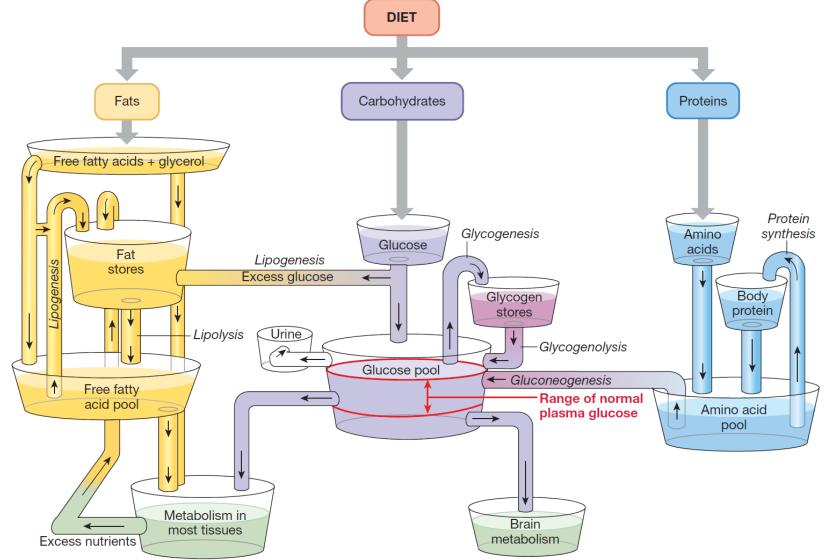
MUNI MED

Metabolism of sacharides, lipids and proteins. Energy metabolism.

Introduction

At steady state, the energy input must correspond to the energy output

Energy expenditure = external work + energy reserves + heat
 Intermediate: various chemical, mechanical and thermal reactions


Saccharides, lipids, proteins

□ Conversion of proteins and sugars into fats - efficient energy storage

□ Conversion of proteins into sugars - the need for fast energy

BUT: there is no significant conversion of fats into sugars

Nutrient pools and metabolism

MUNI

MED

Fig. 22.3 Adapted from L. L. Langley, *Homeostasis* (New York: Reinhold, 1965).

Metabolism of saccharides

Energy source

Functions of saccharides:

Part of glycoproteins and glycolipids
 Inevitable for nucleic acids and coenzyme synthesis
 Part of extracellular matter

Saccharides:

Monosaccharides
Oligosaccharides
Polysaccharides

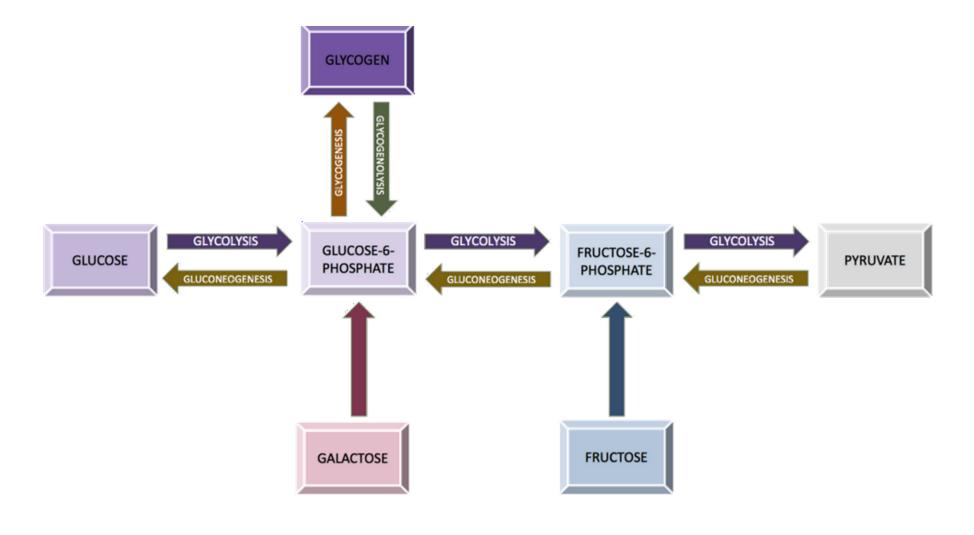
Digestion and absorption

□ Saliva (salivary amylase)

□ Pancreatic juice (a-amylase)

