# **Restriction Endonucleases**

**TECHNICAL GUIDE** 





# Cut Smarter with Restriction Enzymes from NEB®

# Looking to bring CONVENIENCE to your workflow?

# Simplify Reaction Setup and Double Digestion with CutSmart<sup>®</sup> Buffer

Over 205 restriction enzymes are 100% active in a single buffer, CutSmart Buffer, making it significantly easier to set up your double digest reactions. Since CutSmart Buffer includes BSA, there are fewer tubes and pipetting steps to worry about. Additionally, many DNA modifying enzymes are 100% active in CutSmart Buffer, eliminating the need for subsequent purification.

For more information, visit www.NEBCutSmart.com

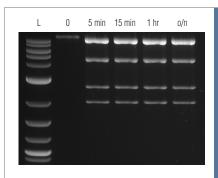
# Speed up Digestions with Time-Saver<sup>™</sup> Qualified Restriction Enzymes

190 of our restriction enzymes are able to digest DNA in 5-15 minutes, and can safely be used overnight with no loss of sample. For added convenience and flexibility, most of these are supplied with our new CutSmart Buffer.

For more information, visit www.neb.com/timesaver

# Keep it Simple with our RE-Mix<sup>®</sup> Restriction Enzyme Master Mixes

RE-Mix Restriction Enzyme Master Mixes are pre-mixed solutions that contain enzyme, buffer, BSA and loading dye. Just add your DNA and water; it's that simple! RE-Mix master mixes are Time-Saver qualified so you can trust your reaction to digest to completion in 15 minutes, or leave it to digest overnight, with no degradation of your final product.


For more information, visit www.NEBREMix.com

# Bring Flexibility to your Workflow

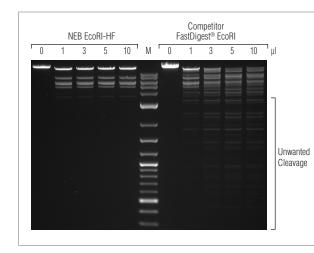
NEB offers the largest selection of restriction enzymes commercially available. With an every rowing list to choose from, currently at 280 enzymes – including traditional restriction enzymes, nicking endonucleases, homing endonucleases and methylation-sensitive enzymes for epigenetics studies – there is no need to look anywhere else.

Activity of DNA Modifying Enzymes in CutSmart Buffer

| ENZYME                                         | ACTIVITY<br>In Cutsmart | REQUIRED<br>SUPPLEMENTS |
|------------------------------------------------|-------------------------|-------------------------|
| Alkaline Phosphatase (CIP)                     | +++                     |                         |
| Antarctic Phosphatase                          | + + +                   | Requires Zn2+           |
| Bst DNA Polymerase                             | +++                     |                         |
| CpG Methyltransferase (M. Sssl)                | + + +                   |                         |
| DNA Polymerase I                               | +++                     |                         |
| DNA Polymerase I, Large (Klenow) Fragment      | +++                     |                         |
| DNA Polymerase Klenow Exo-                     | +++                     |                         |
| DNase I (RNase free)                           | +++                     | Requires Ca2+           |
| E. coli DNA Ligase                             | +++                     | Requires NAD            |
| Endonuclease III (Nth), recombinant            | +++                     |                         |
| Endonuclease VIII                              | + + +                   |                         |
| Exonuclease III                                | +++                     |                         |
| GpC Methyltransferase (M. CviPI)               | +                       | Requires DTT            |
| McrBC                                          | + + +                   |                         |
| Micrococcal Nuclease                           | + + +                   |                         |
| Nuclease BAL-31                                | + + +                   |                         |
| phi29 DNA Polymerase                           | + + +                   |                         |
| RecJ <sub>r</sub>                              | + + +                   |                         |
| Shrimp Alkaline Phosphatase (rSAP)             | + + +                   |                         |
| T3 DNA Ligase                                  | + + +                   | Requires ATP + PEG      |
| T4 DNA Ligase                                  | + + +                   | Requires ATP            |
| T4 DNA Polymerase                              | + + +                   |                         |
| T4 Phage $\beta$ -glucosyltransferase (T4-BGT) | + + +                   |                         |
| T4 Polynucleotide Kinase                       | + + +                   | Requires ATP + DTT      |
| T4 PNK (3´ phosphatase minus)                  | + + +                   | Requires ATP + DTT      |
| T7 DNA Ligase                                  | + + +                   | Requires ATP + PEG      |
| T7 DNA Polymerase (unmodified)                 | + + +                   |                         |
| T7 Exonuclease                                 | +++                     |                         |
| USER Enzyme, recombinant                       | +++                     |                         |



pXba DNA was digested with EcoRV-HF RE-Mix according to the recommended protocol. Lane L is the TriDye" 2-Log DNA Ladder (NEB #N3270). Complete digestion, free of unwanted star activity, is seen whether incubated for 5–15 minutes, 1 hour or overnight.



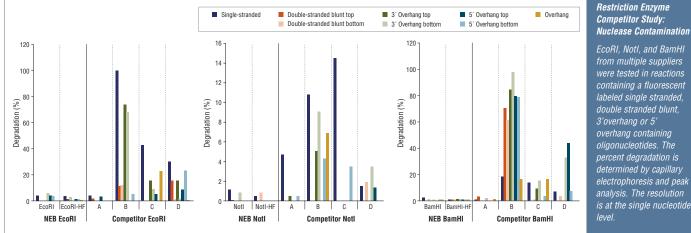

# Looking to optimize PERFORMANCE in your reaction?

# Choose a High-Fidelity (HF®) **Restriction Enzyme**

As part of our ongoing commitment to the advancement and improvement of enzymes for the cloning and manipulation of DNA, NEB has developed a line of High-Fidelity (HF) restriction enzymes. These engineered enzymes have the same specificity as the native enzyme, with the added benefit of reduced star activity, rapid digestion (5-15 minutes), and 100% activity in CutSmart Buffer. Enjoy the improved performance of NEB's engineered enzymes at the same price as the native enzymes!

For more information, visit www.neb.com/HF




EcoRI-HF (NEB #R3101) overnight digests, even when used at higher concentrations. 50 µl reactions were set up using 1 μg of Lambda DNA, the and the recommended reaction buffer. Reactions were incubated overnight at 37°C. Marker M is the 1 kb DNA Ladder (NEB# N3232).

# Benefit from Industry-leading Quality

NEB's reputation as a leader in enzyme technologies stems from the quality and reliability of our restriction enzymes. All of our restriction enzymes undergo stringent quality control testing, ensuring the highest levels of purity and lot-to-lot consistency.

#### HIGHLIGHTS

- · Industry-leading product quality
- State-of-the-art production and purification
- · Over 40 years of experience
- · Stringent quality control testing
- Lot-to-lot consistency
- ISO 9001- and 13485-certified



from multiple suppliers were tested in reactions containing a fluorescent electrophoresis and peak analysis. The resolution is at the single nucleotide

# Visit NEBCutSmart.com for information on the smarter choice of restriction enzymes.

HF®, REBASE®, RE-MIX®, NEW ENGLAND BIOLABS®, NEB®, NEBCLONER®, and NEBioCalculator® are registered trademarks of New England Biolabs, Inc.

CUTSMART®, NEBCUTTER®, TIME-SAVER™ and TRIDYE™ are trademarks of New England Biolabs, Inc

FASTDIGEST® is a registered trademark of Thermo Fisher Scientific.

IPAD® and IPHONE® are registered trademarks of Apple, Inc.

ANDROID<sup>™</sup> is a trademark of Google, Inc.



# High Fidelity (HF) Enzymes

High-Fidelity (HF) restriction enzymes are engineered enzymes that have the same specificity as the native enzymes, are all active in CutSmart Buffer and have reduced star activity. Star activity, or off-target cleavage, is an intrinsic property of restriction enzymes. Most restriction enzymes will not exhibit star activity under recommended reaction conditions. However, for enzymes that have reported star activity, extra caution must be taken to set up reactions according to the recommended conditions to avoid unwanted cleavage. HF enzymes should be used in these cases.

In addition to reduced star activity, HF enzymes work optimally in CutSmart Buffer, which has the highest level of enzyme compatibility and will simplify double digest reactions. They are all Time-Saver qualified and digest substrate DNA in 5-15 minutes and are flexible enough to digest overnight. HF enzymes are supplied with our **purple gel loading dye**, which sharpens bands and eliminates UV shadow. Lastly, they are available at the same price as the native enzymes.

### TOOLS & RESOURCES

#### Visit NEBRestrictionEnzymes.com to find:

- The full list of HF restriction enzymes available
- Online tutorials on how to avoid star activity and setting up digests using the Time-Saver protocol



The following table indicates the number of units of HF enzyme that can be used compared to the native enzyme before any significant star activity is detected. The HF Factor refers to the X-fold increase in fidelity that is achieved by choosing an HF enzyme. This data clearly illustrates the flexibility that is offered by using an HF restriction enzyme.

| PRODUCT<br>NAME | PRODUCT<br>NUMBER | BUFFER†  | MAXIMUM<br>UNITS WITH<br>No Star<br>Activity* | HF<br>Factor |
|-----------------|-------------------|----------|-----------------------------------------------|--------------|
| Agel-HF         | #R3552            | CutSmart | ≥ 250                                         | ≥ 8          |
| Agel            | #R0552            | 1.1      | 32                                            |              |
| BamHI-HF        | #R3136            | CutSmart | ≥ 4,000                                       | ≥ 125        |
| BamHI           | #R0136            | 3.1      | 32                                            |              |
| BmtI-HF         | #R3658            | CutSmart | 1,000,000                                     | 31,250       |
| Bmtl            | #R0658            | 3.1      | 32                                            |              |
| Bsal-HF         | #R3535            | CutSmart | ≥ 8,000                                       | ≥ 250        |
| Bsal            | #R0535            | CutSmart | 32                                            |              |
| BsrGI-HF        | #R3575            | CutSmart | ≥ 1,000                                       | ≥ 62         |
| BsrGI           | #R0575            | 2.1      | 16                                            |              |
| BstEII-HF       | #R3162            | CutSmart | ≥ 2,000                                       | ≥ 125        |
| BstEll          | #R0162            | 3.1      | 16                                            |              |
| DrallI-HF       | #R3510            | CutSmart | ≥ 2,000                                       | ≥ 1,000      |
| DrallI**        | N/A               | 3.1      | 2                                             |              |
| Eagl-HF         | #R3505            | CutSmart | 500                                           | 2            |
| Eagl            | #R0505            | 3.1      | 250                                           |              |
| EcoRI-HF        | #R3101            | CutSmart | 16,000                                        | 64           |
| EcoRI           | #R0101            | U        | 250                                           |              |
| EcoRV-HF        | #R3195            | CutSmart | ≥ 64,000                                      | ≥ 64         |
| EcoRV           | #R0195            | 3.1      | 1,000                                         |              |
| HindIII-HF      | #R3104            | CutSmart | ≥ 500,000                                     | ≥ 2,000      |
| HindIII         | #R0104            | 2.1      | 250                                           |              |
| KpnI-HF         | #R3142            | CutSmart | ≥ 1,000,000                                   | ≥ 62,500     |
| Kpnl            | #R0142            | 1.1      | 16                                            |              |
| Mfel-HF         | #R3589            | CutSmart | ≥ 500                                         | ≥ 16         |
| Mfel            | #R0589            | CutSmart | 32                                            |              |
| Mlul-HF         | #R3198            | CutSmart | ≥ 4,000                                       | 2            |
| Mlul            | #R0198            | 3.1      | ≥ 2,000                                       |              |
| Ncol-HF         | #R3193            | CutSmart | ≥ 64,000                                      | ≥ 530        |
| Ncol            | #R0193            | 3.1      | 120                                           |              |

| PRODUCT<br>Name | PRODUCT<br>Number | BUFFER†  | MAXIMUM<br>UNITS WITH<br>NO STAR<br>ACTIVITY* | HF<br>Factor |
|-----------------|-------------------|----------|-----------------------------------------------|--------------|
| Nhel-HF         | #R3131            | CutSmart | ≥ 32,000                                      | ≥ 266        |
| Nhel            | #R0131            | 2.1      | 120                                           |              |
| NotI-HF         | #R3189            | CutSmart | ≥ 64,000                                      | ≥ 16         |
| Notl            | #R0189            | 3.1      | 4,000                                         |              |
| Nrul-HF         | #R3192            | CutSmart | ≥ 32,000                                      | 64           |
| Nrul            | #R0192            | 3.1      | ≥ 500                                         |              |
| Nsil-HF         | #R3127            | CutSmart | ≥ 8000                                        | 2            |
| Nsil            | #R0127            | 3.1      | ≥ 4,000                                       |              |
| PstI-HF         | #R3140            | CutSmart | 4,000                                         | 33           |
| Pstl            | #R0140            | 3.1      | 120                                           |              |
| Pvul-HF         | #R3150            | CutSmart | ≥ 16,000                                      | ≥ 32         |
| Pvul            | #R0150            | 3.1      | 500                                           |              |
| Pvull-HF        | #R3151            | CutSmart | 500                                           | 32           |
| Pvull           | #R0151            | 2.1      | 16                                            |              |
| SacI-HF         | #R3156            | CutSmart | ≥ 32,000                                      | ≥ 266        |
| Sacl            | #R0156            | 1.1      | 120                                           |              |
| Sall-HF         | #R3138            | CutSmart | ≥ 32,000                                      | ≥ 8,000      |
| Sall            | #R0138            | 3.1      | 4                                             |              |
| SbfI-HF         | #R3642            | CutSmart | 250                                           | 32           |
| Sbfl            | #R0642            | CutSmart | 8                                             |              |
| Scal-HF         | #R3122            | CutSmart | 250                                           | 62           |
| Scal**          | #R0122            | 3.1      | 4                                             |              |
| Spel-HF         | #R3133            | CutSmart | ≥ 8,000                                       | ≥ 16         |
| Spel            | #R0133            | CutSmart | 500                                           |              |
| SphI-HF         | #R3182            | CutSmart | 8,000                                         | 250          |
| Sphl            | #R0182            | 2.1      | 32                                            |              |
| SspI-HF         | #R3132            | CutSmart | 500                                           | 16           |
| Sspl            | #R0132            | U        | 32                                            |              |
| Styl-HF         | #R3500            | CutSmart | 4,000                                         | 125          |
| Styl            | #R0500            | 3.1      | 32                                            |              |

# Avoiding Star Activity

# Tips for preventing unwanted cleavage in restriction enzyme digests

Under non-standard reaction conditions, some restriction enzymes are capable of cleaving sequences which are similar but not identical to their defined recognition sequence. This altered specificity has been termed "star activity". It has been suggested that star activity is a general property of restriction endonucleases (1) and that any restriction endonuclease will cleave noncanonical sites under certain extreme conditions, some of which are listed below. Although the propensity for star activity varies, the vast majority of enzymes from New England Biolabs will not exhibit star activity when used under recommended conditions in their supplied NEBuffers. If an enzyme has been reported to exhibit star activity, it will be indicated in the product entry found in the catalog, on the supplied card and on our website.

### **TOOLS & RESOURCES**

#### Visit NEBRestrictionEnzymes.com to find:

- Video tutorials on how to avoid star activity, and for setting up restriction enzyme digests
- The full list of HF enzymes available
- Troubleshooting guides



| CONDITIONS THAT CONTRIBUTE<br>TO STAR ACTIVITY                                                                                            | STEPS THAT CAN BE TAKEN TO INHIBIT STAR ACTIVITY                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High alward apparentiation ( $-50(-y/y)$ )                                                                                                | Restriction enzymes are stored in 50% glycerol, therefore the amount of enzyme added should not exceed 10% of the total reaction volume.                                                |
| High glycerol concentration (> 5% v/v)                                                                                                    | Use the standard 50 $\mu I$ reaction volume to reduce evaporation during incubation.                                                                                                    |
| High concentration of enzyme/µg of<br>DNA ratio (varies with each enzyme,<br>usually 100 units/µg)                                        | Use the fewest units possible to achieve digestion. This avoids overdigestion and reduces the final glycerol concentration in the reaction.                                             |
| Non-optimal buffer                                                                                                                        | Whenever possible, set up reactions in the recommended buffer. Buffers with differing ionic strengths and pHs may contribute to star activity.                                          |
| Prolonged reaction time                                                                                                                   | Use the minimum reaction time required for complete digestion. Prolonged incubation may result in increased star activity, as well as evaporation.                                      |
| Presence of organic solvents [DMSO,<br>ethanol (4), ethylene glycol,<br>dimethylacetamide, dimethylformamide,<br>sulphalane (5)]          | Make sure the reaction is free of any organic solvents, such as alcohols, that might be present in the DNA preparation.                                                                 |
| Substitution of Mg <sup>2+</sup> with other divalent cations (Mn <sup>2+</sup> , Cu <sup>2+</sup> , Co <sup>2+</sup> , Zn <sup>2+</sup> ) | Use Mg <sup>2+</sup> as the divalent cation. Other divalent cations may not fit correctly into the active site of the restriction enzyme, possibly interfering with proper recognition. |

Note: The relative significance of each of these altered conditions will vary from enzyme to enzyme.

New England Biolabs recommends setting up restriction enzyme digests in a 50  $\mu$ l reaction volume. However, different methods may require smaller reaction volumes. When performing restriction enzyme digests in smaller reaction volumes, extra care must be taken to follow the steps listed above to avoid star activity. Alternatively, using our line of **High Fidelity (HF) restriction enzymes** will allow greater flexibility in reaction setup. Please visit **www.neb.com/HF frequently** to learn about new additions to the HF restriction enzyme product line.

References:

- 1. Nasri, M. and Thomas, D. (1986) Nucleic Acids Res. 14, 811.
- 2. Barany, F. (1988) Gene, 68, 149.
- 3. Bitinaite, J. and Schildkraut, I. (2002) Proc. Natl. Acad. Sci. USA, 99, 1164-1169.
- 4. Nasri, M. and Thomas, D. (1987) Nucleic Acids Res. 15, 7677.
- 5. Tikchonenko, T.I., et al. (1978) Gene, 4, 195-212.

