Homework problems \#3

1. Computer problem: Verify the Maxwell-Boltzmann distibution of a velocity vector of magnitude v of ideal gas particles using a random number generator. Calculate the result for $N=10^{3}, 10^{6}$ particles. Express the velocities relatively to $\sqrt{2 k T / m}$. Hint: Let us assume that one has a function that generates random numbers in an interval $x \in[0,1]$ with uniform distribution. What transformation shall be performed to get a random variable from interval $y \in[-1,1]$? Using a computer experiment and histogram verify that a function $\operatorname{erf}^{-1}(y)$ gives a Gaussian distribution of random variable, where erf^{-1} is an inverse function to the error function $\operatorname{erf}(y)=2 / \sqrt{\pi} \int_{0}^{y} \exp \left(-t^{2}\right) \mathrm{d} t$. Maxwell-Boltzmann distibution of a magnitude of velocity vector can be derived by combining three random variables with Gaussian distribution
2. A system with two energy levels E_{0} and E_{1} is populated by N distinguishable particles at temperature T. Assuming canonical distribution determine
(a) mean energy per particle,
(b) limit of mean energy for temperatures $T \rightarrow 0$ and $T \rightarrow \infty$,
(c) heat capacity of the system,
(d) limit of the heat capacity of the system for $T \rightarrow 0$ and $T \rightarrow \infty$.
3. As a result of entanglement of rotational and vibrational movement of a diatomic molecule, angular momentum depends partially on the vibrational state. In such a case, the rotational-vibrational spectrum can be approximated by

$$
\begin{equation*}
E_{n, l}=\hbar \omega\left(n+\frac{1}{2}\right)+\frac{\hbar^{2}}{2 I} l(l+1)+\alpha l(l+1)\left(n+\frac{1}{2}\right), \tag{1}
\end{equation*}
$$

where first two terms correspond to the vibrational and rotational movement and the last term is a small correction due to the entanglement of rotational and vibrational movement. The constant satisfy

$$
\begin{equation*}
\hbar \omega \gg \frac{\hbar^{2}}{2 I} \gg \alpha . \tag{2}
\end{equation*}
$$

Determine energy of an ideal gas composed of diatomic molecules for temperature

$$
\hbar \omega \gg k T \gg \frac{\hbar^{2}}{2 I .}
$$

The solution should be submitted not later than on April 13th.

