

¢
1 = 1 3

µ
0
1( )

1

1

¶

respectively.

EXAMPLE 19.2

From rst principles, using conditions I�—V, obtain the cubic spline through
the points (2 50) (4 25), and (5 20) with the clamped boundary conditions
0(2) = 25 and 0(5) = 4.

Let the cubic spline in the interval from 0 = 2 to 1 = 4 be the polynomial

0( ) = 50 + 0( 2) + 0( 2)2 + 0( 2)3

and the spline in the interval from 1 = 4 to 2 = 5 be the polynomial

1( ) = 25 + 1( 4) + 1( 4)2 + 1( 4)3

The six coe cients 0 0 0 1 1 1 are the unknowns that we need to de-
termine. From the interpolation conditions

0(4) = 50 + 2 0 + 4 0 + 8 0 = 25

1(5) = 25 + 1 + 1 + 1 = 20

From the smoothness conditions at = 4

0
0(4) = 0 + 2 0(4 2) + 3 0(4 2)2 = 0

1(4) = 1

00
0 (4) = 2 0 + 6 0(4 2) = 00

1 (4) = 2 1

Finally, from the boundary conditions, we get

0
0(2) = 0 = 25
0
1(5) = 1 + 2 1 + 3 1 = 4

Thus, we have six linear equations to determine the six unknowns. In matrix
form, the equations are

2 4 8 0 0 0
0 0 0 1 1 1
1 4 12 1 0 0
0 2 12 0 2 0
1 0 0 0 0 0
0 0 0 1 2 3

0

0

0

1

1

1

=

25
5
0
0
25
4
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The equations can be solved by successive elimination of unknowns. We get
0 = 25, then

4 8 0 0 0
0 0 1 1 1
4 12 1 0 0
2 12 0 2 0
0 0 1 2 3

0

0

1

1

1

=

25
5
25
0
4

Take 0 = 6 25 2 0, then

0 1 1 1
4 1 0 0
8 0 2 0
0 1 2 3

0

1

1

1

=

5
0

12 5
4

Take 0 = 0 25 1, then

1 1 1
2 2 0
1 2 3

1

1

1

=
5

12 5
4

Take 1 = 6 25 + 1, then

2 1
3 3

¸
1

1

¸
=

1 25
2 25

¸

Finally, take 1 = 0 625 0 5 1 and get 1 = 0 25. The nal answer is

0 = 25

0 = 9 125

0 = 1 4375

1 = 5 75

1 = 0 5

1 = 0 25

Thus the nal interpolating cubic spline is

( ) =

½
50 25( 2) + 9 125( 2)2 1 4375( 2)3 2 4
25 5 75( 4) + 0 5( 4)2 + 0 25( 4)3 4 5

Figure 19.7 shows the interpolating cubic spline and the corresponding natural
cubic spline that is the solution of Exercise 19.4. It also shows the function
( ) = 100 , which also passes through the same three knots. The slope of
the clamped spline at the endpoints is the same as the slope of the function
( ). These endpoint conditions force the clamped spline to be much closer
to the function ( ) than the natural spline. The natural spline has endpoint
conditions that force the spline to look more like a straight line near the ends
due to requiring the second derivative to be zero at the endpoints. ¤

The cubic splines in this section all pass through the knots. If smoothing is
desired, that restriction may be lifted. Smoothing splines are introduced in Section
19.6.
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Figure 19.7 Clamped and natural splines for Example 19.2.
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Figure 19.8 Cubic spline t to mortality data for Example 19.3.

EXAMPLE 19.3

The data in the last column of Table 19.1 are one-year mortality rates for the
15 ve-year age intervals shown in the second column. The last interval is
treated as 95�—99. We have used a natural cubic spline to interpolate between
these values as follows. The listed mortality rate is treated as the one-year
mortality rate for the middle age within the ve-year interval. The resulting
values are treated as knots for a natural cubic spline. The tted interpolating
cubic spline is shown in Figure 19.8 on a logarithmic scale. The formula for
the spline is given in Property I of Denition 19.1. The coe cients of the 14
cubic segments of the spline are given in Table 19.2. ¤
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Table 19.2 Spline coe cients for Example 19.3.

0 27 3.8936×10 3 -3.5093×10 4 0 2.5230×10 6

1 32 2.4543×10 3 -1.6171×10 4 3.7844×10 5 -8.4886×10 7

2 37 2.4857×10 3 1.5307×10 4 2.5112×10 5 -5.1079×10 7

3 42 3.8150×10 3 3.6587×10 4 1.7450×10 5 2.0794×10 6

4 47 6.3405×10 3 6.9632×10 4 4.8640×10 5 -4.3460×10 6

5 52 1.0495×10 2 8.5678×10 4 -1.6550×10 5 1.2566×10 5

6 57 1.5936×10 2 1.6337×10 3 1.7194×10 4 -1.1922×10 5

7 62 2.6913×10 2 2.4590×10 3 -6.8828×10 6 1.3664×10 5

8 67 4.0744×10 2 3.4150×10 3 1.9808×10 4 -2.5761×10 5

9 72 5.9551×10 2 3.4638×10 3 -1.8833×10 4 1.1085×10 4

10 77 8.6018×10 2 9.8939×10 3 1.4744×10 3 -2.1542×10 4

11 82 1.4542×10 1 8.4813×10 3 -1.7569×10 3 2.2597×10 4

12 87 1.7215×10 1 7.8602×10 3 1.6327×10 3 -1.7174×10 4

13 92 2.3080×10 1 1.1306×10 2 -9.4349×10 4 6.2899×10 5

19.3.2 Exercises

19.4 Repeat Example 19.2 for the natural cubic spline by removing the clamped
spline boundary conditions.

19.5 Construct a natural cubic spline through the points ( 2 0), ( 1 1), (0 0),
(1 1), and (2 0) by setting up the system of equations (19.16).

19.6 Determine if the following functions can be cubic splines:

(a)

( ) =
4 0

3 + 0 1
3 2 2 + 1 1 9

(b)

( ) =

3 0 1
3 2 3 + 1 1 2
3 4 2 + 13 11 2 4

(c)

( ) =

3 + 2 1 0
2 2 + 2 0 1
3 2 + 5 1 1 3

19.7 Determine the coe cients , and so that

( ) =

½
3 + 4 0 1
+ ( 1) + ( 1)2 + 4( 1)3 1 3

is a cubic spline.

19.8 Determine the clamped cubic spline that agrees with sin( 2) at = 1 0 1.
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19.9 Consider the function

( ) =

28 + 25 + 9 2 + 3 3 1
26 + 19 + 3 2 3 1 0
26 + 19 + 3 2 2 3 0 3
163 + 208 60 2 + 5 3 3 4

(a) Prove that ( ) can be a cubic spline.

(b) Determine which of the ve endpoint conditions could have been used
in developing this spline.

19.4 APPROXIMATING FUNCTIONS WITH SPLINES

The natural and clamped cubic splines have a particularly desirable property when
the spline is considered to be an approximation to some other continuous function.
For example, consider the function

( ) =
100

2 5

This function collocates with the knots at = 2 4 5 in Example 19.2. Let us
suppose the knots had indeed come from this function. Then, we could consider
the interpolating cubic spline to be an approximation to the function ( ). In
many applications, such as computer graphics, where smooth images are needed,
those smooth images can be represented very e ciently using a limited number of
selected knots and a cubic spline interpolation algorithm.
Smoothness can be measured by the total curvature of a function. The most

popular of such measures is the squared norm

=

Z

0

[ 00( )]2 (19.23)

representing the total squared second derivative.
Now consider any continuous function ( ) that also has continuous rst and

second derivatives over some interval [ 0 ]. Suppose that we select 1 interior
knots { ( )} 1

=1 with 0 1 2 · · · .
Let ( ) be a cubic spline that collocates with these knots and has endpoint

conditions either

0( 0) =
0( 0) and 0( ) = 0( ) (clamped spline)

or
00( 0) = 0 and 00( ) = 0 (natural spline).

The natural or clamped cubic spline ( ) has less total curvature than any other
function ( ) passing through the + 1 knots, as shown in the following theorem.

Theorem 19.2 Let ( ) be the natural or clamped cubic spline passing through
the + 1 given knots. Let ( ) be any function with continuous rst and second
derivatives that passes through the same knots. Also, for the clamped cubic spline
assume 0( 0) =

0( 0) and 0( ) = 0( ). Then
Z

0

[ 00( )]2
Z

0

[ 00( )]2 (19.24)
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Proof: Let us form the di erence ( ) = ( ) ( ). Then, 00( ) = 00( ) 00( )
and, therefore,

[ 00( )]2 = [ 00( )]2 + [ 00( )]2 + 2 00( ) 00( )

Integrating both sides produces
Z

0

[ 00( )]2 =

Z

0

[ 00( )]2 +

Z

0

[ 00( )]2 + 2

Z

0

00( ) 00( )

The result will be proven if we can show that
Z

0

00( ) 00( ) = 0

because the total curvature of the function ( ),

Z

0

[ 00( )]2

will be equal to the total curvature of the spline
Z

0

[ 00( )]2

plus a nonnegative quantity Z

0

[ 00( )]2

Applying integration by parts, we get

Z

0

00( ) 00( ) = 00( ) 0( )

¯̄
¯̄

0

Z

0

000( ) 0( )

For the clamped cubic spline, the rst term is zero because the clamped boundary
conditions imply that

0( 0) = 0( 0)
0( 0) = 0

0( ) = 0( ) 0( ) = 0

For the natural cubic spline, 00( 0) =
00( ) = 0, which also makes the rst term

zero.
The integral in the second term can be divided into subintervals as follows:

Z

0

000( ) 0( ) =
1X

=0

Z
+1

000( ) 0( )

Integration by parts in each subinterval yields
Z

+1
000( ) 0( ) = 000( ) ( )| +1

Z
+1

(4)( ) ( )
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The rst term is zero because of the interpolation condition

( ) = ( ) ( ) = 0 = 0 1

That is, we are only considering functions ( ) that pass through the knots.
The second term is zero because the spline ( ) in each subinterval is a cubic

polynomial and has zero fourth derivative. Thus, for the clamped or natural cubic
spline, Z

0

00( ) 00( ) = 0

which proves the result. ¤

Thus the clamped cubic spline has great appeal if we want to produce a smooth
set of successive values and if we have some knowledge of the slope of the function at
each end of the interval, which is often the case in mortality table construction. At
very early ages in the rst few days and weeks of life, the force of mortality or hazard
rate decreases sharply as a result of deaths of newborn lives with congenital and
other conditions that contribute to neonatal deaths. At the highest ages, the force
of mortality tends to atten out at a level of between 0.3 and 0.4 at ages well over
100. Using a clamped cubic spline to graduate observed rates results in obtaining
the smoothest possible function that incorporates the desired properties at each
end of the age spectrum. If the mortality data are only over some more limited
age range (as is usually the case with life insurance or annuity data), either natural
or clamped cubic splines can be used. Including a clamping condition controls the
slope at the endpoints.

EXAMPLE 19.4

For the clamped cubic spline obtained in Example 19.2, calculate the value of
the squared norm measure of curvature. Calculate the same quantity for the
function ( ) = 100 , which also passes through the given knots.

The spline function is

( ) =

½
50 25( 2) + 9 125( 2)2 1 4375( 2)3 2 4
25 5 75( 4) + 0 5( 4)2 + 0 25( 4)3 4 5

and the second derivative is

00( ) =

½
18 25 8 625( 2) = 35 5 8 625 2 4
1 + 1 5( 4) = 1 5 5 4 5

The total curvature of the spline is
Z 5

2

[ 00( )]2 =

Z 4

2

(35 5 8 625 )2 +

Z 5

4

(1 5 5)2

=

Z 18 25

1

2 1

8 625
+

Z 2 5

1

2 1

1 5

=
3

25 875

¯̄
¯̄
18 25

1

+
3

4 5

¯̄
¯̄
2 5

1

= 238 125
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For ( ), the second derivative is 00( ) = 200 3 and the curvature is
Z 5

2

(200 3)2 =

Z 5

2

40,000 6

= 8,000 5
¯̄5
2

= 247 44

Notice how close the total curvature of the function ( ) and the clamped
spline are. Now look at Figure 19.7, which plots both functions. They are
very similar in shape. Hence we would expect them to have similar curvature.
Of course, as a result of Theorem 19.2, the curvature of the spline should be
less, though in this case it is only slightly less. In Exercise 19.10 you are asked
to calculate the total curvature of the corresponding natural spline (which also
appears in Figure 19.7). Because it is much �“straighter,�” you would expect its
total curvature to be signicantly less, which is conrmed in Exercise 19.10.¤

19.4.1 Exercise

19.10 For the natural cubic spline obtained in Exercise 19.4, calculate the value
of the squared norm measure of curvature.

19.5 EXTRAPOLATING WITH SPLINES

In many applications, we may want to produce a model that can be faithful to
a set of historical data but that can also be used for forecasting. For example,
in determining liabilities of an insurer when future claim payments are subject
to inationary growth, the actuary may need to project the rate of future claims
ination for some 5 to 10 years into the future. One way to project is by tting a
function, in this case a cubic spline, to historic claims ination data.
Simply projecting the cubic in the last interval beyond may result in excessive

oscillatory behavior in the region beyond . This behavior could result in projected
values that are wildly unreasonable. It makes much more sense to require projected
values to form a simple pattern. In particular, a linear projection is likely to be
reasonable in most practical situations and is easily handled by cubic splines.
The natural cubic spline has endpoint conditions that require the second deriva-

tives to be zero at the endpoints. The natural extrapolation is linear with the slope
coming from the endpoints. Of course, the linear extrapolation function can be
done for any spline using the rst derivative at the end points. However, unless the
second derivative is zero, as with the natural spline, the second derivative condition
will be violated at the endpoints. The extrapolated values at each end are then

( ) = ( ) + 0( )( ) ,

( ) = ( 0)
0( 0)( 0 ) 0

EXAMPLE 19.5

Obtain formulas for the extrapolated values for the clamped spline in Example
19.2 and determine the extrapolated values at = 0 and = 7.
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In the rst interval, ( ) = 50 25( 2)+9 125( 2)2 1 4375( 2)3,
and so (2) = 50 and 0(2) = 25. Then, for 2, the extrapolation
is ( ) = 50 ( 25)(2 ) = 100 25 . In the nal interval, ( ) =
25 5 75( 4)+0 5( 4)2+0 25( 4)3, and so (5) = 20 and 0(5) = 4.
Then, for 5, the extrapolation is ( ) = 20 4( 5) = 40 4 . At = 0,
the extrapolated value is 100 25(0) = 100 and at = 7, it is 40 4(7) = 12.¤

19.5.1 Exercise

19.11 Obtain formulas for the extrapolated values for the natural spline in Exercise
19.4 and determine the extrapolated values at = 0 and = 7.

19.6 SMOOTHING SPLINES

In many actuarial applications, it may be desirable to do more than interpolate
between observed data. If data include a random (or �“noise�”) element, it is often
best to allow the cubic spline or other smooth function to lie near the data points,
rather than requiring the function to pass through each data point.
In the terminology of graduation theory as developed by actuaries in the early

1900s, this is called modied osculatory interpolation. The term modied is added
to recognize that the points of intersection (or knots in the language of splines) are
modied from the original data points.
The technical development of smoothing cubic splines is identical to interpolating

cubic splines except that the original knots at each data point ( ) are replaced
by knots at ( ), where the ordinate is the constant term in the smoothing
cubic spline

( ) = + ( ) + ( )2 + ( )3 (19.25)

We rst imagine that the ordinates of original data points are the outcomes of
the model

= ( ) +

where = 0 1 are independently distributed random variables with mean
0 and variance 2 and where ( ) is a well-behaved function.3

EXAMPLE 19.6

Mortality rates at each age are estimated by the ratio of observed deaths
to the number of life-years of exposure , where is a binomial ( )
random variable. The estimator �ˆ = , where is the observed number
of deaths, has variance 2 = (1 ) , which can be estimated by �ˆ (1
�ˆ ) . ¤

We attempt to nd a smooth function ( ), in this case a cubic spline, that will
serve as an approximation to the �“true�” function ( ). Because ( ) is assumed to

3Without specifying what �“well-behaved�” means in technical terms, we are simply trying to say
that ( ) is smooth in a general way. Typically we will require at least the rst two derivatives
to be continuous.
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be well behaved, we require the smoothing cubic spline ( ) itself to be as smooth
as possible. We also want it to be faithful to the given data as much as possible.
These are conicting objectives. Therefore, a compromise is necessary between t
and smoothness.
The degree of t can be measured using the chi-square criterion

=
X

=0

µ ¶2
(19.26)

This is a standard statistical criterion for measuring the degree of t and is discussed
in that context in Section 16.4.3. It has a chi-square distribution with +1 degrees
of freedom.4

The degree of smoothness can be measured by the overall smoothness of the cubic
spline. The smoothness, or, equivalently, the total curvature, can be measured by
the squared norm smoothness criterion

=

Z

0

[ 00( )]2

Theorem 19.2 shows that within the broad class of functions with continuous rst
and second derivatives, the natural or clamped cubic spline minimizes the squared
norm, supporting the choice of the cubic spline as the smoothing function.
To recognize the conicting objectives of t and smoothness, we construct a

criterion that is a weighted average of the measures of t and smoothness. Let

= + (1 )

=
X

=0

µ ¶2
+ (1 )

Z

0

[ 00( )]2

The parameter reects the relative importance we give to the conicting ob-
jectives of remaining close to the data, on the one hand, and of obtaining a smooth
curve, on the other hand. Notice that a linear function satises the equation

=

Z

0

[ 00( )]2 = 0

which suggests that, in the limiting case, where = 0 and thus smoothness is all
that matters, the spline function ( ) will become a straight line. At the other
extreme, where = 1 and, thus, the closeness of the spline to the data is all that
matters, we will obtain an interpolating spline that passes exactly through the data
points.
The spline is piecewise cubic, and thus the smoothness criterion can be written

=

Z

0

[ 00( )]2 =
1X

=0

Z
+1

[ 00( )]2

4No degree of freedom is lost, because unlike with the goodness-of-t test, if you know all but one
of the terms of the sum, it is not possible to infer the remaining value.



SMOOTHING SPLINES 577

From (19.5),
00( ) = ( +1 ) +

+1
( )

and then
Z

+1

[ 00( )]2 =

Z
+1

( +1 ) +
+1
( )

¸2

=

Z 1

0

[ (1 ) + +1 ]
2

=

Z 1

0

[ + ( +1 ) ]2

=
[ + ( +1 ) ]3

3( +1 )

¯̄
¯̄
1

0

=
3
( 2 + +1 +

2
+1)

where the substitution = ( ) is used in the second line. The criterion
function then becomes

=
X

=0

µ ¶2
+ (1 )

1X

=0
3
( 2 + +1 +

2
+1)

We need to minimize this function with respect to the 2 +2 unknown quantities
{ : = 0 }. Note that when we have solved for these variables, we will
have four pieces of information { +1 +1} for each interval [ +1],
allowing us to fully specify the interpolating cubic spline in each interval. We now
address the issue of solving for these quantities.
We now consider the natural smoothing spline. The equations developed for

interpolating splines apply to smoothing cubic splines except that the s are re-
placed by s to recognize that the abscissas { : = 0 } of the smoothing
splines do not pass through the abscissas of the data points { ; = 0 }. From
(19.16), we can write

Hm = u

where m = ( 1 2 1) and u = ( 1 2 1) because 0 = =
0 from the natural spline condition. From (19.15), the vector u can be rewritten as

u = Ra

where R is the ( 1)× ( + 1) matrix

R =

0 ( 0 + 1) 1 0 0
0 1 ( 1 + 2) 2 0 0
. . .

. . .
. . .

. . .
0 0 2 ( 2 + 1) 1

and
a = ( 0 1 ) = 6 1
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Then we have
Hm = Ra (19.27)

We can now rewrite the criterion as

= (y a) 1(y a) + 1
6(1 )m Hm

where = diag{ 2
0

2
1

2}. Becausem =H 1Ra, we can rewrite the criterion
as

= (y a) 1(y a) + 1
6(1 )a R H 1Ra

We can di erentiate the criterion with respect to each of 0 1 successively
to obtain the optimal values of the ordinates. In matrix notation, the result is (after
dividing the derivative by 2)

(y a) 1 + 1
6(1 )a R H 1R = 0

where 0 is the ( +1)× 1 vector of zeros, (0 0) . Rearranging and transposing
yields

6 1(y a) = (1 )R H 1Ra

or
6 1(y a) = (1 )R m (19.28)

We now premultiply by R , yielding

6 R 1(y a) = (1 )R R m

or
6 (Ry Ra) = (1 )R R m (19.29)

Because Hm = Ra, (19.29) reduces to

Ry Hm = 1
6(1 )R R m

or ³
H+ 1

6(1 )R R
´
m = Ry (19.30)

This is a system of 1 equations in 1 unknowns. The system of equations
can be solved for 1 2 1. Using matrix methods, the solution can be
obtained from (19.30) as

m =

µ
H+

1

6
R R

¶ 1

Ry (19.31)

Now, the values of 0 1 can be obtained by rewriting (19.28) as

a = y
1

6
R m (19.32)

Finally, substitution of (19.31) into (19.32) results in

a = y
1

6
R

µ
H+

1

6
R R

¶ 1

Ry (19.33)



SMOOTHING SPLINES 579

Thus we have obtained the values of the intercepts of the cubic spline segments
of the smoothing spline. The values of the other coe cients of the spline segments
can now be calculated in the same way as for the natural interpolating spline,
as discussed in Section 19.3 using the knots {( ) = 0 } and setting
0 = = 0. It should be noted that the only additional calculation for the

natural smoothing spline as compared with the natural interpolation spline is given
by (19.33).
The magnitude of the values of the criteria for t and smoothness may

be very di erent. Therefore, one should not place any signicance on the specic
choice of the value of (unless it is 0 or 1). Smaller values of result in more
smoothing; larger values result in less. In some applications, it may be necessary
to make the value of very small, for example, 0.001, to begin to get visual images
with any signicant amount of smoothing. The need for small values of is, in part,
due to the role of the variances that appear in the denominator of the t criterion.
Small variances can result in the t term being much larger than the smoothness
term. Therefore, it may be necessary to have a very small value for to get any
visible smoothing.

EXAMPLE 19.7

Construct natural cubic smoothing splines for the data in Table 19.1. The
natural cubic interpolating spline through the mortality rates is shown in
Figure 19.8.

Natural cubic smoothing splines with = 0 5 and = 0 1 are shown in
Figures 19.9 and 19.10. The coe cients for the smoothing spline with = 0 1
are given in Table 19.3. Note that the resulting splines look much like the
one in Figure 19.8 except near the upper end of the data where there are
relatively fewer actual deaths and less smoothness in the successive observed
values. Also observe the increased smoothness in the spline in Figure 19.10
resulting from the smaller emphasis on t. The standard deviations were
calculated as in Example 19.6 with the resulting values multiplied by 1,000 to
make the numbers more reasonable.5 ¤

Example 19.7 illustrates how the smoothing splines can be used to carry out
both interpolation and smoothing automatically. The knots at quinquennial ages
are smoothed using (19.32). The modied knots are then used as knots for an
interpolating spline. The interpolated values are the revised mortality rates at
the intermediate ages. The smoothing e ect is not visually dramatic in Example
19.7 because the original data series was already quite smooth. The next example
illustrates how successive values in a very noisy series can be smoothed dramatically
using a smoothing spline.

5Had the values not been multiplied by 1,000, the same answers could have been obtained by
altering the value of . This method of calculating the standard deviations does not consider
the possible variation in sizes of the insurance policies. See Klugman [93] for a more detailed
treatment. The method used here implicitly treats all policies as being of the same size. That
size is not important because, as with the factor of 1,000, a constant of proportionality can be
absorbed into .
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Figure 19.9 Smoothing spline with = 0 5 for Example 19.7.
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Figure 19.10 Smoothing spline with = 0 1 for Example 19.7.

EXAMPLE 19.8

Table 19.4 gives successive observed mortality rates for a 15-year period. The
data can be found in Miller [123, p. 11] and are shown in Figure 19.11. Fit
smoothing splines, changing until smoothing appears reasonable, and pro-
vide values of the revised mortality rates at each age.

Unlike Example 19.7, the numbers represent numbers of persons, not dollar
amounts, and can be used directly in the estimates of the variances of the
mortality rates (see Example 19.6). The standard deviations are multiplied by
a factor of 10 for convenience. For insurance purposes, we are more interested
in the spline values at the knots, that is, the . The interpolated values are
given in Table 19.4 and the spline values are plotted in Figures 19.12�—19.14
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Table 19.3 Spline coe cients for Example 19.7 with = 0 1.

0 27 3.8790×10 3 -3.4670×10 4 0 2.4846×10 6

1 32 2.4560×10 3 -1.6036×10 4 3.7269×10 5 -8.0257×10 7

2 37 2.4856×10 3 1.5214×10 4 2.5230×10 5 -5.0019×10 7

3 42 3.8146×10 3 3.6693×10 4 1.7728×10 5 1.9945×10 6

4 47 6.3417×10 3 6.9379×10 4 4.7644×10 5 -4.0893×10 6

5 52 1.0491×10 2 8.6353×10 4 -1.3695×10 5 1.1833×10 5

6 57 1.5945×10 2 1.6141×10 3 1.6380×10 4 -9.7024×10 6

7 62 2.6898×10 2 2.5244×10 3 1.8268×10 5 6.2633×10 6

8 67 4.0759×10 2 3.1769×10 3 1.1222×10 4 -9.4435×10 7

9 72 5.9331×10 2 4.2282×10 3 9.8052×10 5 3.9737×10 5

10 77 8.7891×10 2 8.1890×10 3 6.9411×10 4 -6.6804×10 5

11 82 1.3784×10 1 1.0120×10 2 -3.0794×10 4 2.1572×10 5

12 87 1.8344×10 1 8.6583×10 3 1.5633×10 5 -1.0282×10 6

13 92 2.2699×10 1 8.7376×10 3 2.1021×10 7 -1.4014×10 8

Table 19.4 Mortality rates and interpolated values for Example 19.8.

Age Exposed Observed Estimated Smoothed
to risk deaths mort. rate = 0 5 = 0 1 = 0 05

0 70 135 6 0.044 0.046 0.050 0.052
1 71 143 12 0.084 0.078 0.069 0.065
2 72 140 10 0.071 0.077 0.071 0.069
3 73 144 11 0.076 0.066 0.064 0.065
4 74 149 6 0.040 0.049 0.062 0.066
5 75 154 16 0.104 0.100 0.084 0.080
6 76 150 24 0.160 0.126 0.096 0.089
7 77 139 8 0.058 0.076 0.087 0.088
8 78 145 16 0.110 0.091 0.091 0.093
9 79 140 13 0.093 0.102 0.105 0.107
10 80 137 19 0.139 0.131 0.128 0.128
11 81 136 21 0.154 0.157 0.155 0.154
12 82 126 23 0.183 0.182 0.181 0.181
13 83 126 26 0.206 0.208 0.209 0.208
14 84 109 26 0.239 0.238 0.237 0.236

Total 2,073 237

for = 0 5 0 1 and 0 05. Note that for = 0 5, there is signicant smoothing
but that some points still have a lot of inuence on the result. For example,
the large number of actual deaths at age 76 causes the curve to be pulled
upward. More smoothing can be obtained by reducing , as can be observed
from the three gures. ¤

Example 19.8 demonstrats the smoothing capability of splines. However, one
still needs to choose a value of . In practice the choice is made using professional
judgment and visual inspection. If, as with Example 19.7, data sets are large and
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Figure 19.11 Mortality data for Example 19.8.
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Figure 19.12 Smoothing spline for mortality data with = 0 5.

there is already some degree of smoothness in the observed data, then a tted
curve that closely follows the data is likely highly desirable. If the available data
set is more limited, as with Example 19.8, considerable smoothing is needed and
judgment plays a large role. For data sets of any size, formal tests of t can be
conducted. The t criterion has a chi-square distribution with + 1 degrees of
freedom and so there is a reasonable range of values. The choice of other tests of t,
such as the runs test, can be employed to identify specic anomalies of the tted
spline.
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Figure 19.13 Smoothing spline for mortality data with = 0 1.
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Figure 19.14 Smoothing spline for mortality data with = 0 05.

19.6.1 Exercise

19.12 Consider the natural cubic smoothing spline that smooths the points (0 0),
(1 2), (2 1), (3 3) using = 0 9 and standard deviations of 0 5. (Use a spreadsheet
for the calculations.)

(a) Obtain the values of the intercepts of the nodes by using (19.33).

(b) Obtain the natural cubic smoothing spline as the natural interpolating
spline through the nodes using (19.16) and (19.18).

(c) Graph the resulting spline from = 0 5 to = 2 5.
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CREDIBILITY

20.1 INTRODUCTION

Credibility theory is a set of quantitative tools that allows an insurer to perform
prospective experience rating (adjust future premiums based on past experience) on
a risk or group of risks. If the experience of a policyholder is consistently better than
that assumed in the underlying manual rate (sometimes called the pure premium),
then the policyholder may demand a rate reduction.
The policyholder�’s argument is as follows: The manual rate is designed to reect

the expected experience of the entire rating class and implicitly assumes that the
risks are homogeneous. However, no rating system is perfect, and there always
remains some heterogeneity in the risk levels after all the underwriting criteria are
accounted for. Consequently, some policyholders will be better risks than that
assumed in the underlying manual rate. Of course, the same logic dictates that a
rate increase should be applied to a poor risk, but the policyholder in this situation
is certainly not going to ask for a rate increase! Nevertheless, an increase may be
necessary, due to considerations of equity and the economics of the situation.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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The insurer is then forced to answer the following question: How much of the
di erence in experience of a given policyholder is due to random variation in the
underlying claims experience and how much is due to the fact that the policy-
holder really is a better or worse risk than average for the given rating class? In
other words, how credible is the policyholder�’s own experience? Two facts must be
considered in this regard:

1. The more past information the insurer has on a given policyholder, the more
credible the policyholder�’s own experience, all else being equal. In the same
vein, in group insurance the experience of larger groups is more credible than
that of smaller groups.

2. Competitive considerations may force the insurer to give full (using the past
experience of the policyholder only and not the manual rate) or nearly full
credibility to a given policyholder in order to retain the business.

Another use for credibility is in the setting of rates for classication systems. For
example, in workers compensation insurance there may be hundreds of occupational
classes, some of which may provide very little data. To accurately estimate the
expected cost for insuring these classes, it may be appropriate to combine the
limited actual experience with some other information, such as past rates, or the
experience of occupations that are closely related.
From a statistical perspective, credibility theory leads to a result that would

appear to be counterintuitive. If experience from an insured or group of insureds is
available, our statistical training may convince us to use the sample mean or some
other unbiased estimator. But credibility theory tells us that it is optimal to give
only partial weight to this experience and give the remaining weight to an estimator
produced from other information. We will discover that what we sacrice in terms
of bias, we gain in terms of reducing the average (squared) error.
Credibility theory allows an insurer to quantitatively formulate the problem of

combining data with other information, and this chapter provides an introduction
to this theory. Section 20.2 deals with limited uctuation credibility theory, a sub-
ject developed in the early part of the twentieth century. This theory provides a
mechanism for assigning full (Section 20.2.1) or partial (Section 20.2.2) credibility
to a policyholder�’s experience. The di culty with this approach is the lack of a
sound underlying mathematical theory justifying the use of these methods. Never-
theless, this approach provided the original treatment of the subject and is still in
use today.
A classic paper by Bühlmann in 1967 [22] provides a statistical framework within

which credibility theory has developed and ourished. While this approach, termed
greatest accuracy credibility theory,1 was formalized by Bühlmann, the basic ideas
were around for some time. This approach is introduced in Section 20.3. The
simplest model, that of Bühlmann [22], is discussed in Section 20.3.5. Practical
improvements were made by Bühlmann and Straub in 1970 [24]. Their model is
discussed in Section 20.3.6. The concept of exact credibility is presented in Section
20.3.7.

1The terms limited uctuation and greatest accuracy go back at least as far as a 1943 paper by
Arthur Bailey [9].



LIMITED FLUCTUATION CREDIBILITY THEORY 587

Practical use of the theory requires that unknown model parameters be estimated
from data. Nonparametric estimation (where the problem is somewhat model free
and the parameters are generic, such as the mean and variance) is considered in
Section 20.4.1, semiparametric estimation (where some of the parameters are based
on assuming particular distributions) in Section 20.4.2, and nally the fully para-
metric situation (where all parameters come from assumed distributions) in Section
20.4.3.
We close this introduction with a quote from Arthur Bailey in 1950 [10, p. 8]

that aptly summarizes much of the history of credibility. We, too, must tip our
hats to the early actuaries, who, with unsophisticated mathematical tools at their
disposal, were able to come up with formulas that not only worked but also were
very similar to those we carefully develop in this chapter.

It is at this point in the discussion that the ordinary individual has to admit
that, while there seems to be some hazy logic behind the actuaries�’ con-
tentions, it is too obscure for him to understand. The trained statistician
cries �“Absurd! Directly contrary to any of the accepted theories of statisti-
cal estimation.�” The actuaries themselves have to admit that they have gone
beyond anything that has been proven mathematically, that all of the values
involved are still selected on the basis of judgment, and that the only demon-
stration they can make is that, in actual practice, it works. Let us not forget,
however, that they have made this demonstration many times. It does work!

20.2 LIMITED FLUCTUATION CREDIBILITY THEORY

This branch of credibility theory represents the rst attempt to quantify the cred-
ibility problem. This approach was suggested in the early nineteen hundreds in
connection with workers compensation insurance. The original paper on the sub-
ject was by Mowbray in 1914 [125]. The problem may be formulated as follows.
Suppose that a policyholder has experienced claims or losses2 in past experi-
ence period , where {1 2 3 }. Another view is that is the experience
from the th policy in a group or from the th member of a particular class in a
rating scheme. Suppose that E( ) = , that is, the mean is stable over time or
across the members of a group or class.3 This quantity would be the premium to
charge (net of expenses, prots, and a provision for adverse experience) if only we
knew its value. Also suppose Var( ) = 2, again, the same for all . The past
experience may be summarized by the average ¯ = 1( 1+ · · ·+ ). We know
that E( ¯) = , and if the are independent, Var( ¯) = 2 . The insurer�’s
goal is to decide on the value of . One possibility is to ignore the past data (no
credibility) and simply charge , a value obtained from experience on other similar
but not identical policyholders. This quantity is often called the manual premium
because it would come from a book (manual) of premiums. Another possibility is

2 �“Claims�” refers to the number of claims and �“losses�” refers to payment amounts. In many cases,
such as in this introductory paragraph, the ideas apply equally whether we are counting claims
or losses.
3The customary symbol for the mean, , is not used here because that symbol is used for a
di erent but related mean in Section 20.3. We have chosen this particular symbol (�“Xi�”) because
it is the most di cult Greek letter to write and pronounce. It is an unwritten rule of textbook
writing that it appear at least once.
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to ignore and charge ¯ (full credibility). A third possibility is to choose some
combination of and ¯ (partial credibility).
From the insurer�’s standpoint, it seems sensible to �“lean toward�” the choice ¯ if

the experience is more �“stable�” (less variable, 2 small). Stable values imply that
¯ is of more use as a predictor of next year�’s results. Conversely, if the experience
is more volatile (variable), then ¯ is of less use as a predictor of next year�’s results
and the choice makes more sense.
Also, if we have an a priori reason to believe that the chances are great that

this policyholder is unlike those who produced the manual premium , then more
weight should be given to ¯ because, as an unbiased estimator, ¯ tells us something
useful about while is likely to be of little value. In contrast, if all of our other
policyholders have similar values of , there is no point in relying on the (perhaps
limited) experience of any one of them when is likely to provide an excellent
description of the propensity for claims or losses.
While reference is made to policyholders, the entity contributing to each

could arise from a single policyholder, a class of policyholders possessing similar
underwriting characteristics, or a group of insureds assembled for some other reason.
For example, for a given year , could be the number of claims led in respect
of a single automobile policy in one year, the average number of claims led by all
policyholders in a certain ratings class (e.g., single, male, under age 25, living in an
urban area, driving over 7,500 miles per year), or the average amount of losses per
vehicle for a eet of delivery trucks owned by a food wholesaler.
We rst present one approach to decide whether to assign full credibility (charge

¯ ), and then we present an approach to assign partial credibility if it is felt that
full credibility is inappropriate.

20.2.1 Full credibility

One method of quantifying the stability of ¯ is to infer that ¯ is stable if the
di erence between ¯ and is small relative to with high probability. In statistical
terms, stability can be dened by selecting two numbers 0 and 0 1 (with
close to 0 and close to 1, common choices being = 0 05 and = 0 9) and

assigning full credibility if

Pr( ¯ ) (20.1)

It is convenient to restate (20.1) as

Pr

µ¯̄
¯̄
¯

¯̄
¯̄

¶

Now let be dened by

= inf

½
Pr

µ¯̄
¯̄
¯

¯̄
¯̄

¶ ¾
(20.2)

That is, is the smallest value of that satises the probability statement in
braces in (20.2). If ¯ has a continuous distribution, the �“ �” sign in (20.2) may be
replaced by an �“=�” sign, and satises

Pr

µ¯̄
¯̄

¯̄
¯̄

¶
= (20.3)
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Then the condition for full credibility is ,

=

r

0
(20.4)

where 0 = ( )2. Condition (20.4) states that full credibility is assigned if the
coe cient of variation is no larger than

p
0, an intuitively reasonable result.

