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Two independent training sets were used to develop four 
mathematical models for predicting aerobic biodegrad- 
ability from chemical structure. All four of the models 
are based on multiple regressions against counts of 36 
preselected chemical substructures plus molecular weight. 
Two of the models, based on linear and nonlinear 
regressions, calculate the probability of rapid biodegra- 
dation and can be used to classify chemicals as rapidly or 
not rapidly biodegradable. The training set for these 
models consisted of qualitative summary evaluations of 
all available experimental data on biodegradability for 
295 chemicals. The other two models allow semi-quan- 
titative prediction of primary and ultimate biodegradation 
rates using multiple linear regression. The training set 
for these models consisted of estimates of primary and 
ultimate biodegradation rates for 200 chemicals, gathered 
in a survey of 17 biodegradation experts. The two 
probability models correctly classified 90% of the chem- 
icals in their training set, whereas the two survey models 
calculated biodegradation rates for the survey chemicals 
with R2 r 0.7. These four models are intended for use in 
chemical screening and in setting priorities for further 
review. 

Introduction 
Chemical scoring systems for identifying substances of 

priority concern have proliferated in concert with envi- 
ronmental legislation. Much of the early impetus for 
developing such systems derived from the need to review 
Premanufacture Notifications (PMNs) under Section 5 
of the Toxic Substances Control Act (TSCA) and by the 
TSCA-mandated screening of existing chemicals by the 
US. Interagency Testing Committee. However, virtually 
every EPA program is now involved in chemical scoring 
in one way or another. Examples include reportable 
quantity (RQ) adjustment methodology under the Com- 
prehensive Environmental Response, Compensation, and 
Liability Act (CERCLA; Superfund); the Superfund 
Hazard Ranking System; the Office of Pesticide Programs’ 
Inerts Ranking Program for “inert” components of pes- 
ticide formulations; and methodologies for listing chem- 
icals on the Toxics Release Inventory (TRI). This list is 
by no means exhaustive. 

The characteristics of ranking systems vary, but the 
majority include explicit consideration of persistence, 
bioconcentration potential, and aquatic and human tox- 
icity. Persistence is primarily a function of biodegrad- 
ability for the majority of organic chemicals released to 
soil and water. This creates a problem for priority-setting 
exercises, because experimental biodegradation data are 
typically either lacking entirely or do not exist in a form 
that can be easily incorporated into automated screening 
methods. 
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In responding to this need, we first developed a weight- 
of-evidence procedure (1) for collecting and evaluating 
available data, due to the considerable variability of 
biodegradation data. The data and evaluations were then 
made available on-line in BIODEG, a component of the 
Environmental Fate Data Base (2,  3) that now contains 
information on more than 800 discrete organics. The 
records for each chemical in the BIODEG file constitute 
a comprehensive assessment of experimental mixed- 
culture biodegradation data that exist for the chemical; 
pure culture data are not included because they offer little 
insight into environmental biodegradation rates. Each 
test result, whether it reflects biochemical oxygen demand 
(BOD), COz production, loss of parent, or something else, 
is assigned a qualitative descriptor code such as BR 
(biodegrades rapidly) or BSA (biodegrades slowly even 
with acclimation). Aspects of biodegradation such as 
acclimation, microbial toxicity and temperature are con- 
sidered in the evaluation process. A reliability code (3, 
one test available; 2, two tests available; and 1, three or 
more consistent tests available), which reflects the amount 
and consistency of the available data, is also assigned for 
each biodegradation summary code. There are summary 
evaluation codes for overall aerobic biodegradation, aerobic 
biodegradation in screening tests, biological treatment 
simulations, grab sample tests with soil or water, and field 
studies. 

Subsequently, the summary evaluation codes for overall 
aerobic biodegradation were used to develop two models 
for predicting aerobic biodegradability from chemical 
substructures ( 4 ) .  These models, based on multiple linear 
and nonlinear regression against counts of 35 preselected 
substructures, calculated the probability of rapid biodeg- 
radation and successfully classified as rapidly or not rapidly 
biodegradable 90% of 264 chemicals in the training set 
and 27 chemicals in an independent validation set. 
Klopman et al. (5) have also used this data set to develop 
a predictive model based on computer-automated structure 
evaluation (CASE) methodology, and Gombar and Enslein 
(6) have described models for subsets (aliphatic and 
aromatic chemicals) of the BIODEG data. 

