Organic synthesis

Kamil Paruch

Masaryk University, Brno

Enols & enolates: formation, structure, reactivity

Knoevenagel condensations

enolate attacks carbonyl C, subsequent elimination of H₂O

CHO +
$$MeO_2C$$
 CO_2Me $AcOH$ $AcOH$ $B2\%$

Tetrahedron Lett. 1986, 27, 1767.

+ NC
$$CO_2Me$$

NC CO_2Me

NC CO_2Me

CHO
$$CHO + EtO_2C CO_2Et$$

$$AcOH$$

$$CO_2Et$$

Org. Synth. Coll. Vol. 3, 1955, 165.

Robinson annulation

Michael addition + aldol condensation

• both ketones can be prepared non-racemic by proline-catalyzed Robinson annulation

Hajos-Parrish ketone

Henry reaction

J. Org. Chem. 1950, 15, 8.

Helv. Chim. Acta 1988, 71, 1.

Nef reaction

modern version:

1. LDA 2. MoOPh

or TiCl₃

or 1. KOH 2. KMnO₄

Claisen condensation

Dieckmann condensation

intramolecular version of Claisen condensation

Thorpe reaction

• "enolates" of nitriles

NC
$$\xrightarrow{\text{CN}} \xrightarrow{\text{1. NaOEt}} \xrightarrow{\text{CN}} \xrightarrow{\text{CN}} \xrightarrow{\text{CN}} \xrightarrow{\text{CN}} \xrightarrow{\text{NC}} \xrightarrow$$

Mannich reaction

frequently used in assembly of cyclic N-containing systems

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{NMe} \\ \\ \text{HCHO} \\ \\ \\ \text{H} \\ \\ \text{N} \\ \\ \text{H} \\ \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\$$

Chem. Pharm. Bull. 1991, 39, 1349.

note: only 6% yield with HCHO + Me₂NH (sterically hindered substrate)

Mannich reaction is frequently used in assembly of cyclic N-containing systems

"biomimetic approach"

CHO + MeNH₂ +
$$CO_2H$$
 CO_2H $COOH$ $COOH$ $COOH$ $COOH$ $COOH$

J. Chem. Soc. 1917, 762.

Strecker reaction

• synthesis of amino acids

OMe
OMe
OMe

1. KCN,
$$(NH_4)_2CO_3$$

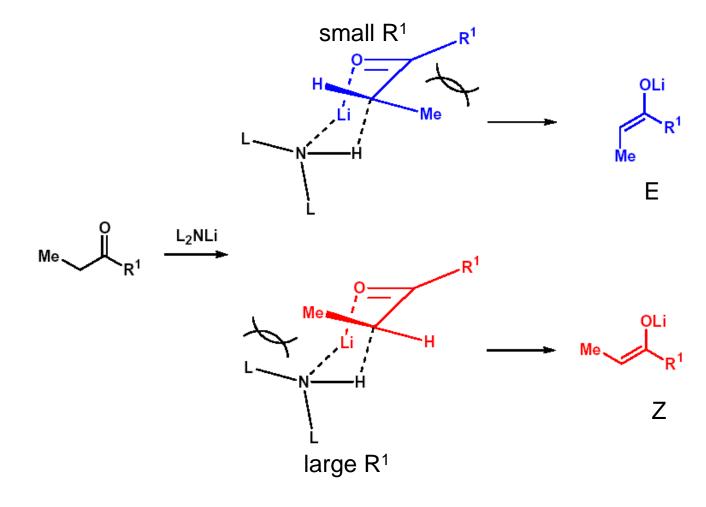
2. Ba $(OH)_2$, H_2O

3. H_3O^+

90%

J. Org. Chem. 1987, 52, 4477.

Aldol reaction: 2 new stereogenic centers can be created


(regioselective) formation of enolate

OM

$$R^1$$
 R^2
 R^3
 R^2
 R^3
 R^3
 R^4
 R^4

• stereochemistry of products depends on the configuration of the starting enolates

