The binding energy of the atomic nucleus

The general description of a nuclear reaction is

$$I(A_i, Z_i) + J(A_j, Z_j) \leftrightarrow K(A_k, Z_k) + L(A_l, Z_l)$$

Where A_i = the baryon number, or nucleon number (nuclear mass)

and $Z_i = the nuclear charge$

The nucleus of any element is uniquely defined by the two integers A_i and Z_i

Recall that in any nuclear reaction the following must be conserved:

- 1. The baryon number protons, neutrons and their anti-particles
- 2. The lepton number light particles, electrons, positrons, neutrinos, and antineutrinos
- 3. Charge

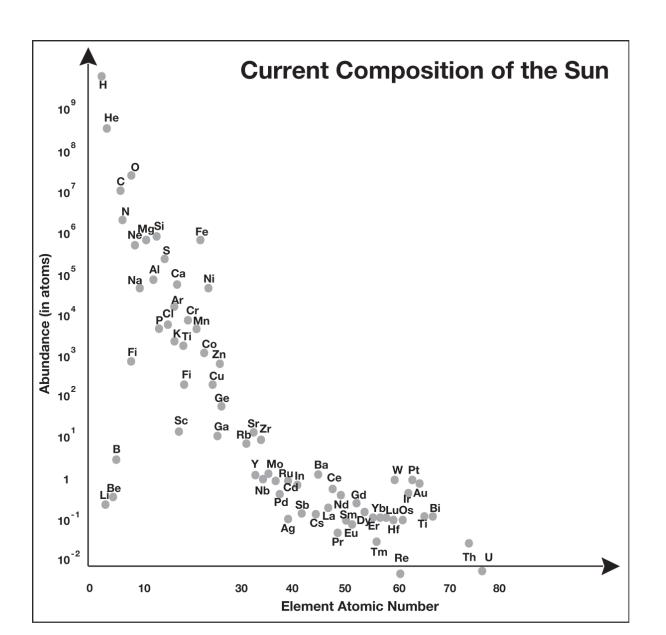
Note also that the anti-particles have the opposite baryon/lepton number to their particles

The binding energy of the atomic nucleus

- The total mass of a nucleus is known to be less than the mass of the constituent nucleons
- Hence there is a decrease in mass if a companion nucleus is formed from nucleons, and from the Einstein mass-energy relation $E = mc^2$ the mass deficit is released as energy
- This difference is known as the binding energy of the compound nucleus
- Thus if a nucleus is composed of Z protons and N neutrons, it's binding energy is

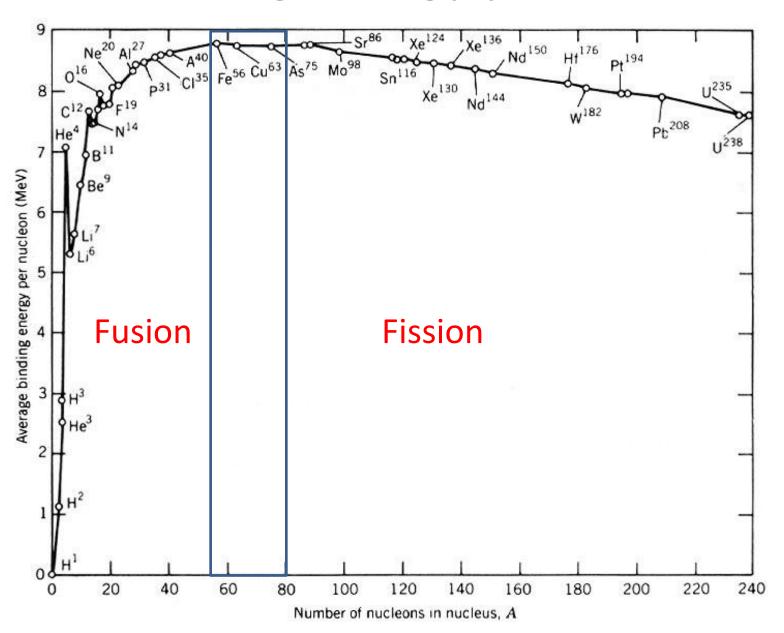
$$Q(Z,N) \equiv [Zm_p + Nm_n - m(Z,N)]c^2$$

