Algal Biotechnology: Physiology of growth, and Mass Cultivation, Photobioreactors

- Algae formal tax. standing, polyphyletic origin, artificial assemblage of O_2 evolving photosynthetic organisms; wide range of growth form; wide range of growth strategies; wide range of reproduction strategies (vegetative, asexual, sexual); tolerance of wide range of environmental condition (*e.g.* Nutrients, pH, temp., turbidity, O_2 & CO₂ conc.)
- Aquatic marine & freshwater planctonic, bentic, kelps; subaerial; symbiotic
- Unicellular; colonies; coenobia; filamentous; thalloid
- Nutritional strategies
 - Autotrophy (photoautotrophy) Heterotrophy (osmotrophy, phagotrophy) mixotrophy (auxotrophy)
 - Obligate Facultative
- Wide range of valuable metabolites pigments, antioxidants, toxins, alelopathic metabolites, fatty acids, phenols,

- Environment
 - Light (intensity, spectrum, photoperiod)
 - absorption, transmision, reflection, scattering, interference; environmental accessibility
 - Temperature
 - Substrate & Nutrients
 - Sources vs. Requirements
 - Environmental stability
 - nutrient flow, mechanical condions, stream, randomization

- Nutrient (N,P & CO2, HCO3) accesibility; N₂ fixation; motile stage
- Synergistic effects of combinations of chemical and physical factors
- Photosynthesis
 - Structure & function (thylacoid, chloroplast, cell; pigments – primary, accessory ;

photosystems vs. antena)

Light reaction (ETR, O₂ evolution); Calvin Benson
 Bassham Cycle (RuBisCO activity); CCM

• LRC

- Pn max
- Rd
- Ic

photoinhibition

Methods used for algal culture growth evaluation

- direct
 - fresh/dry mass determination
 - counting number of cells (colonies)
 - cell volume, PCV
 - protein content
 - calorific value
 - flow-cytometry & epifluorescence microscopy
- indirect
 - turbidity; optical density; pH; CO₂, O₂ conc.
 - chlorophyll content

Culture methods

- <u>Batch cultures small scale</u>
 - common, simple, low cost, closed system, volume-limited
 - any flow of nutritions & products
 - Erlenmeyer flasks, tubes, Petri dishes
 - growth curve phases lag, acceleration, exponential, retardation, stationary, decline

TABLE 6.19 Description of the Six Successive Phases of Growth for an Algal Population under Batch Culture Conditions

Growth	Growth Rate Interpretation	Description
ag	Zero	Physiological adaptation of the inoculum to changing conditions
cceleration	Increasing	Trivial
xponential	Constant	Population growth changes the environment of the cells
etardation	Decreasing	Effects of changing conditions appear
tationary	Zero	One or more nutrients (or light) are exhausted down to the threshold level of the cells
ecline	Negative	The duration of stationary phase and the rate of decline are strongly dependent on the kind of organisms

FIGURE 6.1 Growth curve of an algal population under batch culture conditions (a) and corresponding variations of the growth rate (b).

Culture methods

<u>Continuous cultures</u>

- resources are potentially infinite
- cultures are maintained at chosen point on the growth curve by regulated addition of fresh medium
- air pump CO₂ source, mixing-turbulence
- categories of contin. cult.:
 - turbidostat
 - chemostat
 - cyclostat
- <u>Semi-continuous cultures</u>
 - periodic fresh medium addition & harvesting

Fig. 3.1. Schematic diagram of a chemostat setup. Reprinted with permission from Kluwer Academic Publishers (J. Appl. Phycol.).

Mass production of Microalage

- Open ponds
 - Lakes and natural ponds
 - Inclined systems
 - Cirkular ponds
 - Raceway ponds

Ideal

dense suspension (cells, colonies, coenobias, fillaments) cultured at low PAR/cell, high O_2 conc. And limits of anorg. C availability

Mass production of Microalage

... then growth depends on interplay of several parameters: avg. PAR/cell mixing gas exchange temperature

Effective light distribution in suspension

<> efficiency of light conversion

> effective PBR design

> cell suspension density

> selection (gen modif.) of the culture > small antena

(to reduce excitation presure of PS units under high PAR & maintain high efficiency of light conversion)

Mass production of Microalage

- Photobioreactor
 - Tubular photobioreactors
 - Serpentine photobioreactors
 - Manifold photobioreactors
 - Helical photobioreactors
 - Flat photobioreactors
 - Flat alveolar panels
 - Vertical cylinders and sleeves

Biomass growth rate

- growth curve exponential phase
 - doubling time

$$2^0 N_0 \rightarrow 2^1 N_0 \rightarrow 2^2 N_0 \rightarrow 2^3 N_0 \rightarrow 2^n N_0$$

 N_0 = Initial number of cells n = Number of doublings (generations)

$$\ln(X_t/X_0)/t = 0.693/t_d$$
$$d(\ln X)/dt = 0.693/t_d$$
$$d(\ln X)/dX \cdot dX/dt = 0.693/t_d$$
$$1/X \cdot dX/dt = 0.693/t_d$$
$$\mu = 0.693/t_d$$

- <u>Commercial-scale cultures</u>
 - volume of cca. $10^2 10^9 1$
 - large open ponds, circular ponds with rotating arm, raceway ponds, large bags, tube system
 - factors to be considered:
 - biology of alga; the cost of land; labor; energy; water; nutrients; climate (if outdoors); type of product
 - light utilization efficiency (PBR & open ponds, surface-to-volume ratio 20-200 vs 5-10m⁻¹, orientation, inclination); ability to control temp.; hydrodynamic stress (mixing); oxygen accumulation; ability to maintain culture unialgal or axenic (photobioreactors *vs*. open ponds)

 -scale up ability
 - **Harvesting** (20-30% cost) species specific
 - Flocculation -↑pH, cationic polymers (Chitosan, Zetag)
 - Centrifugation & filtration
 - Dehydrating sun-drying, spray-drying, drum-drying, freeze-drying
 - Cell disruption mechanical (homogenizers, bead mills, ultrasound), chemical
 - Product isolation and purification

– Chlorella, Spirulina, Dunaliella, Nannochloropsis

• Ethanol from algae

high carbohydrate content (Sargassum, Glacilaria, Prymnesium parvum, Euglena gracilis)

• Cultivation of algae for CO₂ capture

- can absorb over 2 million tons of Co2 a year per acre

Algae & Men

- macroalgae (commerce 42 countries)
 - food
 - Laminaria (China, N.,S.Korea, Japan, Philipines, Chile, Norway, Indonesia, U.S., India)
 - Porphyra, Kappaphycus, Undaria (Wakame), Euchema, Gracilaria, Caulerpa lentillifera (green caviar)
 - Nori (Porphyra yezzoensis) 13mil. t/y
- microalgae
 - carotenoids, pigmenst, proteins, vitamins, ...
 - Dunaliella, Haematococcus, Arthrospira, Chlorella
 - nutraceuticals, pharmaceuticals, animal feed additives, cosmetics, fertilizers
 - N2-fixing cyano.-biofertilizers in rice fields
 - Wastewater oxidation, bioremediation
 - Microalgae platform for recombinant proteins (*e.g.* hGH in *Chlorela*)