Epithelium of duodenum and jejunum (isomaltase, maltase, saccharase, lactase)

Metabolism of saccharides


- □ The key substrate is **glucose**
- Postprandial plasma glucose level: 3.5 5.5 mmol/l

[]/| |− |]

- Glycemia. Hypoglycemia, hyperglycemia
- Glycolysis, gluconeogenesis
- Glycogenolysis, glycogenesis

Metabolism of saccharides

□ Morning glucose intake - 70% consumed by peripheral tissues (muscles), 30% - splanchnic organs (liver)

MED

Metabolic disorders - saccharides

Diabetes mellitus

McArdle syndrom (glycogenesis from deficiency of myophosphorylase

 \rightarrow accumulation of glycogen in muscles: muscle stiffness, rigor during

exercise, lower tolerance of load)

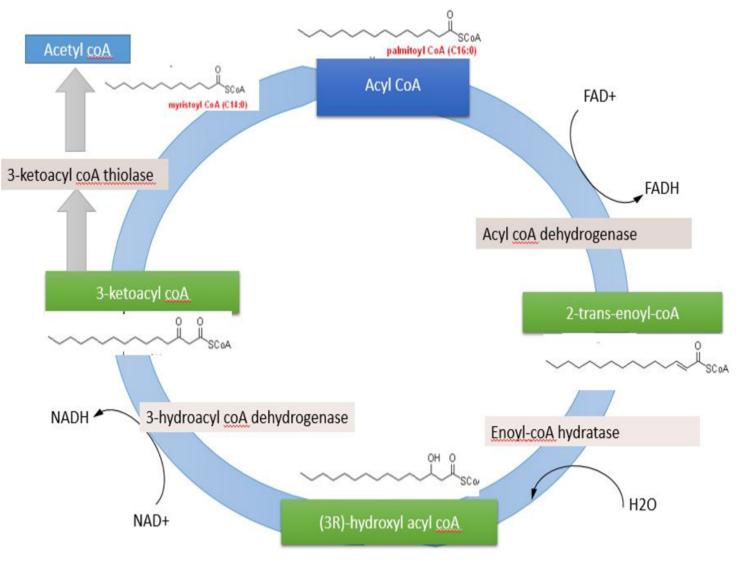
Galactosemia(inherited deficiency of phosphogalactosauridyltransferase; disorders of growths and development)

Metabolism of lipids Main and most profitable form of energy store

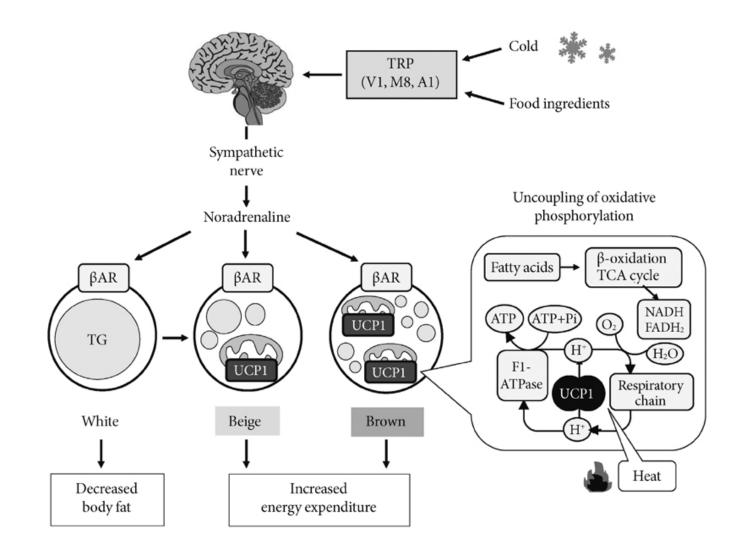
Lipid functions:

- Part of biological membranes fospholipids
- Energy storage
- □ Protective cover for organisms
- □ Precursors of some important substances
- □Vitamin solvents (A, D, E, K)

□Lipids:


- □ Triglycerides
- Sterols
- Phospholipids

Digestion and absorption


- □Bile acids salts (emulsification)
- □ Pancreatic lipase, cholesterol-estherase, phospholipase a₂, enteric lipase(deestherification)