### **RESTRICTION ENZYME TYPES**

- Type I enzymes are multisubunit proteins that cut DNA randomly at a distance from their recognition sequence.
- Type II enzymes cut DNA at defined positions close to or within their recognition sequence and are commonly used in the laboratory. There are over ten subtypes with different types of recognition sites, cleavage sites and cofactor requirements.
- The most common Type II enzymes cleave within their recognition site (e.g., BamHI, EcoRI); sites can be symmetric or asymmetric.
- Type IIS enzymes cleave outside their recognition sequence (e.g., Fokl, Alwl) and are invaluable for emerging technologies in the biotechnology industry.
- Type IIM enzymes recognize methylated targets (e.g., DpnI).
- Type III enzymes are large, combination restriction-and-modification enzymes that cleave outside their recognition sequences and require two sequences in opposite orientations to cleave one DNA molecule.
- Type IV enzymes recognize modified DNA (methylated, hydroxymethylated, etc.). They require two sites and cleave non-specifically.
- Isoschizomers are restriction enzymes that recognize the same sequence as the prototype.
- Neoschizomers are isoschizomers with different cleavage sites.



Learn more about restriction enzyme types in our online tutorials.



# Time-Saver Qualified Restriction Enzymes

Whether you are quickly screening large numbers of clones or setting up overnight digests, you will benefit from the high quality of our enzymes. Typically, a restriction digest involves the incubation of 1  $\mu$ l of enzyme with 1  $\mu$ g of purified DNA in a final volume of 50  $\mu$ l for 1 hour. However, to speed up the screening process, choose one of NEB's enzymes that are Time-Saver qualified. **190 of our enzymes will digest 1**  $\mu$ g of substrate DNA in 5-15 minutes using 1  $\mu$ l of enzyme under recommended reaction conditions, and can also be used safely in overnight digestions. Unlike other suppliers, there is no special formulation, change in concentration or need to buy more expensive, new lines of enzymes to achieve digestion in 5-15 minutes. Nor do you have to worry if you incubate too long.

In an effort to provide you with as much information as possible, NEB has tested all of its enzymes on unit assay substrate, as well as plasmid substrate and PCR fragments. We recommend that this data be used as a guide, as it is not definitive for all plasmids. Restriction enzymes can often show site preference, presumably determined by the sequence flanking the recognition site. In addition, supercoiled DNA may have varying rates of cleavage. For more information, visit **www.neb.com/TimeSaver**. Note that there are some enzymes indicated below that can cut in 5-15 minutes, but cannot be incubated overnight. These are not Time-Saver qualified.

Since all of our enzymes are rigorously tested for nuclease contamination, you can also safely set up digests for long periods of time without sample degradation. Only NEB Time-Saver qualified enzymes offer power and flexibility – the power to digest in 5-15 minutes and the flexibility to withstand overnight digestions with no loss of substrate.

|                |               | SUBSTRATE |         |
|----------------|---------------|-----------|---------|
| ENZYME         | UNIT<br>ASSAY | PLASMID   | PCR     |
| AatII          |               | <b>A</b>  | •       |
| Accl           | -             | <b>A</b>  | <b></b> |
| Acc65I         | •             | <b></b>   | •       |
| Acil           | •             | •         | •       |
| AcII           | •             |           | <b></b> |
| Acul           |               | <b></b>   | <b></b> |
| AfIII          | •             | •         | •       |
| Agel-HF        | •             | •         | •       |
| Agel-HF RE-Mix | •             | •         | -       |
| Ahdl           | •             | •         | -       |
| Alul           | •             | <b>A</b>  | •       |
| AlwNI          | •             | •         | <b></b> |
| Apal           | •             | •         | •       |
| ApaLI          | •             | •         | <b></b> |
| ApeKI          | •             | •         | <b></b> |
| Apol           | •             | •         | •       |
| Ascl           | •             | •         | NT      |
| Ascl RE-Mix    | •             | •         | NT      |
| Asel           | •             | •         | NT      |
| Aval           | •             | <b>A</b>  | <b></b> |
| Avall          | •             | •         | •       |
| AvrII          | •             | <b>A</b>  | NT      |
| Bael           |               | •         | <b></b> |

|          |               | SUBSTRATE |          |
|----------|---------------|-----------|----------|
| ENZYME   | UNIT<br>ASSAY | PLASMID   | PCR      |
| BaeGI    | •             | <b></b>   |          |
| BamHI    | •             | •         | <b></b>  |
| BamHI-HF | •             | •         | •        |
| Bbsl     |               | <b></b>   | <b>A</b> |
| Bbvl     | •             | <b></b>   | <b>A</b> |
| Bccl     | •             | <b>A</b>  | <b>A</b> |
| BceAl    | •             |           | <b>A</b> |
| BciVI    | •             |           | <b>A</b> |
| Bcll     | •             | <b></b>   | <b>A</b> |
| BcoDI    | •             | •         | <b>A</b> |
| BfuAl    | •             | •         | <b>A</b> |
| BfuCI    | •             | <b>A</b>  | •        |
| Bgll     | •             | •         | <b>A</b> |
| BgIII    | •             |           | <b>A</b> |
| Blpl     | •             | •         | •        |
| BmgBl    | •             | •         | <b>A</b> |
| Bmrl     |               | <b>A</b>  | =        |
| BmtI-HF  | •             | •         | <b></b>  |
| BpuEl    | •             | •         | <b>A</b> |
| Bsal     | •             | •         | <b>A</b> |
| Bsal-HF  | •             | •         | <b>A</b> |
| BsaAl    | •             | •         | -        |
| BsaHI    |               |           | •        |

#### **Chart Legend**

- digests in 5 minutes
- digests in 15 minutes
- not completely digested in 15 minutes
- NT not tested

|                  | SUBSTRATE     |         |         |
|------------------|---------------|---------|---------|
| ENZYME           | UNIT<br>ASSAY | PLASMID | PCR     |
| BsaWI            |               |         |         |
| BsaXI            | •             |         |         |
| BseRI            | ٠             | •       |         |
| Bsgl             | •             | •       | <b></b> |
| BsiEl            | ٠             | <b></b> | <b></b> |
| BsiWI            | •             | •       | <b></b> |
| BsII             | ٠             |         |         |
| Bsml             | •             | •       | <b></b> |
| BsmAl            | ٠             | <b></b> | •       |
| BsmBl            |               |         | <b></b> |
| BsmFl            | ٠             | •       | <b></b> |
| BsoBl            | •             |         | •       |
| Bsp1286I         | •             | •       | <b></b> |
| BspCNI           |               |         | <b></b> |
| BspEl            | •             | <b></b> | <b></b> |
| BspHI            |               | •       | •       |
| BspQI            | ٠             | •       |         |
| Bsrl             | •             |         |         |
| BsrBl            | •             |         |         |
| BsrDI            | •             |         |         |
| BsrGI            |               |         |         |
| BsrGI-HF         | •             | •       |         |
| BssHII           | •             |         |         |
| BssKI            |               |         | •       |
| BssS∝l           | ٠             | <b></b> |         |
| BstBI            | •             | •       |         |
| BstEll           | ٠             | •       |         |
| BstEII-HF        | •             | •       | •       |
| BstEII-HF RE-Mix | ٠             | •       |         |
| BstNI            | •             | •       |         |
| BstUI            | •             | •       |         |
| BstXI            | •             | •       |         |
| BstYI            |               | •       |         |
| BstZ17I          | •             |         |         |
| Bsu36l           |               |         |         |
| Btsαl            | •             | •       |         |
| BtsCl            | ٠             |         |         |
| Cac8I            |               |         |         |
| Clal             | •             | •       |         |
| CspCI            | •             | •       |         |
| CviAll           |               | •       | •       |
| CviQI            | •             | •       | •       |
| Ddel             | •             |         |         |
|                  |               |         |         |



|                           | SUBSTR        |         | RATE     |  |
|---------------------------|---------------|---------|----------|--|
| ENZYME                    | UNIT<br>ASSAY | PLASMID | PCR      |  |
| Dpnl                      | •             | •       |          |  |
| DpnII                     |               | <b></b> | ٠        |  |
| Dral                      | •             | •       |          |  |
| DrallI-HF                 | •             | •       |          |  |
| Drdl                      |               | •       | •        |  |
| Eagl                      | •             |         |          |  |
| Eagl-HF                   | •             | •       |          |  |
| Earl                      |               | •       |          |  |
| Eco53KI                   | •             | •       |          |  |
| EcoNI                     | •             | •       | •        |  |
| Eco01091                  | •             |         |          |  |
| EcoP15I                   |               |         |          |  |
| EcoRI                     | •             | •       |          |  |
| EcoRI-HF                  | •             | •       | •        |  |
| EcoRI-HF RE-Mix           | •             | •       |          |  |
| EcoRV                     | •             | •       |          |  |
| EcoRV-HF                  | •             | •       |          |  |
| EcoRV-HF RE-Mix           | •             | •       |          |  |
| Fnu4HI                    | •             |         |          |  |
| Fokl                      | •             | •       | •        |  |
| Fsel                      | •             | •       |          |  |
| Fspl                      |               |         |          |  |
| Haell                     | -             |         | -        |  |
| Haelli                    |               | •       | •        |  |
| Hgal                      |               |         |          |  |
| Hhal                      |               |         |          |  |
| Hincll                    |               |         | •        |  |
| HindIII-HF                |               | •       | •        |  |
| Hinfl                     | •             | •       | •        |  |
| HinP1I                    | •             |         | •        |  |
| Hpall                     | •             |         | •        |  |
| Hphl                      | •             |         |          |  |
|                           | •             | •       | •        |  |
| Hpy166II                  |               |         |          |  |
| HpyAV                     | •             | •       | NT       |  |
| HpyCH4IV                  | •             | •       | •        |  |
| HpyCH4V                   | •             | •       | •        |  |
| Kpnl-HF<br>Kppl HE BE Mix | •             | •       | •        |  |
| KpnI-HF RE-Mix            | •             | •       | <b>A</b> |  |
| Mbol                      | •             |         | •        |  |
| Mboll                     | •             | •       | •        |  |
| Mfel UE                   | •             | •       | •        |  |
| Mfel-HF                   | •             | •       | •        |  |
| Mfel-HF RE-Mix            | •             | •       | •        |  |
| Mlul                      | •             | •       | •        |  |
| MIuI-HF                   | •             | •       | <b>A</b> |  |
| MluCl                     | •             | •       | <b>A</b> |  |
| Mlyl                      | •             |         | •        |  |
| Mmel                      | •             | •       | <b>A</b> |  |
| MnII                      | •             | •       |          |  |
| Msel                      |               |         | •        |  |

|                |               | SUBSTRATE |          |
|----------------|---------------|-----------|----------|
| ENZYME         | UNIT<br>ASSAY | PLASMID   | PCR      |
| MsII           | •             |           | •        |
| Mspl           | •             | •         | •        |
| MspA1I         | •             | •         | •        |
| Mwol           |               |           |          |
| Ncil           | •             | •         | •        |
| Ncol           | •             |           |          |
| Ncol-HF        | •             | •         | •        |
| Ncol-HF RE-Mix | •             | •         | •        |
| Ndel           | •             | •         |          |
| NgoMIV         |               | •         |          |
| Nhel           | •             |           |          |
| Nhel-HF        | •             | •         |          |
| Nhel-HF RE-Mix | •             | •         |          |
| NIalli         |               |           |          |
| NmeAIII        | •             |           |          |
| Notl           | •             | •         |          |
| NotI-HF        | •             | •         | •        |
| NotI-HF RE-Mix | •             | •         |          |
| Nrul           | •             |           | _<br>_   |
| Nrul-HF        | •             |           |          |
| Nsil           | •             | •         | •        |
| Nsil-HF        | •             | •         |          |
| Nspl           | •             |           | -        |
| Pacl           | •             | -         |          |
| PacI-RE-Mix    | •             | •         | NT       |
| PaeR7I         | •             |           |          |
| Pflfl          | •             | -         | _<br>_   |
| PfIMI          | •             |           |          |
| Pmel           | •             | -         | NT       |
| Pmll           | •             |           |          |
| PpuMI          | •             |           |          |
| PshAl          |               | -         | -        |
| Pstl           | •             | •         | •        |
| PstI-HF        | •             | •         | •        |
| Pvul           | •             |           | •        |
| Pvul-HF        | •             | •         | •        |
| Pvull          | •             | •         | •<br>•   |
| Pvull-HF       | •             | •         |          |
| Rsal           | •             | •         | •        |
| Sacl           | •             | •         |          |
| SacI-HF        | •             | •         | •        |
| Sacl           | •             |           |          |
| Sall           | •             |           |          |
| Sall-HF        | •             | •         | <b>A</b> |
| Sall-HF RE-Mix |               | •         | <b>A</b> |
|                | •             |           | ▲<br>•   |
| Sapl           | •             |           | <b>A</b> |
| Sbfl           | •             | •         | <b>A</b> |
| SbfI-HF        | •             | •         | <b>A</b> |
| Scal-HF        | •             | •         | <b>A</b> |
| Scal-HF RE-Mix | •             | •         | <b>A</b> |

|             | SUBSTRATE     |          |          |
|-------------|---------------|----------|----------|
| ENZYME      | UNIT<br>ASSAY | PLASMID  | PCR      |
| Sfil        | •             |          | <b>A</b> |
| Sfol        | •             | •        | •        |
| Smal        | •             |          |          |
| Spel        | •             | •        | ٠        |
| Spel RE-Mix | •             | •        | •        |
| Sphl        | •             | •        |          |
| Sspl        | •             | •        | <b>A</b> |
| SspI-HF     | •             | •        |          |
| Stul        |               |          | <b>A</b> |
| Styl        |               |          |          |
| Styl-HF     | •             | •        | <b>A</b> |
| StyD4I      |               | <b>A</b> |          |
| Swal        |               |          | <b>A</b> |
| Taql        | •             | •        |          |
| Tfil        |               | •        | <b>A</b> |
| Tsel        |               | <b>A</b> |          |
| TspMI       | •             |          | <b>A</b> |
| TspRI       | •             |          | <b></b>  |
| Tth111I     |               |          | <b>A</b> |
| Xbal        | •             | •        |          |
| Xbal-RE-Mix | •             | •        |          |
| Xhol        | •             | •        |          |
| Xhol RE-Mix | •             | •        | NT       |
| Xmal        |               | <b>A</b> |          |
| XmnI        | •             | •        |          |

# TOOLS & RESOURCES

#### Visit www.neb.com/TimeSaver to find:

- The full list of Time-Saver qualified restriction enzymes available
- Video tutorials on how Time-Saver qualified enzymes speed up restriction enzyme digests



OPTIMIZING REACTIONS

# **Optimizing Restriction Enzyme Reactions**

There are several key factors to consider when setting up a restriction enzyme digest. Using the proper amounts of DNA, enzyme and buffer components in the correct reaction volume will allow you to achieve optimal digestion. By definition, 1 unit of restriction enzyme will completely digest 1 µg of substrate DNA in a 50 µl reaction in 60 minutes. This enzyme:DNA:reaction volume ratio can be used as a guide when designing reactions. However, most researchers follow the "typical" reaction conditions listed, where a 5-10 fold overdigestion is recommended to overcome variability in DNA source, quantity and purity. The Time-Saver protocol can be used for enzymes that are Time-Saver qualified and will digest DNA in 5-15 minutes (see page 6-7 for the full list). For additional convenience, a RE-Mix Restriction Enzyme Master Mix can also be used. NEB offers the following tips to help you to achieve maximal success in your restriction enzyme reactions.

### Standard Protocol

| Restriction Enzyme                       | 1 µl (or 10 units)* |  |
|------------------------------------------|---------------------|--|
| DNA                                      | 1 µg                |  |
| 10X NEBuffer                             | 5 µl (1X)           |  |
| Total Reaction Volume                    | 50 µI               |  |
| Incubation Temperature                   | Enzyme Dependent    |  |
| Incubation Time                          | 60 minutes          |  |
| *Sufficient to digest all types of DNAs. |                     |  |

### Time-Saver Protocol:

| Restriction Enzyme     | 1 µl             |
|------------------------|------------------|
| DNA                    | 1 µg             |
| 10X NEBuffer           | 5 µl (1X)        |
| Total Reaction Volume  | 50 µl            |
| Incubation Temperature | Enzyme Dependent |
| Incubation Time        | 5–15 minutes*    |

\*Time-Saver qualified enzymes can also be incubated overnight with no star activity

# Enzyme

- Keep on ice when not in the freezer
- Should be the last component added to reaction
- Mix components by pipetting the reaction mixture up and down, or by "flicking" the reaction tube. Follow with a quick ("touch") spin-down in a microcentrifuge. Do not vortex the reaction.
- In general, we recommend 5–10 units of enzyme per µg DNA, and 10-20 units for genomic DNA
- NEB has introduced a line of High-Fidelity (HF) enzymes that provide added flexibility to reaction setup.
- If using a RE-Mix restriction enzyme master mix, see page 9 for protocol.

### DNA

- Should be free of contaminants such as phenol, chloroform, alcohol, EDTA, detergents, nucleases or excessive salts
- Methylation of DNA can inhibit digestion with certain enzymes

### Buffer

- Use at a 1X concentration
- BSA is included in NEBuffer 1.1, 2.1, 3.1 and CutSmart Buffer. No additional BSA is needed.

### **Reaction Volume**

- A 50 µl reaction volume is recommended for digestion of 1 µg of substrate
- Enzyme volume should not exceed 10% of the total reaction volume to prevent star activity due to excess glycerol
- Additives in the restriction enzyme storage buffer (e.g., glycerol, salt) as well as contaminants found in the substrate solution (e.g., salt, EDTA, or alcohol) can be problematic in smaller reaction volumes. The following guidelines can be used for techniques that require smaller reaction volumes.