GEOMETRY OF ENOLATES - IRELAND MODEL

GEOMETRY OF ENOLATES - EFFECT OF BASE

$$R^{1} \xrightarrow{\text{Me}} \frac{\text{LiNR}_{2}}{\text{THF, -78}^{\circ}\text{C}} \xrightarrow{\text{R}^{1}} \frac{\text{OLi}}{\text{H}} + R^{1} \xrightarrow{\text{Me}} H$$

BÁZE	R_1 =Et $(Z:E)$	R_1 =cyklohexyl ($Z:E$)
LiN(i-Pr) ₂	30:70	61 : 39
LiN(SiMe ₃) ₂	70:30	85 : 15
LiN(SiEt ₃) ₂	99:1	96 : 4
LiN(SiMe ₂ Ph) ₂	100:0	100:0

SELECTIVE FORMATION OF E OR Z ENOL BORINATES

 R_2BCI with large alkyls (e.g. cyclohexyl) + small base (Et_3N) -> E enolates R_2BOTf with small alkyls (e.g. n-butyl) + large base (DIPEA) -> Z enolates

SELECTIVE FORMATION OF E OR Z ENOL BORINATES

 R_2BCI with large alkyls (e.g. cyclohexyl) + small base (Et_3N) -> E enolates R_2BOTf with small alkyls (e.g. n-butyl) + large base (DIPEA) -> Z enolates

Aldol reaction: 2 new stereogenic centers can be created

OM

$$R^1$$
 R^2
 R^3
 R^3
 R^3
 R^4
 R^3
 R^3
 R^4
 R^3
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4
 R^4
 R^3
 R^4
 R^4

- sterochemistry of products depends on the configuration of the starting enolates
- stereochemistry can also depend on R³

$$R^2 = H$$
,
 R^1 , R^3 achiral

racemic mixture

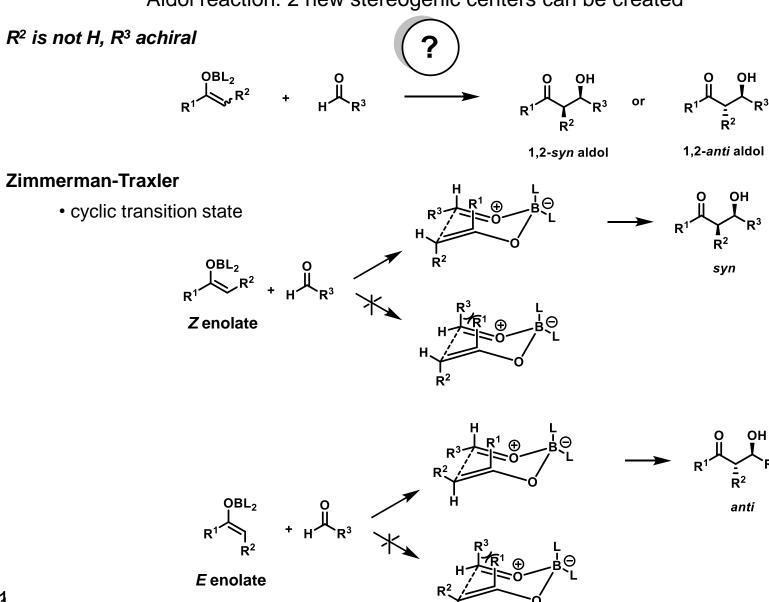
$$R^2 = H$$
, H
 R^1 achiral
 R^3 chiral

Respectively. Felkin-Anh

Nu attacks C=O: 107° angle

76:24

80:20


stereoselective reactions with large Nu

mixture of diastereomers

Me Ph CHO + R O'M+
$$\frac{1. \text{ THF}}{2. \text{ H}_3\text{O}^+}$$
 Ph OH O syn $\frac{\text{Me}}{\text{OH O}}$ Anti

t-Bu

Aldol reaction: 2 new stereogenic centers can be created

R² is not H, R³ chiral

Evans' oxazolidinone

R: Bn, i-Pr, t-Bu ...

com. available

Aldol reaction: asymmetric induction

R₃ contains stereogenic center: typically, conditions can be adjusted so that the syn- or anti- product is predominant