 $M \vdash D$

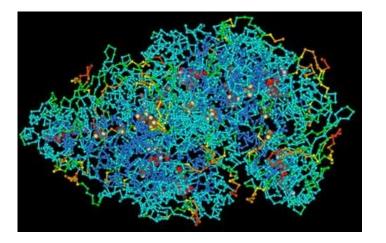
Metabolism of lipids

Fat tissue

MUNI MED

http://www.e-dmj.org/ViewImage.php?Type=F&aid=284781&id=F1&afn=2004_DMJ_37_1_22&fn=dmj-37-22-g001_2004DMJ

Metabolic disorders - lipids


Hyperlipidemia

□Hyperlipoproteinemia

Infrequent disorders of lipid metabolis

Metabolism of proteins

- □ Total proteins in body: 10 kg
- Protein minimum: 0.5 g / kg of body mass
- Protein optimum: 0.7 g / kg of body mass

□Increased supply (growth, convalescence, pregnancy, lactation): 1.5 – 2.0

Aminoacides

Essential (not synthesised)
 Non-essential (from glucose metabolism – citrate cycle)
 0.5 – 1.5 g / day

Metabolism of proteins

Digestion and absorption

□Stomach (pepsin)

Duodenum (trypsin, chymotrypsin, carboxypeptidase)

□ Jejunum (membrane peptidases)

□ Functions of proteines:

Structural (collagen, elastin, ...)

□ Motoric (actin, myosin, …)

Informational (protein hormones)

□ Protective (immunoglobulins, complement, antigens, ...)

 $M \vdash 1$

□Transport (albumin)

Metabolic disorders – proteins

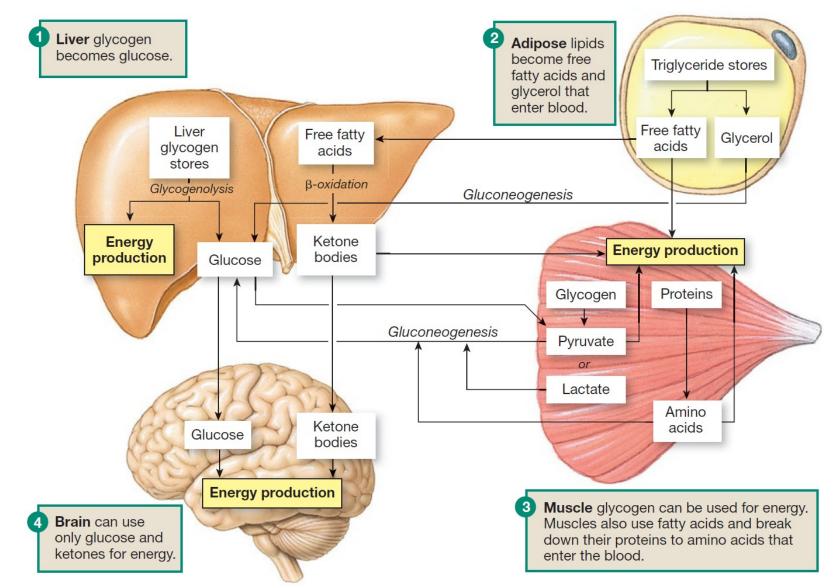
Proteinemia = plasmatic level of proteins.

Dysproteinemia = change in representation of particular proteins

(fractions shift) – nephrotic syndrome, cirrhosis, inflammatory reactions

Paraproteinemia = presence of pathological imunoglobulines (with no

antibodies specificity) – monoclonal immunopathy


Defect proteinemia = some components of plasma proteins are missing

 $M \vdash 1$

or lowered – syndromes of immunodeficiency, polyclonal

hypergamaglobulinemia

Energy storage

Metabolism

- summary of all chemical (and physical) processes included in:
 Production of energy from internal and external sources
 Synthesis and degradation of structural and functional tissue components
 - Excretion of waste products and toxins from body

Metabolic rate

□ Physical work (oxygen debt compensation)

