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The simplest quantum models based on perturbation theory. 

 

 

Probability of transitions to excited states and dissipation of energy. 

 

Response functions related to one-electron picture of direct interband transitions of valence electrons in 

crystals. 

 

 

Examples: optical functions of doped GaAs. 
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Quantum transitions in perturbation theory 
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The light wave is composed by a train of photons, carrying quantized energy. They can be absorbed during 

the interaction with matter. 

 

In the manybody system of condensed matter, elementary excitations in the form of quasiparticles can be 

identified (electrons, holes, excitons, phonons etc.). 

 

The photon and quasiparticle fields influence each other via their interactions (“scattering”, “collisions”). 

One of the basic processes is the absorption of a photon, with the transfer of its energy to the quasiparticle 

system. 

 

Other processes are possible, such as elastic or inelastic scattering of photons, when a photon survives the 

collision in a modified form (direction of propagation and/or energy). Important processes involve 

spontaneous or stimulated emission of photons, carrying energy taken from quasiparticles. 

 

In the case of small changes of the studied system, caused by a weak optical field, the prediction of 

response functions can be based on the standard perturbation theory of quantum mechanics. 
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A convenient quantity to be calculated is the energy taken from a harmonic electromagnetic wave in a unit 

volume per unit of time, linked to the imaginary part of the dielectric function, 
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which is proportional to the time average of the power of the wave. Its macroscopic form is usually the 

(Joule) heat. 

The procedure involves a calculation of the increase of the mean energy of the condensed system, and use 

the above equation for the evaluation of the absorptive part of the dielectric function. The real part can be 

obtained via Kramers-Kronig transform of the imaginary part calculated for all frequencies. 

 

Matter will be divided into small areas (of the volume V, with their dimensions much smaller than the 

wavelength of the optical field). In these areas, the electric field intensity of the wave is independent of the 

position; we retain solely the harmonic time dependence 
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from the time to=0 of switching the perturbation on. Magnetic component will be neglected. 

The perturbative part of hamiltonian can be expressed via the operator of dipole moment (charge times its 

displacement) as 
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is a unit vector in the direction of force. The force performs work due to the displacement of the charge, 

equal to the scalar product of the vectors of force and displacement. 

(4.1) 

(4.2) 

(4.3) 
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Assume the system in a stationary state i (with the energy Ei) at the initial time to. The probability of a 

transition to a stationary final state  f (with the energy Ef) at the time T (which is the squared modolus of 

the probability amplitude) is 

 .if  

For large T, the probability is negligible except for the fulfillment of the “resonance condition” 

(4.4) 

(4.5) 

(4.6) 
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For T → ∞ the function F can be replaced by the Dirac : 

Owing to the transition i→f , the light field performs work, which (per unit volume and time) reads 
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The work vanishes whenever the resonance condition is not fulfilled, and diverges otherwise. This is a 

consequence of the stationary initial and final states. Quasistationary states have finite lifetimes; for the 

exponential temporal dependence of the probability Ps of the decay of the state of mean energy Eo during 

the time t (Pn means the probability preserving the state during the time t),  
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the probability density of finding the energy E is 
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This is so called Breit-Wigner, or Lorentz, or Cauchy distribution. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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The positive parameter   has the dimension of energy; it is inversely proportional to the lifetime of 

quasistationary ( <<Eo) state, 

For 

 .
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Thus, the Fermi golden rule of the perturbation theory can be complemented by the assumption concerning 

the random values of the energy 
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This is again the Breit-Wigner distribution; it is centered about the difference of the individual centers. 
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taken from the wave via the i→f  transition. The width parameters of the Breit-Wigner distribution of the 

initial and final energies can differ; assuming independent occurrence of both energies, the probability 

density of the energy difference is the convolution (“Faltung”, “svjortka”) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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The width parameters and the corresponding relaxation times are 

With the interpretation of inverse relaxation time as the frequency of collisions, the result for independent 

events concerning the initial and final states is the sum of frequencies. 