Although the above models are based on carefully 
evaluated experimental data, their capabilities are limited 
to classification. To provide a consistent set of data for 
quantitative modeling and to determine the feasibility of 
a biodegradation expert system, we conducted a survey in 
1986 in which 22 biodegradation experts were asked to 
estimate rates and products of degradation for 50 organic 
chemicals (7). A screening-level model for predicting 
aerobic biodegradability was developed from the survey 
data (8), but the usefulness of that data set was limited 
by its small size. 

In this paper, we describe four new screening-level 
biodegradability models. Two of these represent en- 
hancements to our previously described ( 4 )  linear and 
nonlinear BIODEG models; i.e., those based on experi- 
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mental data. The other two models are based on data 
from a new and greatly expanded survey, in which a panel 
of 17 experts estimated rates of primary (loss of parent 
chemical identity) and ultimate (essentially, conversion 
to C02 and water) degradation under aerobic conditions 
in aquatic environments for 200 chemicals. These models 
permit semi-quantitative prediction of aquatic biodegra- 
dation rates. The independent variables for all four models 
are a revised set of 36 chemical substructures from the 
original linear and nonlinear models ( 4 )  plus molecular 
weight. With the addition of molecular weight, predictions 
are possible for all chemicals even if they do not contain 
any of the 36 structural fragments. More importantly, 
the successful fitting of a single set of chemical substruc- 
tures to both the evaluated (BIODEG) and the survey 
datasets affirms the importance of these substructures in 
estimating biodegradability. 

Methods 

Biodegradation Database. Summary evaluation codes 
for overall aerobic biodegradation, used in the development 
of the linear and nonlinear BIODEG models, were retrieved 
from BIODEG, the Evaluated Biodegradation Database. 
The design and development of this file were described in 
detail in a previous publication (1) and briefly in the 
Introduction. BIODEG is a component of the Environ- 
mental Fate Data Base (EFDB), available on-line or in a 
PC-compatible format from Syracuse Research Corp. 
(contact P. H. Howard for details). 

Linear and Nonlinear Models. The basic approach 
in the development of the linear and nonlinear BIODEG 
models has been described ( 4 ) .  For this exercise, the 
training set and the independent validation set from the 
earlier work were combined to yield a new training set of 
295 chemicals. Because the approach had already been 
validated, it was not considered necessary to keep a 
separate validation set. This data set consisted of 186 
chemicals that received summary evaluations of “biode- 
grades rapidly” and 109 chemicals designated “does not 
biodegrade rapidly”. An indicator variable was formed 
with chemicals in the rapid biodegradation category being 
assigned a value of 1 and chemicals in the slow biodeg- 
radation category being assigned a value of 0. The 
indicator variable was then used as the dependent variable 
in multiple linear and nonlinear regressions against 37 
independent variables. With this definition of the de- 
pendent variable, a regression model estimates the prob- 
ability that a chemical is in the “biodegrades rapidly” 
group. 

In our previously described ( 4 )  linear and nonlinear 
models, counts of 35 structural fragments (i.e., the number 
of times a substructure occurs in the molecule) constituted 
the independent variables. For this study, several changes 
were made in the set of independent variables used in the 
regression analyses. Two new fragments (-CF3 and 
unsubstituted phenyl group, -C6H5) were added, and three 
fragments were redefined. The latter include the qua- 
ternary carbon and the tertiary alcohol fragments of the 
earlier models ( 4 ) ,  now eliminated and replaced with a 
single fragment (carbon with four single bonds and no 
hydrogens), and the unsubstituted linear alkyl chain LC4, 
which now can be used only if it is terminal (Le., -CH2- 
CH2CH2CH3). Finally, molecular weight was added as a 
continuous variable, since it is well-known that as mo- 

lecular size increases, biodegradability generally decreases 
(9, 10). In general, atoms were used only once; that is, if 
an atom is part of one fragment, it cannot be part of 
another. Table 1 lists these fragmentsand their regression- 
derived coefficients. 

