
Minimum value for central pressure of star

We have only two of the four equations, and no knowledge yet 
of material composition or physical state. But we can deduce a 
minimum central pressure. 
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Divide these two 
equations: 

Integrations from center
to surface gives

Lower limit to RHS:



Hence we have

We can approximate the pressure at the surface of the star to be 
zero:

For example for the Sun:

𝑃𝑐 = 4.5  1013 Nm-2 = 4.5  108 atmospheres

This seems rather large for gaseous material – we shall see that 
this is not an ordinary gas. 
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The Virial theorem

Again lets take the two equations of hydrostatic equilibrium and 
mass conservation and divide them 

Now multiply both sides by 4𝜋𝑟2

And integrate over the whole star
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Where V = vol contained within radius r 

Use integration by parts to integrate LHS
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At centre, 𝑉𝑟 = 0 and at surface 𝑃𝑠 = 0



Hence we have 
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Now the right hand term is the total gravitational potential energy 
of the star or it is the energy released in forming the star from its 
components dispersed  to infinity.

Thus we can write the Virial Theorem :  
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This is of great importance in astrophysics and has many 
applications. We shall see that it relates the gravitational energy of a 
star to its thermal energy 

The Virial theorem



Minimum mean temperature of a star

We have seen that pressure 𝑃 is an important term in the equation 
of hydrostatic equilibrium and the Virial theorem. 

What physical processes give rise to this pressure – which are the 
most important ?

• Gas pressure 𝑃𝑔

• Radiation pressure 𝑃𝑟
• We shall show that 𝑃𝑟 is negligible in stellar interiors and pressure 

is dominated by 𝑃𝑔

To do this we first need to estimate the minimum mean 
temperature of a star

Consider the  term, which is the gravitational potential energy:

 

− =
GM

r0

M s

 dM



We can obtain a lower bound on the RHS by noting: at all points 
inside the star 𝑟 > 𝑟𝑠 and hence Τ1 𝑟 > Τ1 𝑟𝑠

Now pressure is sum of radiation pressure and gas pressure: 𝑃 =
𝑃𝑔 + 𝑃𝑟

Assume, for now, that stars are composed of ideal gas with 
negligible 𝑃𝑟
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Now 𝑑𝑀 = 𝜌𝑑𝑉 and the Virial theorem can be written 
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= = The equation of state of ideal gas

𝑘 … Boltzmann’s constant; 𝑚 … average mass of particles 

𝑛 … number of particles per m3  



Hence we have 

And we may use the inequality derived above to write 

We can think of the LHS as the sum of the temperatures of all the 
mass elements 𝑑𝑀 which make up the star 

The mean temperature of the star ത𝑇 is then just the integral divided 
by the total mass of the star 𝑀𝑠
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Minimum mean temperature of the Sun

As an example for the Sun we have:

Now we know that Hydrogen is the most abundant element in 
normal stars and for a fully ionised hydrogen star Τ𝑚 𝑚𝐻 = Τ1 2 (as 
there are two particles, p + e–, for each Hydrogen atom). And for any 
other element Τ𝑚 𝑚𝐻 is greater

ത𝑇𝑆𝑢𝑛 > 2 × 106K
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Physical state of stellar material

We can also estimate the mean density of the Sun using:
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Mean density of the Sun is only a little higher than water and other 
ordinary liquids. We know such liquids become gaseous at 𝑇 much 
lower than ത𝑇𝑆𝑢𝑛
Also the average K.E. of particles at ത𝑇𝑆𝑢𝑛 is much higher than the 
ionisation potential of Hydrogen. Thus the gas must be highly 
ionised, i.e. is a plasma.

It can thus withstand greater compression without deviating from an 
ideal gas.

Note that an ideal gas demands that the distances between the 
particles are much greater than their sizes, and nuclear dimension is 
10-15 m compared to atomic dimension of 10-10 m 
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Now compare gas and radiation pressure at a typical point in the 
Sun  

 

Pr

Pg
=
aT4

3

kT

m
=
maT 3

3k

27
6 3 3

4

1.67 10
Taking ~ 2 10  K, ~ 1.4 10  kgm  and  kg

2

Gives     ~ 10r

g

T T m

P

P

 
−

−

−


=  =  =

Hence radiation pressure appears to be negligible at a typical 
(average) point in the Sun. In summary, with now know of how 
energy is generated in stars and we have been able to derive a value 
for the Sun’s internal temperature with negligible radiation 
pressure.

Lets revisit the issue of radiation versus gas pressure.  We assumed 
that the radiation pressure was negligible. The pressure exerted by 
photons on the particles in a gas is:

Where 𝑎 is the radiation density constant
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Mass dependency of radiation to gas pressure

However we shall later see that 𝑃𝑟 does become significant in higher 
mass stars. To give a basic idea of this dependency: replace 𝜌 in the 
ratio equation above: 
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i.e. 𝑃𝑟 becomes more significant in higher mass stars. 


