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Molecular vibrations - Herzberg 1, pyramidal XY, (C;,);
3N-6=6 vibrations allowed in both Raman and IR, two doubly degenerate

Molecule
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Fia. 45, Normal vibrations of the ND; molecule.—The vibrations are drawn to scale for NDj;.

(see p. 177) in oblique projection. (For NHj; the large mass ratio of N to H would not have allowed
the displacement vectors of N to be drawn to the same scale as those of H). Both components of the
degenerate vibrations are shown. The broken-line arrows in v2 and »4 give the symmetry coordinates
of Fig. 58 (see p. 155). They are added so that the form of the vibrations can be more clearly visual-
ized. In pg there is a very small displacement (too small to show in the scale of the diagram) of the
left D nucleus parallel to the line connecting the two other D nuclei (see also the discussion of Fig.
60 on p. 171). It should be noted that vs, and vy, are symmetric, vsp and v antisymmetric with
respect to the plane of symmetry through the left D nucleus, that is, the plane of the paper.
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Example - T,
Symmetry operations of a regular tetrahedron (zincblende structures):

Identity E,
eight C; axes about diagonals (dashed lines),
three C, axes about x,y,z,
six S, axes about X,y,z, corresponding to
the rotations of +mn/2
six oy reflections (diagonal planes)

the group T, of the order of 24,
Isomorphic with P(4),
5 classes, the character table iIs a 5x5 matrix .




Example - T,

Character tables for the point group T, (43m) from two sources:
Inui, Tanabe, Onodera, Group theory and its applications in physics, Springer 1976

T, E 6IC, 3¢, |60, |8C,
A, T, 1 1 1 1 1
A, T, 1 —1 1| -1 1
E T, 2 0 20 0 —1
T, T, 3 1 —1 | —1 0
T, T, 3 ~1 ~1 | 0

M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory, Applications to the physics of Condensed Matter,
Springer 2008

E SCy 3C Gog G5y
Aq 1 1 1 1 1
As 1 1 1 —1 —1
E 2 -1 2 { 0
T4 3 0 —1 —1 1
Ta 3 0 -1 1 —1




Example - T,
Character tables for the point group T, and (isomorphic) permutation group P(4)

from Dress_2008. Try to understand the notation used for the elements of classes
of P(4), and their link to the symmetry operations of T .
Note the different labels of the irreducible representations.

E 8C'y 3C7 Gog 6.5y

Aq 1 1 1 1 1
Az 1 1 1 —1 —1
E 2 —1 2 0 0
1T 3 0 —1 -1 1
13 3 0 -1 1 —1
P(4) (1*) 8(3,1) 3(2%) 6(2,1%) 6(4)

Iy 1 1 1 1 1
I 1 1 1 -1 -1
Iz 2 —1 2 (] (]
I 3 () —1 1 -1
Iy 3 ] —1 -1 1




(Crystallographic) point groups — two main naming conventions:
Schoenflies and “international” (Hermann-Maguin)

Translation symmetry restricts the n-fold rotation axis C, to n=1,2,3,4, and 6.

Schoenfliess International
C, 1,2,3,4,6

o (mirror reflection) m

S, (rotatory inversion axis) 1,3,4,6

the symbol m for the mirror plane does not distinguish between vertical,
horizontal, and diagonal planes; instead,

n/m means a horizontal plane perpendicular to the n-fold axis,

nm means a horizontal plane containing the n-fold axis.



Point groups — two main naming conventions for 32 crystallographic point groups

Crystal system Schonflies symbol International symbol (abbreviated)
. O 4 _2
Cubic . — 3 —{m3m)
m m
O 432
T-d E3m
2 -
m
T 23
422
Tetragonal Dy, — — — (4/mmm)
mmm
D, 422
D34 42m
Cay dmm
4
Can — (4/m)
m
S4 4
C, 4
Orthorhombic D,, 2 E E (mmm)
mm m
D, 222



Point groups — two main naming conventions for 32 crystallographic point groups

Crystal system Schonflies symbol International symbol (abbreviated)
0 L2
Hexagonal D — — — (6/mmm)
m m m
D 622
D, 6m?2
Cov 6mm
6
Cen — (6/m)
m
Csy, 6
Cq 6
Trigonal D, 32 (3m)
m
D, 32
CJ\' gl’l’l
C1i(Se) 3
C, 3
Monoclinic C,, 2 (2/m})
Clh[cgl m
C, 2
Triclinic C, 1
C, 1



Direct product of matrices

Let A and B be a matrices of |, |, and I, I, elements:

A, 1=1,00 0 J=1,00 0, and By k=10, m=1,0 g,

The matrix C=AxB, called the direct product, consists of |, 1. I, |5, elements of

all products A;; By, = Ciy jm- An alternative symbol for the direct product is C=A®B.

The ordering in rectangular arrays is convenient for dealing with matrices.