The linear model was defined as 

y1 = a0 + alf, + ad2 + ... + a3 j36 + amM, + e; (1) 
where Y; is the probability that chemicalj will biodegrade 
fast, or for the survey models, the primary or ultimate 
biodegradation rate, f ,  is the number of nth substructure 
in j t h  chemical, a0 is the intercept, a, is the regression 
coefficient for nth substructure, M ,  is the molecular 
weight, am is the regression coefficient for M,, and e, is the 
error term (mean value is zero). Regression coefficients 
were estimated by the method of least squares, using the 
REG procedure of the PC version of the Statistical Analysis 
System (SAS Institute, Cary, NC). Although the assump- 
tion of homogeneous variance does not hold whenever the 
dependent variable is defined as above, the least-squares 
method still results in unbiased estimates. 

The logistic equation was used as the basis for the 
nonlinear model. This model 

exp(a, + a,f, + ad2 + ... a3 j 3 6  + a,M,) 
1 + exp(ao + alfl + a j 2  + ... a3 j36 -t a,M,) Yj  = (2) 

estimates the probabilities near 0.0 whenever the linear 
combination in the exponent takes large negative values; 
near 0.5 whenever that linear combination is near 0.0; and 
close to 1.0 whenever the linear combination takes a large 
positive value. The maximum likelihood method was used 
for estimating the coefficients for this model rather than 
the method of least squares, because the model is not a 
linear function of the unknown coefficients. The estimates 
were obtained by using the CATMOD procedure of PC- 
SAS. 

For each of the estimated regression coefficients, a 
standard error was computed as well as a test statistic for 
evaluating the hypothesis that the true population value 
is 0.0. The test statistic followed an asymptotic x 2  
distribution in the case of the maximum likelihood 
estimates (nonlinear model) and an F distribution for the 
least-squares estimates (linear model). A p  value was also 
calculated for each of the test statistics. These p values 
and statistics are not included in Table 1 to preserve clarity, 
but are available from the authors. 

The standard errors and the test statistics (or their p 
values) were used only as an approximate indication of 
the contribution of a particular fragment rather than as 
a basis for eliminating the fragment from the model. We 
took this approach because the objective was not to 
determine the most parsimonious subset of fragments for 
predicting biodegradation status but to keep the model as 
broadly applicable as possible. As a result, there are 
collinearities among some of the fragments that could affect 
the accuracy of some of the p values computed for the test 
statistics. 

Biodegradation Survey. Information relating to the 
purpose, design and implementation of an earlier survey 
of expert knowledge has been published (7). For this study, 
we developed a larger database of biodegradability esti- 
mates by conducting a second survey in which 17 experts 
evaluated 200 organic chemicals (there were 50 chemicals 
in the first survey). Each expert rated the primary and 
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Table 1. Structural Fragments and Coefficients 

fragment or parameter 

equation constant 
M W  

unsubstituted aromatic (53 rings) 
phosphate ester 
cyanideinitrile (CEN) 
aldehyde (CHO) 
amide (C(=O)N or C(=S)N) 
aromatic (C(=O)OH) 
ester (C(=O)OC) 
aliphatic OH 
aliphatic NH2 or NH 
aromatic ether 
unsubstituted phenyl group (C6H5) . -  . 

aromatic OH 
linear C4 terminal alkyl (CH2CH2CH2CH3) 
aliphatic sulfonic acid or salt 
caibamate 
aliphatic (C(=O)OH) 
alkyl substituent on aromatic ring 
triazine ring 
ketone (CC(=O)C) 
aromatic F 
aromatic I 
polycyclic aromatic hydrocarbon (24 rings) 
N-nitroso (NN=O) 
trifluoromethyl (CF3) 
aliphatic ether 
aromatic NO2 
azo group (N=N) 
aromatic NH2 or NH 
aromatic sulfonic acid or salt 
tertiary amine 
carbon with 4 single bonds and no H 
aromatic C1 
pyridine ring 
aliphatic C1 
aromatic Br 
aliphatic Br 

freq’ 

