The Internal Structure of the Sun

R/R _©	(10 ⁶ K)	Density (g/cm ³)	M/M _⊙	IJĿ⊚	Convective zone
1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00	0.006 0.60 1.2 2.3 3.1 4.9 5.1 6.9 9.3 13.1 15.7	0.00 0.009 0.035 0.12 0.40 1.3 4.1 13. 36. 89.	1.00 0.999 0.996 0.990 0.97 0.92 0.82 0.63 0.34 0.073 0.000	1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.91 0.40 0.00	Radiative zone

The Sun: 4.5 billion years old

- The Sun has been a main-sequence star for 4.5 billion years, and at the core
 - 1. Hydrogen depleted by about 35%
 - 2. Helium amount increased
 - 3. Become 40% more luminous
 - 4. Has grown in radius by 6%
- The Sun should remain on the main sequence for another 7 billion years
- The Sun or 1 M_{\odot} star has a main sequence lifetime of 12 billion years

The Sun: 4.5 billion years old

(a) Hydrogen in the Sun's interior

(b) Helium in the Sun's interior

The Evolution of the Sun

Change of chemical composition

Asplund et al., 2009, Annual Review of Astronomy & Astrophysics, 47, 481

Table 4: The mass fractions of hydrogen (X), helium (Y) and metals (Z) for a number of widely-used compilations of the solar chemical composition.

Source	X	Y	Z	Z/X
Present-day photosphere:				
Anders & Grevesse (1989) ^a	0.7314	0.2485	0.0201	0.0274
Grevesse & Noels (1993) ^a	0.7336	0.2485	0.0179	0.0244
Grevesse & Sauval (1998)	0.7345	0.2485	0.0169	0.0231
Lodders (2003)	0.7491	0.2377	0.0133	0.0177
Asplund, Grevesse & Sauval (2005)	0.7392	0.2485	0.0122	0.0165
Lodders, Palme & Gail (2009)	0.7390	0.2469	0.0141	0.0191
Present work	0.7381	0.2485	0.0134	0.0181
Proto-solar:				
Anders & Grevesse (1989)	0.7096	0.2691	0.0213	0.0301
Grevesse & Noels (1993)	0.7112	0.2697	0.0190	0.0268
Grevesse & Sauval (1998)	0.7120	0.2701	0.0180	0.0253
Lodders (2003)	0.7111	0.2741	0.0149	0.0210
Asplund, Grevesse & Sauval (2005)	0.7166	0.2704	0.0130	0.0181
Lodders, Palme & Gail (2009)	0.7112	0.2735	0.0153	0.0215
Present work	0.7154	0.2703	0.0142	0.0199

^a The He abundances given in Anders & Grevesse (1989) and Grevesse & Noels (1993) have here been replaced with the current best estimate from helioseismology (Sect. 3.9).

Next Phases

Subgiant Phase

- Core hydrogen fusion ceases when the hydrogen has been exhausted in the core of a main-sequence star
- This leaves a core of nearly pure helium
- The core shrinks under self-gravitation due to the loss of hydrostatic equilibrium
- The *core* becomes *hotter*
- Shell hydrogen fusion occurs just outside the core
- No fusion in the helium core
- Subgiant Phase (SGB)

Red Giant Phase

- Shell hydrogen fusion works its way outward in the star and adds more helium into the core
- Core becomes hotter
- Shell hydrogen fusion occurs at a greater rate
- Outer layers expands because of the increased energy flow
- At some point the core reaches the Schönberg-Chandrasekhar limit

Schönberg-Chandrasekhar limit

- The mass limit for the core which is capable of supporting the gravitational pressure of core and envelope
- Core too massive => rapid contraction
- Release of a lot of gravitational potential energy
- Dumped into the envelope => heating up
- The Subgiant is now becoming a Red Giant (Red Giant Branch, RGB)

First dredge-up

As the outer atmosphere expands it becomes convective => Mixing

First dredge-up

Composition depending on mass initial metallicity, and used theoretical model

1 M _⊙	Initial	After FDU		
Υ	0.280	0.3025		
C/Z	0.1733	0.1530		
N/Z	0.0531	0.0771		
O/Z	0.4823	0.4822		
³ He	8.4E-5	0.001368		
¹² C/ ¹³ C	90.0	29.8		
¹⁶ O/ ¹⁷ O	2660	2610		
¹⁶ O/ ¹⁸ O	500.1	526.9		

1995astro.ph.12121B

Red Giant Phase

Hydrogen Shell Burning on the Red Giant Branch

Red Giant Phase

- With time, more helium "ash" adds into the core
- Core contracts more and becomes even hotter
- When the central temperature reaches 10⁸ K, helium fusion ignites (*Helium Flash*) inside the core
- Helium fusion process (triple alpha process), converts helium to carbon

Helium Flash

Helium Flash takes only seconds

Helium Flash

- In low-mass star, the compressed core is in an electron-degeneracy state
- Electron-degeneracy: the electrons are so closely packed that they can not be further compressed, due to the Pauli exclusion principle
- *Pauli exclusion principle*: two particles can not occupy the same quantum state
- The *core* becomes supported by *degenerate- electron pressure,* i.e *independent of temperature*
- As helium fusion ignites in the core, temperature rises exponentially, but pressure does not rise

Helium Flash

- Helium fusion rate rises exponentially => Helium
 Flash
- During the time of Helium Flash, the *core* is extremely bright $(10^{12} L_{\odot})$
- At certain core temperature no longer electrondegeneracy state => core becomes an ideal gas
- The core expands, and cools, terminating the Helium Flash
- The core becomes a steady state of helium fusion
- A red giant enters into the stage of "Horizontal Branch" in the HRD

Horizontal Branch

- Red Giant becomes less luminous and smaller, but hotter
- Steady State of helium fusion in core: no contraction and no temperature rising
- The core acts like an ideal gas:
 - 1. Temperature increases, core expands
 - 2. Core expands, temperature decreases
- Shell hydrogen fusion rate drops => lower luminosity
- Red Giant shrinks because of less energy output
- It becomes hotter at surface as it compresses