Alternative Volumes for Restriction Digests

|                         | RESTRICTION<br>Enzyme* | DNA    | 10X<br>Nebuffer |
|-------------------------|------------------------|--------|-----------------|
| 10 µl rxn <sup>**</sup> | 1 unit                 | 0.1 µg | 1 µl            |
| 25 µl rxn               | 5 units                | 0.5 µg | 2.5 µl          |
| 50 µl rxn               | 10 units               | 1 µg   | 5 µl            |

Restriction Enzymes can be diluted using the recommended diluent buffer when smaller amounts are needed

\*\* 10 µl rxns should not be incubated for longer than 1 hour to avoid evaporation



# **Incubation Time**

- Incubation time for Standard Protocol is 1 hour. Incubation for Time-Saver Protocol is 5–15 minutes.
- With many enzymes, it is possible to use fewer units and digest for up to 16 hours. For more information, visit **www.neb.com**.

# Stopping a Reaction

If no further manipulation of DNA is required:

 Terminate with a stop solution (10 µl per 50 µl rxn) [50% glycerol, 50 mM EDTA (pH 8.0), and 0.05% bromophenol blue] (e.g., NEB #B7021) or Gel Loading Dye, Purple (6X) (NEB #B7024).

When further manipulation of DNA is required:

- Heat inactivation can be used (buffer chart indicates if the enzyme can be heat inactivated)
- If enzyme cannot be heat inactivated, remove by using a spin column or phenol/chloroform extraction

### Storage

- Storage at -20°C is recommended for most restriction enzymes. For a few enzymes, storage at -70°C is recommended for periods longer than 30 days. Visit www.neb.com for storage information.
- 10X NEBuffers should also be stored at -20°C

### Stability

- All enzymes are assayed for activity every 3–6 months. The expiration date is found on the label.
- Exposure to temperatures above -20°C should be minimized whenever possible

# **Control Reactions**

For difficulty cleaving DNA substrate, we recommend the following controls:

- Control DNA (DNA with multiple known sites for the enzyme) with restriction enzyme to test enzyme viability
- If the control DNA is cleaved and the experimental DNA resists cleavage, the two DNAs can be mixed to determine if an inhibitor is present in the experimental sample. If an inhibitor (often salt, EDTA or phenol) is present, the control DNA will not cut after mixing.

### **TOOLS & RESOURCES**

#### Visit NEBCutSmart.com to find:

• Video tutorials on setting up restriction enzyme reactions from NEB scientists



# **Star Activity**

- Can occur when enzyme is used under sub-optimal conditions
- Star activity can be reduced by using a High-Fidelity (HF) enzyme, by reducing incubation time, by using a Time-Saver enzyme or by increasing reaction volume

# Optimizing Restriction Enzyme Reactions Using RE-Mix Master Mixes

• RE-Mix master mixes include enzyme, buffer, BSA and loading dye. All that is required is the addition of DNA and water. For the full list of RE-Mix master mixes, visit **NEBREmix.com**.

Many of the optimization tips for restriction enzymes apply to RE-Mix. Additional tips include:

- RE-Mix Master Mixes should be used at 1X concentration
- A 20 µl reaction volume is recommended for digestion with a RE-Mix Master Mix
- The recommended incubation time with a RE-Mix Master Mix is 15 minutes
- The RE-Master Mix includes a density agent and dye, and does not require addition of stop solution
- RE-Mix Master Mixes should be stored at  $-20^{\circ}C$

### **RE-Mix Protocol**

| DNA                    | X μl (up to 1 μg) |  |
|------------------------|-------------------|--|
| dH <sub>2</sub> O      | 18 µI–X           |  |
| 10X RE-Mix             | 2 µl              |  |
| Reaction Volume        | 20 µl             |  |
| Incubation Temperature | 37°C              |  |
| Incubation Time        | 15 minutes        |  |

o



# Troubleshooting Guide

| PROBLEM                                                                                                                                                             | CAUSE                                                                                  | SOLUTION                                                                                                                                                                                            |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                     |                                                                                        | Check the methylation sensitivity of the enzyme(s) to determine if the enzyme is<br>blocked by methylation of the recognition sequence                                                              |  |  |  |
| Few or no                                                                                                                                                           | Restriction enzyme(s)                                                                  | Use the recommended buffer supplied with the restriction enzyme                                                                                                                                     |  |  |  |
| transformants                                                                                                                                                       | didn't cleave completely                                                               | Clean up the DNA to remove any contaminants that may inhibit the enzyme                                                                                                                             |  |  |  |
|                                                                                                                                                                     |                                                                                        | When digesting a PCR fragment, make sure to have at least 6 nucleotides between the recognition site and the end of the DNA molecule                                                                |  |  |  |
|                                                                                                                                                                     | The restriction enzyme(s) is                                                           | Lower the number of units                                                                                                                                                                           |  |  |  |
| The digested<br>DNA ran as a                                                                                                                                        | bound to the substrate DNA                                                             | Add SDS (0.1–0.5%) to the loading buffer to dissociate the enzyme from the DNA                                                                                                                      |  |  |  |
| smear on an<br>agarose gel                                                                                                                                          | Nuclease contamination                                                                 | Use fresh, clean running buffer and a fresh agarose gel                                                                                                                                             |  |  |  |
| agarose ger                                                                                                                                                         | NUClease containination                                                                | Clean up the DNA                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                     |                                                                                        | DNA isolated from a bacterial source may be blocked by Dam and Dcm methylation                                                                                                                      |  |  |  |
|                                                                                                                                                                     |                                                                                        | DNA isolated from eukaryotic source may be blocked by CpG methylation                                                                                                                               |  |  |  |
|                                                                                                                                                                     | Cleavage is blocked<br>by methylation                                                  | Check the methylation sensitivity of the enzyme(s) to determine if the enzyme is<br>blocked by methylation of the recognition sequence                                                              |  |  |  |
|                                                                                                                                                                     |                                                                                        | If the enzyme is inhibited by Dam or Dcm methylation, grow the plasmid in a <i>dam-/ dcm-</i> strain (NEB #C2925)                                                                                   |  |  |  |
| Incomplete                                                                                                                                                          |                                                                                        | Enzymes that have low activity in salt-containing buffers (NEBuffer 3.1) may be salt sensitive, so clean up the DNA prior to digestion                                                              |  |  |  |
| restriction<br>enzyme<br>digestion                                                                                                                                  | Salt inhibition                                                                        | DNA purification procedures that use spin columns can result in high salt levels, which inhibit enzyme activity. To prevent this, DNA solution should be no more than 25% of total reaction volume. |  |  |  |
|                                                                                                                                                                     | Inhibition by PCR components                                                           | Clean up the PCR fragment prior to restriction digest                                                                                                                                               |  |  |  |
|                                                                                                                                                                     | Using the wrong buffer                                                                 | Use the recommended buffer supplied with the restriction enzyme                                                                                                                                     |  |  |  |
|                                                                                                                                                                     | Too few units of enzyme used                                                           | Use at least 3–5 units of enzyme per µg of DNA                                                                                                                                                      |  |  |  |
|                                                                                                                                                                     | Incubation time was too short                                                          | Increase the incubation time                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                     | Digesting supercoiled DNA                                                              | Some enzymes have a lower activity on supercolied DNA. Increase the number of enzyme units in the reaction.                                                                                         |  |  |  |
|                                                                                                                                                                     | Presence of slow sites                                                                 | Some enzymes can exhibit slower cleavage towards specific sites. Increase the incubation time, 1–2 hours is typically sufficient.                                                                   |  |  |  |
| Incomplete<br>restriction<br>enzyme<br>digestion     Two sites required       DNA is contaminated with<br>an inhibitor     DNA is contaminated with<br>an inhibitor |                                                                                        | Some enzymes require the presence of two recognition sites to cut efficiently                                                                                                                       |  |  |  |
|                                                                                                                                                                     |                                                                                        | Assay substrate DNA in the presence of a control DNA. Control DNA will not cleave if there is an inhibitor present. Mini prep DNA is particularly susceptible to contaminants.                      |  |  |  |
|                                                                                                                                                                     |                                                                                        | Clean DNA with a spin column, resin or drop dialysis, or increase volume to dilute contaminant                                                                                                      |  |  |  |
|                                                                                                                                                                     | If larger bands than expected                                                          | Lower the number of units in the reaction                                                                                                                                                           |  |  |  |
|                                                                                                                                                                     | are seen in the gel, this<br>may indicate binding of the<br>enzyme(s) to the substrate | Add SDS (0.1–0.5%) to the loading buffer to dissociate the enzyme from the substrate                                                                                                                |  |  |  |
|                                                                                                                                                                     |                                                                                        | Use the recommended buffer supplied with the restriction enzyme                                                                                                                                     |  |  |  |
|                                                                                                                                                                     |                                                                                        | Decrease the number of enzyme units in the reaction                                                                                                                                                 |  |  |  |
|                                                                                                                                                                     | Star activity                                                                          | Make sure the amount of enzyme added does not exceed 10% of the total reaction volume. This ensures that the total glycerol concentration does not exceed 5% v/v.                                   |  |  |  |
| Extra bands                                                                                                                                                         |                                                                                        | Decrease the incubation time. Using the minimum reaction time required for complete digestion will help prevent star activity.                                                                      |  |  |  |
| in the gel                                                                                                                                                          |                                                                                        | Try using a High-Fidelity (HF) restriction enzyme. HF enzymes have been engineered<br>for reduced star activity.                                                                                    |  |  |  |
|                                                                                                                                                                     |                                                                                        | Enzymes that have low activity in salt-containing buffers (e.g., NEBuffer 3.1) may be salt sensitive. Make sure to clean up the DNA prior to digestion.                                             |  |  |  |
|                                                                                                                                                                     | Partial restriction                                                                    | DNA purification procedures that use spin columns can result in high salt levels, which inhibit enzyme activity. To prevent this, DNA solution should be no more than 25% of total reaction volume  |  |  |  |
|                                                                                                                                                                     | enzyme digest                                                                          | Clean-up the PCR fragment prior to restriction digest                                                                                                                                               |  |  |  |
|                                                                                                                                                                     |                                                                                        | Use the recommended buffer supplied with the restriction enzyme                                                                                                                                     |  |  |  |
|                                                                                                                                                                     |                                                                                        | Use at least 3–5 units of enzyme per µg of DNA and digest the DNA for 1–2 hours                                                                                                                     |  |  |  |

### FAQS

#### Q. Do restriction enzymes cleave singlestranded DNA?

A. Although some restriction enzymes have been reported to cleave ssDNA, it is unclear whether cleavage occurs on a ssDNA molecule or on two ssDNA molecules which transiently anneal at a region of partial homology (1–3). For this reason, we hesitate to make unreserved claims about a restriction enzyme's ability to cut ssDNA.

#### Q. How stable are restriction enzymes?

A. All restriction enzymes from NEB are assayed for activity every 3–6 months. Most are very stable when stored at -20°C in the recommended storage buffer. Exposure to temperatures above -20°C should be minimized whenever possible.

# Q. Is extended digestion (incubation times > 1 hour) recommended?

A. The unit definition of our restriction enzymes is based on a 1 hour incubation. Incubation time may be shortened if additional units of restriction enzyme are added to the reaction or if a Time-Saver qualified restriction enzyme is used (5–15 minutes). Conversely, longer incubation times are often used to allow a reaction to proceed to completion with fewer units of enzyme. This is contingent on how long a particular enzyme can survive (maintin activity) in a marking. Additional

(maintain activity) in a reaction. Additional information on extended digestion can be found at **www.neb.com**.

- 1. Blakesley, R.W., Wells, R.D. (1975) Nature 257, 421-422.
- Blakesley, R.W., et al. (1977) J. Biol. Chem. 252, 7300–7306.
- 3. Yoo, O.J., Agarwal, K.L, (1980) J. Biol. Chem. 255, 10559–10562.



# **Double Digestion**

Digesting a DNA substrate with two restriction enzymes simultaneously (double digestion) is a common timesaving procedure. Over 205 restriction enzymes are 100% active in CutSmart Buffer, making double digestion simple. If you are using an enzyme that is not supplied with CutSmart Buffer, the Performance Chart for Restriction Enzymes rates the percentage activity of each restriction endonuclease in the four standard NEBuffers.

# Setting up a Double Digest

- Double digests with CutSmart restriction enzymes can be set up in CutSmart Buffer. Otherwise, choose an NEBuffer that results in the most activity for both enzymes. If star activity is a concern, consider using one of our High-Fidelity (HF) enzymes.
- Set up reaction according to recommended protocol. The final concentration of glycerol in any reaction should be less than 5% to minimize the possibility of star activity. For example, in a 50  $\mu$ l reaction, the total amount of enzyme added should not exceed 5 µl.
- If two different incubation temperatures are necessary, choose the optimal reaction buffer and set up reaction accordingly. Add the first enzyme and incubate at the desired temperature. Then, heat inactivate the first enzyme, add the second enzyme and incubate at the recommended temperature.
- Depending on an enzyme's activity rating in a non-optimal NEBuffer, the number of units or incubation time may be adjusted to compensate for the slower rate of cleavage.

# Setting up a Double Digest with a unique buffer

NEB currently supplies three enzymes with unique buffers: EcoRI, SspI and DpnII. In most cases, DpnII requires a sequential digest. Note that EcoRI has an HF version which is supplied with CutSmart Buffer.

# Setting up a Sequential Digest

If there is no buffer in which the two enzymes both exhibit > 50% activity, a sequential digest can be performed.

- Set up a reaction using the restriction endonuclease that has the lowest salt concentration in its recommended buffer and incubate to completion.
- Adjust the salt concentration of the reaction (using a small volume of a concentrated salt solution) to approximate the reaction conditions of the second restriction endonuclease.
- Add the second enzyme and incubate to complete the second reaction.
- Alternatively, a spin column can be used to isolate the DNA prior to the second reaction.

# Setting up a Double **Digestion with RE-Mix** Master Mixes

RE-Mix master mixes can also be used in double digest reactions.

#### **Double Digest Protocol using two RE-Mix Enzymes:**

| DNA                    | X μI (up to 1 μg) |
|------------------------|-------------------|
| dH <sub>2</sub> 0      | 36 µl—X           |
| RE-Mix 1               | 2 µl              |
| RE-Mix 2               | 2 μΙ              |
| Total Volume           | 40 µl             |
| Incubation Temperature | 37°C              |
| Incubation Time        | 15 minutes        |

#### **Double Digest Protocol using One RE-Mix** and One Standard Restriction Enzyme.\*

| DNA                    | X μI (up to 1 μg)                                                  |
|------------------------|--------------------------------------------------------------------|
| $dH_2O$                | 17 μI–Χ                                                            |
| RE-Mix                 | 2 μΙ                                                               |
| Standard Enzyme        | 1 μΙ                                                               |
| Total Volume           | 20 µl                                                              |
| Incubation Temperature | 37°C                                                               |
| Incubation Time        | 15 minutes<br>(Time-Saver Enzymes)<br>1 Hour<br>(Standard Enzymes) |

\* Use only with standard restriction enzymes with 37°C incubation temperature.

### **TOOLS & RESOURCES**

#### Visit www.neb.com/nebtools for:

 Help choosing double digest conditions using NEB's Double Digest Finder or NEBCloner®



TIPS FOR SETTING UP DOUBLE DIGESTS



# DNA Methylation & Restriction Digests

DNA methyltransferases (MTases) that transfer a methyl group from S-adenosylmethionine to either adenine or cytosine residues are found in a wide variety of prokaryotes and eukaryotes. Methylation should be considered when digesting DNA with restriction endonucleases because cleavage can be blocked or impaired when a particular base in the recognition site is methylated.

# **Prokaryotic Methylation**

In prokaryotes, MTases have most often been identified as elements of restriction/ modification systems that act to protect host DNA from cleavage by the corresponding restriction endonuclease. Most laboratory strains of *E. coli* contain three site-specific DNA methyltransferases.

- Dam methyltransferases–methylation at the N<sup>6</sup> position of the adenine in the sequence GATC (1,2).
- Dcm methyltransferases-methylation at the C<sup>5</sup> position of cytosine in the sequences CCAGG and CCTGG (1,3).
- EcoKI methylase-methylation of adenine in the sequences AAC(N<sup>6</sup>A)GTGC and GCAC(N<sup>6</sup>A)GTT.

Some or all of the sites for a restriction endonuclease may be resistant to cleavage when isolated from strains expressing the Dam or Dcm MTase if the methylase recognition site overlaps the endonuclease recognition site. For example, plasmid DNA isolated from dam<sup>+</sup> *E. coli* is completely resistant to cleavage by MboI, which cleaves at GATC sites.

Not all DNA isolated from *E. coli* is methylated to the same extent. While pBR322 DNA is fully modified (and is therefore completely resistant to MboI digestion), only about 50% of  $\lambda$  DNA Dam sites are methylated, presumably because the methylase does not have the opportunity to methylate the DNA fully before it is packaged into the phage head. As a result, enzymes blocked by Dam or Dcm modification will yield partial digestion patterns with  $\lambda$  DNA.

Restriction sites that are blocked by Dam or Dcm methylation can be un-methylated by cloning your DNA into a dam<sup>-</sup>, dcm<sup>-</sup> strain of *E. coli*, such as dam<sup>-</sup>/dcm<sup>-</sup> Competent *E. coli* (NEB #C2925).

Restriction sites can also be blocked if an overlapping site is present. In this case, part of the Dam or Dcm sequence is generated by the restriction enzyme sequence, followed by the flanking sequence. This situation should also be considered when designing restriction enzyme digests.

# **Eukaryotic Methylation**

CpG MTases, found in higher eukaryotes (e.g., Dnmt1), transfer a methyl group to the  $C^5$  position of cytosine residues. Patterns of CpG methylation are heritable, tissue specific and correlate with gene expression. Consequently, CpG methylation has been postulated to play a role in differentiation and gene expression (4).

Note: The effects of CpG methylation are mainly a concern when digesting eukaryotic genomic DNA. CpG methylation patterns are not retained once the DNA is cloned into a bacterial host.

