
Different timescales

At different stages of evolution,

different timescales will be 
important



The characteristic timescales
There are three characteristic timescales that aid concepts in stellar evolution

The dynamical timescale

For the Sun 𝑡𝑑~2000 s

The thermal timescale 

Time for a star to emit its entire reserve of thermal energy upon contraction 
provided it maintains constant luminosity (Kelvin-Helmholtz timescale)

For the Sun 𝑡𝑡ℎ~30 Myr

The nuclear timescale

Time for star to consume all its available nuclear energy, 𝜀 is the typical 
nucleon binding energy/nucleon rest mass energy

For the Sun, 𝑡𝑛𝑢𝑐 is larger than the age of Universe

1
3 22

d

r
t

GM

 
=  
 

2

~    th

GM
t

Lr

2

~    nuc

Mc
t

L



    d th nuct t t  



The equation of radiative transport

We assume for the moment that the condition for convection is not satisfied, and  
we will derive an expression relating the change in temperature with radius in a 
star assuming all energy is transported by radiation. Hence we ignore the effects 
of convection and conduction.

The energy carried by radiation per square meter per second, i.e. the flux 𝐹𝑟𝑎𝑑, 
can be expressed in terms of the temperature gradient and a coefficient of 
radiative conductivity, 𝜆𝑟𝑎𝑑, as follows:

𝐹𝑟𝑎𝑑=− 𝜆𝑟𝑎𝑑
𝑑𝑇

𝑑𝑟

where the minus sign indicates that heat flows down the temperature gradient. 
Assuming that all energy is transported by radiation, we will now drop the 
subscript 𝑟𝑎𝑑 from the remainder of this discussion.

The radiative conductivity measures the readiness of heat to flow. Astronomers 
generally prefer to work with an inverse of the conductivity, known as the opacity 
𝜅, which measures the resistance of material to the flow of heat. 



The equation of radiative transport

It can be show that the opacity, 𝜅, is defined by the relation

𝜅(𝑟) =
4𝑎𝑐𝑇(𝑟)3

3𝜌(𝑟)𝜆

where 𝑎 is the radiation density constant and 𝑐 is the speed of light. Combining 
the above equations we obtain:

𝐹(𝑟) = −
4𝑎𝑐𝑇(𝑟)3

3𝜌(𝑟)𝜅(𝑟)

𝑑𝑇

𝑑𝑟

Recalling that flux and luminosity are related by

𝐿(𝑟) = 4𝜋𝑟2𝐹(𝑟)



The equation of radiative transport

we can write:

𝐿(𝑟) = −
16𝑎𝑐𝑟2𝑇(𝑟)3

3

𝑑𝑇

𝑑𝑟

On rearranging, we obtain:

𝑑𝑇

𝑑𝑟
= −

3𝜌 𝑟 𝜅 𝑟

16𝑎𝑐𝑟2𝑇 𝑟 3
𝐿(𝑟)

This is known as the equation of radiative transport and is the temperature 
gradient that would arise in a star if all the energy were transported by radiation. 
It should be noted that the above equation also holds if a significant fraction of 
energy transport is due to conduction, but in this case 𝐿 refers to the luminosity 
due to radiative and conductive energy transport and refers to the opacity to 
heat flow via radiation and conduction. 



Solving the equations of stellar structure

Hence we now have four differential equations,  which govern the structure of 
stars (note – in the absence of convection). 
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𝑟 … radius

𝑃… pressure at 𝑟

𝑀… mass of material within 𝑟

𝜌 … density at 𝑟

𝐿 … luminosity at r (rate of energy flow across   

sphere of radius 𝑟)

𝑇 … temperature at 𝑟

𝜅 … Rosseland opacity at 𝑟

𝜀 … energy release per unit mass per unit time

We will consider the quantities:

𝑃 = 𝑃(𝜌, 𝑇, chemical composition) The equation of state

𝜅 = 𝜅(𝜌, 𝑇, chemical composition) 

𝜀 = 𝜀(𝜌, 𝑇, chemical composition) 



Boundary conditions 

Two of the boundary conditions are fairly obvious, at the center of 
the star 𝑀 = 0, 𝐿 = 0 at 𝑟 = 0.

At the surface of the star its not so clear. There is no sharp edge to 
the star, but for the Sun 𝜌(surface)~10-4 kg m-3. Much smaller than 
the mean density 𝜌(mean)~1.4103 kg m-3 (which we derived). We 
know the surface temperature (5780K) is much smaller than its 
minimum mean temperature (2106 K).

