
Energy generation in stars

So far, we have only considered the dynamical properties of the star, 
and the state of the stellar material. But what is the source of the 
stellar energy? 

Let’s consider the origin of the energy i.e. the conversion of energy 
from some form in which it is not immediately available into some 
form that it can radiate. 

How much energy does the Sun need to generate?
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Source of energy generation 

What is the source of this energy? We can think of four possibilities:

• Cooling 

• Contraction

• Chemical Reactions

• Nuclear Reactions

Cooling and contraction 

These are closely related, so we consider them together. Cooling is 
simplest idea of all. Suppose the radiative energy of the Sun is due 
to it being much hotter when it was formed, and has since been 
cooling down.

Or is the Sun slowly contracting with consequent release of 
gravitational potential energy, which is converted to radiation?



Source of energy generation 

In an ideal gas, the thermal energy of a particle; where 𝑛𝑓 … number 

of degrees of freedom (= 3)

Total thermal energy per unit volume 
𝑛 … number of particles per unit volume

Assume that stellar material is ideal gas (negligible 𝑃𝑟)
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Now Virial Theorem:



Source of energy generation 

Now lets define 𝑈… integral over volume of the thermal energy per 
unit volume

Thermal energy per unit volume 

The negative gravitational energy of a star is equal to twice its 
thermal energy. This means that the time for which the present 
thermal energy of the Sun can supply its radiation and the time for 
which the past release of gravitational potential energy could have 
supplied its present rate of radiation differ by only a factor two. 

Negative gravitational potential energy of a star is related by the 
inequality

3
2 0

2

knT
U=  + =

2 2

    as an approximation assume     ~    
2 2

s s

s s

GM GM

r r
−  −



Source of energy generation 

Total release of gravitational potential energy would have been 
sufficient to provide radiant energy at a rate given by the luminosity 
of the star 𝐿𝑠, for a time
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For the values of the Sun: 𝑡𝑡ℎ 𝑆𝑢𝑛 = 3 × 107 years. 

𝑡𝑡ℎ… thermal timescale (or Kelvin-Helmholtz timescale)

Hence if the Sun is powered by either contraction or cooling, it 
would have changed substantially in the last 10 million years. A 
factor of ~100 too short to account for the constraints on age of the 
Sun imposed by fossil and geological records. 

Chemical Reactions

We calculated above that we need to find a process that can 
produce at least 10-4 of the rest mass energy of the Sun. Chemical 
reactions such as the combustion of fossil fuels release ~ 510-10 of 
the rest mass energy of the fuel. 



Source of energy generation

Nuclear Reactions

Hence the only known way of producing sufficiently large amounts 
of energy is through nuclear reactions. There are two types of 
nuclear reactions, fission and fusion. Fission reactions, such as 
those that occur in nuclear reactors, or atomic weapons can 
release ~ 510-4 of rest mass energy through fission of heavy nuclei 
(uranium or plutonium). 



Equation of energy production

The third equation of stellar structure: 
relation between energy release and 
the rate of energy transport

Consider a spherically symmetric star 
in which energy transport is radial and 
in which time variations are 
unimportant. 

𝐿 𝑟 … rate of energy flow across 
sphere of radius 𝑟

𝐿(𝑟 + 𝛿𝑟) … rate of energy flow 
across sphere of radius 𝑟 + 𝛿𝑟

Because the shell is thin: 2
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We define 𝜀 ... energy release per unit mass per unit volume (Wkg-1)

Hence energy release in a shell is written as:

Conservation of energy leads us to
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This is the equation of energy production.

We now have three of the equations of stellar structure. However 
we have five unknowns 𝑃 𝑟 ,𝑀 𝑟 , 𝐿 𝑟 , 𝜌 𝑟 , 𝜀(𝑟). The next step is 
to investigate the energy transport inside stars. 



Method of energy transport

There are three ways energy can be transported in stars

• Convection – energy transport by mass motions of the gas

• Conduction – by exchange of energy during collisions of gas particles (usually e-)

• Radiation – energy transport by the emission and absorption of photons

Conduction and radiation are similar processes – they both involve transfer of 
energy by direct interaction, either between particles or between photons and 
particles. 

Which is the more dominant in stars?

Energy carried by a typical particle ~3 Τ𝑘𝑇 2 is comparable to energy carried by 
typical photon  ~ Τℎ𝑐 𝜆

But number density of particles is much greater than that of photons. This would 
imply conduction is more important than radiation. 