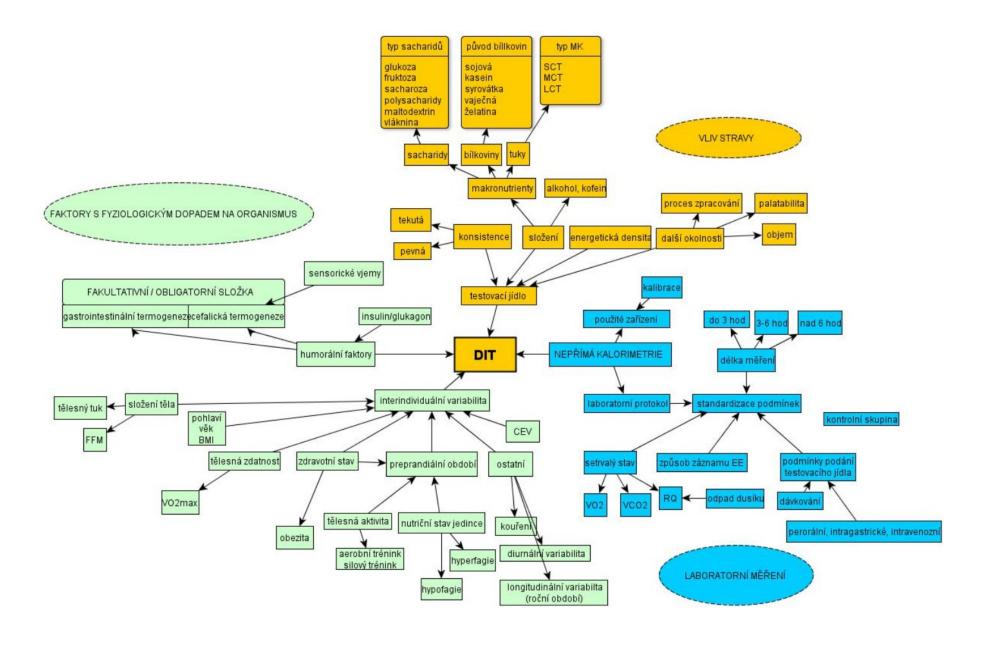
Specific-dynamic effect of food (assimilation of nutrients in the body)

External temperature

□ Height, weight and body surface

Gender

□Age


Emotions

Body temperature

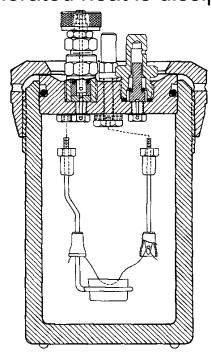
□Thyroid hormone level (T4, T3)

□ Adrenaline and norepinephrine levels

MUNI Med

Bazal metabolic rate (BMR)

- Energy for maintaining all vital functions
- □ Thermoneutral environment
- □ 12 14 hours after a meal
- □ 24 hours without exhausting physical work
- Elimination of all negative physical and mental factors

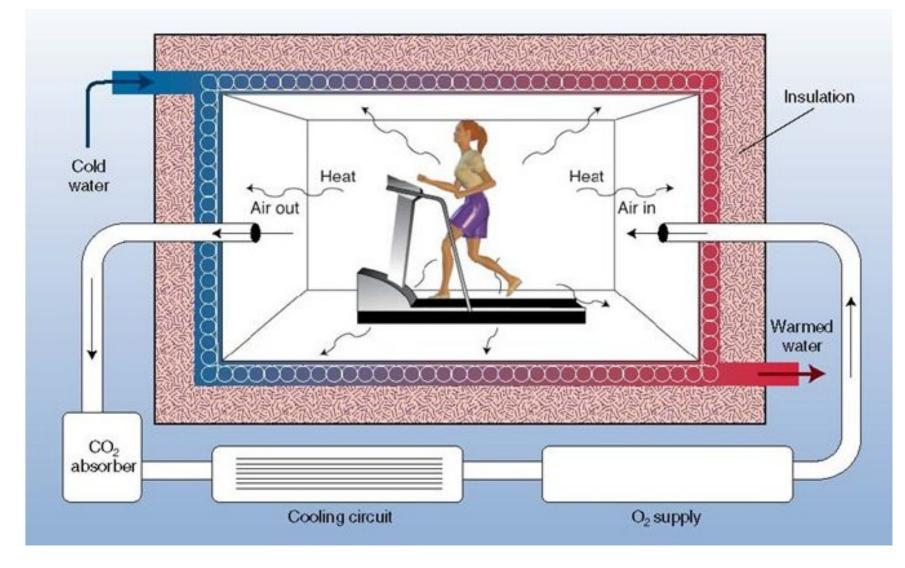

Direct calorimetry

= measuring the energy released by burning food outside the body

(oxidation of compounds in a calorimeter)

