Hertzsprung-Russell Diagram

Hertzsprung-Russell Diagram

Color-Magnitude Diagram

Color-Magnitude Diagram

Color-Magnitude Diagram

Pleiades

Color-Magnitude Diagram

Praesepe

Colour and $T_{\text {eff }}$

- Measuring accurate $T_{\text {eff }}$ for stars is an intensive task - spectra needed and model atmospheres
- Spectral Energy Distribution (SED) fitting, only useful if measurements in the UV are available
- Magnitudes of stars are measured at different wavelengths
- Colours => Calibrations => $T_{\text {eff }}$
- The Asiago Database on Photometric Systems (ADPS) lists about 200 different systems

Colour and $T_{\text {eff }}$

Various calibrations can be used to provide the colour relation:
$(B-V)=f\left(T_{\text {eff }}\right)$

Remember that observed
($\mathrm{B}-\mathrm{V}$) must be corrected for interstellar extinction to
(B-V) 0

Most of the calibrations are for cool type stars

Absorption $=$ Extinction $=$ Reddening

- $A_{V}=k_{1} E(B-V)=k_{2} E(V-R)=\ldots$
- General extinction because of the ISM characteristics between the observer and the object
- Differential extinction within one star cluster because of local environment
- Both types are, in general wavelength dependent

Cardelli et al., 1989, ApJ, 345, 245

Important parameter:
$R_{V}=A_{V} / E(B-V)$

Normalization factor

Standard value used is 3.1

Be careful, different values used!

Depending on the line of sight

Fitzpatrick, 1999, PASP, 111, 63
TABLE 2
Optical/IR Extinction Ratios for $R=3.1$

Extinction Ratio (1)	Observed Value (2)	References (3)	Model Curve Value (4)
$A(M) / E(B-V)$	0.08-0.12	1, 2	0.12
$A(L) / E(B-V)$	0.09-0.20	1,2,3,4	0.19
$A(K) / E(B-V)$	0.33-0.38	2, 3, 4	0.36
$A(H) / E(B-V)$	0.52-0.55	1, 2	0.53
$A(J) / E(B-V)$	0.85-0.91	1, 2, 3	0.86
$A(I) / E(B-V)$	1.50	3	1.57
$A(R) / E(B-V)$	2.32	3	2.32
$A(V) / E(B-V)$	3.10		3.10
$E(U-B) / E(B-V)$	$0.70+0.05 \times E(B-V)$	5	$0.69+0.04 \times E(B-V)$
$E(b-y) / E(B-V)$	0.74	6	0.74
$E(m 1) / E(b-y)$	-0.32	6	-0.32
$E(c 1) / E(b-y) \ldots$	0.20	6	0.17
$E(u-b) / E(b-\mathrm{y}) \ldots$	1.5	6	1.54

References. - (1) Rieke \& Lebofsky 1985; (2) Whittet 1988; (3) Schultz \& Wiemer 1975; (4) Savage \& Mathis 1979; (5) FitzGerald 1970; (6) Crawford 1975.

Table 3. Multiband Relative Extinction Values

Band (λ)	$\lambda_{\text {eff }, 0}(\mu \mathrm{~m})$	$A_{\lambda} / A_{G_{\mathrm{RP}}}$	$A_{\lambda} / A_{G_{\mathrm{RP}}}($ from Chen18)	A_{λ} / A_{V}	$A_{\lambda} / E\left(G_{\mathrm{BP}}-G_{\mathrm{RP}}\right)$
GAIA G_{BP}	0.5387	1.700 ± 0.007		1.002 ± 0.007	2.429 ± 0.015
GAIA G_{RP}	0.7667	1	0.589 ± 0.004	1.429 ± 0.015	
Johnson B	0.4525	2.206 ± 0.023		1.317 ± 0.016	3.151 ± 0.027
Johnson V	0.5525	1.675 ± 0.010		1	2.394 ± 0.018
SDSS u	0.3602	2.653 ± 0.024		1.584 ± 0.017	3.791 ± 0.028
SDSS g	0.4784	2.018 ± 0.012		1.205 ± 0.010	2.883 ± 0.019
SDSS r	0.6166	1.421 ± 0.006		0.848 ± 0.006	2.030 ± 0.016
SDSS i	0.7483	1.056 ± 0.002		0.630 ± 0.004	1.509 ± 0.015
SDSS z	0.8915	0.767 ± 0.004		0.458 ± 0.003	1.096 ± 0.012
Pan-STARRS g	0.4957	1.934 ± 0.010		1.155 ± 0.009	2.764 ± 0.018
Pan-STARRS r	0.6211	1.413 ± 0.005		0.843 ± 0.006	2.019 ± 0.015
Pan-STARRS i	0.7522	1.052 ± 0.001		0.628 ± 0.004	1.503 ± 0.015
Pan-STARRS z	0.8671	0.815 ± 0.002		0.487 ± 0.003	1.165 ± 0.012
Pan-STARRS y	0.9707	0.662 ± 0.004		0.395 ± 0.003	0.947 ± 0.011
2MASS J	1.2345	0.407 ± 0.007		0.243 ± 0.004	0.582 ± 0.011
2MASS H	1.6393	0.219 ± 0.010	0.222 ± 0.012	0.131 ± 0.006	0.313 ± 0.014
2MASS K S	2.1757	0.125 ± 0.010	0.130 ± 0.006	0.078 ± 0.004	0.186 ± 0.009
WISE W 1	3.3172	0.055 ± 0.011	0.066 ± 0.006	0.039 ± 0.004	0.094 ± 0.009
WISE W2	4.5501	0.029 ± 0.011	0.044 ± 0.006	0.026 ± 0.004	0.063 ± 0.009
WISE W3	11.7281	0.066 ± 0.016		0.040 ± 0.009	0.095 ± 0.021
GAIA G	0.6419	1.323 ± 0.003		0.789 ± 0.005	1.890 ± 0.015
Spitzer [3.6]			0.062 ± 0.005	0.037 ± 0.003	0.089 ± 0.007
Spitzer [4.5]			0.044 ± 0.005	0.026 ± 0.003	0.063 ± 0.007
Spitzer [5.8]			0.031 ± 0.005	0.019 ± 0.003	0.044 ± 0.007
Spitzer [8.0]			0.042 ± 0.005	0.025 ± 0.003	0.060 ± 0.007

At Spitzer bands, the determination of the relative extinction $A_{\lambda} / A_{\mathrm{V}}$ and the extinction coefficient $A_{\lambda} / E\left(G_{\mathrm{BP}}-G_{\mathrm{RP}}\right)$ are based on the relative extinction values from Chen18.

Absolute magnitude and bolometric magnitude

- Absolute Magnitude M defined as apparent magnitude of a star if it were placed at a distance of 10 pc

$$
\left(V-M_{v}\right)-A_{v}=5 \log (\mathrm{~d})-5
$$

where d is in pc . $\left(V-M_{\mathrm{V}}\right)$ is also called distance modulus.

- Magnitudes are measured in some wavelength. To compare with theory, it is more useful to determine bolometric magnitude $\boldsymbol{M}_{\text {bol }}$ - defined as absolute magnitude that would be measured by a bolometer sensitive to all wavelengths. We define the bolometric correction to be

$$
B C=M_{\text {bol }}-M_{V}
$$

Bolometric luminosity is then

$$
M_{\mathrm{bol}}-M_{\mathrm{bol}, \odot}=-2.5 \log \mathrm{~L} / \mathrm{L} \odot ; M_{\mathrm{bol}, \odot}=4.75 \mathrm{mag}
$$

Bolometric Correction

BC from Flower, 1996, ApJ, 469, 355