295 
2 
5 
5 
4 
9 

24 
23 
34 
13 
11 
25 
46 
44 
4 
4 

33 
36 
5 

1 2  
1 
2 
6 
4 
1 

11 
14 
2 

32 
11 
10 
9 

40 
18 
12 
5 
5 

BIODEG models survey models 

linear coeff nonlinear coeff freq‘ 

0.748 

0.319 
0.314 
0.307 
0.285 
0.210 
0.177 
0.174 
0.159 
0.154 
0.132 
0.128 
0.116 
0.108 
0.108 
0.080 
0.073 
0.055 
0.0095 
0.0068 

-0.000476 

-0.810 
-0.759 
-0.657 
-0.525 
-0.520 

-0.305 
-0.347 

-0.242 
-0.234 
-0.224 
-0.205 
-0.184 
-0.182 
-0.155 
-0.111 
-0.110 
-0.046 

Number of compounds in the training set containing the fragment. 

3.01 
-0.0142 

7.191 
44.409 
4.644 
7.180 
2.691 
2.422 
4.080 
1.118 
1.110 
2.248 
1.799 
0.909 
1.844 
6.833 
1.009 
0.643 
0.577 

-5.725 
-0.453 

-10.532 
-10.003 
-10.164 
-3.259 
-5.670 
-3.429 
-2.509 
-8.219 
-1.907 
-1.028 
-2.223 
-1.723 
-2.016 
-1.638 
-1.853 
-1.678 
-4.443 

200 
1 
6 

11 
5 

13 
6 

25 
18 

7 
11 
22 
21 
26 
4 
6 

10 
36 
4 

10 
1 
2 
2 
1 
2 

16 
13 
3 

23 
8 

10 
32 
27 
8 

14 
4 
2 

primary coeff 

3.848 
-0.00 144 
-0.343 
0.465 

-0.065 
0.197 
0.205 
0.0078 
0.229 
0.129 
0.043 
0.077 
0.0049 
0.040 
0.269 
0.177 
0.194 
0.386 

-0.069 
-0.058 
-0.022 
0.135 

-0.127 
-0.702 
0.019 

-0.274 
-0.0097 
-0.108 
-0.053 
-0.108 
0.022 

-0.288 
-0.153 
-0.165 
-0.019 
-0.101 
-0.154 
0.035 

ultimate coeff 

3.199 
-0.00221 
-0.586 
0.154 

-0.082 
0.022 

-0.054 
0.088 
0.140 
0.160 
0.024 

-0.058 
0.022 
0.056 
0.298 
0.193 

-0.047 
0.365 

-0.075 
-0.246 
-0.023 
-0.407 
-0.045 
-0.799 
-0.385 
-0.513 
-0.0087 
-0.170 
-0.300 
-0.135 
0.142 

-0.255 
-0.212 
-0.207 
-0.214 
-0.173 
-0.136 
0.029 

ultimate biodegradability of each chemical on a semi- 
quantitative scale, which used the terms hours, days, weeks, 
months, and longer than months to indicate the approx- 
imate time they thought would be required for the process 
to proceed to completion. As the measure of central 
tendency, we calculated an arithmetic mean score for each 
chemical after assigning numerical scores to the individual 
responses as follows: 5 = hours; 4 = days; 3 = weeks; 2 = 
months; 1 = longer. The total number of responses for 
each chemical often exceeded 17, since many experts 
indicated a range of time by marking more than one term. 

The 200 survey chemicals covered a very wide range of 
structure and molecular weight, and the majority were 
multifunctional. In general, chemicals were selected to 
be included in the survey for the specific purpose of testing 
hypotheses regarding the effects of certain substructures 
on estimated biodegradability. Some examples follow. To 
explore postulated negative influences on estimated bio- 
degradability, 50 of the 200 chemicals were halogenated, 
17 had nitro groups, 18 had quaternary carbon atoms 
(defined as four single bonds to non-hydrogen atoms), 20 
had three or more fused rings, and 35 had nitrogen- 
containing heterocycles of various types. With respect to 
expected positive influences on estimated biodegradability, 
56 chemicals were biologically hydrolyzable or postulated 
to be so, and 15 chemicals had unsubstituted linear alkyl 
chains of C4 or larger. Of the 200 chemicals in the survey 

and 295 in the experimental (BIODEG) data set, only 20 
were common to both sets. 

