
## Invertebrate hormones

Physiological systems in insects:Marc J.Klowden.Secondedition, ISBN: 978-0-12-369493-5. Insect Endocrinology:Lawrencel. Gilbert.First edition2012, ISBN: 978-0-12-384749-2.



Bi1100 Hormones – Cellular and Molecular Mechanisms

The most developed endocrine system among invertebrates can be found in **crustaceans and insects**.

#### **Differences:**

- unlike vertebrates, invertebrates have many neurohormones
- invertebrates produce few classical hormones

#### Similarities:

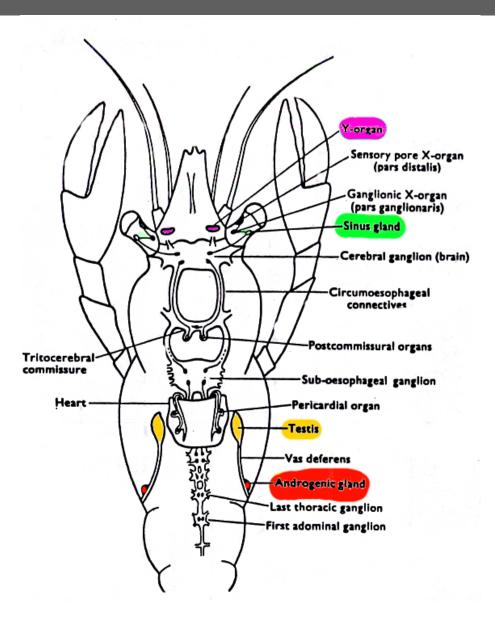
- both groups synthesize many peptide hormones
- the same structural types of hormones
- similar hormones can have similar function (hormones can also affect individuals in another animal group)

#### **Groups of invertebrate hormones**

Nerves - neurotransmitters Neurosecretory cells - neurohormones Endocrine glands - clasical hormones

1) **Steroid hormones** (ecdysteroids - ecdysone, 20-hydroxyecdysone, makisteron A etc.)

- 2) Sesquiterpenes / terpenoids (juvenile hormones)
- 3) **Peptide hormones** (MIH, RPCH, AKH)
- 4) Biogenic amines (octopamine, tyramine, serotonin)
- 5) Eicosanoids (prostaglandins and others)


**Modulation of activity:** synthesis, secretion, degradation, number and specificity of receptors

## Endocrine system of crustaceans



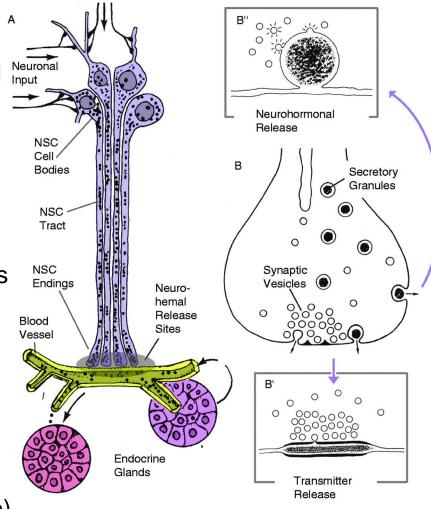
## **Endocrine system of crustaceans**

- 1) Neurosecretory complex of the eye:
- X-organ (neurosecretory cells) > axonal transport > sinus gland (neurohemal) > hemolymph
- 2) <u>Suboesophageal-postcommissural</u> <u>system</u>:
- suboesophageal ganglion > axons
  postcommissural organ
  (neurohemal) > hemolymph
- 3) Pericardial system:
- pericardium > pericardial organ (neurohemal)
- 4) Paired Y-organ
- 20-hydroxyecdysone
- 5) Androgenic gland
- males



#### Endocrine system of crustaceans

- Y-organ: 20-hydroxyecdysone (the same function as in insects)
- X-organ: moult inhibiting hormone (MIH) > inhibition of Y-organ androgen gland inhibiting hormone > inhibition of spermatogenesis and development of male characteristics
- X-organ + postcommissural system: chromatophorotropins (e.g. red pigment-concentrating hormone belonging to RPCH/AKH family > pigment relocation in omatidia, ovarian maturation, vitellogenesis and other functions)




## Endocrine system of insects



## **Endocrine system of insects**

- 1) Retrocerebral complex
- neurosecretory brain cells, corpora cardiaca, corpora allata
- sometimes connected with prothoracic gland forming the so-called ring gland (Weismann's ring)
- monopolar neurons produce hormones in their bodies > association with proteins > axonal transport > formation of membranebound secretory granules > exocytosis (synaptoids) > release at the site of synthesis or in neurohemal organs
- 2) Prothoracic gland (PG)
- paired, located in prothorax and head
- usually not in adult stages
- 3) Neurosecretory cells of other ganglia
- 4) Intestinal endocrine cells
- 5) Epitracheal cells (ecdysis triggering hormone)

