C7790 Introduction to Molecular Modelling

TSM Modelling Molecular Structures
C9087 Computational Chemistry for Structural Biology

Lesson 13
Potential Energy Surface I

JS/2022 Present Form of Teaching: Rev3

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

Context

macroworld

states

(thermodynamic properties, G, T,...)

phenomenological thermodynamics

equilibrium (equilibrium constant) kinetics (rate constant)

free energy (Gibbs/Helmholtz)

partition function

statistical thermodynamics

microstates

(mechanical properties, E)

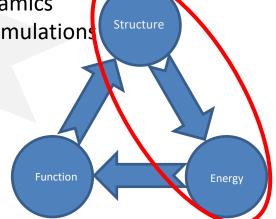
microworld

Description levels (model chemistry):

- quantum mechanics
 - semiempirical methods
 - ab initio methods
 - post-HF methods
 - DFT methods
- molecular mechanics
- coarse-grained mechanics

Simulations:

- molecular dynamics
- Monte Carlo simulations
- docking
- ...



microstate ≠ microworld

$$\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial t}$$

time dependent Schrödinger equation

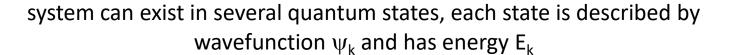
$$\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial t}$$

time dependent Schrödinger equation

$$\phi(\mathbf{x},t) = \psi(\mathbf{x})f(t)$$

time independent Schrödinger equation

$$\hat{H}\psi_k(\mathbf{x}) = E_k \psi_k(\mathbf{x})$$



$$\hat{H}\phi(\mathbf{x},t) = i\hbar \frac{\partial \phi(\mathbf{x},t)}{\partial t}$$

time dependent Schrödinger equation

Born- Oppenheim approximation

$$\psi(\mathbf{r}, \mathbf{R}) = \chi(\mathbf{R})\Psi(\mathbf{r}, \mathbf{R})$$

$$\hat{H}_e \Psi_m(\mathbf{r}, \mathbf{R}) = E_m(\mathbf{R}) \Psi_m(\mathbf{r}, \mathbf{R})$$

electron motion in the static field of nuclei electronic properties

$$\phi(\mathbf{x},t) = \psi(\mathbf{x})f(t)$$

time independent Schrödinger equation

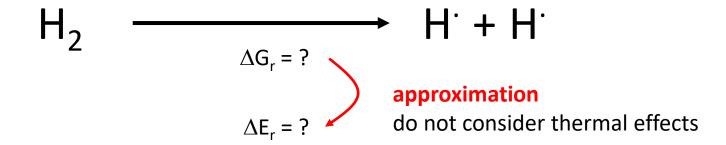
$$\hat{H}\psi_k(\mathbf{x}) = E_k \psi_k(\mathbf{x})$$

$$\hat{H}_R \chi_l(\mathbf{R}) = \hat{E}_{VRT,l} \chi_l(\mathbf{R})$$

nuclei motion in effective field of electrons vibration, rotation, translation

Hydrogen molecule

HW: What is the dissociation energy of H_2 , D_2 , and T_2 ?



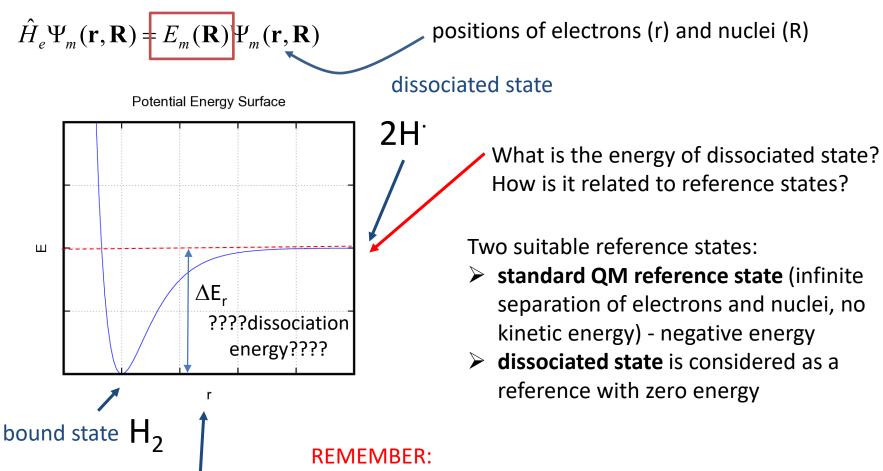
$$\hat{H}_e \Psi_m(\mathbf{r}, \mathbf{R}) = E_m(\mathbf{R}) \Psi_m(\mathbf{r}, \mathbf{R})$$

Energy is a function of nuclei positions.