Survey Models. Multiple linear regressions were 
performed using the mean scores for primary and ultimate 
biodegradation as dependent variables. The independent 
variables were the same as those used in the linear and 
nonlinear BIODEG models just described; i.e., counts of 
36 structural fragments plus molecular weight. The 
fragments and regression-derived coefficients are listed 
in Table 1. Regression coefficients were estimated by the 
method of least squares, using the REG procedure of PC- 
SAS. Primary or ultimate biodegradability is calculated 
for any chemical by summing, for all the fragments present 
in the chemical, the number of times (if any) each fragment 
occurs times its coefficient, and then adding the summation 
to a constant that was determined for the entire training 
set, plus the product of the chemical’s molecular weight 
and the M ,  coefficient. A file that lists the 200 survey 
chemicals, the predicted primary and ultimate biodeg- 
radation scores, and the chemicals’ CAS registry numbers 
is available from the authors. 

Results 

Biodegradation Survey. Table 2 contains summary 
statistics for the 200 survey chemicals and the experts’ 
responses. Ethylene glycol diacetate was judged to be the 
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Table 2. Summary Statistics for Survey Data 

minimum maximum 
parameter mean score chemical score chemical 

primary 3.52 2.37 pentahromoethylbenzene 4.57 ethylene glycol diacetate 
SD,d 0.84 0.51 ethylene glycol diacetate 1.28 Vat Blue 4; ethylenediaminetetrakkis(methylphosphonic 

ultimate 2.60 1.44 pentabromoethylhenzene 3.89 ethylene glycol diacetate 
SDd' 0.83 0.58 ethylene glycol diacetate; picloram; 1.15 maleic hydrazide 

pri-ulta 0.92 0.43 e-caprolactone 1.75 dacthal 
Mw 228.6 53.1 acrylonitrile 697.6 tris-2,3-dibromopropylphosphate 
GPrimary degradation score minus ultimate degradation score for the same chemical. 

acid) 

pentabromoethylbenzene 

most easily degraded chemical and pentabromoethylben- 
zene the least degradable for both primary and ultimate 
degradation. The highest and lowest possible mean scores 
are 5 and 1, respectively, but no such value was observed 
for any of the 200 chemicals. This would have required 
the unanimous judgment of all 17 experts that biodeg- 
radation would occur either in hours (=5 ,  by definition) 
or longer than months (=l, by definition). Using the 
standard deviations of the responses for a given chemical 
as a measure of agreement or disagreement, unanimity of 
judgment was also greatest for these two chemicals. In 
contrast, the largest standard deviations were observed 
for Vat Blue 4 and ethylenediaminetetrakis(methy1phos- 
phonic acid) (primary) and maleic hydrazide (ultimate). 
On the average, scores for primary and ultimate degra- 
dation for each chemical differed by almost 1 unit (0.92) 
relative to the ordinal scale used to assign scores to the 
experts' estimates. The largest difference (1.75) was 
observed for dacthal, a tetrachlorinated herbicide with 
two ester functions that were considered to be relatively 
easily hydrolyzed. 

Biodegradation Models. Coefficients fitted by the 
regressions for all four models are listed in Table 1. With 
the BIODEG models, the probability of rapid biodegra- 
dation can be predicted by using the linear or nonlinear 
coefficients from Table 1 and either eq 1 or eq 2, 
respectively. With the survey models, biodegradability 
can be predicted using the coefficients for primary or 
ultimate biodegradation in Table 1 and eq 1. To illustrate 
a typical estimation of biodegradability, we will explain 
the calculations necessary for predicting the ultimate 
biodegradability of o-phenylphenol (M,  = 170) using the 
survey model. Using Table 1 and eq 1, we have 

Yj = equation constant + (4.00221) (M,) + (0.022) 
(one unsubstituted phenyl group, C,H,) + (0.056) 
(one aromatic OH group) = 3.199 + (-0.3757) + 

0.022 + 0.056 = 2.90 
The mean score for this chemical from the biodegradation 
experts was 3.08. The integer 3 corresponded to "weeks" 
in the tabulation of the individual survey responses. 