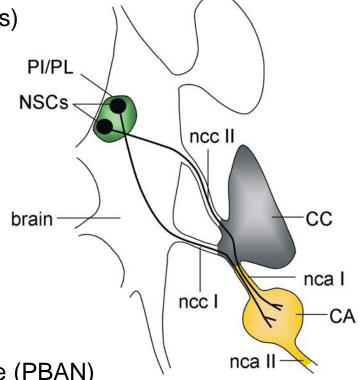


# Endocrine system of insectsbrain dissection in *Galleria mellonella*



## Endocrine system of insectsbrain dissection in *Galleria mellonella*

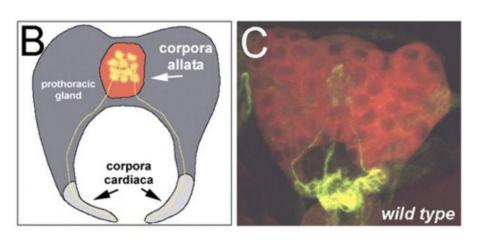



## Insect neurohemal organs

#### Corpus cardiacum (corpora cardiaca)

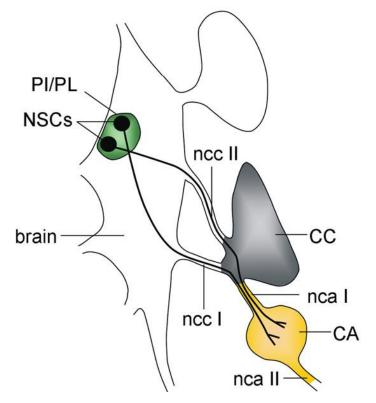
- main neurohemal organ derived from ectoderm
- posteriorly from the brain, in the contact with dorsal vein
- axons of central (part intercerebralis) and lateral (variable location) neurosecretory cells in the brain
- storage lobe (storage of neurosecretory products)
- glandular lobe (synthesis of hormones)

#### Releases and synthesises:


- prothoracicotropic hormone (PTTH)
- adipokinetic hormones (AKH)
- ovarian ecdysteroidogenic hormone
- neuroparsins
- myotropins
- pheromone biosynthesis activating neuropeptide (PBAN)



#### Insect neurohemal organs


#### Corpus allatum (corpora allata)

- posterior area of the head near the pharynx
- sometimes merges with prothoracic gland and forms ring gland (Diptera, Hemiptera)
- ectodermal origin
- cells with smooth endoplasmic reticulum (cholesterol, terpenoids)



#### Synthesizes:

juvenile hormones (JH)



## Insect endocrine system: Summary of the main hormones

#### Steroids:

ecdysteroids (prothoracic gland, gonads, epidermis)

#### **Terpenoids:**

juvenile hormones (corpora allata)

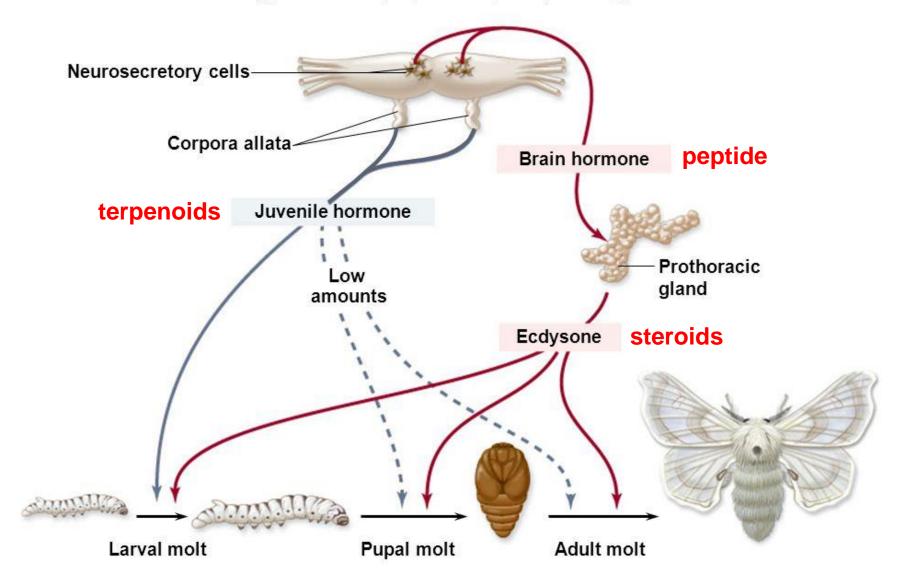
#### **Peptides and proteins:**

- prothoracicotropic hormone (PTTH; brain)
- eclosion hormone (EH; brain)
- pre-ecdysis triggering hormone (PETH; Inka cells)
- ecdysis triggering hormone (ETH; Inka cells)
- bursikon (brain and ventral nerve cord)
- pheromone biosynthesis activating neurohormone (PBAN)
- adipokinetic hormones (AKH; corpora cardiaca)
- crustacean cardioactive peptide (CCAP)
- and many more (hundreds of them is described)

#### Groups of neuropeptides by genome coding:

1) Preprohormones containing signal peptide and neuropeptide (eclosion hormone, neuroparsins)

2) Preprohormones containing signal peptide, neuropeptide and other structurally unrelated peptides (AKH + bombyxins)


3) Preprohormones containing signal peptide and a number of copies of the same or a similar neuropeptide (isoforms; e.g. allatostatins)

#### Groups of neurohormones by function:

- adenotropic (glandotropic), gonadotropic, morphogenetic, chromotropic, metabolic and homeostatic, myotropic, etotropic etc.
- usually pleiotropic effect