The function and its projections to lower dimensional configurational spaces are called potential energy surface.

What is the potential energy surface for H_2 , D_2 , and T_2 ? Do they differ?

H₂ - Potential Energy Surface



distance between two hydrogen atoms

- ➤ The **reference state** represents well defined state with well defined energy, usually zero.
- ➤ Its choice is arbitrary, but it must be consistent for all compounds and their states.

Recall Hamiltonian of chemical system

Hamiltonian of chemical system consisting of *N* nuclei of mass *M* and charge *Z* and *n* electrons is given by:

kinetic energy operator (ELECTRONS ONLY)

potential energy

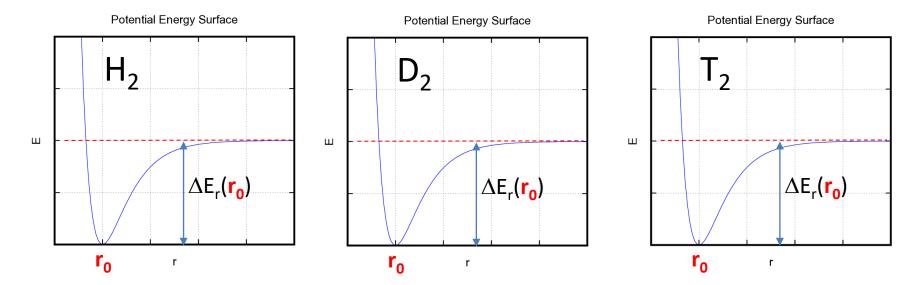
$$\hat{H} = -\frac{1}{2m} \sum_{i=1}^{n} \nabla_{i}^{2} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{Z_{i}Z_{j}}{r_{ij}} - \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{Z_{i}}{r_{ij}} + \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}}$$
 electrons nucleus-nucleus electron

Schrödinger equation:

$$\hat{H}_e \Psi_m(\mathbf{r}, \mathbf{R}) = E_m(\mathbf{R}) \Psi_m(\mathbf{r}, \mathbf{R})$$

Nuclei motion (nuclei mass) is not considered in the BO approximation.

H₂, D₂, T₂ - Potential Energy Surface

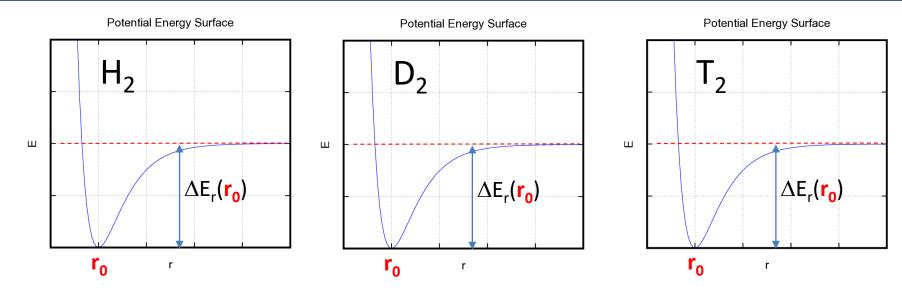


Potential energy surfaces are the same! r_0 is the same as well.

Reason:

All three systems are chemically identical (two electrons and two +1 charged nuclei).

H₂, D₂, T₂ - Potential Energy Surface



What about vibrations? Do they contribute and how?

Consider harmonic oscillator (approximation):

$$E_V = \left(v + \frac{1}{2}\right)hv$$

characteristic frequency

non-zero energy even in the ground vibration state!!!

$$v = 0, 1, 2, ...$$

H₂, D₂, T₂ - Vibrations

Harmonic oscillator:

characteristic frequency
$$E_V = \left(v + \frac{1}{2}\right)hv \qquad v = \frac{1}{2\pi}\sqrt{\frac{K}{\mu}} \qquad \text{force constant; does it differ?}$$
 reduced mass (clearly this differs among H₂, D₂, and T₂)

H₂, D₂, T₂ - Vibrations

Harmonic oscillator:

characteristic frequency
$$E_V = \left(v + \frac{1}{2}\right)hv \qquad v = \frac{1}{2\pi}\sqrt{\frac{K}{\mu}} \qquad \text{force constant; does it differ?}$$
 reduced mass (clearly this differs among H₂, D₂, and T₂)

What about the force constant?