# Methylation Sensitivity

The table below summarizes methylation sensitivity for NEB restriction enzymes, indicating whether or not cleavage is blocked or impaired by Dam, Dcm or CpG methylation if or when it overlaps each recognition site. This table should be viewed as a guide to the behavior of the enzymes listed rather than an absolute indicator. Consult REBASE (http://rebase.neb.com/rebase/), the restriction enzyme database, for more detailed information and specific examples upon which these guidelines are based.

### **KEY POINTS TO CONSIDER**

- Genomic DNA directly isolated from a mammalian source is not Dcm or Dam methylated, and is therefore not an issue when digesting mammalian DNA.
- Mammalian and plant DNA that has been cloned into a methylating *E. coli* strain will be Dam/Dcm methylated. Most commonly used laboratory *E. coli* strains methylate DNA.
- Directly isolated mammalian and plant genomic DNA are CpG methylated. Some enzymes are inhibited by CpG methylation. (See www.neb.com for more information).
- Most bacterial DNA (including *E. coli* DNA) is not CpG methylated. Inhibition of enzyme activity by CpG methylation is not an issue for DNA prepared from *E. coli* strains.
- DNA amplified by PCR does not contain any methylated bases.
- To avoid Dam/Dcm methylation when subcloning in bacteria, NEB offers the methyltransferase deficient cloning strain dam-/dcm<sup>-</sup> Competent E. coli (NEB #C2925) for propagation.

References

- Marinus, M.G. and Morris, N.R. (1973) J. Bacteriol., 114, 1143–1150.
- Geier, G.E. and Modrich, P. (1979) J. Biol. Chem., 254, 1408–1413.
- 3. May, M.S. and Hattman, S. (1975) J. Bacteriol., 123, 768–770.
- 4. Siegfried, Z. and Cedar, H. (1997) Curr. Biol., 7, r305-307.

METHYLATION SENSITIVITY



# Methylation Sensitivity – Dam, Dcm and CpG Methylation

| т |  |
|---|--|
|   |  |
|   |  |
|   |  |

| Legend. |                                              |
|---------|----------------------------------------------|
| •       | not sensitive                                |
|         | blocked                                      |
| 🗆 ol    | blocked by overlapping                       |
| □ scol  | blocked by some combinations of overlapping  |
| •       | impaired                                     |
| ⇔ol     | impaired by overlapping                      |
| ♦ scol  | impaired by some combinations of overlapping |

| Y = C or T                 | M = A  or  C                                              |
|----------------------------|-----------------------------------------------------------|
| S = C  or  G               | W = A or T                                                |
| B = C or G or T            | V = A  or  C  or  G                                       |
| N = A  or  C  or  G  or  T |                                                           |
|                            | Y = C  or  T       S = C  or  G       B = C  or  G  or  T |

| ENZYME         | SEQUENCE                   | Dam  | Dcm         | CpG            |
|----------------|----------------------------|------|-------------|----------------|
| AatII          | GACGT/C                    | ٠    | ٠           | •              |
| Accl           | GT/MKAC                    | ٠    | ٠           | □ ol           |
| Acc65I         | G/GTACC                    | •    | $\Box$ scol | $\square$ scol |
| Acil           | CCGC(-3/-1)                | ٠    | ٠           | •              |
| AcII           | AA/CGTT                    | •    | •           | •              |
| Acul           | CTGAAG(16/14)              | ٠    | ٠           | •              |
| Afel           | AGC/GCT                    | •    | •           | •              |
| AfIII          | C/TTAAG                    | ٠    | ٠           | •              |
| AfIIII         | A/CRYGT                    | •    | •           | •              |
| Agel           | A/CCGGT                    | ٠    | ٠           | •              |
| Agel-HF        | A/CCGGT                    | •    | •           | •              |
| Agel-HF RE-Mix | A/CCGGT                    | ٠    | ٠           | •              |
| Ahdl           | GACNNN/NNGTC               | •    | •           | ◊ scol         |
| Alel           | CACNN/NNGTG                | ٠    | ٠           | ◊ scol         |
| Alul           | AG/CT                      | •    | •           | •              |
| Alwl           | GGATC(4/5)                 |      | ٠           | •              |
| AlwNI          | CAGNNN/CTG                 | •    | 🗆 ol        | •              |
| Apal           | GGGCC/C                    | ٠    | 🗆 ol        | □ ol           |
| ApaLI          | G/TGCAC                    | •    | •           | □ ol           |
| ApeKI          | G/CWGC                     | ٠    | ٠           | □ ol           |
| Apol           | R/AATTY                    | •    | •           | •              |
| Ascl           | GG/CGCGCC                  | ٠    | ٠           | •              |
| Ascl RE-Mix    | GG/CGCGCC                  | •    | •           | •              |
| Asel           | AT/TAAT                    | ٠    | ٠           | •              |
| AsiSI          | GCGAT/CGC                  | •    | •           | •              |
| Aval           | C/YCGRG                    | ٠    | ٠           | •              |
| Avall          | G/GWCC                     | •    | 🗆 ol        | □ ol           |
| AvrII          | C/CTAGG                    | ٠    | ٠           | •              |
| Bael           | (10/15)ACNNNNGTAYC(12/7)   | •    | •           | $\square$ scol |
| BaeGI          | GKGCM/C                    | ٠    | ٠           | •              |
| BamHI          | G/GATCC                    | •    | •           | •              |
| BamHI-HF       | G/GATCC                    | ٠    | ٠           | •              |
| Banl           | G/GYRCC                    | •    | $\Box$ scol | $\square$ scol |
| Banll          | GRGCY/C                    | ٠    | ٠           | •              |
| Bbsl           | GAAGAC(2/6)                | •    | •           | •              |
| Bbvl           | GCAGC(8/12)                | ٠    | ٠           | •              |
| BbvCl          | CCTCAGC(-2/-5)             | •    | •           | ◊ ol           |
| Bccl           | CCATC(4/5)                 | ٠    | ٠           | •              |
| BceAl          | ACGGC(12/14)               | •    | •           | •              |
| Bcgl           | (10/12)CGANNNNNNTGC(12/10) | ◊ ol | ٠           | □ scol         |
| BcoDI          | GTCTC(1/5)                 | •    | •           | □ scol         |

| ENZYME   | SEQUENCE                | Dam     | Dcm    | CpG    |
|----------|-------------------------|---------|--------|--------|
| BciVI    | GTATCC(6/5)             | •       | ٠      | •      |
| Bcll     | T/GATCA                 |         | •      | •      |
| Bfal     | C/TAG                   | •       | •      | •      |
| BfuAl    | ACCTGC(4/8)             | •       | •      | ◊ ol   |
| BfuCl    | /GATC                   | •       | •      | 🗆 ol   |
| Bgll     | GCCNNNN/NGGC            | •       | •      | □ scol |
| BgIII    | A/GATCT                 | •       | •      | •      |
| Blpl     | GC/TNAGC                | •       | •      | •      |
| BmgBl    | CACGTC(-3/-3)           | •       | •      | •      |
| Bmrl     | ACTGGG(5/4)             | •       | •      | •      |
| Bmtl     | GCTAG/C                 | ٠       | ٠      | •      |
| Bmtl-HF  | GCTAG/C                 | •       | •      | •      |
| Bpml     | CTGGAG(16/14)           | •       | •      | •      |
| Bpu10I   | CCTNAGC(-5/-2)          | •       | •      | •      |
| BpuEl    | CTTGAG(16/14)           | ٠       | ٠      | •      |
| Bsal     | GGTCTC(1/5)             | •       | ♦ scol | □ scol |
| Bsal-HF  | GGTCTC(1/5)             | ٠       | 🗆 ol   | □ scol |
| BsaAl    | YAC/GTR                 | •       | •      |        |
| BsaBl    | GATNN/NNATC             | □ ol    | •      | □ scol |
| BsaHI    | GR/CGYC                 | •       | □ scol |        |
| BsaJI    | C/CNNGG                 | •       | •      | •      |
| BsaWI    | W/CCGGW                 | •       | •      | •      |
| BsaXI    | (9/12)ACNNNNNCTCC(10/7) | •       | •      | •      |
| BseRI    | GAGGAG(10/8)            | •       | •      | •      |
| BseYI    | CCCAGC(-5/-1)           | •       | •      | □ ol   |
| Bsgl     | GTGCAG(16/14)           | •       | •      | •      |
| BsiEl    | CGRY/CG                 | •       | •      | •      |
| BsiHKAI  | GWGCW/C                 | •       | •      | •      |
| BsiWI    | C/GTACG                 | •       | •      | •      |
| Bsll     | CCNNNNN/NNGG            | •       | □ scol | □ scol |
| Bsml     | GAATGC(1/-1)            | •       | •      | •      |
| BsmAl    | GTCTC (1/5)             | •       | •      | □ scol |
| BsmBl    | CGTCTC(1/5)             | •       | •      |        |
| BsmFl    | GGGAC(10/14)            | •       | □ ol   | 🗆 ol   |
| BsoBl    | C/YCGRG                 | •       | •      | •      |
| Bsp1286l | GDGCH/C                 | •       | •      | •      |
| BspCNI   | CTCAG(9/7)              | •       | •      | •      |
| BspDI    | AT/CGAT                 | □ ol    | •      |        |
| BspEl    | T/CCGGA                 |         | •      | •      |
| BspHI    | T/CATGA                 | ⇔ ol    | •      | •      |
| BspMI    | ACCTGC(4/8)             | • • • • | •      | •      |
|          |                         |         |        |        |



| ENZYME           | SEQUENCE                   | Dam  | Dcm    | CpG    |
|------------------|----------------------------|------|--------|--------|
| BspQI            | GCTCTTC(1/4)               | •    | •      | •      |
| Bsrl             | ACTGG(1/-1)                | ٠    | ٠      | •      |
| BsrBl            | CCGCTC(-3/-3)              | •    | •      | □ scol |
| BsrDI            | GCAATG(2/0)                | ٠    | ٠      | •      |
| BsrFI            | R/CCGGY                    | •    | •      |        |
| BsrGI            | T/GTACA                    | ٠    | ٠      | •      |
| BsrGI-HF         | T/GTACA                    | •    | •      | •      |
| BssHII           | G/CGCGC                    | ٠    | ٠      | •      |
| BssKI            | /CCNGG                     | •    | □ ol   | □ ol   |
| BssS∝I           | CACGAG(-5/-1)              | ٠    | ٠      | •      |
| BstAPI           | GCANNNN/NTGC               | •    | •      | □ scol |
| BstBI            | TT/CGAA                    | ٠    | ٠      |        |
| BstEll           | G/GTNACC                   | •    | •      | •      |
| BstEII-HF        | G/GTNACC                   | ٠    | ٠      | •      |
| BstEII-HF RE-Mix | G/GTNACC                   | •    | •      | •      |
| BstNI            | CC/WGG                     | ٠    | ٠      | •      |
| BstUI            | CG/CG                      | •    | •      |        |
| BstXI            | CCANNNN/NTGG               | ٠    | □ scol | •      |
| BstYI            | R/GATCY                    | •    | •      | •      |
| BstZ17I          | GTA/TAC                    | ٠    | ٠      | □ scol |
| Bsu36l           | CC/TNAGG                   | •    | •      | •      |
| Btgl             | C/CRYGG                    | ٠    | ٠      | •      |
| BtgZI            | GCGATG(10/14)              | •    | •      | •      |
| Bts∝l            | GCAGTG(2/0)                | •    | •      | •      |
| BtsIMutl         | CAGTG(2/0)                 | •    | •      | •      |
| BtsCl            | GGATG(2/0)                 | ٠    | •      | •      |
| Cac8I            | GCN/NGC                    | •    | •      | □ scol |
| Clal             | AT/CGAT                    | □ ol | •      |        |
| CspCI            | (11/13)CAANNNNNGTGG(12/10) | •    | •      | •      |
| CviAll           | C/ATG                      | ٠    | •      | •      |
| CviKI-1          | RG/CY                      | •    | •      | •      |
| CviQI            | G/TAC                      | •    | •      | •      |
| Ddel             | C/TNAG                     | •    | •      | •      |
| Dpnl             | GA/TC                      | •    | •      | 🗆 ol   |
| Dpnll            | /GATC                      |      | •      | •      |
| Dral             | TTT/AAA                    | •    | •      | •      |
| DrallI-HF        | CACNNN/GTG                 | •    | •      | ♦ scol |
| Drdl             | GACNNNN/NNGTC              | •    | •      | □ scol |
| Eael             | Y/GGCCR                    | •    | □ ol   | □ ol   |
| Eagl             | C/GGCCG                    | •    | •      |        |
| Eagl-HF          | C/GGCCG                    | •    | •      |        |
| Earl             | CTCTTC(1/4)                | •    | •      | ◊ ol   |
| Ecil             | GGCGGA(11/9)               | •    | •      | □ scol |
| Eco53kl          | GAG/CTC                    | •    | •      | □ scol |
| EcoNI            | CCTNN/NNNAGG               | •    | •      | •      |
| Eco01091         | RG/GNCCY                   | •    | □ ol   | •      |
| EcoP15I          | CAGCAG(25/27)              | •    | •      | •      |
| EcoRI            | G/AATTC                    | •    | •      | □ scol |
| EcoRI-HF         | G/AATTC                    | •    | •      | □ scol |
| EcoRI-HF RE-Mix  | G/AATTC                    | •    | •      | □ scol |
| EcoRV            | GAT/ATC                    | •    | •      | ⇔ scol |
| EcoRV-HF         | GAT/ATC                    | •    | •      | ♦ scol |
| EcoRV-HF RE-Mix  |                            | •    | •      | ♦ scol |
|                  |                            |      |        | V 0001 |

| ENZYME         | SEQUENCE         | Dam  | Dcm    | CpG                    |
|----------------|------------------|------|--------|------------------------|
| Fatl           | /CATG            | •    | •      | •                      |
| Faul           | CCCGC(4/6)       | •    | •      |                        |
| Fnu4HI         | GC/NGC           | •    | •      | –<br>□ ol              |
| Fokl           | GGATG(9/13)      | •    | ◊ ol   | ⇔ol                    |
| Fsel           | GGCCGG/CC        | •    | ♦ scol | <ul><li>✓ 01</li></ul> |
| Fspl           | TGC/GCA          | •    | ✓ SCOI |                        |
| FspEl          | C5mCNNNNNNNNNNNN | •    | •      | -                      |
| Haell          | RGCGC/Y          | •    | •      |                        |
| Haelli         | GG/CC            | •    | •      | •                      |
|                | GACGC(5/10)      | •    | •      |                        |
| Hgal<br>Hhal   | GCG/C            | •    | •      | ÷                      |
| Hincl          |                  | •    | •      | _                      |
|                | GTY/RAC          |      | •      | □ scol                 |
| HindIII        | A/AGCTT          | •    | -      | •                      |
| HindIII-HF     | A/AGCTT          | •    | •      |                        |
| Hinfl          | G/ANTC           | •    | •      | □ scol                 |
| HinP1I         | G/CGC            | •    | •      |                        |
| Hpal           | GTT/AAC          | •    | •      | □ scol                 |
| Hpall          | C/CGG            | •    | •      |                        |
| HphI           | GGTGA(8/7)       | -    | •      | •                      |
| Нру991         | CGWCG/           | •    | •      | •                      |
| Hpy166II       | GTN/NAC          | •    | •      | □ ol                   |
| Hpy188I        | TCN/GA           | □ ol | •      | •                      |
| Hpy188III      | TC/NNGA          | □ ol | •      | □ ol                   |
| HpyAV          | CCTTC(6/5)       | •    | •      | ◊ ol                   |
| HpyCH4III      | ACN/GT           | •    | •      | •                      |
| HpyCH4IV       | A/CGT            | •    | •      | •                      |
| HpyCH4V        | TG/CA            | •    | •      | •                      |
| Kasl           | G/GCGCC          | •    | •      | •                      |
| Kpnl           | GGTAC/C          | •    | •      | •                      |
| KpnI-HF        | GGTAC/C          | •    | •      | •                      |
| KpnI-HF RE-Mix | GGTAC/C          | •    | •      | •                      |
| LpnPl          | C5mCDGNNNNNNNNNN | •    | •      | •                      |
| Mbol           | /GATC            | •    | •      | ◊ ol                   |
| Mboll          | GAAGA(8/7)       | □ ol | •      | •                      |
| Mfel           | C/AATTG          | ٠    | •      | •                      |
| Mfel-HF        | C/AATTG          | •    | •      | •                      |
| Mfel-HF RE-Mix | C/AATTG          | ٠    | ٠      | •                      |
| Mlul           | A/CGCGT          | •    | •      | •                      |
| Mlul-HF        | A/CGCGT          | ٠    | ٠      | •                      |
| MluCl          | /AATT            | •    | •      | •                      |
| Mlyl           | GAGTC(5/5)       | ٠    | ٠      | •                      |
| Mmel           | TCCRAC(20/18)    | ٠    | •      | 🗆 ol                   |
| Mnll           | CCTC(7/6)        | ٠    | ٠      | ٠                      |
| Mscl           | TGG/CCA          | ٠    | □ ol   | •                      |
| Msel           | T/TAA            | ٠    | ٠      | •                      |
| MsII           | CAYNN/NNRTG      | •    | •      | •                      |
| Mspl           | C/CGG            | ٠    | ٠      | •                      |
| MspA1I         | CMG/CKG          | •    | •      | □ ol                   |
| MspJI          | 5mCNNRNNNNNNNNN  | ٠    | ٠      | •                      |
| Mwol           | GCNNNNN/NNGC     | •    | •      | □ scol                 |
| Nael           | GCC/GGC          | ٠    | ٠      |                        |
| Narl           | GG/CGCC          | ٠    | •      |                        |
|                |                  | •    | •      | •                      |

