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7.10 Causality in the Connection Between D and E;
Kramers—Kronig Relations
A. Nonlocality in Time

Another consequence of the frequency dependence of €(w) is a temporally
nonlocal connection between the displacement D(x, ¢) and the electric field
E(x, t). If the monochromatic components of frequency w are related by

D(x, w) = e(w)E(x, w) (7.103)

the dependence on time can be constructed by Fourier superposition. Treating
the spatial coordinate as a parameter, the Fourier integrals in time and frequency
can be written

1 f “ 4
D(x, t) = — D(x, w)e ' d
00 = T ). Dls e do
and (7.104)
1 j * o
D(x, = — D(x, t")e*" dt’
@) =55 ) P )
with corresponding equations for E. The substitution of (7.103) for D(x, ) gives

D(x, t) = e(w)E(x, w)e ™" dw

1 f *
V2w
We now insert the Fourier representation of E(x, w) into the integral and obtain

1 (" e o
D(x, t) = o f*w dow e(w)e ™" j_w dt' e"E(x, t')

With the assumption that the orders of integration can be interchanged, the last
expression can be written as

D(x, t) = eO{E(x, 1) + f G(TE(x, t — 1) dT} (7.105)
where G(7) is the Fourier transform of y, = e(w)/e, — 1:
1 (" .
G(r) = Z-rf [e(w)/ey — 1]e7™" dw (7.106)

Equations (7.105) and (7.106) give a nonlocal connection between D and E, in
which D at time ¢ depends on the electric field at times other than t.* If e(w) is

*Equations (7.103) and (7.105) are recognizable as an example of the faltung theorem of Fourier
integrals: if A(¢), B(t), C(¢) and a(w), b(w), c(w) are two sets of functions related in pairs by the
Fourier inversion formulas (7.104), and

c(w) = a(w)b(w)

then, under suitable restrictions concerning integrability,

C(t) = V%r fw A(')B(t — t') dt’
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independent of w for all , (7.106) yields G(r) o« 8(7) and the instantaneous
connection is obtained, but if €(w) varies with w, G(7) is nonvanishing for some
values of 7 different from zero.

B. Simple Model for G(=), Limitations

To illustrate the character of the connection implied by (7.105) and (7.106)
we consider a one-resonance version of the index of refraction (7.51):

e(w)ley — 1 = Wi(wf — & — iyw)™" (7.107)
The susceptibility kernel G() for this model of €(w) is

2 i —iwT

G =2 —¢ 4 (7.108)
= — w .
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The integral can be evaluated by contour integration. The integrand has poles in
the lower half-w-plane at
H 2

w1s = —’g + 3, where 12 = & — YI (7.109)
For 7 < 0 the contour can be closed in the upper half-plane without affecting the
value of the integral. Since the integrand is regular inside the closed contour,
the integral vanishes. For 7> 0, the contour is closed in the lower half-plane and
the integral is given by —2mi times the residues at the two poles. The kernel
(7.108) is therefore

sin v
G(7) = wle " ——

6(r) (7.110)
Vo

where 6(7) is the step function [6(7) = 0 for 7 < 0; 6(7) = 1 for 7> 0]. For the
dielectric constant (7.51) the kernel G(7) is just a linear superposition of terms
like (7.110). The kernel G(r) is oscillatory with the characteristic frequency of
the medium and damped in time with the damping constant of the electronic
oscillators. The nonlocality in time of the connection between D and E is thus
confined to times of the order of y~'. Since vy is the width in frequency of spectral
lines and these are typically 10’-10° s~', the departure from simultaneity is of
the order of 1077-107° s. For frequencies above the microwave region many
cycles of the electric field oscillations contribute an average weighed by G(7) to
the displacement D at a given instant of time.

Equation (7.105) is nonlocal in time, but not in space. This approximation is
valid provided the spatial variation of the applied fields has a scale that is large
compared with the dimensions involved in the creation of the atomic or molecular
polarization. For bound charges the latter scale is of the order of atomic dimen-
sions or less, and so the concept of a dielectric constant that is a function only of
o can be expected to hold for frequencies well beyond the visible range. For
conductors, however, the presence of free charges with macroscopic mean free
paths makes the assumption of a simple €(w) or o(w) break down at much lower
frequencies. For a good conductor like copper we have seen that the damping
constant (corresponding to a collision frequency) is of the order of y, ~ 3 X 10"
s~! at room temperature. At liquid helium temperatures, the damping constant
may be 107> times the room temperature value. Taking the Bohr velocity in
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hydrogen (c/137) as typical of electron velocities in metals, we find mean free
paths of the order L ~ c/(137y,) ~ 10™* m at liquid helium temperatures. On
the other hand, the conventional skin depth § (5.165) can be much smaller, of
the order of 1077 or 10™® m at microwave frequencies. In such circumstances,
Ohm’s law must be replaced by a nonlocal expression. The conductivity becomes
a tensorial quantity depending on wave number k and frequency . The associ-
ated departures from the standard behavior are known collectively as the anom-
alous skin effect. They can be utilized to map out the Fermi surfaces in metals. *
Similar nonlocal effects occur in superconductors where the electromagnetic
properties involve a coherence length of the order of 107° m.t With this brief
mention of the limitations of (7.105) and the areas where generalizations have
been fruitful we return to the discussion of the physical content of (7.105).