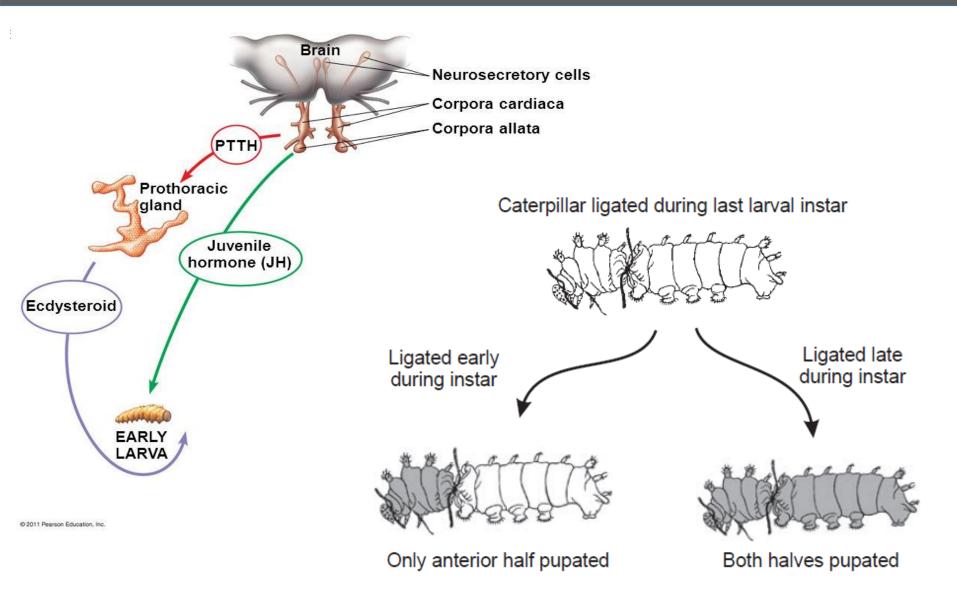
#### **Insect metamorphosis**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



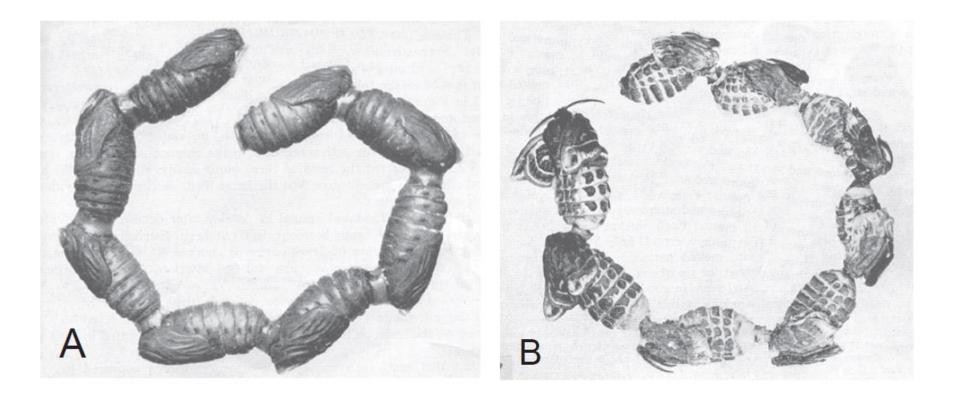
## Insect metamorphosis

| Hormone                                  | Type of<br>molecule                              | Type of signal | Site of secretion                                            | Major target<br>tissue                            | Action                                                                                                                                                                            |
|------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prothoracicotropic<br>hormone (PTTH)     | Protein (~5000<br>molecular<br>weight)           | Neuroendocrine | Brain, with axon<br>terminals extending<br>to corpora allata | Prothoracic<br>glands                             | Initiates molting (ecdysis) by<br>stimulating release of ecdysone<br>from prothoracic glands                                                                                      |
| Ecdysone (molting<br>hormone)            | Steroid                                          | Endocrine      | Prothoracic glands<br>in larva/nymph;<br>ovary in adult      | Epidermis in<br>Iarva/nymph;<br>fat body in adult | When activated to 20-hydroxyec-<br>dysone, promotes cellular<br>mechanisms to digest old<br>cuticle and synthesize new<br>one; stimulates production<br>of yolk proteins in adult |
| Juvenile hormone<br>(JH)                 | Terpene (fatty-<br>acid derivative)              | Endocrine      | Corpora allata                                               | Epidermis in larva/<br>nymph; ovary<br>in adult   | Opposes formation of adult<br>structures and promotes<br>formation of larval/nymphal<br>structures; functions as a<br>gonadotropin in the adult                                   |
| Eclosion hormone<br>(EH)                 | Peptide                                          | Neuroendocrine | Brain                                                        | Inka cells, possibly others                       | Promotes PETH and ETH secretion<br>from Inka cells                                                                                                                                |
| Pre-ecdysis triggering<br>hormone (PETH) | Peptide                                          | Endocrine      | Inka cells of<br>tracheae                                    | Neuronal circuits<br>in brain                     | Coordinates motor programs to<br>prepare for shedding the cuticle                                                                                                                 |
| Ecdysis triggering<br>hormone (ETH)      | Peptide                                          | Endocrine      | Inka cells of<br>tracheae                                    | Neuronal circuits<br>in brain                     | Coordinates final motor programs<br>for escaping from old cuticle                                                                                                                 |
| Bursicon                                 | Large protein<br>(~35,000 mole-<br>cular weight) | Neuroendocrine | Brain and<br>nerve cord                                      | Cuticle and epidermis                             | Tans and hardens new cuticle                                                                                                                                                      |


Sources: After Randall, Burggren, and French 2002; and Žitňan et al. 2003.

