Introduction to Group Theory, part 2

- vibrational modes of pyramidal $\mathrm{XY}_{3}\left(C_{3 v}\right)$ molecules
- further example: $P(4)$ and the point group T_{d}
- notation of point groups (Schoenflies and international)
- direct product of matrices and groups
- example of $D_{3 h}=C_{3 v} \times C_{1 h}$
- notation for the representations
- symmetry operations on functions of coordinates
- basis functions

Molecular vibrations - Herzberg II, pyramidal $\mathrm{XY}_{3}\left(C_{3 v}\right)$;

$3 \mathrm{~N}-6=6$ vibrations allowed in both Raman and IR, two doubly degenerate

Fig. 45. Normal vibrations of the ND_{3} molecule.-The vibrations are drawn to scale for ND_{3} (see p. 177) in ohlique projection. (For NH_{3} the large mass ratio of N to H would not have allowed the displacement vectors of N to be drawn to the same scale as those of H). Both components of the degenerate vibrations are shown. The broken-line arrows in ν_{2} and ν_{4} give the symmetry coordinates of Fig. 53 (see p. 155). They are added so that the form of the vibrations can be more clearly visualized. In $\nu_{3 b}$ there is a very small displacement (too small to show in the scale of the diagram) of the left D nucleus parallel to the line connecting the two other D nuclei (see also the discussion of Fig. 60 on p. 171). It should be noted that $\nu_{z a}$ and $\nu_{4 a}$ are symmetric, $\nu_{s b}$ and $\nu_{4 b}$ antisymmetric with respect to the plane of symmetry through the left D nucleus, that is, the plane of the paper.

Example - T_{d}

Symmetry operations of a regular tetrahedron (zincblende structures):
identity E,
eight C_{3} axes about diagonals (dashed lines),
three C_{2} axes about x, y, z,
six S_{4} axes about x, y, z, corresponding to
the rotations of $\pm \pi / 2$
six σ_{d} reflections (diagonal planes)
the group T_{d} of the order of 24 , isomorphic with $P(4)$,
5 classes, the character table is a 5×5 matrix

Example - T_{d}

Character tables for the point group T_{d} (43m) from two sources:

Inui, Tanabe, Onodera, Group theory and its applications in physics, Springer 1976

	T_{d}	E		$6 I C_{4}$		$3 C_{2}$	$6 \sigma_{\mathrm{d}}$
			$8 C_{3}$				
$\mathrm{~A}_{1}$	Γ_{1}	1		1	1	1	1
$\mathrm{~A}_{2}$	Γ_{2}	1		-1	1	-1	1
\mathbf{E}	Γ_{3}	2	0	2	0	-1	
$\mathrm{~T}_{1}$	Γ_{4}	3	1	-1	-1	0	
$\mathrm{~T}_{2}$	Γ_{5}	3		-1	-1	1	0

M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory, Applications to the physics of Condensed Matter, Springer 2008

	E	$8 C_{3}$	$3 C_{2}$	$6 \sigma_{d}$	$6 S_{4}$
A_{1}	1	1	1	1	1
A_{2}	1	1	1	-1	-1
E	2	-1	2	0	0
T_{1}	3	0	-1	-1	1
T_{2}	3	0	-1	1	-1

Example - T_{d}

Character tables for the point group T_{d} and (isomorphic) permutation group $P(4)$ from Dress_2008. Try to understand the notation used for the elements of classes of $P(4)$, and their link to the symmetry operations of T_{d}.
Note the different labels of the irreducible representations.

