Hertzsprung-Russell Diagram

Hertzsprung-Russell Diagram

Netopil et al., 2017, MNRAS, 468, 2745

Color-Magnitude Diagram

Gaia Collaboration, 2018, A&A, 616, A10

Fig. 5. *Gaia* HRD of sources with low extinction (E(B - V) < 0.015 mag) satisfying the filters described in Sect. 2.1 (4,276,690 stars).

Color-Magnitude Diagram

Color-Magnitude Diagram

Colour and $T_{\rm eff}$

- Measuring accurate T_{eff} for stars is an intensive task spectra needed and model atmospheres
- Spectral Energy Distribution (SED) fitting, only useful if measurements in the UV are available
- Magnitudes of stars are measured at different wavelengths
- Colours => Calibrations => T_{eff}
- The Asiago Database on Photometric Systems (ADPS) lists about 200 different systems

Colour and T_{eff}

Various calibrations can be used to provide the colour relation:

$$B - V) = f(T_{eff})$$

Remember that observed (B - V) must be corrected for interstellar extinction to (B - V)₀

Most of the calibrations are for cool type stars

Absorption = Extinction = Reddening

- $A_V = k_1 E(B-V) = k_2 E(V-R) = ...$
- *General extinction* because of the ISM characteristics between the observer and the object
- *Differential extinction* within one star cluster because of local environment
- Both types are, in general *wavelength dependent*

Cardelli et al., 1989, ApJ, 345, 245

	OPTICAL/IR EXTINCTION RAT	TOS FOR $R = 3$	3.1
Extinction Ratio (1)	Observed Value (2)	References (3)	Model Curve Value (4)
$\overline{A(M)/E(B-V)} \dots \dots$	0.08-0.12	1, 2	0.12
A(L)/E(B-V)	0.09-0.20	1,2,3,4	0.19
A(K)/E(B-V)	0.33-0.38	2, 3, 4	0.36
A(H)/E(B-V)	0.52-0.55	1, 2	0.53
A(J)/E(B-V)	0.85-0.91	1, 2, 3	0.86
A(I)/E(B-V)	1.50	3	1.57
A(R)/E(B-V)	2.32	3	2.32
A(V)/E(B-V)	3.10		3.10
E(U-B)/E(B-V)	$0.70 + 0.05 \times E(B - V)$	5	$0.69 + 0.04 \times E(B - V)$
E(b-y)/E(B-V)	0.74	6	0.74
E(m1)/E(b-y)	-0.32	6	-0.32
E(c1)/E(b-y)	0.20	6	0.17
E(u-b)/E(b-y)	1.5	6	1.54

TABLE 2 Optical/IR Extinction Ratios for R = 3.1

REFERENCES. --(1) Rieke & Lebofsky 1985; (2) Whittet 1988; (3) Schultz & Wiemer 1975; (4) Savage & Mathis 1979; (5) FitzGerald 1970; (6) Crawford 1975.

Band (λ)	$\lambda_{\mathrm{eff},0}~(\mu\mathrm{m})$	$A_{\lambda}/A_{G_{\mathrm{RP}}}$	$A_{\lambda}/A_{G_{\mathrm{RP}}}$ (from Chen18)	A_{λ}/A_{V}	$A_{\lambda}/E(G_{\rm BP}-G_{\rm RP})$
$GAIA \ G_{\rm BP}$	0.5387	1.700 ± 0.007		1.002 ± 0.007	2.429 ± 0.015
$GAIA G_{\rm RP}$	0.7667	1		0.589 ± 0.004	1.429 ± 0.015
Johnson B	0.4525	2.206 ± 0.023		1.317 ± 0.016	3.151 ± 0.027
Johnson V	0.5525	1.675 ± 0.010		1	2.394 ± 0.018
SDSS u	0.3602	2.653 ± 0.024		1.584 ± 0.017	3.791 ± 0.028
SDSS g	0.4784	2.018 ± 0.012		1.205 ± 0.010	2.883 ± 0.019
SDSS r	0.6166	1.421 ± 0.006		0.848 ± 0.006	2.030 ± 0.016
SDSS i	0.7483	1.056 ± 0.002		0.630 ± 0.004	1.509 ± 0.015
SDSS z	0.8915	0.767 ± 0.004		0.458 ± 0.003	1.096 ± 0.012
Pan-STARRS g	0.4957	1.934 ± 0.010		1.155 ± 0.009	2.764 ± 0.018
Pan-STARRS r	0.6211	1.413 ± 0.005		0.843 ± 0.006	2.019 ± 0.015
Pan-STARRS i	0.7522	1.052 ± 0.001		0.628 ± 0.004	1.503 ± 0.015
Pan-STARRS z	0.8671	0.815 ± 0.002		0.487 ± 0.003	1.165 ± 0.012
Pan-STARRS y	0.9707	0.662 ± 0.004		0.395 ± 0.003	0.947 ± 0.011
2MASS J	1.2345	0.407 ± 0.007		0.243 ± 0.004	0.582 ± 0.011
2MASS H	1.6393	0.219 ± 0.010	0.222 ± 0.012	0.131 ± 0.006	0.313 ± 0.014
2MASS $K_{\rm S}$	2.1757	0.125 ± 0.010	0.130 ± 0.006	0.078 ± 0.004	0.186 ± 0.009
WISE W1	3.3172	0.055 ± 0.011	0.066 ± 0.006	0.039 ± 0.004	0.094 ± 0.009
WISE W2	4.5501	0.029 ± 0.011	0.044 ± 0.006	0.026 ± 0.004	0.063 ± 0.009
WISE W3	11.7281	0.066 ± 0.016		0.040 ± 0.009	0.095 ± 0.021
GAIA G	0.6419	1.323 ± 0.003		0.789 ± 0.005	1.890 ± 0.015
Spitzer [3.6]			0.062 ± 0.005	0.037 ± 0.003	0.089 ± 0.007
Spitzer [4.5]			0.044 ± 0.005	0.026 ± 0.003	0.063 ± 0.007
Spitzer [5.8]			0.031 ± 0.005	0.019 ± 0.003	0.044 ± 0.007
Spitzer [8.0]			0.042 ± 0.005	0.025 ± 0.003	0.060 ± 0.007

Table 3. Multiband Relative Extinction Values

At Spitzer bands, the determination of the relative extinction $A_{\lambda}/A_{\rm V}$ and the extinction coefficient $A_{\lambda}/E(G_{\rm BP}-G_{\rm RP})$ are based on the relative extinction values from Chen18.

Absolute magnitude and bolometric magnitude

• Absolute Magnitude *M* defined as apparent magnitude of a star if it were placed at a distance of 10 pc

$$(V - M_V) - A_V = 5 \log(d) - 5$$

where d is in pc. $(V - M_v)$ is also called **distance modulus**.

Magnitudes are measured in some wavelength. To compare with theory, it is more useful to determine **bolometric** *magnitude M*_{bol} – defined as absolute magnitude that would
 be measured by a bolometer sensitive to all wavelengths. We
 define the bolometric correction to be

$$BC = M_{bol} - M_{V}$$

Bolometric luminosity is then

$$M_{\rm bol} - M_{\rm bol,\odot}$$
 = -2.5 log L/L $_{\odot}$; $M_{\rm bol,\odot}$ = 4.75 mag

Bolometric Correction