Performance of the BIODEG models in classifying 
chemicals in their training set is summarized in Table 3. 
Each model classified chemicals in the training set with 
about90% accuracyoverall, butresults were slightly better 
for the nonlinear model. With either model, rapidly 
degraded chemicals were classified more accurately than 
slowly degraded chemicals. The distributions of residuals 
from the survey models are shown in Figure 1, along with 
the R2 values and percentages of residuals 2 *O.l, *0.3, 
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Table 3. Performance of Biodegradability Models in 
Classifying Chemicals in Their Respective Training Sets 

RIODEG models survey models 
pammeter iineaP nonlineaP primaryb ultimatec 

total correct 2641296 275 295 165 200 167,200 
correct total 89.5 93.2 82.5 83.5 

% correct, 97.3 97.3 84.9 93.5 
fast biodegradation (181/186) (1811186J ,101 119) (101,108) 

slow biodegradation (83 109) (94 109) 64/61) (66 92) 
5 correct, 76.1 86.2 79.0 71.7 

Fast biodegradation is defined an a predicted probability > O S  
for being classified a9 a BR cBiodegrades Rapidly). Fast biodeg. 
radation is defined as a biodegradahiiity score 23.5 Fast biodeg. 
radation i9 defined as a biodegradahilrty score >2.5. 

40 

ii I 1-1 i 
I /--I t i t 

41 

25 - --I I 
E 
5 20- I l l /  

, . , . , , ,  , , , , 
.I .0.8 4.8 0.4 0.2 0 0.2 0.4 0.8 0.8 1 

RBIidYai 

Figure 1. Distribution Of residuals from biodegradation survey models. 
(A. top) Primary degradation model. (6. botiom) Uitimate degradation 
model. 

and *0.5 (absolute value). The mean residuals (absolute 
value) for primary and ultimate degradation for all 200 
chemicals were 0.173 and 0.206, respectively. There were 
eight chemicals with residuals 20.6 in absolute value, and 
these are listed in Table 4. 



Table 4. Poorly Predicted Survey Chemicalsa 

predicted 
chemical experts model residual 

primary degradation 
silvex 
2,2,4,4,6,8,8-heptamethylnonane 
di- tert-butyldicarbonate 

ultimate degradation 
e-caprolactone 
n-decanal 
11-cyanoundecanoic acid 
hexachlorophene 
ethylene glycol diacetate 
di- tert-butyldicarbonate 

2.82 3.43 
2.43 3.06 
4.05 3.23 

3.70 3.09 
3.80 3.17 
3.68 3.01 
1.77 1.10 
3.89 3.16 
3.18 2.29 

-0.60 
-0.63 
0.82 

0.61 
0.63 
0.67 
0.67 
0.73 
0.89 

a All survey chemicals with residuals (experts predicted minus 
model predicted) 2 Jf0.61. 

The primary and ultimate survey models calculate a 
biodegradability score rather than a probability of rapid 
biodegradation, with integers corresponding to the de- 
scriptors (hours, days, weeks, etc.) used in the survey. This 
makes direct comparison of performance for the two types 
of models (BIODEG vs survey) difficult. One way to enable 
such a comparison is to evaluate performance of the survey 
models in classifying chemicals in the survey training set. 
To accomplish this, we defined rapid primary degradation 
as a biodegradability score of 23.5,  corresponding to the 
descriptor days-weeks. For ultimate degradation, we 
defined rapid biodegradation as a biodegradability score 
of >2.5, which corresponds to weeks-months. Using these 
criteria, performance of the primary and ultimate survey 
models as classifiers (Table 3) was somewhat below that 
observed for the BIODEG models, with slightly more than 
80% of the survey chemicals classified correctly by each 
model. As was true for the BIODEG models, rapidly 
degraded chemicals were more accurately classified than 
slowly degraded chemicals. 