# METHYLATION SENSITIVITY



| ENZYME         | SEQUENCE                   | Dam  | Dcm             | CpG            |
|----------------|----------------------------|------|-----------------|----------------|
| Nb.Bsml        | GAATGC (none/-2)           | ٠    | ٠               | •              |
| Nb.Bsrdl       | GCAATG (none/0)            | ٠    | ٠               | •              |
| Nb.Btsl        | GCAGTG                     | •    | •               | •              |
| Ncil           | CC/SGG                     | ٠    | ٠               | ◊ ol           |
| Ncol           | C/CATGG                    | •    | •               | •              |
| Ncol-HF        | C/CATGG                    | ٠    | ٠               | •              |
| Ncol-HF RE-Mix | C/CATGG                    | ٠    | •               | •              |
| Ndel           | CA/TATG                    | ٠    | ٠               | •              |
| NgoMIV         | G/CCGGC                    | •    | ٠               |                |
| Nhel           | G/CTAGC                    | ٠    | ٠               | □ scol         |
| Nhel-HF        | G/CTAGC                    | •    | •               | □ scol         |
| Nhel-HF RE-Mix | G/CTAGC                    | ٠    | •               | □ scol         |
| NIaIII         | CATG/                      | •    | •               | •              |
| NIalV          | GGN/NCC                    | ٠    | 🗆 ol            | □ ol           |
| NmeAIII        | GCCGAG(21/19)              | •    | •               | •              |
| Notl           | GC/GGCCGC                  | •    | •               |                |
| NotI-HF        | GC/GGCCGC                  | •    | •               |                |
| NotI-HF RE-Mix | GC/GGCCGC                  | •    | •               |                |
| Nrul           | TCG/CGA                    | □ ol | •               |                |
| Nrul-HF        | TCG/CGA                    |      | •               |                |
| Nsil           | ATGCA/T                    | •    | •               | •              |
| Nsil-HF        | ATGCA/T                    | •    | •               | •              |
| Nspl           | RCATG/Y                    | •    | •               | •              |
| Nt.Alwl        | GGATC(4/-5)                |      | •               | •              |
| Nt.BbvCl       | CCTCAGC(-5/none)           | •    | •               | □ scol         |
| Nt.BsmAl       | GTCTC(1/none)              | •    | •               |                |
| Nt.BspQI       | GCTCTTC(1/none)            | •    | •               | •              |
| Nt.BstNBI      | GAGTC(4/none)              | •    | •               | •              |
| Nt.CviPII      | (0/-1)CCD                  | •    | •               |                |
| Pacl           | TTAAT/TAA                  | •    | •               | -              |
| Pacl RE-Mix    | TTAAT/TAA                  | •    | •               | •              |
| PaeR7I         | C/TCGAG                    |      | •               |                |
| Pcil           | A/CATGT                    | •    | •               | •              |
| PfIFI          | ,                          |      |                 | •              |
|                | GACN/NNGTC<br>CCANNNN/NTGG | •    | -               | •              |
| PfIMI          |                            |      | □ ol            |                |
| Phol           | GG/CC                      | •    | ♦ scol          | ♦ scol         |
| Plel           | GAGTC(4/5)                 | •    | •               | □ scol         |
| PluTI          | GGCGC/C                    | •    | •               |                |
| Pmel           | GTTT/AAAC                  | •    | •               | □ scol         |
| Pmll           | CAC/GTG                    | •    | •               |                |
| PpuMI          | RG/GWCCY                   | •    | □ ol            | •              |
| PshAl          | GACNN/NNGTC                | •    | •               | □ scol         |
| Psil           | TTA/TAA                    | •    | •               | •              |
| PspGI          | /CCWGG                     | •    |                 | •              |
| PspOMI         | G/GGCCC                    | •    | $\diamond$ scol | □ ol           |
| PspXI          | VC/TCGAGB                  | •    | •               | •              |
| Pstl           | CTGCA/G                    | •    | •               | •              |
| PstI-HF        | CTGCA/G                    | •    | •               | •              |
| Pvul           | CGAT/CG                    | •    | •               | •              |
| Pvul-HF        | CGAT/CG                    | •    | •               | •              |
| Pvull          | CAG/CTG                    | •    | •               | •              |
| Pvull-HF       | CAG/CTG                    | ٠    | ٠               | •              |
| Rsal           | GT/AC                      | •    | •               | $\square$ scol |

| ENZYME         | SEQUENCE        | Dam  | Dcm    | CpG    |
|----------------|-----------------|------|--------|--------|
| RsrII          | CG/GWCCG        | •    | •      |        |
| Sacl           | GAGCT/C         | •    | •      | •      |
| SacI-HF        | GAGCT/C         | •    | •      | •      |
| SacII          | CCGC/GG         | •    | •      |        |
| Sall           | G/TCGAC         | •    | •      |        |
| Sall-HF        | G/TCGAC         | •    | •      |        |
| Sall-HF RE-Mix | G/TCGAC         | •    | •      |        |
| Sapl           | GCTCTTC(1/4)    | •    | •      | •      |
| Sau3AI         | /GATC           | •    | •      | □ ol   |
| Sau96I         | G/GNCC          | •    | □ ol   | □ ol   |
| Sbfl           | CCTGCA/GG       | •    | •      | •      |
| SbfI-HF        | CCTGCA/GG       | •    | •      | •      |
| Scal-HF        | AGT/ACT         | •    | •      | •      |
| Scal-HF RE-Mix | AGT/ACT         | •    | •      | •      |
| ScrFI          | CC/NGG          | •    | 🗆 ol   | 🗆 ol   |
| SexAl          | A/CCWGGT        | •    |        | •      |
| SfaNI          | GCATC(5/9)      | •    | •      | ♦ scol |
| Sfcl           | C/TRYAG         | •    | •      | •      |
| Sfil           | GGCCNNNN/NGGCC  | •    | ◊ ol   | □ scol |
| Sfol           | GGC/GCC         | •    | □ scol |        |
| SgrAl          | CR/CCGGYG       | •    | •      | •      |
| Smal           | CCC/GGG         | •    | •      |        |
| Smll           | C/TYRAG         | •    | •      | •      |
| SnaBl          | TAC/GTA         | •    | •      |        |
| Spel           | A/CTAGT         | •    | •      | •      |
| Spel RE-Mix    | A/CTAGT         | •    | •      | •      |
| Spel-HF        | A/CTAGT         | •    | •      | •      |
| Sphl           | GCATG/C         | •    | •      | •      |
| SphI-HF        | GCATG/C         | •    | •      | •      |
| Sspl           | AAT/ATT         | •    | •      | •      |
| SspI-HF        | AAT/ATT         | •    | •      | •      |
| Stul           | AGG/CCT         | •    | □ ol   | •      |
| Styl           | C/CWWGG         | •    | •      | •      |
| Styl-HF        | C/CWWGG         | •    | •      | •      |
| StyD4I         | /CCNGG          | •    | □ ol   | ◊ ol   |
| Swal           | ATTT/AAAT       | •    | •      | •      |
| Taql           | T/CGA           | 🗆 ol | •      | •      |
| Tfil           | G/AWTC          | •    | •      | □ scol |
| Tsel           | G/CWGC          | •    | •      | □ scol |
| Tsp45I         | /GTSAC          | •    | •      | •      |
| TspMI          | C/CCGGG         | •    | •      | •      |
| TspRI          | NNCASTGNN/      | •    | •      | •      |
| Tth111I        | GACN/NNGTC      | •    | •      | •      |
| Xbal           | T/CTAGA         | □ ol | •      | •      |
| Xbal RE-Mix    | T/CTAGA         | □ ol | ٠      | •      |
| Xcml           | CCANNNN/NNNNTGG | •    | •      | •      |
| Xhol           | C/TCGAG         | •    | •      | •      |
| Xhol RE-Mix    | C/TCGAG         | •    | •      | •      |
| Xmal           | C/CCGGG         | •    | •      | •      |
| Xmnl           | GAANN/NNTTC     | •    | •      | •      |
| Zral           | GAC/GTC         | •    | •      |        |
| L              |                 |      |        |        |



# Online Tools

The Tools & Resources tab, accessible on our homepage, contains a selection of interactive technical tools for use with restriction enzymes. These tools can also be accessed directly in the footer of every web page.



### **NEB Tools for Restriction Enzymes**

#### DNA Sequences and Maps Tool



With the DNA Sequences and Maps Tool, find the nucleotide sequence files for commonly used molecular biology tools, including plasmid, viral and bacteriophage vectors.

### **Double Digest Finder**



Use this tool to guide your reaction buffer selection when setting up double-digests, a common timesaving procedure. Choosing the right buffers will help you to avoid star activity and loss of product.

#### **Enzyme Finder**



Use this tool to select restriction enzymes by name, sequence, overhang or type. Enter your sequence using single letter code, and Enzyme Finder will identify the right enzyme for the job.

#### **NEBioCalculator®**



NEBioCalculator is a collection of calculators and converters that are useful in planning bench experiments in molecular biology laboratories.





Use this tool to find the right products and protocols for each step (digestion, end modification, ligation and transformation) of your next traditional cloning experiment. It is also very helpful with double digests! While you are there, you can also, find other relevant tools and resources to enable protocol optimization.

#### NEBcutter<sup>®</sup> V2.0



Identify restriction sites within your DNA sequence using NEBcutter. Choose between Type II and commercially available Type III enzymes to digest your DNA. NEBcutter V2.0 indicates cut frequency and methylation sensitivity.

#### **REBASE**<sup>®</sup>



Use this tool as a guide to the ever-changing landscape of restriction enzymes. REBASE, the Restriction Enzyme DataBASE, is a dynamic, curated database of restriction enzymes and related proteins.

# **Mobile Apps**

# NEB Tools for iPhone<sup>®</sup>, iPad<sup>®</sup> or Android<sup>™</sup>



NEB Tools brings New England Biolabs' most popular web tools to your iPhone, iPad or Android devices.

- Use Enzyme Finder to select a restriction enzyme by category or recognition sequence, or search by name to find information on any NEB enzyme.
  Sort your results so they make sense to you, then email them to your inbox or connect directly to www.neb.com.
- Use Double Digest Finder or NEBcloner to determine buffer and reaction conditions for experiments requiring two restriction enzymes.

When using either of these tools, look for CutSmart, HF and Time-Saver enzymes for the ultimate in convenience. NEB Tools enables quick and easy access to the most requested restriction enzyme information, and allows you to plan your experiments from anywhere.



# Cleavage Close to the Ends of DNA Fragments

To simulate cloning reactions, a selection of NEB restriction enzymes have been tested for their ability to cleave close to the end of a DNA fragment. Reaction conditions are described below. Note that the data reported represents the minimum number of bases that will work, and will not necessarily result in maximum cleavage. As a general rule, 6 base pairs should be added on either side of a restriction enzyme recognition site to cleave efficiently.

*Experimental:* Linearized vectors were incubated with the indicated enzymes (10 units/ $\mu$ g) for 60 minutes at the recommended reaction conditions for each enzyme. Following ligation and transformation, cleavage efficiencies were determined by dividing the number of transformants from the digestion reaction by the number obtained from religation of the linearized DNA (typically 100–500 colonies) and subtracting from 100%. "Base Pairs from End" refers to the number of double-stranded base pairs between the recognition site and the terminus of the fragment; this number does not include the single-stranded overhang from the initial cut.

| ENZYME  | BASE PAIRS<br>From End | % CLEAVAGE<br>EFFICIENCY | VECTOR    | INITIAL<br>Cut |
|---------|------------------------|--------------------------|-----------|----------------|
| AatII   | 3                      | 88                       | LITMUS 29 | Ncol           |
|         | 2                      | 100                      | LITMUS 28 | Ncol           |
|         | 1                      | 95                       | LITMUS 29 | PinAl          |
| Acc65I  | 2                      | 99                       | LITMUS 29 | Spel           |
|         | 1                      | 75                       | pNEB193   | Sacl           |
| AfIII   | 1                      | 13                       | LITMUS 29 | Stul           |
| Agel    | 1                      | 100                      | LITMUS 29 | Xbal           |
|         | 1                      | 100                      | LITMUS 29 | AatII          |
| Apal    | 2                      | 100                      | LITMUS 38 | Spel           |
| Ascl    | 1                      | 97                       | pNEB193   | BamHI          |
| Avrll   | 1                      | 100                      | LITMUS 29 | Sacl           |
| BamHI   | 1                      | 97                       | LITMUS 29 | HindIII        |
| BgIII   | 3                      | 100                      | LITMUS 29 | Nsil           |
| BsiWI   | 2                      | 100                      | LITMUS 29 | BssHII         |
| BspEl   | 2                      | 100                      | LITMUS 39 | BsrGI          |
|         | 1                      | 8                        | LITMUS 38 | BsrGI          |
| BsrGI   | 2                      | 99                       | LITMUS 39 | Sphl           |
|         | 1                      | 88                       | LITMUS 38 | BspEl          |
| BssHII  | 2                      | 100                      | LITMUS 29 | BsiWI          |
| Eagl    | 2                      | 100                      | LITMUS 39 | Nhel           |
| EcoRI   | 1                      | 100                      | LITMUS 29 | Xhol           |
|         | 1                      | 88                       | LITMUS 29 | Pstl           |
|         | 1                      | 100                      | LITMUS 39 | Nhel           |
| EcoRV   | 1                      | 100                      | LITMUS 29 | Pstl           |
| HindIII | 3                      | 90                       | LITMUS 29 | Ncol           |
|         | 2                      | 91                       | LITMUS 28 | Ncol           |
|         | 1                      | 0                        | LITMUS 29 | BamHI          |
| Kasl    | 2                      | 97                       | LITMUS 38 | NgoMIV         |
|         | 1                      | 93                       | LITMUS 38 | HindIII        |
| Kpnl    | 2                      | 100                      | LITMUS 29 | Spel           |
|         | 2                      | 100                      | LITMUS 29 | Sacl           |
|         | 1                      | 99                       | pNEB193   | Sacl           |
| Mlul    | 2                      | 99                       | LITMUS 39 | Eagl           |

\* A modified version of LITMUS 38 with an introduced Sfil site was used for this test.

Bluescript SK-Kspl 4 100 Bluescript SK-Xbal 1 98 Nsil LITMUS 29 BssHII 3 100 LITMUS 29 BgIII 3 77 LITMUS 28 BssHII 2 95 Pacl pNEB193 BamHI 1 76 Pme pNEB193 Pstl 1 94 Pstl LITMUS 29 EcoR V 98 3 LITMUS 39 HindIII 2 50 LITMUS 29 EcoRI 37 1 Sacl LITMUS 29 AvrII 99 1 Sall LITMUS 39 Spel 3 89 LITMUS 39 Sphl 2 23 LITMUS 38 Sphl 1 61 Sfil\* LITMUS 38 BamHI 9 81 LITMUS 38 Mlul 4 97 LITMUS 38 EcoRI 93 1 Spel LITMUS 29 Acc65I 2 100 LITMUS 29 Kpnl 2 100 LITMUS 39 Sphl Sall 2 99 LITMUS 39 BsrGl 2 97 LITMUS 38 Sall 92 1 Xbal LITMUS 29 Agel 99 1 LITMUS 29 PinAl 94 1 Xhol LITMUS 29 EcoRI 1 97 Xmal pNEB193 Ascl 2 98 pNEB193 BssHll 2 92

% CLEAVAGE

EFFICIENCY

100

100

100

100

82

100

BASE PAIRS

FROM END

2

2

2

1

2

7

ENZYME

Munl

Ncol

Nhel

Notl

NgoMIV

### TOOLS & RESOURCES

#### Visit www.neb.com for:

 Technical information including additional charts, protocols and technical tips related to restriction enzymes

VECTOR

LITMUS 39

LITMUS 28

LITMUS 39

LITMUS 39

LITMUS 39

Bluescript SK-

INITIAL

NgoMIV

HindIII

Munl

EcoRI

Eagl

Spel

CUT



# Performance Chart for Restriction Enzymes

New England Biolabs supplies > 200 restriction enzymes that are 100% active in a single buffer, CutSmart. This results in increased efficiency, flexibility and ease-of-use, especially when performing double digests.

This performance chart summarizes the activity information of NEB restriction enzymes. To help select the best conditions for double digests, this chart shows the optimal (supplied) NEBuffer and approximate activity in the four standard NEBuffers for each enzyme. Note that BSA is now included in all NEBuffers, and is no longer provided as a separate tube. In addition, this performance chart shows recommended reaction temperature, heat-inactivation temperature, recommended diluent buffer, methylation sensitivity and whether the enzyme is Time-Saver<sup>™</sup> qualified (i.e., cleaves substrate in 5–15 minutes under recommended conditions, and can be used overnight without degradation of DNA).