 

The spectral dependence of the energy absorbed via transitions i→f between quasistationary states is a 

broadened version of the delta-function singularity for stationary states. Multiplication by the probability 

density and summation over all possibilities leads to 
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 .if  The resonances are of finite magnitude and width, they are centered close to 

(4.15) 

(4.16) 



9 

The former result leads to the following approximate expression for the contribution of the i→f transitions 

to the imaginary part of the dielectric function, 
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This formula can be further simplified, and, the need for the Kramers-Kronig transform (to obtain the real 

part) avoided. 

(4.17) 
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the contribution to the absorptive part of the dielectric function can be expressed in the form 

Since 
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This is to be compared with the result of classical Lorentz model for the complex dielectric function, 

(4.18) 

(4.19) 

(4.20) 
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the eigenfrequency and damping time are 

The dimensionless “strength” of the i→f transitions is 
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The identical spectral dependencies of the imaginary parts imply identical spectra of the real parts, since 

they are related by Kramers-Kronig integral transform. Thus, in summing the contributions of (possibly 

many) independent contributions of transitions from different initial states to different final states, we may 

include the dispersive (real) part of the dielectric function in the sum: 

2

o

8
 ,if

o if

f d n i
S

V 




Each of the terms has poles in the lower plane of complex frequencies. 

(4.21) 

(4.22) 

(4.23) 
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can be expressed in terms of the momentum operator, using the commutator of the unperturbed 

hamiltonian Ho with the position: 

The matrix element involving the charge and position, 
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(4.25) 

(4.26) 

(4.27) 
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This form is usually used for the one-electron transitions in crystals, which do not involve other excitations 

(such as phonons). As the momentum is proportional to the k–vector of  the Bloch states, the matrix 

element is zero for states of different k (the state vectors are orthogonal). The allowed transitions are called 

“direct” (in k-space). This selection rule can also be interpreted as the requirement of momentum 

conservation, since the momentum of the involved photon is negligible. 

 

 

Adding independent contributions from all available pairs of initial and final states provides the total 

response. In the picture of transitions between different electronic bands, occupied l and unoccupied l’, the 

Fermi golden rule and conservation of momentum implies the dielectric function (4.23) in the form 

 

The transition probability is proportional to 
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The energy differences between different bands (“interband energies”) resonate with the energy 

of incoming photons. 

 

Joint density of states (JDOS) is usually very instrumental in dealing with most of the 

crystalline matter. In fact, neglecting the k-dependence of the matrix elements in (4.29), the 

frequency dependence of the probability of a photon being absorbed is proportional to the 

number of available energy differences between the occupied initial and free final electron 

states. 

 

 

JDOS changes strongly with frequency in the neighborhood of the critical points (minima, 

saddle points, maxima) of the interband energy. 
 



lattice dynamics, electronic bandstructure: quasiparticles are 

   bosons     fermions 
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The transitions produced by the light waves can be illustrated conveniently in the case of GaAs 

(a prototype polar material): 



Electron density in the ground state 
(Cohen and Chellikowsky, Electronic Structure and Optical Properties of Semiconductors, nonlocal pseudopotential) 

suggests a difference in the IR response between Si and GaAs due to lattice vibrations 

                                                                                                                                              

Si 

GaAs 
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Spectral structure due to critical points (CP) of JDOS 

Differentiation of high-quality optical spectra, enhancement of critical points of JDOS 
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PHOTON ENERGY

removes any 

quadratic background, 

 

spans a narrow () 

spectral range centered at the 

critical-point energy 
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Low—noise data: even triple differentiation might be possible (not very often, though) 



An instructive case study: doped crystalline GaAs 
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Doped GaAs – dielectric function (Drude, Lorentz, ∞, interband transitions) 
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Doped GaAs - conductivity 
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Doped GaAs – refractive index 
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Doped GaAs – inverse dielectric function 
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Doped GaAs – penetration depth 
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Doped GaAs – normal-incidence reflectivity 
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