Calorimetry:

adiabatic = heating of the calorimeter content
 isothermal = generated heat is dissipated



 $\mathbb{N} \vdash \mathbb{D}$

Direct calorimetry

Direct calorimetry

BMR. Calculation

1. Harris-Benedictova rovnice

 $BMR (kcal) = 66,5 + 13,8 \times hmotnost (kg) + 5,0 \times výška (cm) - 6,8 \times věk (roky)$ Rovnice 1: Výpočet BMR pro muže

 $BMR(kcal) = 655 + 9.6 \times hmotnost(kg) + 1.8 \times výška(cm) - 4.7 \times věk(roky)$

Rovnice 2: Výpočet BMR pro ženy

2. Faustova rovnice

Výpočet pomocí Faustova vzorce není přesný, jedná se pouze o orientační předpoklad energetického výdeje.

BMR (kcal) = hmotnost (kg) × 24BMR (kcal) = hmotnost (kg) × 23Rovnice 3: Výpočet BMR pro mužeRovnice 4: Výpočet BMR pro ženy

3. Cunninghamova rovnice

Výpočet pomocí Faustova vzorce nerozlišuje pohlaví.

 $BMR(kcal) = 500 + 22 \times FFM(kg)$

Rovnice 5: Výpočet BMR pro muže

MUNI Med

Energy expenditure ENERGY EQUIVALENT (EE):

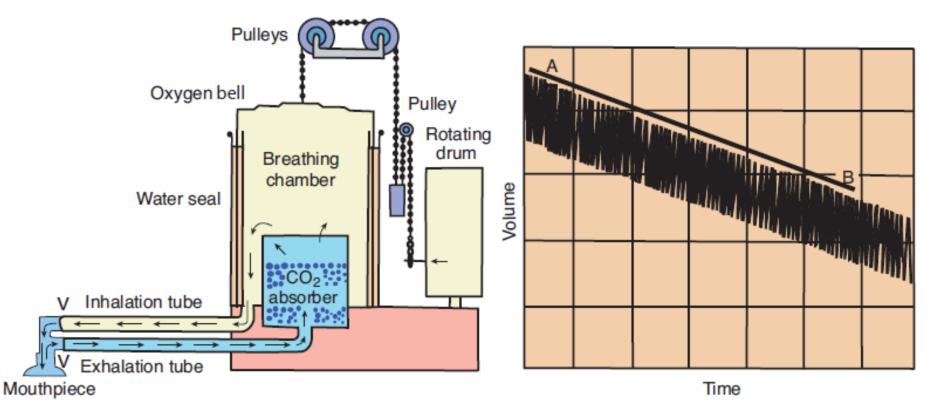
- \Box the amount of energy released when consuming 1 liter of O_2
- □ The thermal oxygen coefficient of individual nutrients differs, so the EE also differs
- \Box EE saccharides \longrightarrow 21.1 kJ = 5.05 kcal
- □EE proteines → 18.0 kJ = 4.31 kcal
- \Box EE lipides \rightarrow 19.0 kJ = 4.55 kcal
- □In a mixed diet (60% carbohydrates, 30% fat, 10% protein):

 $M \vdash D$

□EE = 20.1 kJ = 4.81 kcal

Indirect calorimetry

 \Box The amount of consumed O₂


□ Influence of diet composition - energy equivalent = universal constant for

calculation of energy expenditure under the assumption of mixed diet intake

Open system

Close system

Indirect calorimetry

FIGURE 27–8 Diagram of a modified Benedict apparatus, a recording spirometer used for measuring human O₂ consumption, and the record obtained with it. The slope of the line AB is proportionate to the O₂ consumption. V: one-way check valve.