Also of interest is that (20.4) can be rewritten to show that full credibility occurs
when

Var( ¯) =
2 2

0
. (20.5)

Alternatively, solving (20.4) for gives the number of exposure units required
for full credibility, namely,

0

µ ¶2
(20.6)

In many situations it is reasonable to approximate the distribution of ¯ by a
normal distribution with mean and variance 2 . For example, central limit
theorem arguments may be applicable if is large. In that case, ( ¯ ) ( )
has a standard normal distribution. Then (20.3) becomes (where has a standard
normal distribution and ( ) is its cdf)

= Pr(| | )

= Pr( )

= ( ) ( )

= ( ) 1 + ( )

= 2 ( ) 1

Therefore ( ) = (1 + ) 2, and is the (1 + ) 2 percentile of the standard
normal distribution.
For example, if = 0 9, then standard normal tables give 0 9 = 1 645. If, in ad-

dition, = 0 05, then 0 = (32 9)
2 = 1,082 41 and (20.6) yields 1,082 41 2 2.

Note that this answer assumes we know the coe cient of variation of . It is
possible we have some idea of its value, even though we do not know the value of
(remember, that is the quantity we want to estimate).
The important thing to note when using (20.6) is that the coe cient of variation

is for the estimator of the quantity to be estimated. The right-hand side gives the
standard for full credibility when measuring it in terms of exposure units. If some
other unit is desired, it is usually su cient to multiply both sides by an appropriate
quantity. Finally, any unknown quantities will have be to estimated from the data,
which implies that the credibility question can be posed in a variety of ways. The
following examples cover the most common cases.

EXAMPLE 20.1

Suppose past losses 1 are available for a particular policyholder. The
sample mean is to be used to estimate = E( ). Determine the standard
for full credibility. Then suppose there were 10 observations with 6 being zero
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and the others being 253, 398, 439, and 756. Determine the full-credibility
standard for this case with = 0 05 and = 0 9.

The solution is available directly from (20.6) as

0

µ ¶2

For this specic case, the mean and standard deviation can be estimated from
the data as 184.6 and 267.89 (where the variance estimate is the unbiased
version using 1). With 0 = 1082 41, the standard is

1082 41

µ
267 89

184 6

¶2
= 2279 51

and the 10 observations do not deserve full credibility. ¤

In the next example, it is further assumed that the observations are from a
particular type of distribution.

EXAMPLE 20.2

Suppose that past losses 1 are available for a particular policyholder
and it is reasonable to assume that the s are independent and compound
Poisson distributed, that is, = 1 + · · ·+ , where each is Poisson
with parameter and the claim size distribution has mean and variance
2 . Determine the standard for full credibility when estimating the expected
number of claims per policy and then when estimating the expected dollars of
claims per policy. Then determine if these standards are met for the data in
Example 20.1, where it is now known that the rst three nonzero payments
came from a single claim but the nal one was from two claims, one for 129
and the other for 627.

Case 1: Accuracy is to be measured with regard to the average number of
claims. Then, using the s rather than the s, we have = E( ) = and
2 = Var( ) = , implying from (20.6) that

0

Ã
1 2
!2

=
0

Thus, if the standard is in terms of the number of policies, it will have to
exceed 0 for full credibility and will have to be estimated from the data.
If the standard is in terms of the number of expected claims, that is, , we
must multiply both sides by . Doing so sets the standard as

0

While it appears that no estimation is needed for this standard, it is in terms
of the expected number of claims needed. In practice, the standard is set in



LIMITED FLUCTUATION CREDIBILITY THEORY 591

terms of the actual number of claims experienced, e ectively replacing on
the left by its estimate 1 + · · ·+ .
For the given data, there were ve claims, for an estimate of of 0.5 per

policy. The standard is then

1,082 41
0 5

= 2,164 82

and the 10 policies are far short of this standard. Or the ve actual claims
could be compared to 0 = 1,082 41, which leads to the same result.

Case 2: When accuracy is with regard to the average total payment, we have
= E( ) = and Var( ) = ( 2 + 2 ), formulas developed in Chapter

9. In terms of the sample size, the standard is

0
( 2 + 2 )

2 2 =
0

"

1 +

µ ¶2#

If the standard is in terms of the expected number of claims, multiply both
sides by to obtain

0

"

1 +

µ ¶2#

Finally, if the standard is in terms of the expected total dollars of claims,
multiply both sides by to obtain

0

µ
+

2
¶

For the given data, the ve claims have mean 369.2 and standard deviation
189.315, and thus

0

"

1 +

µ ¶2#

=
1,082 41
0 5

"

1 +

µ
189 315

369 2

¶2#

= 2,734 02

Again, the 10 observations are far short of what is needed. If the standard
is to be set in terms of claims (of which there are ve), multiply both sides
by 0.5 to obtain a standard of 1,367.01. Finally, the standard could be set
in terms of total dollars of claims. To do so, multiply both sides by 369.2 to
obtain 504,701. Note that in all three cases, the ratio of the observed quantity
to the corresponding standard is unchanged:

10

2,734 02
=

5

1,367 01
=

1,846
504,701

= 0 003658
¤

In these examples, the standard for full credibility is not met, and so the sample
means are not su ciently accurate to be used as estimates of the expected value.
We need a method for dealing with this situation.
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20.2.2 Partial credibility

If it is decided that full credibility is inappropriate, then for competitive reasons (or
otherwise) it may be desirable to reect the past experience ¯ in the net premium
as well as the externally obtained mean, . An intuitively appealing method for
combining the two quantities is through a weighted average, that is, through the
credibility premium

= ¯ + (1 ) (20.7)

where the credibility factor [0 1] needs to be chosen. There are many formulas
for that have been suggested in the actuarial literature, usually justied on intu-
itive rather than theoretical grounds. (We remark that Mowbray [125] considered
full, but not partial credibility.) One important choice is

=
+

(20.8)

where needs to be determined. This particular choice will be shown to be the-
oretically justied on the basis of a statistical model to be presented in Section
20.3. Another choice, based on the same idea as full credibility (and including the
full-credibility case = 1), is now discussed.
A variety of arguments have been used for developing the value of , many of

which lead to the same answer. All of them are awed in one way or another.
The development we have chosen to present is also awed but is at least simple.
Recall that the goal of the full-credibility standard was to ensure that the di erence
between the net premium we are considering ( ¯ ) and what we should be using ( )
is small with high probability. Because ¯ is unbiased, achieving this standard is
essentially (and exactly if ¯ has the normal distribution) equivalent to controlling
the variance of the proposed net premium, ¯ , in this case. We see from (20.5) that
there is no assurance that the variance of ¯ will be small enough. However, it is
possible to control the variance of the credibility premium, , as follows:

2

0
= Var( )

= Var[ ¯ + (1 ) ]

= 2 Var( ¯)

= 2
2

Thus = ( )
p

0, provided it is less than 1, which can be expressed using
the single formula

= min

½ r

0
1

¾
(20.9)

One interpretation of (20.9) is that the credibility factor is the ratio of the
coe cient of variation required for full credibility (

p
0) to the actual coe cient

of variation. For obvious reasons this formula ,is often called the square root rule
for partial credibility.
While we could do the algebra with regard to (20.9), it is su cient to note that

it always turns out that is the square root of the ratio of the actual count to the
count required for full credibility.
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EXAMPLE 20.3

Suppose in Example 20.1 that the manual premium is 225. Determine the
credibility estimate.

The average of the payments is 184.6. With the square root rule the cred-
ibility factor is

=

r
10

2,279 51
= 0 06623

Then the credibility premium is

= 0 06623(184 6) + 0 93377(225) = 222 32
¤

EXAMPLE 20.4

Suppose in Example 20.2 that the manual premium is 225. Determine the
credibility estimate using both cases.

For the rst case, the credibility factor is

=

r
5

1,082 41
= 0 06797

and applying it yields

= 0 06797(184 6) + 0 93203(225) = 222 25

At rst glance this approach may appear inappropriate. The standard was set
in terms of estimating the frequency but was applied to the aggregate claims.
Often, individuals are distinguished more by di erences in the frequency with
which they have claims rather than by di erences in the cost per claim. So
this factor captures the most important feature.
For the second case, we can use any of the three calculations:

=

r
10

2,734 02
=

r
5

1,367 01
=

r
1,846
504,701

= 0 06048

Then,
= 0 06048(184 6) + 0 93952(225) = 222 56

¤

Earlier we mentioned a aw in the approach. Other than assuming that the
variance captures the variability of ¯ in the right way, all of the mathematics is
correct. The aw is in the goal. Unlike ¯ , is not an unbiased estimator of
. In fact, one of the qualities that allows credibility to work is its use of biased
estimators. But for biased estimators the appropriate measure of its quality is not
its variance, but its MSE. However, the MSE requires knowledge of the bias, and,
in turn, that requires knowledge of the relationship of and . However, we know
nothing about that relationship, and the data we have collected are of little help.
As noted in Section 20.2.3, this is not only a problem with our determination of ,
it is a problem that is characteristic of the limited uctuation approach. A model
for this relationship is introduced in Section 20.3.
This section closes with a few additional examples. In the rst two examples

0 = 1,082 41 is used.
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EXAMPLE 20.5

For group dental insurance, historical experience on many groups has revealed
that annual losses per life insured have a mean of 175 and a standard deviation
of 140. A particular group has been covered for two years with 100 lives
insured in year 1 and 110 in year 2 and has experienced average claims of 150
over that period. Determine if full or partial credibility is appropriate, and
determine the credibility premium for next year�’s losses if there will be 125
lives insured.

We apply the credibility on a per-life-insured basis. We have observed
100+110 = 210 exposure units (assume experience is independent for di erent
lives and years), and ¯ = 150. Now = 175, and we assume that will
be 140 for this group. Because we are trying to estimate the average cost per
person, the calculations done in Example 20.4 for Case 2 apply. Thus, with
= 210 and 0 = 1,082 41, we estimate with the sample mean of 150 to

obtain the standard for full credibility as

1,082 41
µ
140

150

¶2
= 942 90

and then calculate

=

r
210

942 90
= 0 472

(note that ¯ is the average of 210 claims, so approximate normality is assumed
by the central limit theorem). Thus, the net premium per life insured is

= 0 472(150) + 0 528(175) = 163 2

The net premium for the whole group is 125(163 2) = 20,400. ¤

EXAMPLE 20.6

An insurance coverage involves credibility based on number of claims only. For
a particular group, 715 claims have been observed. Determine an appropriate
credibility factor, assuming that the number of claims is Poisson distributed.

This is Case 1 from Example 20.4, and the standard for full credibility with
regard to the number of claims is 0 = 1082 41. Then

=

r
715

1,082 41
= 0 813

¤

EXAMPLE 20.7

Past data on a particular group are X = ( 1 2 ) , where the
are i.i.d. compound Poisson random variables with exponentially distributed
claim sizes. If the credibility factor based on claim numbers is 0.8, determine
the appropriate credibility factor based on total claims.
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When based on Poisson claim numbers, from Example 20.2, = 0 8 implies
that 0 = (0 8)

2 = 0 64, where is the observed number of claims. For
exponentially distributed claim sizes, 2 = 2 . From Case 2 of Example 20.2,
the standard for full credibility in terms of the number of claims is

0

"

1 +

µ ¶2#

= 2 0

Then

=

r

2 0
= 0 32 = 0 566

¤

20.2.3 Problems with the approach

While the limited uctuation approach yields simple solutions to the problem, there
are theoretical di culties. First, there is no underlying theoretical model for the
distribution of the s and, thus, no reason why a premium of the form (20.7)
is appropriate and preferable to . Why not just estimate from a collection of
homogeneous policyholders and charge all policyholders the same rate? While there
is a practical reason for using (20.7), no model has been presented to suggest that
this formula may be appropriate. Consequently, the choice of (and hence ) is
completely arbitrary.
Second, even if (20.7) were appropriate for a particular model, there is no guid-

ance for the selection of and .
Finally, the limited uctuation approach does not examine the di erence between
and . When (20.7) is employed, we are essentially stating that the value of is
accurate as a representation of the expected value given no information about this
particular policyholder. However, it is usually the case that is also an estimate
and, therefore, unreliable in itself. The correct credibility question should be �“how
much more reliable is ¯ compared to ?�” and not �“how reliable is ¯?�”
In the remainder of this chapter, a systematic modeling approach is presented

for the claims experience of a particular policyholder that suggests that the past
experience of the policyholder is relevant for prospective rate making. Furthermore,
the intuitively appealing formula (20.7) is a consequence of this approach, and
is often obtained from relations of the form (20.8).

20.2.4 Notes and References

The limited uctuation approach is discussed by Herzog [65] and Longley-Cook
[110]. See also Norberg [130].

20.2.5 Exercises

20.1 An insurance company has decided to establish its full-credibility require-
ments for an individual state rate ling. The full-credibility standard is to be set so
that the observed total amount of claims underlying the rate ling would be within
5% of the true value with probability 0.95. The claim frequency follows a Poisson
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Table 20.1 Data for Exercise 20.3.

Year 1 2 3
Claims 475 550 400

distribution and the severity distribution has pdf

( ) =
100

5,000
0 100

Determine the expected number of claims necessary to obtain full credibility using
the normal approximation.

20.2 For a particular policyholder, the past total claims experience is given by
1 , where the s are i.i.d. compound random variables with Poisson pa-

rameter and gamma claim size distribution with pdf

( ) =
1

( )
0

You also know the following:

1. The credibility factor based on numbers of claims is 0.9.

2. The expected claim size = 100.

3. The credibility factor based on total claims is 0.8.

Determine and

20.3 For a particular policyholder, the manual premium is 600 per year. The past
claims experience is given in Table 20.1. Assess whether full or partial credibility
is appropriate and determine the net premium for next year�’s claims assuming the
normal approximation. Use = 0 05 and = 0 9.

20.4 Redo Example 20.2 assuming that is a compound negative binomial dis-
tribution rather than compound Poisson.

20.5 (*) The total number of claims for a group of insureds is Poisson with mean
. Determine the value of such that the observed number of claims will be within
3% of with a probability of 0.975 using the normal approximation.

20.6 (*) An insurance company is revising rates based on old data. The expected
number of claims for full credibility is selected so that observed total claims will be
within 5% of the true value 90% of the time. Individual claim amounts have pdf
( ) = 1 200 000 0 200,000, and the number of claims has the Poisson dis-
tribution. The recent experience consists of 1,082 claims. Determine the credibility,
, to be assigned to the recent experience. Use the normal approximation.

20.7 (*) The average claim size for a group of insureds is 1,500 with a standard
deviation of 7,500. Assume that claim counts have the Poisson distribution. De-
termine the expected number of claims so that the total loss will be within 6% of
the expected total loss with probability 0.90.
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20.8 (*) A group of insureds had 6,000 claims and a total loss of 15,600,000. The
prior estimate of the total loss was 16,500,000. Determine the limited uctuation
credibility estimate of the total loss for the group. Use the standard for full credi-
bility determined in Exercise 20.7.

20.9 (*) The full-credibility standard is set so that the total number of claims is
within 5% of the true value with probability . This standard is 800 claims. The
standard is then altered so that the total cost of claims is to be within 10% of
the true value with probability . The claim frequency has a Poisson distribution
and the claim severity distribution has pdf ( ) = 0 0002(100 ) 0 100.
Determine the expected number of claims necessary to obtain full credibility under
the new standard.

20.10 (*) A standard for full credibility of 1,000 claims has been selected so that
the actual pure premium will be within 10% of the expected pure premium 95%
of the time. The number of claims has the Poisson distribution. Determine the
coe cient of variation of the severity distribution.

20.11 (*) For a group of insureds you are given the following information:

1. The prior estimate of expected total losses is 20,000,000.

2. The observed total losses are 25,000,000.

3. The observed number of claims is 10,000.

4. The number of claims required for full credibility is 17,500.

Determine the credibility estimate of the group�’s expected total losses based on
all the given information. Use the credibility factor that is appropriate if the goal
is to estimate the expected number of losses.

20.12 (*) A full-credibility standard is determined so that the total number of
claims is within 5% of the expected number with probability 98%. If the same
expected number of claims for full credibility is applied to the total cost of claims,
the actual total cost would be within 100 % of the expected cost with 95% proba-
bility. Individual claims have severity pdf ( ) = 2 5 3 5 1 and the number
of claims has the Poisson distribution. Determine .

20.13 (*) The number of claims has the Poisson distribution. The number of
claims and the claim severity are independent. Individual claim amounts can be
for 1, 2, or 10 with probabilities 0.5, 0.3, and 0.2, respectively. Determine the
expected number of claims needed so that the total cost of claims is within 10% of
the expected cost with 90% probability.

20.14 (*) The number of claims has the Poisson distribution. The coe cient
of variation of the severity distribution is 2. The standard for full credibility in
estimating total claims is 3,415. With this standard, the observed pure premium
will be within % of the expected pure premium 95% of the time. Determine .

20.15 (*) You are given the following:
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1. = prior estimate of pure premium for a particular class of business.

2. = observed pure premium during the latest experience period for the same
class of business.

3. = revised estimate of pure premium for the same class following the obser-
vations.

4. = number of claims required for full credibility of the pure premium.

Express the observed number of claims as a function of these four items.

20.16 (*) A company�’s standard for full credibility is 2,000 claims when it is as-
sumed that the number of claims follows a Poisson distribution and the total number
of claims is to be within 3% of the true value with probability . The standard is
changed so that the total cost of claims is to be within 5% of the true value with the
same probability and a severity distribution that is uniform from 0 to 10,000 and
the frequency distribution is Poisson. Determine the expected number of claims
necessary to obtain full credibility under the new standard.

20.3 GREATEST ACCURACY CREDIBILITY THEORY

20.3.1 Introduction

In this and Section 20.4, we consider a model-based approach to the solution of
the credibility problem. This approach, referred to as greatest accuracy credibility
theory, is the outgrowth of a classic 1967 paper by Bühlmann [22]. Many of the
ideas are also found in Whitney [184] and Bailey [10].
We return to the basic problem. For a particular policyholder, we have observed
exposure units of past claims X = ( 1 ) . We have a manual rate (we

no longer use for the manual rate) applicable to this policyholder, but the past
experience indicates that it may not be appropriate ( ¯ = 1 ( 1 + · · ·+ ), as
well as E( ), could be quite di erent from ). This di erence raises the question
of whether next year�’s net premium (per exposure unit) should be based on , on
¯ , or on a combination of the two.
The insurer needs to consider the following question: Is the policyholder really

di erent from what has been assumed in the calculation of , or has it just been
random chance that has been responsible for the di erences between and ¯?
While it is di cult to denitively answer that question, it is clear that no un-

derwriting system is perfect. The manual rate has presumably been obtained
by (a) evaluation of the underwriting characteristics of the policyholder and (b)
assignment of the rate on the basis of inclusion of the policyholder in a rating class.
Such a class should include risks with similar underwriting characteristics. In other
words, the rating class is viewed as homogeneous with respect to the underwriting
characteristics used. Surely, not all risks in the class are truly homogeneous, how-
ever. No matter how detailed the underwriting procedure, there still remains some
heterogeneity with respect to risk characteristics within the rating class (good and
bad risks, relatively speaking).
Thus, it is possible that the given policyholder may be di erent from what has

been assumed. If this is the case, how should one choose an appropriate rate for
the policyholder?
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To proceed, let us assume that the risk level of each policyholder in the rating
class may be characterized by a risk parameter (possibly vector valued), but the
value of varies by policyholder. This assumption allows us to quantify the dif-
ferences between policyholders with respect to the risk characteristics. Because all
observable underwriting characteristics have already been used, may be viewed
as representative of the residual, unobserved factors that a ect the risk level. Con-
sequently, we shall assume the existence of , but we shall further assume that it
is not observable and that we can never know its true value.
Because varies by policyholder, there is a probability distribution with pf ( )

of these values across the rating class. Thus, if is a scalar parameter, the cumula-
tive distribution function ( )may be interpreted as the proportion of policyholders
in the rating class with risk parameter less than or equal to . (In statistical
terms, is a random variable with distribution function ( ) = Pr( ) ) Stated
another way, ( ) represents the probability that a policyholder picked at random
from the rating class has a risk parameter less than or equal to (to accommodate
the possibility of new insureds, we slightly generalize the �“rating class�” interpreta-
tion to include the population of all potential risks, whether insured or not).
While the value associated with an individual policyholder is not (and cannot

be) known, we assume (for this section) that ( ) is known. That is, the structure
of the risk characteristics within the population is known. This assumption can be
relaxed, and we shall decide later how to estimate the relevant characteristics of
( ).
Because risk levels vary within the population, it is clear that the experience of

the policyholder varies in a systematic way with . Imagine that the experience
of a policyholder picked (at random) from the population arises from a two-stage
process. First, the risk parameter is selected from the distribution ( ). Then the
claims or losses arise from the conditional distribution of given , | ( | ).
Thus the experience varies with via the distribution given the risk parameter .
The distribution of claims thus di ers from policyholder to policyholder to reect
the di erences in the risk parameters.

EXAMPLE 20.8

Consider a rating class for automobile insurance, where represents the ex-
pected number of claims for a policyholder with risk parameter . To accom-
modate the variability in claims incidence, we assume that the values of
vary across the rating class. Relatively speaking, the good drivers are those
with small values of , whereas the poor drivers are those with larger values
of . It is convenient mathematically in this case to assume that the number
of claims for a policyholder with risk parameter is Poisson distributed with
mean . The random variable may also be assumed to be gamma distrib-
uted with parameters and . Suppose it is known that the average number
of expected claims for this rating class is 0.15 [E( ) = 0 15], and 95% of the
policyholders have expected claims between 0.10 and 0.20. Determine and
.

Assuming the normal approximation to the gamma, where it is known that
95% of the probability lies within about two standard deviations of the mean,
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Table 20.2 Probabilities for Example 20.9.

Pr( = | = ) Pr( = | = ) Pr( = )

0 0.7 0.5 0.75
1 0.2 0.3 0.25
2 0.1 0.2

it follows that has standard deviation 0.025. Thus E( ) = = 0 15 and
Var( ) = 2 = (0 025)2. Solving for and yields = 1 240 and = 36.¤

EXAMPLE 20.9

There are two types of driver. Good drivers make up 75% of the population
and in one year have zero claims with probability 0.7, one claim with proba-
bility 0.2, and two claims with probability 0.1. Bad drivers make up the other
25% of the population and have zero, one, or two claims with probabilities
0.5, 0.3, and 0.2, respectively. Describe this process and how it relates to an
unknown risk parameter.

When a driver buys our insurance, we do not know if the individual is a
good or bad driver. So the risk parameter can be one of two values. We
can set = for good drivers and = for bad drivers. The probability
model for the number of claims, , and risk parameter is given in Table
20.2. ¤

EXAMPLE 20.10

The amount of a claim has the exponential distribution with mean 1 .
Among the class of insureds and potential insureds, the parameter varies ac-
cording to the gamma distribution with = 4 and scale parameter = 0 001.
Provide a mathematical description of this model.

For claims,
| ( | ) = 0

and for the risk parameter,

( ) =
3 1,000 1,0004

6
, 0 ¤

20.3.2 Conditional distributions and expectation

The formulation of the problem just presented involves the use of conditional dis-
tributions, given the risk parameter of the insured. Subsequent analyses of math-
ematical models of this nature will be seen to require a good working knowledge of
conditional distributions and conditional expectation. A discussion of these topics
is now presented.
Much of the material is of a review nature and, hence, may be quickly glossed

over by a reader with a good background in statistics. Nevertheless, there may be
some material not seen before, and so this section should not be completely ignored.



GREATEST ACCURACY CREDIBILITY THEORY 601

Suppose that and are two random variables with joint probability function
(pf) or probability density function (pdf)4 ( ) and marginal pfs ( ) and
( ), respectively. The conditional pf of given that = is

| ( | ) =
( )

( )

If and are discrete random variables, then | ( | ) is the conditional
probability of the event = under the hypothesis that = . If and are
continuous, then | ( | ) may be interpreted as a denition. When and are
independent random variables,

( ) = ( ) ( )

and, in this case,
| ( | ) = ( )

We observe that the conditional and marginal distributions of are identical.
Note that

( ) = | ( | ) ( )

demonstrating that joint distributions may be constructed from products of condi-
tional and marginal distributions. Because the marginal distribution of may be
obtained by integrating (or summing) out of the joint distribution,

( ) =

Z
( )

we nd that

( ) =

Z
| ( | ) ( ) (20.10)

Formula (20.10) has an interesting interpretation as a mixed distribution (see Sec-
tion 5.2.4). Assume that the conditional distribution | ( | ) is one of the usual
parametric distributions where is the realization of a random parameter with
distribution ( ). Section 6.3 shows that if, given = , has a Poisson distrib-
ution with mean and has a gamma distribution, then the marginal distribution
of will be negative binomial. Also, Example 5.5 showed that if | has a nor-
mal distribution with mean and variance and has a normal distribution with
mean and variance , then the marginal distribution of is normal with mean
and variance + .
Note that the roles of and can be interchanged, yielding

| ( | ) ( ) = | ( | ) ( )

because both sides of this equation equal the joint distribution of and . Division
by ( ) yields Bayes�’ Theorem, namely,

| ( | ) =
| ( | ) ( )

( )

4When it is unclear, or when the random variable may be continuous, discrete, or a mixture of
the two, the term probability function and its abbreviation pf are used. The term probability
density function and its abbreviation pdf are used only when the random variable is known to be
continuous.
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We now turn our attention to conditional expectation. Consider the conditional
pf of given that = , | ( | ). Clearly, this is a valid probability distribution,
and its mean is denoted by

E( | = ) =

Z
| ( | ) (20.11)

with the integral replaced by a sum in the discrete case. Clearly, (20.11) is a
function of , and it is often of interest to view this conditional expectation as a
random variable obtained by replacing by in the right-hand side of (20.11).
Thus we can write E( | ) instead of the left-hand side of (20.11), and so E( | )
is itself a random variable because it is a function of the random variable . The
expectation of E( | ) is given by

E[E( | )] = E( ) (20.12)

Equation (20.12) can be proved using (20.11) as follows:

E[E( | )] =

Z
E( | = ) ( )

=

Z Z
| ( | ) ( )

=

Z Z
| ( | ) ( )

=

Z
( )

= E( )

with a similar derivation in the discrete case.

EXAMPLE 20.11

Derive the mean of the negative binomial distribution by conditional ex-
pectation, recalling that, if | Poisson( ) and gamma( ), then

negative binomial with = and = .

We have
E ( | ) =

and so
E( ) = E[E( | )] = E( )

From Appendix A the mean of the gamma distribution of is , and so
E( ) = . ¤

It is often convenient to replace by an arbitrary function ( ) in (20.11),
yielding the more general denition

E[ ( )| = ] =

Z
( ) | ( | )
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Similarly, E[ ( )| ] is the conditional expectation viewed as a random variable
that is a function of . Then, (20.12) generalizes to

E{E[ ( )| ]} = E[ ( )] (20.13)

To see (20.13), note that

E{E[ ( )| ]} =

Z
E[ ( ) | = ] ( )

=

Z Z
( ) | ( | ) ( )

=

Z Z
( )[ | ( | ) ( )]

=

Z Z
( ) ( )

= E[ ( )]

If we choose ( ) = [ E( | )]2, then its expected value, based on the
conditional distribution of given , is the variance of this conditional distribu-
tion,

Var ( | ) = E{[ E( | )]2| } (20.14)

Clearly, (20.14) is still a function of the random variable .
It is instructive now to analyze the variance of where and are two random

variables. To begin, note that (20.14) may be written as

Var( | ) = E( 2| ) [E( | )]2

Thus,

E[Var( | )] = E{E( 2| ) [E( | )]2}
= E[E( 2| )] E{[ ( | )]2}
= E( 2) E{[E( | )]2}

Also, because Var[ ( )] = E{[ ( )]2} {E[ ( )]}2, we may use ( ) = E( | )
to obtain

Var[E( | )] = E{[E( | )]2} {E[E( | )]}2

= E{[E( | )]2} [E( )]2

Thus,

E[Var( | )] + Var[E( | )] = E( 2) E{[E( | )]2}
+E{[E( | )]2} [E( )]2

= E( 2) [E( )]2

= Var( )

Finally, we have established the important formula

Var( ) = E[Var( | )] + Var[E( | )] (20.15)

Formula (20.15) states that the variance of is composed of the sum of two parts:
the mean of the conditional variance plus the variance of the conditional mean.
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EXAMPLE 20.12

Derive the variance of the negative binomial distribution.

The Poisson distribution has equal mean and variance, that is,

E( | ) = Var( | ) =

and so, from (20.15),

Var( ) = E[ ( | )] + Var[E( | )]
= E( ) + Var( )

Because itself has a gamma distribution with parameters and , E( ) =
andVar( ) = 2. Thus the variance of the negative binomial distribution

is

Var( ) = E( ) + Var( )

= + 2

= (1 + ) ¤

EXAMPLE 20.13

It is shown in Example 5.5 that, if | is normally distributed with mean
and variance where is itself normally distributed with mean and

variance , then (unconditionally) is normally distributed with mean
and variance + . Use (20.12) and (20.15) to obtain the mean and variance
of directly.

For the mean we have

E( ) = E[E( | )] = E( ) =

and for the variance we obtain

Var( ) = E[Var( | )] + Var[E( | )]
= E( ) + Var( )

= +

because is a constant. ¤

20.3.3 The Bayesian methodology

Continue to assume that the distribution of the risk characteristics in the population
may be represented by ( ), and the experience of a particular policyholder with
risk parameter arises from the conditional distribution | ( | ) of claims or
losses given .
We now return to the problem introduced in Section 20.2. That is, for a par-

ticular policyholder, we have observed X = x, where X = ( 1 ) and
x = ( 1 ) , and are interested in setting a rate to cover +1. We assume
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that the risk parameter associated with the policyholder is (which is unknown).
Furthermore, the experience of the policyholder corresponding to di erent expo-
sure periods is assumed to be independent. In statistical terms, conditional on ,
the claims or losses 1 +1 are independent (although not necessarily
identically distributed).
Let have conditional pf

| ( | ) = 1 + 1

Note that, if the s are identically distributed (conditional on = ), then
| ( | ) does not depend on . Ideally, we are interested in the conditional

distribution of +1 given = in order to predict the claims experience +1 of
the same policyholder (whose value of has been assumed not to have changed).
If we knew , we could use

+1| ( +1| ). Unfortunately, we do not know , but
we do know x for the same policyholder. The obvious next step is to condition on
x rather than . Consequently, we calculate the conditional distribution of +1

given X = x, termed the predictive distribution as dened in Section 15.5.
The predictive distribution of +1 given X = x is the relevant distribution for

risk analysis, management, and decision making. It combines the uncertainty about
the claims losses with that of the parameters associated with the risk process.
Here we repeat the development in Section 15.5, noting that if has a discrete

distribution, the integrals are replaced by sums. Because the s are independent
conditional on = , we have

X (x ) = ( 1 | ) ( ) =
Y

=1

| ( | ) ( )

The joint distribution ofX is thus the marginal distribution obtained by integrating
out, that is,

X(x) =

Z Y

=1

| ( | ) ( ) (20.16)

Similarly, the joint distribution of 1 +1 is the right-hand side of (20.16)
with replaced by + 1 in the product. Finally, the conditional density of +1

given X = x is the joint density of ( 1 +1) divided by that of X, namely,

+1|X( +1|x) =
1

X(x)

Z +1Y

=1

| ( | ) ( ) (20.17)

There is a hidden mathematical structure underlying (20.17) that may be ex-
ploited. The posterior density of given X is

|X( |x) =
X (x )

X(x)
=

1

X(x)

Y

=1

| ( | ) ( ) (20.18)

In other words,
hQ

=1 | ( | )
i
( ) = |X( |x) X(x), and substitution in the

numerator of (20.17) yields

+1|X( +1|x) =
Z

+1| ( +1| ) |X( |x) (20.19)
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Equation (20.19) provides the additional insight that the conditional distribution of
+1 givenXmay be viewed as a mixture distribution, with the mixing distribution

being the posterior distribution |X( |x).
The posterior distribution combines and summarizes the information about

contained in the prior distribution and the likelihood, and consequently (20.19)
reects this information. As noted in Theorem 15.24, the posterior distribution
admits a convenient form when the likelihood is derived from the linear exponential
family and ( ) is the natural conjugate prior. When both are in place, there is an
easy method to evaluate the conditional distribution of +1 given X.

EXAMPLE 20.14

(Example 20.9 continued) For a particular policyholder, suppose we have
observed 1 = 0 and 2 = 1. Determine the predictive distribution of
3| 1 = 0 2 = 1 and the posterior distribution of | 1 = 0 2 = 1.

From (20.16), the marginal probability is

X(0 1) =
X

1| (0| ) 2| (1| ) ( )

= 0 7(0 2)(0 75) + 0 5(0 3)(0 25)

= 0 1425

Similarly, the joint probability of all three variables is

X 3 (0 1 3) =
X

1| (0| ) 2| (1| ) 3| ( 3| ) ( )

Thus,

X 3 (0 1 0) = 0 7(0 2)(0 7)(0 75) + 0 5(0 3)(0 5)(0 25) = 0 09225

X 3 (0 1 1) = 0 7(0 2)(0 2)(0 75) + 0 5(0 3)(0 3)(0 25) = 0 03225

X 3 (0 1 2) = 0 7(0 2)(0 1)(0 75) + 0 5(0 3)(0 2)(0 25) = 0 01800

The predictive distribution is then

3|X(0|0 1) =
0 09225

0 1425
= 0 647368

3|X(1|0 1) =
0 03225

0 1425
= 0 226316

3|X(2|0 1) =
0 01800

0 1425
= 0 126316

The posterior probabilities are, from (20.18),

( |0 1) =
(0| ) (1| ) ( )

(0 1)
=
0 7(0 2)(0 75)

0 1425
= 0 736842

( |0 1) =
(0| ) (1| ) ( )

(0 1)
=
0 5(0 3)(0 25)

0 1425
= 0 263158
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(From this point forward, the subscripts on and are dropped unless needed
for clarity.) The predictive probabilities could also have been obtained using
(20.19). This method is usually simpler from a computational viewpoint.

(0|0 1) =
X

(0| ) ( |0 1)

= 0 7(0 736842) + 0 5(0 263158) = 0 647368

(1|0 1) = 0 2(0 736842) + 0 3(0 263158) = 0 226316

(2|0 1) = 0 1(0 736842) + 0 2(0 263158) = 0 126316

which matches the previous calculations. ¤

EXAMPLE 20.15

(Example 20.10 continued) Suppose a person had claims of 100, 950, and 450.
Determine the predictive distribution of the fourth claim and the posterior
distribution of .

The marginal density at the observed values is

(100 950 450) =

Z

0

100 950 450 1,000
4

6
3 1,000

=
1,0004

6

Z

0

6 2,500 =
1,0004

6

720

2,5007

Similarly,

(100 950 450 4) =

Z

0

100 950 450 4
1,0004

6
3 1,000

=
1,0004

6

Z

0

7 (2,500+ 4)

=
1,0004

6

5,040
(2,500 + 4)8

Then the predictive density is

( 4|100 950 450) =

1,0004

6

5,040
(2,500 + 4)8

1,0004

6

720

2,5007

=
7(2,500)7

(2,500 + 4)8

which is a Pareto density with parameters 7 and 2,500.
For the posterior distribution, we take a shortcut. The denominator is an

integral that produces a number and can be ignored for now. The numerator
satises

( |100 950 450) 100 950 450 1,000
4

6
3 1,000

which was the term to be integrated in the calculation of the marginal density.
Because there are constants in the denominator that have been ignored, we



608 CREDIBILITY

might as well ignore constants in the numerator. Only multiplicative terms
involving the variable ( in this case) need to be retained. Then

( |100 950 450) 6 2,500

We could integrate this expression to determine the constant needed to make
this a density function (i.e., make the integral equal 1). But we recognize
this function as that of a gamma distribution with parameters 7 and 1 2,500.
Therefore,

( |100 950 450) =
6 2,500 2,5007

(7)

Then the predictive density can be alternatively calculated from

( 4|100 950 450) =

Z

0

4

6 2,500 2,5007

(7)

=
2,5007

6!

Z

0

7 (2,500+ 4)

=
2,5007

6!

7!

(2,500 + 4)8

matching the answer previously obtained. ¤

Note that the posterior distribution is of the same type (gamma) as the prior
distribution. The concept of a conjugate prior distribution is introduced in Section
15.5.3. This result also implies that +1|x is a mixture distribution with a sim-
ple mixing distribution, facilitating evaluation of the density of +1|x. Further
examples of this idea are found in the exercises at the end of this section.
To return to the original problem, we have observed X = x for a particular

policyholder and we wish to predict +1 (or its mean). An obvious choice would
be the hypothetical mean (or individual premium)

+1( ) = E( +1| = ) =

Z
+1 +1| ( +1| ) +1 (20.20)

if we knew . Note that replacement of by in (20.20) yields, on taking the
expectation,

+1 = E( +1) = E[E( +1| )] = E[ +1( )]

so that the pure, or collective, premium is the mean of the hypothetical means.
This is the premium we would use if we knew nothing about the individual. It
does not depend on the individual�’s risk parameter, , nor does it use x, the data
collected from the individual. Because is unknown, the best we can do is try
to use the data, which suggest the use of the Bayesian premium (the mean of the
predictive distribution)

E( +1|X = x) =

Z
+1 +1|X( +1|x) +1 (20.21)

A computationally more convenient form is

E ( +1|X = x) =

Z

+1( ) |X( |x) (20.22)
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In other words, the Bayesian premium is the expected value of the hypothetical
means, with expectation taken over the posterior distribution |X( |x). We re-
mind the reader that the integrals are replaced by sums in the discrete case. To
prove (20.22), we see from (20.19) that

E( +1|X = x) =

Z
+1 +1|X( +1|x) +1

=

Z
+1

Z

+1| ( +1| ) |X( |x)
¸

+1

=

Z Z
+1 +1| ( +1| ) +1

¸

|X( |x)

=

Z

+1( ) |X( |x)

EXAMPLE 20.16

(Example 20.14 continued) Determine the Bayesian premium using both (20.21)
and (20.22).