C. Causality and Analyticity Domain of €(w)

The most obvious and fundamental feature of the kernel (7.110) is that it
vanishes for 7 < 0. This means that at time ¢ only values of the electric field prior
to that time enter in determining the displacement, in accord with our funda-
mental ideas of causality in physical phenomena. Equation (7.105) can thus be
written

D(x, t) = eO{E(x, 1)+ f: G(nEX, t — 1) d’T} (7.111)

This is, in fact, the most general spatially local, linear, and causal relation that
can be written between D and E in a uniform isotropic medium. Its validity
transcends any specific model of €(w). From (7.106) the dielectric constant can
be expressed in terms of G(7) as

e(w)e, =1 + fo G(r)e* dr (7.112)

This relation has several interesting consequences. From the reality of D, E, and
therefore G(7) in (7.111) we can deduce from (7.112) that for complex w,

e(—w)e, = e*(w*)/e (7.113)

Furthermore, if (7.112) is viewed as a representation of €(w)/¢, in the complex
 plane, it shows that e(w)/e, is an analytic function of w in the upper half-plane,
provided G(7) is finite for all 7. On the real axis it is necessary to invoke
the “physically reasonable” requirement that G(7) — 0 as 7 — o to assure that
€(w)/€, is also analytic there. This is true for dielectrics, but not for conductors,
where G(7) — o/e; as 7— » and €(w)/€, has a simple pole at w = 0 (€ — io/w
as o — 0). Apart, then, from a possible pole at w = 0, the dielectric constant
€(w)/€is analyticin w for Im w = 0 as a direct result of the causal relation (7.111)

*A. B. Pippard, in Reports on Progress in Physics 23, 176 (1960), and the article entitled “The Dy-
namics of Conduction Electrons,” by the same author in Low-Temperature Physics, Les Houches
Summer School (1961), eds. C. de Witt, B. Dreyfus, and P. G. de Gennes, Gordon and Breach, New
York (1962). The latter article has been issued separately by the same publisher.

'See, for example, the article “Superconductivity” by M. Tinkham in Low Temperature Physics, op.
cit.
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between D and E. These properties can be verified, of course, for the models
discussed in Sections 7.5.A and 7.5.C.

The behavior of e(w)/e, — 1 for large w can be related to the behavior of
G(7) at small times. Integration by parts in (7.112) leads to the asymptotic series,

i6O) GO,

w

e(w)e — 1 =

where the argument of G and its derivatives is 7 = 0. It is unphysical to have
G(07) = 0, but G(0") # 0. Thus the first term in the series is absent, and
€(w)/e, — 1 falls off at high frequencies as o2, just as was found in (7.59) for the
oscillator model. The asymptotic series shows, in fact, that the real and imaginary
parts of e(w)/e, — 1 behave for large real w as

Rele(w)/ey, — 1] = O(—a1)—2>, Im e(w)/ey = 0(%) (7.114)

These asymptotic forms depend only upon the existence of the derivatives of
G(7) around 7= 0.

D. Kramers—Kronig Relations

The analyticity of e€(w)/€, in the upper half-w-plane permits the use of Cau-
chy’s theorem to relate the real and imaginary part of e(w)/€, on the real axis.
For any point z inside a closed contour C in the upper half-w-plane, Cauchy’s
theorem gives

e(z)leg =1 + i le(@)leo — 1] do’
2 Jc o —Z
The contour C is now chosen to consist of the real w axis and a great semicircle
at infinity in the upper half-plane. From the asymptotic expansion just discussed
or the specific results of Section 7.5.D, we see that e/e, — 1 vanishes sufficiently
rapidly at infinity so that there is no contribution to the integral from the great
semicircle. Thus the Cauchy integral can be written

[e(w)ey — 1]

o -z

1
E(Z)/GO =1+ ﬁ f_w do' (7115)
where z is now any point in the upper half-plane and the integral is taken along
the real axis. Taking the limit as the complex frequency approaches the real axis
from above, we write z = w + i8in (7.115):
1 (" Ve, — 1

[E(Lz) ) €o ] do'

Jeo = 1+ =—
(e 2w 0 —w— id

(7.116)

For real w the presence of the i in the denominator is a mnemonic for the
distortion of the contour along the real axis by giving it an infinitesimal semicir-
cular detour below the point ' = w. The denominator can be written formally
as

o — w—1i0 o — w

1 = P( 1 > + md(w — w) (7.117)
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where P means principal part. The delta function serves to pick up the contri-
bution from the small semicircle going in a positive sense halfway around the
pole at o' = w. Use of (7.117) and a simple rearrangement turns (7.116) into