MUNI Med

Respiratory quotient

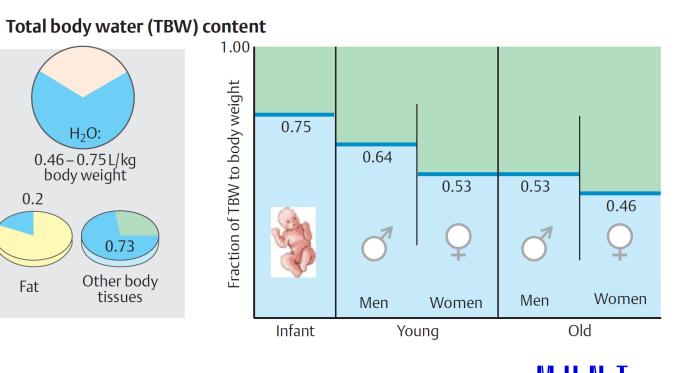
 $\mathbf{RQ} = VCO_2 : VO_2$

Saccharides (glu)

 $\Box C_6 H_{12} O_6 + 6O_2 = 6CO_2 + 6H_2 O$ $\Box RQ = 6/6 = 1.00$

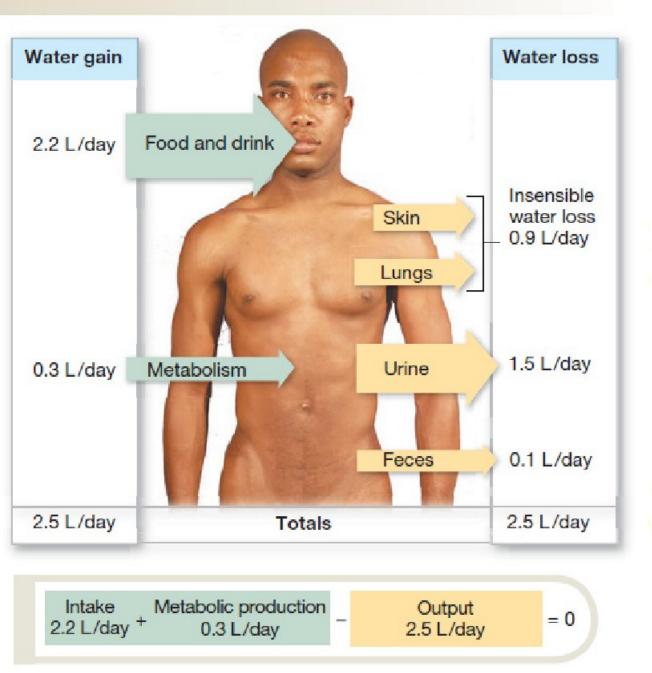
Lipides

 $\Box 2 C_{51}H_{96}O_6 + 145 O_2 = 102 CO_2 + 98 H_2O$ $\Box RQ = 102/145 = 0.703 (0.70)$