	E	$8 C_{3}$	$3 C_{2}$	$6 \sigma_{d}$	$6 S_{4}$
A_{1}	1	1	1	1	1
A_{2}	1	1	1	-1	-1
E	2	-1	2	0	0
T_{1}	3	0	-1	-1	1
T_{2}	3	0	-1	1	-1
$P(4)$					
Γ_{1}^{s}	$\left(1^{4}\right)$	$8(3,1)$	$3\left(2^{2}\right)$	$6\left(2,1^{2}\right)$	$6(4)$
Γ_{1}^{a}		1	1	1	1
Γ_{2}		1	1	1	-1
Γ_{3}		2	-1	2	0
$\Gamma_{3^{\prime}}$		3	0	-1	1

(Crystallographic) point groups - two main naming conventions:
Schoenflies and "international" (Hermann-Maguin)

Translation symmetry restricts the n-fold rotation axis C_{n} to $n=1,2,3,4$, and 6 .

Schoenfliess
C_{n}
σ (mirror reflection)
S_{n} (rotatory inversion axis)
international
1,2,3,4,6
m
$\overline{1}, \overline{3}, \overline{4}, \overline{6}$
the symbol m for the mirror plane does not distinguish between vertical, horizontal, and diagonal planes; instead, n / m means a horizontal plane perpendicular to the n-fold axis, $n \mathrm{~m}$ means a horizontal plane containing the n-fold axis.

Point groups - two main naming conventions for 32 crystallographic point groups

Crystal system	Schönflies symbol	International symbol (abbreviated)
Cubic	O_{h}	$\frac{4}{\mathrm{~m}} \overline{3} \frac{2}{\mathrm{~m}}(\mathrm{~m} 3 \mathrm{~m})$
	O	432
	T ${ }_{\text {d }}$	$\overline{4} 3 \mathrm{~m}$
	Th	$\frac{2}{\mathrm{~m}} \overline{3}(\mathrm{~m} 3)$
	T	23
Tetragonal	$\mathrm{D}_{4 \mathrm{~h}}$	$\frac{4}{\mathrm{~m}} \frac{2}{\mathrm{~m}} \frac{2}{\mathrm{~m}}(4 / \mathrm{mmm})$
	$\mathrm{D}_{2 \mathrm{~d}}$	$\overline{4} 2 \mathrm{~m}$
	$\mathrm{C}_{4 \mathrm{v}}$	$4 \mathrm{~mm}$
	$\mathrm{C}_{4 \mathrm{~h}}$	$\frac{4}{\mathrm{~m}}(4 / \mathrm{m})$
	S_{4}	$\overline{4}$
	C_{4}	4
Orthorhombic	$\mathrm{D}_{2 \mathrm{~h}}$	$\frac{2}{\mathrm{~m}} \frac{2}{\mathrm{~m}} \frac{2}{\mathrm{~m}}(\mathrm{mmm})$
	$\begin{aligned} & \mathrm{D}_{2} \\ & \mathrm{C}_{2 \mathrm{v}} \end{aligned}$	$\begin{aligned} & 222 \\ & 2 \mathrm{~mm} \end{aligned}$

Point groups - two main naming conventions for 32 crystallographic point groups

Crystal system	Schönflies symbol	International symbol (abbreviated)
Hexagonal	$\mathrm{D}_{6 \mathrm{~h}}$	$\frac{0}{\mathrm{~m}} \frac{\mathrm{~L}}{\mathrm{~m}} \frac{L}{\mathrm{~m}}(6 / \mathrm{mmm})$
	D_{6}	622
	$\mathrm{D}_{3 \mathrm{~h}}$	$\overline{6} \mathrm{~m} 2$
	$\mathrm{C}_{6 \mathrm{v}}$	6 mm
	$\mathrm{C}_{6 \mathrm{~h}}$	$\frac{6}{\mathrm{~m}}(6 / \mathrm{m})$
		$\overline{6}$
Trigonal	$\mathrm{C}_{3 \mathrm{~h}}$	6
	C_{6}	$\overline{3} \frac{2}{\mathrm{~m}}(\overline{3} \mathrm{~m})$
	$\mathrm{D}_{3 \mathrm{~d}}$	32
	D_{3}	$\frac{3 \mathrm{~m}}{3}$
	$\mathrm{C}_{3 \mathrm{v}}$	$\overline{3}$
	$\mathrm{C}_{3 \mathrm{i}}\left(\mathrm{S}_{6}\right)$	3
Monoclinic	C_{3}	$\frac{2}{\mathrm{~m}}(2 / \mathrm{m})$
	$\mathrm{C}_{2 \mathrm{~h}}$	m
	$\mathrm{C}_{1 \mathrm{~h}}\left(\mathrm{C}_{\mathrm{s}}\right)$	$\frac{2}{1}$
Triclinic	C_{2}	1