The (unobservable) hypothetical means are

3( ) = (0)(0 7) + 1(0 2) + 2(0 1) = 0 4

3( ) = (0)(0 5) + 1(0 3) + 2(0 2) = 0 7

If, as in Example 20.14, we have observed 1 = 0 and 2 = 1, we have the
Bayesian premiums obtained directly from (20.21):

E( 3|0 1) = 0(0 647368) + 1(0 226316) + 2(0 126316) = 0 478948

The (unconditional) pure premium is

3 = E ( 3) =
X

3( ) ( ) = (0 4)(0 75) + (0 7)(0 25) = 0 475

To verify (20.22) with 1 = 0 and 2 = 1, we have the posterior distribution
( |0 1) from Example 20.14. Thus, (20.22) yields

E( 3|0 1) = 0 4(0 736842) + 0 7(0 263158) = 0 478947

with the di erence due to rounding. In general, the latter approach utilizing
(20.22) is simpler than the direct approach using the conditional distribution
of +1|X = x. ¤

As expected, the revised value based on two observations is between the prior
value (0.475) based on no data and the value based only on the data (0.5).

EXAMPLE 20.17

(Example 20.15 continued) Determine the Bayesian premium.
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From Example 20.15, we have 4( ) =
1. Then, (20.22) yields

E( 4|100 950 450) =

Z

0

1
6 2,500 2,5007

720

=
2,5007

720

120

2,5006
= 416 67

This result could also have been obtained from the formula for the moments
of the gamma distribution in Appendix A. From the prior distribution,

= E( 1) =
1,000
3

= 333 33

and once again the Bayesian estimate is between the prior estimate and one
based solely on the data (the sample mean of 500).
From (20.21),

E( 4|100 950 450) =
2,500
6

= 416 67

the mean of the predictive Pareto distribution. ¤

EXAMPLE 20.18

Generalize the result of Example 20.17 for an arbitrary sample size of and
an arbitrary prior gamma distribution with parameters and , where is
the reciprocal of the usual scale parameter.

The posterior distribution can be determined from

( |x)
Y

=1

1

( )

+ 1 ( + )

The second line follows because the posterior density is a function of and
thus all multiplicative terms not involving may be dropped. Rather than
perform the integral to determine the constant, we recognize that the posterior
distribution is gamma with rst parameter + and scale parameter ( +
) 1. The Bayes estimate of +1 is the expected value of 1 using the
posterior distribution. It is

+

+ 1
=

+ 1
¯ +

1

+ 1 1

Note that the estimate is a weighted average of the observed values and the
unconditional mean. This formula is of the credibility weighted type (20.7).¤

Example 20.19 is one where the random variables do not have identical distrib-
utions.
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EXAMPLE 20.19

Suppose that the number of claims in year for a group policyholder
with (unknown) risk parameter and individuals in the group is Poisson
distributed with mean , that is, for = 1 ,

Pr( = | = ) =
( )

!
= 0 1 2

This result would be the case if, per individual, the number of claims were
independently Poisson distributed with mean . Determine the Bayesian ex-
pected number of claims for the +1 individuals to be insured in year +1.

With these assumptions, the average number of claims per individual in
year is

= = 1

Therefore,
| ( | ) = Pr[ = | = ]

Assume is gamma distributed with parameters and ,

( ) =
1

( )
0

Then the posterior distribution |X( |x) is proportional (as a function of )
to

Y

=1

| ( | ) ( )

which is itself proportional to

Y

=1

1 = + =1 1 ( 1+ =1 )

This function is proportional to a gamma density with parameters = +P
=1 and = (1 +

P
=1 ) 1, and so |X is also gamma, but

with and replaced by and , respectively.
Now,

E( | = ) = E
µ
1

| =

¶
=

1
E( | = ) =

Thus +1( ) = E( +1| = ) = and +1 = E( +1) = E[ +1( )] =
because is gamma distributed with parameters and . From (20.22)

and because |X is also gamma distributed with parameters and ,

E( +1|X = x) =

Z

0
+1( ) |X( |x)

= E[ +1( )|X = x]

= E( |X = x)

=
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Dene the total number of lives observed to be =
P

=1 .
Then,

E( +1|X = x) = ¯ + (1 ) +1

where = ( + 1), = 1
P

=1 , and +1 = , again an
expression of the form (20.7).
The total Bayesian expected number of claims for +1 individuals in the

group for the next year would be +1E( +1|X = x).
The analysis based on i.i.d. Poisson claim counts is obtained with = 1.

Then for = 1 2 are independent (given ) Poisson random
variables with mean . In this case

E( +1|X = x) = + (1 )

where = ( + 1) = 1
P

=1 , and = . ¤

In each of Examples 20.18 and 20.19, the Bayesian estimate was a weighted
average of the sample mean ¯ and the pure premium +1. This result is appealing
from a credibility standpoint. Furthermore, the credibility factor in each case is
an increasing function of the number of exposure units. The greater the amount of
past data observed, the closer is to 1, consistent with our intuition.

20.3.4 The credibility premium

In Section 20.3.3, a systematic approach is suggested for treatment of the past
data of a particular policyholder. Ideally, rather than the pure premium +1 =
E( +1), one would like to charge the individual premium (or hypothetical mean)

+1( ), where is the (hypothetical) parameter associated with the policyholder.
Because is unknown, the hypothetical mean is impossible to determine, but we
could instead condition on x, the past data from the policyholder. This leads to
the Bayesian premium E( +1|x).
The major challenge with this approach is that it may be di cult to evaluate the

Bayesian premium. Of course, in simple examples such as those in Section 20.3.3,
the Bayesian premium is not di cult to evaluate numerically. But these examples
can hardly be expected to capture the essential features of a realistic insurance
scenario. More realistic models may well introduce analytic di culties with respect
to evaluation of E( +1|x), whether one uses (20.21) or (20.22). Often, numerical
integration may be required. There are exceptions, such as Examples 20.18 and
20.19.
We now present an alternative suggested by Bühlmann [22] in 1967. Recall the

basic problem: We wish to use the conditional distribution
+1| ( +1| ) or the

hypothetical mean +1( ) for estimation of next year�’s claims. Because we have
observed x, one suggestion is to approximate +1( ) by a linear function of the
past data. (After all, the formula + (1 ) is of this form.) Thus, let us
restrict ourselves to estimators of the form 0 +

P
=1 , where 0 1

need to be chosen. To this end, we choose the s to minimize squared error loss,
that is,

= E +1( ) 0

X

=1

2

(20.23)
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and the expectation is over the joint distribution of 1 and . That is, the
squared error is averaged over all possible values of and all possible observations.
To minimize , we take derivatives. Thus,

0
= E 2 +1( ) 0

X

=1

( 1)

We shall denote by �˜0 �˜1 �˜ the values of 0 1 that minimize (20.23).
Then, equating 0 to 0 yields

E[ +1( )] = �˜0 +
X

=1

�˜ ( )

But E( +1) = E[E( +1| )] =E[ +1( )], and so 0 = 0 implies that

E( +1) = �˜0 +
X

=1

�˜ E( ) (20.24)

Equation (20.24) may be termed the unbiasedness equation because it requires
that the estimate �˜0+

P
=1 �˜ be unbiased for E( +1). However, the credibil-

ity estimate may be biased as an estimator of +1( ) = E( +1| ), the quantity
we are trying to estimate. This bias will average out over the members of . By
accepting this bias, we are able to reduce the overall MSE. For = 1 , we
have

= E 2 +1( ) 0

X

=1

( )

and setting this expression equal to 0 yields

E[ +1( ) ] = �˜0E ( ) +
X

=1

�˜ E ( )

The left-hand side of this equation may be reexpressed as

E[ +1( ) ] = E{E[ +1( )| ]}
= E{ +1( )E[ | ]}
= E[E( +1| )E( | )]
= E[E( +1 | )]
= E( +1)

where the second from the last step follows by independence of and +1 con-
ditional on . Thus = 0 implies

E( +1) = �˜0E( ) +
X

=1

�˜ E( ) (20.25)

Next, multiply (20.24) by E( ) and subtract from (20.25) to obtain

Cov( +1) =
X

=1

�˜ Cov( ) = 1 (20.26)
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Equation (20.24) and the equations (20.26) together are called the normal equa-
tions. These equations may be solved for �˜0 �˜1 �˜ to yield the credibility
premium

�˜0 +
X

=1

�˜ (20.27)

While it is straightforward to express the solution �˜0 �˜1 �˜ to the normal
equations in matrix notation (if the covariance matrix of the s is non-singular),
we shall be content with solutions for some special cases.
Note that exactly one of the terms on the right-hand side of (20.26) is a variance

term, that is, Cov( ) = Var( ). The other 1 terms are true covariance
terms.
As an added bonus, the values �˜0 �˜1 �˜ also minimize

1 = E E( +1|X) 0

X

=1

2

(20.28)

and

2 = E +1 0

X

=1

2

(20.29)

To see this, di erentiate (20.28) or (20.29) with respect to 0 1 and ob-
serve that the solutions still satisfy the normal equations (20.24) and (20.26). Thus
the credibility premium (20.27) is the best linear estimator of each of the hypothet-
ical mean E( +1| ), the Bayesian premium E( +1|X), and +1.

EXAMPLE 20.20

If E( ) = Var( ) = 2, and, for 6= , Cov( ) = 2, where
the correlation coe cient satises 1 1, determine the credibility
premium �˜0 +

P
=1 �˜ .

The unbiasedness equation (20.24) yields

= �˜0 +
X

=1

�˜

or
X

=1

�˜ = 1
�˜0

The equations (20.26) become, for = 1 ,

=
X

=1
6=

�˜ + �˜

or, stated another way,

=
X

=1

�˜ + �˜ (1 ) = 1
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Thus

�˜ =

³
1

P
=1 �˜

´

1
=

�˜0
(1 )

using the unbiasedness equation. Summation over from 1 to yields

X

=1

�˜ =
X

=1

�˜ =
�˜0

(1 )

which, combined with the unbiasedness equation, gives an equation for �˜0,
namely,

1
�˜0
=

�˜0
(1 )

Solving for �˜0 yields

�˜0 =
(1 )

1 +

Thus,

�˜ =
�˜0

(1 )
=
1 +

The credibility premium is then

�˜0 +
X

=1

�˜ =
(1 )

1 +
+
X

=1
1 +

= (1 ) + ¯

where = (1 + ) and ¯ = 1
P

=1 . Thus, if 0 1, then
0 1, and the credibility premium is a weighted average of = E( +1)
and ¯ , that is, the premium is of the form (20.7). ¤

We now turn to some models that specify the conditional means and vari-
ances of | and, hence, the means E( ), variances Var( ), and covariances
Cov( ).

20.3.5 The Buhlmann model

The simplest credibility model, the Bühlmann model species that, for each policy-
holder, (conditional on ) past losses 1 have the same mean and variance
and are i.i.d. conditional on .
Thus, dene

( ) = E( | = )

and
( ) = Var( | = )

As discussed previously, ( ) is referred to as the hypothetical mean whereas ( )
is called the process variance. Dene

= E[ ( )] (20.30)

= E[ ( )] (20.31)
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and
= Var[ ( )] (20.32)

The quantity in (20.30) is the expected value of the hypothetical means, in (20.31)
is the expected value of the process variance, and in (20.32) is the variance of the
hypothetical means. Note that is the estimate to use if we have no information
about (and thus no information about ( )). It will also be referred to as the
collective premium.
The mean, variance, and covariance of the s may now be obtained. First,

E( ) = E[E( | )] = E[ ( )] = (20.33)

Second,

Var( ) = E[Var( | )] + Var[E( | )]
= E[ ( )] + Var[ ( )]

= + (20.34)

Finally, for 6= ,

Cov( ) = E( ) E( )E( )

= E[E( | )] 2

= E[E( | )E( | )] {E[ ( )]}2

= E
©
[ ( )]2

ª
{E[ ( )]}2

= Var[ ( )]

= (20.35)

This result is exactly of the form of Example 20.20 with parameters 2 = + ,
and = ( + ). Thus the credibility premium is

�˜0 +
X

=1

�˜ = ¯ + (1 ) (20.36)

where
=

+
(20.37)

and

= =
E[Var( | )]
Var[E( | )]

(20.38)

The credibility factor in (20.37) with given by (20.38) is referred to as the
Bühlmann credibility factor. Note that (20.36) is of the form (20.7), and (20.37) is
exactly (20.8). Now, however, we know how to obtain , namely, from (20.38).
Formula (20.36) has many appealing features. First, the credibility premium

(20.36) is a weighted average of the sample mean ¯ and the collective premium ,
a formula we nd desirable. Furthermore, approaches 1 as increases, giving
more credit to ¯ rather than as more past data accumulates, a feature that agrees
with intuition. Also, if the population is fairly homogeneous with respect to the risk
parameter , then (relatively speaking) the hypothetical means ( ) = E( | )
do not vary greatly with (i.e., they are close in value) and hence have small
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variability. Thus, is small relative to , that is, is large and is closer to 0.
But this observation agrees with intuition because, for a homogeneous population,
the overall mean is of more value in helping to predict next year�’s claims for a
particular policyholder. Conversely, for a heterogeneous population, the hypothet-
ical means E( | ) are more variable, that is, is large and is small, and so
is closer to 1. Again this observation makes sense because, in a heterogeneous

population, the experience of other policyholders is of less value in predicting the
future experience of a particular policyholder than is the past experience of that
policyholder.
We now present some examples.

EXAMPLE 20.21

(Example 20.16 continued) Determine the Bühlmann estimate of E( 3|0 1).

From earlier work,

( ) = E( | ) = 0 4, ( ) = E( | ) = 0 7
( ) = 0 75, ( ) = 0 25

and, therefore,

=
X

( ) ( ) = 0 4(0 75) + 0 7(0 25) = 0 475

=
X

( )2 ( ) 2 = 0 16(0 75) + 0 49(0 25) 0 4752 = 0 016875

For the process variance,

( ) = Var( | ) = 02(0 7) + 12(0 2) + 22(0 1) 0 42 = 0 44

( ) = Var( | ) = 02(0 5) + 12(0 3) + 22(0 2) 0 72 = 0 61

=
X

( ) ( ) = 0 44(0 75) + 0 61(0 25) = 0 4825

Then (20.38) gives

= =
0 4825

0 016875
= 28 5926

and (20.37) gives

=
2

2 + 28 5926
= 0 0654

The expected next value is then 0 0654(0 5) + 0 9346(0 475) = 0 4766. This
is the best linear approximation to the Bayesian premium (given in Example
20.16). ¤

EXAMPLE 20.22

Suppose, as in Example 20.19 (with = 1), that | , = 1 , are
independently and identically Poisson distributed with (given) mean and
is gamma distributed with parameters and . Determine the Bühlmann

premium.
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We have

( ) = E( | = ) = ( ) = Var( | = ) =

and so

= E[ ( )] = E( ) = = E[ ( )] = E( ) =

and
= Var[ ( )] = Var( ) = 2

Then

= = 2 =
1

=
+

=
+ 1

=
+ 1

and the credibility premium is

¯ + (1 ) =
+ 1

¯ +
1

+ 1

But, as shown at the end of Example 20.19, this result is also the Bayesian
estimate E( +1|X). Thus, the credibility premium equals the Bayesian es-
timate in this case. ¤

EXAMPLE 20.23

Determine the Bühlmann estimate for the setting in Example 20.18.

For this model,

( ) = 1, = E( 1) =
1

( ) = 2, = E( 2) =
2

( 1)( 2)

= Var( 1) =
2

( 1)( 2)

µ

1

¶2
=

2

( 1)2( 2)

= = 1

=
+

=
+ 1

=
+ 1

¯ +
1

+ 1 1

which again matches the Bayesian estimate. ¤
An alternative analysis for this problem could have started with a single obser-

vation of = 1 + · · ·+ . From the assumptions of the problem, has a mean
of 1 and a variance of 2. While it is true that has a gamma distribution,
that information is not needed because the Bühlmann approximation requires only
moments. Following the preceding calculations,

=
1
, =

2

( 1)( 2)
, =

2 2

( 1)2( 2)

=
1
, =

1

1 +
=

+ 1
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The key is to note that in calculating the sample size is now 1, reecting the
single observation of . Because = ¯ , the Bühlmann estimate is

=
+ 1

¯ +
1

+ 1 1

which is times the previous answer. That is because we are now estimating the
next value of rather than the next value of . However, the credibility factor
itself (i.e., ) is the same whether we are predicting +1 or the next value of .

20.3.6 The Buhlmann�—Straub model

The Bühlmann model is the simplest of the credibility models because it e ectively
requires that the past claims experience of a policyholder comprise i.i.d. compo-
nents with respect to each past year. An important practical di culty with this
assumption is that it does not allow for variations in exposure or size.
For example, what if the rst year�’s claims experience of a policyholder reected

only a portion of a year due to an unusual policyholder anniversary? What if a
benet change occurred part way through a policy year? For group insurance, what
if the size of the group changed over time?
To handle these variations, we consider the following generalization of the Bühlmann

model. Assume that 1 are independent, conditional on , with common
mean (as before)

( ) = E( | = )

but with conditional variances

Var( | = ) =
( )

where is a known constant measuring exposure. Note that need only be
proportional to the size of the risk. This model would be appropriate if each
were the average of independent (conditional on ) random variables each with
mean ( ) and variance ( ). In the preceding situations, could be the number
of months the policy was in force in past year , or the number of individuals in
the group in past year , or the amount of premium income for the policy in past
year .
As in the Bühlmann model, let

= E[ ( )] = E[ ( )]

and
= Var[ ( )]

Then, for the unconditional moments, from (20.33) E( ) = , and from (20.35)
Cov( ) = , but

Var( ) = E[Var( | )] + Var[E( | )]

= E
( )

¸
+Var[ ( )]

= +
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To obtain the credibility premium (20.27), we solve the normal equations (20.24)
and (20.26) to obtain �˜0 �˜1 �˜ . For notational convenience, dene

= 1 + 2 + · · ·+

to be the total exposure. Then, using (20.33), the unbiasedness equation (20.24)
becomes

= �˜0 +
X

=1

�˜

which implies
X

=1

�˜ = 1
�˜0 (20.39)

For = 1 , (20.26) becomes

=
X

=1
6=

�˜ + �˜

µ
+

¶
=
X

=1

�˜ +
�˜

which may be rewritten as

�˜ = 1
X

=1

�˜ =
�˜0

= 1 (20.40)

Then, using (20.39) and (20.40),

1
�˜0
=
X

=1

�˜ =
X

=1

�˜ =
�˜0 X

=1

=
�˜0

and so

�˜0 =
1 +

=
+

As a result,

�˜ =
�˜0

=
+

The credibility premium (20.27) becomes

�˜0 +
X

=1

�˜ = ¯ + (1 ) (20.41)

where, with = from (20.38),

=
+

and

¯ =
X

=1

(20.42)
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Clearly, the credibility premium (20.41) is still of the form (20.7). In this case,
is the total exposure associated with the policyholder, and the Bühlmann�—Straub
credibility factor depends on . Furthermore, ¯ is a weighted average of the
, with weights proportional to . Following the group interpretation, is the

average loss of the group members in year , and so is the total loss of
the group in year . Then ¯ is the overall average loss per group member over the
years. The credibility premium to be charged to the group in year + 1 would

thus be +1[ ¯ + (1 ) ] for +1 members in the next year.
Had we known that (20.42) would be the correct weighting of the to receive

the credibility weight , the rest would have been easy. For the single observation
¯ , the process variance is

Var( ¯ | ) =
X

=1

2

2

( )
=

( )

and so the expected process variance is . The variance of the hypothetical
means is still , and therefore = ( ). There is only one observation of ¯ , and
so the credibility factor is

=
1

1 + ( )
=

+
(20.43)

as before. Equation (20.42) should not have been surprising because the weights
are simply inversely proportional to the (conditional) variance of each .

EXAMPLE 20.24

As in Example 20.19, assume that in year there are claims from
policies, = 1 . An individual policy has the Poisson distribution with
parameter , and the parameter itself has the gamma distribution with pa-
rameters and . Determine the Bühlmann�—Straub estimate of the number
of claims in year + 1 if there will be +1 policies.

To meet the conditions of this model, let = . Because has the
Poisson distribution with mean , E( | ) = = ( ) and Var( | ) =

= ( ) . Then,

= E( ) = , = Var( ) = 2, = E( ) =

=
1
, =

+ 1
=

+ 1

and the estimate for one policyholder is

=
+ 1

¯ +
1

+ 1

where ¯ = 1
P

=1 . For year +1, the estimate is +1 , match-
ing the answer to Example 20.19. ¤

The assumptions underlying the Bühlmann�—Straub model may be too restrictive
to represent reality. In a 1967 paper, Hewitt [68] observed that large risks do not
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behave the same as an independent aggregation of small risks and, in fact, are
more variable than would be indicated by independence. A model that reects this
observation is created in the following example.

EXAMPLE 20.25

Let the conditional mean be E( | ) = ( ) and the conditional variance be
Var( | ) = ( )+ ( ) . Further assume that 1 are condition-
ally independent given . Show that this model supports Hewitt�’s observation
and determine the credibility premium.

Consider independent risks and with exposures and and with a
common value of . When aggregated, the variance of the average loss is

Var

µ
+

+

¯̄
¯̄
¶

=

µ

+

¶2
Var( | )

+

µ

+

¶2
Var( | )

=
2 + 2

( + )2
( ) +

1

+
( )

while a single risk with exposure + has variance ( )+ ( ) ( + ),
which is larger.
With regard to the credibility premium, we have

E( ) = E[E( | )] = E[ ( )] =

Var( ) = E[Var( | )] + Var[E( | )]

= E ( ) +
( )

¸
+Var[ ( )]

= + +

and, for 6= , Cov( ) = as in (20.35). The unbiasedness equation is
still

= �˜0 +
X

=1

�˜

and so
X

=1

�˜ = 1
�˜0

Equation (20.26) becomes

=
X

=1

�˜ + �˜

µ
+

¶

=

µ
1

�˜0
¶
+ �˜

µ
+

¶
= 1
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Therefore,

�˜ =
�˜0
+

Summing both sides yields

�˜0 X

=1
+

=
X

=1

�˜ = 1
�˜0

and so
�˜0 =

1

( )
X

=1 +
+
1
=
1 +

where

=
X

=1
+

Then
�˜ =

+

1

1 +

The credibility premium is

1 +
+
1 +

X

=1
+

The sum can be made to dene a weighted average of the observations by
letting

¯ =

X
=1 +

X
=1 +

=
1 X

=1
+

If we now set

=
1 +

the credibility premium is

¯ + (1 )

Observe what happens as the exposures go to innity. The credibility
factor becomes

1 +
1

Contrast this limit to the Bühlmann�—Straub model where the limit is 1. Thus,
no matter how large the risk, there is a limit to its credibility. A further
generalization of this result is provided in Exercise 20.28. ¤

Another generalization is provided by letting the variance of ( ) depend on the
exposure, which may be reasonable if we believe that the extent to which a given
risk�’s propensity to produce claims that di er from the mean is related to its size.
For example, larger risks may be underwritten more carefully. In this case, extreme
variations from the mean are less likely because we ensure that the risk not only
meets the underwriting requirements but also appears to be exactly what it claims
to be.
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EXAMPLE 20.26

(Example 20.25 continued) In addition to the specication presented in Exam-
ple 20.25, let Var[ ( )] = + , where =

P
=1 is the total exposure

for the group. Develop the credibility formula.

We now have

E( ) = E[E( | )] = E[ ( )] =

Var( ) = E[Var( | )] + Var[E( | )]

= E ( ) +
( )

¸
+Var[ ( )]

= + + +

and, for 6= ,

Cov( ) = E[E( | )] 2

= E[ ( )2] 2

= +

It can be seen that all the calculations used in Example 20.25 apply here with
replaced by + . The credibility factor is

=
( + )

1 + ( + )

and the credibility premium is

¯ + (1 )

with ¯ and dened as in Example 20.25. This particular credibility for-
mula has been used in workers compensation experience rating. One example
of this application is presented in detail in [55]. ¤

20.3.7 Exact credibility

In Examples 20.22�—20.24, we found that the credibility premium and the Bayesian
premium are equal. From (20.28), one may view the credibility premium as the best
linear approximation to the Bayesian premium in the sense of squared error loss.
In these examples, the approximation is exact because the two premiums are equal.
The term exact credibility is used to describe the situation when the credibility
premium equals the Bayesian premium.
At rst glance it appears to be unnecessary to discuss the existence and nite-

ness of the credibility premium in this context, because exact credibility as de-
ned is clearly not possible otherwise. However, in what follows, there are some
technical issues to be considered, and their treatment is clearer if it is tacitly re-
membered that the credibility premium must be well dened, which requires that
E( ) , Var( ) , and Cov( ) , as is obvious from the normal



GREATEST ACCURACY CREDIBILITY THEORY 625

equations (20.24) and (20.26). Exact credibility typically occurs in Bühlmann (and
Bühlmann-Straub) situations involving linear exponential family members and their
conjugate priors. It is clear that the credibility premium�’s existence requires that
the structural parameters E[ ( )], E[Var( )], and Var[ ( )] be nite.
Consider E[ ( )] in this situation. Recall from (5.8) that, for the linear expo-

nential family, the mean is

( ) = E( | = ) =
0( )

0( ) ( )
(20.44)

and the conjugate prior pdf is, from Theorem 15.24, given by

( ) =
[ ( )] ( ) 0( )

( )
0 1 (20.45)

where the interval of support ( 0 1) is explicitly identied. Also, for now, and
should be viewed as known parameters associated with the prior pdf ( ). To

determine E[ ( )], note that from (20.45) it follows that

ln[ ( ) 0( )] = ln ( ) + ( ) ln ( )

and di erentiating with respect to yields

[ ( ) 0( )]

( ) 0( )
=

0( )

( )
+ 0( )

Multiplication by ( ) 0( ) results in, using (20.44),

( )
0( )

¸
= [ ( ) ] ( ) (20.46)

Next, integrate both sides of (20.46) with respect to over the interval ( 0 1)
to obtain

( 1)
0( 1)

( 0)
0( 0)

=

Z
1

0

[ ( ) ] ( )

= E[ ( ) ]

Therefore, it follows that

E[ ( )] = +
( 0)
0( 0)

( 1)
0( 1)

(20.47)

Note that, if
( 1)
0( 1)

=
( 0)
0( 0)

(20.48)

then
E[ ( )] = (20.49)

demonstrating that the choice of the symbol in (20.45) is not coincidental. If
(20.49) holds, as is often the case, it is normally because both sides of (20.48) are
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equal to zero. Regardless, it is possible to have E[ ( )] but E[ ( )] 6= . Also,
E[ ( )] = may result if either ( 0)

0( 0) or ( 1)
0( 1) fails to be nite.

Next, consider the posterior distribution in the Bühlmann situation with

| ( | ) =
( ) ( )

( )

and ( ) given by (20.45). From Theorem 15.24, the posterior pdf is

|X( |x) =
[ ( ] ( ) 0( )

( )
0 1 (20.50)

with
= + (20.51)

and

=
+ ¯

+
(20.52)

Because (20.50) is of the same form as (20.45), the Bayesian premium (20.22) is

E( +1|X = x) = +
|X( 0|x)
0( 0)

|X( 1|x)
0( 1)

(20.53)

with given by (20.52). Because is a linear function of the s, the same is
true of the Bayesian premium if

|X( 0|x)
0( 0)

=
|X( 1|x)
0( 1)

(20.54)

that is, (20.54) implies that (20.53) becomes

E( +1|X = x) = =
+ ¯

+
(20.55)

Clearly, for (20.54) to hold for all vectors x, both sides should be equal to zero.
Also, note that (20.55) is of the form (20.7).
To summarize, posterior linearity of the Bayesian premium results (i.e., (20.55)

holds) if (20.54) is true (usually with both sides equal to zero). It is instructive to
note that posterior linearity of the Bayesian premium may occur even if E[ ( )] =
. However, as long as the credibility premium is well dened (all three of E[ ( )],

E[ ( )], and Var[ ( )] are nite), the posterior linearity of the Bayesian premium
implies equality with the credibility premium, that is, exact credibility. To see this
equivalence, note that, if the Bayesian premium is a linear function of 1 ,
that is,

E( +1|X) = 0 +
X

=1

then it is clear that in (20.28) the quantity 1 attains its minimum value of zero
with �˜ = for = 0 1 . Thus the credibility premium is �˜0+

P
=1 �˜ =

0 +
P

=1 = E( +1|X), and credibility is exact.
The following example claries these concepts.
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EXAMPLE 20.27

Suppose the | ( | ) = 0. Then ( ) = and ( ) = 1 ,
which implies, using (20.44), that ( ) = 1 . Similarly, ( ) = Var( | =
) = 0( ) 0( ) = 1 2 from (5.9). Next, (20.45) becomes

( ) = R
1

0

0 1 (20.56)

In the truncated situation, with 0 0 1 , there are no restrictions
on the prior model parameters and for ( ) to be a valid pdf. Furthermore,
in this case, E[ ( )], E[ ( )], and Var[ ( )] are all nite, and therefore the
credibility premium is well dened. In fact, (20.47) becomes

E[ ( )] = + 1
1

0
0

R
1

0

(20.57)

The posterior pdf from (20.50) is of the same form as (20.56), with and
replaced by and in (20.52) and (20.51), respectively. Therefore, the

Bayesian premium (20.53) in this truncated situation is, by analogy with
(20.57),

E( +1|X = x) = + 1
1

0
0

R
1

0

(20.58)

Because is a linear function of the s, (20.58) is nonlinear in the s, and
therefore credibility cannot be exact. Furthermore, this truncated example
demonstrates that the endpoint conditions (20.48) and (20.54) needed for
exact credibility are model assumptions and, so, cannot be omitted just to
obtain a nicer result.
Next, consider the more usual (untruncated) situation with 0 = 0 and

1 = . Then (20.56) becomes the gamma pdf with

( ) =
( )

( + 1)
0 (20.59)

which is a valid pdf as long as 1 and 0. There are three cases:

Case Result
1 0 E[ ( )] = E[ ( )] = Var[ ( )] =

0 1 E[ ( )] = E[ ( )] = Var[ ( )] =
1 E[ ( )] = E[ ( )] Var[ ( )]

Hence, there is no credibility premium unless 1. However, because =
+ 0 regardless of the value of , the Bayesian premium is

E( +1|X = x) = =
+ ¯

+

a linear function of the s. To summarize, in the exponential-gamma model
with prior pdf (20.59), the Bayesian premium is a linear function of the s
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regardless of the value of , whereas if 1 there is no credibility premium.
If 1, then credibility is exact. ¤

There is one last technical point worth noting. It was mentioned previously that
the choice of the symbol as a parameter associated with the prior pdf ( ) is not
a coincidence because it is often the case that E[ ( )] = . A similar comment
applies to the parameter . Because ( ) = 0( ) 0( ) from (5.9), it follows from
(20.46) and the product rule for di erentiation that

½
[ ( ) ]

( )
0( )

¾
= 0( )

( )
0( )

¸
+ [ ( ) ]

( )
0( )

¸

= ( ) ( ) [ ( ) ]2 ( )

Integration with respect to over ( 0 1) yields

[ ( ) ]
( )
0( )

¯̄
¯̄
1

0

= E[ ( )]
©
[ ( ) ]2

ª

and solving for yields

=
E[ ( )] + [ ( 0) ] ( 0)

0( 0)
[ ( 1) ] ( 1)

0( 0)

{[ ( ) ]2}
(20.60)

If, in addition, (20.48) holds, then (20.49) holds, and (20.60) simplies to

=
E[ ( )] + ( 0)

( 0)
0( 0)

( 1)
( 1)
0( 1)

Var[ ( )]
(20.61)

in turn simplifying to the well-known result =E[ ( )] Var[ ( )] if

( 0) ( 0)
0( 0)

=
( 1) ( 1)
0( 1)

which typically holds with both sides equal to zero.

20.3.8 Linear versus Bayesian versus no credibility

In Section 20.3.4, it is demonstrated that the credibility premium is the best linear
estimator in the sense of minimizing the expected squared error with respect to
the next observation, +1. In Exercise 20.66, you are asked to demonstrate that
the Bayesian premium is the best estimator with no restrictions, in the same least
squares sense. It is also demonstrated in Section 20.3.4 that the credibility premium
is the linear estimator that is closest to the Bayesian estimator, again in the mean-
squared error sense. Finally, we have seen that, in a number of cases, the credibility
and Bayesian premiums are the same. These observations leave two questions. Is
the additional error caused by using the credibility premium in place of the Bayesian
premium worth worrying about? Is it worthwhile to go through the bother of using
credibility in the rst place? While the exact answers to these questions depend on
the underlying distributions, we can obtain some feel for the answers by considering
two examples.
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We begin with the second question and use a common situation that has already
been discussed. What makes credibility work is that we expect to perform numerous
estimations. As a result, we are willing to be biased in any one estimation provided
that the biases cancel out over the numerous estimations. Using biased estimators
allows us to reduce variability and, therefore, squared error. The following example
shows the power of credibility in this setting.

EXAMPLE 20.28

Suppose there are 50 occasions on which we obtain a random sample of size
10 from a Poisson distribution with unknown mean. The samples are from
di erent Poisson populations and, therefore, may involve di erent means. Let
the true means be 1 50. Further assume that the Poisson parameters
are drawn from a gamma distribution with parameters = 50 and = 0 1.
Compare the maximum likelihood estimates ¯ = 1 50, to the credi-
bility estimates = ( ¯ + 5) 2. Note that this is the Bühlmann credibility
estimate.

We rst analyze the two estimates by determining their respective MSEs.
Using the sample mean, the total squared error is, where = ( 1 50),

1 =
50X

=1

( ¯ )2

and the MSE is

E( 1) = E[E( 1| )] = E
50X

=1

Var( ¯ | ) = E
50X

=1
10

= 25

Using the credibility estimator, the squared error is

2 =
50X

=1

(0 5 ¯ + 2 5 )2

and the MSE is

E( 2) = E[E( 2| )]

= E
50X

=1

(0 25 ¯2 + 6 25 + 2 + 2 5 ¯ 5 ¯ | )

= E
50X

=1

0 25

µ

10
+ 2

¶
+ 6 25 + 2 + 2 5 5 2

¸

=
50X

=1

[0 25(0 5 + 25 5) + 6 25 + 25 5 + 2 5(5) 5(5) 25 5]

= 12 5

Of course, we �“cheated�” a bit. We used squared error as our criterion and, so,
knew in advance that the Bühlmann estimate would have the smaller value
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given that it is competing against another linear estimator. The interesting
part is the signicant improvement that resulted. Therefore, even if the com-
ponents of the credibility formula and were not set at their optimal values,
the credibility formula is still likely to result in an improvement.
To get a feel for how this improvement comes about, consider a specic

set of 50 values of . The ones presented in Table 20.3 are a random sample
from the prior gamma distribution sorted in increasing order. The next col-
umn provides the MSE of the sample mean ( 10). The nal three columns
provide the bias, variance, and MSE for the credibility estimator based on
= 0 5 and = 5. The sample mean is always unbiased and therefore the

variance matches the MSE, and so these two quantities are not presented. For
the credibility estimator,

Bias = E(0 5 ¯ + 2 5 ) = 2 5 0 5

Variance = Var(0 5 ¯ + 2 5) =
0 25

10
= 0 025

MSE = bias2 + variance = 0 25 2 2 475 + 6 25

We see that, as expected, the average MSE is much lower for the credibility
estimator, which is achieved by allowing for some bias in the individual es-
timators. Further note that the credibility estimator is at its best near the
mean of the prior distribution (5). ¤

We have seen that there is real value in using credibility. Our next task is to com-
pare the linear credibility estimator to the Bayesian estimator. In most examples,
this comparison is di cult because the Bayesian estimates must be obtained by ap-
proximate integration. An alternative would be to explore the MSEs by simulation.
This approach is taken in an illustration presented in Foundations of Casualty Actu-
arial Science [29, p. 467]. In the following example, we use the same illustration but
employ an approximation that avoids approximate integration. It should also be
noted that the linear credibility approach requires only assumptions or estimation
of the rst two moments, while the Bayesian approach requires the distributions
to be completely specied. This nonparametric feature makes the linear approach
more robust, which may compensate for any loss of accuracy.

EXAMPLE 20.29

Individual observations are samples of size 25 from an inverse gamma distrib-
ution with = 4 and unknown scale parameter . The prior distribution for
is gamma with mean 50 and variance 5,000 Compare the linear credibility

and Bayesian estimators.
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Table 20.3 A comparison of the sample mean and the credibility estimator.

