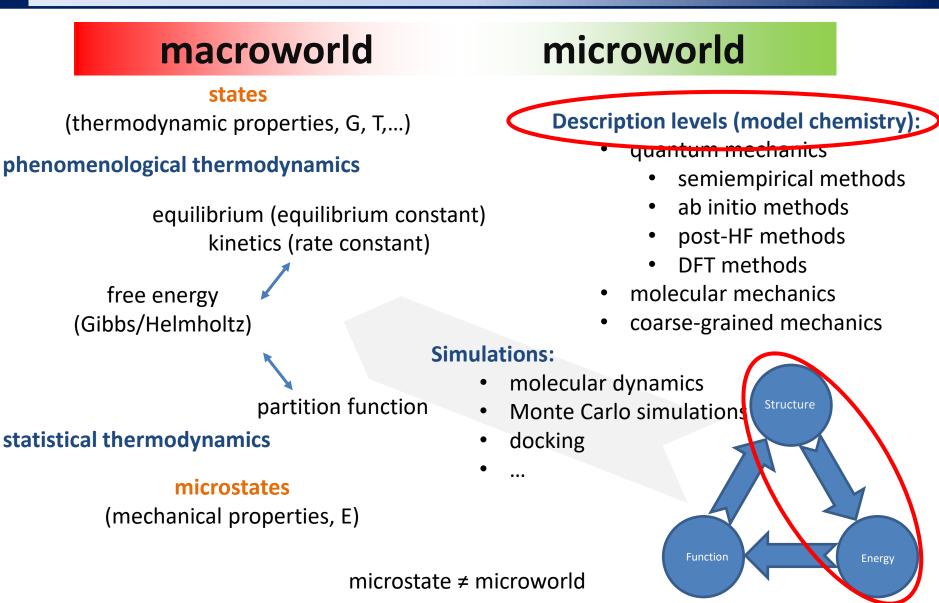
C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 23 Classification of Interactions

PS/2021 Present Form of Teaching: Rev2


Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

C7790 Introduction to Molecular Modelling

Context

Revision: Schrödinger Equation

Schrödinger equation by its essence provide ultimate description of (bio)chemical systems:

$\widehat{H}\psi_k(\mathbf{r},\mathbf{R}) = E_k(\mathbf{R})\psi_k(\mathbf{r},\mathbf{R})$

- > Solution of SR is the **potential energy** E_k and **wavefunction** ψ_k .
 - the potential energy quantify strength of inter-atomic interactions
 - the wavefunction provides further information

Remember: use of SE has some dark sides:

- one-electron approximation (correlation energy)
- basis set effects
- Iong-tails of some interactions (dispersion energy in HF and DFT calculations)
- size consistency

By analyzing E_k and ψ_k one can classify interactions between atoms to better understand origin of forces that keep them together. Two major categories of interactions between atoms are:

- covalent bonding
- non-covalent interactions

Molecular Mechanics

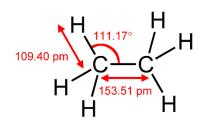
Schrodinger equation - quantum mechanical description

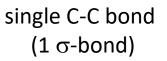
$$\hat{H}\psi_{k}^{\mathbf{R}}(\mathbf{r}_{e}) = E_{k}(\mathbf{R})\psi_{k}^{\mathbf{R}}(\mathbf{r}_{e})$$
approximation
electron motions is omitted
(electron motions is implicitly included in empirical parameters)
$$E_{k}(\mathbf{R}) = E_{bonds} + E_{angles} + E_{torsions} + E_{ele} + E_{vdw} + \dots$$
bonded contributions
non-bonded contributions
Classical physics - mechanical description
Molecular Mechanics

Covalent Bonding

Covalent Bonding

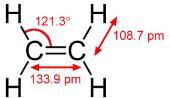
A **covalent bond** is a chemical bond that involves the **sharing of electron pairs** between atoms.

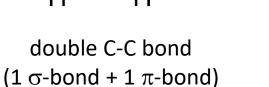

Notable types of covalent bonds:


- \succ σ -bonds (each atom formally contributes by one electron)
- $\succ \pi$ -bonds (each atom formally contributes by one electron)
- coordinate covalent bonds (one atom contributes two electrons (a lone pair) and the second atom provides a vacant (empty) orbital)
- aromatic bonding
- metallic bonding
- three-center two-electron bond (see boron chemistry)
- ▶

https://en.wikipedia.org/wiki/Covalent_bond

Covalent Bonding, cont.

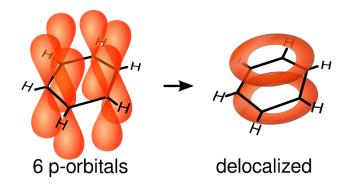

σ and π covalent bonds:



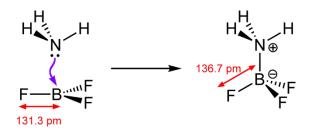
Bond dissociation energies:

~85 kcal/mol

triple C-C bond (1 σ -bond + 2 π -bonds)