Direct product of matrices

Let A and B be a matrices of $l_{A c} l_{A r}$ and $l_{B c} l_{B r}$ elements:
$A_{i j}, i=1, \ldots, l_{A r}, j=1, \ldots, l_{A c}$, and $B_{k m}, k=1, \ldots, l_{B r}, m=1, \ldots, l_{B c}$.
The matrix $C=A \times B$, called the direct product, consists of $l_{A r} l_{A c} l_{B r} l_{B c}$ elements of all products $A_{i j} B_{k m}=C_{i k, j m}$. An alternative symbol for the direct product is $C=A \otimes B$.
The ordering in rectangular arrays is convenient for dealing with matrices.
The pair $i k$ labels the rows, the pair $j m$ labels the columns of the rectangular array of $l_{A r} l_{B r}$ rows and $l_{A c} l_{B C}$ columns of C.
A convenient definition of multiplication of the direct-product matrices results from the requirement of the representation of "transformations" by successive multiplications of the matrices:
$A^{\prime \prime}=A^{\prime} A$ represents the operation A succeeded by the operation A^{\prime}; similarly $B^{\prime \prime}=B^{\prime} B$, and $C^{\prime \prime}=C^{\prime} C=A{ }^{\prime} A \times B^{\prime} B$. The elements of the direct product are

$$
\left(C^{\prime} C\right)_{i k, j m}=\sum_{p} \sum_{q} A_{i p}^{\prime} A_{p j} B_{k q}^{\prime} B_{q m}=\sum_{p} \sum_{q} A_{i p}^{\prime} B_{k q}^{\prime} A_{p j} B_{q m}=\sum_{p} \sum_{q} C_{i k, p q}^{\prime} C_{p q, j m},
$$

which is the usual "row-times-column" multiplication of the matrices C ' and C.

The rectangular array of the elements of $E \times B$ might be visualized as follows:

$$
A \times B=\left[\begin{array}{cccc}
A_{11} B & A_{12} B & \ldots & A_{l_{A c}} B \\
A_{21} B & A_{22} B & \ldots & A_{2 l_{l_{c}}} B \\
\cdot & & & \\
A_{l_{A 1} 1} B & A_{l_{A 2}} B & \ldots & A_{l_{A} l_{A c}} B
\end{array}\right],
$$

where B is the rectangular block

$$
B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 l_{b c}} \\
B_{21} & B_{22} & \ldots & B_{2 l_{b_{c}}} \\
\cdot & & & \\
B_{l_{B, 1}} & B_{l_{B, 2}, 2} & \ldots & B_{l_{b, l} l_{B c}}
\end{array}\right] .
$$

Direct product of groups

Two groups,
\boldsymbol{G}_{A} with the elements $A_{i}, i=1, \ldots, n_{A}$, and
\boldsymbol{G}_{B} with the elements $B_{j}, j=1, \ldots, n_{B}$, such that $A_{i} B_{j}=B_{j} A_{i}$ for all of their elements, form the direct product group $\boldsymbol{G}_{A} \times \boldsymbol{G}_{B}$ consisting of all $A_{i} B_{j}$.
The four group axioms are evidently fulfilled:

1. $A_{i} B_{j} A_{k} B_{l}=\left(A_{i} A_{k}\right)\left(B_{j} B_{l}\right)$,
2. the unit element is $E_{A} E_{B}$,
3. the inverse element of is $A_{i}^{-1} B_{j}^{-1}$, since $A_{i}^{-1} B_{j}^{-1} A_{i} B_{j}=E_{A} E_{B}$,
4. the multiplication is associative.