#### **Chart Legend**

| U   | Supplied with a unique reaction buffer that is<br>different from the four standard NEBuffers. The<br>compatibility with the four standard NEBuffers is<br>indicated in the chart. | SAM | Supplied with a separate vial of<br>S-adenosylmethionine (SAM). To obtain<br>100% activity, SAM should be added to the 1X<br>reaction mix as specified on the product data card. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R%  | Recombinant                                                                                                                                                                       | dcm | dcm methylation sensitivity                                                                                                                                                      |
| Ø   | Time-Saver qualified                                                                                                                                                              | CpG | CpG methylation sensitivity                                                                                                                                                      |
| e   | Engineered enzyme for maximum performance                                                                                                                                         | Mix | RE-Mix Master Mix version available                                                                                                                                              |
| dam | dam methylation sensitivity                                                                                                                                                       |     |                                                                                                                                                                                  |

#### **NEBuffer Compositions (1X)**

| NEBuffer 1.1    | 10 mM Bis Tris Propane-HCl, 10 mM MgCl <sub>2</sub> , 100 $\mu$ g/ml BSA (pH 7.0 @ 25°C).                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| NEBuffer 2.1    | 10 mM Tris-HCl, 10 mM MgCl <sub>2</sub> , 50 mM NaCl, 100 μg/ml BSA (pH 7.9 @ 25°C).                                         |
| NEBuffer 3.1    | 50 mM Tris-HCl, 10 mM MgCl <sub>2</sub> , 100 mM NaCl, 100 µg/ml BSA (pH 7.9 @ 25°C).                                        |
| CutSmart Buffer | 20 mM Tris-acetate, 10 mM magnesium acetate, 50 mM potassium acetate, 100 µg/ml BSA (pH 7.9 @ 25°C).                         |
| Diluent A       | 50 mM KCl, 10 mM Tris-HCl, 0.1 mM EDTA, 1 mM dithiothreitol, 200 µg/ml BSA (pH 7.4 @ 25°C).                                  |
| Diluent B       | 300 mM NaCl, 10 mM Tris-HCl, 0.1 mM EDTA, 1 mM dithiothreitol, 500 µg/ml BSA, 50% glycerol (pH 7.4 @ 25°C).                  |
| Diluent C       | 50 mM KCI, 10 mM Tris-HCI, 0.1 mM EDTA, 1 mM dithiothreitol, 0.15% Triton X-100, 200 µg/ml BSA 50% glycerol (pH 7.4 @ 25°C). |

|                   | ENZYME  | SUPPLIED<br>NEBUFFER | 1.1  | % ACTIVIT<br>2.1 |      | UFFERS<br>CUTSMART | INCUB.<br>TEMP.<br>(°C) | INACTIV.<br>TEMP.<br>(°C) | DIL. | SUBSTRATE      | METHYI<br>SENSI |     | NOTE(S) |
|-------------------|---------|----------------------|------|------------------|------|--------------------|-------------------------|---------------------------|------|----------------|-----------------|-----|---------|
| RR Ø              | Aatll   | CutSmart             | < 10 | 50*              | 50   | 100                | 37°                     | 80°                       | В    | Lambda         |                 | CpG |         |
| R                 | AbaSI   | 4                    | 25   | 50               | 50   | 100                | 25°                     | 65°                       | С    | T4 wt Phage    |                 |     | е       |
| RX 🥝              | Accl    | CutSmart             | 50   | 50               | 10   | 100                | 37°                     | 80°                       | А    | Lambda         |                 | CpG |         |
| RR 🥝              | Acc65I  | 3.1                  | 10   | 75*              | 100  | 25                 | 37°                     | 65°                       | А    | pBC4           | dcm             | CpG |         |
| RX 🕑              | Acil    | CutSmart             | < 10 | 25               | 100  | 100                | 37°                     | 65°                       | А    | Lambda         |                 | CpG |         |
| RX 🕑              | AcII    | CutSmart             | < 10 | < 10             | < 10 | 100                | 37°                     | No                        | В    | Lambda         |                 | CpG |         |
| RX 🕑              | Acul    | CutSmart + SAM       | 50   | 100              | 50   | 100                | 37°                     | 65°                       | В    | Lambda         |                 |     | 3, b, d |
| RX                | Afel    | CutSmart             | 25   | 100              | 25   | 100                | 37°                     | 65°                       | В    | pXba           |                 | CpG |         |
| RX 🕑              | AfIII   | CutSmart             | 50   | 100              | 10   | 100                | 37°                     | 65°                       | А    | phiX174        |                 |     |         |
| RX                | AfIII   | 3.1                  | 10   | 50               | 100  | 50                 | 37°                     | 80°                       | В    | Lambda         |                 |     |         |
| RX                | Agel    | 1.1                  | 100  | 75               | 25   | 75                 | 37°                     | 65°                       | С    | Lambda         |                 | CpG | 2       |
| RX 🚱 <i>e</i> Mix | Agel-HF | CutSmart             | 100  | 50               | 10   | 100                | 37°                     | 65°                       | А    | Lambda         |                 | CpG |         |
| RX 🕑              | Ahdl    | CutSmart             | 25   | 25               | 10   | 100                | 37°                     | 65°                       | А    | Lambda         |                 | CpG | а       |
| RX                | Alel    | CutSmart             | < 10 | < 10             | < 10 | 100                | 37°                     | 80°                       | В    | Lambda         |                 | CpG |         |
| RX 🗳              | Alul    | CutSmart             | 25   | 100              | 50   | 100                | 37°                     | 80°                       | В    | Lambda         |                 |     | b       |
| RX                | Alwl    | CutSmart             | 50   | 50               | 10   | 100                | 37°                     | No                        | А    | Lambda dam-    | dam             |     | 1, b, d |
| RX 🔮              | AlwNI   | CutSmart             | 10   | 100              | 50   | 100                | 37°                     | 80°                       | А    | Lambda         | dcm             |     |         |
| RX 🕑              | Apal    | CutSmart             | 25   | 25               | < 10 | 100                | 25°                     | 65°                       | А    | pXba           | dam             | CpG |         |
| RX 🕑              | ApaLI   | CutSmart             | 100  | 100              | 10   | 100                | 37°                     | No                        | А    | Lambda HindIII |                 | CpG |         |
| RX 🗳              | ApeKI   | 3.1                  | 25   | 50               | 100  | 10                 | 75°                     | No                        | В    | Lambda         |                 | CpG |         |

#### Activity Notes (see last column)

#### FOR STAR ACTIVITY

- Star activity may result from extended digestion, high enzyme concentration or a glycerol concentration of > 5%
- 2. Star activity may result from extended digestion.
- 3. Star activity may result from a glycerol concentration of > 5%.
- \* May exhibit star activity in this buffer.

#### FOR LIGATION AND RECUTTING

- a. Ligation is less than 10%
- b. Ligation is 25% 75%
- c. Recutting after ligation is < 5%
- d. Recutting after ligation is 50%-75%
- Ligation and recutting after ligation is not applicable since the enzyme is either a nicking enzyme, is affected by methylation, or the recognition sequence contains variable sequences.



| T V          |               | SUPPLIED             |            | % ACTIVITY |            |            | INCUB.<br>TEMP. | TEMP.      |        |                     | METHYL |            |           |
|--------------|---------------|----------------------|------------|------------|------------|------------|-----------------|------------|--------|---------------------|--------|------------|-----------|
|              | ENZYME        | NEBUFFER             | 1.1        | 2.1        |            | CUTSMART   |                 | (°C)       |        | SUBSTRATE           | SENSIT | IVITY      | NOTE(S)   |
|              | Apol          | 3.1<br>0:+0====t     | 10         | 75         | 100        | 75         | 50°             | 80°        | A      | Lambda              |        | 0-0        |           |
| RR 🎱 Mix     | Ascl          | CutSmart             | < 10       | 10         | 10         | 100        | 37°             | 80°        | A      | Lambda              |        | CpG        | 3         |
|              | Asel          | 3.1<br>CutCmart      | < 10       | 50*        | 100        | 10         | 37°<br>37°      | 65°<br>80° | В      | Lambda              |        | 0.0        | 2, b      |
| R** •        | AsiSI         | CutSmart<br>CutSmart | 50         | 100        | 100<br>25  | 100<br>100 | 37°             | 80°        | B      | pXba (Xho digested) |        | CpG<br>CpG | 2,0       |
| RR Ø         | Aval<br>Avall | CutSmart             | < 10<br>50 | 100<br>75  | 25<br>10   | 100        | 37°             | 80°        | A      | Lambda              | dcm    | CpG        |           |
| RR Ø         |               | CutSmart             | 100        | 75<br>50   | 50         | 100        | 37°             |            | A      | Lambda Hindill      | uciii  | Сра        |           |
| RR Ø         | Avrll         | CutSmart + SAM       |            |            |            | 100        | 37°<br>25°      | No<br>65°  | B      | Lambda HindIII      |        | CpG        | е         |
| R Ø          | Bael<br>BaeGl | 3.1                  | 50<br>75   | 100<br>75  | 50<br>100  | 25         | 25<br>37°       | 80°        | A      | Lambda              |        | сра        | 0         |
|              | BamHI         | 3.1                  | 75<br>75*  | 75<br>100* | 100        | 20<br>100* | 37°             | No         | A      | Lambda<br>Lambda    |        |            | 3         |
|              | BamHI-HF      | CutSmart             | 100        | 50         |            | 100        | 37°             |            |        |                     |        |            | 0         |
| RX 🔮 C<br>RX |               | CutSmart             |            | 25         | 10         | 100        | 37°             | No<br>65°  | A      | Lambda              | dcm    | 0.0        | 1         |
| R%           | Banl          | CutSmart             | 10<br>100  | 25<br>100  | < 10<br>50 | 100        | 37°             | 80°        | A      | Lambda              | ucin   | CpG        | 2         |
|              | Banll         | 2.1                  | 100        | 100        | 25         | 75         | 37°             | 65°        | A<br>B | Lambda              |        |            | 2         |
|              | Bbsl          |                      |            |            |            |            |                 |            |        | Lambda              |        |            | 3         |
| RR Ø         | Bbvl          | CutSmart             | 100        | 100        | 25         | 100        | 37°             | 65°        | В      | pBR322              |        | CoC        | 3<br>1, a |
| R            | BbvCl         | CutSmart             | 10         | 100        | 50         | 100        | 37°             | No         | В      | Lambda              |        | CpG        |           |
| RX           | Bccl          | CutSmart             | 100        | 50         | 10         | 100        | 37°             | 65°        | А      | pXba                |        |            | 3, b      |
| RX           | BceAl         | 3.1                  | 100*       | 100*       | 100        | 100*       | 37°             | 65°        | А      | pBR322              |        | CpG        | 1         |
| RX           | Bcgl          | 3.1 + SAM            | 10         | 75*        | 100        | 50*        | 37°             | 65°        | А      | Lambda              | dam    | CpG        | е         |
| RX 🕑         | BciVI         | CutSmart             | 100        | 25         | < 10       | 100        | 37°             | 80°        | С      | Lambda              |        |            | b         |
| RX 🕑         | Bcll          | 3.1                  | 50         | 100        | 100        | 75         | 50°             | No         | А      | Lambda dam-         | dam    |            |           |
| RX 🕑         | BcoDI         | CutSmart             | 50         | 75         | 75         | 100        | 37°             | No         | В      | Lambda              |        | CpG        |           |
| RX           | Bfal          | CutSmart             | < 10       | 10         | < 10       | 100        | 37°             | 80°        | В      | Lambda              |        |            | 2, b      |
| RX 🕑         | BfuAl         | 3.1                  | < 10       | 25         | 100        | 10         | 50°             | 65°        | В      | Lambda              |        | CpG        | 3         |
| RX 🥝         | BfuCl         | CutSmart             | 100        | 50         | 25         | 100        | 37°             | 80°        | В      | Lambda              |        | CpG        |           |
| RX 🕑         | Bgll          | 3.1                  | 10         | 25         | 100        | 10         | 37°             | 65°        | В      | Lambda              |        | CpG        |           |
| RX 🕑         | BgIII         | 3.1                  | 10         | 10         | 100        | < 10       | 37°             | No         | А      | Lambda              |        |            |           |
| RX 🕑         | Blpl          | CutSmart             | 50         | 100        | 10         | 100        | 37°             | No         | А      | Lambda              |        |            | d         |
| RX 🕑         | BmgBl         | 3.1                  | < 10       | 10         | 100        | 10         | 37°             | 65°        | В      | Lambda              |        | CpG        | 3, b, d   |
| R            | Bmrl          | 2.1                  | 75         | 100        | 75         | 100*       | 37°             | 65°        | В      | Lambda HindIII      |        |            | b         |
| R            | Bmtl          | 3.1                  | 100        | 100        | 100        | 100        | 37°             | 65°        | В      | pXba                |        |            | 2         |
| RX 🔮 e       | BmtI-HF       | CutSmart             | 50         | 100        | 10         | 100        | 37°             | 65°        | В      | pXba                |        |            |           |
| R            | Bpml          | 3.1                  | 75         | 100        | 100        | 100        | 37°             | 65°        | В      | Lambda              |        |            | 2         |
| RX           | Bpu10I        | 3.1                  | 10         | 25         | 100        | 25         | 37°             | 80°        | В      | Lambda              |        |            | 3, b, d   |
| RR 🥝         | BpuEl         | CutSmart + SAM       | 50*        | 100        | 50*        | 100        | 37°             | 65°        | В      | Lambda              |        |            | d         |
| R*           | Bsal          | CutSmart             | 75*        | 75         | 100        | 100        | 37°             | 65°        | В      | pXba                | dcm    | CpG        | 3         |
| RK 🔮 e       | Bsal-HF       | CutSmart             | 50         | 100        | 25         | 100        | 37°             | 65°        | В      | pXba                | dcm    | CpG        |           |
| RR 🙆         | BsaAl         | CutSmart             | 100        | 100        | 100        | 100        | 37°             | No         | С      | Lambda              |        | CpG        |           |
|              | BsaBl         | CutSmart             | 50         | 100        | 75         | 100        | 60°             | 80°        | В      | Lambda dam-         | dam    | CpG        | 2         |
| RR 🔮         | BsaHl         | CutSmart             | 50         | 100        | 100        | 100        | 37°             | 80°        | А      | Lambda              | dcm    | CpG        |           |
| RX           | BsaJI         | CutSmart             | 50         | 100        | 100        | 100        | 60°             | 80°        | А      | Lambda              |        |            |           |
| RX 🕑         | BsaWI         | CutSmart             | 10         | 100        | 50         | 100        | 60°             | 80°        | А      | Lambda              |        |            |           |
| <b>Ø</b>     | BsaXI         | CutSmart             | 50*        | 100*       | 10         | 100        | 37°             | No         | В      | Lambda              |        |            | e         |
| RR 🔮         | BseRI         | CutSmart             | 100*       | 100        | 75         | 100        | 37°             | 80°        | А      | Lambda              |        |            | d         |
| RX           | BseYl         | 3.1                  | 10         | 50         | 100        | 50         | 37°             | 80°        | В      | Lambda              |        | CpG        | d         |
| RX 🙆         | Bsgl          | CutSmart + SAM       | 25         | 50         | 25         | 100        | 37°             | 65°        | В      | Lambda              |        |            | d         |
| RX 🕑         | BsiEl         | CutSmart             | 25         | 50         | < 10       | 100        | 60°             | No         | А      | Lambda              |        | CpG        |           |
| RN           | BsiHKAI       | CutSmart             | 25         | 100        | 100        | 100        | 65°             | No         | В      | Lambda              |        |            |           |
| RX 🙆         | BsiWI         | 3.1                  | 25         | 50*        | 100        | 25         | 55°             | 65°        | В      | phiX174             |        | CpG        |           |
| RR 🖉         | BsII          | CutSmart             | 50         | 75         | 100        | 100        | 55°             | No         | А      | Lambda              | dcm    | CpG        | b         |
| RX 🙆         | Bsml          | CutSmart             | 25         | 100        | < 10       | 100        | 65°             | 80°        | А      | pBR322              |        | _          |           |
| RX 🗳         | BsmAl         | CutSmart             | 50         | 100        | 100        | 100        | 55°             | No         | В      | Lambda              |        | CpG        |           |