¯ 0 5 ¯ + 2 5 ¯ 0 5 ¯ + 2 5
MSE Bias Var. MSE MSE Bias Var. MSE

3.510 .351 .745 .088 .643 4.875 .488 .062 .122 .126
3.637 .364 .681 .091 .555 4.894 .489 .053 .122 .125
3.742 .374 .629 .094 .489 4.900 .490 .050 .123 .125
3.764 .376 .618 .094 .476 4.943 .494 .028 .124 .124
3.793 .379 .604 .095 .459 4.977 .498 .012 .124 .125
4.000 .400 .500 .100 .350 5.002 .500 .001 .125 .125
4.151 .415 .424 .104 .284 5.013 .501 .006 .125 .125
4.153 .415 .424 .104 .283 5.108 .511 .054 .128 .131
4.291 .429 .354 .107 .233 5.172 .517 .086 .129 .137
4.405 .440 .298 .110 .199 5.198 .520 .099 .130 .140
4.410 .441 .295 .110 .197 5.231 .523 .116 .131 .144
4.413 .441 .293 .110 .196 5.239 .524 .120 .131 .145
4.430 .443 .285 .111 .192 5.263 .526 .132 .132 .149
4.438 .444 .281 .111 .190 5.300 .530 .150 .132 .155
4.471 .447 .264 .112 .182 5.338 .534 .169 .133 .162
4.491 .449 .254 .112 .177 5.400 .540 .200 .135 .175
4.495 .449 .253 .112 .176 5.407 .541 .203 .135 .176
4.505 .451 .247 .113 .174 5.431 .543 .215 .136 .182
4.547 .455 .227 .114 .165 5.459 .546 .229 .136 .189
4.606 .461 .197 .115 .154 5.510 .551 .255 .138 .203
4.654 .465 .173 .116 .146 5.538 .554 .269 .138 .211
4.758 .476 .121 .119 .134 5.646 .565 .323 .141 .246
4.763 .476 .118 .119 .133 5.837 .584 .419 .146 .321
4.766 .477 .117 .119 .133 5.937 .594 .468 .148 .368
4.796 .480 .102 .120 .130 6.263 .626 .631 .157 .555

Mean .482 .091 .120 .222

For the Bühlmann linear credibility estimator, we have

= E[ ( )] = E
µ

3

¶
=
50

3

= Var[ ( )] = Var

µ

3

¶
=
5,000
9

= E[ ( )] = E
µ

2

18

¶
=
5,000 + 502

18
=
7,500
18

and so
=

25

25 +
7,500 18
5,000 9

=
100

103

and the credibility estimator is �ˆcred = (100 ¯ + 50) 103.
For the Bayesian estimator, the posterior density is

|X( |x)
25
=1

1 100 0 5 100

99 5 (0 01+ 25
=1

1)
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which is a gamma density with parameters 100.5 and
³
0 01 +

P25
=1

1
´ 1

.
The posterior mean is

�ˆ
Bayes =

100 5

0 01 +
P25

=1
1

and so �ˆBayes =
33 5

0 01 +
P25

=1
1

which is clearly a nonlinear estimator.
With regard to accuracy, we can also consider the sample mean. Given the

value of , the sample mean is unbiased with variance and MSE 2 (18×25) =
2 450. For the credibility estimator, the bias is

bias (�ˆcred) = E
µ
100 ¯

103
+
50

103 3

¶

=
100

309
+
50

103 3

=
50

103 103

the variance is

Var (�ˆcred) =
(100 103)2 2

450

and the MSE is

MSE (�ˆcred) =
1

1032

µ
2,500 100 +

10,450 2

450

¶

For the Bayes estimate, we observe that, given , 1 has a gamma dis-
tribution with parameters 4 and 1 . Therefore,

P25
=1

1 has a gamma
distribution with parameters 100 and 1 . We note that in the denominator
of �ˆBayes , the term 0.01 will usually be small relative to the sum. An ap-
proximation can be created by ignoring this term, in which case �ˆBayes has
approximately an inverse gamma distribution with parameters 100 and 33 5 .
Then

Bias (�ˆBayes) =
33 5

99 3
=
0 5

99

Var (�ˆBayes) =
33 52 2

992(98)
,

MSE (�ˆBayes) =
33 52 + 49 2

992(98)
2 = 0 00119391 2

If we compare the coe cients of 2 in the MSE for the three estimators, we
see that they are 0.00222 for the sample mean, 0.00219 for the credibility
estimator, and 0.00119 for the Bayesian estimator. Thus, for large , the
credibility estimator is not much of an improvement over the sample mean,
but the Bayesian estimator cuts the MSE about in half. Calculated values
of these quantities for various percentiles from the gamma prior distribution
appear in Table 20.4. ¤
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Table 20.4 A comparison of the sample mean, credibility, and Bayes estimators.

¯ �ˆcred �ˆBayes
Percentile MSE Bias MSE Bias MSE

1 0.008 0.000 0.485 0.236 0.000 0.000
5 0.197 0.000 0.484 0.234 0.001 0.000
10 0.790 0.001 0.478 0.230 0.004 0.001
25 5.077 0.057 0.436 0.244 0.026 0.031
50 22.747 1.150 0.265 1.154 0.115 0.618
75 66.165 9.729 0 157 9.195 0.334 5.227
90 135.277 40.667 0 828 39.018 0.683 21.849
95 192.072 81.982 1 379 79.178 0.970 44.046
99 331.746 244.568 2 735 238.011 1.675 131.397

The inferior behavior of the credibility estimator when compared with the Bayes
estimator is due to the heavy tails of the two distributions. One way to lighten
the tail is to work with the logarithm of the data. This idea was proposed in
Foundations of Casualty Actuarial Science [29] and evaluated for the preceding
example. The idea is to work with the logarithms of the data and use linear
credibility to estimate the mean of the distribution of logarithms. The result is then
exponentiated. Because this procedure is sure to introduce bias,5 a multiplicative
adjustment is made. The results are presented in the following example, with many
of the details left for Exercise 20.64.

EXAMPLE 20.30

(Example 20.29 continued) Obtain the log-credibility estimator and evaluate
its bias and MSE.

Let = ln . Then, for the credibility on the logarithms

( ) = E( | )

=

Z

0

(ln ) 4 5 1
6

=

Z

0

(ln ln ) 3 1
6

= ln (4)

where the second integral is obtained using the substitution = . The
last line follows from observing that the term 3 6 is a gamma density
and thus integrates to 1, while the second term is the digamma function (see
Exercise 20.64) and using tables in [3], we have (4) = 1 25612. The next

5By Jensen�’s inequality, E[ln ] lnE( ) and therefore this procedure will underestimate the
true value.



634 CREDIBILITY

required quantity is

( ) = E( 2| ) ( )2

=

Z

0

(ln )2 4 5 1
6 [ln (4)]2

=

Z

0

(ln ln )2 3 1
6 [ln (4)]2

= 0(4)

where 0(4) = 0 283823 is the trigamma function (see Exercise 20.64). Then

= E[ln (4)]

=

Z

0

(ln ) 0 5 100100 0 5 1

(0 5)
(4)

=

Z

0

(ln 100 + ln ) 0 5 1

(0 5)
(4)

= ln 100 + (0 5) (4) = 1 38554

Also,

= E[ 0(4)] = 0(4) = 0 283823

= Var[ln (4)]

= 0(0 5) = 4 934802

=
25

25 +
0 283823

4 934802

= 0 997705

The log-credibility estimate is

�ˆlog-cred = exp(0 997705 ¯ + 0 00318024)

The value of is obtained by setting

E( ) = 50
3 = E[exp(0 997705 ¯ + 0 00318024)]

= 0 00318024E exp
0 997705

25

25X

=1

ln

= 0 00318024E E
25Y

=1

0 997705 25|

Given , the s are independent, and so the expected product is the product
of the expected values. From Appendix A, the th moment of the inverse
gamma distribution produces

50

3
= 0 00318024E

(
1
6

0 997705 25

µ
4

0 997705

25

¶¸25)

= 0 00318024 1
6

µ
4

0 997705

25

¶¸25
1000 997705 (0 5 + 0 997705)

(0 5)
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Table 20.5 Bias and MSE for the log-credibility estimator

.

Percentile Bias MSE

1 0.008 0.000 0.000
5 0.197 0.001 0.000
10 0.790 0.003 0.001
25 5.077 0.012 0.034
50 22.747 0.026 0.666
75 66.165 0.023 5.604
90 135.277 0 028 23.346
95 192.072 0 091 46.995
99 331.746 0 295 139.908

which produces = 1 169318 and

�ˆlog-cred = 1 173043(2 712051)
¯

To evaluate the bias and MSE for a given value of , we must obtain

E(�ˆlog-cred | = ) = 1 173043E
³

¯ ln 2 712051| =
´

= 1 173043E
25Y

=1

(ln 2 712051) 25| =

= 1 173043 1
6
(ln 2 712051) 25

µ
4

ln 2 712051

25

¶¸25

and

E(�ˆ2log-cred | = ) = 1 1730432E
³

2 ¯ ln 2 712051| =
´

= 1 1730432 1
6
(2 ln 2 712051) 25

µ
4

2 ln 2 712051

25

¶¸25

The measures of quality are then

Bias (�ˆlog-cred) = E(�ˆlog-cred | = ) 1
3

MSE (�ˆlog-cred) = E(�ˆ2log-cred | = ) [E(�ˆ og-cred | = )]2

+[bias (�ˆlog-cred)]
2

Values of these quantities are calculated for various values of in Table 20.5.
A comparison with Table 20.4 indicates that the log-credibility estimator is
almost as good as the Bayes estimator. ¤

In practice, log credibility is as easy to use as ordinary credibility. In either case,
one of the computational methods of Section 20.4 would be used. For log credibility,
the logarithms of the observations are substituted for the observed values and then
the nal estimate is exponentiated. The bias is corrected by multiplying all the
estimates by a constant such that the sample mean of the estimates matches the
sample mean of the original data.
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20.3.9 Notes and References

In this section, one of the two major criticisms of limited uctuation credibility
has been addressed. Through the use of the variance of the hypothetical means,
we now have a means of relating the mean of the group of interest, ( ), to the
manual, or collective, premium, . The development is also mathematically sound
in that the results follow directly from a specic model and objective. We have also
seen that the additional restriction of a linear solution is not as bad as it might be
in that we still often obtain the exact Bayesian solution. There has subsequently
been a great deal of e ort expended to generalize the model. With a sound basis
for obtaining a credibility premium, we have but one remaining obstacle: how to
numerically estimate the quantities and in the Bühlmann formulation, or how
to specify the prior distribution in the Bayesian formulation. Those matters are
addressed in Section 20.4.
A historical review of credibility theory including a description of the limited

uctuation and greatest accuracy approaches is provided by Norberg [130]. Since
the classic paper of Bühlmann [22], there has developed a vast literature on credi-
bility theory in the actuarial literature. Other elementary introductions are given
by Herzog [65] and Waters [183]. Other more advanced treatments are Goovaerts
and Hoogstad [56] and Sundt [167]. An important generalization of the Bühlmann�—
Straub model is the Hachemeister [60] regression model, which is not discussed here.
See also Klugman [94]. The material on exact credibility is motivated by Jewell
[81]. See also Ericson [41]. A special issue of Insurance: Abstracts and Reviews
(Sundt [166]) contains an extensive list of papers on credibility.

20.3.10 Exercises

20.17 Suppose and are independent Poisson random variables with means 1

and 2, respectively. Let = + . Demonstrate that | = is binomial.

20.18 Suppose is binomially distributed with parameters 1 and , that is,

( ) =

µ
1

¶
(1 ) 1 = 0 1 2 1

Suppose also that is binomially distributed with parameters 2 and indepen-
dently of . Then = + is binomially distributed with parameters 1 + 2

and . Demonstrate that | = has the hypergeometric distribution.

20.19 Consider a compound Poisson distribution with Poisson mean , where =

1+· · ·+ with E( ) = and Var( ) = 2 . Determine the mean and variance
of .

20.20 Let and have joint probability distribution as given in Table 20.6.

(a) Compute the marginal distributions of and .

(b) Compute the conditional distribution of given = for = 0 1 2.

(c) Compute E( | ), E( 2| ), and Var( | ) for = 0 1 2.

(d) Compute E( ) and Var( ) using (20.12), (20.15), and (c).
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Table 20.6 Data for Exercise 20.20.

0 1 2

0 0.20 0 0.10
1 0 0.15 0.25
2 0.05 0.15 0.10

20.21 Suppose that and are two random variables with bivariate normal joint
density function

( ) =
1

2 1 2

p
1 2

× exp

(
1

2 (1 2)

"µ
1

1

¶2
2

µ
1

1

¶µ
2

2

¶

+

µ
2

2

¶2#)

Show the following:

(a) The conditional density function is

| ( | ) =
1

2 1

p
1 2

exp
1

2

1
1

2
( 2)

1

p
1 2

2

Hence,
E( | = ) = 1 +

1

2
( 2)

(b) The marginal pdf is

( ) =
1

2 1

exp

"
1

2

µ
1

1

¶2#

(c) The variables and are independent if and only if = 0.

20.22 Suppose that, given = ( 1 2), the random variable is normally
distributed with mean 1 and variance 2.

(a) Show that E( ) = E( 1) and Var( ) = E( 2) + Var ( 1)

(b) If 1 and 2 are independent, show that has the same distribution
as 1 + , where 1 and are independent and conditional on 2

is normally distributed with mean 0 and variance 2.

20.23 Suppose that has pdf ( ) 0, and 1 has pdf 1( ) = ( )
0. If, given 1, is Poisson distributed with mean 1, show that has
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the same distribution as + , where and are independent, is Poisson
distributed with mean , and | is Poisson distributed with mean .

20.24 Consider a die�—spinner model. The rst die has one �“marked�” face and
ve �“unmarked�” faces, whereas the second die has four �“marked�” faces and two
�“unmarked�” faces. There are three spinners, each with ve equally spaced sectors
marked 3 or 8. The rst spinner has one sector marked 3 and four marked 8, the
second has two marked 3 and three marked 8, and the third has four marked 3 and
one marked 8. One die and one spinner are selected at random. If rolling the die
produces an unmarked face, no claim occurs. If a marked face occurs, there is a
claim and then the spinner is spun once to determine the amount of the claim.

(a) Determine ( ) for each of the six die�—spinner combinations.

(b) Determine the conditional distributions | ( | ) for the claim sizes for
each die�—spinner combination.

(c) Determine the hypothetical means ( ) and the process variances ( )
for each .

(d) Determine the marginal probability that the claim 1 on the rst iter-
ation equals 3.

(e) Determine the posterior distribution | 1
( |3) of using Bayes�’ The-

orem.

(f) Use (20.19) to determine the conditional distribution
2| 1

( 2|3) of the
claims 2 on the second iteration given that 1 = 3 was observed on
the rst iteration.

(g) Use (20.22) to determine the Bayesian premium E( 2| 1 = 3).

(h) Determine the joint probability that 2 = 2 and 1 = 3 for 2 = 0 3,
8.

(i) Determine the conditional distribution
2| 1

( 2|3) directly using (20.17)
and compare your answer to that of (f).

(j) Determine the Bayesian premium directly using (20.21) and compare
your answer to that of (g).

(k) Determine the structural parameters , and .

(l) Compute the Bühlmann credibility factor and the Bühlmann credibility
premium to approximate the Bayesian premium E( 2| 1 = 3)

20.25 Three urns have balls marked 0, 1, and 2 in the proportions given in Table
20.7. An urn is selected at random, and two balls are drawn from that urn with
replacement. A total of 2 on the two balls is observed. Two more balls are then
drawn with replacement from the same urn, and it is of interest to predict the total
on these next two balls.

(a) Determine ( ).

(b) Determine the conditional distributions | ( | ) for the totals on the
two balls for each urn.

(c) Determine the hypothetical means ( ) and the process variances ( )
for each .
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Table 20.7 Data for Exercise 20.25.

Urn 0s 1s 2s

1 0.40 0.35 0.25
2 0.25 0.10 0.65
3 0.50 0.15 0.35

Table 20.8 Data for Exercise 20.26.

Number of claims Severity
Type Mean Variance Mean Variance

A 0.2 0.2 200 4,000
B 0.7 0.3 100 1,500

(d) Determine the marginal probability that the total 1 on the rst two
balls equals 2.

(e) Determine the posterior distribution | 1
( |2) using Bayes�’ Theorem.

(f) Use (20.19) to determine the conditional distribution
2| 1

( 2|2) of the
total 2 on the next two balls drawn given that 1 = 2 was observed
on the rst two draws.

(g) Use (20.22) to determine the Bayesian premium E( 2| 1 = 2).

(h) Determine the joint probability that the total 2 on the next two balls
equals 2 and the total 1 on the rst two balls equals 2 for 2 =
0 1 2 3 4.

(i) Determine the conditional distribution
2| 1

( 2|2) directly using (20.17)
and compare your answer to that of (f).

(j) Determine the Bayesian premium directly using (20.21) and compare
your answer to that of (g).

(k) Determine the structural parameters , and .

(l) Determine the Bühlmann credibility factor and the Bühlmann credibility
premium.

(m) Show that the Bühlmann credibility factor is the same if each �“exposure
unit�” consists of one draw from the urn rather than two draws.

20.26 Suppose that there are two types of policyholder: type A and type B. Two-
thirds of the total number of the policyholders are of type A and one-third are of
type B. For each type, the information on annual claim numbers and severity are
given in Table 20.8. A policyholder has a total claim amount of 500 in the last four
years. Determine the credibility factor and the credibility premium for next year
for this policyholder.

20.27 Let 1 represent the risk factor for claim numbers and let 2 represent the
risk factor for the claim severity for a line of insurance. Suppose that 1 and 2

are independent. Suppose also that given 1 = 1, the claim number is Poisson
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distributed and, given 2 = 2, the severity is exponentially distributed. The
expectations of the hypothetical means and process variances for the claim number
and severity as well as the variance of the hypothetical means for frequency are,
respectively,

= 0 1 = 0 1 = 0 05
= 100 = 25,000

Three observations are made on a particular policyholder and we observe total
claims of 200. Determine the Bühlmann credibility factor and the Bühlmann pre-
mium for this policyholder.

20.28 Suppose that 1 are independent (conditional on ) and that

E( | ) = ( ) and Var( | ) = ( ) + ( ), = 1

Let
= E[ ( )] = E[ ( )] = E[ ( )], = Var[ ( )]

(a) Show that

E( ) = Var( ) = + + 2

and
Cov( ) = 6=

(b) Solve the normal equations for �˜0 �˜1 �˜ to show that the credibility
premium satises

�˜0 +
X

=1

�˜ = (1 )E( +1) + +1
¯

where

= 2( + ) 1, = 1

= 1 + · · ·+
= (1 + ) 1

¯ =
X

=1

20.29 For the situation described in Exercise 15.82, determine ( ) and the Bayesian
premium E( +1|x). Why is the Bayesian premium equal to the credibility pre-
mium?

20.30 Suppose that, for = 1 2 ,

| ( | ) =
( + )

( ) !
(1 ) = 0 1

a negative binomial pf with 0 a known quantity.
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(a) Demonstrate that the conjugate prior from Theorem 15.24 is the beta pf

( ) =
( + + 1)

( ) ( + 1)
1(1 ) 0 1

where 1 and 0 are the acceptable parameter values for
( ) to be a valid pdf.

(b) Show that E[ ( )] = if 1 0 and E[ ( )] = if 0.

(c) Show that there is no credibility premium if 1 . Then show that if
1 , then Var[ ( )] = ( + ) ( 1) and E[ ( )] Var[ ( )] =

.

(d) Prove that there is no Bayesian premium if the number of observations
satises 1 and 1 and that if , then the

Bayesian premium is linear in the s. What happens if = ?

(e) Show that credibility is exact if 1 .

20.31 Consider the generalization of the linear exponential family given by

( ; ) =
( ) ( )

[ ( )]

If is a parameter, this is called the exponential dispersion family. In Exercise
5.25 it is shown that the mean of this random variable is 0( ) [ 0( ) ( )]. For this
exercise, assume that is known.

(a) Consider the prior distribution

( ) =
[ ( )] exp[ ( )] 0( )

( )
0 1

Determine the Bayesian premium.

(b) Using the same prior, determine the Bühlmann premium.

(c) Show that the inverse Gaussian distribution is a member of the expo-
nential dispersion family.

20.32 Suppose that 1 are independent (conditional on ) and

E( | ) = ( ) and Var( | ) =
2 ( )

= 1

Let = E[ ( )] = E[ ( )] = Var[ ( )] = , and = 1 + · · ·+ .

(a) Discuss when these assumptions may be appropriate.

(b) Show that

E( ) = Var( ) = 2 ( + )

and
Cov( ) = + 6=
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(c) Solve the normal equations for �˜0 �˜1 �˜ to show that the credibility
premium satises

�˜0 +
X

=1

�˜ =
+

+1 +
+

X

=1

+1

(d) Give a verbal interpretation of the formula in (c).

(e) Suppose that

| ( | ) =
( ) ( )

[ ( )]

Show that E( | ) = ( ) and that Var( | ) = 2 ( ) , where
( ) = 0( ) [ 0( ) ( )] and ( ) = 0( ) 0( ).

(f) Determine the Bayesian premium if

( ) =
[ ( )] ( )

( )
0 1

20.33 Suppose that, given = , the random variables 1 · · · are indepen-
dent with Poisson pf

| ( | ) =
!

= 0 1 2

(a) Let = 1 + · · ·+ . Show that has pf

( ) =

Z

0

( )

!
( ) = 0 1 2

where has pdf ( ).

(b) Show that the Bayesian premium is

E( +1|X = x) =
1 + ¯ (1 + ¯)

( ¯)

(c) Evaluate the distribution of in (a) when ( ) is a gamma distribution.
What type of distribution is this?

20.34 Suppose that, given = , the random variables 1 2 are inde-
pendent with Poisson pf

| ( | ) =
!

= 0 1

and has the inverse Gaussian pdf from Appendix A (with replaced by ),

( ) =

r

2 3 exp

"

2

µ ¶2#

0
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Dene ( ) = + (2 2).

(a) Use Exercise 5.20(g) to show that the posterior distribution of given
that X = x is the generalized inverse Gaussian distribution with pdf

|X( |x) =

h
2 ( )

i0 5 ¯ 0 25
¯ 1 5 exp

£
( ) 2

¤

2 ¯ 0 5

³p
2 ( )

´ 0.

(b) Use part (a) and Exercise 5.20(g) to prove that the predictive distribution
of +1 given X = x is the Sichel distribution with pdf

+1|X( +1|x)

=

h
2 ( +1)

i0 5 +1
h

( )
( +1)

i0 5 ¯ 0 25

+1+ ¯ 0 5

³p
2 ( + 1)

´

( +1!) ¯ 0 5

³p
2 ( )

´

for +1 = 0 1 .

(c) Use Example 6.26 to evaluate the pf

( ) =

Z

0

( )

!
( ) = 0 1

and, hence, use Exercise 20.33(b) to describe how to calculate the Bayesian
premium.

20.35 Suppose | is normally distributed with mean and variance for =
1 2 +1. Further suppose is normally distributed with mean and variance
. Thus,

| ( | ) = (2 ) 1 2 exp
1

2
( )2

¸

and

( ) = (2 ) 1 2 exp
1

2
( )2

¸

Determine the posterior distribution of |X and the predictive distribution of
+1|X. Then determine the Bayesian estimate of E( +1|X). Finally, show

that the Bayesian and Bühlmann estimates are equal.

20.36 (*) Your friend selected at random one of two urns and then she pulled a
ball with number 4 on it from the urn. Then she replaced the ball in the urn. One
of the urns contains four balls, numbered 1�—4. The other urn contains six balls,
numbered 1�—6. Your friend will make another random selection from the same urn.

(a) Estimate the expected value of the number on the next ball using the
Bayesian method.

(b) Estimate the expected value of the number on the next ball using Bühlmann
credibility.



644 CREDIBILITY

20.37 The number of claims for a randomly selected insured has the Poisson dis-
tribution with parameter . The parameter is distributed across the population
with pdf ( ) = 3 4 1. For an individual, the parameter does not change
over time. A particular insured experienced a total of 20 claims in the previous two
years.

(a) (*) Determine the Bühlmann credibility estimate for the future expected
claim frequency for this particular insured.

(b) Determine the Bayesian credibility estimate for the future expected claim
frequency for this particular insured.

20.38 (*) The distribution of payments to an insured is constant over time. If the
Bühlmann credibility assigned for one-half year of observation is 0.5, determine the
Bühlmann credibility to be assigned for three years.

20.39 (*) Three urns contain balls marked either 0 or 1. In urn A, 10% are marked
0; in urn B, 60% are marked 0; and in urn C, 80% are marked 0. An urn is selected
at random and three balls selected with replacement. The total of the values is 1.
Three more balls are selected with replacement from the same urn.

(a) Determine the expected total of the three balls using Bayes�’ Theorem.

(b) Determine the expected total of the three balls using Bühlmann credi-
bility.

20.40 (*) The number of claims follows the Poisson distribution with parameter
. A particular insured had three claims in the past three years.

(a) The value of has pdf ( ) = 4 5 1. Determine the value of
used in Bühlmann�’s credibility formula. Then use Bühlmann credibility
to estimate the claim frequency for this insured.

(b) The value of has pdf ( ) = 1 0 1. Determine the value of
used in Bühlmann�’s credibility formula. Then use Bühlmann credibility
to estimate the claim frequency for this insured.

20.41 (*) The number of claims follows the Poisson distribution with parameter
. The value of has the gamma distribution with pdf ( ) = 0.
Determine the Bühlmann credibility to be assigned to a single observation. (The
Bayes solution is obtained in Exercise 15.93.)

20.42 Consider the situation of Exercise 15.95.

(a) Determine the expected number of claims in the second year using Bayesian
credibility.

(b) (*) Determine the expected number of claims in the second year using
Bühlmann credibility.

20.43 (*) One spinner is selected at random from a group of three spinners. Each
spinner is divided into six equally likely sectors. The number of sectors marked 0,
12, and 48, respectively, on each spinner is as follows: spinner A: 2,2,2; spinner B:
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Table 20.9 Data for Exercise 20.46.

Bühlmann estimate of Bayesian estimate of
Outcome, Pr( 1 = ) E( 2| 1 = ) E( 2| 1 = )

1 1 3 2.72 2.6
8 1 3 7.71 7.8
12 1 3 10.57 �—

3,2,1; spinner C: 4,1,1. A spinner is selected at random and a zero is obtained on
the rst spin.

(a) Determine the Bühlmann credibility estimate of the expected value of
the second spin using the same spinner.

(b) Determine the Bayesian credibility estimate of the expected value of the
second spin using the same spinner.

20.44 The number of claims in a year has the Poisson distribution with mean .
The parameter has the uniform distribution over the interval (1 3).

(a) (*) Determine the probability that a randomly selected individual will
have no claims.

(b) (*) If an insured had one claim during the rst year, estimate the ex-
pected number of claims for the second year using Bühlmann credibility.

(c) If an insured had one claim during the rst year, estimate the expected
number of claims for the second year using Bayesian credibility.

20.45 (*) Each of two classes, A and B, has the same number of risks. In class
A, the number of claims per risk per year has mean 1

6 and variance
5
36 , while the

amount of a single claim has mean 4 and variance 20. In class B, the number of
claims per risk per year has mean 5

6 and variance
5
36 , while the amount of a single

claim has mean 2 and variance 5. A risk is selected at random from one of the two
classes and is observed for four years.

(a) Determine the value of for Bühlmann credibility for the observed pure
premium.

(b) Suppose the pure premium calculated from the four observations is 0.25.
Determine the Bühlmann credibility estimate for the risk�’s pure pre-
mium.

20.46 (*) Let 1 be the outcome of a single trial and let E( 2| 1) be the expected
value of the outcome of a second trial. You are given the information in Table 20.9.
Determine the Bayesian estimate for E( 2| 1 = 12).

20.47 Consider the situation of Exercise 15.97.

(a) Determine the expected number of claims in the second year using Bayesian
credibility.

(b) (*) Determine the expected number of claims in the second year using
Bühlmann credibility.
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20.48 Consider the situation of Exercise 15.98.

(a) Use Bayesian credibility to determine the expected number of claims in
the second year.

(b) Use Bühlmann credibility to determine the expected number of claims
in the second year.

20.49 Two spinners, 1 and 2, are used to determine the number of claims. For
spinner 1, there is a 0.15 probability of one claim and 0.85 of no claim. For spinner
2, there is a 0.05 probability of one claim and 0.95 of no claim. If there is a claim,
one of two spinners, 1 and 2, is used to determine the amount. Spinner 1

produces a claim of 20 with probability 0.8 and 40 with probability 0.2. Spinner 2

produces a claim of 20 with probability 0.3 and 40 with probability 0.7. A spinner
is selected at random from each of 1 2 and from 1 2. Three observations
from the selected pair yield claims amounts of 0, 20, and 0.

(a) (*) Use Bühlmann credibility to separately estimate the expected num-
ber of claims and the expected severity. Use these estimates to estimate
the expected value of the next observation from the same pair of spin-
ners.

(b) Use Bühlmann credibility once on the three observations to estimate the
expected value of the next observation from the same pair of spinners.

(c) (*) Repeat parts (a) and (b) using Bayesian estimation.

(d) (*) For the same selected pair of spinners, determine

lim E( | 1 = 2 = · · · = 1 = 0)

20.50 (*) A portfolio of risks is such that all risks are normally distributed. Those
of type A have a mean of 0.1 and a standard deviation of 0.03. Those of type B
have a mean of 0.5 and a standard deviation of 0.05. Those of type C have a mean
of 0.9 and a standard deviation of 0.01. There are an equal number of each type of
risk. The observed value for a single risk is 0.12. Determine the Bayesian estimate
of the same risk�’s expected value.

20.51 (*) You are given the following:

1. The conditional distribution | ( | ) is a member of the linear exponential
family.

2. The prior distribution ( ) is a conjugate prior for | ( | ).

3. E( ) = 1.

4. E( | 1 = 4) = 2, where 1 is the value of a single observation.

5. The expected value of the process variance E[Var( | )] = 3.

Determine the variance of the hypothetical means Var[E( | )].

20.52 (*) You are given the following:
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1. is a random variable with mean and variance .

2. is a random variable with mean 2 and variance 4.

3. is a random variable with mean 8 and variance 32.

Determine the value of the Bühlmann credibility factor after three observations
of .

20.53 The amount of an individual claim has the exponential distribution with
pdf | ( | ) = 1 0. The parameter has the inverse gamma
distribution with pdf ( ) = 400 3 20 .

(a) (*) Determine the unconditional expected value, E( ).

(b) Suppose two claims were observed with values 15 and 25. Determine the
Bühlmann credibility estimate of the expected value of the next claim
from the same insured.

(c) Repeat part (b), but determine the Bayesian credibility estimate.

20.54 The distribution of the number of claims is binomial with = 1 and
unknown. The parameter is distributed with mean 0.25 and variance 0.07. De-
termine the value of for a single observation using Bühlmann�’s credibility formula.

20.55 (*) Consider four marksmen. Each is ring at a target that is 100 feet away.
The four targets are 2 feet apart (i.e., they lie on a straight line at positions 0,
2, 4, and 6 in feet). The marksmen miss to the left or right, never high or low.
Each marksman�’s shot follows a normal distribution with mean at his target and a
standard deviation that is a constant times the distance to the target. At 100 feet,
the standard deviation is 3 feet. By observing where an unknown marksman�’s shot
hits the straight line, you are to estimate the location of the next shot by the same
marksman.

(a) Determine the Bühlmann credibility assigned to a single shot of a ran-
domly selected marksman.

(b) Which of the following will increase Bühlmann credibility the most?

i. Revise the targets to 0, 4, 8, and 12.
ii. Move the marksmen to 60 feet from the targets.
iii. Revise targets to 2, 2, 10, 10.
iv. Increase the number of observations from the same marksman to

three.
v. Move two of the marksmen to 50 feet from the targets and increase
the number of observations from the same marksman to two.

20.56 (*) Risk 1 produces claims of amounts 100, 1,000, and 20,000 with proba-
bilities 0.5, 0.3, and 0.2, respectively. For risk 2, the probabilities are 0.7, 0.2, and
0.1. Risk 1 is twice as likely as risk 2 of being observed. A claim of 100 is observed,
but the observed risk is unknown.

(a) Determine the Bayesian credibility estimate of the expected value of the
second claim amount from the same risk.
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(b) Determine the Bühlmann credibility estimate of the expected value of
the second claim amount from the same risk.

20.57 (*) You are given the following:

1. The number of claims for a single insured follows a Poisson distribution with
mean .

2. The amount of a single claim has an exponential distribution with pdf

| ( | ) =
1 0

3. and are independent.

4. E( ) = 0 10 and Var( ) = 0 0025.

5. E( ) = 1,000 and Var( ) = 640,000.

6. The number of claims and the claim amounts are independent.

(a) Determine the expected value of the pure premium�’s process variance
for a single risk.

(b) Determine the variance of the hypothetical means for the pure premium.

20.58 (*) The number of claims has a Poisson distribution. For 75% of risks, = 1
and for 25% of risks, = 3. A randomly selected risk had claims in year one. The
Bayesian estimate of the expected number of claims in year two is 2.98. Determine
the Bühlmann estimate of the expected number of claims in year two.

20.59 (*) Claim sizes have an exponential distribution with mean . For 80% of
risks, = 8 and for 20% of risks, = 2. A randomly selected policy had a claim
of size 5 in year one. Determine both the Bayesian and Bühlmann estimates of the
expected claim size in year two.

20.60 (*) A portfolio has 100 risks with identical and independent numbers of
claims. The number of claims for one risk has a Poisson distribution with mean
. The prior distribution is ( ) = (50 )4 50 (6 ), 0. During year one, 90
risks had 0 claims, 7 had 1 claim, 2 had 2 claims, and 1 had 3 claims. Determine
both the Bayesian and Bühlmann estimates of the expected number of claims for
the portfolio in year two.

20.61 (*) For a portfolio of risks, all member�’s aggregate losses per year per ex-
posure have a normal distribution with a standard deviation of 1,000. For these
risks, 60% have a mean of 2,000, 30% have a mean of 3,000, and 10% have a mean
of 4,000. A randomly selected risk had the following experience over three years.
In year one, there were 24 exposures with total losses of 24,000. In year two, there
were 30 exposures with total losses of 36,000. In year three, there were 26 exposures
with total losses of 28,000. Determine the Bühlmann�—Straub estimate of the mean
aggregate loss per year per exposure for year four.

20.62 (*) The number of claims for each policyholder has a binomial distribution
with = 8 and unknown. The prior distribution of is beta with parameters
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unknown, = 9, and = 1. A randomly selected policyholder had 2 claims in
year one and claims in year two. Based on the year one experience, the Bayesian
estimate of the expected number of claims in year two is 2.54545. Based on years
one and two, the Bayesian estimate of the expected number of claims in year three
is 3.73333. Determine .

20.63 In Example 20.20, if = 0, then = 0, and the estimator is . That is, the
data should be ignored. However, as increases toward 1, increases to 1, and
the sample mean becomes the preferred predictor of +1. Explain why this is a
reasonable result.

20.64 In this exercise you are asked to derive a number of the items from Example
20.30.

(a) The digamma function is formally dened as ( ) = 0( ) ( ). From
this denition, show that

( ) =
1

( )

Z

0

(ln ) 1

(b) The trigamma function is formally dened as 0( ). Derive an expres-
sion for Z

0

(ln )2 1

in terms of trigamma, digamma, and gamma functions.

20.65 Consider the following situation, which is similar to Examples 20.29 and
20.30. Individual observations are samples of size 25 from a lognormal distribution
with unknown and = 2. The prior distribution for (using to represent
the unknown value of ) is normal with mean 5 and standard deviation 1. Deter-
mine the Bayes, credibility, and log-credibility estimators and compare their MSEs,
evaluating them at the same percentiles as used in Examples 20.29 and 20.30.

20.66 In the following, let the random vector X represent all the past data and let
+1 represent the next observation. Let (X) be any function of the past data.

(a) Prove that the following is true:

E
©
[ +1 (X)]2

ª
= E{[ +1 E( +1|X)]2}

+E{[E( +1|X) (X)]2}

where the expectation is taken over ( +1 X).