If \boldsymbol{G}_{A} and $\boldsymbol{G}_{\boldsymbol{B}}$ have no common elements (except possibly for the identity), the order of $\boldsymbol{G}_{A} \times \boldsymbol{G}_{B}$ is $n_{A} n_{B}$.

Direct product of groups - example

The symmetry operations of an equilateral triangle (Schoenflies notation)

form the point group $C_{3 v}\left\{E, 3 \sigma_{v}, 2 C_{3}\right\}$ if the upper and lower faces are distinguishable; if this asymmetry is removed, there is another symmetry operation: σ_{h}, the mirror reflection in the horizontal plane.
Since $\sigma_{h} \sigma_{h}=E$, the group $C_{1 h}\left\{E, \sigma_{h}\right\}$ is a cyclic group of order 2.

The horizontal reflection σ_{h} commutes with any element of $C_{3 v}$, and the complete symmetry of the equilateral triangle is described by the group
$D_{3 h}=C_{3 v} \times C_{1 h}$ with the 12 elements
$\left\{E, \sigma_{1}, \sigma_{2}, \sigma_{3}, C_{3}, C_{3}^{2}, \sigma_{h}, \sigma_{h} \sigma_{1}, \sigma_{h} \sigma_{2}, \sigma_{h} \sigma_{3}, \sigma_{h} C_{3}, \sigma_{h} C_{3}^{2}\right\}$.

Direct product of groups - example of $D_{3 h}=C_{3 v} \times C_{1 h}$, the multiplication table simpler notation of $P(3)$: $\sigma_{1} \equiv \mathrm{~A}, \sigma_{2} \equiv \mathrm{~B}, \sigma_{3} \equiv \mathrm{C}, C_{3} \equiv \mathrm{D}, C_{3}{ }^{2} \equiv \mathrm{~F}$; further, $\sigma_{h} \equiv \mathrm{~S}$:

right left	E	A	B	C	D	F			E	S
E	E	A	B	C	D	F		E	E	S
A	A	E	D	F	B	C	S	S	E	
B	B	F	E	D	C	A				
C	C	D	F	E	A	B				
D	D	C	A	B	F	E				
F	F	B	C	A	E	D				

right left	E	A	B	C	D	F	S	SA	SB	SC	SD	SF
E	E	A	B	C	D	F				$?$		
A	A	E	D	F	B	C						
B	B	F	E	D	C	A		$?$				
C	C	D	F	E	A	B						?3

Direct product of groups - example of $D_{3 h}=C_{3 v} \times C_{1 h}$, classes, irreducible reps
six classes:
$\{E\},\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\},\left\{C_{3}, C_{3}^{2}\right\}$,
$\left\{\sigma_{h}\right\},\left\{\sigma_{h} \sigma_{1}, \sigma_{h} \sigma_{2}, \sigma_{h} \sigma_{3}\right\},\left\{\sigma_{h} C_{3}, \sigma_{h} C_{3}{ }^{2}\right\}$
we are interested in the 6×6 matrix of characters of irreducible representations of the direct product
(character tables from Inui, Tanabe, Onodera, Group theory and its applications in physics, Springer 1976)

Table 4.2. Characters of the irreducible representations of the group $\mathrm{C}_{3 \mathrm{v}}$

Class:	\mathscr{C}_{1}	\mathscr{C}_{2}	\mathscr{C}_{3}
Element:	E	$C_{3}, C_{3}{ }^{-1}$	$\sigma_{1}, \sigma_{2}, \sigma_{3}$
$\mathrm{~A}_{1}$	1	1	1
$\mathrm{~A}_{2}$	1	1	-1
E	2	-1	0