## Insect metamorphosis: Prothoracicotropic hormone (PTTH)

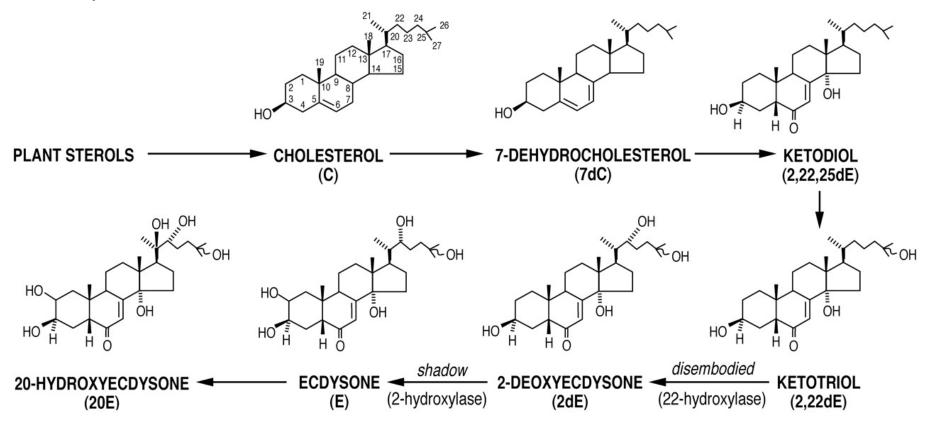
- the first insect hormone that was discovered
- insulin-like peptide (homodimer consisting of two identical amino acid chains interconnected with disulfide bonds)
- synthetised by <u>neurosecretory cells in the brain</u>
- axonal transport and release in neurohemal organs (<u>corpora cardiaca</u>/allata)
- development and control of metamorphosis
- photoperiod (*Manduca sexta*), temperature (*Hyalophora cecropia*), nerve stimulus (blood-sucking bug *Rhodnius*: blood volume is the primary stimul > enlarged abdomen > receptor signal > PTTH synthetised in the brain)
- activates prothoracic gland and synthesis of ecdysteroids through cAMP, Ca<sup>2+</sup>, calmodulin and phosphorylation of specific proteins (exact mechanism still unknown)




## Insect metamorphosis: Prothoracicotropic hormone (PTTH)

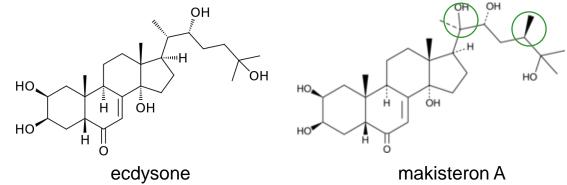


## Insect metamorphosis: Prothoracicotropic hormone (PTTH)


What can one brain do? (Williams1952)



The transformation (B) was induced by the implantation of one brain into the first pupa without the brain (A).

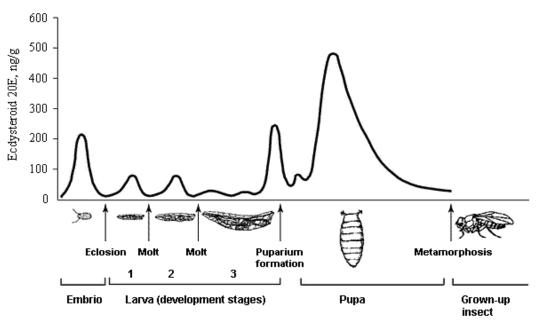

## Insect metamorphosis: Ecdysteroids (molting hormones)

- non-polar
- derived from cholesterol or plant sterols (zoophagous x phytophagous: ecdysone, makisteron A, 20-hydroxyecdysone and others)
- controls the metamorphosis, molting of embryos, larvae, nymphs and reproduction of adults



## Insect metamorphosis: Ecdysteroids – synthesis and release

- ecdysone (E) keto group on the B ring and five OH groups
- **20-E** (main molting hormone; six OH groups)
- makisterone A (24-methyl-20-hydroxyecdysone; e.g. Heteroptera, Hymenoptera, Diptera)




- synthesis in larvae: prothoracic gland vs. adults: accessory glands (main source of ecdysteroids), epithelial cells and ovarian follicles
- regulated by PTTH, ovarian ecdysteroidogenic hormone, prothoracicostatin described in some insect species, excretion by Malpighian tubes
- transported in hemolymph by carriers or freely (\(\circ)OH > sufficiently soluble)\)
- conversion of E to 20-E in target tissues (epidermis, fat body, intestine, ovaries...)
- nuclear receptors (ecdysteroid receptor); non-covalent dimers EcR/USP (ultraspiracle protein, RXR homolog)

## Insect metamorphosis: Ecdysteroids – function

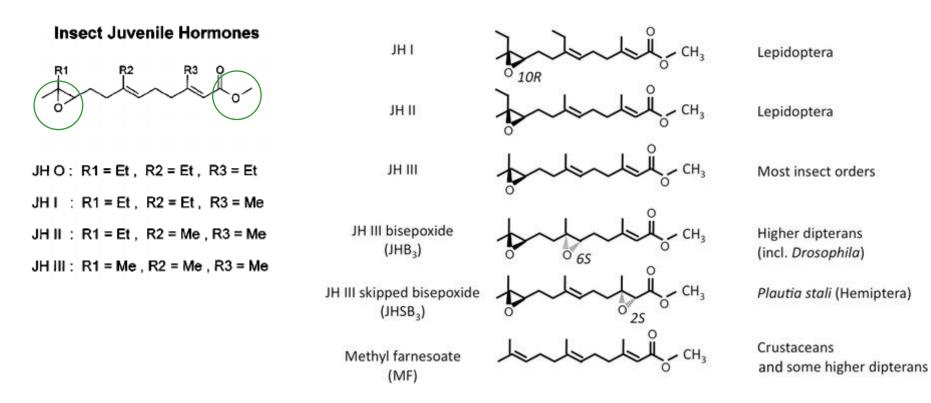
#### **Metamorphosis:**

- ecdysteroids control the expression of hundreds of genes (e.g. DOPA decarboxylase), circadian fluctuations of E are related to PTTH level
- in larvae, the titer increases before apolysis of old cuticle
- larva-imago: Hemimetabola large dose of ecdysteroids neccessary Lepidoptera - often two doses of ecdysteroids
- E : 20-E = 1 : 1 > reprogaming of larval development and behavior change
- E: 20-E = 1: 5 > triggers larval molting and transformation into pupa
- delayed secretion during the diapause