1 ” Ve — 1
e(w)ey =1+ — Pf M do' (7.118)
m J-e 0 - w
The real and imaginary parts of this equation are
“ 1 )/
Re e(w)leo = 1 + — Pf Im e(@)eo 4,
T Joe 0O T W (7.119)
1 ” ' -1
Im e(w)ley = —— Pf [Re E(fu Vo ] do'
a —o w — W

These relations, or the ones recorded immediately below, are called Kramers—
Kronig relations or dispersion relations. They were first derived by H. A. Kramers
(1927) and R. de L. Kronig (1926) independently. The symmetry property (7.113)
shows that Re €(w) is even in w, while Im €(w) is odd. The integrals in (7.119)
can thus be transformed to span only positive frequencies:

2 "'l i
Re e(w)le, = 1 + _Pf o Im e(w)e ;.
7 Jo 0?-w (7.120)
2 - ey — 1
Im e(w)/ey = -Zp [Re 'Ef;" )/602 ] do’
o 0 w T w

In writing (7.119) and (7.120) we have tacitly assumed that e(w)/e, was regular
at o = 0. For conductors the simple pole at @ = 0 can be exhibited separately
with little further complication.

The Kramers—Kronig relations are of very general validity, following from
little more than the assumption of the causal connection (7.111) between the
polarization and the electric field. Empirical knowledge of Im e(w) from absorp-
tion studies allows the calculation of Re €(w) from the first equation in (7.120).
The connection between absorption and anomalous dispersion, shown in Fig. 7.8,
is contained in the relations. The presence of a very narrow absorption line or
band at w = w, can be approximated by taking

K
Im e(0') = ;_wo 0w — wy) + -

where K is a constant and the dots indicate the other (smoothly varying) contri-
butions to Im e. The first equation in (7.120) then yields

Re €(w) = € + —ZK—z (7.121)

wy — W

for the behavior of Re €(w) near, but not exactly at, w = w,. The term erepresents
the slowly varying part of Re € resulting from the more remote contributions to
Im e. The approximation (7.121) exhibits the rapid variation of Re e(w) in the
neighborhood of an absorption line, shown in Fig. 7.8 for lines of finite width. A
more realistic description for Im e would lead to an expression for Re € in com-
plete accord with the behavior shown in Fig. 7.8. The demonstration of this is
left to the problems at the end of the chapter.
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Relations of the general type (7.119) or (7.120) connecting the dispersive and
absorptive aspects of a process are extremely useful in all areas of physics. Their
widespread application stems from the very small number of physically well-
founded assumptions necessary for their derivation. References to their appli-
cation in particle physics, as well as solid-state physics, are given at the end of
the chapter. We end with mention of two sum rules obtainable from (7.120). It
was shown in Section 7.5.D, within the context of a specific model, that the di-
electric constant is given at high frequencies by (7.59). The form of (7.59) is, in
fact, quite general, as shown above (Section 7.10.C). The plasma frequency can
therefore be defined by means of (7.59) as

@} = lim{o’[1 — e(w)/€]}
Provided the falloff of Im €(w) at high frequencies is given by (7.114), the first
Kramers—Kronig relation yields a sum rule for o

) = %fo o Im e(w)/e, do (7.122)
This relation is sometimes known as the sum rule for oscillator strengths. It can
be shown to be equivalent to (7.52) for the dielectric constant (7.51), but is ob-
viously more general.

The second sum rule concerns the integral over the real part of e(w)
and follows from the second relation (7.120). With the assumption that
[Re €(') ey — 1] = —wh/w'? + O(1/w'?) for all o' > N, it is straightforward to
show that for o > N

2 N
2 wp , , 1
Im e(w)/ey = % {——ﬁ + fo [Re e(w')/ ey — 1] dow } + O(-;)

It was shown in Section 7.10.C that, excluding conductors and barring the un-
physical happening that G(0*) # 0, Im €(w) behaves at large frequencies as .
It therefore follows that the expression in curly brackets must vanish. We are
thus led to a second sum rule,

2

1N w,
X]jo Re e(w)/eg dow =1 + Nz (7.123)

which, for N — oo, states that the average value of Re e€(w)/€, over all frequencies
is equal to unity. For conductors, the plasma frequency sum rule (7.122) still
holds, but the second sum rule (sometimes called a superconvergence relation)
has an added term —mo/2¢,N, on the right hand side (see Problem 7.23). These
optical sum rules and several others are discussed by Altarelli et al.*

7.11 Arrival of a Signal After Propagation Through
a Dispersive Medium

Some of the effects of dispersion have been considered in the preceding sections.
There remains one important aspect, the actual arrival at a remote point of a

*M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys. Rev. B6, 4502 (1972).