Table 4.3. Irreducible representations of the group C_{3}

	E	σ
\mathbf{A}^{\prime}	1	1
$\mathbf{A}^{\prime \prime}$	1	-1

Direct product of groups - example of $D_{3 h}=C_{3 v} \times C_{1 h}$, characters of irreps
the 3×3 matrix of characters of $D_{3 h}$ is $3 \times$ repeated, and the lower diagonal block is of the opposite sign due to the second irreducible representation of $C_{1 h}$, with the character A" $=(1,-1)$

Table 4.4. Characters of the irreducible representations of the group $\mathrm{D}_{3 \mathrm{~h}}=\mathrm{C}_{3 \mathrm{v}} \times \mathrm{C}_{8}$

	E	C_{3}, C_{3}^{-1}	$\sigma_{1}, \sigma_{2}, \sigma_{3}$	σ_{h}	$C_{3} \sigma_{\mathrm{h}}, C_{3}^{-1} \sigma_{\mathrm{h}}$	U_{1}, U_{2}, U_{3}
$\mathrm{~A}_{1} \times \mathrm{A}^{\prime}=\mathrm{A}_{1}^{\prime}$	1	1	1		1	1
$\mathrm{~A}_{2} \times \mathrm{A}^{\prime}=\mathrm{A}_{2}^{\prime}$	1	1	-1	1	1	1
$\mathrm{E} \times \mathrm{A}^{\prime}=\mathrm{E}^{\prime}$	2	-1	0	1	-1	
$\mathrm{~A}_{1} \times \mathrm{A}^{\prime \prime}=\mathrm{A}_{1}^{\prime \prime}$	1	1	1	-1	0	
$\mathrm{~A}_{2} \times \mathrm{A}^{\prime \prime}=\mathrm{A}_{2}^{\prime \prime}$	1	1	-1	-1	-1	-1
$\mathrm{E} \times \mathrm{A}^{\prime \prime}=\mathrm{E}^{\prime \prime}$	2	-1	0	-1	-1	1

Direct product of groups - example of $D_{3 h}=C_{3 v} \times C_{1 h}$, classes, irreducible reps
a different notation for some of the classes
(character tables from M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory, Applications to the physics of Condensed Matter, Springer 2008)
the rows and columns are distinct (in fact, orthogonal) \rightarrow we can find the correspondence with the previous version of the table (the are identical as far as the characters are concerned)

Table A.14. Character table for group $D_{3 k}$ (hexagonal)

$D_{3 k}=D_{3} \otimes \sigma_{k}(\overline{6} m 2)$			E	σ_{k}	$2 C_{3}$	$2 S_{3}$	$3 C_{2}^{\prime}$	$3 \sigma_{v}$
$x^{2}+y^{2}, z^{2}$		A_{1}^{\prime}	1	1	1	1	1	1
	R_{z}	A_{2}^{\prime}	1	1	1	1	-1	-1
		$A_{1}^{\prime \prime}$	1	-1	1	-1	1	-1
	z	$A_{2}^{\prime \prime}$	1	-1	1	-1	-1	1
$\left(x^{2}-y^{2}, x y\right)$	(x, y)	E^{\prime}	2	2	-1	-1	0	0
$(x z, y z)$	$\left(R_{x}, R_{y}\right)$	$E^{\prime \prime}$	2	-2	-1	1	0	0

Point groups: notation for the representations

Chemical (Mulliken,1933) notation is common in molecular physics or in lattice dynamics. It uses
A and B for one-dimensional representations (B if odd under the smallest rotation of the principal axis),
E for two-dimensional representations, T, U, V, W for the dimensionalities of 3,4,5,6.
Physical (Bethe, 1929; Koster, Dimmock, Wheeler and Statz, 1963) notation:
$\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \ldots$; preferred in the recent solid-state literature.
An alternative (Bouckaert, Smoluchowski and Wigner, 1935) is available on occasion; example for T_{d} :

Mulliken	KDWS	BSW
A_{1}	Γ_{1}	Γ_{1}
A_{2}	Γ_{2}	Γ_{2}
E	Γ_{3}	Γ_{12}
T_{1}	Γ_{4}	Γ_{15}
T_{2}	Γ_{5}	Γ_{25}

Point groups: notation for the representations

The Mulliken notation has an additional rule:
if the group contains inversion, the symbol has an additional suffix, either
" g " (gerade) for the even parity under inversion, or
" u " (ungerade) for the odd parity.

