C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 11
 Quantum Mechanics III

PS/2021 Present Form of Teaching: Rev2

Petr Kulhánek

kulhanek@chemi.muni.cz
National Centre for Biomolecular Research, Faculty of Science
Masaryk University, Kamenice 5, CZ-62500 Brno

Context

Phenomenological thermodynamics
equilibrium (binding affinities)

kinetics

Thermodynamic properties:
H, S, G, ...

Time average:

Molecular Dynamics

Ensemble average:

Mechanical properties:

Statistical thermodynamics Monte Carlo simulations

Molecular modelling
How to describe interactions?

Context

Quantum Mechanics

> It can properly describe systems composed of atoms, which are further composed from electrons and atom nuclei (dual character - particle/wave).
$>$ Microstate energies are solution of time-independent Schrödinger equation.

$$
\hat{H} \psi_{k}(\mathbf{r})=E_{k} \psi_{k}(\mathbf{r})
$$

Probabilistic description of the structure in the given state
> Unsolvable for microstates of macrosystems (> 10^{23} atoms)
> Practically impossible to solve even for small chemical systems (hydrogen molecule)
> Analytically solvable for simple systems

QM Description of Simple Systems

$>$ hydrogen atom
$>$ harmonic oscillator
rigid rotator
particle in potential well
approximate description for
$>$ vibrational
$>$ rotational
$>$ translational
motions
$>$ hydrogen molecule

Hydrogen Atom

Hydrogen atom

$$
\left[x_{p}, y_{p}, z_{p}\right]
$$

Hamiltonian

operator describing proton motion
electrostatic interaction between proton and electron

Motion of two bodies can be described by motion of one body with a reduced weight:

$$
\mu=\frac{M m}{M+m}
$$ What is the reduced mass of hydrogen atom (proton/electron)?

$\mathrm{M}=1836$ au
$\mathrm{m}=1 \mathrm{au}$
$\mu=0.99945$ au
practically the same weight

Hydrogen atom

Cartesian vs spherical coordinates

$r=\sqrt{x_{e}^{2}+y_{e}^{2}+z_{e}^{2}}$

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

Hydrogen atom - solution

$$
\hat{H} \psi_{k}(r, \theta, \varphi)=E_{k} \psi_{k}(r, \theta, \varphi)
$$

Solution:

$$
\begin{aligned}
& \psi_{k}(r, \theta, \varphi)=R_{n, l}(r) Y_{l, m}(\theta, \phi) \\
& E_{k}=-\frac{Z^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}} \quad \text { angular (angular) part of the wave function (WF) }
\end{aligned}
$$

quantum numbers:
n - principal quantum number ($1,2,3 \ldots$...)
I - angular quantum number ($0, \ldots, \mathrm{n}-1=\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \ldots$)
m - magnetic quantum number ($-\mathrm{I}, \ldots, 0, \ldots, \mathrm{l}$)
in atomic units:

$$
E_{k}=-\frac{1}{2 n^{2}}
$$

Z - proton number ε_{0} - vacuum permittivity e - electron charge a_{0}-Bohr radius

Hydrogen atom - solution

Summary

> Hydrogen atom and hydrogen like atoms (atom cations with one electron) are only chemical systems, whose SE is solvable analytically.
$>$ Allowed energy is discretized (quantized) and dependent only on the principal quantum number.
> Hydrogen atom WF is a foundation for atomic orbitals employed by quantum chemistry methods.

a) The hydrogen atom has degenerate states, i.e., states with the same n have the same energy.
b) Atoms with more electrons.

SR solution for simple systems

> hydrogen atom
$>$ harmonic oscillator
$>$ rigid rotator
$>$ particles in potential well

Harmonic Oscilator

Harmonic oscillator

Hamiltonian

$$
\hat{H}=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2}+V(r)
$$

spring with stiffness K
$F(r)=K\left(r-r_{0}\right) \longrightarrow V(r)=\frac{1}{2} K\left(r-r_{0}\right)^{2}$
the force is proportional to the deviation from the equilibrium position

Simplification:

$$
\mu=\frac{m_{1} m_{2}}{m_{2}+m_{2}} \quad \hat{H}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V(r) \quad V(r)=\frac{1}{2} K\left(r-r_{0}\right)^{2}
$$

Harmonic oscillator - solution

$$
\hat{H} \psi_{k}(r)=E_{k} \psi_{k}(r)
$$

Solution:

$$
\begin{aligned}
& \psi_{k}(r)=\Xi_{v}(r) \\
& E_{k}=\left(v+\frac{1}{2}\right) \hbar \varpi
\end{aligned}
$$

quantum numbers:
v - vibrational quantum number ($0,1,2,3 \ldots$...)
angular frequency $\varpi=\sqrt{\frac{K}{\mu}}$

Summary

$>$ Quantum harmonic oscillator cannot have zero energy in the ground state.
$>$ This intrinsic behaviour can be explained by uncertainty principle.
$>$ For low vibrational numbers, the highest probability for particle finding is at equilibrium distance (this is opposite to the classical harmonic oscillator behavior).
> Energies are equidistant.
position/momentum

$$
\Delta x \Delta p \geq \frac{\hbar}{2}
$$

- no motion (exact momentum)
- position at potential bottom (exact position)

Harmonic vs anharmonic oscillator

Simplified description of vibrational motion. A more accurate empirical description is given by Morse's potential.