- For our purposes, a more significant quantity is the total *binding energy* per nucleon
- We can then consider this number relative to the hydrogen nucleus

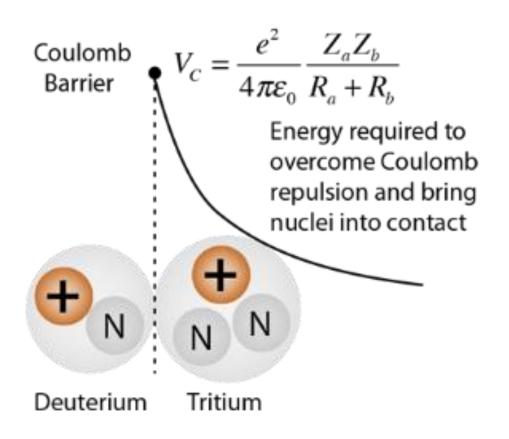

$$\frac{Q(Z,N)}{A}$$

The binding energy per nucleon

The variation of binding energy per nucleon with baryon number A


- General trend is an increase of Q with atomic mass up to A= 56 (Fe), then slow monotonic decline
- There is steep rise from H through ²H, ³He, to ⁴He => fusion of H to He should release larger amount of energy per unit mass than fusion of He to C
- Energy may be gained by fusion of light elements to heavier, up to iron
- Or from fission of heavy nuclei into lighter ones down to iron

Abundance - Sun



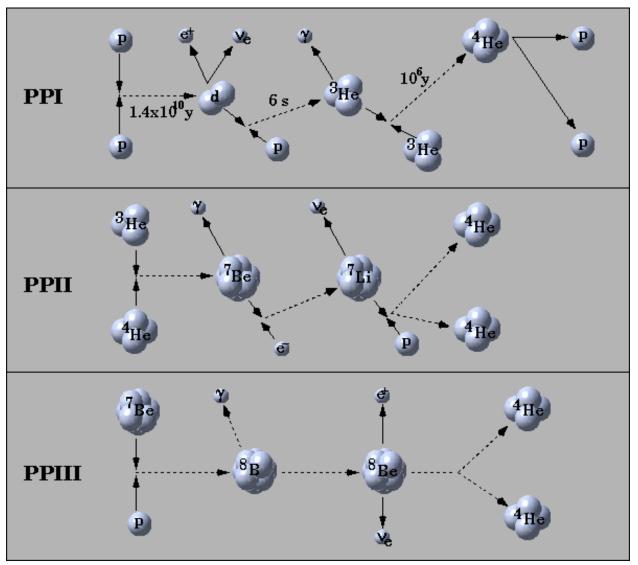
Asplund et al.

The binding energy per nucleon

Coulomb Barrier

 Z_aZ_b ... number of protons in each nuclei R_aR_b ... interaction radii ε_0 ... permittivity of free space (8.85 ×10⁻¹² C²N⁻¹ m⁻²) e ... charge of electron

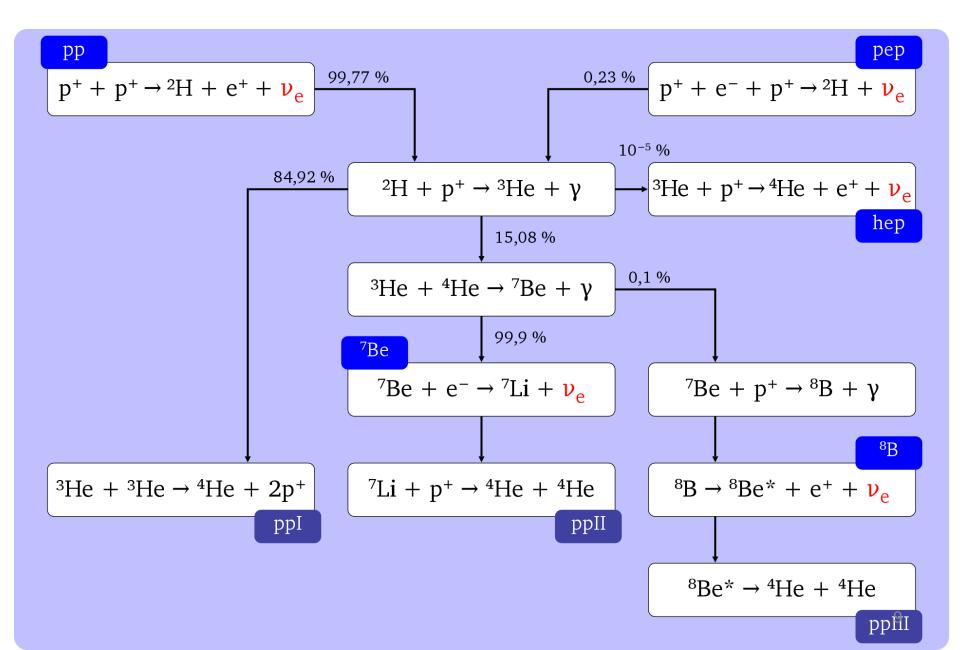
D-T reaction: V_C is 0.38 MeV Gas temperature of 4.4×10^9 K