120.3 pm

106.0 pm

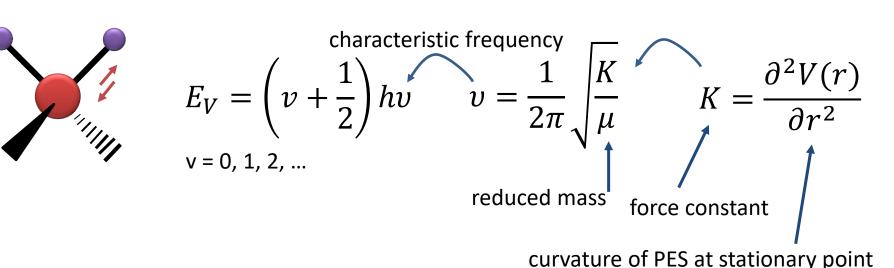

~145 kcal/mol

~200 kcal/mol

Conjugated π -bonds (aromaticity):

Coordinate covalent bonds:

https://en.wikipedia.org

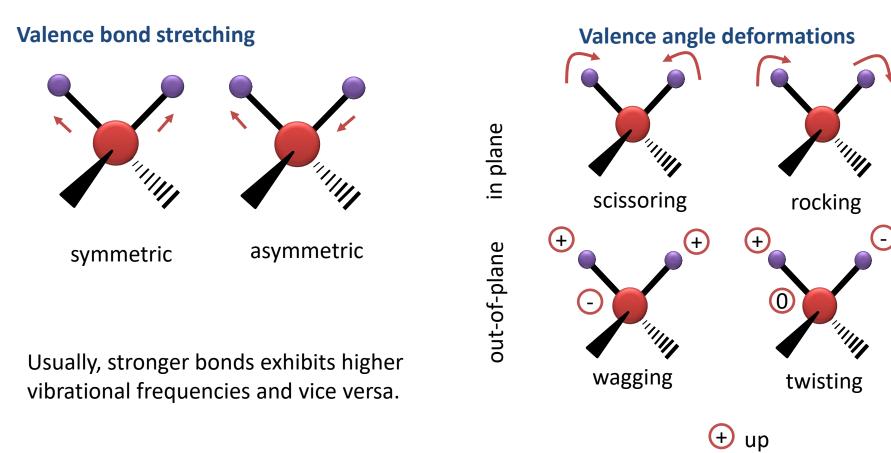

C7790 Introduction to Molecular Modelling

Molecular Deformations

- Some molecular deformations can be described by vibrational motions.
- > There is 3N-6(5) unique molecular vibrations, which are called **normal modes**.

Model of harmonic oscillator:

- A normal vibrational mode is a molecular motion, in which ALL atoms oscillate at the same frequency and phase.
- However, some vibrations are more "localized". Meaning that such vibrations exhibit larger amplitudes only on a few atoms, while the rest of the molecule is almost restful.
- > The other vibrations represent skeletal molecular deformations.

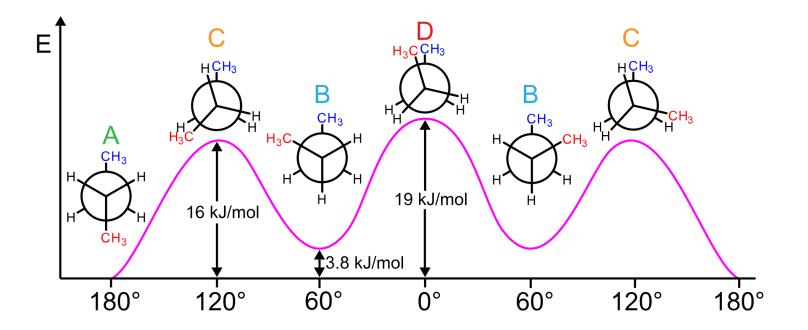


C7790 Introduction to Molecular Modelling

Bond stretching

Molecular Deformations, cont.

Some types of molecular vibrations



down

"no" motion

Molecular Deformations, cont.

In chemistry, conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted just by rotations about formally single bonds (refer to figure on single bond rotation).

Non-covalent Interactions

Non-covalent Interactions

Contribution	Additive?	Sign	Comment
Long-range ($E(R) \sim R^{-n}$)			
Electrostatic	Yes	+/-	Strong orientation dependence
Induction	No	-	
Dispersion	Approx.	-	Always present
Resonance	No	+/-	Degenerate states only
Magnetic	Yes	+/-	Very small
Short-range ($E(R) \sim e^{-\alpha R}$)			
Exchange-repulsion	Approx.	+	Dominates at very short range
Exchange-induction	Approx.	+	
Exchange-dispersion	Approx.	+	
Charge transfer	No	-	Donor-acceptor interactions

Stone, A. J.; Oxford University Press. *The Theory of Intermolecular Forces*; Oxford University Press: Oxford, 2016.

HW: Recommended Readings

Read Introduction and Overview of given interaction type:

Rackers, J. A.; Wang, Q.; Liu, C.; Piquemal, J.-P.; Ren, P.; Ponder, J. W. An Optimized Charge Penetration Model for Use with the AMOEBA Force Field. *Phys. Chem. Chem. Phys.* **2016**, *19* (1), 276–291. <u>https://doi.org/10.1039/C6CP06017J</u>.

Rackers, J. A.; Liu, C.; Ren, P.; Ponder, J. W. A Physically Grounded Damped Dispersion Model with Particle Mesh Ewald Summation. *J Chem Phys* **2018**, *149* (8), 084115. <u>https://doi.org/10.1063/1.5030434</u>.

Rackers, J. A.; Ponder, J. W. Classical Pauli Repulsion: An Anisotropic, Atomic Multipole Model. *J Chem Phys* **2019**, *150* (8), 084104. <u>https://doi.org/10.1063/1.5081060</u>.