(b) Show that setting (X) equal to the Bayesian premium (the mean of the
predictive distribution) minimizes the expected squared error,

©
[ +1 (X)]2

ª

(c) Show that, if (X) is restricted to be a linear function of the past data,
then the expected squared error is minimized by the credibility premium.
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20.4 EMPIRICAL BAYES PARAMETER ESTIMATION

In Section 20.3, a modeling methodology is proposed that suggests the use of either
the Bayesian or credibility premium as a way to incorporate past data into the
prospective rate. There is a practical problem associated with the use of these
models that has not yet been addressed.
In the examples seen so far, we are able to obtain numerical values for the quan-

tities of interest because the input distributions | ( | ) and ( ) are assumed
to be known. These examples, while useful for illustration of the methodology, can
hardly be expected to accurately represent the business of an insurance portfolio.
More practical models of necessity involve the use of parameters that must be cho-
sen to ensure a close agreement between the model and reality. Examples of this
include: the Poisson�—gamma model (Example 20.8), where the gamma parameters
and need to be selected, or the Bühlmann or Bühlmann�—Straub parameters
, and . Assignment of numerical values to the Bayesian or credibility premium

requires that these parameters be replaced by numerical values.
In general, the unknown parameters are those associated with the structure

density ( ), and, hence we refer to these as structural parameters. The terminology
we use follows the Bayesian framework of the previous section. Strictly speaking, in
the Bayesian context all structural parameters are assumed known and there is no
need for estimation. An example is the Poisson�—gamma where our prior information
about the structural density is quantied by the choice of = 36 and = 1

240 . For
our purposes, this fully Bayesian approach is often unsatisfactory (e.g., when there
is little or no prior information available, such as with a new line of insurance) and
we may need to use the data at hand to estimate the structural (prior) parameters.
This approach is called empirical Bayes estimation.
We refer to the situation where ( ) and | ( | ) are left largely unspecied

(e.g., in the Bühlmann or Bühlmann�—Straub models where only the rst two mo-
ments need be known) as the nonparametric case. This situation is dealt with in
Section 20.4.1. If | ( | ) is assumed to be of parametric form (e.g., Poisson,
normal, etc.) but not ( ), then we refer to the problem as being of a semipara-
metric nature, and is considered in Section 20.4.2. Finally, the (technically more
di cult) fully parametric case where both | ( | ) and ( ) are assumed to be
of parametric form is briey discussed in Section 20.4.3.
This decision as to whether to select a parametric model or not depends partially

on the situation at hand and partially on the judgment and knowledge of the person
doing the analysis. For example, an analysis based on claim counts might involve the
assumption that | ( | ) is of Poisson form, whereas the choice of a parametric
model for ( ) may not be reasonable.
Any parametric assumptions should be reected (as far as possible) in parametric

estimation. For example, in the Poisson case, because the mean and variance
are equal, the same estimate would normally be used for both. Nonparametric
estimators would normally be no more e cient than estimators appropriate for the
parametric model selected, assuming that the model selected is appropriate. This
notion is relevant for the decision as to whether to select a parametric model.
Finally, nonparametric models have the advantage of being appropriate for a

wide variety of situations, a fact that may well eliminate the extra burden of a
parametric assumption (often a stronger assumption than is reasonable).
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In this section, the data are assumed to be of the following form. For each
of 1 policyholders, we have the observed losses per unit of exposure X =
( 1 ) for = 1 . The random vectors {X = 1 } are as-
sumed to be statistically independent (experience of di erent policyholders is as-
sumed to be independent). The (unknown) risk parameter for the th policy-
holder is = 1 , and it is assumed further that 1 are realiza-
tions of the i.i.d. random variables with structural density ( ). For xed ,
the (conditional) random variables | are assumed to be independent with pf

| ( | ) = 1 .
Two particularly common cases produce this data format. The rst is classi-

cation rate making or experience rating. In either, indexes the classes or groups
and indexes the individual members. The second case is like the rst where
continues to index the class or group, but now is the year and the observation is
the average loss for that year. An example of the second setting is Meyers [118],
where = 1 319 employment classications are studied over = 1 2 3 years.
Regardless of the potential settings, we refer to the entities as policyholders.
There may also be a known exposure vector m = ( 1 2 · · · ) for

policyholder , where = 1 . If not (and if it is appropriate), one may set
= 1 in what follows for all and . For notational convenience let

=
X

=1

= 1

be the total past exposure for policyholder , and let

¯ =
1 X

=1

= 1

be the past average loss experience. Furthermore, the total exposure is

=
X

=1

=
X

=1

X

=1

and the overall average losses are

¯ =
1 X

=1

¯ =
1 X

=1

X

=1

(20.62)

The parameters that need to be estimated depend on what is assumed about the
distributions | ( | ) and ( ).
For the Bühlmann�—Straub formulation, there are additional quantities of interest.

The hypothetical mean (assumed not to depend on ) is

E( | = ) = ( )

and the process variance is

Var( | = ) =
( )
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The structural parameters are

= E[ ( )] = E[ ( )]

and
= Var[ ( )]

The approach to be followed in this section is to estimate , , and (when un-
known) from the data. The credibility premium for next year�’s losses (per exposure
unit) for policyholder is

¯ + (1 ) = 1 (20.63)

where
=

+
=

If estimators of , and are denoted by �ˆ �ˆ, and �ˆ, respectively, then one would
replace the credibility premium (20.63) by its estimator

�ˆ ¯ + (1 �ˆ )�ˆ (20.64)

where
�ˆ =

+ �ˆ
�ˆ =

�ˆ

�ˆ

Note that, even if �ˆ and �ˆ are unbiased estimators of and , the same cannot
be said of �ˆ and �ˆ . Finally, the credibility premium to cover all +1 exposure
units for policyholder in the next year would be (20.64) multiplied by +1.

20.4.1 Nonparametric estimation

In this section we consider unbiased estimation of , , and . To illustrate the
ideas, let us begin with the following simple Bühlmann-type example.

EXAMPLE 20.31

Suppose that = 1 for all and = 1 for all and . That is, for
policyholder , we have the loss vector

X = ( 1 ) = 1

Furthermore, conditional on = , has mean

( ) = E( | = )

and variance
( ) = Var( | = )

and 1 are independent (conditionally). Also, di erent policyhold-
ers�’ past data are independent, so that if 6= , then and are inde-
pendent. In this case,

¯ = 1
X

=1

and ¯ = 1
X

=1

¯ = ( ) 1
X

=1

X

=1
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Determine unbiased estimators of the Bühlmann quantities.

An unbiased estimator of is

�ˆ = ¯

because

E(�ˆ) = ( ) 1
X

=1

X

=1

E( ) = ( ) 1
X

=1

X

=1

E[E( | )]

= ( ) 1
X

=1

X

=1

E[ ( )] = ( ) 1
X

=1

X

=1

=

For estimation of and , we use the following result. Suppose that
1 2 are independent (but not necessarily identically distributed)
random variables with identical means and variances = E( ) and 2 =

Var( ). Let ¯ = 1
P

=1 . Then

E( ¯ ) = 1
X

=1

E( ) = , and

Var( ¯ ) = 2
X

=1

Var( ) = 2

Next, consider the the statistic
P

=1(
¯ )2. It can be rewritten

X

=1

( ¯ )2 =
X

=1

[( ) + ( ¯ )]2

=
X

=1

[( )2 + 2( )( ¯ ) + ( ¯ )2]

=
X

=1

( )2 + 2( ¯ )
X

=1

( ) +
X

=1

( ¯ )2

=
X

=1

( )2 + 2( ¯ )( ¯ ) + (¯ )2

which simplies to

X

=1

( ¯ )2 =
X

=1

( )2 ( ¯ )2 (20.65)
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Taking expectations of both sides yields

E
X

=1

( ¯ )2 =
X

=1

E[( )2] E[( ¯ )2]

=
X

=1

Var( ) Var( ¯ )

= 2 ( 2 ) = ( 1) 2

Therefore,

E
X

=1

( ¯ )2 ( 1) = 2 (20.66)

and thus
P

=1(
¯ )2 ( 1) is an unbiased estimator of the variance of

.
To estimate , consider

�ˆ =
1

1

X

=1

( ¯ )2 (20.67)

Recall that for xed the random variables 1 are independent,
conditional on = . Thus, �ˆ is an unbiased estimate of Var( | =
) = ( ). Unconditionally,

E(�ˆ ) = E[E(�ˆ | )] = E[ ( )] =

and �ˆ is unbiased for . Hence, an unbiased estimator of is

�ˆ =
1X

=1

�ˆ =
1

( 1)

X

=1

X

=1

( ¯ )2 (20.68)

We now turn to estimation of the parameter . Begin with

E( ¯ | = ) = 1
X

=1

E( | = ) = 1
X

=1

( ) = ( )

Thus,
E( ¯ ) = E[E( ¯ | )] = E[ ( )] =

and

Var( ¯ ) = Var[E( ¯ | )] + E[Var( ¯ | )]

= Var[ ( )] + E
( )

¸
= +

Therefore, ¯1 ¯ are independent with common mean and common
variance + . Their sample average is ¯ = 1

P
=1

¯ . Consequently,

an unbiased estimator of + is ( 1) 1
P

=1

¡
¯ ¯

¢2
. Because we
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already have an unbiased estimator of as just given, an unbiased estimator
of is

�ˆ =
1

1

X

=1

¡
¯ ¯

¢2 �ˆ

=
1

1

X

=1

¡
¯ ¯

¢2 1

( 1)

X

=1

X

=1

( ¯ )2 (20.69)

¤

These estimators might look familiar. Consider a one-factor analysis of variance
in which each policyholder represents a treatment. The estimator for (20.68) is
the within (also called the error) mean square. The rst term in the estimator
for (20.69) is the between (also called the treatment) mean square divided by
. The hypothesis that all treatments have the same mean is accepted when the
between mean square is small relative to the within mean square�–that is, when �ˆ
is small relative to �ˆ. But that relationaship implies �ˆ will be near zero and little
credibility will be given to each ¯ . This is as it should be when the policyholders
are essentially identical.
Due to the subtraction in (20.69), it is possible that �ˆ could be negative. When

that happens, it is customary to set �ˆ = �ˆ = 0. This case is equivalent to the
test statistic in the analysis of variance being less than 1, a case that always leads
to an acceptance of the hypothesis of equal means.

EXAMPLE 20.32

(Example 20.31 continued) As a numerical illustration, suppose we have = 2
policyholders with = 3 years experience for each. Let the losses be x1 =
(3 5 7) and x2 = (6 12 9) . Estimate the Bühlmann credibility premiums
for each policyholder.

We have

¯
1 =

1
3(3 + 5 + 7) = 5

¯
2 =

1
3(6 + 12 + 9) = 9

and so ¯ = 1
2(5 + 9) = 7. Then �ˆ = 7. We next have

�ˆ1 = 1
2 [(3 5)2 + (5 5)2 + (7 5)2] = 4

�ˆ2 = 1
2 [(6 9)2 + (12 9)2 + (9 9)2] = 9

and so �ˆ = 1
2(4 + 9) =

13
2 . Then

�ˆ = [(5 7)2 + (9 7)2] 1
3 �ˆ =

35
6

Next, �ˆ = �ˆ �ˆ = 39
35 and the estimated credibility factor is

�ˆ = 3 (3+�ˆ) = 35
48 .

The estimated credibility premiums are

�ˆ ¯
1 + (1 �ˆ)�ˆ =

¡
35
48

¢
(5) +

¡
13
48

¢
(7) = 133

24

�ˆ ¯
2 + (1 �ˆ)�ˆ =

¡
35
48

¢
(9) +

¡
13
48

¢
(7) = 203

24
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for policyholders 1 and 2, respectively. ¤

We now turn to the more general Bühlmann�—Straub setup described earlier in
this section. We have E( ) = E[E( | )] = E[ ( )] = . Thus,

E( ¯ | ) =
X

=1

E( | ) =
X

=1

( ) = ( )

implying that
E( ¯ ) = E[E( ¯ | )] = E[ ( )] =

Finally,

E( ¯) =
1 X

=1

E( ¯ ) =
1 X

=1

=

and so an obvious unbiased estimator of is

�ˆ = ¯ (20.70)

To estimate and in the Bühlmann�—Straub framework, a more general statistic
that that in (20.66) is needed. The following example provides the needed results.

EXAMPLE 20.33

Suppose 1 are independent with common mean = E( ) and
variance Var( ) = + 0 and all 1. The values of are
assumed to be known. Let =

P
=1 and consider the estimators

¯ =
1 X

=1

and �ˆ1 =
1X

=1

Show that both estimators are unbiased for and then compare their MSEs.
Also obtain the expected value of a sum of squares that may be useful for
estimating and .

First consider ¯ .

E( ¯) = 1
X

=1

E( ) = 1
X

=1

=

Var( ¯) = 2
X

=1

2Var( )

= 2
X

=1

2

µ
+

¶

= 1 + 2
X

=1

2
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The estimator �ˆ1 is easily shown to be unbiased. We also have

Var(�ˆ1) = 2
X

=1

Var( )

= 2
X

=1

µ
+

¶

= 1 + 2
X

=1

1

We now consider the relative ranking of these variances (because both
estimators are unbiased, their MSEs equal their variances, so it is su cient
to rank the variances). It turns out that it is not possible to order Var(�ˆ1)
and Var( ¯). The di erence is

Var( ¯) Var(�ˆ1) =
1 2

X

=1

1 + 2
X

=1

2 1

The coe cient of must be nonnegative. To see this, note that

1X

=1

2 1X

=1

2

=
2

2

(the left-hand side is like a sample second moment and the right-hand side is
like the square of the sample mean) and multiply both sides by 2. To
show that the coe cient of must be nonpositive, note that

P
=1

1

1X

=1

=

(the harmonic mean is always less than or equal to the arithmetic mean), then
multiply both sides by , and then invert both sides. Therefore, by suitable
choice of and , the di erence in the variances can be made positive or
negative.
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With regard to a sum of squares, consider

X

=1

( ¯)2 =
X

=1

( + ¯)2

=
X

=1

( )2 + 2
X

=1

( )( ¯)

+
X

=1

( ¯)2

=
X

=1

( )2 + 2( ¯)
X

=1

( )

+ ( ¯)2

=
X

=1

( )2 + 2( ¯) ( ¯ ) + ( ¯)2

=
X

=1

( )2 ( ¯ )2 (20.71)

Taking expectations yields

E
X

=1

( ¯)2 =
X

=1

E[( )2] E[( ¯ )2]

=
X

=1

Var( ) Var( ¯)

=
X

=1

µ
+

¶
1
X

=1

2

and thus

E
X

=1

( ¯)2 = 1
X

=1

2 + ( 1) (20.72)

In addition to being of interest in its own right, (20.72) provides an unbiased
estimator in situations more general than in (20.66). The latter is recovered
with the choice = 0 and = 1 for = 1 2 · · · , implying that = .
Also, if = 0, (20.72) allows us to derive an estimator of when each is
the average of independent observations each with mean and variance
. In any event, the s (and hence ) are known. ¤

We now return to the problem of estimation of in the Bühlmann�—Straub frame-
work. Clearly, E( | ) = ( ) and Var( | ) = ( ) for = 1 .
Consider

�ˆ =

P
=1 ( ¯ )2

1
= 1 (20.73)
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Condition on and use (20.72) with = 0 and = ( ). Then E(�ˆ | ) = ( ),
which implies that, unconditionally,

E(�ˆ ) = E[E(�ˆ | )] = E[ ( )] =

and so �ˆ is unbiased for for = 1 . Another unbiased estimator for
is then the weighted average �ˆ =

P
=1 �ˆ , where

P
=1 = 1. If we choose

weights proportional to 1, we weight the original s by . That is, with
= ( 1)

P
=1 ( 1), we obtain an unbiased estimator of , namely,

�ˆ =

P
=1

P
=1 ( ¯ )2

P
=1 ( 1)

(20.74)

We now turn to estimation of . Recall that, for xed , the random variables
1 are independent, conditional on . Thus,

Var( ¯ | ) =
X

=1

µ ¶2
Var( | ) =

X

=1

µ ¶2
( )

=
( )
2

X

=1

=
( )

Then, unconditionally,

Var( ¯ ) = Var[E( ¯ | )] + E[Var( ¯ | )]

= Var[ ( )] + E
( )

¸
= + (20.75)

To summarize, ¯1 ¯ are independent with common mean and variances
Var( ¯ ) = + . Furthermore, ¯ = 1

P
=1

¯ . Now, (20.72) may again
be used with = and = to yield

E

"
X

=1

¡
¯ ¯

¢2
#

=

Ã
1
X

=1

2

!

+ ( 1)

An unbiased estimator for may be obtained by replacing by an unbiased esti-
mator �ˆ and �“solving�” for . That is, an unbiased estimator of is

�ˆ =

Ã
1
X

=1

2

! 1 "X

=1

( ¯ ¯)2 �ˆ( 1)

#

(20.76)

with �ˆ given by (20.74). An alternative form of (20.76) is given in Exercise 20.75.
Some remarks are in order at this point. Equations (20.70), (20.74), and (20.76)

provide unbiased estimators for , and , respectively. They are nonparametric,
requiring no distributional assumptions. They are certainly not the only (unbiased)
estimators that could be used, and it is possible that �ˆ 0. In this case, is likely to
be close to 0, and it makes sense to set �ˆ = 0. Furthermore, the ordinary Bühlmann
estimators of Example 20.31 are recovered with = 1 and = . Finally, as may
be seen from Example 20.39, these estimators are essentially maximum likelihood
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estimators in the case where | and are both normally distributed, and thus
the estimators have good statistical properties.
There is one problem with the use of the formulas just developed. In the past, the

data from the th policyholder was collected on an exposure of . Total losses on
all policyholders was =

P
=1

¯ . If we had charged the credibility premium
as previously given, the total premium would have been

=
X

=1

[ �ˆ ¯ + (1 �ˆ )�ˆ]

=
X

=1

(1 �ˆ )(�ˆ ¯ ) +
X

=1

¯

=
X

=1

�ˆ

+ �ˆ
(�ˆ ¯ ) +

X

=1

¯

It is often desirable for to equal , because any premium increases that
will meet the approval of regulators will be based on the total claim level from
past experience. While credibility adjustments make both practical and theoretical
sense, it is usually a good idea to keep the total unchanged. Thus, we need

0 =
X

=1

�ˆ

+ �ˆ
(�ˆ ¯ )

or

�ˆ
X

=1

�ˆ =
X

=1

�ˆ ¯

or

�ˆ =

P
=1
�ˆ ¯

P
=1
�ˆ

(20.77)

That is, rather than using (20.70) to compute �ˆ, use a credibility-weighted average
of the individual sample means. Either method provides an unbiased estimator
(given the �ˆ s), but this latter one has the advantage of preserving total claims. It
should be noted that when using (20.76), the value of ¯ from (20.62) should still
be used. It can also be derived by least squares arguments. Finally, from Example
20.33 and noting the form of Var( ¯ ) in (20.75), the weights in (20.77) provide the
smallest unconditional variance for �ˆ.

EXAMPLE 20.34

Past data on two group policyholders are available and are given in Table
20.10. Determine the estimated credibility premium to be charged to each
group in year four.

We rst need to determine the average claims per person for each group in
each past year. We have 1 = 2 years experience for group 1 and 2 = 3 for
group 2. It is immaterial which past years�’ data we have for policyholder 1,
so for notational purposes we choose

11 = 50 and 11 =
10,000
50

= 200
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Table 20.10 Data for Example 20.34.

Policyholder Year 1 Year 2 Year 3 Year 4

Total claims 1 �— 10,000 13,000 �—
No. in group �— 50 60 75

Total claims 2 18,000 21,000 17,000 �—
No. in group 100 110 105 90

Similarly,

12 = 60 and 12 =
13,000
60

= 216 67

Then

1 = 11 + 12 = 50 + 60 = 110,

¯
1 =

10,000 + 13,000
110

= 209 09

For policyholder 2,

21 = 100 21 =
18,000
100

= 180

22 = 110 22 =
21,000
110

= 190 91

23 = 105 23 =
17,000
105

= 161 90

Then

2 = 21 + 22 + 23 = 100 + 110 + 105 = 315,

¯
2 =

18,000 + 21,000 + 17,000
315

= 177 78

Now, = 1 + 2 = 110 + 315 = 425. The overall mean is

�ˆ = ¯ =
10,000 + 13,000 + 18,000 + 21,000 + 17,000

425
= 185 88

The alternative estimate (20.77) of cannot be computed until later. Now,

�ˆ =

50(200 209 09)2 + 60(216 67 209 09)2 + 100(180 177 78)2

+110(190 91 177 78)2 + 105(161 90 177 78)2

(2 1) + (3 1)

= 17,837 87

and so

�ˆ =
110(209 09 185 88)2 + 315(177 78 185 88)2 (17,837 87)(1)

425 (1102 + 3152) 425

= 380 76
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Then �ˆ = �ˆ �ˆ = 46 85. The estimated credibility factors for the two policy-
holders are

�ˆ
1 =

110

110 + 46 85
= 0 70 �ˆ

2 =
315

315 + 46 85
= 0 87

Per individual, the estimated credibility premium for policyholder 1 is

�ˆ
1
¯
1 + (1 �ˆ

1)�ˆ = (0 70)(209 09) + (0 30)(185 88) = 202 13

and so the total estimated credibility premium for the whole group is

75(202 13) = 15 159 75

For policyholder 2,

�ˆ
2
¯
2 + (1 �ˆ

2)�ˆ = (0 87)(177 78) + (0 13)(185 88) = 178 83

and the total estimated credibility premium is

90(178 83) = 16 094 70

For the alternative estimator we would use

�ˆ =
0 70(209 09) + 0 87(177 78)

0 70 + 0 87
= 191 74

The credibility premiums are

0 70(209 09) + 0 30(191 74) = 203 89, 0 87(177 78) + 0 13(191 74) = 179 59

The total past credibility premium is 110(203 89) + 315(179 59) = 78,998 75.
Except for rounding error, this total matches the actual total losses of 79,000.¤

The preceding analysis assumes that the parameters and are all unknown
and need to be estimated, which may not always be the case. Also, it is assumed
that 1 and 1. If = 1 so that there is only one exposure unit�’s
experience for policyholder , it is di cult to obtain information on the process
variance ( ) and, thus, . Similarly, if = 1, there is only one policyholder, and
it is di cult to obtain information on the variance of the hypothetical means .
In these situations, stronger assumptions are needed, such as knowledge of one or
more of the parameters (e.g., the pure premium or manual rate , discussed in the
following) or parametric assumptions that imply functional relationships between
the parameters (discussed in Sections 20.4.2 and 20.4.3).
To illustrate these ideas, suppose, for example, that the manual rate may be

already known, but estimates of and may be needed. In that case, (20.74) can
still be used to estimate as it is unbiased whether is known or not. (Why ishP

=1 ( )2
i

not unbiased for in this case?) Similarly, (20.76) is

still an unbiased estimator for . However, if is known, an alternative unbiased
estimator for is

�˜ =
X

=1

( ¯ )2 �ˆ
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Table 20.11 Data for Example 20.35.

Year 1 Year 2 Year 3

Total claims 60,000 70,000 �—
No. in group 125 150 200

where �ˆ is given by (20.74). To verify unbiasedness, note that

E(�˜) =
X

=1

[( ¯ )2] (�ˆ)

=
X

=1

Var( ¯ )

=
X

=1

µ
+

¶
=

If there are data on only one policyholder, an approach like this is necessary.
Clearly, (20.73) provides an estimator for based on data from policyholder
alone, and an unbiased estimator for based on data from policyholder alone is

�˜ = ( ¯ )2
�ˆ
= ( ¯ )2

P
=1 ( ¯ )2

( 1)

which is unbiased because E[( ¯ )2] = Var( ¯ ) = + and E(�ˆ ) = .

EXAMPLE 20.35

For a group policyholder, we have the data as given in Table 20.11. If the
manual rate per person is 500 per year, estimate the total credibility premium
for year 3.

In the preceding notation, we have (assuming for notational purposes that
this group is policyholder ) 1 = 125, 1 = 60,000 125 = 480 2 = 150

2 = 70,000 150 = 466 67 = 1 + 2 = 275 and ¯ = (60,000 +
70,000) 275 = 472 73. Then

�ˆ =
125(480 472 73)2 + 150(466 67 472 73)2

2 1
= 12,115 15

and, with = 500 �˜ = (472 73 500)2 (12,115 15 275) = 699 60 We then
estimate by �ˆ �˜ = 17 32. The estimated credibility factor is ( +
�ˆ �˜ ) = 275 (275 + 17 32) = 0 94. The estimated credibility premium per
person is then 0 94(472 73) + 0 06(500) = 474 37, and the estimated total
credibility premium for year three is 200(474 37) = 94,874. ¤

It is instructive to note that estimation of the parameters and based on data
from a single policyholder (as in Example 20.35) is not advised unless there is no
alternative because the estimators �ˆ and �˜ have high variability. In particular,
we are e ectively estimating from one observation ( ¯ ). It is strongly suggested
that an attempt be made to obtain more data.
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Table 20.12 Data for Example 20.36.

No. of claims No. of insureds

0 1,563
1 271
2 32
3 7
4 2

Total 1,875

20.4.2 Semiparametric estimation

In some situations it may be reasonable to assume a parametric form for the con-
ditional distribution | ( | ). The situation at hand may suggest that such
an assumption is reasonable or prior information may imply its appropriateness.
For example, in dealing with numbers of claims, it may be reasonable to assume

that the number of claims for policyholder in year is Poisson distributed
with mean given = . Thus E( | ) = Var( | ) = ,
implying that ( ) = ( ) = , and so = in this case. Rather than use
(20.74) to estimate , we could use �ˆ = ¯ to estimate .

EXAMPLE 20.36

In the past year, the distribution of automobile insurance policyholders by
number of claims is given in Table 20.12. For each policyholder, obtain a
credibility estimate for the number of claims next year based on the past
year�’s experience, assuming a (conditional) Poisson distribution of number of
claims for each policyholder.

Assume that we have = 1,875 policyholders, = 1 year experience on
each, and exposures = 1. For policyholder (where = 1 1,875),
assume that 1| = is Poisson distributed with mean so that ( ) =
( ) = and = . As in Example 20.31,

¯ =
1

1,875

Ã
1 875X

=1

1

!

=
0(1,563) + 1(271) + 2(32) + 3(7) + 4(2)

1,875
= 0 194

Now,

Var( 1) = Var[E( 1| )] + E[Var( 1| )]

= Var[ ( )] + E[ ( )] = + = +
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Thus, an unbiased estimator of + is the sample variance

P1 875
=1

¡
1

¯
¢2

1,874
=

1,563(0 0 194)2 + 271(1 0 194)2

+32(2 0 194)2 + 7(3 0 194)2 + 2(4 0 194)2

1,874
= 0 226

Consequently, �ˆ = 0 226 0 194 = 0 032 and �ˆ = 0 194 0 032 = 6 06, and the
credibility factor is 1 (1+6 06) = 0 14. The estimated credibility premium
for the number of claims for each policyholder is (0 14) 1 + (0 86)(0 194),
where 1 is 0, 1, 2, 3, or 4, depending on the policyholder. ¤

Note in this case that = identically, so that only one year�’s experience per
policyholder is needed.

EXAMPLE 20.37

Suppose we are interested in the probability that an individual in a group
makes a claim (e.g., group life insurance), and the probability is believed to
vary by policyholder. Then could represent the number of the
individuals in year for policyholder who made a claim. Develop a credibility
model for this situation.

If the claim probability is for policyholder , then a reasonable model to
describe this e ect is that is binomially distributed with parameters

and , given = . Then

E( | ) = and Var( | ) = (1 )

and so ( ) = with ( ) = (1 ). Thus

= E( ) = E[( )2]

= Var( ) = E[( )2] 2 = 2 ¤

In these examples there is a functional relationship between the parameters , ,
and that follows from the parametric assumptions made, and this often facilitates
estimation of parameters.

20.4.3 Parametric estimation

If fully parametric assumptions are made with respect to | ( | ) and ( ) for
= 1 and = 1 , then the full battery of parametric estimation tech-
niques is available in addition to the nonparametric methods discussed earlier. In
particular, maximum likelihood estimation is straightforward (at least in principle)
and is now discussed. For policyholder , the joint density of X = ( 1 )
is, by conditioning on , given for = 1 by

X (x ) =

Z Y

=1

| ( | ) ( ) (20.78)
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The likelihood function is given by

=
Y

=1

X (x ) (20.79)

Maximum likelihood estimators of the parameters are then chosen to maximize ,
or, equivalently, ln .

EXAMPLE 20.38

As a simple example, suppose that = for = 1 and = 1. Let
| be Poisson distributed with mean , that is,

| ( | ) =
!

= 0 1

and let be exponentially distributed with mean ,

( ) =
1

0

Determine the mle of .

Equation (20.78) becomes

X (x ) =

Z

0

Y

=1
!

1

=
Y

=1

!

1

1
Z

0

=1 ( +1 )

= (x ) 1

µ
+
1
¶

=1 1 Z

0

( ) 1

( )

where (x ) may be expressed in combinatorial notation as

(x ) =

µ P
=1

1 2 · · ·

¶

= +
1

and

=
X

=1

+ 1

The integral is that of a gamma density with parameters and 1 , and
therefore equals 1, and so

(x ) = (x ) 1

µ
+
1
¶

=1 1
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Substitution into (20.79) yields

( )

µ
+
1
¶

=1 =1

Thus

( ) = ln ( ) = ln +
X

=1

X

=1

ln

µ
+
1
¶
+

where is a constant that does not depend on . Di erentiating yields

0( ) =
+
P

=1

P
=1

+ 1

µ
1
2

¶

The maximum likelihood estimator �ˆ of is found by setting 0(�ˆ) = 0, which
yields

�ˆ
=

+
P

=1

P
=1

�ˆ(�ˆ + 1)

and so

�ˆ + 1 = 1 +
1X

=1

X

=1

or

�ˆ =
1 X

=1

X

=1

But this is the same as the nonparametric estimate obtained in Example 20.31.
An explanation is in order. We have ( ) = by the Poisson assumption,
and so E[ ( )] =E( ), which is the same as was used in the exponential
distribution ( ).
Furthermore, ( ) = as well (by the Poisson assumption), and so
= E[ ( )] = . Also, = Var[ ( )] = Var( ) = 2 by the exponential

assumption for ( ). Thus the mles of and are �ˆ and �ˆ2 by the invariance
of maximum likelihood estimation under a parameter transformation. Simi-
larly, the mles of = , the credibility factor , and the credibility premium
¯ + (1 ) are �ˆ = �ˆ 1 = ¯ 1 �ˆ = ( + �ˆ 1), and �ˆ ¯ + (1 �ˆ)�ˆ,

respectively. We mention also that credibility is exact in this model so that
the Bayesian premium is equal to the credibility premium. ¤

EXAMPLE 20.39

Suppose that = for all and = 1. Assume that | ( ),

| ( | ) = (2 ) 1 2 exp
1

2
( )2

¸

and ( ), so that

( ) = (2 ) 1 2 exp
1

2
( )2

¸



668 CREDIBILITY

Determine the mles of the parameters.

We have ( ) = and ( ) = . Thus, = E[ ( )] = E[ ( )], and
= Var[ ( )], consistent with previous use of , , and . We shall now

derive mles of , and . To begin with, consider ¯ = 1
P

=1 . Con-
ditional on , the are independent ( ) random variables, implying
that ¯ | ( ). Because ( ), it follows from Example 5.5
that unconditionally ¯ ( + ). Hence, the density of ¯ is, with
= + ,

(¯ ) = (2 ) 1 2 exp
1

2
( )2

¸
¯

Now, by conditioning on , we have

(¯ ) =

Z
(2 ) 1 2 exp

h

2
( )2

i

× (2 ) 1 2 exp
1

2
( )2

¸

Ignoring terms not involving , , or , we see that (¯ ) is proportional to

1 2 1 2

Z
exp

2
( )2

1

2
( )2

¸

Now (20.78) yields

(x ) =

Z Y

=1

(2 ) 1 2 exp
1

2
( )2

¸
(2 ) 1 2

× exp
1

2
( )2

¸

which is proportional to

2 1 2

Z
exp

1

2

X

=1

( )2
1

2
( )2

Next, use the identity (20.65) restated as

X

=1

( )2 =
X

=1

( ¯ )2 + (¯ )2

which means that (x ) is proportional to

2 1 2

Z
exp

1

2

X

=1

( ¯ )2 + ( )2
1

2
( )2
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itself proportional to

( 1) 2 exp
1

2

X

=1

( ¯ )2 (¯ )

using the second expression for the density (¯ ) of ¯ given previously. Then
(20.79) yields

( 1) 2 exp
1

2

X

=1

X

=1

( ¯ )2
Y

=1

(¯ )

Let us now take advantage of the invariance of mles under a parameter trans-
formation and use , and = + rather than , and . Then,

1( ) 2( )

where

1( ) =
( 1) 2 exp

1

2

X

=1

X

=1

( ¯ )2

and

2( ) =
Y

=1

(¯ ) =
Y

=1

½
(2 ) 1 2 exp

1

2
( )2

¸¾

The mle �ˆ of can be found by maximizing 1( ) alone and the mle (�ˆ �ˆ) of
( ) can be found by maximizing 2( ). Taking logarithms, we obtain

1( ) =
( 1)

2
ln

1

2

X

=1

X

=1

( ¯ )2

0
1( ) =

( 1)

2
+

1

2 2

X

=1

X

=1

( ¯ )2

and with 0 (�ˆ) = 0 we have

�ˆ =

P
=1

P
=1(

¯ )2

( 1)

Because 2( ) is the usual normal likelihood, the mles are simply the em-
pirical mean and variance. That is,

�ˆ =
1X

=1

¯ =
1 X

=1

X

=1

= ¯

and

�ˆ =
1X

=1

( ¯ ¯)2
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Table 20.13 Data for Exercise 20.67.

Year
Policyholder 1 2 3

1 750 800 650
2 625 600 675
3 900 950 850

Table 20.14 Data for Exercise 20.68.

Year
Policyholder 1 2 3 4

Claims 1 �— 20,000 25,000 �—
No. in group �— 100 120 110

Claims 2 19,000 18,000 17,000 �—
No. in group 90 75 70 60

Claims 3 26,000 30,000 35,000 �—
No. in group 150 175 180 200

But = , and so the mle of is

�ˆ =
1X

=1

( ¯ ¯)2
1

( 1)

X

=1

X

=1

( ¯ )2

It is instructive to note that the mles �ˆ and �ˆ are exactly the nonparametric
unbiased estimators in the Bühlmann model of Example 20.31. The mle �ˆ is
almost the same as the nonparametric unbiased estimator, the only di erence
being the divisor rather than 1 in the rst term. ¤

20.4.4 Notes and References

In this section a simple approach is employed to nd parameter estimates. No
attempt is made to nd optimum estimators in the sense of minimum variance. A
good deal of research has been done on this problem. See Goovaerts and Hoogstad
[56] for more details and further references.

20.4.5 Exercises

20.67 Past claims data on a portfolio of policyholders are given in Table 20.13.
Estimate the Bühlmann credibility premium for each of the three policyholders for
year four.

20.68 Past data on a portfolio of group policyholders are given in Table 20.14.
Estimate the Bühlmann�—Straub credibility premiums to be charged to each group
in year four.

20.69 For the situation in Exercise 20.3, estimate the Bühlmann credibility pre-
mium for the next year for the policyholder.
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Table 20.15 Data for Exercise 20.72.

No. of claims No. of insureds

0 2,500
1 250
2 30
3 5
4 2

Total 2,787

20.70 Consider the Bühlmann model in Example 20.31.

(a) Prove that Var( ) = + .

(b) If { : = 1 and = 1 } are unconditionally independent
for all and , argue that an unbiased estimator of + is

1

1

X

=1

X

=1

( ¯)2.

(c) Prove the algebraic identity

X

=1

X

=1

( ¯)2 =
X

=1

X

=1

( ¯ )2 +
X

=1

( ¯ ¯)2

(d) Show that, conditionally,

E
1

1

X

=1

X

=1

( ¯)2 = ( + )
1

1

(e) Comment on the implications of (b) and (d).

20.71 Suppose that the random variables 1 · · · are independent with

E( ) = and Var( ) = + 2 , = 1 2

Dene = 1 + 2 + · · ·+ and ¯ =
P

=1 . Prove that

E
X

=1

( )2 = ( 1) 2 +
X

=1

Ã
2
!

20.72 The distribution of automobile insurance policyholders by number of claims
is given in Table 20.15.
Assuming a (conditional) Poisson distribution for the number of claims per pol-

icyholder, estimate the Bühlmann credibility premiums for the number of claims
next year.
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20.73 Suppose that, given 1 are independently geometrically distrib-
uted with pf

| ( | ) =
1

1 +

µ

1 +

¶
= 0 1

(a) Show that ( ) = and ( ) = (1 + ).

(b) Prove that = 2.

(c) Rework Exercise 20.72 assuming a (conditional) geometric distribution.

20.74 Suppose that

Pr( = | = ) =
( )

!

and
( ) =

1
0

Write down the equation satised by the mle �ˆ of for Bühlmann�—Straub-type
data.

20.75 (a) Prove the algebraic identity

X

=1

X

=1

( ¯)2 =
X

=1

X

=1

( ¯ )2 +
X

=1

( ¯ ¯)2

(b) Use part (a) and (20.74) to show that (20.76) may be expressed as

�ˆ = 1

"P
=1

P
=1 ( ¯)2

P
=1 1

�ˆ

#

where

=

P
=1

³
1

´

P
=1 1

20.76 (*) A group of 340 insureds in a high-crime area submit the 210 theft claims
in a one-year period as given in Table 20.16. Each insured is assumed to have a
Poisson distribution for the number of thefts, but the mean of such a distribution
may vary from one insured to another. If a particular insured experienced two
claims in the observation period, determine the Bühlmann credibility estimate for
the number of claims for this insured in the next period.

20.77 (*) Three individual policyholders were observed for four years. Policyholder
had claims of 2, 3, 3, and 4. Policyholder had claims of 5, 5, 4, and 6.

Policyholder had claims of 5, 5, 3, and 3. Use nonparametric empirical Bayes
estimation to obtain estimated claim amounts for each policyholder in year ve.