Rigid Rotor

Rigid rotor

Hamiltonian

$$
\begin{gathered}
\hat{H}=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2} \\
\text { with constraint } \mathrm{r}=\mathrm{r}_{0}
\end{gathered}
$$

Simplification:

$$
\begin{gathered}
\mu=\frac{m_{1} m_{2}}{m_{2}+m_{2}} \\
\hat{H}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}
\end{gathered}
$$

$$
\text { with constraint } r=r_{0}
$$

Rigid Rotor - solution

$$
\hat{H} \psi_{k}(\theta, \varphi)=E_{k} \psi_{k}(\theta, \varphi)
$$

Solution:

$$
\begin{aligned}
& \psi_{k}(\theta, \varphi)=Y_{l, m}(\theta, \phi) \\
E_{l}= & \frac{\hbar^{2}}{2 I} l(l+1)
\end{aligned}
$$

angular part of the wave function
quantum numbers:
I - angular quantum number ($0,1,2, \ldots$)
m - magnetic quantum number ($-1, \ldots, 0, \ldots, I$)
moment of inertia $\quad I=\mu r_{0}^{2}$

Particle in a Box

Particle in a box

m
Solution:

$$
\begin{aligned}
& \psi_{n}=A \sin \left(\frac{n \pi}{L} x\right) \\
& E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2}
\end{aligned}
$$

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}
$$

standing waves

For a multi-dimensional potential box (3D), the dimensions can be replaced by the box volume.

Hydrogen Molecule

$>$ Many electron atoms ($\mathrm{He}, \mathrm{Li}, \ldots$)
$>$ Born-Oppenheimer approximation
> One-electron approximation
$>$ Many atom (=many electron) molecules
$>$ Born-Oppenheimer approximation
> One-electron approximation
$>$...

Revision

$$
\hat{H} \phi(\mathbf{x}, t)=i \hbar \frac{\partial \phi(\mathbf{x}, t)}{\partial t}
$$

časově závislá Schrödingerova rovnice

Revision

$$
\hat{H} \phi(\mathbf{x}, t)=i \hbar \frac{\partial \phi(\mathbf{x}, t)}{\partial t}
$$

$$
\phi(\mathbf{x}, t)=\psi(\mathbf{x}) f(t)
$$

time-dependent Schrödinger equation
time-independent Schrödinger equation

$$
\hat{H} \psi_{k}(\mathbf{x})=E_{k} \psi_{k}(\mathbf{x})
$$

system can exist in several quantum states described by wavefunction Ψ_{k} and energy E_{k}

Revision

$$
\hat{H} \phi(\mathbf{x}, t)=i \hbar \frac{\partial \phi(\mathbf{x}, t)}{\partial t}
$$

$$
\phi(\mathbf{x}, t)=\psi(\mathbf{x}) f(t)
$$

time-dependent Schrödinger equation

Born- Oppenheimer approximation

$$
\hat{H} \psi_{k}(\mathbf{x})=E_{k} \psi_{k}(\mathbf{x})
$$

$$
\psi(\mathbf{x})=\Psi(\mathbf{r}, \mathbf{R}) \chi(\mathbf{R})
$$

time-independent Schrödinger equation

$$
\hat{H}_{R} \chi_{l}(\mathbf{R})=\stackrel{R}{E}_{V R T, l} \chi_{l}(\mathbf{R})
$$

electron motion in the static field of nuclei electronic properties
nuclei motion in effective field of electrons vibration, rotation, translation

Revision

$$
\hat{H}_{e} \Psi_{m}(\mathbf{r}, \mathbf{R})=E_{m}(\mathbf{R}) \Psi_{m}(\mathbf{r}, \mathbf{R}) \quad \hat{H}_{R} \chi_{l}(\mathbf{R})=E_{V R T, l} \chi_{l}(\mathbf{R})
$$

electron motion in the static field of nuclei electronic properties
nuclei motion in effective field of electrons vibration, rotation, translation
electronic energy part
vibration, rotation, translation energy part

$$
E_{k}=E_{m}\left(R_{o p t, m}\right)+E_{V R T, l}
$$

\uparrow
total energy of the state
optimal geometry, at which E_{m} is minimal

Revision

$\hat{H}_{e} \Psi_{m}(\mathbf{r}, \mathbf{R})=E_{m}(\mathbf{R}) \Psi_{m}(\mathbf{r}, \mathbf{R})$
 $$
\hat{H}_{R} \chi_{l}(\mathbf{R})=E_{V R T, l} \chi_{l}(\mathbf{R})
$$

electron motion in the static field of nuclei electronic properties
nuclei motion in effective field of electrons vibration, rotation, translation

$$
\begin{aligned}
& \text { je možné obdobným } \\
& \text { způsobem dále rozdělit na } \\
& \text { samostatné příspěvky } \\
& \text { vibrační, rotační a translační } \\
& \qquad E_{V R T, l}=E_{V, i}+E_{R, j}+E_{T, k}
\end{aligned}
$$

Structure vs system state

Homework

1. What is the order of the dissociation energies of H_{2} (hydrogen molecule), D_{2} (deuterium molecule), and T_{2} (tritium molecule)?

Focus on the ground state (1s+1s) only:

Help:

- vibrations are quantized

$$
E_{V}=\left(v+\frac{1}{2}\right) h v \quad \begin{aligned}
& \text { vibrational quantum } \\
& \text { number } 0,1,2, \ldots
\end{aligned}
$$

- neglect rotation and translation (why?)

Total energy of the ground state:

$$
E=E\left(r_{o}\right)+E_{V}(v=0)
$$