Hydrogen and helium burning

The most important series of fusion reactions are those converting H to He (H-burning). As we shall see this dominates ~90% of lifetime of nearly all stars.

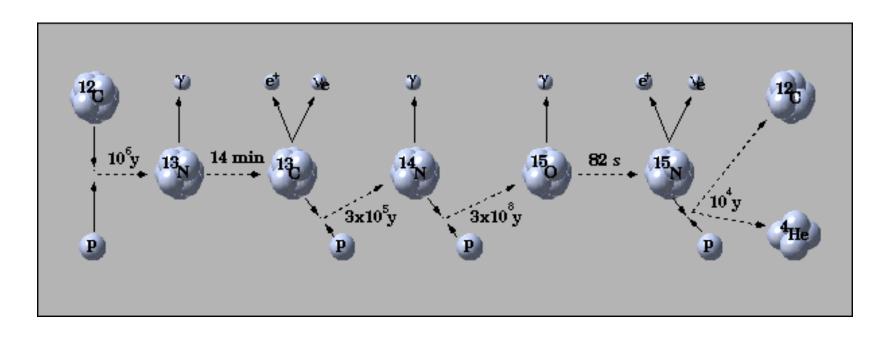
- Fusion of 4 protons to give one ⁴He is completely negligible
- Reaction proceeds through steps involving close encounter of 2 particles
- We will consider the main ones: the PP chain and the CNO cycle

The PP - chain has three main branches called the PPI, PPII and PPIII chains.


PPI Chain $1 p + p \rightarrow d + e^+ + v_e$	PPII Chain 3' 3 He + 4 He \rightarrow 7 Be + γ	PPIII Chain 4'' 7 Be + p \rightarrow 8 B + γ
2 d + p \rightarrow ³ He + γ	4' 7 Be + e $^{-}$ \rightarrow 7 Li + ν_{e}	5" $^{8}B \rightarrow ^{8}Be + e^{+} + v_{e}$
3 ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2p$	5' 7 Li + p \rightarrow 4 He + 4 He	6" 8 Be → 2^{4} He

Relative importance of PPI and PPII chains (branching ratios) depend on conditions of H-burning (T, ρ , abundances). The transition from PPI to PPII occurs at temperatures in excess of 1.3×10^7 K.

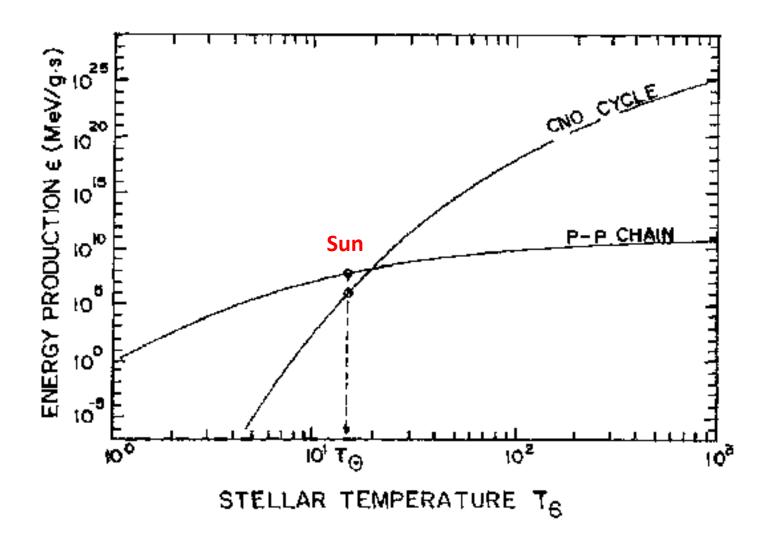
Above 3×10^7 K the PPIII chain dominates over the other two, but another process takes over in this case.