Thus, we make two approximations for the surface boundary 
conditions: 𝜌 = 𝑇 = 0 at 𝑟 = 𝑟𝑠

i.e. that the star does have a sharp boundary with the surrounding 
vacuum



Use of mass as the independent variable

The above formulae would (in principle) allow theoretical models of stars with a 
given radius. However from a theoretical point of view it is the mass of the star 
which is chosen, the stellar structure equations solved, then the radius and other 
parameters are determined. We observe stellar radii to change by orders of 
magnitude during stellar evolution, whereas mass appears to remain constant. 
Hence it is much more useful to rewrite the equations in terms of 𝑀 rather than 𝑟. 

If we divide the other three equations by the equation of mass conservation, and 
invert the latter:
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dL

dM
= With boundary conditions:

𝑟 = 0, 𝐿 = 0 at 𝑀 = 0

𝜌 = 𝑇 = 0 at 𝑀 = 𝑀𝑠

We specify 𝑀𝑠 and the chemical composition and now have a well defined set of 
relations to solve. It is possible to do this analytically if simplifying assumptions 
are made, but in general these need to be solved numerically.  
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Stellar evolution

We have a set of equations that will allow the complete structure 
of a star to be determined, given a specified mass and chemical 
composition.  However what do these equations not provide us 
with?
In deriving the equation for hydrostatic support, we have seen that 
provided the evolution of star is occurring slowly compared to the 
dynamical time, we can ignore temporal changes (e.g. pulsations)
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And for the Sun for example, this is 𝑡𝑑 ~ 2000s, 
hence this is certainly true 

And we have also made the assumption that time dependence can 
be omitted  from the equation of energy generation, if the nuclear 
timescale (the time for which nuclear reactions can supply the stars 
energy) is greatly in excess of 𝑡𝑡ℎ



Stellar evolution

If there are no bulk motions in the interior of the star, then any 
changes of chemical composition are localised in the element of 
material in which the nuclear reactions occurred. So the star would 
have a chemical composition which is a function of mass 𝑀. 

In the case of no bulk motions, the set of equations we derived 
must be supplemented by equations describing the rate of change 
of abundances of the different chemical elements. Let 𝐶𝑋,𝑌,𝑍 be the 
chemical composition of stellar material in terms of mass fractions 
of hydrogen (X), helium, (Y) and metals (Z)

Now lets consider how we could evolve a model
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Ideally we would like to know exactly how much energy is transported by 
convection – but lack of a good theory makes it difficult to predict exactly. 

Heat is convected by rising elements which are hotter than their surroundings 
and falling elements which are cooler. Suppose the element differs by 𝛿𝑇 from 
its surroundings, because an element is always in pressure balance with its 
surroundings, it has energy content per kg which differs from surrounding kg 
of medium of 𝑐𝜌𝛿𝑇 (where 𝑐𝜌 is the specific heat at constant pressure). 

If material is mono-atomic ideal gas then 𝑐𝜌 = Τ5𝑘 2𝑚

Where 𝑚 is the average mass of particles in the gas

Assuming a fraction 𝛼 (1) of the material is in the rising and falling columns 
and that they are both moving at speed 𝑣 [ms-1 ] then the rate at which excess 
energy is carried across radius is:

𝐿𝑐𝑜𝑛𝑣 = surface area of sphere  x  rate of transport  x  excess energy

Influence of convection

2
2 5 10

4
2

conv

k T r vk T
L r v

m m

   
 = =



Hence putting in known solar values, at a radius halfway between 
surface and center, we get

𝐿𝑐𝑜𝑛𝑣 = 1026𝛼𝑣𝛿𝑇 [W]

The surface luminosity of the Sun is 𝐿 𝑆𝑢𝑛 = 3.86 × 1026 W, and 
at no point in the Sun can the luminosity exceed this value (see 
equation of energy production).

What can we conclude from this?

As the 𝛿𝑇 and 𝑣 of the rising elements are determined by the 
difference between the actual temperature gradient and adiabatic 
gradient, this suggests that the actual gradient is not greatly in 
excess of the adiabatic gradient. To a reasonable degree of accuracy 
we can assume that the temperature gradient has exactly the 
adiabatic value in a convective region in the interior of a star and 
hence can rewrite the condition of occurrence of convection in the 
form
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Thus in a convective region we must solve the four differential equations, together 
with equations for 𝜀 and 𝑃
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The equation for luminosity due to radiative transport is still true:

And once the other equations have been solved, 𝐿𝑟𝑎𝑑 can be calculated. This can 
be compared with 𝐿 (from Τ𝑑𝐿 𝑑𝑀 = 𝜀) and the difference gives the value of 
luminosity due to convective transport  𝐿𝑐𝑜𝑛𝑣 = 𝐿 − 𝐿𝑟𝑎𝑑

In solving the equations of stellar structure the equations appropriate to a 
convective region must be switched on whenever the temperature gradient 
reaches the adiabatic value, and switched off when all energy can be transported 
by radiation.