Harmonic potential:

tangent

curvature

$$V(r) = \frac{1}{2}K(r - r_0)^2 \longrightarrow \frac{\partial V(r)}{\partial r} = K(r - r_0) \longrightarrow \frac{\partial^2 V(r)}{\partial r^2} = K$$

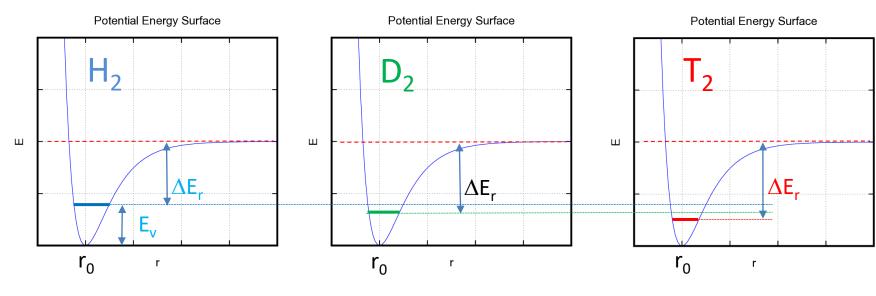
first derivative with respect to r

second derivative with respect to r

The force constant can be determined from the PES curvature at equilibrium distance (r_0) in harmonic approximation.

All three systems have the same PES and thus the same K as well.

H₂, D₂, T₂ - PES + Vibrations



$$E_V = \left(v + \frac{1}{2}\right)hv$$

$$v = \frac{1}{2\pi} \sqrt{\frac{K}{\mu}}$$

$$|\Delta E_r| < |\Delta E_r| < |\Delta E_r|$$

$$r_0 = r_0 = r_0$$

$$r_e \sim r_e \sim r_e$$

!! not in scale !!

 $r_e \sim r_e \sim r_e$ observable equilibrium bond lengths impact of anharmonicity and QM character of vibrations

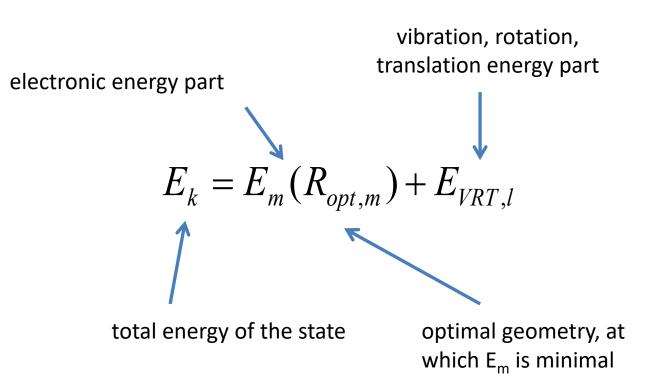
bigger mass -> smaller frequency -> lower energy

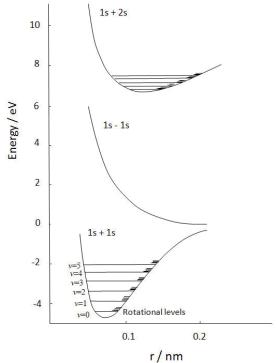
$$\hat{H}_e \Psi_m(\mathbf{r}, \mathbf{R}) = E_m(\mathbf{R}) \Psi_m(\mathbf{r}, \mathbf{R})$$

$$\hat{H}_R \chi_l(\mathbf{R}) = E_{VRT,l} \chi_l(\mathbf{R})$$

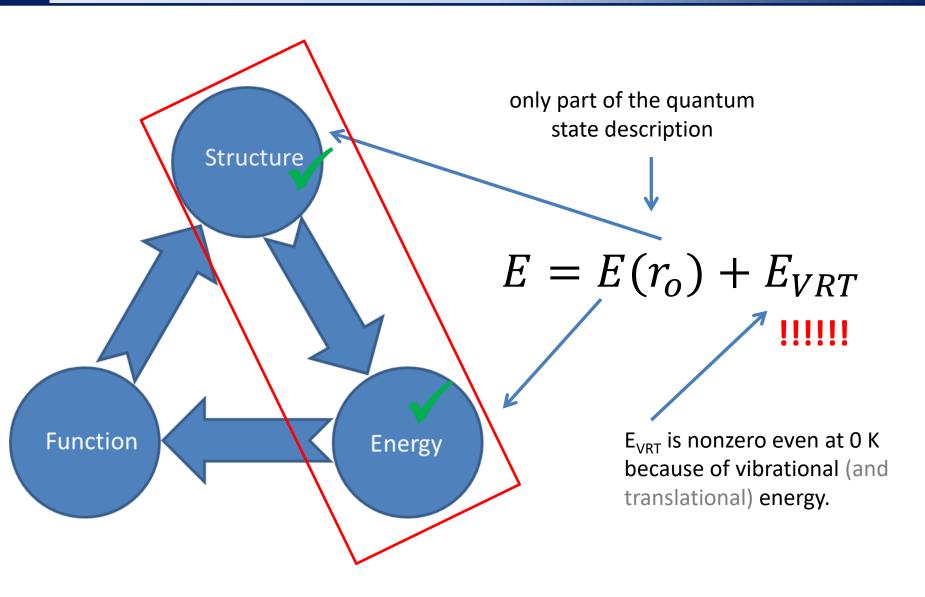
electron motion in the static field of nuclei electronic properties