Neutrinos – Solar Fusion

The CNO Cycle

- Remember: [Z] < 2%, most abundant CNO
- CNO induce a chain of H-burning reactions in which they act as catalysts
- The process is known as the CNO Cycle. There are alternative names in the literature:
- 1. The CNO bi-cycle
- 2. The CNOF cycle
- 3. The CN and NO cycles
- 4. The CN and NO bi-cycles
- In this course we will just refer to it all as the CNO cycle

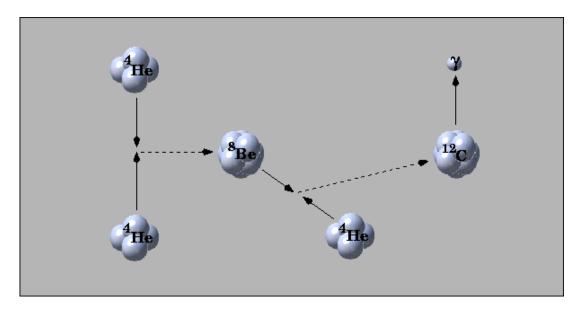
The main CNO branch



1
$$^{12}C + p \rightarrow ^{13}N + \gamma$$

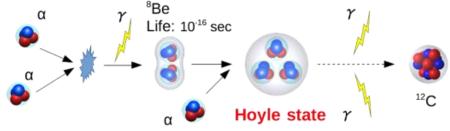
2 $^{13}N \rightarrow ^{13}C + e^{+} + \nu_{e}$
3 $^{13}C + p \rightarrow ^{14}N + \gamma$
4 $^{14}N + p \rightarrow ^{15}O + \gamma$
5 $^{15}O \rightarrow ^{15}N + e^{+} + \nu_{e}$

 $^{15}N + p \rightarrow ^{12}C + ^{4}He$


6

In the steady state case, the abundances of isotopes must take values such that the isotopes which react more slowly have higher abundance. The slowest reaction is p capture by ¹⁴N. Hence most of ¹²C is converted to ¹⁴N.

CNO cycle for stars with $M > 1.2 M_{\odot}$ dominant


Helium Burning: the triple - α reaction

- Simplest reaction should be the fusion of two helium nuclei
- ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be}$
- There is no stable configuration with A = 8.
- Beryllium isotope 8 Be has a lifetime of only 2.6×10^{-16} s
- But a third helium nucleus can be added to ⁸Be before decay, forming ¹²C by the "triple-alpha" reaction α γ ⁸Be γ

$$^{4}\text{He} + {^{4}\text{He}} \rightarrow {^{8}\text{Be}}$$

8
Be + 4 He \rightarrow 12 C + γ

Carbon and oxygen burning

Carbon burning (fusion of two C nuclei) requires temperatures above 5×10^8 K, and oxygen burning in excess of 10^9 K.

Interactions of C and O nuclei are negligible – as at the intermediate temperatures required by the coulomb barrier the C nuclei are quickly destroyed by interacting with themselves

The branching ratios for these reactions are temperature dependent probabilities.

$$^{12}\text{C} + ^{12}\text{C} \rightarrow \sim 13 \text{ MeV}$$

$$^{16}\text{O} + ^{16}\text{O} \rightarrow \sim 16 \text{ MeV}$$

These reactions produce p, n, He, which are immediately captured by heavy nuclei, thus many isotopes created by secondary reactions.