20.78 (*) Two insureds own delivery vans. Insured had 2 vans in year one and
1 claim, 2 vans in year two and 1 claim, and 1 van in year three with 0 claims.
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Table 20.16 Data for Exercise 20.76.

No. of claims No. of insureds

0 200
1 80
2 50
3 10

Insured has no vans in year one, 3 vans in year two and 2 claims, and 2 vans
in year three and 3 claims. The number of claims for insured each year has a
Poisson distribution. Use semiparametric empirical Bayes estimation to obtain the
estimated number of claims for each insured in year four.

20.79 (*) One hundred policies were in force for a ve-year period. Each poli-
cyholder has a Poisson distribution for the number of claims, but the parameters
may vary. During the ve years, 46 policies had 0 claims, 34 had 1 claim, 13 had
2 claims, 5 had 3 claims, and 2 had 4 claims. For a policy with 3 claims in this
period, use semiparametric empirical Bayes estimation to estimate the number of
claims in year six for that policy.
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SIMULATION

21.1 BASICS OF SIMULATION

Simulation has had an on-again, o -again history in actuarial practice. For example,
in the 1970s, aggregate loss calculations were commonly done by simulation because
the analytical methods available at the time were not adequate. However, the
typical simulation often took a full day on the company�’s mainframe computer, a
serious drag on resources. In the 1980s, analytic methods such as Heckman�—Meyers
and the recursive formula were developed and found to be signicantly faster and
more accurate. Today, desktop computers have su cient power to run complex
simulations that allow for the analysis of models not suitable for current analytic
approaches.
In a similar vein, as investment vehicles become more complex, contracts have

interest-sensitive components, and market uctuations seem to be more pronounced,
analysis of future cash ows must be done on a stochastic basis. To accommodate
the complexities of the products and interest rate models, simulation has become
the technique of choice.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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In this chapter we provide some illustrations of how simulation can solve prob-
lems such as those just mentioned. It is not our intention to cover the subject
in great detail, but, rather, to give the reader an idea of how simulation can help.
Study of simulation texts such as Herzog and Lord [67], Ripley [148], and Ross [153]
provide many important additional insights. In addition, simulation can also be an
aid in evaluating some of the statistical techniques covered in earlier chapters. This
use of simulation will be covered here with an emphasis on the bootstrap method.

21.1.1 The simulation approach

The beauty of simulation is that once the model is created, little additional creative
thought is required.1 The entire process can be summarized in the following four
steps, where the goal is to determine values relating to the distribution of a random
variable :

1. Build a model for that depends on random variables , where
their distributions and any dependencies are known.

2. For = 1 generate pseudorandom values and then com-
pute using the model from step 1.

3. The cdf of may be approximated by ( ), the empirical cdf based on the
pseudorandom sample 1 .

4. Compute quantities of interest, such as the mean, variance, percentiles, or
probabilities, using the empirical cdf.

Two questions remain. First, what does it mean to generate a pseudorandom
variable? Consider a random variable with cdf ( ). This is the real random
variable produced by some phenomenon of interest. For example, it may be the
result of the experiment �“collect one automobile bodily injury medical payment at
random and record its value.�”We assume that the cdf is known. For example, it may

be the Pareto cdf, ( ) = 1
³

1 000
1 000+

´3
. Now consider a second random variable,

, resulting from some other process but with the same Pareto distribution. A
random sample from , say 1 , would be impossible to distinguish from
one taken from . That is, given the numbers, we could not tell if they arose
from automobile claims or something else. Thus, instead of learning about by
observing automobile claims, we could learn about it by observing . Obtaining
a random sample from a Pareto distribution is still probably di cult, so we have
not yet accomplished much.
We can make some progress by making a concession. Let us accept as a re-

placement for a random sample from a sequence of numbers 1 , which
is not a random sample at all, but simply a sequence of numbers that may not
be independent, or even random, but was generated by some known process that
is related to the random variable . Such a sequence is called a pseudorandom
sequence because anyone who did not know how the sequence was created could

1This statement is not entirely true. A great deal of creativity may be employed in designing an
e cient simulation. The brute force approach used here will work; it just may take your computer
longer to produce the answer.
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not distinguish it from a random sample from (and, therefore, from ). Such
a sequence is satisfactory for our purposes.
The eld of developing processes for generating pseudorandom sequences of num-

bers has been well developed. One fact that makes it easier to provide such se-
quences is that it is su cient to be able to generate them for the uniform distribu-
tion on the interval (0 1). That is because, if has the uniform(0 1) distribution,
then = 1( ) when the inverse exists will have ( ) as its cdf. There-
fore, we simply obtain uniform pseudorandom numbers 1 and then let

= 1( ). This is called the inversion method of generating random vari-
ates. Specic methods for particular distributions have been developed but are
not discussed here. There is a considerable literature on the best ways to generate
pseudorandom uniform numbers and a variety of tests proposed to evaluate them.
Readers are cautioned to ensure that the method being used is a good one.

EXAMPLE 21.1

Generate 10,000 pseudo-Pareto (with = 3, and = 1,000) variates and
verify that they are indistinguishable from real Pareto observations.

The pseudouniform values were obtained using the built-in generator sup-
plied with a commercial programming language. The pseudo-Pareto values
are calculated from

= 1

µ
1,000

1,000 +

¶3

That is,
= 1,000[(1 ) 1 3 1]

So, for example, if the rst value generated is 1 = 0 54246, we have 1 =
297 75. This calculation was repeated 10,000 times. The results are displayed
in Table 21.1, where a chi-square goodness-of-t test is conducted. The ex-
pected counts are calculated using the Pareto distribution with = 3 and
= 1,000. Because the parameters are known, there are nine degrees of free-

dom. At a signicance level of 5%, the critical value is 16.92, and we conclude
that the pseudorandom sample mimics a random sample from this Pareto
distribution. ¤

When the distribution function of is continuous and strictly increasing, the
equation = ( ) will have a unique value of for any given value of and
a unique value of for any given . In that case, the inversion method reduces
to solving the equation for . In other cases, some care must be taken. Suppose
( ) has a jump at = so that ( ) = and ( ) = . If the uniform

number is such that , the equation has no solution. In that situation
choose as the simulated value.

EXAMPLE 21.2

Suppose

( ) =

½
0 5 0 1
0 5 + 0 25 1 2
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Table 21.1 Chi-square test of simulated Pareto observations.

Interval Observed Expected Chi square

0�—100 2,519 2,486.85 0.42
100�—250 2,348 2,393.15 0.85
250�—500 2,196 2,157.04 0.70
500�—750 1,071 1,097.07 0.62
750�—1,000 635 615.89 0.59
1,000�—1,500 589 610.00 0.72
1,500�—2,500 409 406.76 0.01
2,500�—5,000 192 186.94 0.14
5,000�—10,000 36 38.78 0.20
10,000�— 5 7.51 0.84

Total 10,000 10,000 5.10

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2

x

u=
F(

x)

Figure 21.1 Inversion of the distribution function for Example 21.2.

Determine the simulated values of resulting from the uniform numbers 0.3,
0.6, and 0.9.

In the rst interval, the distribution function ranges from 0 to 0.5 and
in the second interval, from 0.75 to 1. With = 0 3, we are in the rst
interval, and the equation to solve is 0 3 = 0 5 , producing = 0 6. With
the distribution function jumping from 0.5 to 0.75 at = 1, any in that
interval will lead to a simulated value of 1, so for = 0 6, the simulated value
is = 1. Note that Pr(0 5 0 75) = 0 25, so the value of = 1 will be
simulated 25% of the time, matching its true probability. Finally, with 0.9 in
the second interval, solve 0 9 = 0 5+0 25 for = 1 6. Figure 21.1 illustrates
this process, showing how drawing vertical bars on the function makes the
inversion obvious. ¤
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It is also possible for the distribution function to be constant over some interval.
In that case, the equation = ( ) will have multiple solutions for if corre-
sponds to the the constant value of ( ) over that interval. Our convention (to
be justied shortly) is to choose the largest possible value in the interval.

EXAMPLE 21.3

Suppose

( ) =
0 5 0 1
0 5 1 2
0 5 0 5 2 3

Determine the simulated values of resulting from the uniform numbers 0.3,
0.5, and 0.9.

The rst interval covers values of the distribution function from 0 to 0.5
and the nal interval covers the range 0.5 to 1. For = 0 3, use the rst
interval and solve 0 3 = 0 5 for = 0 6. The function is constant at 0.5 from
1 to 2, and so for = 0 5, choose the largest value, = 2. For = 0 9, use
the nal interval and solve 0 9 = 0 5 0 5 for = 2 8. ¤

Discrete distributions have both features. The distribution function has jumps
at the possible values of the variable and is constant in between.

EXAMPLE 21.4

Simulate values from a binomial distribution with = 4 and = 0 5 using
the uniform numbers 0.3, 0.6875, and 0.95.

The distribution function is

( ) =

0 0
0 0625 0 1
0 3125 1 2
0 6875 2 3
0 9375 3 4
1 4

For = 0 3, the function is jumping at = 1. For = 0 6875, the function is
constant from 2 to 3 (as the limiting value of the interval), and so = 3. For
= 0 95, the function has a jump at = 4. It is usually easier to present the

simulation algorithm using a table based on the distribution function. Then
a simple table lookup function (such as the VLOOKUP function in Excel R°)
can be used to obtain simulated values. For this example, Table 21.2 has the
values.

Many random number generators can produce a value of 0 but not a value of 1
(though some produce neither one). This is the motivation for choosing the largest
value in an interval where the cdf is constant. ¤
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Table 21.2 Simulation lookup for Example 21.4.

For in this range, the simulated value is

0 0 0625, 0
0 0625 0 3125, 1
0 3125 0 6875, 2
0 6875 0 9375, 3
0 9375 1, 4

The second question is: What value of should be used? We know that any
consistent estimator will be arbitrarily close to the true value with high probabil-
ity as the sample size is increased. In particular, empirical estimators have this
attribute. With a little e ort we should be able to determine the value of that
will get us as close as we want with a specied probability. Often, the central limit
theorem will help, as in the following example.

EXAMPLE 21.5

(Example 21.1 continued) Use simulation to estimate the mean, (1,000),
and 0 9, the 90th percentile of the Pareto distribution with = 3 and =
1,000. In each case, stop the simulations when you are 95% condent that
the answer is within ±1% of the true value.

In this example we know the values. Here, = 500, (1,000) = 0 875,
and 0 9 = 1,154 43. For instructional purposes, we behave as if we do not
know these values.
The empirical estimate of is ¯. The central limit theorem tells us that

for a sample of size ,

0 95 = Pr(0 99 ¯ 1 01 )

= Pr

µ
0 01 ¯ 0 01

¶

= Pr

µ
0 01 0 01

¶

where has the standard normal distribution. Our goal is achieved when

0 01
= 1 96 (21.1)

which means = 38,416( )2. Because we do not know the values of
and , we estimate them with the sample standard deviation and mean. The
estimates improve with , so our stopping rule is to cease simulating when

38,416 2

¯2

For a particular simulation conducted by the authors, the criterion was met
when = 106,934, at which point ¯ = 501 15, a relative error of 0 23%, well
within our goal.
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We now turn to the estimation of (1,000). The empirical estimator is
the sample proportion at or below 1,000, say, , where is the num-
ber at or below 1,000 after simulations. The central limit theorem tells
us that is approximately normal with mean (1,000) and variance
(1,000)[1 (1,000)] . Using as an estimate of (1,000) and

arguing as prevously yields

38,416
( )(1 )

( )2

= 38,416

For our simulation, the criterion was met at = 5,548, at which point the
estimate was 4,848 5,548 = 0 87383, which has a relative error of 0 13%.
Finally, for 0 9, begin with

0 95 = Pr( 0 9 )

where 1 2 · · · are the order statistics from the simulated sample;
is the greatest integer less than or equal to 0 9 + 0 5 1 96

p
0 9(0 1) ;

is the smallest integer greater than or equal to 0 9 + 0 5 + 1 96
p
0 9(0 1) ;

and the process terminates when both

�ˆ0 9 0 01�ˆ0 9

and
�ˆ0 9 0 01�ˆ0 9

For the example, this occurred when = 126,364, and the estimated 90th
percentile is 1,153 97, with a relative error of 0 04%. ¤

21.1.2 Exercises

21.1 Use the inversion method to simulate three values from the Poisson(3) distri-
bution. Use 0.1247, 0.9321, and 0.6873 for the uniform random numbers.

21.2 Use the uniform random numbers 0.2, 0.5, and 0.7 to simulate values from

( ) =
0 25 0 2
0 1 4 9
0 otherwise.

21.3 Demonstrate that 0 95 = Pr( 0 9 ) for and as dened in
Example 21.5.

21.4 You are simulating observations from an exponential distribution with =
100. How many simulations are needed to be 90% certain of being within 2% of
each of the mean and the probability of being below 200? Conduct the required
number of simulations and note if the 2% goal has been reached.

21.5 Simulate 1,000 observations from a gamma distribution with = 2 and =
500. Perform the chi-square goodness-of-t and Kolmogorov�—Smirnov tests to see
if the simulated values were actually from that distribution.
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21.6 (*) To estimate E( ), you have simulated ve observations from the random
variable . The values are 1, 2, 3, 4, and 5. Your goal is to have the standard
deviation of the estimate of E( ) be less than 0.05. Estimate the total number of
simulations needed.

21.2 EXAMPLES OF SIMULATION IN ACTUARIAL MODELING

21.2.1 Aggregate loss calculations

The analytic methods presented in Chapter 9 have two features in common. First,
they are exact up to the level of the approximation introduced. For recursion
and the FFT, the approximation involves replacing the true severity distribution
with an arithmetized approximation. For the Heckman�—Meyers inversion method,
a histogram approximation is required. Furthermore, Heckman�—Meyers requires
a numerical integration. In each case, the errors can be reduced to near zero by
increasing the number of points used. Second, both recursion and inversion assume
that aggregate claims can be written as = 1 + · · · + with 1 2

independent and the s identically distributed.
There is no need to be concerned about the rst feature because the approxima-

tion error can be made as small as desired. However, the second restriction may
prevent the model from reecting reality. In this section we indicate some common
ways in which the independence or identical distribution assumptions may fail to
hold and then demonstrate how simulation can be used to obtain numerical values
of the distribution of aggregate losses. When the s are i.i.d., it does not matter
how we go about labeling the losses�–that is, which loss is called 1, which one 2,
and so on. With the assumption removed, the labels become important. Because
is the aggregate loss for one year, time is a factor. One way of identifying the

losses is to let 1 be the rst loss, 2 be the second loss, and so on. Then let be
the random variable that records the time of the th loss. Without going into much
detail about the claims-paying process, we do want to note that may be the
time at which the loss occurred, the time it was reported, or the time payment was
made. In the latter two cases, it may be that 1, which occurs when the report
of the loss or the payment of the claim takes place at a time subsequent to the end
of the time period of the coverage, usually one year. If the timing of the losses is
important, we will need to know the joint distribution of ( 1 2 1 2 ).

21.2.2 Examples of lack of independence or identical distributions

There are two common ways to have the assumption fail to hold. One is through
accounting for time (and, in particular, the time value of money) and the other is
through coverage modications. The latter may have a time factor as well. The
following examples provide some illustrations.

EXAMPLE 21.6

(Time value of loss payments) Suppose the quantity of interest, , is the
present value of all payments made in respect of a policy issued today and
covering loss events that occur in the next year. Develop a model for .
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Let be the time of the payment of the th loss. While records the
time of the payment, the subscripts are selected in order of the loss events.
Let = + where is the time of the event and is the time
from occurrence to payment. Assume they are independent and the s are
independent of each other. Let the time between events, 1 (where
0 = 0), be i.i.d. with an exponential distribution with mean 0.2 years.
Let be the amount paid at time on the loss that occurred at time
. Assume that and are independent (the amount of the claim does

not depend on when in the year it occurred) but and are positively
correlated (a specic distributional model is specied when the example is
continued). This assumption is reasonable because the more expensive losses
may take longer to settle.
Finally, let be a random variable that represents the value, which, if

invested today, will accumulate to 1 in years. It is independent of all ,
, and . But clearly, for 6= , and are dependent.
We then have

=
X

=1

where = max 1{ }. ¤

EXAMPLE 21.7

(Out-of-pocket maximum) Suppose there is a deductible, , on individual
losses. However, in the course of a year, the policyholder will pay no more
than . Develop a model for the insurer�’s aggregate payments.

Let be the amount of the th loss. Here the assignment of does not
matter. Let = be the amount paid by the policyholder due to the
deductible and let = be the amount paid by the insurer. Then
= 1 + · · · + is the total amount paid by the policyholder prior to

imposing the out-of-pocket maximum. Then the amount actually paid by the
policyholder is = . Let = 1 + · · ·+ be the total losses, and
then the aggregate amount paid by the insurer is = . Note that
the distributions of and are based on i.i.d. severity distributions. The
analytic methods described earlier can be used to obtain their distributions.
But because they are dependent, their individual distributions cannot be com-
bined to produce the distribution of . There is also no way to write as a
random sum of i.i.d. variables. At the beginning of the year, it appears that
will be the sum of i.i.d. s, but at some point the s may be replaced by
s as the out-of-pocket maximum is reached. ¤

21.2.3 Simulation analysis of the two examples

We now complete the two examples using the simulation approach. The models
have been selected arbitrarily, but we should assume they were determined by a
careful estimation process using the techniques presented earlier in this text.



686 SIMULATION

EXAMPLE 21.8

(Example 21.6 continued) The model is completed with the following spec-
ications. The amount of a payment ( ) has the Pareto distribution with
parameters = 3 and = 1,000. The time from the occurrence of a claim to
its payment ( ) has a Weibull distribution with = 1 5 and = ln( ) 6.
This models the dependence by having the scale parameter depend on the
size of the loss. The discount factor is modeled by assuming that, for ,
[ln( )] ( ) has a normal distribution with mean 0 06 and variance
0 0004( ). We do not need to specify a model for the number of losses.
Instead, we use the model given earlier for the time between losses. Use
simulation to determine the expected present value of aggregate payments.

The mechanics of a single simulation is presented in detail to indicate how
the process is to be done. Begin by generating i.i.d. exponential interloss times
until their sum exceeds 1 (in order to obtain one year�’s worth of claims). The
individual variates are generated from pseudo-uniform numbers using

= 1 5

which yields
= 0 2 ln(1 )

For the rst simulation, the uniform pseudorandom numbers and the corre-
sponding values are (0 25373, 0 0585), (0 46750 0 1260), (0 23709 0 0541),
(0 75780 0 2836), and (0 96642 0 6788). At this point, the simulated s total
1 2010, and therefore there are four loss events, occurring at times 1 = 0 0585,
2 = 0 1845, 3 = 0 2386, and 4 = 0 5222.
The four loss amounts are found from inverting the Pareto cdf. That is,

= 1,000[(1 ) 1 3 1]

The four pseudouniform numbers are 0 71786, 0 47779, 0 61084, and 0 68579,
producing the four losses 1 = 524 68, 2 = 241 80, 3 = 369 70, and 4 =
470 93.
The times from occurrence to payment have a Weibull distribution. The

equation to solve is
= 1 [6 ln( )]1 5

where is the loss. Solving for the lag time yields

= 1
6 ln( )[ ln(1 )]2 3

For the rst lag, we have = 0 23376 and so

1 =
1
6 ln(524 68)[ ln 0 76624]2 3 = 0 4320

Similarly, with the next three values of being 0 85799, 0 12951, and 0 72085,
we have 2 = 1 4286, 3 = 0 2640, and 4 = 1 2068. The payment times of
the four losses are the sum of and , namely 1 = 0 4905, 2 = 1 6131,
3 = 0 5026, and 4 = 1 7290.
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Finally, we generate the discount factors. They must be generated in order
of increasing so we rst obtain 0 4905. We begin with a normal variate with
mean 0.06 and variance 0 0004(0 4905) = 0 0001962. Using inversion, the
simulated value is 0 0592 = [ln(1 0 4905)] 0 4905, and so 0 4905 = 0 9714.
Note that for the rst value we have = 0 and 0 = 1. For the second
value, we require a normal variate with mean 0.06 and variance (0 5026
0 4905)(0 0004) = 0 00000484. The simulated value is

0 0604 =
ln(0 9714 0 5026)

0 0121
for 0 5026 = 0 9707

For the next two payments, we have

0 0768 =
ln(0 9707 1 6131)

1 1105
for 1 6131 = 0 8913,

0 0628 =
ln(0 8913 1 7290)

0 1159
for 1 7290 = 0 8848

We are now ready to determine the rst simulated value of the aggregate
present value. It is

1 = 524 68(0 9714) + 241 80(0 8913) + 369 70(0 9707) + 470 93(0 8848)

= 1,500 74

The process was then repeated until there was 95% condence that the esti-
mated mean was within 1% of the true mean. This took 26,944 simulations,
producing a sample mean of 2,299.16. ¤

EXAMPLE 21.9

(Example 21.7 continued) For this example, set the deductible at 250 and
the out-of-pocket maximum at = 1,000. Assume that the number of losses
has the negative binomial distribution with = 3 and = 2. Further assume
that individual losses have the Weibull distribution with = 2 and = 600.
Determine the 95th percentile of the insurer�’s losses.

To simulate the negative binomial claim counts, we require the cdf of the
negative binomial distribution. There is no closed form that does not involve
a summation operator. However, a table can be constructed, and one appears
here as Table 21.3. The number of losses for the year is generated by obtaining
one pseudo-uniform value�–for example, = 0 47515�–and then determining
the smallest entry in the table that is larger than 0.47515. The simulated
value appears to its left. In this case, our rst simulation produced = 5
losses.
The amounts of the ve losses are obtained from the Weibull distribution.

Inversion of the cdf produces

= 600[ ln(1 )]1 2

The ve simulated values are 544 04, 453 67, 217 87, 681 98, and 449 83. The
total loss is 2,347 39. The policyholder pays 250 00+250 00+217 87+250 00+
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Table 21.3 Negative binomial cumulative probabilities.

( ) ( )

0 0.03704 8 0.76589
1 0.11111 9 0.81888
2 0.20988 10 0.86127
3 0.31962 11 0.89467
4 0.42936 12 0.92064
5 0.53178 13 0.94062
6 0.62282 14 0.95585
7 0.70086 15 0.96735

250 00 = 1,217 87, but the out-of-pocket maximum limits the payment to
1,000. Thus our rst simulated value has the insurer paying 1,347 39.
The goal was set to be 95% condent that the estimated 95th percentile

would be within 2% of the true value. Achieving this goal requires 11,476
simulations, producing an estimated 95th percentile of 6,668.18. ¤

21.2.4 Simulating copulas

Examples are given only for the Gaussian and copulas. For either case, the rst
step is to simulate standard normal values with a given correlation structure. Given
a correlation matrix and dimension , the ve steps are as follows.

1. Generate independent uniform pseudorandom values, 1 .

2. Turn them into independent standard normal pseudorandom values =
1( ) = 1 where ( ) is the standard normal cdf.2

3. Arrange these values into a column vector z = ( 1 ).

4. Factor the correlation matrix as = LL , where is a lower triangular
matrix.

5. Calculate the vector x = Lz.

Then, x will have the desired multivariate normal distribution. The factorization
of can be done via the Choleski decomposition. If represents the elements of
and the elements of L, the algorithm is (observing that = 1 for all ) and

beginning with 11 = 1,

For = 2

1 = 1

=
( 1 1 + · · ·+ 1 1)

= 2 1

= [1 ( 21 + · · ·
2

1)]
1 2

2There are better ways than inversion to simulate standard normal variables. They are not
presented here, but can found in all standard simulation texts.
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EXAMPLE 21.10

Simulate one observation from a multivariate standard normal distribution
with correlation matrix

=
1 0 5 0 2
0 5 1 0 4
0 2 0 4 1

The factorization is

11 = 1

21 = 21 = 0 5

22 = (1 2
21)

1 2 = 0 8660

31 = 31 = 0 2

32 = 32 31 21

22
= 0 3464

33 = (1 2
31

2
32)

1 2 = 0 9165

which is

L =
1 0 0
0 5 0 8660 0
0 2 0 3464 0 9165

Let the three uniform pseudorandom numbers be

u = (0 5319 0 3622 0 7695)

The corresponding independent standard normal values are

z = (0 0800 0 3526 0 7372)

The corresponding correlated standard normal values are, after multiplying z
by ,

x = (0 0800 0 2654 0 5695) ¤

21.2.4.1 Simulating from the Gaussian copula Suppose the multivariate normal
copula has correlation matrix and the marginal distributions are 1( 1) ( ).
Simulation from this model proceeds according to the following three steps:

1. Generate a vector of observations x from the multivariate normal distribution
with correlation matrix .

2. Transform x into a vector of correlated uniform variables v by = ( ).

3. Complete the process by giving each value the correct marginal distribution
by creating the vector y by = 1( ).
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EXAMPLE 21.11

Continue the previous example by specifying the three marginal distributions
as being exponential with means 500, 1,000, and 2,500 respectively.

Using the standard normal cdf gives v = (0 5319 0 3954 0 7155). The
inversion method formula for the exponential distribution is = ln(1
), where is the mean. The simulated values for this copula are y =
(380 503 3,143). ¤

21.2.4.2 Simulating from the t copula In addition to the steps used for simulating
from the Gaussian copula, the copula simulation requires one more step. Let
be the degrees of freedom for this copula (note that it need not be an integer).
Simulate a single observation from the gamma distribution with = 2 and = 2
(note that this is a chi-square variable with degrees of freedom). Let be this
simulated value. Then, between steps 1 and 2 for the Gaussian copula, divide each
element of x by ( )1 2 (note that this extra step creates a variable with degrees
of freedom). Because each term is being divided by the same value, the correlation
structure is not changed. However, viewed as multiplication, the values are being
multiplied by an inverse transformed gamma random variable, which has a heavy
tail. Multiplication by a heavy-tailed variable means that, in the simulation, the
occasional very large value will lead to a vector of large simulated values (which
will not happen with a light-tailed distribution). As a result, the simulated values
will show the tail dependence that is characteristic of the copula.

EXAMPLE 21.12

Repeat the previous example, this time using a copula with = 4.

Let the uniform number for the gamma value be 0.1283. For a gamma vari-
able with = 2 and = 2, a simulated value of 1.2386 is produced. Dividing
each x-value from the previous simulation by the square root of 1 2386 4
gives the new vector as (0 1438 0 4769 1 0234). Applying the normal cdf
gives (0 5572 0 3167 0 8469), and applying the inverse cdf of the exponential
distributions gives the simulated vector (407 381 4,692). ¤

21.2.5 Using simulation to determine risk measures

If the distribution of interest is too complex to admit an analytic form, simulation
may be used to estimate risk measures such as VaR and TVaR. Because VaR is
simply a specic percentile of the distribution, this case has already been discussed.
Estimating TVaR is also fairly straightforward. Suppose 1 2 · · · is an
ordered simulated sample from the random variable of interest. If the perctile being
used is , let = [ ] + 1, where [·] indicates the greatest integer function. Then
the two estimators are

VâR ( ) = and TVâR ( ) =
1

+ 1

X

=

We know that the variance of a sample mean can be estimated by the sample
variance divided by the sample size. While TVâR ( ) is a sample mean, this
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estimator will underestimate the true value. This is because the observations being
averaged are dependent and as a result there is more variability than is reected
by the sample variance. Let the sample variance be

2 =
1 X

=

[ TVâR ( )]2

Manistre and Hancock [112] show that an asymptotically unbiased estimator of the
variance of the estimator of TVaR is

Vâr [TVâR ( )] =
2 + [TVâR ( ) VâR ( )]2

+ 1

EXAMPLE 21.13

Consider a Pareto distribution with = 2 and = 100. Use 10,000 simula-
tions to estimate the risk measures with = 0 95.

The true values are VaR0 95( ) = 347 21 and TVaR0 95( ) = 794 42.
For the simulation, = [9,500] + 1 = 9,501. The simulation produced
VâR0 95( ) = 9501 = 363 09 and TVâR0 95( ) = 1

500

P10 000
=9 501 = 816 16.

The variance of the estimator of TVaR is estimated to be 2,935.36. A 95%
condence interval for the true value is 816 16± 106 19 and the true value is
well within this condence interval. ¤

21.2.6 Statistical analyses

Simulation can help in a variety of ways when analyzing data. Two are discussed
here, both of which have to do with evaluating a statistical procedure. The rst
is the determination of the -value (or critical value) for a hypothesis test. The
second is to evaluate the MSE of an estimator. We begin with the hypothesis
testing situation.

EXAMPLE 21.14

It is conjectured that losses have a lognormal distribution. One hundred
observations have been collected and the Kolmogorov�—Smirnov test statistic
is 0.06272. Determine the -value for this test, rst with the null hypothesis
being that the distribution is lognormal with = 7 and = 1 and then with
the parameters unspecied.

For the null hypothesis with each parameter specied, one simulation in-
volves rst simulating 100 lognormal observations from the specied lognormal
distribution. Then the Kolmogorov�—Smirnov test statistic is calculated. The
estimated -value is the proportion of simulations for which the test statistic
exceeds 0.06272. After 1,000 simulations, the estimate of the -value is 0.836.
With the parameters unspecied, it is not clear which lognormal distribu-

tion should be used. It turned out that for the observations actually collected
�ˆ = 7 2201 and �ˆ = 0 80893. These values were used as the basis for each
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simulation. The only change is that after the simulated observations have
been obtained, the results are compared to a lognormal distribution with pa-
rameters estimated (by maximum likelihood) from the simulated data set. For
1,000 simulations, the test of 0.06272 was exceeded 491 times, for an estimated
-value of 0.491.
As indicated in Section 16.4.1, not specifying the parameters makes a con-

siderable di erence in the interpretation of the test statistic. ¤

When testing hypotheses, -values and signicance levels are calculated assuming
the null hypothesis to be true. In other situations, there is no known population
distribution from which to simulate. For such situations, a technique called the
bootstrap (see [37] for thorough coverage of this subject) may help. The key is to
use the empirical distribution from the data as the population from which to simu-
late values. Theoretical arguments show that the bootstrap estimate will converge
asymptotically to the true value. This result is reasonable because as the sample
size increases, the empirical distribution becomes more and more like the true dis-
tribution. The following example shows how the bootstrap works and also indicates
that, at least in the case illustrated, it gives a reasonable answer.

EXAMPLE 21.15

A sample (with replacement) of size 3 from a population produced the values
2, 3, and 7. Determine the bootstrap estimate of the MSE of the sample mean
as an estimator of the population mean.

The bootstrap approach assumes that the population places probability
1 3 on each of the three values 2, 3, and 7. The mean of this distribution is
4. From this population, there are 27 samples of size 3 that might be drawn.
Sample means can be 2 (sample values 2 2 2, with probability 1 27), 7 3
(sample values 2 2 3, 2 3 2, and 3 2 2, with probability 3 27), and so on, up
to 7 with probability 1 27. The MSE is

(2 4)2
µ
1

27

¶
+

µ
7

3
4

¶2µ
3

27

¶
+ · · ·+ (7 4)2

µ
1

27

¶
=
14

9
.

The usual approach is to note that the sample mean is unbiased and therefore

MSE( ¯) = Var( ¯) = 2

With the variance unknown, a reasonable choice is to use the sample variance.
With a denominator of , for this example, the estimated MSE is

1
3 [(2 4)2 + (3 4)2 + (7 4)2]

3
=
14

9
,

the same as the bootstrap estimate. ¤

In many situations, determination of the MSE is not so easy, and then the
bootstrap becomes an extremely useful tool. While simulation was not needed for
the example, note that an original sample size of 3 led to 27 possible bootstrap
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values. Once the sample size gets beyond 6, it becomes impractical to enumerate
all the cases. In that case, simulating observations from the empirical distribution
becomes the only feasible choice.

EXAMPLE 21.16

In Example 14.2, an empirical model for time to death was obtained. The
empirical probabilities are 0.0333, 0.0744, 0.0343, 0.0660, 0.0344, and 0.0361
that death is at times 0.8, 2.9, 3.1, 4.0, 4.1, and 4.8, respectively. The remain-
ing 0.7215 probability is that the person will be alive ve years from now. The
expected present value for a ve-year term insurance policy that pays 1,000
at the moment of death is estimated as

1,000(0 0333 0 8 + · · ·+ 0 0361 4 8) = 223 01

where = 1 07 1. Simulate 10,000 bootstrap samples to estimate the MSE
of this estimator.

A method for conducting a bootstrap simulation with the Kaplan�—Meier
estimate is given by Efron [35]. Rather than simulating from the empirical
distribution (as given by the Kaplan�—Meier estimate), simulate from the orig-
inal sample. In this example, that means assigning probability 1

40 to each of
the original observations. Then each bootstrap observation is a left-truncation
point along with the accompanying censored or uncensored value. After 40
such observations are recorded, the Kaplan�—Meier estimate is constructed
from the bootstrap sample and then the quantity of interest computed. This
is relatively easy because the bootstrap estimate places probability only at the
six original points. Ten thousand simulations were quickly done. The mean
was 222.05 and the MSE was 4,119. Efron also notes that the bootstrap esti-
mate of the variance of �ˆ( ) is asymptotically equal to Greenwood�’s estimate,
thus giving credence to both methods. ¤

21.2.7 Exercises

21.7 (*) Insurance for a city�’s snow removal costs covers four winter months. There
is a deductible of 10,000 per month. Monthly costs are independent and normally
distributed with = 15,000 and = 2,000. Monthly costs are simulated using
the inversion method. For one simulation of a year�’s payments, the four uniform
pseudorandom numbers are 0.5398, 0.1151, 0.0013, and 0.7881. Calculate the in-
surer�’s cost for this simulated year.

21.8 (*) After one period, the price of a stock is times its price at the beginning of
the period, where has a lognormal distribution with = 0 01 and = 0 02. The
price at time 0 is 100. The inversion method is used to simulate price movements.
The pseudo-uniform random numbers are 0.1587 and 0.9332 for periods 1 and 2.
Determine the simulated prices at the end of each of the rst two periods.

21.9 (*) You have insured 100 people, each age 70. Each person has probability
0.03318 of dying in the next year and the deaths are independent. Therefore, the
number of deaths has a binomial distribution with = 100 and = 0 03318. Use
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the inversion method to determine the simulated number of deaths in the next year
based on = 0 18.

21.10 (*) For a surplus process, claims occur according to a Poisson process at the
rate of two per year. Thus the time between claims has the exponential distribution
with = 2. Claims have a Pareto distribution with = 2 and = 1,000. The
initial surplus is 2,000 and premiums are collected at a rate of 2,200. Ruin occurs
any time the surplus is negative, at which time no further premiums are collected
or claims paid. All simulations are done with the inversion method. For the time
between claims, use 0.83, 0.54, 0.48, and 0.14 as the pseudorandom numbers. For
claim amounts, use 0.89, 0.36, 0.70, and 0.61. Determine the surplus at time 1.

21.11 (*) You are given a random sample of size 2 from some distribution. The
values are 1 and 3. You plan to estimate the population variance with the estimator
[( 1

¯)2 + ( 2
¯)2] 2. Determine the bootstrap estimate of the MSE of this

estimator.

21.12 A sample of three items from the uniform(0,10) distribution produced the
following values: 2, 4, and 7.

(a) Calculate the Kolmogorov�—Smirnov test statistic for the null hypothesis
that the data came from the uniform(0,10) distribution.

(b) Simulate 10,000 samples of size 3 from the uniform(0,10) distribution and
compute the Kolmogorov�—Smirnov test statistic for each. The proportion
of times the value equals or exceeds your answer to part (a) is an estimate
of the -value.

21.13 A sample of three items from the uniform(0 ) distribution produced the
following values: 2, 4, and 7. Consider the estimator of ,

�ˆ = 4
3 max( 1 2 3)

From Example 12.10 the MSE of this unbiased estimator was shown to be 2 15.

(a) Estimate the MSE by replacing with its estimate.

(b) Obtain the bootstrap estimate of the variance of the estimator. (It is not
possible to use the bootstrap to estimate the MSE because you cannot
obtain the true value of from the empirical distribution, but you can
obtain the expected value of the estimator.)

21.14 Losses on an insurance contract have the Pareto distribution with para-
meters = 3 and = 10,000. Expenses to process claims have an exponential
distribution with mean 400. The dependence structure is modeled with a Gaussian
copula with correlation 12 = 0 6. Losses have a deductible of 500. When the de-
ductible is not met, there are no processing expenses. Also, when there is a payment
in excess of 10,000, a reinsurer pays the excess. In addition, the primary insurer and
reinsurer split the processing expenses in proportion to their share of the payments
to the insured. Use the uniform random pairs (0 983 0 453) and (0 234 0 529),
where the rst number simulates the loss and the second the expense, to simulate
the results of two loss events. Calculate the total amounts of these losses paid by
the insured, the primary insurer, and the reinsurer.
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21.15 Repeat Exercise 21.14 using a copula with = 6. Use the same uniform
numbers from that exercise to generate the multivariate normal values. Use 0.319
and 0.812 to simulate the scaling factors required for this simulation.

21.16 (*) A dental benet has a deductible of 100 applied to annual charges. The
insured is then reimbursed for 80% of excess charges to a maximum reimbursement
of 1,000. Annual charges have an exponential distribution with mean 1,000. Four
years�’ charges are simulated by the inversion method using the uniform random
numbers 0.30, 0.92, 0.70, and 0.08. Determine the average annual reimbursement
for this simulation.