The pair ik labels the rows, the pair jm labels the columns of the rectangular array of

|, g, rows and 1, lg. columns of C.
A convenient definition of multiplication of the direct-product matrices results from the requirement of
the representation of “transformations” by successive multiplications of the matrices:

A’’=A"A represents the operation A succeeded by the operation 4,
similarly B”’=B’B, and C"’=C’C=A4'AxB’B. The elements of the direct product are
(C'C)ik,jm - ZZ ApA ququ ZZ ApB ApJ qu _chik,pqcpq,Jm’
P q P q P q
which is the usual “row-times-column” multiplication of the matrices C’ and C.



The rectangular array of the elements of ExB might be visualized as follows:

AB AB .. A B

P AB AB .. A B |

_AArlB AArZB o AArIAcB_

where B is the rectangular block

_Bll BlZ Blch |
B, .. B
B — 21 22 215,
| BIBrl BIBr 2 ' BIBrIBc |




Direct product of groups

Two groups,

G, with the elements A;, 1=1,...,n,, and

Gg with the elements B;, J=1,...,ng, such that A;B;=B;A; for all of their elements,
form the direct product group G,xGg consisting of all A;B;.

The four group axioms are evidently fulfilled:

1. ABAB, = (AA) (BB, ),

2. the unit element is E,Eg,

3. the inverse element of is A;'B; ™, since A;'B;A;B;=E,E,

4. the multiplication is associative.

If G, and Gg have no common elements (except possibly for the identity),
the order of G,xGg IS NN



Direct product of groups — example /\

The symmetry operations of an equilateral triangle 3/ \2 ’
(Schoenflies notation) - \

form the point group C,, {E,3c,,2C,} if the upper and lower faces are distinguishable;
If this asymmetry is removed, there is another symmetry operation:

oy, , the mirror reflection in the horizontal plane.

Since o6}, = E, the group C,;, {E,c} Is a cyclic group of order 2.

The horizontal reflection o, commutes with any element of C,, and the complete
symmetry of the equilateral triangle is described by the group
D, = C;, xCy;, with the 12 elements

{E, 01, 0,5, 03, C5, G5, o, 64,01, 01,65, 6403, 6,C3, 6,C47}



Direct product of groups — example of Dy, = C,, xCy,;, , the multiplication table
simpler notation of P(3): o,=A,5,=B,6,=C,C,=D,C,?=F; further, 5, =S:

iU A | B | C | D|F E S

E E A B C D FE = E S

A A E D FEF B ¢C S S E

B B F E D C A

C ¢ D E E A B

D D C A B F E

E F B C A  E D

e E A B C D F S SA SB SC SD SF
E E A B C D F ?

A AIlE D FEF B ¢

B B F E D C A ?

Cc ¢ D F ' E A B ?



Direct product of groups — example of Dy, = C;, xC,,, , classes, irreducible reps

siX classes:

{E}, {o1, 05, 03}.{C;5,C5%},
{on}{ono1, 61,6, 0403} {04Cs, 0,C4%}

we are interested in the 6x6 matrix of characters of irreducible representations
of the direct product

(character tables from Inui, Tanabe, Onodera, Group theory and its applications in physics, Springer 1976)

Table 4.2. Characters of the irreducible representati f th
group C,, P rons of the Table 4.3. Irreducible repres-

entations of the group C,

Class: (f] @2 %?3-

Element: E C,, C3! 0y, 03,03 ¢ i
A, ! 1 ! A

A , 1 . A’ 1 -1

E 2 -1




Direct product of groups — example of Dy, = C;, xC,,, , characters of irreps

the 3x3 matrix of characters of D, is 3x repeated, and the lower diagonal block

Is of the opposite sign due to the second irreducible representation of C,, , with
the character A’’=(1,-1)

Table 4.4. Characters of the irreducible representations of the group D, = C;, x C,

E C,,C3! G, 04,0, Ty Ciy0,, Cy oy U,,U,, U,
A x A=A 1 | 1 | | 1
A, x A" =Aj 1 1 —1 1 1 -1
Ex A =FE 2 -1 0 2 —1 0
Ay x A" = Aj I I 1 1 —1 —
Ay x A" = A} 1 1 —1 1 -1 1
Ex A"=E" 2 —1 0 — 2 | 0




Direct product of groups — example of Dy, = C;, xCy;, , classes, irreducible reps

a different notation for some of the classes

(character tables from M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory, Applications to the physics of
Condensed Matter, Springer 2008)

the rows and columns are distinct (in fact, orthogonal) — we can find
the correspondence with the previous version of the table (the are identical
as far as the characters are concerned)

Table A.14. Character table for group D;; (hexagonal)

Dgh = Dg () o, @m?) E ar 263 253 30& SJU

5l ot 2 Al 1 1 1 1 1 1
R, Al 1 1 1 1 —1 —1

7 1 —1 1 —1 1 —1

z A 1 —1 1 —1 —1 1

(z? —¥*,zy) (z,y) E/ 2 2 -1 —1 0 0
(zz,yz) (R, Ry) B 2 —2 -1 1 0 0




Point groups: notation for the representations

Chemical (Mulliken,1933) notation is common in molecular physics or in lattice
dynamics. It uses

A and B for one-dimensional representations (B if odd under the smallest rotation
of the principal axis),

E for two-dimensional representations,

T,U,V,W for the dimensionalities of 3,4,5,6.
Physical (Bethe, 1929; Koster, Dimmock, Wheeler and Statz, 1963) notation:

I3, I, I5,...; preferred in the recent solid-state literature.
An alternative (Bouckaert, Smoluchowski and Wigner, 1935) is available on occasion;
example for T

Mulliken KDWS BSW
A 1y 1y
A 1 1
E 13 a7
T 1y 15

=
o)
.