Mean free path of photon ~ 10-2m 

Mean free path of particle ~ 10-10m

Photons can move across temperature gradients more easily, hence larger 
transport of energy. Conduction is negligible, radiation transport in dominant 





Convection

Convection is the mass motion of gas 
elements which only occurs when 
temperature gradient exceeds some 
critical value. We can derive an 
expression for this.  

Consider a convective element at 
distance 𝑟 from centre of star. Element 
is in equilibrium with surroundings.

Now let’s suppose it rises to 𝑟 + 𝛿𝑟. It 
expands, 𝑃(𝑟) and 𝜌 𝑟 are reduced to 
𝑃 − 𝛿𝑃 and 𝜌 − 𝛿𝜌

Convective element of stellar material 

But these may not be the same as the new surrounding  gas conditions. Define 
those as 𝑃 − 𝛿𝑃 and 𝜌 − 𝛿𝜌

If gas element is denser than surroundings at 𝑟 + 𝛿𝑟 then will sink (i.e. stable)

If  it is less dense then it will keep on rising – convectively unstable



The condition for instability is therefore

Whether or not this condition is satisfied depends on two things:

• The rate at which the element expands due to decreasing pressure

• The rate at which the density of the surroundings decreases with height

Let’s make two assumptions 

1. The element rises adiabatically

2. The element rises at a speed much less than the sound speed. During 
motion, sound waves have time to smooth out the pressure differences 
between the element and the surroundings. Hence 𝛿𝑃 = ∆𝑃 at all times

The first assumption means that the element must obey the adiabatic relation 
between pressure and volume

Where 𝛾 = Τ𝑐𝑝 𝑐𝑣 is the specific heat (i.e. the energy in J to raise temperature of 

1kg of material by 1K) at constant pressure 𝑐𝑝, divided by specific heat at constant 

volume 𝑐𝑣
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Given that 𝑉 is inversely proportional to 𝜌, we can write

Hence equating the term at 𝑟 and 𝑟 + 𝛿𝑟: 

If 𝛿𝜌 is small we can expand (𝜌 − 𝛿𝜌)using the binomial theorem 
as follows

Now we need to evaluate the change in density of the surroundings, 
𝛿𝜌

Lets consider an infinitesimal rise of 𝛿𝑟
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And substituting these expressions for 𝛿𝜌 and ∆𝜌 into the condition 
for convective instability derived above:

And this can be rewritten by recalling our 2nd assumption that 
element will remain at the same pressure as it surroundings, so that 
in the limit

The LHS is the density gradient that would exist in the surroundings 
if they had an adiabatic relation between density and pressure. RHS 
is the actual density in the surroundings. We can convert this to a 
more useful expression, by first dividing  both sides by Τ𝑑𝑃 𝑑𝑟. Note 
that Τ𝑑𝑃 𝑑𝑟 is negative, hence the inequality sign must change. 
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And for an ideal gas in which radiation pressure is negligible (where 
m is the mean mass of particles in the stellar material)

And can differentiate to give
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And combining this with the equation above gives ….



Condition for occurrence of convection

1P dT

T dP





−


Which is the condition for the occurrence of convection (in terms of the 
temperature gradient). A gas is convectively unstable if the actual temperature 
gradient is steeper than the adiabatic gradient.

If the condition is satisfied, then large scale rising and falling motions transport 
energy upwards. 

The criterion can be satisfied in two ways. The ratio of specific heats  is close 
to unity or the temperature gradient is very steep. 

For example if a large amount of energy is released at the centre of a star, it 
may require a large temperature gradient to carry the energy away. Hence 
where nuclear energy is being released, convection may occur. 



Condition for occurrence of convection

Alternatively in the cool outer layers of a star, gas may only be partially ionised, 
hence much of the heat used to raise the temperature of the gas goes into 
ionisation and hence the specific heat of the gas at constant 𝑉 is nearly the same 
as the specific heat at constant 𝑃, and 𝛾~1. 

In such a case, a star can have a  cool outer convective layer. 

Convection is an extremely complicated subject and it is true to say that the lack 
of a good theory of convection is one of the worst defects in our present studies 
of stellar structure and evolution. We know the conditions under which 
convection is likely to occur but don’t know how much energy is carried by 
convection. 