21.17 (*) Paid losses have a lognormal distribution with parameters = 13 294
and = 0 494. The ratio, , of unpaid losses to paid losses is = 0 801 0 851 0 747 ,
where = 2006 contract purchase year. The inversion method is used with the
uniform random numbers 0.2877, 0.1210, 0.8238, and 0.6179 to simulate paid losses.
Estimate the average unpaid losses for purchase year 2005.

21.18 (*) You plan to use simulation to estimate the mean of a nonnegative random
variable. The population standard deviation is known to be 20% larger than the
population mean. Use the Central Limit Theorem to estimate the smallest number
of trials needed so that you will be at least 95% condent that your simulated mean
is within 5% of the population mean.

21.19 (*) Simulation is used to estimate the value of the cumulative distribution
function at 300 of the exponential distribution with mean 100. Determine the
minimum number of simulations so that there is at least a 99% probability that the
estimate is within 1% of the correct value.

21.20 (*) For a policy that covers both re and wind losses, you are given that a
sample of re losses was 3 and 4 and a sample of wind losses for the same period
was 0 and 3. Fire and wind losses are independent and do not have identical distri-
butions. Based on the sample, you estimate that adding a deductible of 2 per wind
claim will eliminate 20% of total losses. Determine the bootstrap approximation to
the MSE of the estimate.

21.3 EXAMPLES OF SIMULATION IN FINANCE

Actuarial calculations often require either taking present values (as in Example
21.6) or accumulating cash ows with interest. In addition, many products o er
guarantees based on a fund�’s progression. Because the risks presented by investment
earnings are nondiversiable, it is important to reect them when evaluating a block
of business. Because there is considerable interaction between portfolio performance
and insurance payments, it is usually not possible to obtain analytical results. In
addition, the valuation of complex nancial instruments may not be amenable to
analytical results, and, again, simulation may provide a solution. The purpose of
this section is not to debate appropriate models for stock or stock index prices nor
to provide optimal solutions to specic valuation problems. For example, while
the lognormal model is commonly used, there are better models available (e.g., the
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paper by Hardy [61] o ers an alternative model and conducts statistical tests such
as those discussed in this text to demonstrate the superiority of a di erent model).
More detailed applications to using simulation to evaluate derivative securities can
be found in texts such as Hull [78] and McDonald [116]. Also, when evaluating
derivative securities there is an important distinction to be made between the risk-
neutral probability model and the probability model for the underlying security.
That distinction is not made here.

21.3.1 Investment guarantees

The following example presents a simplied case, but is su ciently complex to
illustrate the power of simulation.

EXAMPLE 21.17

An insurance company o ers the following product to individuals age 40.
A single premium of 10,000 is paid (an administrative fee has already been
deducted). In return, there are two possible benets. The 10,000 is invested
in a mutual fund. If the policyholder dies during the next four years, the
fund value is paid to the beneciary. If not, the fund value is returned to
the policyholder at the end of four years. The policyholder may purchase a
guarantee. If the fund has earned less than 5% per year at the time of a
payment, the payment will be based on a 5% per year accumulation rather
than the actual fund value. Determine the 90th percentile of the cost of
providing this guarantee. Assume that the force of mortality is constant at
0.02 and that 50,000 policies will be sold. Also assume that the annual fund
increase has the lognormal distribution with = 0 06 and = 0 02.

For this exposition it is assumed that all values are rounded to the nearest
dollar. Additional digits on the -values were used in the calculations. With
the constant force assumption, the probability of death in any year is =
1 0 02 = 0 0198. A normal distribution can be used to approximate the
number of deaths. A simulation proceeds as follows. For year one, the number
of deaths is normal with mean 990 and variance 970.4. With = 0 8285,
the simulated number of deaths is 1,020. With = 0 1992, the simulated
investment increase is 1.0441 for a fund value of 10,441. The guarantee value
is 10,500 and 59 is paid to 1,020 people. Assuming that the premium for the
guarantee is invested in the same fund, the present value is 1,020(59) 1 0441 =
57,640. The second year starts with 48,980 alive. There are 960 deaths and
the fund earns 1.0859 to increase to 11,338. The guaranteed value is 11,025,
and so nothing is paid. In year three, there are again 960 deaths and the
fund earns 1.0784 to increase to 12,226, greater than the guarantee of 11,576.
Finally, in year four, all 47,060 are paid. The fund is at 13,192, which exceeds
the guarantee of 12,155. So the guarantee was only paid in the rst year and
the simulated cost is 57,640.
Fifty thousand simulations were conducted. In 30,205 of them, there were

no guarantee payments at all. The average payment was 1,356,277 (27.13 per
policy sold) and the 90th percentile was 3,278,795 (65.58 per policy sold). ¤
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This example again illustrates the relative ease of conducting a simulation study.
Of course, real life and real policies are more complex. Suppose the policy in the
example allowed those who didn�’t die to cancel at any time and take the guarantee,
if available. While it might appear at rst that everyone would cancel when the
guarantee is in the money, there will be some who don�’t pay attention, and there
might be others who decide to keep the policy in the hope of an even larger guarantee
payment. This situation would be like an American option, which is discussed next.

21.3.2 Option valuation

We will assume that the progression of values of the underlying security for an
option follows geometric Brownian motion. Let be that value at time . One
consequence of this model is that given and , ln( ) [( ) (
) 2]. As long as we are only interested in the value a nite number of specic
time points, it is easy to simulate the progression of values. In general, there are
two ways to go about simulating events through time. One is to check out the
process at specic, usually equally spaced, time points. That is the approach we
take here. By shrinking the time interval, it is possible to closely approximate the
results of a continuous process. The other approach is to simulate the times at
which key events take place, which was done in the aggregate loss example earlier
in this chapter. This approach is more precise, because any time can become a key
time in the simulation. However, in option valuation simulating times of key events
can be di cult because the key event is the random future time at which something
interesting happens to the security price. That requires more sophistication than
we want to use here.
In all the examples, we assume that the current security price is 0 = 100. We

also want to use the Black�—Scholes framework so that our answers are consistent
for those cases that have formulas. When in this framework, the two key elements
are the risk-free interest rate and the volatility. In all our examples, we will have a
risk-free force of interest of = 0 05 and a volatility of = 0 2. The Black�—Scholes
framework requires that the Brownian motion mean be = 2 2 = 0 03

EXAMPLE 21.18

The rst example is a European call option. In particular, this option will
pay 4 110 if positive at time four. Determine the expected present value
of this option.

Simulation is not needed to solve this problem. We have ln( 4 100)
(0 12 0 16). Then 4 100 is lognormal with the same parameters, and so
4 is lognormal with parameter 0 12 + ln(100) = 4 7252 and = 0 4. The
required value as of time 4, using formulas from Appendix A, is

E[ 4] E[ 4 110] = exp
¡
4 7252 + 1

20 16
¢
1

µ
ln 110 4 7252 0 16

0 4

¶¸

110 1

µ
ln 110 4 7252

0 4

¶¸
= 25 0896

The present value is 25 0896 0 05(4) = 20 5416. This is the same answer as
that given by the Black�—Scholes formula.
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Simulation is easy for this example. First simulate a normal observation
with mean 0.12 and standard deviation 0.4. Exponentiate this value and
multiply by 100 to get the simulated value at time four. Then subtract 110
and, if positive, discount for four years at the risk-free rate. The average after
50,000 simulations is 20.6125. ¤

Now turn to a more di cult problem. Consider an Asian option. Rather than use
the security value at the end of the period, this option looks at the value at several
times during the period and then averages those values. The payo depends on
how that value compares to a set number. For example, consider an Asian version
of the option in the previous example. Suppose now the values are recorded at the
end of each year. Two di erent averages are possible, arithmetic and geometric,
dened as follows:

=
1 + 2 + 3 + 4

4
and

= ( 1 × 2 × 3 × 4)
0 25

The payo at time 4 will be the excess of or over 110. It turns out there is
an exact formula for the geometric version, but not for the arithmetic version.

EXAMPLE 21.19

Use simulation to determine the value of both the arithmetic and geometric
versions of the Asian option as previously described. Compare the geometric
answer to that given by the exact formula.

This time, four values must be simulated. Each increment uses a nor-
mal distribution with mean 0.03 and variance 0.04. For example, if the four
uniform numbers are 0.5007, 0.3751, 0.1299, and 0.9197, then the four nor-
mal values are 0.0303, 0.0337, 0.1953, 0.3107. Then 1 = 100 0 0303 =
103 08, 2 = 103 08 0 0337 = 99 67, 3 = 99 67 1953 = 81 98, and 4 =
81 98 0 3107 = 111 85. The arithmetic mean is 99.15 and there is no payo at
time four. The geometric mean is 98.52 and there is again no payo . With
50,000 simulations, the value of the arithmetic version is 11.46 and of the
geometric version is 10.57. The true value for the geometric version is 10.69.
This example allows us to use the control variate method (see McDonald

[116, p. 630]). The same pseudo-uniform random numbers were used for
both simulations, and therefore errors made in one simulation are likely to
be duplicated in the second simulation. The geometric simulation was low
by 0.12. It is reasonable to assume that the arithmetic answer is also low by
that amount, and so 11.58 is likely to be a better estimate of the value of the
arithmetic option. ¤

While earlier we indicated that only the lognormal model would be used, there
is one alternative we want to present because it is a nice illustration of simulation.
One criticism of the lognormal model is that it does not allow for extreme events,
such as market crashes. Simulations from a lognormal model would never lead to
a 20% drop in one day as happened in October 1987. The adjustment is to add
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a Poisson process to the geometric Brownian motion process. At random times,
according to a Poisson process, the value will jump. The jump itself will be a
multiplicative factor that has a lognormal distribution with its own parameters.
Let and be those parameters and let be the expected number of jumps in
one year.
Let be the multiplicative factor associated with the th jump and let be

the number of jumps as of time . Let be the standard normal variable associated
with the base value and let be the standard normal value associated with the
th jump. The expected percentage jump is = exp( + 0 5 2 ) 1 and if this
is not zero, then the base process must be adjusted to keep the expected return
unchanged. The adjustment is to subtract from .

EXAMPLE 21.20

Return to Example 21.18 but now assume there are 0.2 jumps per year and the
jumps have = 0 01 and = 0 05. Determine the value of the European
option under this model.

Begin with = exp( 0 01 + 0 00125) 1 = 0 00871. The base process
mean is adjusted to = 0 03 (0 2)( 0 00871) = 0 031742. For this option,
the timing of the jumps proceeds as follows. First simulate the number of
jumps using a Poisson distribution with mean 0.8. Then simulate that many
normal values with mean 0.01 and variance 0.0025 and add them up. To
that total add one more normal value with mean 0 031742(4) = 0 126968 and
variance 0.16. The resulting value is 20.88. As expected, it is larger than the
value from the nonjump version. ¤

21.3.3 Exercise

21.21 (*) The price of a non-dividend-paying stock is to be estimated using sim-
ulation. The price at time , , is modeled such that ln( 50) has a normal
distribution with mean 0 105 and variance 0 09 . Calculate the mean of three sim-
ulated prices at time = 2 using the inversion method and the random numbers
0.9830, 0.0384, and 0.7794.





Appendix A

An inventory of continuous distribu-
tions

A.1 INTRODUCTION

Descriptions of the models are given starting in Section A.2. First, a few mathe-
matical preliminaries are presented that indicate how the various quantities can be
computed.
The incomplete gamma function1 is given by

( ; ) =
1

( )

Z

0

1 0 0

with ( ) =

Z

0

1 0

*

1 Some references, such as [3], denote this integral ( ) and dene ( ) = 1 .
Note that this denition does not normalize by dividing by ( ). When using software to evaluate
the incomplete gamma function, be sure to note how it is dened.

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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A useful fact is ( ) = ( 1) ( 1). Also, dene

( ; ) =

Z
1 0

At times we will need this integral for nonpositive values of . Integration by parts
produces the relationship

( ; ) = +
1
( + 1; )

This process can be repeated until the rst argument of is + , a positive
number. Then it can be evaluated from

( + ; ) = ( + )[1 ( + ; )]

However, if is a negative integer or zero, the value of (0; ) is needed. It is

(0; ) =

Z
1 = 1( )

which is called the exponential integral. A series expansion for this integral is

1( ) = 0 57721566490153 ln
X

=1

( 1)

( !)

When is a positive integer, the incomplete gamma function can be evaluated
exactly as given in the following theorem.

Theorem A.1 For integer ,

( ; ) = 1
1X

=0
!

Proof: For = 1, (1; ) =
R
0

= 1 , and so the theorem is true for
this case. The proof is completed by induction. Assume it is true for = 1 .
Then

( + 1; ) =
1

!

Z

0

=
1

!

µ ¯̄
0
+

Z

0

1

¶

=
1

!

¡ ¢
+ ( ; )

=
!

+ 1
1X

=0
!

= 1
X

=0
!

¤
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The incomplete beta function is given by

( ; ) =
( + )

( ) ( )

Z

0

1(1 ) 1 0 0 0 1

where

( ) =
( + )

( ) ( )

is the beta function, and when 0 (but 1 + b c), repeated integration by
parts produces

( ) ( ) ( ; ) = ( + )
1(1 )

+
( 1) 2(1 ) +1

( + 1)
+ · · ·

+
( 1) · · · ( ) 1(1 ) +

( + 1) · · · ( + )

¸

+
( 1) · · · ( 1)

( + 1) · · · ( + )
( 1)

× ( + + 1) ( 1 + + 1; )

where is the smallest integer such that + +1 0. The rst argument must be
positive (that is, 1 0).
Numerical approximations for both the incomplete gamma and the incomplete

beta function are available in many statistical computing packages as well as in
many spreadsheets because they are just the distribution functions of the gamma
and beta distributions. The following approximations are taken from [3]. The
suggestion regarding using di erent formulas for small and large when evaluating
the incomplete gamma function is from [144]. That reference also contains computer
subroutines for evaluating these expressions. In particular, it provides an e ective
way of evaluating continued fractions.
For + 1 use the series expansion

( ; ) =
( )

X

=0
( + 1) · · · ( + )

while for + 1, use the continued-fraction expansion

1 ( ; ) =
( )

1

+
1

1 +
1

+
2

1 +
2

+ · · ·

The incomplete gamma function can also be used to produce cumulative probabil-
ities from the standard normal distribution. Let ( ) = Pr( ), where has
the standard normal distribution. Then, for 0, ( ) = 0 5 + (0 5; 2 2) 2,
while for 0, ( ) = 1 ( ).
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The incomplete beta function can be evaluated by the series expansion

( ; ) =
( + ) (1 )

( ) ( )

×

"

1 +
X

=0

( + )( + + 1) · · · ( + + )

( + 1)( + 2) · · · ( + + 1)
+1

#

The gamma function itself can be found from

ln ( ) = ( 1
2) ln +

ln(2 )

2

+
1

12

1

360 3
+

1

1,260 5

1

1,680 7
+

1

1,188 9

691

360,360 11

+
1

156 13

3,617
122,400 15

+
43,867

244,188 17

174,611
125,400 19

For values of above 10, the error is less than 10 19. For values below 10, use the
relationship

ln ( ) = ln ( + 1) ln

The distributions are presented in the following way. First, the name is given
along with the parameters. Many of the distributions have other names, which are
noted in parentheses. Next the density function ( ) and distribution function ( )
are given. For some distributions, formulas for starting values are given. Within
each family the distributions are presented in decreasing order with regard to the
number of parameters. The Greek letters used are selected to be consistent. Any
Greek letter that is not used in the distribution means that that distribution is a
special case of one with more parameters but with the missing parameters set equal
to 1. Unless specically indicated, all parameters must be positive.
Except for two distributions, ination can be recognized by simply inating the

scale parameter . That is, if has a particular distribution, then has the
same distribution type, with all parameters unchanged except is changed to .
For the lognormal distribution, changes to + ln( ) with unchanged, while for
the inverse Gaussian, both and are multiplied by .
For several of the distributions, starting values are suggested. They are not

necessarily good estimators, just places from which to start an iterative procedure
to maximize the likelihood or other objective function. These are found by either
the methods of moments or percentile matching. The quantities used are

Moments: =
1X

=1

, =
1X

=1

2

Percentile matching: = 25th percentile, = 75th percentile.

For grouped data or data that have been truncated or censored, these quantities
may have to be approximated. Because the purpose is to obtain starting values
and not a useful estimate, it is often su cient to just ignore modications. For
three- and four-parameter distributions, starting values can be obtained by using
estimates from a special case, then making the new parameters equal to 1. An
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all-purpose starting value rule (for when all else fails) is to set the scale parameter
( ) equal to the mean and set all other parameters equal to 2.
Risk measures may be calculated as follows. For VaR ( ), the value-at-risk,

solve the equation = [Var ( )]. Where there are convenient explicit solutions,
they are provided. For TVaR ( ), the tail-value-at-risk, use the formula

TVaR ( ) = Var ( ) +
E( ) E[ Var ( )]

1

Explicit formulas are provided in a few cases.
All the distributions listed here (and many more) are discussed in great detail in

[91]. In many cases, alternatives to maximum likelihood estimators are presented.

A.2 TRANSFORMED BETA FAMILY

A.2.1 Four-parameter distribution

A.2.1.1 Transformed beta�– , , , (generalized beta of the second kind, Pear-
son Type VI)2

( ) =
( + )

( ) ( )

( )

[1 + ( ) ] +

( ) = ( ; ) =
( )

1 + ( )

E[ ] =
( + ) ( )

( ) ( )

E[( ) ] =
( + ) ( )

( ) ( )
( + ; )

+ [1 ( )]

Mode =

µ
1

+ 1

¶1
1 else 0

A.2.2 Three-parameter distributions

A.2.2.1 Generalized Pareto�– , , (beta of the second kind)

( ) =
( + )

( ) ( )

1

( + ) +

( ) = ( ; ) =
+

2There is no inverse transformed beta distribution because the reciprocal has the same distribution,
with and interchanged and replaced with 1 .
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E[ ] =
( + ) ( )

( ) ( )

E[ ] =
( + 1) · · · ( + 1)

( 1) · · · ( )
if is a positive integer,

E[( ) ] =
( + ) ( )

( ) ( )
( + ; )

+ [1 ( )]

Mode =
1

+ 1
1, else 0

A.2.2.2 Burr�– , , (Burr Type XII, Singh�—Maddala)

( ) =
( )

[1 + ( ) ] +1

( ) = 1 =
1

1 + ( )

VaR ( ) = [(1 ) 1 1]1

E[ ] =
(1 + ) ( )

( )

E[( ) ] =
(1 + ) ( )

( )
(1 + ; 1 )

+

Mode =

µ
1

+ 1

¶1
1 else 0

A.2.2.3 Inverse Burr�– , , (Dagum)

( ) =
( )

[1 + ( ) ] +1

( ) = =
( )

1 + ( )

VaR ( ) = ( 1 1) 1

E[ ] =
( + ) (1 )

( )

E[( ) ] =
( + ) (1 )

( )
( + 1 ; )

+ [1 ]

Mode =

µ
1

+ 1

¶1
1 else 0
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A.2.3 Two-parameter distributions

A.2.3.1 Pareto�– , (Pareto Type II, Lomax)

( ) =
( + ) +1

( ) = 1

µ

+

¶

VaR ( ) = [(1 ) 1 1]

E[ ] =
( + 1) ( )

( )
1

E[ ] =
!

( 1) · · · ( )
if is a positive integer,

E[ ] =
1

"

1

µ

+

¶ 1
#

6= 1

E[ ] = ln

µ

+

¶
= 1

TVaR ( ) = VaR ( ) +
(1 ) 1

1
1

E[( ) ] =
( + 1) ( )

( )
[ + 1 ; ( + )]

+

µ

+

¶
all

Mode = 0

�ˆ = 2
2

2 2
�ˆ =

2 2

A.2.3.2 Inverse Pareto�– ,

( ) =
1

( + ) +1

( ) =

µ

+

¶

VaR ( ) = [ 1 1] 1

E[ ] =
( + ) (1 )

( )
1

E[ ] =
( )!

( 1) · · · ( + )
if is a negative integer,

E[( ) ] =

Z ( + )

0

+ 1(1 )

+ 1

µ

+

¶ ¸

Mode =
1

2
1 else 0
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A.2.3.3 Loglogistic�– , (Fisk)

( ) =
( )

[1 + ( ) ]2

( ) = =
( )

1 + ( )

VaR ( ) = ( 1 1) 1

E[ ] = (1 + ) (1 )

E[( ) ] = (1 + ) (1 ) (1 + 1 ; )

+ (1 )

Mode =

µ
1

+ 1

¶1
1 else 0

�ˆ =
2 ln(3)

ln( ) ln( )
�ˆ = exp

µ
ln( ) + ln( )

2

¶

A.2.3.4 Paralogistic�– , This is a Burr distribution with = .

( ) =
2( )

[1 + ( ) ] +1

( ) = 1 =
1

1 + ( )

VaR ( ) = [(1 ) 1 1]1

E[ ] =
(1 + ) ( )

( )
2

E[( ) ] =
(1 + ) ( )

( )
(1 + ; 1 )

+

Mode =

µ
1

2 + 1

¶1
1 else 0

Starting values can use estimates from the loglogistic (use for ) or Pareto (use
) distributions.

A.2.3.5 Inverse paralogistic�– , This is an inverse Burr distribution with = .

( ) =
2( )

2

[1 + ( ) ] +1

( ) = =
( )

1 + ( )
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VaR ( ) = ( 1 1) 1

E[ ] =
( + ) (1 )

( )
2

E[( ) ] =
( + ) (1 )

( )
( + 1 ; )

+ [1 ] 2

Mode = ( 1)1 1 else 0

Starting values can use estimates from the loglogistic (use for ) or inverse Pareto
(use ) distributions.

A.3 TRANSFORMED GAMMA FAMILY

A.3.1 Three-parameter distributions

A.3.1.1 Transformed gamma�– , , (generalized gamma)

( ) =
( )

= ( )

( ) = ( ; )

E[ ] =
( + )

( )

E[( ) ] =
( + )

( )
( + ; )

+ [1 ( ; )]

Mode =

µ
1
¶1

1 else 0

A.3.1.2 Inverse transformed gamma�– , , (inverse generalized gamma)

( ) =
( )

= ( )

( ) = 1 ( ; )

E[ ] =
( )

( )

E[( ) ] =
( )

( )
[1 ( ; )] + ( ; )

=
( ; )

( )
+ ( ; ) all

Mode =

µ

+ 1

¶1
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A.3.2 Two-parameter distributions

A.3.2.1 Gamma�– , (When = 2 and = 2, it is a chi-square distribution
with degrees of freedom.)

( ) =
( )

( )

( ) = ( ; )

E[ ] =
( + )

( )

E[ ] = ( + 1) · · · if is a positive integer,

E[( ) ] =
( + )

( )
( + ; ) + [1 ( ; )]

E[( ) ] = ( + 1) · · · ( + 1) ( + ; )

+ [1 ( ; )] if is a positive integer,

( ) = (1 ) , 1

Mode = ( 1) 1 else 0

�ˆ =
2

2
�ˆ =

2

A.3.2.2 Inverse gamma�– , (Vinci)

( ) =
( )

( )

( ) = 1 ( ; )

E[ ] =
( )

( )

E[ ] =
( 1) · · · ( )

if is a positive integer,

E[( ) ] =
( )

( )
[1 ( ; )] + ( ; )

=
( ; )

( )
+ ( ; ) all

Mode = ( + 1)

�ˆ =
2 2

2
�ˆ =

2
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A.3.2.3 Weibull�– ,

( ) =
( ) ( )

( ) = 1 ( )

VaR ( ) = [ ln(1 )]1

E[ ] = (1 + )

E[( ) ] = (1 + ) [1 + ; ( ) ] + ( )

Mode =

µ
1
¶1

1 else 0

�ˆ = exp

µ
ln( ) ln( )

1

¶
=

ln(ln(4))

ln(ln(4 3))

�ˆ =
ln(ln(4))

ln( ) ln(�ˆ)

A.3.2.4 Inverse Weibull�– , (log-Gompertz)

( ) =
( ) ( )

( ) = ( )

VaR ( ) = ( ln ) 1

E[ ] = (1 )

E[( ) ] = (1 ){1 [1 ; ( ) ]}

+
h
1 ( )

i

= [1 ; ( ) ] +
h
1 ( )

i
all

Mode =

µ

+ 1

¶1

�ˆ = exp

µ
ln( ) ln( )

1

¶
=

ln(ln(4))

ln(ln(4 3))

�ˆ =
ln(ln(4))

ln(�ˆ) ln( )

A.3.3 One-parameter distributions

A.3.3.1 Exponential�–

( ) =

( ) = 1

VaR ( ) = ln(1 )

E[ ] = ( + 1) 1
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E[ ] = ! if is a positive integer,

E[ ] = (1 )

TVaR ( ) = ln(1 ) +

E[( ) ] = ( + 1) ( + 1; ) + 1

E[( ) ] = ! ( + 1; ) + if 1 is an integer,

( ) = (1 ) 1, 1

Mode = 0
�ˆ =

A.3.3.2 Inverse exponential�–

( ) =
2

( ) =

VaR ( ) = ( ln ) 1

E[ ] = (1 ) 1

E[( ) ] = (1 ; ) + (1 ) all

Mode = 2

�ˆ = ln(3 4)

A.4 DISTRIBUTIONS FOR LARGE LOSSES

The general form of most of these distribution has probability starting or ending at
an arbitrary location. The versions presented here all use zero for that point. The
distribution can always be shifted to start or end elsewhere.

A.4.1 Extreme value distributions

A.4.1.1 Gumbel�– , ( can be negative)

( ) =
1
exp( ) exp [ exp( )] =

( ) = exp [ exp ( )]

VaR ( ) = + [ ln( ln )]

( ) = (1 ) 1

E[ ] = + 0 57721566490153

Var( ) =
2 2

6

A.4.1.2 Frechet�– , This is the inverse Weibull distribution of Section A.3.2.4.

( ) =
( ) ( )

( ) = ( )
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VaR ( ) = ( ln )1

E[ ] = (1 )

E[( ) ] = (1 ){1 [1 ; ( ) ]}

+
h
1 ( )

i

= [1 ; ( ) ] +
h
1 ( )

i
all

A.4.1.3 Weibull�– , 3

( ) =
( ) ( )

0

( ) = ( ) 0

E[ ] = ( 1) (1 + ) an integer

Mode =

µ
1
¶1

1 else 0

A.4.2 Generalized Pareto distributions

A.4.2.1 Generalized Pareto�– , This is the Pareto distribution of Section A.2.3.1
with replaced by 1 and replaced by .

( ) = 1
³
1 +

´ 1

0

A.4.2.2 Exponential�– This is the same as the exponential distribution of Sec-
tion A.3.3.1 and is the limiting case of the above distribution as 0.

A.4.2.3 Pareto�– , This is the single-parameter Pareto distribution of Section
A.5.1.4. From the above distribution, shift the probability to start at .

A.4.2.4 Beta�– , This is the beta distribution of Section A.6.1.2 with = 1.

A.5 OTHER DISTRIBUTIONS

A.5.1.1 Lognormal�– , ( can be negative)

( ) =
1

2
exp( 2 2) = ( ) ( ) =

ln

( ) = ( )

3This is not the same Weibull distribution as in Section A.3.2.3. It is the negative of a Weibull
distribution.
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E[ ] = exp
¡

+ 1
2

2 2
¢

E[( ) ] = exp
¡

+ 1
2

2 2
¢ µ

ln 2
¶
+ [1 ( )]

Mode = exp( 2)

�ˆ =
p
ln( ) 2 ln( ) �ˆ = ln( ) 1

2 �ˆ
2

A.5.1.2 Inverse Gaussian�– ,

( ) =

µ

2 3

¶1 2

exp

µ
2

2

¶
=

( ) =

" µ ¶1 2
#

+ exp

µ
2
¶ " µ ¶1 2

#

=
+

E[ ] = [ ] = 3

E[ ] =
1X

=0

( + 1)!

( 1)! !

+

(2 )
= 1 2

E[ ] =

" µ ¶1 2
#

exp(2 )

" µ ¶1 2
#

( ) = exp

" Ã

1

r

1
2 2

!#

,
2 2

�ˆ = �ˆ =
3

2

A.5.1.3 log-t�–r, , ( can be negative) Let have a distribution with
degrees of freedom. Then = exp( + ) has the log- distribution. Positive
moments do not exist for this distribution. Just as the distribution has a heav-
ier tail than the normal distribution, this distribution has a heavier tail than the
lognormal distribution.

( ) =

µ
+ 1

2

¶

³

2

´"

1 +
1
µ
ln

¶2#( +1) 2

( ) =

µ
ln

¶
with ( ) the cdf of a distribution with df,

( ) =

1

2 2

1

2
;

+

µ
ln

¶2 0

1
1

2 2

1

2
;

+

µ
ln

¶2
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A.5.1.4 Single-parameter Pareto�– ,

( ) =
+1

( ) = 1

µ ¶

VaR ( ) = (1 ) 1

E[ ] =

E[( ) ] =
( )

TVaR ( ) =
(1 ) 1

1
1

Mode =

�ˆ =

Note: Although there appear to be two parameters, only is a true parameter.
The value of must be set in advance.

A.6 DISTRIBUTIONS WITH FINITE SUPPORT

For these two distributions, the scale parameter is assumed known.

A.6.1.1 Generalized beta�–a, b, ,

( ) =
( + )

( ) ( )
(1 ) 1 0 = ( )

( ) = ( ; )

E[ ] =
( + ) ( + )

( ) ( + + )

E[( ) ] =
( + ) ( + )

( ) ( + + )
( + ; ) + [1 ( ; )]
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A.6.1.2 beta�–a, b, The case = 1 has no special name, but is the commonly
used version of this distribution.

( ) =
( + )

( ) ( )
(1 ) 1 1 0 =

( ) = ( ; )

E[ ] =
( + ) ( + )

( ) ( + + )

E[ ] =
( + 1) · · · ( + 1)

( + )( + + 1) · · · ( + + 1)
if is a positive integer,

E[( ) ] =
( + 1) · · · ( + 1)

( + )( + + 1) · · · ( + + 1)
( + ; )

+ [1 ( ; )]

�ˆ =
2

2
�ˆ =

( )( )
2



Appendix B

An inventory of discrete distributions

B.1 INTRODUCTION

The 16 models presented in this appendix fall into three classes. The divisions
are based on the algorithm by which the probabilities are computed. For some of
the more familiar distributions these formulas will look di erent from the ones you
may have learned, but they produce the same probabilities. After each name, the
parameters are given. All parameters are positive unless otherwise indicated. In
all cases, is the probability of observing losses.
For nding moments, the most convenient form is to give the factorial moments.

The th factorial moment is ( ) = E[ ( 1) · · · ( +1)]. We have E[ ] = (1)

and Var( ) = (2) + (1)
2
(1).

The estimators presented are not intended to be useful estimators but, rather,
provide starting values for maximizing the likelihood (or other) function. For deter-
mining starting values, the following quantities are used (where is the observed
frequency at [if, for the last entry, represents the number of observations at

*
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or more, assume it was at exactly ] and is the sample size):

�ˆ =
1X

=1

�ˆ2 =
1X

=1

2 �ˆ2

When the method of moments is used to determine the starting value, a circumex
(e.g., �ˆ) is used. For any other method, a tilde (e.g., �˜) is used. When the starting
value formulas do not provide admissible parameter values, a truly crude guess is
to set the product of all and parameters equal to the sample mean and set all
other parameters equal to 1. If there are two or parameters, an easy choice is
to set each to the square root of the sample mean.
The last item presented is the probability generating function,

( ) = E[ ]

B.2 THE (a, b, 0) CLASS

The distributions in this class have support on 0 1 . For this class, a particular
distribution is specied by setting 0 and then using = ( + ) 1. Specic
members are created by setting 0, , and . For any member, (1) = ( + ) (1 ),
and for higher , ( ) = ( + ) ( 1) (1 ). The variance is ( + ) (1 )2

B.2.1.1 Poisson�–

0 = = 0 =

=
!

E[ ] = Var[ ] =

�ˆ = �ˆ

( ) = ( 1)

B.2.1.2 Geometric�–

0 =
1

1 +
=
1 +

= 0

=
(1 + ) +1

E[ ] = Var[ ] = (1 + )

�ˆ = �ˆ

( ) = [1 ( 1)] 1

This is a special case of the negative binomial with = 1.
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B.2.1.3 Binomial�–q,m, (0 1 an integer)

0 = (1 ) =
1

=
( + 1)

1

=

µ ¶
(1 ) = 0 1

E[ ] = Var[ ] = (1 )

�ˆ = �ˆ

( ) = [1 + ( 1)]

B.2.1.4 Negative binomial�– , r

0 = (1 + ) =
1 +

=
( 1)

1 +

=
( + 1) · · · ( + 1)

!(1 + ) +

E[ ] = Var[ ] = (1 + )

�ˆ =
�ˆ2

�ˆ
1 �ˆ =

�ˆ2

�ˆ2 �ˆ

( ) = [1 ( 1)]

B.3 THE (a, b, 1) CLASS

To distinguish this class from the ( 0) class, the probabilities are denoted Pr( =
) = or Pr( = ) = depending on which subclass is being represented.
For this class, 0 is arbitrary (i.e., it is a parameter), and then 1 or 1 is a
specied function of the parameters and . Subsequent probabilities are obtained
recursively as in the ( 0) class: = ( + ) 1, = 2 3 , with the
same recursion for There are two subclasses of this class. When discussing their
members, we often refer to the �“corresponding�” member of the ( 0) class. This
refers to the member of that class with the same values for and . The notation
will continue to be used for probabilities for the corresponding ( 0) distribution.

B.3.1 The zero-truncated subclass

The members of this class have 0 = 0, and therefore it need not be estimated.
These distributions should only be used when a value of zero is impossible. The
rst factorial moment is (1) = ( + ) [(1 )(1 0)], where 0 is the value for the
corresponding member of the ( 0) class. For the logarithmic distribution (which
has no corresponding member), (1) = ln(1 + ). Higher factorial moments are
obtained recursively with the same formula as with the ( 0) class. The variance
is ( + )[1 ( + + 1) 0] [(1 )(1 0)]

2. For those members of the subclass
that have corresponding ( 0) distributions, = (1 0).
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B.3.1.1 Zero-truncated Poisson�–

1 =
1

= 0 =

=
!( 1)

E[ ] = (1 ) Var[ ] = [1 ( + 1) ] (1 )2

�˜ = ln( �ˆ 1)

( ) =
1

1

B.3.1.2 Zero-truncated geometric�–

1 =
1

1 +
=
1 +

= 0

=
1

(1 + )

E[ ] = 1 + Var[ ] = (1 + )

�ˆ = �ˆ 1

( ) =
[1 ( 1)] 1 (1 + ) 1

1 (1 + ) 1

This is a special case of the zero-truncated negative binomial with = 1.

B.3.1.3 Logarithmic�–

1 =
(1 + ) ln(1 + )

=
1 +

=
1 +

=
(1 + ) ln(1 + )

E[ ] = ln(1 + ) Var[ ] =
[1 + ln(1 + )]

ln(1 + )

�˜ =
�ˆ

1
1 or

2(�ˆ 1)

�ˆ

( ) = 1
ln[1 ( 1)]

ln(1 + )

This is a limiting case of the zero-truncated negative binomial as 0.
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B.3.1.4 Zero-truncated binomial�–q,m, (0 1 an integer)

1 =
(1 ) 1

1 (1 )
=

1
=
( + 1)

1

=

¡ ¢
(1 )

1 (1 )
= 1 2

E[ ] =
1 (1 )

Var[ ] =
[(1 ) (1 + )(1 ) ]

[1 (1 ) ]2

�˜ =
�ˆ

( ) =
[1 + ( 1)] (1 )

1 (1 )

B.3.1.5 Zero-truncated negative binomial�– , r, (r > 1, r 6= 0)

1 =
(1 + ) +1 (1 + )

=
1 +

=
( 1)

1 +

=
( + 1) · · · ( + 1)

![(1 + ) 1]

µ

1 +

¶

E[ ] =
1 (1 + )

[ ] =
[(1 + ) (1 + + )(1 + ) ]

[1 (1 + ) ]2

�˜ =
�ˆ2

�ˆ
1 �˜ =

�ˆ2

�ˆ2 �ˆ

( ) =
[1 ( 1)] (1 + )

1 (1 + )

This distribution is sometimes called the extended truncated negative binomial
distribution because the parameter can extend below 0.

B.3.2 The zero-modied subclass

A zero-modied distribution is created by starting with a truncated distribution
and then placing an arbitrary amount of probability at zero. This probability, 0 ,
is a parameter. The remaining probabilities are adjusted accordingly. Values of
can be determined from the corresponding zero-truncated distribution as = (1

0 ) or from the corresponding ( 0) distribution as = (1 0 ) (1 0).
The same recursion used for the zero-truncated subclass applies.
The mean is 1 0 times the mean for the corresponding zero-truncated distri-

bution. The variance is 1 0 times the zero-truncated variance plus 0 (1 0 )
times the square of the zero-truncated mean. The probability generating function
is ( ) = 0 + (1 0 ) ( ), where ( ) is the probability generating function
for the corresponding zero-truncated distribution.
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The maximum likelihood estimator of 0 is always the sample relative frequency
at 0.