The example of the orthorhombic point group $D_{2 h}=D_{2} \times C_{I}, C_{I}=\{E, I\}$ is a cyclic group of order 2 .

$\mathrm{D}_{2 \mathrm{~L}}$	Basis	E	$C_{2 z}$	$C_{2 y}$	$C_{2 x}$	I	σ_{z}	$\sigma_{\text {y }}$	σ_{x}
$\mathrm{A}_{8} \quad \Gamma_{1}^{+}$	x^{2}, y^{2}, z^{2}	1	1	1	1	1	1	1	1
$\mathrm{B}_{18} \quad \Gamma_{2}^{+}$	$x y$	1	1	-1	-1	1	1	-1	-1
$\mathrm{B}_{28} \Gamma_{3}^{+}$	$x z$	1	-1	1	-1	1	-1	1	-1
$\mathbf{B r a g}_{38} \Gamma_{4}^{+}$	$y z$	1	-1	-1	1	1	-1	-1	1
$\mathrm{A}_{\mathrm{w}} \quad \Gamma_{1}^{-}$	$x y z$	1	1	1	1	${ }^{-1}$	-1	-1	-1
$\mathbf{B i a u}^{\mathbf{u}} \Gamma_{2}^{-}$	z	1	1	-1	-1	-1	-1	1	1
$\mathbf{B}_{20} \quad \Gamma_{3}^{-}$	y	1	-1	1	-1	-1	1	-1	1
$\mathrm{B}_{3 \mathrm{u}} \quad \Gamma_{4}^{-}$	x	1	-1	-1	1	-1	1	1	-1

Symmetry operations on functions of coordinates

Consider a rotation by the angle α in the (x, y) plane,

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \cos \alpha-y \sin \alpha \\
x \sin \alpha+y \cos \alpha
\end{array}\right]=R(\alpha)\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad R(\alpha)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right], \quad R^{-1}(\alpha)=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] .
$$

This transformation of the coordinates transforms also their functions, $f(x, y)$, such as $f_{1}(x, y)=x, f_{2}(x, y)=x^{2}+y^{2}, f_{3}(x, y)=x^{2}-y^{2}, f_{4}(x, y)=x y, f_{5}(x, y)=x^{3}-3 x y^{2}, \ldots$
The transformed function values are given by

$$
f^{\prime}\left(x^{\prime}, y^{\prime}\right)=f(x, y),
$$

and the transformed function results from the original one by the action of an operator P_{R} (acting on functions):

$$
f^{\prime}=P_{R} f, \quad P_{R} f\left(x^{\prime}, y^{\prime}\right)=f(x, y)=f\left(x^{\prime} \cos \alpha+y^{\prime} \sin \alpha, y^{\prime} \cos \alpha-x^{\prime} \sin \alpha\right) .
$$

The explicit form for the transformed function is therefore

$$
P_{R} f(x, y)=f(x \cos \alpha+y \sin \alpha, y \cos \alpha-x \sin \alpha) .
$$

Symmetry operations on functions of coordinates

The rotation R_{α} transforms the complex-valued function $f_{c 1}(x, y)=x+\mathrm{i} y$ into

$$
P_{R} f_{c 1}(x, y)=x \cos \alpha+y \sin \alpha+i(y \cos \alpha-x \sin \alpha)=e^{-i \alpha} f_{c 1}(x, y) .
$$