Accuracy of Experts’ Estimates. To assess directly 
the accuracy of the experts’ biodegradability estimates, 
we retrieved and reviewed experimental data for all survey 
chemicals that also had water grab sample data in the 
BIODEG database (11-34). Our assessments of the 
literature data for these 13 chemicals with respect to the 
approximate length of time required for complete deg- 
radation (defined here as six half-lives) are summarized 
in Table 5. For cornparison, the mean survey scores, our 
interpretation of them relative to the biodegradability 
descriptors used in the survey, and the calculated (model) 
values are also presented. I t  is evident that the experts’ 
estimates of biodegradability in aquatic environments were 
generally consistent with existing experimental data. 
Biodegradability scores calculated using the survey models 
(last column of Table 5) also tracked well with the experts’ 
estimates, with mean residuals (absolute value) for these 
chemicals of 0.16 for primary degradation (n  = 6) and 0.20 
for ultimate degradation (n  = 7). 

Discussion 
Our results demonstrate that a single set of chemical 

substructures and molecular weight allow an acceptably 
accurate prediction of both experimentally determined 
biodegradability, as reflected in the BIODEG evaluation 
codes, and experts’ estimates of primary and ultimate 
biodegradation rates. This finding lends credence to the 
notion that these factors are important determinants of 

biodegradability. It also validates expert judgment, as 
reflected in the survey data and the models based on it. 
The models thus derived have been encoded in an IBM- 
compatible PC program (Biodegradation Probability 
Program, available from Syracuse Research Corp.) that 
predicts the probability of rapid biodegradation and the 
time required for primary and ultimate degradation. Only 
the chemical’s SMILES notation (35) or CAS registry 
number is required as input. 

Expert judgment is also validated by direct comparison 
of survey scores to grab sample biodegradation data (Table 
5). Chlorothalonil seems to be an exception, because the 
experts predicted that primary degradation would occur 
in weeks to months, whereas the experimental data suggest 
days to weeks. But this is an unusual situation since, 
according to Davies (36), primary degradation is much 
faster than anticipated because the nitriles in chloroth- 
alonil direct nucleophilic attack to the 4 and 6 positions 
on the ring. A lesson to be learned from this is that even 
the collective wisdom of experts may be in error when 
applied to specific chemical structures and should not be 
considered a substitute for adequate testing. 

Our previous models (4) included a library of 35 
structural fragments in order to ensure that the models 
be as broadly applicable as possible. However, no pre- 
dictions could be made for chemicals that did not contain 
any of these substructures. With the inclusion of the 
molecular weight parameter no structures are excluded, 
although the reliability of predictions based on molecular 
weight alone is probably fairly low except for chemicals 
with very low or very high molecular weights. Among the 
five new or redefined substructures listed in Table 1, at 
least two also have clear mechanistic significance, since 
unsubstituted terminal alkyl groups (represented by the 
linear C4 fragment) and unsubstituted phenyl groups both 
provide sites for the initiation of well-known biodegra- 
dation pathways (20, 37). 

The signs of the coefficients for the fragments and 
parameters listed in Table 1 are generally consistent with 
commonly accepted generalizations regarding effects of 
chemical structure on biodegradability. For example, 
ester, alcohol, and carboxylic acid groups usually enhance 
biodegradability (9, IO), and all have positive signs in all 
four models. On the other hand, halogens, nitro groups, 
and quaternary carbons are assumed to make a chemical 
more resistant to degradation, and all have negative signs. 

However, there are also a number of fragments for which 
the signs are not the same in the four models. In some 
cases the coefficients are small for all four models, which 
suggests that the fragment may not be very important in 
determining biodegradability. An example is the ketone 
fragment. For other fragments, it may be observed that 
the signs of the coefficients are often inconsistent where 
the BIODEG and survey training sets contained only a 
few chemicals with that fragment. Confidence in those 
coefficients is therefore low, but could be raised by 
additional testing. Examples of fragments for which few 
data are available include the aromatic F, N-nitroso, and 
aliphatic Br fragments. 