Silicon burning

Two Si nuclei could fuse to create ⁵⁶Fe – the end of the fusion chain

But now very high Coulomb barrier, at *T* above O burning, but below that required for Si burning, *photodisintegration* takes place

$$^{28}Si + ^4He \rightarrow ^{32}S + \gamma$$
 $^{32}S + ^4He \rightarrow ^{36}Ar + \gamma$
 \cdot
 \cdot
 $^{52}Cr + ^4He \rightarrow ^{56}Fe + \gamma$

Si disintegration occurs around 3×10^9 K, and the light particles emitted are recaptured by other Si nuclei. Although the reactions tend to a state of equilibrium, a leakage occurs towards the stable iron group nuclei (Fe, Co, Ni), which resist photodisintegration up to 7×10^9 K.

Summary - nuclear burning processes

- Release of energy by consumption of nuclear fuel
- Rates of energy release vary enormously
- Nuclear processes can also absorb energy from radiation field

Nuclear Fuel	Process	T _{threshold} 10 ⁶ K	Products	Energy per nucleon (MeV)
Н	PP	~4	Не	6.55
Н	CNO	15	Не	6.25
Не	3α	100	С, О	0.61
С	C+C	600	O, Ne, Na, Mg	0.54
0	0+0	1000	Mg, S, P, Si	~0.3
Si	Nuc eq.	3000	Co, Fe, Ni	<0.18

The *s*-process and *r*-process

Interaction between nuclei and free neutrons (neutron capture) – the neutrons are produced during C, O and Si burning.

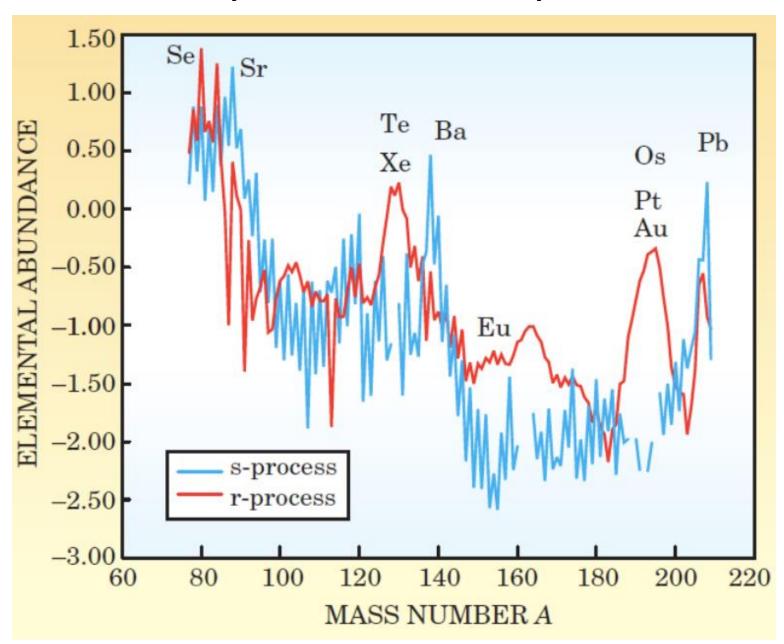
Neutrons capture by heavy nuclei is not limited by the Coulomb barrier – so could proceed at relatively low temperatures. The obstacle is the scarcity of free neutrons. If enough neutrons available, chain of reactions possible:

$$I(A, Z) + n \rightarrow I_1(A+1, Z)$$

 $I_1(A+1, Z) + n \rightarrow I_2(A+2, Z)$
 $I_2(A+2, Z) + n \rightarrow I_3(A+3, Z)$

If a radioactive isotope is formed it will undergo β – decay, creating new element.

$$I_N(A+N, Z) \rightarrow J(A+N, Z+1) + e^- + \overline{\nu}$$


If new element stable, it will resume neutron capture, otherwise undergo series of β -decays

$$J(A+N, Z+1) \rightarrow K(A+N, Z+2) + e^- + \overline{\nu}$$

 $K(A+N, Z+2) \rightarrow L(A+N, Z+3) + e^- + \overline{\nu}$

The *s*-process and *r*-process

- Two types of reactions and two types of nuclei
 - 1. Neutron captures and β -decays
 - 2. Stable and unstable nuclei
- Stable nuclei may undergo only neutron captures
- Unstable ones my undergo both
- Outcome depending on the timescales for the two processes
- Neutron capture reactions may proceed more *slowly* or more *rapidly* than the competing β decays
- The different chains of reactions and products are called the s – process and r – process

The *s*-process and *r*-process