## Insect metamorphosis: Ecdysteroids – function

#### **Reproduction:**


- synthetised also in ovaries and stored conjugated in eggs > embryonic molts
- increase vitellogenin synthesis in the fat body and its secretion into the hemolymph (20-E; Diptera)
- stimulation of meiosis, maturation of oocytes and oviposition
- spermatogenesis and formation of spermatophore

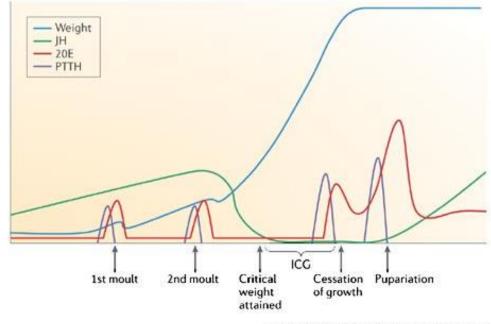
#### Metabolism and diapause:

- stimulation of proteosynthesis, etc.
- in relation to the above mentioned functions

## Insect metamorphosis: Juvenile hormones (JH)

- formerly known as neotenin
- structurally terpenoids (sesquiterpenes, derivatives of farnesol): methyl ester group + epoxy group
- non-polar (enter cells and bind to nuclear receptors)
- JH-I, JH-II, JH-III, JH-0, 4-methyl-JH-I, juvenile hormone acid, methyl farnesoate (their use is species specific)




## Insect metamorphosis: Juvenile hormones (JH)

- produced in corpora allata
- cholesterol synthesis-like biosynthesis
- not stored, released into the hemolymph immediately after synthesis (the mechanism is not yet known)
- lipophorine juvenile hormone binding/carrier protein (JHBP/JHCP)
- regulated by allatostatin, allatotropin, negative feedback loop
- degradation by specific enzymes (JH esterases and epoxide hydrolases), excretion by Malphigian tubes
- mode of action is assumed similar to steroid hormones
- receptors for JH in target cells have not yet been precisely identified (intracellular proteins methoprene-tolerant / germ cell expressed)

## Insect metamorphosis: Juvenile hormones (JH) – function

#### **Metamorphosis:**

- embryogenesis, larval molting, metamorphosis, ending of larval and adult diapause
- JH protects larval brain from reprograming and thus the onset of metamorphosis, keeps the insect in the larval stage
- presence of JH at critical time points in the development or reaching the threshold concentration
- critical body size > JH titer reduction



Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

## Insect metamorphosis: Juvenile hormones (JH) – function

#### **Reproduction:**

- inhibitory during the larval stage, stimulates gene expression in adults
- synthesis of vitellogenins, development of ovaries and oocytes
- stimulation of the accessory glands in adult males to growth and secrete
- pheromone production in males and reproductive behavior of both sexes
- aging (D. melanogaster)

#### **Polymorphism:**

- social-caste: higher titer drives development of dominant individuals (queen bees)
- phase: solitary vs. gregarious locusts (different color or size of ovaries); development of parthenogenetic female aphids



## Insect metamorphosis: Juvenile hormones (JH) – function

synthesis of vitellogenins in Aedes aegypti

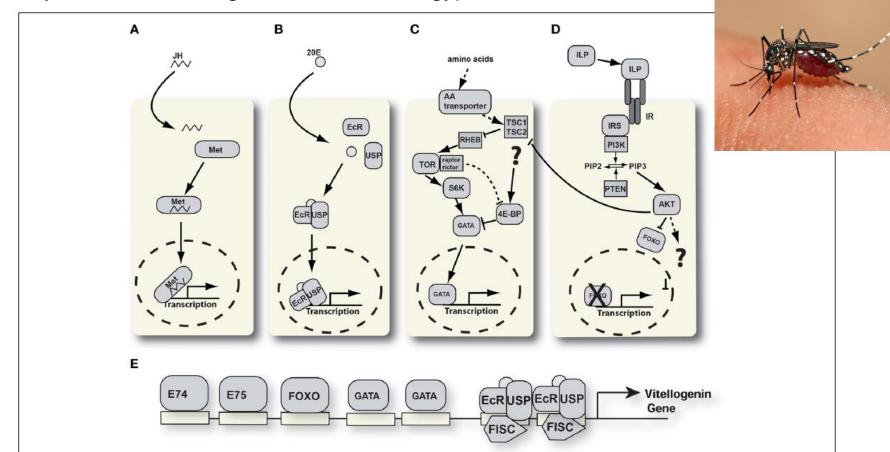
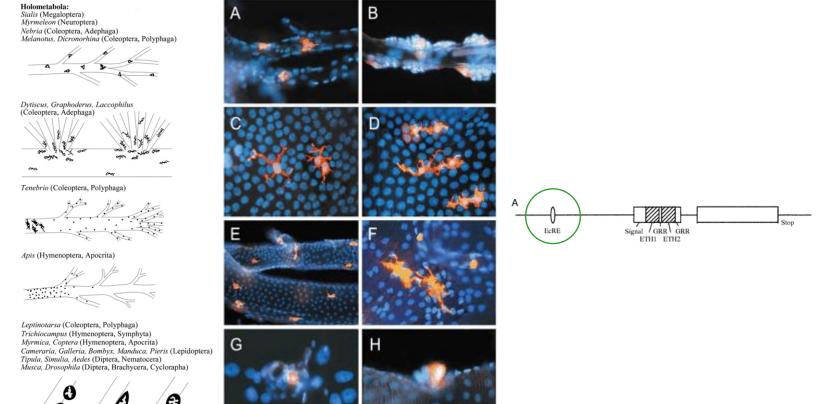
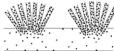