Another phenomenon is that the primary and ultimate 
coefficients (survey models) are sometimes quite different 
in magnitude. This is to be expected. In the case of the 
aldehyde, amide, and carbamate fragments, for example, 
this suggests that these fragments are considered by 
experts to be likely sites of initial attack, but without major 
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Table 5. Comparison of Survey Data to Measured Biodegradability for Survey Chemicals with Water Grab Sample Data 

survey literature 

chemical scoren intb intC nd U or Pe ref modelf 
eicosane 
dimethylformamide 
cumene 
propanil 
Acid Orange 6 
chlorothalonil 
acrylonitrile 
o-phenylphenol 
diphenyl ether 
di-2-cyanoethyl ether 
tert-butylbenzene 
hexachlorophene 
benzanthracene 

4.19 
4.09 
3.68 
3.61 
3.45 
2.39 
3.27 
3.08 
2.79 
2.79 
2.62 
1.77 
1.76 

<d 
5 d  
d-wk 
d-wk 
d-wk 

d-wk 
d-wk 

wk-mo 

wk-mo 
wk-mo 
wk-mo 
t m o  
t m o  

d-wk; <wk; <mo 
d 
wk 
wk; wk; wk; >mo; >mo 
>d 

wk; wk 

mo 
wk-mo; mo 
mo 
>wk; >mo 
>d; >d; wk; >wk; >wk; wk-mo; mo; 

d; d-wk; d-wk; wk; wk 

d-wk 

>mo; >mo; >mo; >mo; >mo; >mo 

3 
1 
1 
5 
1 
5 
2 
1 
1 
2 
1 
2 

13 

P 
P 
P 
P 
P 
P 
U 
U 
U 
U 
U 
U 
U 

11-13 
14 
15 
16-18 
19 
20 
21 
22 
23 
21,24 
23 
25 
26-34 

3.98 
3.94 
3.61 
3.40 
3.47 
2.68 
3.00 
2.90 
2.81 
2.76 
2.72 
1.10 
1.89 

Observed biodegradability score from survey; value given is for either ultimate or primary degradation, depending on the type of literature 
data. * Interpretation of the survey score according to the following scheme (d = days; wk = weeks; mo = months): 24 = 5d;  <4 2 3 = d-wk; 
<3 2 2 = wk-mo; <2 = tmo. Interpretation of each study in terms of the approximate time required for complete degradation, defined as 
six half-lives for primary degradation and 60-70% of theoretical for ultimate degradation, in natural water grab samples. Number of studies. 
e U = ultimate; P = primary. f Predicted primary or ultimate degradation using the appropriate survey model. 

influence on rates of ultimate degradation. Conversely, 
triazine rings, azo bonds, and pyridine rings, for example, 
seem to be viewed as negative for ultimate but not 
necessarily primary degradation. 

Close inspection of the residuals from the survey models 
suggests several ways in which these models could be 
improved. In some cases the solution is obvious. For 
example, the experts assumed that di-tert-butyldicar- 
bonate (Table 4) would be readily hydrolyzed, but our 
models lack a carbonate fragment. Alkyl chains represent 
a more subtle problem. Thirteen compounds in the survey 
had linear alkyl chains of C9 or greater, and 10 of these 
had positive residuals for both primary and ultimate 
degradation. This suggests that long alkyl chains were 
viewed by the experts as having a positive impact on 
biodegradability, but that the linear C4 terminal alkyl 
fragment does not adequately account for this effect. On 
the other hand, compounds with cycloalkane rings (six 
survey compounds) and aromatic rings with two nitrogens 
(Le., pyrazines, pyrimidines, and pyridazines; six survey 
compounds) generally had negative residuals, suggesting 
that these groups were considered to increase resistance 
to biodegradation. It should be noted that both single- 
and three-nitrogen aromatics (i.e., pyridines and triazines) 
are already represented by fragments in our models, and 
all but one of the coefficients are negative. In spite of 
this, we did not add new fragments for cycloalkane or 
two-nitrogen heteroaromatic rings, because our approach 
was to require that such chemicals also be adequately 
represented in the experimental data (BIODEG) training 
set, and they were not. Additional testing will probably 
be required to establish an adequate database of measured 
values. This kind of analysis shows how the models may 
be used to identify chemical classes in need of testing. 

There is no doubt that the fragment constant approach 
to biodegradability modeling that we have taken is 
somewhat simplistic and does not, for example, take into 
account the possible interactions among fragments in 
multifunctional molecules. Nevertheless, the models 
described above meet our goal of providing quantitative 
or semi-quantitative estimates of biodegradation rate for 
use in chemical ranking schemes, in addition to estimates 
of probability of rapid biodegradation. 
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