nuclei motion in effective field of electrons vibration, rotation, translation

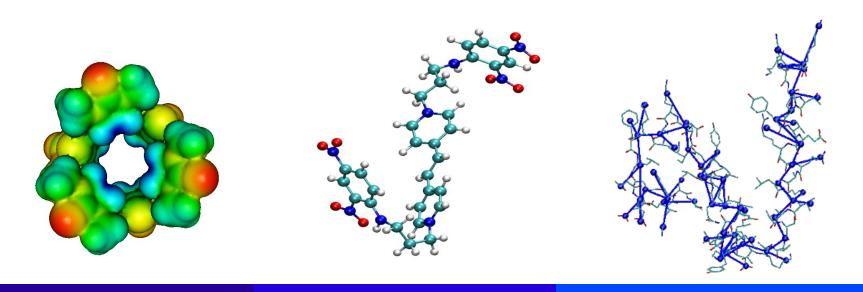




Structure vs system state



Method overview (model chemistr



QM (Quantum mechanics)

MM (Molecular mechanics) CGM (Coarse-grained mechanics)

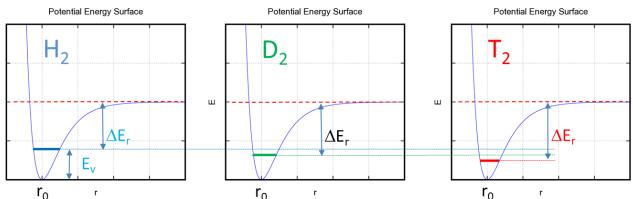
R - position of atom nuclei

R - position of atoms

R - position of beads

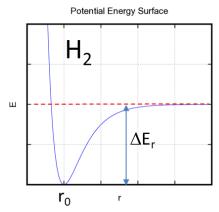
Quantum vs Classical description

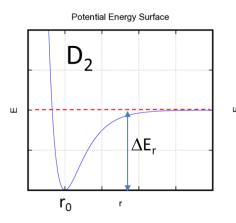
- > Fully QM
- QM, MM + QM harmonic approximation, or similar
- QM, MM + path integral molecular dynamics

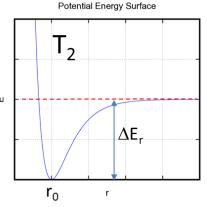


thermal energy not shown in graphs is 1/2k_BT (equipartition principle) in all cases (fully quantum/classical)

QM, MM, CG + classical nuclei/atom motions, molecular dynamics (MD)

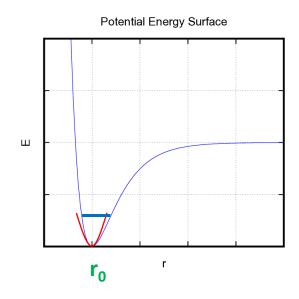






NO DIFFERENCE

Summary



To characterize a quantum state:

$$E = E(r_o) + E_{VRT}$$
 a) we need to find a potential energy minimum

b) we can further evaluate vibrations from the PES curvature at the minimum

(too difficult to calculate, thus it is usually neglected)

- PES cannot describe mass effect of nuclei; it only describes electronic effects.
- Isotope effects can be measured experimentally
 - Primary Isotope Effect (kinetics)
 - Secondary Isotope Effect (kinetics)
 - It can be even tasted by your tongue, see:

Ben Abu, N.; Mason, P. E.; Klein, H.; Dubovski, N.; Ben Shoshan-Galeczki, Y.; Malach, E.; Pražienková, V.; Maletínská, L.; Tempra, C.; Chamorro, V. C.; Cvačka, J.; Behrens, M.; Niv, M. Y.; Jungwirth, P. Sweet Taste of Heavy Water. *Communications Biology* **2021**, *4* (1), 1–10. https://doi.org/10.1038/s42003-021-01964-y.