FIGURE 2 | Signaling pathways involved in YPP regulation. (A) Juvenile hormone signaling pathway. JH, juvenile hormone; Met, methoprene tolerant. (B) Ecdysone signaling pathway. 20E, 20 hydroxyecdysone; EcR, ecdysone receptor; USP, ultraspiracle. (C) Nutrient signaling pathway. 4E-BP, 4E-binding protein; TSC, tuberous sclerosis complex; RHEB, RAS homologue enriched in brain; S6K, S6 kinase; TOR, target of rapamycin. (D) Insulin-like peptide signaling pathway. AKT, protein kinase B; FOXO, forkhead box protein O; ILP, insulin-like peptide; IRS, insulin receptor substrate; PI3K, phosphati dylinositide 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-triphosphate; PTEN, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase. (E) Schematic of the vg-A promoter with transcription factor binding sites.

## **Ecdysis triggerign hormone (ETH) Pre-ecdysis triggering hormone (PETH)**


- polar peptides, homologues of cardioactive peptides (CAPs)
- synthesis in endocrine epitracheal glands close to spiracles (Inka cells)
- etotropic effect, acts directly on the CNS
- coordinate the molting and abandoning of the old cuticle



Apterygota:

Lepisma (Thysanura)

Hemimetabola: Epeorus, Heptagena (Ephemeroptera) Sympetrum, Callopteryx (Odonata)



Perla (Plecopter



Nauphoeta, Periplaneta (Blattodea) Locusta (Orthoptera, Caelifera)



Blabera, Phylodromica (Blattodea) Acheta (Orthoptera, Ensifera) Eurvcantha (Phasmida)



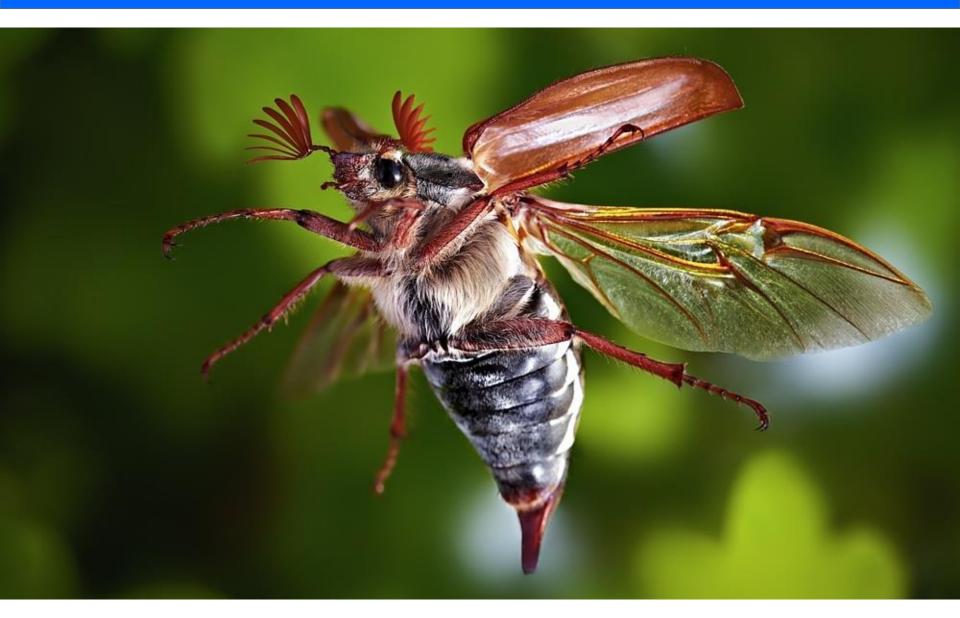
Pyrrhocoris, Triatoma (Heteroptera) Aphrophora (Homoptera)





## Eclosion hormone (EH) Bursicon

#### **Eclosion hormone**


- polar peptide
- synthesis in the brain and abdominal ganglia; in part secreted in hindgut
- its synthesis is induced by ecdysteroids
- acts in the CNS through cGMP
- supports the secretion of ETH, PETH, bursicon and others
- mediates positive feedback during ecdysis
- stimulates molting, hatching (eclosion) and supporting behaviour

#### **Bursicon**

- large polar protein (approx. 30 kDa)
- produced by ganglia and stored in corpora cardiaca
- acts on the cuticle and epidermis
- wing formation, coloring and hardening of the new cuticle
- hatching of adult Glossina morsitans morsitans (tse-tse)