|            | ENZYME    | SUPPLIED<br>NEBUFFER | 1.1  | % ACTIVIT<br>2.1 |      | UFFERS<br>Cutsmart | INCUB.<br>Temp.<br>(°C) | INACTIV.<br>Temp.<br>(°C) | DIL. | SUBSTRATE      |     | 'LATION<br>ITIVITY | NOTE(S) |
|------------|-----------|----------------------|------|------------------|------|--------------------|-------------------------|---------------------------|------|----------------|-----|--------------------|---------|
| RX Ø       | BsmBl     | 3.1                  | 10   | 50*              | 100  | 25                 | 55°                     | 80°                       | В    | Lambda         |     | CpG                |         |
| RX         | BsmFl     | CutSmart             | 25   | 50               | 50   | 100                | 65°                     | 80°                       | А    | pBR322         | dcm | CpG                | 1       |
| RX 🗳       | BsoBl     | CutSmart             | 25   | 100              | 100  | 100                | 37°                     | 80°                       | А    | Lambda         |     |                    |         |
| RX 🥝       | Bsp1286I  | CutSmart             | 25   | 25               | 25   | 100                | 37°                     | 65°                       | А    | Lambda         |     |                    | 3       |
| RR 🥝       | BspCNI    | CutSmart + SAM       | 100  | 75               | 10   | 100                | 25°                     | 80°                       | А    | Lambda         |     |                    | b       |
| RX         | BspDI     | CutSmart             | 25   | 75               | 50   | 100                | 37°                     | 80°                       | А    | Lambda         | dam | CpG                |         |
| RR 🕑       | BspEl     | 3.1                  | < 10 | 10               | 100  | < 10               | 37°                     | 80°                       | В    | Lambda dam-    | dam | CpG                |         |
| RX 🥝       | BspHI     | CutSmart             | < 10 | 50               | 25   | 100                | 37°                     | 80°                       | А    | Lambda         | dam |                    |         |
| RX         | BspMI     | 3.1                  | 10   | 50*              | 100  | 10                 | 37°                     | 65°                       | В    | Lambda         |     |                    |         |
| RR 🥝       | BspQI     | 3.1                  | 100  | 100              | 100  | 100                | 50°                     | 80°                       | В    | Lambda         |     |                    | 3       |
| 6          | Bsrl      | 3.1                  | < 10 | 50               | 100  | 10                 | 65°                     | 80°                       | В    | phiX174        |     |                    | b       |
| RR 🥝       | BsrBl     | CutSmart             | 50   | 100              | 100  | 100                | 37°                     | 80°                       | А    | Lambda         |     | CpG                | d       |
| RR 🕑       | BsrDI     | 2.1                  | 10   | 100              | 75   | 25                 | 65°                     | 80°                       | А    | Lambda         |     |                    | 3, d    |
| R          | BsrFl     | CutSmart             | 10   | 100*             | 100* | 100                | 37°                     | No                        | С    | pBR322         |     | CpG                | 1       |
| RR 🕑       | BsrGl     | 2.1                  | 25   | 100              | 100  | 25                 | 37°                     | 80°                       | А    | Lambda         |     |                    |         |
| RX 🔮 e     | BsrGI-HF  | CutSmart             | 10   | 100              | 100  | 100                | 37°                     | 80°                       | А    | Lambda         |     | _                  |         |
| RR 🥝       | BssHII    | CutSmart             | 100  | 100              | 100  | 100                | 50°                     | 65°                       | В    | Lambda         |     | CpG                |         |
| RR 🥝       | BssKI     | CutSmart             | 50   | 100              | 100  | 100                | 60°                     | 80°                       | А    | Lambda         | dcm | CpG                | b       |
| RX 🔮 e     | BssS∝I    | CutSmart             | 10   | 25               | < 10 | 100                | 37°                     | No                        | В    | Lambda         |     |                    |         |
| R          | BstAPI    | CutSmart             | 50   | 100              | 25   | 100                | 60°                     | 80°                       | А    | Lambda         |     | CpG                | b       |
| RR 🕑       | BstBl     | CutSmart             | 75   | 100              | 10   | 100                | 65°                     | No                        | А    | Lambda         |     | CpG                |         |
| RR 🥝       | BstEll    | 3.1                  | 10   | 75*              | 100  | 75*                | 60°                     | No                        | А    | Lambda         |     |                    | 3       |
| RR 🔮 e Mix | BstEII-HF | CutSmart             | < 10 | 10               | < 10 | 100                | 37°                     | No                        | А    | Lambda         |     |                    |         |
| RR 🥝       | BstNI     | 3.1                  | 10   | 100              | 100  | 75                 | 60°                     | No                        | А    | Lambda         |     |                    | а       |
| 0          | BstUI     | CutSmart             | 50   | 100              | 25   | 100                | 60°                     | No                        | А    | Lambda         |     | CpG                | b       |
| RR 🥝       | BstXI     | 3.1                  | < 10 | 50               | 100  | 25                 | 37°                     | 80°                       | В    | Lambda         | dcm |                    | 3       |
| RR 🕑       | BstYl     | 2.1                  | 25   | 100              | 75   | 100                | 60°                     | No                        | А    | Lambda         |     |                    |         |
| Ø          | BstZ17I   | CutSmart             | 75   | 100              | 100  | 100                | 37°                     | No                        | В    | Lambda         |     | CpG                | 3, b    |
| RR 🥝       | Bsu36l    | CutSmart             | 25   | 100              | 100  | 100                | 37°                     | 80°                       | А    | Lambda HindIII |     |                    | b       |
| RR 🕑       | Btgl      | CutSmart             | 50   | 100              | 100  | 100                | 37°                     | 80°                       | В    | pBR322         |     |                    |         |
| R          | BtgZl     | CutSmart             | 10   | 25               | < 10 | 100                | 60°                     | 80°                       | А    | Lambda         |     | CpG                | 3, b, d |
| RX 🔮 e     | Bts∝l     | CutSmart             | 100  | 100              | 25   | 100                | 55°                     | No                        | А    | Lambda         |     |                    |         |
| RX e       | BtsIMutl  | CutSmart             | 100  | 50               | 10   | 100                | 55°                     | 80°                       | А    | pUC19          |     |                    | b       |
| RR 🔮       | BtsCI     | CutSmart             | 10   | 100              | 25   | 100                | 50°                     | 80°                       | В    | Lambda         |     |                    |         |
| <u> </u>   | Cac8I     | CutSmart             | 50   | 75               | 100  | 100                | 37°                     | 65°                       | В    | Lambda         |     | CpG                | b       |
| RR 🖉       | Clal      | CutSmart             | 10   | 50               | 50   | 100                | 37°                     | 65°                       | A    | Lambda dam-    | dam | CpG                |         |
| RX 🗳       | CspCl     | CutSmart + SAM       | 10   | 100              | 10   | 100                | 37°                     | 65°                       | А    | Lambda         |     |                    | е       |
| RR Ø       | CviAll    | CutSmart             | 50   | 50               | 10   | 100                | 25°                     | 65°                       | С    | pUC19          |     |                    |         |
| R          | CviKI-1   | CutSmart             | 25   | 100              | 100  | 100                | 37°                     | No                        | А    | pBR322         |     |                    | 1, b    |
| RR 🗳       | CviQI     | 3.1                  | 75   | 100*             | 100  | 75*                | 25°                     | No                        | С    | Lambda         |     |                    | b       |
| RR 🔮       | Ddel      | CutSmart             | 75   | 100              | 100  | 100                | 37°                     | 65°                       | В    | Lambda         |     |                    |         |
| RR 🔮       | Dpnl      | CutSmart             | 100  | 100              | 75   | 100                | 37°                     | 80°                       | В    | pBR322         | dam | CpG                | b       |
| RR 🗳       | Dpnll     | U                    | 25   | 25               | 100* | 25                 | 37°                     | 65°                       | В    | Lambda dam-    | dam |                    |         |
|            | Dral      | CutSmart             | 75   | 75               | 50   | 100                | 37°                     | 65°                       | А    | Lambda         |     |                    |         |
| RR 🔮 e     | DrallI-HF | CutSmart             | < 10 | 50               | 10   | 100                | 37°                     | No                        | В    | Lambda         |     | CpG                | b       |
| <b>Ø</b>   | Drdl      | CutSmart             | 25   | 50               | 10   | 100                | 37°                     | 65°                       | A    | pUC19          |     | CpG                | 3, b    |
| RX         | Eael      | CutSmart             | 10   | 50               | < 10 | 100                | 37°                     | 65°                       | А    | Lambda         | dcm | CpG                | b       |
| RR         | Eagl      | 3.1                  | 10   | 25               | 100  | 10                 | 37°                     | 65°                       | С    | pXba           |     | CpG                |         |
| RR 🔮 e     | Eagl-HF   | CutSmart             | 25   | 100              | 100  | 100                | 37°                     | 65°                       | В    | pXba           |     | CpG                |         |
| RR         | Earl      | CutSmart             | 50   | 10               | < 10 | 100                | 37°                     | 65°                       | В    | Lambda         |     | CpG                | b, d    |
| RX         | Ecil      | CutSmart             | 100  | 50               | 50   | 100                | 37°                     | 65°                       | А    | Lambda         |     | CpG                | 2       |
| RX 🗳       | Eco53kl   | CutSmart             | 100  | 100              | < 10 | 100                | 37°                     | 65°                       | A    | pXba           |     | CpG                | 3, b    |

1. Star activity may result from extended digestion, high enzyme concentration or a glycerol concentration of > 5%.

Star activity may result from extended digestion.
Star activity may result from a glycerol concentration of > 5%.

\* May exhibit star activity in this buffer.



|                   | ENZYME     | SUPPLIED<br>NEBUFFER | 1.1  | % ACTIVIT<br>2.1 |            | JFFERS<br>Cutsmart | TEMP. | INACTIV.<br>TEMP.<br>(°C) | DIL. | SUBSTRATE      | METHYLATION<br>SENSITIVITY | NOTE(S) |
|-------------------|------------|----------------------|------|------------------|------------|--------------------|-------|---------------------------|------|----------------|----------------------------|---------|
| RR 🕑              | EcoNI      | CutSmart             | 50   | 100              | 75         | 100                | 37°   | 65°                       | А    | Lambda         |                            | b       |
| RX 🔮              | EcoO109I   | CutSmart             | 50   | 100              | 50         | 100                | 37°   | 65°                       | А    | Lambda HindIII | dcm                        | 3       |
| RX 🗳              | EcoP15I    | 3.1 + ATP            | 75   | 100              | 100        | 100                | 37°   | 65°                       | А    | pUC19          |                            | е       |
| RR 🕐              | EcoRI      | U                    | 25   | 100*             | 50         | 50*                | 37°   | 65°                       | С    | Lambda         | CpG                        |         |
| RR 🕑 e Mix        | EcoRI-HF   | CutSmart             | 10   | 100              | < 10       | 100                | 37°   | 65°                       | С    | Lambda         | CpG                        |         |
| RX 🙆              | EcoRV      | 3.1                  | 10   | 50               | 100        | 10                 | 37°   | 80°                       | А    | Lambda         | CpG                        |         |
| RR 🔮 e Mix        | EcoRV-HF   | CutSmart             | 25   | 100              | 100        | 100                | 37°   | 65°                       | В    | Lambda         | CpG                        |         |
| RX                | Fatl       | 2.1                  | 10   | 100              | 50         | 50                 | 55°   | 80°                       | А    | pUC19          |                            |         |
| RX                | Faul       | CutSmart             | 100  | 50               | 10         | 100                | 55°   | 65°                       | А    | Lambda         | CpG                        | 3, b, d |
| RX 🕑              | Fnu4HI     | CutSmart             | < 10 | < 10             | < 10       | 100                | 37°   | No                        | А    | Lambda         | CpG                        | а       |
| R                 | Fokl       | CutSmart             | 100  | 100              | 75         | 100                | 37°   | 65°                       | А    | Lambda         | dcm CpG                    | 3, b, d |
| RX 🔮              | Fsel       | CutSmart             | 100  | 75               | < 10       | 100                | 37°   | 65°                       | В    | Adenovirus-2   | dcm CpG                    |         |
| RX Ø              | Fspl       | CutSmart             | 10   | 100              | 10         | 100                | 37°   | No                        | С    | Lambda         | CpG                        | b       |
| RX                | FspEl      | 4 + BSA              | < 10 | < 10             | < 10       | 100                | 37°   | 80°                       | В    | pBC4           |                            | 2, e    |
| RX 🕐              | Haell      | CutSmart             | 25   | 100              | 10         | 100                | 37°   | 80°                       | A    | Lambda         | CpG                        |         |
| RX Ø              | HaeIII     | CutSmart             | 50   | 100              | 25         | 100                | 37°   | 80°                       | А    | Lambda         |                            |         |
|                   | Hgal       | 1.1                  | 100  | 100              | 25         | 100                | 37°   | 65°                       | А    | phiX174        | CpG                        | 1       |
| RX Ø              | Hhal       | CutSmart             | 25   | 100              | 100        | 100                | 37°   | 65°                       | А    | Lambda         | CpG                        |         |
| RR Ø              | Hincl      | 3.1                  | 25   | 100              | 100        | 100                | 37°   | 65°                       | В    | Lambda         | CpG                        |         |
| R                 | HindIII    | 2.1                  | 25   | 100              | 50         | 50                 | 37°   | 80°                       | В    | Lambda         |                            | 2       |
| RX 🔮 e            | HindIII-HF | CutSmart             | 10   | 100              | 10         | 100                | 37°   | 80°                       | B    | Lambda         |                            |         |
| RX Ø              | Hinfl      | CutSmart             | 50   | 100              | 100        | 100                | 37°   | 80°                       | A    | Lambda         | CpG                        |         |
| RX Ø              | HinP1I     | CutSmart             | 100  | 100              | 100        | 100                | 37°   | 65°                       | A    | Lambda         | CpG                        |         |
| R                 | Hpal       | CutSmart             | < 10 | 75*              | 25         | 100                | 37°   | No                        | A    | Lambda         | CpG                        | 1       |
| RX Ø              | Hpall      | CutSmart             | 100  | 50               | < 10       | 100                | 37°   | 80°                       | A    | Lambda         | CpG                        |         |
| RX Ø              | Hphl       | CutSmart             | 50   | 50               | < 10       | 100                | 37°   | 65°                       | B    | Lambda         | dam dcm                    | b, d    |
| R                 | Hpy99I     | CutSmart             | 50   | 10               | < 10       | 100                | 37°   | 65°                       | A    | Lambda         | CpG                        | 5, 6    |
| RX Ø              | Hpy166II   | CutSmart             | 100  | 100              | < 10<br>50 | 100                | 37°   | 65°                       | C    | pBR322         | CpG                        |         |
| RK C              |            | CutSmart             | 25   | 100              |            | 100                | 37°   | 65°                       | -    | 1              | dam                        | 1, b    |
| m<br>RR           | 15         | CutSmart             |      |                  | 50         |                    | 37°   | 65°                       | A    | pBR322         | dam CpG                    | 3, b    |
|                   | Hpy188III  |                      | 100  | 100              | 10         | 100                | ÷.    |                           | B    | pUC19          |                            | 3, b, d |
|                   | HpyAV      | CutSmart             | 100  | 100              | 25         | 100                | 37°   | 65°                       | B    | Lambda         | CpG                        | 5, b, u |
|                   | HpyCH4III  | CutSmart             | 100  | 25               | < 10       | 100                | 37°   | 65°                       | A    | Lambda         | 0-0                        | IJ      |
|                   | HpyCH4IV   | CutSmart             | 100  | 50               | 25         | 100                | 37°   | 65°                       | A    | pUC19          | CpG                        |         |
|                   | HpyCH4V    | CutSmart             | 50   | 50               | 25         | 100                | 37°   | 65°                       | A    | Lambda         | 6 A                        | 3       |
| RR                | Kasl       | CutSmart             | 50   | 100              | 50         | 100                | 37°   | 65°                       | В    | pBR322         | CpG                        | 1       |
|                   | Kpnl       | 1.1                  | 100  | 75               | < 10       | 50*                | 37°   | No                        | A    | pXba           |                            | 1       |
| RR 🕜 e Mix        | KpnI-HF    | CutSmart             | 100  | 25               | < 10       | 100                | 37°   | No                        | A    | pXba           |                            | 0.0     |
| RX                | LpnPl      | 4 + BSA              | < 10 | < 10             | < 10       | 50                 | 37°   | 65°                       | В    | pBR322         |                            | 2, e    |
| RX Ø              | Mbol       | CutSmart             | 75   | 100              | 100        | 100                | 37°   | 65°                       | A    | Lambda dam-    | dam CpG                    |         |
| RK                | Mboll      | CutSmart             | 100* | 100              | 50         | 100                | 37°   | 65°                       | С    | Lambda dam-    | dam                        | b       |
|                   | Mfel       | CutSmart             | 75   | 50               | 10         | 100                | 37°   | No                        | A    | Lambda         |                            | 2       |
| R* 🔮 <i>e</i> Mix | Mfel-HF    | CutSmart             | 75   | 25               | < 10       | 100                | 37°   | No                        | А    | Lambda         |                            |         |
| RX 🕑              | Mlul       | 3.1                  | 10   | 50               | 100        | 25                 | 37°   | 80°                       | А    | Lambda         | CpG                        |         |
| RX 🔮 e            | Mlul-HF    | CutSmart             | 25   | 100              | 100        | 100                | 37°   | No                        | А    | Lambda         | CpG                        |         |
| RX 🔮              | MluCl      | CutSmart             | 100  | 10               | 10         | 100                | 37°   | No                        | А    | Lambda         |                            |         |
| RX 🗳              | Mlyl       | CutSmart             | 50   | 50               | 10         | 100                | 37°   | 65°                       | А    | Lambda         |                            | b, d    |
| RR 🥝              | Mmel       | CutSmart + SAM       | 50   | 100              | 50         | 100                | 37°   | 65°                       | В    | phiX174        | CpG                        | b, c    |
| RX 🥝              | Mnll       | CutSmart             | 75   | 100              | 50         | 100                | 37°   | 65°                       | В    | Lambda         |                            | b       |
| RR                | Mscl       | CutSmart             | 25   | 100              | 100        | 100                | 37°   | 80°                       | В    | Lambda         | dcm                        |         |
| RR 🕐              | Msel       | CutSmart             | 75   | 100              | 75         | 100                | 37°   | 65°                       | А    | Lambda         |                            |         |
| RR 🔮              | MsII       | CutSmart             | 50   | 50               | < 10       | 100                | 37°   | 80°                       | А    | Lambda         |                            |         |
| RR Ø              | Mspl       | CutSmart             | 75   | 100              | 50         | 100                | 37°   | No                        | A    | Lambda         |                            |         |

a. Ligation is less than 10% b. Ligation is 25% – 75% c. Recutting after ligation is <5%

d. Recutting after ligation is 50% – 75% e. Ligation and recutting after ligation is not applicable since the enzyme

is either a nicking enzyme, is affected by methylation, or the recognition sequence contains variable sequences.