Point groups: notation for the representations

The Mulliken notation has an additional rule:
If the group contains inversion, the symbol has an additional suffix, either

“g” (gerade) for the even parity under inversion, or
“0” (ungerade) for the odd parity.

The example of the orthorhombic point group D,,=D,xC,, C,={E,l} is a cyclic

group of order 2.

DJ.I Basis E Cl: Cgr Cl.t I a, ﬂ',. a,
A, I’ x%, yiz 1 1 1 1 1 1 1 1
B,, I3 Xy 1 1| -11]-1 1 1| =1} -1
B,, I3 Xz 1 -1 1| -1 1 -1 1 | -1
B, I yz 1 -1 ] -1 1 1 -1 | -1 1)
A Iy xyz 1 1 | HES! -1 [ -T7] -1
B,, T3 z 1 1| -1 -1]}||-1 -1 1 1
B,, TI3; y 1 -1 1| —1]]|-1 1| -1 1
B,, T4 x 1 -1 | -1 1|]|=1 1 1 | -1




Symmetry operations on functions of coordinates

Consider a rotation by the angle o in the (X,y) plane,
{x'l } _ {xc_osa— ysin a} _ R(a){x} R() = {Cfasa —sin a] R () = {cos_a Sina }
Yy XSIha + YCOS&x Yy SInad COS«o —SINa COS o
This transformation of the coordinates transforms also their functions, f(x,y), such

as f;(x,y)=x, f0¢y)=x2+y2, f5(X,y)=x2-y2, f,(x,y)=xy, f5(X,y)=x3-3xy?,...
The transformed function values are given by

F(xhy)=1(xy)
and the transformed function results from the original one by the action of an
operator Py (acting on functions):

f'=P,f, P f(X,y)=Ff(Xy)="f(X'cosa+y'sing,y'cosa—X'sina).
The explicit form for the transformed function is therefore

P.f(x,y)= f(Xxcosa+ysina, ycosa—Xsin o).



Symmetry operations on functions of coordinates

The rotation R , transforms the complex-valued function f_,(x,y)=x+1y into

P, f_ (X, y)=Xcosa+ysina+i(ycosa —xsina) =e*f_ (X, y).

With f,(x,y)=x2+y?, f3(x,y)=x2-y?, f,(x,y)=xy, we obtain the following examples
of the transformations:

f,'=x*+y*=f1,,

f,'=—cosasina(x’ —y*) +(cos® a —sin’ a)xy = —cos asin a f, + (cos® a —sin® a) f,.



Symmetry operations on functions of coordinates

For any transformation R of the 3-dimensional vector r=(x,y,z), r '=Rr, we obtain
the transformed function from the generalized recipe:

P.f(r)=f(r)=f(R™r), ie,
P.f(r)=f(Rr).
Two successive operations R and S transform an arbitrary function f in the
following way:
PP f(r)=R[Pf(N]=PRg(r)=g(Sr)=f(R7S7T),
where g=Pxgf.
The combined action of the operation R (applied first) and S is the product SR:
P, f(r)= f[(SR) *r]= f (RS "r),

leading to the identical result as the product PsPg. Consequently, it is possible to
use the same symbol for the operations R and Py;:

Rf (r) = f(R™r).



Basis functions of a representation

The set of independent functions f, f,, ..., f; is called a basis of a d-dimensional
representation, formed by the matrices with the elements D,(A;), if

A f =Zd:Dk,(A)fk for any A €G.

This is the condition of the closure of the set of functions under the operations of
the group G.

Individual functions of this set are called basis functions, partners, or basis vectors.

The I-th partner results from the linear combination with the coefficients from the
I-th column of the set of representation matrices; it belongs to the I-th column.



A (reducible) 3-dimensional representation of P(3) can be used as the following
transformation of f,=x, f,=y, f;=z by the elements of C,:

E C, C,t
(100 1 [001] 010][
=010 =(100 001
1001 | 1010 1100 ||
Oy G> O3
(010 x| [100] (001]
=(100 =001 010
1001 y| [010] 1100 |
Its character Is E 3o,
P,=A,+E, P, 3 1
It is orthogonal to A, A, 1 1
(the projection on A, A, 1 -1
vanishes) E 2 0




The function
1‘,3EL =f+f,+f,=x+y+z

remains invariant under all operations of C,;
If forms a basis for the representation A, or it transforms as A;.
Similarly, the functions

fElz(ZX_y_z)/\/g’ fes =(y—z)/\/§

form the basis for the irreducible representation E.

A basis for the representation A, can be obtained from polynomials of the third
order:

f, =x(y*—2°)+y(z° —y*) +z(x* - y°).