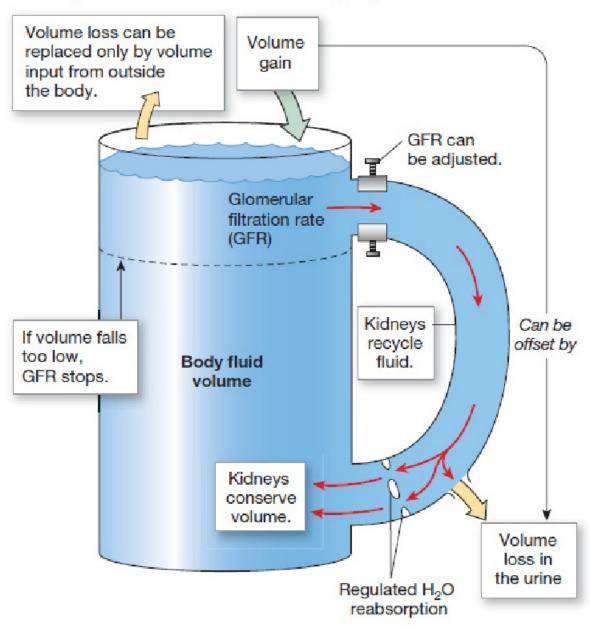

Respiratory quotient

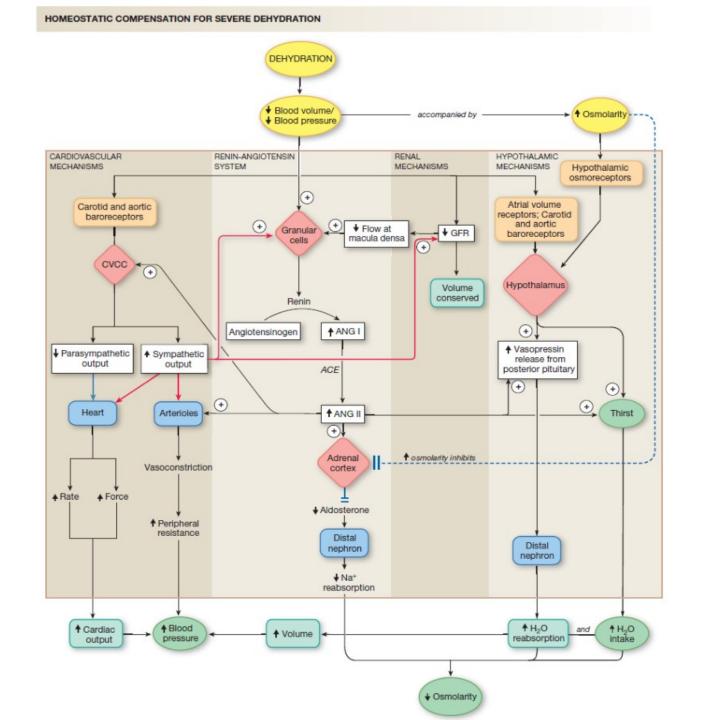
Substrate or metabolic process	RQ
saccharides/glycogen	1
lipids	0.7
proteins	0.9
glucogenesis	0.4
lipolysis	0.7
lipogenesis	2.75

Hyperventilation RQ decreasis
Workload RQ increases
Acidosis RQ increases
Alkalosis RQ decriases


Water

- □ 50-70% of body mass, newborns
- 2/3 intracellularly, and 1/3 extracellularly
- metabolism
- compartmentalisation
- □ functions in the human body:
 - □the transport medium
 - solvent
 - wetting
 - protection of the mucous membranes


 $M \in D$


WATER BALANCE IN THE BODY

THE KIDNEYS CONSERVE VOLUME

Kidneys cannot restore lost volume. They only conserve fluid.

□ all organic compounds of diet, necessary for life, health and growth;

 $M \in D$

□NO source of energy;

□soluble in:

□in water

□in lipids

Vitamin	Deficiency disease(s)	Overdose syndrome/symptoms	Food sources
Vitamin K	Bleeding diathesis	Decreased anticoagulation effect of warfarin	Leafy green vegetables such as spinach; egg yolks; liver
Vitamin E	Deficiency is very rare; mild hemolytic anemia in newborn infants	Possible increased incidence of congestive heart failure	Many fruits and vegetables, nuts and seeds, and seed oils
Vitamin D	Rickets and osteomalacia	Hypervitaminosis D	Eggs, liver, certain fish species such as sardines, certain mushroom species such as shiitake
Vitamin A	Night blindness, hyperkeratosis, and keratomalacia	Hypervitaminosis A	from animal origin: fish in general, liver and dairy products; from plant origin: orange, ripe yellow fruits, leafy vegetables, carrots, pumpkin, squash, spinach

Vitamin	Deficiency disease(s)	Overdose syndrome/symptoms	Food sources
Vitamin C	Scurvy	Stomach Pain, Diarrhoea and Flatulence	Many fruits and vegetables, liver
Vitamin B ₁₂	Vitamin B ₁₂ deficiency anemia	None proven	Meat, poultry, fish, eggs, milk
Vitamin B ₉	Megaloblastic anemia and deficiency during pregnancy is associated with birth defects, such as neural tube defects	May mask symptoms of vitamin B ₁₂ deficiency; other effects.	Leafy vegetables, pasta, bread, cereal, liver
Vitamin B ₇	Dermatitis, enteritis		Raw egg yolk, liver, peanuts, leafy green vegetables
Vitamin B ₆	Anemia, Peripheral neuropathy	Impairment of proprioception, nerve damage (doses > 100 mg/day)	Meat, vegetables, tree nuts, bananas
Vitamin B ₅	Paresthesia	Diarrhea; possibly nausea and heartburn	Meat, broccoli, avocados
Vitamin B ₃	Pellagra	Liver damage (doses > 2g/day) and other problems	Meat, fish, eggs, many vegetables mushrooms, tree nuts
Vitamin B_2	Ariboflavinosis, glossitis, angular stomatitis		Dairy products, bananas, green beans, asparagus
Vitamin B ₁	Beriberi, Wernicke-Korsakoff syndrome	Drowsiness and muscle relaxation	Pork, whole meal grains, brown rice, vegetables, potatoes, liver, eggs
			MED

Thank you for your attention