With $f_{2}(x, y)=x^{2}+y^{2}, f_{3}(x, y)=x^{2}-y^{2}, f_{4}(x, y)=x y$, we obtain the following examples of the transformations:

$$
\begin{aligned}
& f_{2}{ }^{\prime}=x^{2}+y^{2}=f_{2}, \\
& f_{4}{ }^{\prime}=-\cos \alpha \sin \alpha\left(x^{2}-y^{2}\right)+\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) x y=-\cos \alpha \sin \alpha f_{3}+\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) f_{4} .
\end{aligned}
$$

Symmetry operations on functions of coordinates

For any transformation R of the 3-dimensional vector $\boldsymbol{r}=(x, y, z), \boldsymbol{r}^{\prime}=R \boldsymbol{r}$, we obtain the transformed function from the generalized recipe:

$$
\begin{aligned}
& P_{R} f\left(\boldsymbol{r}^{\prime}\right)=f(\boldsymbol{r})=f\left(R^{-1} \boldsymbol{r}^{\prime}\right) \text {, i.e., } \\
& P_{R} f(\boldsymbol{r})=f\left(R^{-1} \boldsymbol{r}\right) .
\end{aligned}
$$

Two successive operations R and S transform an arbitrary function f in the following way:

$$
P_{S} P_{R} f(\boldsymbol{r})=P_{S}\left[P_{R} f(\boldsymbol{r})\right]=P_{S} g(\boldsymbol{r})=g\left(S^{-1} \boldsymbol{r}\right)=f\left(R^{-1} S^{-1} \boldsymbol{r}\right),
$$

where $g=P_{R} f$.
The combined action of the operation R (applied first) and S is the product $S R$:

$$
P_{S R} f(\boldsymbol{r})=f\left[(S R)^{-1} \boldsymbol{r}\right]=f\left(R^{-1} S^{-1} \boldsymbol{r}\right),
$$

leading to the identical result as the product $P_{S} P_{R}$. Consequently, it is possible to use the same symbol for the operations R and P_{R} :

$$
R f(\boldsymbol{r}) \equiv f\left(R^{-1} \boldsymbol{r}\right)
$$

Basis functions of a representation

The set of independent functions $f_{1}, f_{2}, \ldots, f_{d}$ is called a basis of a d-dimensional representation, formed by the matrices with the elements $D_{k l}\left(A_{i}\right)$, if

$$
A_{i} f_{l}=\sum_{k=1}^{d} D_{k l}\left(A_{i}\right) f_{k} \text { for any } A_{i} \in G
$$

This is the condition of the closure of the set of functions under the operations of the group \boldsymbol{G}.
Individual functions of this set are called basis functions, partners, or basis vectors.

The l-th partner results from the linear combination with the coefficients from the l-th column of the set of representation matrices; it belongs to the l-th column.

A (reducible) 3-dimensional representation of $P(3)$ can be used as the following transformation of $f_{1}=x, f_{2}=y, f_{3}=z$ by the elements of $C_{3 v}$:
E
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
σ_{1}
$\left[\begin{array}{l}y \\ x \\ z\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$\left[\begin{array}{l}x \\ z \\ y\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$\left[\begin{array}{l}z \\ y \\ x\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

Its character is
$P_{3}=A_{1}+E$,
it is orthogonal to A_{2} (the projection on A_{2} vanishes)

	E	$3 \sigma_{v}$	$2 C_{3}$
P_{3}	3	1	0
A_{1}	1	1	1
A_{2}	1	-1	1
E	2	0	-1

The function

$$
f_{A_{1}}=f_{1}+f_{2}+f_{3}=x+y+z
$$

remains invariant under all operations of $C_{3 v}$; if forms a basis for the representation A_{1}, or it transforms as A_{1}.

Similarly, the functions

$$
f_{E 1}=(2 x-y-z) / \sqrt{6}, f_{E 2}=(y-z) / \sqrt{2}
$$

form the basis for the irreducible representation E.
A basis for the representation A_{2} can be obtained from polynomials of the third order:

$$
f_{A_{2}}=x\left(y^{2}-z^{2}\right)+y\left(z^{2}-y^{2}\right)+z\left(x^{2}-y^{2}\right) .
$$