## Hormones regulating metabolism



## Adipokinetic hormones (AKH)

- RPCH/AKH family of peptide hormones
- homologs of vertebrate glucagon
- mediate stress reactions, activate metabolism for energy release (inhibit synthesis), stimulate flight, movement and immune response

#### Synthesis and transport:

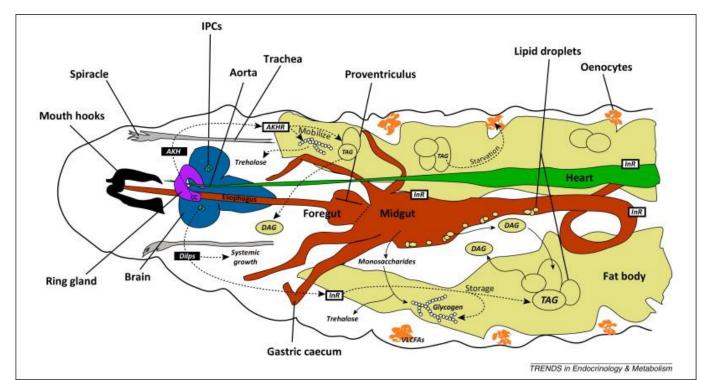
- okta- to decapeptides
- glandular lobe of corpora cardiaca, in part neurosecretory brain cells
- stored in the storage lobe of corpora cardiaca
- specific mRNA > prepro-AKH (signal peptide + AKH sequence + sequence of another peptide)

## pGlu<sup>1</sup>-X<sup>2</sup>-X<sup>3</sup>-X<sup>4</sup>-X<sup>5</sup>-X<sup>6</sup>-X<sup>7</sup>-Trp<sup>8</sup>-Gly<sup>9</sup>-X<sup>10</sup>-NH<sub>2</sub>

- -X<sup>2</sup> Leu, Val, Ile
- -X<sup>3</sup>-Asn, Thr
- -X<sup>4</sup>- Phe, Tyr (arom. AA) -X<sup>10</sup>- Thr, Asn, Ser, Tyr
- -X<sup>5</sup>- Thr, Ser

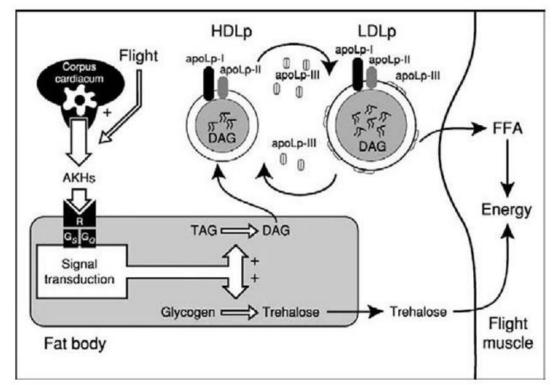
-X<sup>6</sup>- Pro, Ser, Thr, Ala -X<sup>7</sup>- Asn, Gly, Ser, Asp, Trp -X<sup>10</sup>- Thr, Asn, Ser, Tyr

## Adipokinetic hormones (AKH)


#### **Regulation:**

- stimulated by movement and stress conditions (e.g. infection with pathogen)
- level of metabolites and negative feedback (high lipids > ↓ / low trehalose > ↑)
- regulated and degraded by membrane-bound endopeptidases

#### Effect:


#### activated lipases

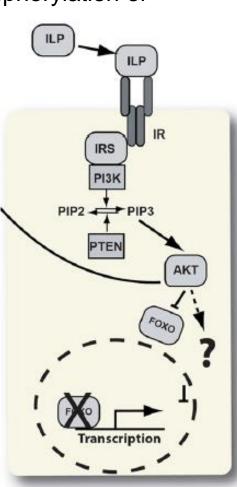
specific AKHR (e.g. fat body) > cAMP > Ca<sup>2+</sup> > PKC > TAG > DAG



## Adipokinetic hormones (AKH)

- activation of glycogen phosphorylase and fat metabolism, stimulation of trehalose release (hypertrehalosemic hormones) from the fat body > switch from carbohydrate metabolism to lipid metabolism
- increased heart activity and muscle contraction
- support immune response, stimulate antioxidant reactions
- inhibition of lipid, protein and RNA synthesis
- inhibition of oocyte maturation




## Insulin-like peptides (ILP)

IPCs - DILP-producing cells

DILP - Drosophila insulin-like peptide

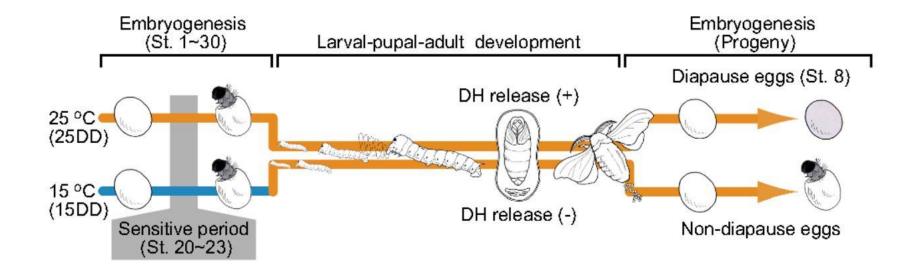
- evolutionarily conserved (structure with disulfide bonds)
- neurosecretory cells in the brain and other ganglia
- linked to receptor with tyrosine kinase activity > phosphorylation of receptor substrate > signal via PI3K and other pathways
- metabolism, growth, immunity, reproduction, aging etc.
- glycogen and lipid metabolism (AKH antagonist)