B.4 THE COMPOUND CLASS

Members of this class are obtained by compounding one distribution with another.
That is, let be a discrete distribution, called the primary distribution, and let
1 2 be i.i.d. with another discrete distribution, called the secondary distri-

bution. The compound distribution is = 1 + · · · + . The probabilities for
the compound distributions are found from

=
1

1 0

X

=1

( + )

for = 1 2 , where and are the usual values for the primary distribution
(which must be a member of the ( 0) class) and is for the secondary
distribution. The only two primary distributions used here are Poisson (for which
0 = exp[ (1 0)]) and geometric (for which 0 = 1 [1+ 0]). Because this
information completely describes these distributions, only the names and starting
values are given in the following subsections.
The moments can be found from the moments of the individual distributions:

E[ ] = E[ ]E[ ] and Var[ ] = E[ ] Var[ ] + Var[ ]E[ ]2

The pgf is ( ) = primary [ secondary( )].
In the following list, the primary distribution is always named rst. For the

rst, second, and fourth distributions, the secondary distribution is the ( 0)
class member with that name. For the third and the last three distributions (the
Poisson�—ETNB and its two special cases), the secondary distribution is the zero-
truncated version.

B.4.1 Some compound distributions

B.4.1.1 Poisson�—binomial�– , q,m, (0 1, an integer)

�ˆ=
�ˆ2 �ˆ 1

1
�ˆ =

�ˆ

�ˆ
or �˜= 0 5 �˜ =

2�ˆ

B.4.1.2 Poisson�—Poisson�– 1, 2 The parameter 1 is for the primary Poisson
distribution, and 2 is for the secondary Poisson distribution. This distribution is
also called the Neyman Type A.

�˜
1 = �˜2 =

p
�ˆ

B.4.1.3 Geometric�—extended truncated negative binomial�– 1, 2, r (r > 1) The
parameter 1 is for the primary geometric distribution. The last two parameters
are for the secondary distribution, noting that for = 0, the secondary distribution
is logarithmic. The truncated version is used so that the extension of is available.

�˜
1 =

�˜
2 =

p
�ˆ
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B.4.1.4 Geometric�—Poisson�– ,

�˜ = �˜ =
p
�ˆ

B.4.1.5 Poisson�—extended truncated negative binomial�– , , (r > 1, r 6= 0)
When = 0 the secondary distribution is logarithmic, resulting in the negative
binomial distribution.

�˜ =
�ˆ( 3�ˆ2 + 2�ˆ) 2(�ˆ2 �ˆ)2

�ˆ( 3�ˆ2 + 2�ˆ) (�ˆ2 �ˆ)2
�˜ =

�ˆ2 �ˆ

�ˆ(1 + �ˆ)
�˜ =

�ˆ

�ˆ�ˆ
,

or,

�˜ =
�ˆ2 1 �ˆ2 0

(�ˆ2 �ˆ2)( 0 ) ln( 0 ) �ˆ(�ˆ 0 1 )

�˜ =
�ˆ2 �ˆ

�ˆ(1 + �ˆ)
�˜ =

�ˆ

�ˆ�ˆ

where

=
1X

=0

3 3�ˆ
1X

=0

2 + 2�ˆ3

This distribution is also called the generalized Poisson�—Pascal.

B.4.1.6 Polya�—Aeppli�– ,

�ˆ =
�ˆ2 �ˆ

2�ˆ
�ˆ =

�ˆ

1 + �ˆ

This is a special case of the Poisson�—extended truncated negative binomial with
= 1. It is actually a Poisson�—truncated geometric.

B.4.1.7 Poisson�—inverse Gaussian�– ,

�˜ = ln( 0 ) �˜ =
4(�ˆ �ˆ)

�ˆ

This is a special case of the Poisson�—extended truncated negative binomial with
= 0 5.

B.5 A HIERARCHY OF DISCRETE DISTRIBUTIONS

Table B.1 indicates which distributions are special or limiting cases of others. For
the special cases, one parameter is set equal to a constant to create the special case.
For the limiting cases, two parameters go to innity or zero in some special way.
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Table B.1 Hierarchy of discrete distributions.

Distribution Is a special case of Is a limiting case of

Poisson ZM Poisson Negative binomial,
Poisson�—binomial,
Poisson�—inv. Gaussian,
Polya�—Aeppli,
Neyman�—A

ZT Poisson ZM Poisson ZT negative binomial
ZM Poisson ZM negative binomial
Geometric Negative binomial Geometric�—Poisson

ZM geometric
ZT geometric ZT negative binomial
ZM geometric ZM negative binomial
Logarithmic ZT negative binomial
ZM logarithmic ZM negative binomial
Binomial ZM binomial
Negative binomial ZM negative binomial Poisson�—ETNB
Poisson�—inverse Gaussian Poisson�—ETNB
Polya�—Aeppli Poisson�—ETNB
Neyman�—A Poisson�—ETNB



Appendix C

Frequency and severity relationships

Let be the number of losses random variable and let be the severity random
variable. If there is a deductible of imposed, there are two ways to modify .
One is to create , the amount paid per loss:

=

½
0

In this case, the appropriate frequency distribution continues to be .
An alternative approach is to create , the amount paid per payment:

=

½
undened

In this case, the frequency random variable must be altered to reect the number of
payments. Let this variable be . Assume that for each loss the probability is =
1 ( ) that a payment will result. Further assume that the incidence of making
a payment is independent of the number of losses. Then = 1+ 2+ · · ·+ ,
where is 0 with probability 1 and is 1 with probability . Probability
generating functions yield the relationships in Table C.1.

*
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Table C.1 Parameter adjustments.

Parameters for

Poisson =

ZM Poisson 0 = 0 + 0

1
=

Binomial =

ZM binomial 0 = 0 (1 ) + (1 ) 0 (1 )

1 (1 )
=

Negative binomial = =

ZM neg. binomial 0 = 0 (1 + ) + (1 + ) 0 (1 + )

1 (1 + )
= =

ZM logarithmic 0 = 1 (1 0 ) ln(1 + ) ln(1 + )
=

The geometric distribution is not presented as it is a special case of the negative
binomial with = 1. For zero-truncated distributions, the same formulas are still
used as the distribution for will now be zero modied. For compound distribu-
tions, modify only the secondary distribution. For ETNB, secondary distributions
the parameter for the primary distribution is multiplied by 1 0 as obtained
in Table C.1, while the secondary distribution remains zero truncated (however,
= )
There are occasions in which frequency data are collected that provide a model

for . There would have to have been a deductible in place and therefore
is available. It is possible to recover the distribution for , although there

is no guarantee that reversing the process will produce a legitimate probability
distribution. The solutions are the same as in Table C.1, only now = 1 [1 ( )].
Now suppose the current frequency model is , which is appropriate for a

deductible of . Also suppose the deductible is to be changed to . The new
frequency for payments is and is of the same type. Then use Table C.1 with
= [1 ( )] [1 ( )].



Appendix D

The recursive formula

The recursive formula is (where the frequency distribution is a member of the
( 1) class),

( ) =

[ 1 ( + ) 0] ( ) +
P

=1

³
+

´
( ) ( )

1 (0)
,

where ( ) = Pr( = ), = 0 1 2 , ( ) = Pr( = ), = 0 1 2 ,
0 = Pr( = 0), and 1 = Pr( = 1). Note that the severity distribution ( )
must place probability on nonnegative integers. The formula must be initialized
with the value of (0). These values are given in Table D.1. It should be noted
that, if is a member of the ( 0) class, 1 ( + ) 0 = 0, and so the rst
term will vanish. If is a member of the compound class, the recursion must
be run twice. The rst pass uses the secondary distribution for 0, 1, , and .
The second pass uses the output from the rst pass as ( ) and uses the primary
distribution for 0, 1, , and .

*
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Table D.1 Starting values ( (0)) for recursions.

Distribution (0)

Poisson exp[ ( 0 1)]

Geometric [1 + (1 0)]
1

Binomial [1 + ( 0 1)]

Negative binomial [1 + (1 0)]

ZM Poisson 0 + (1 0 )
exp( 0) 1

exp( ) 1

ZM geometric 0 + (1 0 )
0

1 + (1 0)

ZM binomial 0 + (1 0 )
[1 + ( 0 1)] (1 )

1 (1 )

ZM negative binomial 0 + (1 0 )
[1 + (1 0)] (1 + )

1 (1 + )

ZM logarithmic 0 + (1 0 ) 1
ln[1 + (1 0)]

ln(1 + )



Appendix E

Discretization of the severity distrib-
ution

There are two relatively simple ways to discretize the severity distribution. One is
the method of rounding and the other is a mean-preserving method.

E.1 THE METHOD OF ROUNDING

This method has two features: All probabilities are positive and the probabilities
add to 1. Let be the span and let be the discretized version of . If there are
no modications, then

= Pr( = ) = Pr
£¡

1
2

¢ ¡
+ 1

2

¢ ¤

=
£¡

+ 1
2

¢ ¤ £¡
1
2

¢ ¤

The recursive formula is then used with ( ) = . Suppose a deductible of ,
limit of , and coinsurance of are to be applied. If the modications are to be
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730 DISCRETIZATION OF THE SEVERITY DISTRIBUTION

applied before the discretization, then

0 =
( + 2) ( )

1 ( )

=
[ + ( + 1 2) ] [ + ( 1 2) ]

1 ( )

= 1 1

( ) =
1 ( 2)

1 ( )

where = Pr( = ) and is the modied distribution. This method does not
require that the limits be multiples of but does require that be a multiple
of . This method gives the probabilities of payments per payment.
Finally, if there is truncation from above at , change all denominators to
( ) ( ) and also change the numerator of ( ) to ( ) ( 2).

E.2 MEAN PRESERVING

This method ensures that the discretized distribution has the same mean as the
original severity distribution. With no modications, the discretization is

0 = 1
E[ ]

=
2E[ ] E[ ( 1) ] E[ ( + 1) ]

= 1 2

For the modied distribution,

0 = 1
E[ + ] E[ ]

[1 ( )]

=
2E[ + ] E[ + ( 1) ] E[ + ( + 1) ]

[1 ( )]

= 1 1

( ) =
E[ ] E[ ]

[1 ( )]

To incorporate truncation from above, change the denominators to

[ ( ) ( )]

and subtract [1 ( )] from the numerators of each of 0 and ( ) .

E.3 UNDISCRETIZATION OF A DISCRETIZED DISTRIBUTION

Assume we have 0 = Pr( = 0), the true probability that the random variable is
zero. Let = Pr( = ), where is a discretized distribution and is the span.
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The following are approximations for the cdf and LEV of , the true distribution
that was discretized as . They are all based on the assumption that has a
uniform distribution over the interval from ( 1

2) to ( + 1
2) for integral . The

rst interval is from 0 to 2, and the probability 0 0 is assumed to be uniformly
distributed over it. Let be the random variable with this approximate mixed
distribution. (It is continuous, except for discrete probability 0 at zero.) The
approximate distribution function can be found by interpolation as follows. First,
let

=
£¡

+ 1
2

¢ ¤
=
X

=0

= 0 1

Then, for in the interval ( 1
2) to ( + 1

2) ,

( ) = 1 +

Z

( 1 2)

1 = 1 +
£ ¡

1
2

¢ ¤
1

= 1 +
£ ¡

1
2

¢ ¤
1( 1)

= (1 ) 1 + = + 1
2

Because the rst interval is only half as wide, the formula for 0 2 is

( ) = (1 ) 0 + 0 =
2

It is also possible to express these formulas in terms of the discrete probabilities:

( ) =

0 +
2
[ 0 0] 0

2
1X

=0

+
( 1 2)

( 1
2) ( + 1

2)

With regard to the limited expected value, expressions for the rst and th LEVs
are

E( ) =

(1 0)
2

( 0 0) 0
2

4
( 0 0) +

1X

=1

+
2 [( 1 2) ]2

2

+ [1 ( )] ( 1
2) ( + 1

2)

and, for 0
2

E[( ) ] =
2 +1

( + 1)
( 0 0) + [1 ( )]
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while for ( 1
2) ( + 1

2)

E[( ) ] =
( 2) ( 0 0)

+ 1
+

1X

=1

[( + 1
2)

+1 ( 1
2)

+1]

+ 1

+
+1 [( 1

2 ) ]
+1

( + 1)
+ [1 ( )]



Appendix F

Numerical optimization and solution
of systems of equations

Maximizing functions can be di cult when there are many variables. A variety
of numerical methods have been developed, and most any will be su cient for
the tasks set forth in this text. Here we present two options. The rst is to use
the Excel R° Solver add-in. It is fairly reliable, though at times it may declare a
maximum has been found when there is no maximum. A second option is the
simplex method. This method tends to be slower but is more reliable. The nal
section of this Appendix shows how the solver and goal seek routines in Excel R°
can be used to solve systems of equations.

F.1 MAXIMIZATION USING SOLVER

Solver is not automatically available when Excel R° is installed. If it is available, you
can tell because Solver will appear on Excel�’s Tools menu. If it does not, it must
be added in. To do this, select Add-ins from the Tools menu, check the Solver box,
and then click OK. If it does not appear on the add-in list, Solver was not installed
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734 NUMERICAL OPTIMIZATION AND SOLUTION OF SYSTEMS OF EQUATIONS

when Excel R° was installed on your machine, as is the case if a typical (as opposed
to full or custom) install was done. To install Solver, go to Add/Remove Programs
in the Control Panel and modify your Microsoft O ce R° installation. You will not
need to reinstall all of O ce R° to add the Solver.
Use of Solver is illustrated with an example in which maximum likelihood esti-

mates for the gamma distribution are found for Data Set B right censored at 200.
If you have not read far enough to appreciate this example, it is not important.
Begin by setting up a spreadsheet in which the parameters (alpha and theta)

are in identiable cells as is the objective function (lnL). In this example, the
parameters are in E1 and E2 and the objective function is in E3.1

The formulas underlying this spreadsheet are shown here.

1 Screenshots reprinted by permission from Microsoft Corporation.
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Note that trial values for alpha and theta have been entered (1 and 1000). The
better these guesses are, the higher the probability that Solver will succeed in nding
the maximum. Selecting Solver from the Tools menu brings up the following dialog
box:

The target cell is the location of the objective function and the By Changing Cells
box contains the location of the parameters. These cells need not be contiguous. It
turns out that clicking on Solve will get the job done, but there are two additional
items to think about. First, Solver allows for the imposition of constraints. They
can be added by clicking on Add, which brings up the following dialog box:
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The constraint 0 has been entered. Solver does not allow the constraint we
really want, which is 0. After entering a similar constraint for , the Solver
dialog box looks like:

Adding the constraints is not needed here because the solution Solver nds meets
the constraints anyway. Clicking on Options brings up the following dialog box:
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Two changes have been made from the default settings. The Use Automatic
Scaling box has been checked, improving performance when the parameters are
on di erent scales (as is the case here). Also, Central approximate derivatives
has been selected. Additional precision in the answer can be obtained by making
the Precision, Tolerance, and Convergence numbers smaller. Clicking OK on the
options box (no changes will be apparent in the Solver box) and then clicking Solve
results in the following:

Clicking OK gives the answer.
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Users of Solver (or any numerical analysis routine) should always be wary of
the results. The program may announce a solution when the maximum has not
been found, and it may give up when there is a maximum to be found. When the
program gives up, it may be necessary to provide better starting values. To verify
that an announced solution is legitimate (or at least is a local maximum), it is a
good idea to check the function at nearby points to see that the values are indeed
smaller.

F.2 THE SIMPLEX METHOD

The simplex method (which is not related to the simplex method from operations
research) was introduced for use with maximum likelihood estimation by Nelder and
Mead in 1965 [127]. An excellent reference (and the source of the particular version
presented here) is Sequential Simplex Optimization by Walters, Parker, Morgan,
and Deming [179].
Let x be a × 1 vector and (x) be the function in question. The iterative step

begins with + 1 vectors, x1 x +1, and the corresponding functional values,
1 +1. At any iteration, the points will be ordered so that 2 · · · +1.
When starting, also arrange for 1 2. Three of the points have names: x1
is called worstpoint, x2 is called secondworstpoint, and x +1 is called bestpoint.
It should be noted that after the rst iteration, these names may not perfectly
describe the points. Now identify ve new points. The rst one, y1, is the center
of x2 x +1, that is, y1 =

P +1
=2 x and is called midpoint. The other four

points are found as follows:

y2 = 2y1 x1 refpoint,
y3 = 2y2 x1 doublepoint,
y4 = (y1 + y2) 2 halfpoint,
y5 = (y1 + x1) 2 centerpoint.
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Then let 2 5 be the corresponding functional values, that is, = (y )
(the value at y1 is never used). The key is to replace worstpoint (x1) with one of
these points. The ve-step decision process proceeds as follows:

1. If 2 2 +1, then replace it with refpoint.

2. If 2 +1 and 3 +1, then replace it with doublepoint.

3. If 2 +1 and 3 +1, then replace it with refpoint.

4. If 1 2 2, then replace it with halfpoint.

5. If 2 1, then replace it with centerpoint.

After the replacement has been made, the old secondworstpoint becomes the
new worstpoint. The remaining points are then ordered. The one with the
smallest functional value becomes the new secondworstpoint, and the one with the
largest functional value becomes the new bestpoint. In practice, there is no need
to compute y3 and 3 until you have reached step 2. Also note that at most one of
the pairs (y4 4) and (y5 5) needs to be obtained, depending on which (if any) of
the conditions in steps 4 and 5 hold.
Iterations continue until the set of + 1 points becomes tightly packed. There

are a variety of ways to measure that criterion. One example would be to calculate
the standard deviations of each of the components and then average those values.
Iterations can stop when a small enough value is obtained. Another option is to
keep iterating until all +1 vectors agree to a specied number of signicant digits.

F.3 USING EXCEL R° TO SOLVE EQUATIONS

In addition to maximizing and minimizing functions of several variables, Solver can
also solve equations. By choosing the Value of: radio button in the Solver dialog
box, a value can be entered and then Solver will manipulate the By Changing Cells
to set the contents of the Target Cell equal to that value. If there is more than one
function, the constraints can be used to set them up. The following spreadsheet
and Solver dialog box are set up to solve the two equations + = 10 and = 4
with starting values = 8 and = 5 (to illustrate that the starting values do not
have to be solutions to any of the equations).
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The Solver dialog box is:

The solution is:

When there is only one equation with one unknown, the Goal Seek tool in Excel R°
is easier to use. It is on the Tools menu and is most always installed with the
standard installation process. Suppose we want the solution of = 10. The
following simple spreadsheet sets up the problem with a starting value of = 2.
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The Goal Seek dialog box is:

The solution is:
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adjustment coe cient, 295
aggregate loss distribution, 212
approximating distribution, 236
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comparison of methods, 264
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direct calculation, 236
distribution function, 214
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fast Fourier transform
undiscretization, 258
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individual risk model
compound Poisson approximation, 269

inversion method, 238, 253
direct, 256
fast Fourier transform, 253
Heckman�—Meyers, 256

Laplace transform, 216
moment generating function, 216
moments, 216

probability generating function, 215
recursive formula, 238, 727
undiscretization, 258
compound frequency, 239
computational issues, 241
construction of arithmetic distributions,
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continuous severity, 242
undiscretization, 730

recursive method, 238
severity closed under convolution, 231
simulation, 684
smoothing, 261

aggregate loss model, advantages, 211
Anderson�—Darling test, 473
asymptotically unbiased, 336
maximum likelihood estimator, 415
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Balkema�—de Haan�—Pickands theorem, 104
bandwidth, 383
Bayesian Central Limit Theorem, 431
Bayesian estimation, 425
Bayes estimate, 428
Bayesian Central Limit Theorem, 431
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joint distribution, 426
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loss function, 428
marginal distribution, 426
model distribution, 426
posterior distribution, 426
predictive distribution, 426, 605
prior distribution, 425

beta distribution, 715
beta function, 703
beta function, incomplete, 703
bias, 334
binomial-beta distribution, 149
binomial distribution, 115, 719
estimation, 449

birth process, 122
bootstrap, 692
Brownian motion, 319
relationship to ruin, 323
with drift, 320

Bühlmann�—Straub credibility model, 619
Bühlmann credibility model, 615
Burr distribution, 706

C

censoring
from above, 363
from below, 363
left, 363
right, 363

central limit theorem, 31
Central Limit Theorem
Bayesian, 431

central moment, 23
Chapman�—Kolmogorov equation, 129
characteristic function, 151
for aggregate loss, 215

chi-square goodness-of-t test, 474
claim count random variable, 212
closed under convolution, 231
coe cient of variation, 23
coherent risk measure, 44
coinsurance, 199
collective risk model, 210
complete expectation of life, 25
compound distribution, 214
frequency, 135

compound frequency distribution, 722
compound frequency distributions
estimation, 456

compound Poisson frequency distribution, 142
compound Poisson process, 295
conditional distribution, 601
Conditional Tail Expectation, 48
condence interval, 341, 374
log-transformed, 379

conjugate prior distribution, 435
consistency, 336
maximum likelihood estimator, 415

construction of mortality tables, 387
contagion
positive, 125
linear, 125

negative, 125
continuous random variable, 13
continuous time process, 284
convolution, 214
numerical, 546

copula, 173
t, 183
Archimax, 188
Archimedean, 176
BB1, 179
BB3, 180
BB4, 188
BB5, 187
BB6, 181
BB7, 181
elliptical, 181
extreme value, 184
Galambos, 186
Gaussian, 182
Gumbel�—Hougaard, 178
Gumbel, 178, 186
independence, 177
Joe, 178
Tawn, 186

counting distributions, 109
counting process, 121
covariates
models with, 516
proportional hazards model, 517

Cox proportional hazards model, 517
Cramér�’s asymptotic ruin formula, 312
credibility factor, 592
credibility
Bühlmann credibility factor, 616
expected hypothetical mean, 616
expected process variance, 616
fully parametric, 650
greatest accuracy, 586, 598
Bühlmann�—Straub, 619
Bühlmann, 615
Bayesian, 604
exact credibility, 624
fully parametric, 665
linear, 612
linear vs. Bayes, 628
log-credibility, 633
nonparametric, 652
semiparametric, 664

hypothetical mean, 615
limited uctuation, 586�—587
full credibility, 588
partial credibility, 592

nonparametric, 650
partial, 592
process variance, 615
semiparametric, 650
variance of the hypothetical means, 616

cubic spline, 561�—562
cumulative distribution function, 11
cumulative hazard rate function, 354
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data-dependent distribution, 61, 350
deductible
e ect of ination, 195
e ect on frequency, 203
franchise, 191
ordinary, 190, 364

delta method, 418
density function, 15
density function plot, 467
di erence plot, 467
digamma function, 649
discrete distribution, 109
discrete Fourier transform, 254
discrete random variable, 13
discrete time process, 288
distribution function, 11
distribution function plot, 465
distribution function
empirical, 353

distribution of the maximum, 91
distribution
(a, b, 0) class, 81, 644
(a, b, 1) class, 83, 645
aggregate loss, 212
beta, 102, 715
binomial-beta, 149
binomial, 115, 719
Burr, 706
claim count, 212
compound, 214
compound frequency, 135, 722
recursive formula, 138

compound Poisson frequency, 142
compound
moments, 216

conditional, 601
conjugate prior, 435
counting distributions, 109
data-dependent, 61, 350
defective, 326
discrete, 109
elliptical, 85
empirical, 350
Erlang, 230
exponential, 48, 97, 101, 711
exponential dispersion family, 641
extended truncated negative binomial

(ETNB), 133
extreme value, 89, 105, 498
frailty, 72
Frechet, 90, 712
frequency, 212
gamma, 36, 38, 63, 67, 710
generalized beta, 715
generalized Erlang, 32
generalized extreme value, 91
generalized inverse Gaussian, 643
generalized Pareto, 102, 105, 705, 713
generalized Poisson�—Pascal, 723

generalized Waring, 149, 440
geometric�—ETNB, 722
geometric�—Poisson, 723
geometric, 113, 718
Gumbel, 90, 712
improper prior, 426
individual loss, 212
innitely divisible, 151
inverse Burr, 706
inverse exponential, 712
inverse gamma, 710
inverse Gaussian, 63, 714
inverse paralogistic, 708
inverse Pareto, 707
inverse transformed, 67
inverse transformed gamma, 81, 709
inverse Weibull, 67, 711
joint, 426, 601
k-point mixture, 59
kernel smoothed, 350
log-t, 714
logarithmic, 134, 720
logistic, 86
loglogistic, 75, 708
lognormal, 68, 81, 713
Makeham, 532
marginal, 426, 601
medium-talied, 277
mixed frequency, 147
mixture, 601
mixture/mixing, 58, 68
negative binomial, 113, 719
as Poisson mixture, 114
extended truncated, 133

negative hypergeometric, 149
Neyman Type A, 137, 722
normal, 48, 85
one-sided stable law, 327
paralogistic, 708
parametric, 56, 350
parametric family, 58
Pareto, 36�—38, 49, 98, 101, 103, 707
Poisson�—binomial, 722
Poisson�—inverse Gaussian, 723
Poisson�—Poisson, 137, 722
Poisson�—ETNB, 723
Poisson�—extended truncated negative

binomial, 458
Poisson�—inverse Gaussian, 458
Poisson�—logarithmic, 140
Poisson, 93, 110, 718
Polya�—Aeppli, 723
Polya�—Eggenberger, 149
posterior, 426
predictive, 426, 605
prior, 425
scale, 57
Sibuya, 134
Sichel, 160, 643
single parameter Pareto, 715
spliced, 73
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subexponential, 277
tail weight of, 35
transformed, 67
transformed beta, 76, 705
transformed beta family, 79
transformed gamma, 709
transformed gamma family, 79
transformedgamma, 79
variable-component mixture, 59
Waring, 149, 440
Weibull, 67, 90, 710, 713
Yule, 149, 440
zero-modied, 131, 721
zero-truncated, 131
zero-truncated binomial, 721
zero-truncated geometric, 720
zero-truncated negative binomial, 721
zero-truncated Poisson, 719
zeta, 164, 493

domain of attraction, 99

E

empirical Bayes estimation, 650
empirical distribution, 350
empirical distribution function, 353
empirical model, 22
eponential dispersion family, 84
Erlang distribution, 230
estimate
interval, 374
Nelson�—Aalen, 355

estimation
(a, b, 1) class, 452
Bayesian, 425
binomial distribution, 449
compound frequency distributions, 456
credibility interval, 429
e ect of exposure, 458
empirical Bayes, 650
maximum likelihood, 401
multiple decrement tables, 389
negative binomial, 447
point, 332
Poisson distribution, 444

estimator
asymptotically unbiased, 336
Bayes estimate, 428
bias, 334
condence interval, 341
consistency, 336
interval, 341
Kaplan�—Meier, 365
kernel density, 382
mean squared error, 337
method of moments, 396
percentile matching, 397
relative e ciency, 340
smoothed empirical percentile, 397
unbiased, 333
uniformly minimum variance unbiased, 338

exact credibility, 624

excess loss variable, 25
expected shortfall, 48
exponential distribution, 711
exposure base, 162
exposure, e ect in estimation, 458
extrapolation, using splines, 574
extreme value theory, 89

F

failure rate, 18
fast Fourier transform, 254
Fisher�’s information, 415
Fisher�—Tippett theorem, 97
force of mortality, 18
Fourier transform, 253
frailty model, 72
franchise deductible, 191
Frechet distribution, 712
frequency, 212
e ect of deductible, 203
interaction with severity, 725

frequency/severity interaction, 249
full credibility, 588
function
characteristic, 151
cumulative hazard rate, 354
density, 15
empirical distribution, 353
force of mortality, 18
gamma, 68, 704
hazard rate, 18
incomplete beta, 703
incomplete gamma, 68, 701
likelihood, 402
loglikelihood, 403
loss, 428
probability, 16, 109
probability density, 15
probability generating, 110
survival, 14

G

gamma distribution, 67, 710
gamma function, 68, 704
incomplete, 701

gamma kernel, 383
generalized beta distribution, 715
generalized Erlang distribution, 32
generalized inverse Guassian distribution, 643
generalized linear model, 523
generalized Pareto distribution, 705, 713
generalized Poisson�—Pascal distribution, 723
generalized Waring distribution, 149, 440
generating function
moment, 31
probability, 31

geometric�—ETNB distribution, 722
geometric�—Poisson distribution, 723
geometric distribution, 113, 718
graduation, 556
greatest accuracy credibility, 586, 598
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Greenwood�’s approximation, 377
Gumbel distribution, 712

H

hazard rate, 18
cumulative, 354
tail weight, 37

Heckman�—Meyers formula, 256
histogram, 358
homogeneous Poisson process, 123
hypothesis tests, 343, 471
Anderson�—Darling, 473
chi-square goodness-of-t, 474
Kolmogorov�—Smirnov, 471
likelihood ratio test, 478, 484
p-value, 346
signicance level, 344
uniformly most powerful, 345

hypothetical mean, 615

I

incomplete beta function, 703
incomplete gamma function, 68, 701
increment, 120
independent increments, 121
individual loss distribution, 212
individual risk model, 210, 265
moments, 266

innitely divisible distribution, 151
ination
e ect of, 195
e ect of limit, 198

information, 415
information matrix, 415
information
observed, 417

intensity function
transition, 122

interpolation
modied osculatory, 575
polynomial, 557

interval estimator, 341
inverse Burr distribution, 706
inverse exponential distribution, 712
inverse gamma distribution, 710
inverse Gaussian distribution, 63, 714
inverse paralogistic distribution, 708
inverse Pareto distribution, 707
inverse transformed distribution, 67
inverse transformed gamma distribution, 81,

709
inverse Weibull distribution, 67, 711
inversion method, 679
inversion method for aggregate loss

calculations, 238, 253

J

joint distribution, 601

K

k-point mixture distribution, 59
Kaplan�—Meier estimator, 365
large data sets, 387
variance, 376

Kendall�’s tau, 174
kernel density estimator, 382
bandwidth, 383
gamma kernel, 383
triangular kernel, 383
uniform kernel, 382

kernel smoothed distribution, 350
knots, 562
Kolmogorov�—Smirnov test, 471
kurtosis, 23

L

Laplace transform
for aggregate loss, 216

large data sets, 387
left censored and shifted variable, 25
left censoring, 363
left truncated and shifted variable, 25
left truncation, 363
likelihood function, 402
likelihood ratio test, 478, 484
limit
policy, 364
e ect of ination, 198

limited expected value, 26
limited uctuation credibility, 586�—587
partial, 592

limited loss variable, 26
linear contagion, 125
log-t distribution, 714
log-transformed condence interval, 379
logarithmic distribution, 134, 720
loglikelihood fuction, 403
loglogistic distribution, 75, 708
lognormal distribution, 68, 81, 713
loss elimination ratio, 195
loss function, 428
lreputational risk, 44
Lundberg�’s inequality, 299

M

Makeham distribution, 532
marginal distribution, 426, 601
Markov process, 288
Markovian process, 121
maximization, 733
simplex method, 738

maximum aggregate loss, 308
maximum covered loss, 200
maximum likelihood estimation, 401
binomial, 450
inverse Gaussian, 413
negative binomial, 448
Poisson, 445
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variance, 446
trucation and censoring, 405

maximum likelihood estimator
consistency, 415
unbiased, 415

mean, 21
mean excess loss, 25
mean residual life, 25
tail weight, 37

mean squared error, 337
median, 29
medium-tailed distribution, 277
method of moments, 396
mixed frequency distributions, 147
mixed Poisson process, 156
mixed random variable, 13
mixture distribution, 601
mixture/mixing distribution, 58, 68
mode, 20
model selection, 3
graphical comparison, 465
Schwarz Bayesian criterion, 484

model
collective risk, 210
empirical, 22
individual risk, 210

modeling process, 4
modeling
advantages, 5

moment, 21
moment generating function, 31
for aggregate loss, 216

moment
individual risk model, 266
factorial, 717
limited expected value, 26
of aggregate loss distribution, 216

mortality table construction, 387
multiple decrement tables, 389

N

negative binomial distribution, 113, 719
as compound Poisson-logarithmic, 140
as Poisson mixture, 114
estimation, 447

negative contagion, 125
negative hypergeometric distribution, 149
Nelson�—Aalen estimate, 355
Neyman Type A distribution, 137, 722
nonhomogeneous birth process, 122
nonhomogeneous Poisson process, 124
noninformative prior distribution, 426

O

observed information, 417
ogive, 358
operational time, 128
ordinary deductible, 190, 364
osculatory interpolation, 575

P

p-value, 346
paralogistic distribution, 708
parameter, 3
scale, 57

parametric distribution, 56, 350
parametric distribution family, 58
Pareto distribution, 707
parsimony, 482
partial credibility, 592
percentile, 29
percentile matching, 397
plot
density function, 467
di erence, 467
distribution funtion, 465

point estimation, 332
Poisson�—binomial distribution, 722
Poisson�—ETNB distribution, 458, 723
Poisson�—inverse Gaussian distribution, 458, 723
Poisson�—logarithmic distribution, 140
Poisson distribution, 110, 718
estimation, 444

Poisson process, 123, 293
nonhomogeneous, 124

policy limit, 197, 364
Polya�—Aeppli distribution, 723
Polya�—Eggenberger distribution, 149
Polya process, 158
polynomial interpolation, 557
polynomial, collocation, 557
positive contagion, 125
posterior distribution, 426
predictive distribution, 426, 605
prior distribution
noninformative or vague, 426

probability density function, 15
probability function, 16, 109
probability generating function, 31, 110
for aggregate loss, 215

probability mass function, 16
process variance, 615
process
Brownian motion, 319
compound Poisson, 295
continuous time, 284
counting, 121
discrete time, 288
increment, 120
Markov, 288
mixed Poisson, 156
nonhomogeneous birth, 122
Poisson, 123, 293
Polya, 158
stochastic, 120
surplus, 285
Weiner, 320
white noise, 320

product-limit estimate
large data sets, 387
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product-limit estimator, 365
variance, 376

proportional hazards model, 517
pseudorandom variables, 678
pure premium, 585

R

random variable
central moment, 23
coe cient of variation, 23
continuous, 13
discrete, 13
excess loss, 25
kurtosis, 23
left censored and shifted, 25
left truncated and shifted, 25
limited expected value, 26
limited loss, 26
mean, 21
mean excess loss, 25
mean residual life, 25
median, 29
mixed, 13
mode, 20
moment, 21
percentile, 29
right censored, 26
skewness, 23
standard deviation, 23
support, 13
variance, 23

recursive formula, 727
aggregate loss distribution, 238
continuous severity distribution, 729
for compound freqency, 138

recursive method for aggregate loss
calculations, 238

regularly varying tails, 277
relative e ciency, 340
relative security loading, 295
right censored variable, 26
right censoring, 363
right truncation, 363
risk measure
coherent, 44

risk model
collective, 210
individual, 210, 265

risk set, 355, 364
ruin theory, 283
ruin
asymptotic, 312
continuous time, nite horizon, 287
continuous time, innite horizon, 287
discrete time, nite horizon, 287
discrete time, innite horizon, 287
evaluation by convolution, 289
Lundberg�’s inequality, 299
Tijms�’ approximation, 312�—313
time to, as inverse Gaussian, 327
time to, as one-sided stable law, 327

using Brownian motion, 323

S

scale distribution, 57
scale parameter, 57
Schwarz Bayesian criterion, 484
securityloading, relative, 295
severity, interaction with frequency, 725
severity/frequency interaction, 249
Sibuya distribution, 134
Sichel distribution, 160, 643
signicance level, 344
simplex method, 738
simulation, 677
aggregate loss calculations, 684

single parameter Pareto distribution, 715
skewness, 23
Sklar�’s theorem, 173
slowly varying function, 275
smoothed emprical percentile estimate, 397
smoothing splines, 575
solver, 733
Spearman�’s rho, 174
spliced distribution, 73
spline
cubic, 561�—562

splines
extraplation, 574
smoothing, 575

stability of the maximum, 95
standard deviation, 23
stationary increments, 120
stochastic process, 120
counting process, 121
independent increments, 121
Markovian, 121
stationary increments, 120

stop-loss insurance, 219
support, 13
surplus process, 285
maximum aggregate loss, 308

survival function, 14

T

Tail-Value-at-Risk, 43, 47, 84�—85, 105, 166, 273
Tail Conditional Expectation, 48
tail weight, 35
tails
regularly varying, 277

thinning, 125
Tijms�’ approximation, 312�—313
time, operational, 128
transformed beta distribution, 76, 705
transformed beta family, 79
transformed distribution, 67
transformed gamma distribution, 79, 709
transformed gamma family, 79
transition intensity function, 122
triangular kernel, 383
trigamma function, 649
truncation
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from above, 363
from below, 363
left, 363
right, 363

U

unbiased, 4, 333
maximum likelihood estimator, 415

uniform kernel, 382
uniformly minimum variance unbiased

estimator (UMVUE), 338
uniformly most powerful test, 345

V

vague prior distribution, 426
Value-at-Risk, 43, 45�—47, 105
variable-component mixture, 59
variance, 23, 603
conditional, 603
delta method, 418
Greenwood�’s approximation, 377

product-limit estimator, 376

W

Waring distribution, 149, 440
Weibull distribution, 63, 67, 710, 713
Weiner process, 320
white noise process, 320

Y

Yule distribution, 149, 440

Z

zero-modied distribution, 131, 721
zero-truncated binomial distribution, 721
zero-truncated distribution, 131
zero-truncated geometric distribution, 720
zero-truncated negative binomial distribution,

721
zero-truncated Poisson distribution, 719
zeta distribution, 493
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