|            | ENZYME    | SUPPLIED<br>NEBUFFER | 1.1  | % ACTIVITY<br>2.1 |      | JFFERS<br>Cutsmart | INCUB.<br>Temp.<br>(°C) | INACTIV.<br>Temp.<br>(°C) | DIL. | SUBSTRATE       | METHYLATIO<br>SENSITIVITY |         |
|------------|-----------|----------------------|------|-------------------|------|--------------------|-------------------------|---------------------------|------|-----------------|---------------------------|---------|
| RR 🕑       | MspA11    | CutSmart             | 10   | 50                | 10   | 100                | 37°                     | 65°                       | В    | Lambda          | CpG                       |         |
| RX         | MspJI     | 4 + BSA              | < 10 | < 10              | < 10 | 50                 | 37°                     | 65°                       | В    | pBR322          |                           | 2, e    |
| RX 🔮       | Mwol      | CutSmart             | < 10 | 100               | 100  | 100                | 60°                     | No                        | В    | Lambda          | CpG                       |         |
| RX         | Nael      | CutSmart             | 25   | 25                | < 10 | 100                | 37°                     | No                        | А    | pXba            | CpG                       | b       |
| RX         | Narl      | CutSmart             | 100  | 100               | 10   | 100                | 37°                     | 65°                       | А    | pXba            | CpG                       |         |
| RX         | Nb.BbvCl  | CutSmart             | 25   | 100               | 100  | 100                | 37°                     | 80°                       | А    | pUB             |                           | е       |
| RX         | Nb.Bsml   | 3.1                  | < 10 | 50                | 100  | 10                 | 65°                     | 80°                       | А    | pBR322          |                           | е       |
| RX         | Nb.BsrDI  | CutSmart             | 25   | 100               | 100  | 100                | 65°                     | 80°                       | А    | pUC19           |                           | е       |
| RX         | Nb.Btsl   | CutSmart             | 75   | 100               | 75   | 100                | 37°                     | 80°                       | А    | phiX174         |                           | е       |
| RX 🗳       | Ncil      | CutSmart             | 100  | 25                | 10   | 100                | 37°                     | No                        | А    | Lambda          | CpG                       | b       |
| RR 🗳       | Ncol      | 3.1                  | 100  | 100               | 100  | 100                | 37°                     | 80°                       | А    | Lambda          |                           |         |
| RR 🔮 C Mix | Ncol-HF   | CutSmart             | 50   | 100               | 10   | 100                | 37°                     | 80°                       | В    | Lambda          |                           |         |
| RX 🕑       | Ndel      | CutSmart             | 75   | 100               | 100  | 100                | 37°                     | 65°                       | А    | Lambda          |                           |         |
| RX 🗳       | NgoMIV    | CutSmart             | 100  | 50                | 10   | 100                | 37°                     | No                        | А    | pXba            | CpG                       | 1       |
| RX 🕑       | Nhel      | 2.1                  | 100  | 100               | 10   | 100                | 37°                     | 65°                       | С    | Lambda HindIII  | CpG                       |         |
| RR 🔮 e Mix | Nhel-HF   | CutSmart             | 100  | 25                | < 10 | 100                | 37°                     | 80°                       | С    | Lambda HindIII  | CpG                       |         |
| RX 🗳       | NIaIII    | CutSmart             | < 10 | < 10              | < 10 | 100                | 37°                     | 65°                       | В    | phiX174         |                           |         |
| RX         | NIalV     | CutSmart             | 10   | 10                | 10   | 100                | 37°                     | 65°                       | В    | pBR322          | dcm CpG                   |         |
| RX         | NmeAIII   | CutSmart + SAM       | 10   | 10                | < 10 | 100                | 37°                     | 65°                       | В    | phiX174         |                           | C       |
| RX 🗳       | Notl      | 3.1                  | < 10 | 50                | 100  | 25                 | 37°                     | 65°                       | С    | pBC4            | CpG                       |         |
| RR 🔮 C Mix | NotI-HF   | CutSmart             | 25   | 100               | 25   | 100                | 37°                     | 65°                       | А    | pBC4            | CpG                       |         |
| RX 🗳       | Nrul      | 3.1                  | < 10 | 10                | 100  | 10                 | 37°                     | No                        | А    | Lambda          | dam CpG                   | b       |
| RX 🔮 e     | Nrul-HF   | CutSmart             | 0    | 25                | 50   | 100                | 37°                     | No                        | А    | Lambda          | dam CpG                   |         |
| RX 🗳       | Nsil      | 3.1                  | 10   | 75                | 100  | 25                 | 37°                     | 65°                       | В    | Lambda          |                           |         |
| RX 🥝 e     | Nsil-HF   | CutSmart             | < 10 | 20                | < 10 | 100                | 37°                     | 80°                       | В    | Lambda          |                           |         |
| RX 🗳       | Nspl      | CutSmart             | 100  | 100               | < 10 | 100                | 37°                     | 65°                       | А    | Lambda          |                           |         |
| RX         | Nt.Alwl   | CutSmart             | 10   | 100               | 100  | 100                | 37°                     | 80°                       | А    | pUC101 dam-dcm- | dam                       | е       |
| RX         | Nt.BbvCl  | CutSmart             | 50   | 100               | 10   | 100                | 37°                     | 80°                       | А    | рUВ             | CpG                       | е       |
| RX         | Nt.BsmAl  | CutSmart             | 100  | 50                | 10   | 100                | 37                      | 65°                       | А    | pBR322          | CpG                       | е       |
| RX         | Nt.BspQI  | 3.1                  | < 10 | 25                | 100  | 10                 | 50°                     | 80°                       | В    | pUC19           |                           | е       |
| RX         | Nt.BstNBI | 3.1                  | 0    | 10                | 100  | 10                 | 55°                     | 80°                       | А    | T7              |                           |         |
| RX         | Nt.CviPII | CutSmart             | < 10 | 100               | 25   | 100                | 37°                     | 65°                       | А    | pUC19           | CpG                       | е       |
| RR 🙆 Mix   | Pacl      | CutSmart             | 100  | 75                | 10   | 100                | 37°                     | 65°                       | А    | pNEB193         |                           |         |
| RX 🗳       | PaeR7I    | CutSmart             | 25   | 100               | 10   | 100                | 37°                     | No                        | А    | Lambda HindIII  | CpG                       |         |
| RX         | Pcil      | 3.1                  | 50   | 75                | 100  | 50*                | 37°                     | 80°                       | В    | pXba            |                           |         |
| RX 🥝       | PfIFI     | CutSmart             | 25   | 100               | 25   | 100                | 37°                     | 65°                       | А    | pBC4            |                           | b       |
| RX 🗳       | PfIMI     | 3.1                  | 0    | 100               | 100  | 50                 | 37°                     | 65°                       | А    | Lambda          | dcm                       | 3, b, d |
| RX         | Plel      | CutSmart             | 25   | 50                | 25   | 100                | 37°                     | 65°                       | А    | Lambda          | CpG                       | b       |
| RX         | PluTl     | CutSmart             | 100  | 25                | < 10 | 100                | 37°                     | 65°                       | А    | pXba            | CpG                       |         |
| RX 🥝       | Pmel      | CutSmart             | < 10 | 50                | 10   | 100                | 37°                     | 65°                       | А    | Lambda          | CpG                       |         |
| 0          | Pmll      | CutSmart             | 100  | 50                | < 10 | 100                | 37°                     | 65°                       | А    | Lambda HindIII  | CpG                       |         |
| RX 🥝       | PpuMI     | CutSmart             | < 10 | < 10              | < 10 | 100                | 37°                     | No                        | В    | Lambda HindIII  | dcm                       |         |
| RX 🥝       | PshAl     | CutSmart             | 25   | 50                | 10   | 100                | 37°                     | 65°                       | А    | Lambda          | CpG                       |         |
| RX         | Psil      | CutSmart             | 10   | 100               | 10   | 100                | 37°                     | 65°                       | В    | Lambda          |                           | 3       |
| RX         | PspGl     | CutSmart             | 25   | 100               | 50   | 100                | 75°                     | No                        | А    | T7              | dcm                       | 3       |
| RX         | PspOMI    | CutSmart             | 10   | 10                | < 10 | 100                | 37°                     | 65°                       | В    | pXba            | dcm CpG                   |         |
| RX         | PspXI     | CutSmart             | < 10 | 100               | 25   | 100                | 37°                     | No                        | В    | Lambda HindIII  | CpG                       |         |
| RX 🙆       | Pstl      | 3.1                  | 75   | 75                | 100  | 50*                | 37°                     | 80°                       | С    | Lambda          |                           |         |
| R 🔮 e      | PstI-HF   | CutSmart             | 10   | 75                | 50   | 100                | 37°                     | No                        | С    | Lambda          |                           |         |
| RR Ø       | Pvul      | 3.1                  | < 10 | 25                | 100  | < 10               | 37°                     | 80°                       | В    | pXba            | CpG                       |         |
| RR 🔮 e     | Pvul-HF   | CutSmart             | 25   | 100               | 100  | 100                | 37°                     | No                        | B    | pXba            | CpG                       |         |

1. Star activity may result from extended digestion, high enzyme concentration or a glycerol concentration of > 5%.

Star activity may result from extended digestion.
Star activity may result from a glycerol concentration of > 5%.



|                   | ENZYME   | SUPPLIED<br>NEBUFFER | 1.1  | % ACTIVITY<br>2.1 |      | BUFFERS<br>CUTSMART | INCUB.<br>Temp.<br>(°C) | INACTIV.<br>Temp.<br>(°C) | DIL. | SUBSTRATE           | METHYLATION<br>Sensitivity | NOTE(S) |
|-------------------|----------|----------------------|------|-------------------|------|---------------------|-------------------------|---------------------------|------|---------------------|----------------------------|---------|
| RR 🚱              | Pvull    | 3.1                  | 50   | 100               | 100  | 100*                | 37°                     | No                        | В    | Lambda              |                            |         |
| RR 🔮 e            | Pvull-HF | CutSmart             | < 10 | < 10              | < 10 | 100                 | 37°                     | 80°                       | В    | Lambda              |                            |         |
| RX 🕑              | Rsal     | CutSmart             | 25   | 50                | < 10 | 100                 | 37°                     | No                        | А    | Lambda              | CpG                        |         |
| RX                | Rsrll    | CutSmart             | 25   | 75                | 10   | 100                 | 37°                     | 65°                       | С    | Lambda              | CpG                        |         |
| RX 🗳              | Sacl     | 1.1                  | 100  | 50                | 10   | 100                 | 37°                     | 65°                       | А    | Lambda HindIII      |                            |         |
| RX 🔮 e            | SacI-HF  | CutSmart             | 10   | 50                | < 10 | 100                 | 37°                     | 65°                       | А    | Lambda HindIII      |                            |         |
| RX 🕑              | SacII    | CutSmart             | 10   | 100               | 10   | 100                 | 37°                     | 65°                       | А    | pXba                | CpG                        |         |
| RX 🕑              | Sall     | 3.1                  | < 10 | < 10              | 100  | < 10                | 37°                     | 65°                       | А    | Lambda HindIII      | CpG                        |         |
| RR 🥝 C Mix        | Sall-HF  | CutSmart             | 10   | 100               | 100  | 100                 | 37°                     | 65°                       | А    | Lambda HindIII      | CpG                        |         |
| RR 🥝              | Sapl     | CutSmart             | 75   | 50                | < 10 | 100                 | 37°                     | 65°                       | В    | Lambda              |                            |         |
| R                 | Sau3AI   | 1.1                  | 100  | 50                | 10   | 100                 | 37°                     | 65°                       | А    | Lambda              | CpG                        | b       |
| RR                | Sau96I   | CutSmart             | 50   | 100               | 100  | 100                 | 37°                     | 65°                       | А    | Lambda              | dcm CpG                    |         |
| RX 🔮              | Sbfl     | CutSmart             | 50   | 25                | < 10 | 100                 | 37°                     | 80°                       | А    | Lambda              |                            | 3       |
| R 🔮 e             | SbfI-HF  | CutSmart             | 50   | 25                | < 10 | 100                 | 37°                     | 80°                       | В    | Lambda              |                            |         |
| RX 🔮 <i>C</i> Mix | Scal-HF  | CutSmart             | 100  | 100               | 10   | 100                 | 37°                     | 80°                       | В    | Lambda              |                            |         |
| RX                | ScrFI    | CutSmart             | 100  | 100               | 100  | 100                 | 37°                     | 65°                       | С    | Lambda              | dcm CpG                    | 2, а    |
| RX                | SexAl    | CutSmart             | 100  | 75                | 50   | 100                 | 37°                     | 65°                       | А    | pBC4 dcm-           | dcm                        | 3, b, d |
| RX                | SfaNI    | 3.1                  | < 10 | 75                | 100  | 25                  | 37°                     | 65°                       | В    | phiX174             | CpG                        | 3, b    |
| RX                | Sfcl     | CutSmart             | 75   | 50                | 25   | 100                 | 37°                     | 65°                       | В    | Lambda              |                            | 3       |
| RX 🕑              | Sfil     | CutSmart             | 25   | 100               | 50   | 100                 | 50°                     | No                        | С    | pXba                | dcm CpG                    |         |
| RX 🙂              | Sfol     | CutSmart             | 50   | 100               | 100  | 100                 | 37°                     | No                        | В    | Lambda HindIII      | dcm CpG                    |         |
| RX                | SgrAl    | CutSmart             | 100  | 100               | 10   | 100                 | 37°                     | 65°                       | А    | Lambda              | CpG                        | 1       |
| RX 🕑              | Smal     | CutSmart             | < 10 | < 10              | < 10 | 100                 | 25°                     | 65°                       | В    | Lambda HindIII      | CpG                        | b       |
| RX                | Smll     | CutSmart             | 25   | 75                | 25   | 100                 | 55°                     | No                        | А    | Lambda              |                            | b       |
| RX                | SnaBl    | CutSmart             | 50   | 50                | 10   | 100                 | 37°                     | 80°                       | А    | T7                  | CpG                        | 1       |
| RR 🔮 Mix          | Spel     | CutSmart             | 75   | 100               | 25   | 100                 | 37°                     | 80°                       | С    | pXba-Xbal digested  |                            |         |
| RR 🔮 e            | Spel-HF  | CutSmart             | 25   | 50                | 10   | 100                 | 37°                     | 80°                       | С    | pXba-Xbal digested  |                            |         |
| RR                | Sphl     | 2.1                  | 100  | 100               | 50   | 100                 | 37°                     | 65°                       | В    | Lambda              |                            | 2       |
| R  6  e           | SphI-HF  | CutSmart             | 50   | 25                | 10   | 100                 | 37°                     | 65°                       | В    | Lambda              |                            |         |
| RR 🔮              | Sspl     | U                    | 50   | 100               | 50   | 50                  | 37°                     | 65°                       | С    | Lambda              |                            |         |
| R  6  e           | SspI-HF  | CutSmart             | 25   | 100               | < 10 | 100                 | 37°                     | No                        | В    | Lambda              |                            |         |
| RR 🖉              | Stul     | CutSmart             | 50   | 100               | 50   | 100                 | 37°                     | No                        | A    | Lambda              | dcm                        |         |
| RX 🙆              | StyD4I   | CutSmart             | 10   | 100               | 100  | 100                 | 37°                     | 65°                       | В    | Lambda              | dcm CpG                    |         |
|                   | Styl     | 3.1                  | 10   | 25                | 100  | 10                  | 37°                     | 65°                       | A    | Lambda              |                            | b       |
| RR 🔮 e            | Styl-HF  | CutSmart             | 25   | 100               | 25   | 100                 | 37°                     | 65°                       | A    | Lambda              |                            | h -1    |
|                   | Swal     | 3.1                  | 10   | 10                | 100  | 10                  | 25°                     | 65°                       | В    | pUPS                | -                          | b, d    |
|                   | Taq¤l    | CutSmart             | 50   | 75                | 100  | 100                 | 65°                     | 80°                       | В    | Lambda              | dam                        |         |
| R                 | Tfil     | CutSmart             | 50   | 100               | 100  | 100                 | 65°                     | No                        | С    | Lambda              | CpG                        | 2       |
| Ø                 | Tsel     | CutSmart             | 75   | 100               | 100  | 100                 | 65°                     | No                        | В    | Lambda              | CpG                        | 3       |
|                   | Tsp45l   | CutSmart             | 100  | 50                | < 10 | 100                 | 65°                     | No                        | A    | Lambda              |                            | d       |
|                   | TspMI    | CutSmart             | 50*  | 75*               | 50*  | 100                 | 75°                     | No                        | В    | pUCAdeno            | CpG                        | d       |
|                   | TspRI    | CutSmart             | 25   | 50                | 25   | 100                 | 65°                     | No                        | В    | Lambda              |                            | h       |
|                   | Tth1111  | CutSmart             | 25   | 100               | 25   | 100                 | 65°                     | No                        | В    | pBC4                |                            | b       |
| RR 🥝 Mix          | Xbal     | CutSmart             | < 10 | 100               | 75   | 100                 | 37°                     | 65°                       | A    | Lambda HindIII dam- | dam                        | 2       |
|                   | Xcml     | 2.1                  | 10   | 100               | 25   | 100                 | 37°                     | 65°                       | С    | Lambda              |                            |         |
| RR 🥝 Mix          | Xhol     | CutSmart             | 75   | 100               | 100  | 100                 | 37°                     | 65°                       | A    | Lambda HindIII      | CpG                        | b       |
|                   | Xmal     | CutSmart             | 25   | 50                | < 10 | 100                 | 37°                     | 65°                       | A    | pXba                | CpG                        | 3<br>b  |
|                   | Xmnl     | CutSmart             | 50   | 75                | < 10 | 100                 | 37°                     | 65°                       | A    | Lambda              |                            | U       |
| R                 | Zral     | CutSmart             | 100  | 25                | 10   | 100                 | 37°                     | 80°                       | В    | Lambda              | CpG                        |         |

#### USA

New England Biolabs, Inc. Telephone (978) 927-5054 Toll Free (USA Orders) 1-800-632-5227 Toll Free (USA Tech) 1-800-632-7799 Fax (978) 921-1350 info@neb.com www.neb.com

#### Canada

New England Biolabs, Ltd. Toll Free: 1-800-387-1095 info.ca@neb.com

### China, People's Republic

New England Biolabs (Beijing), Ltd. Telephone: 010-82378265/82378266 info@neb-china.com

#### France

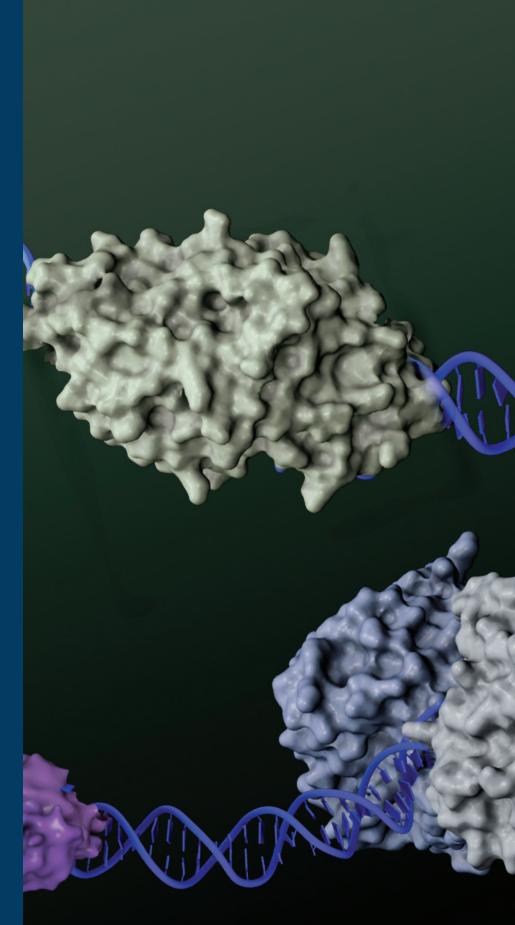
New England Biolabs France Telephone : 0800 100 632 info.fr@neb.com

#### Germany & Austria

New England Biolabs GmbH Free Call: 0800/246 5227 (Germany) Free Call: 00800/246 52277 (Austria) info.de@neb.com

#### Japan New England Biolabs Japan, Inc. Telephone: +81 (0)3 5669 6191 info@neb-japan.com

Singapore New England Biolabs, PTE. Ltd. Telephone +65 6776 0903 sales.sg@neb.com


#### United Kingdom New England Biolabs (UK), Ltd. Call Free: 0800 318486 info.uk@neb.com

# www.neb.com





Version 4.0 - 8/15