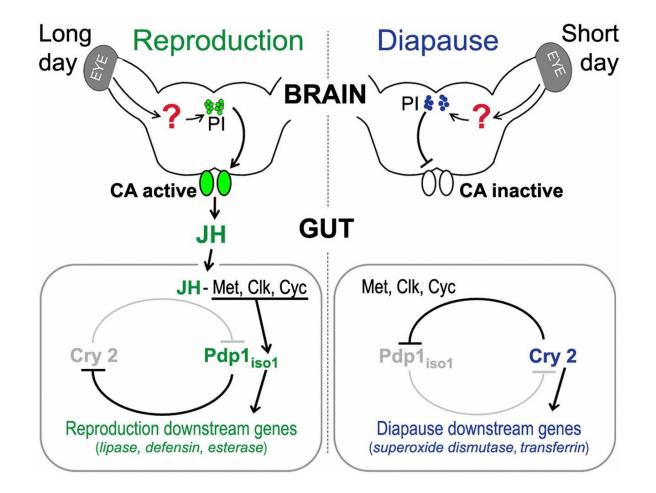
## Diuretic (DH) and antidiuretic (ADH) hormones

#### **Diuretic hormones:**


- corpora cardiaca, suboesophageal and thoracic ganglia
- stimulate diuresis in Malpighian tubules:
  - homologs of corticotropin releasing factor (CRF; vertebrate neuropeptide family) stimulating Na/K transport in Malpighian tubules via cAMP
  - 2) calcitonin-like (CT-like) peptides
  - myokinins acting via Ca<sup>2+</sup> and changing the channel throughput for Cl<sup>-</sup> (Na, K)
- they are also involved in meconium excretion after adult hatching

#### Antidiuretic hormones:

- abdominal nerves
- stimulate the reabsorption of water from the intestine into the hemolymph
- e.g. neuroparsin (antigonadotropin, antidiuretic activity, increases the concentration of lipids and trehalose in the hemolymph)


#### **Diapause hormones**

- peptide structurally similar to PBAN (pheromone biosynthesis activating neuropeptide) produced in female suboesophageal ganglion and transported to ovaries
- moreover, pheromonotropic and myotropic effect
- stimulation of embryonic diapause by supporting glycogen storage in oocytes and activation of trehalase



#### **Diapause hormones**

- diapause is also controlled by PTTH, ecdysteroids and JH
- diapause mechanisms are connected to molecular clock mechanisms

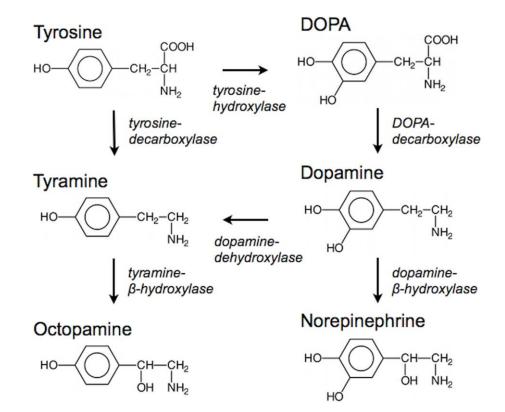


#### **Gonadotropic hormones**

- ovarian and testes development, vitellogenesis, transport of storage molecules from the fat body to the ovaries and others
- key role of ecdysteroids and juvenile hormones, involvement of neuropeptides

#### 1) Stimulatory:

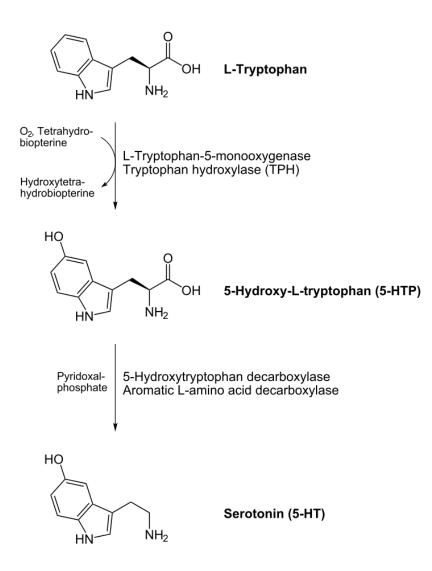
- prothoracicotropic hormone (PTTH)
- ovary maturing parsin (OMP) stimulates synthesis of ecdysteroids and Vg
- folicle cell tropic hormone (FTCH) synthesis of ecdysteroids in ovaries
- egg development neurohormone / ovarian ecdysteroidogenic hormone (EDNH / OEH) - alternates PTTH in adults, produced in brain and stored in corpora cardiaca


#### 2) Inhibitory:

- neuroparsin inhibits corpora allata and the production of juvenile hormones
- oostatic hormones and trypsin-modulating oostatic factor (folliclostatins) inhibits production of ecdysteroids, JH and EDNH

#### **Biogenic amines of insects**

#### Tyramine and octopamine


- equivalents of adrenaline and noradrenalin in vertebrates
- the only non-peptidic hormones found only in invertebrates
- autocrine in prothoracic glands (interacts with PTTH)
- flight-or-fight response, energetic metabolism, muscle contraction, learning and memory in bees, sensory neuron sensitivity (synaptic plasticity)



## **Biogenic amines of insects**

#### Serotonin (5-hydroxytryptamine)

- mainly neurotransmitter
- present for instance in the CNS and crustacean gonads
- stimulates reproduction (probably via gonads-stimulating hormone, but the exact mechanism is unknown)

