Elektronová mikroskopie a mikroanalýza

Radek Škoda

ÚGV, MU Brno

proč elektronový mikroskop?

- Optický mikroskop
 - viditelné světlo a soustava optických čoček.
 - zvětšení je limitováno vlnovou délkou světla 400-600 nm ~1000x
- Elektronový mikroskop
 - svazek urychlených elektronů a soustava elektromagnetických čoček
 - vlnová délka urychlených elektronů je až 6 pm, což umožňuje mnohem větší zvětšení
 - skenovací elektronový mikroskop (SEM) zvětšení až 300 000 x
 - transmisní elektronový mikroskop (TEM) zvětšení až 1 200 000 x
 - obraz studovaného předmětu není pozorován přímo, ale pomocí detektoru a monitoru.
 - při interakci urychlených elektronů se vzorkem vzniká cela řada záření, které mohou být využity pro další charakteristiku vzorku.

základní pojmy

elektronový mikroskop

- transmisní elektronový mikroskop (TEM, HRTEM)
 - elektronový svazek prochází skrz zkoumaný vzorek a výsledný obraz je pozorován na fluorescenčním stínítku
 - zvětšení až 1 200 000 x.
 - je možné pozorovat jednotlivé atomy a jejich uspořádání v krystalové mřížce
- scanovací (rastrovací) el. mikroskop (SEM, REM)
 - el. svazek se pohybuje po vzorku podobně jako el. svazek na TV obrazovce
 - zvětšení 3x-300 000x

elektronová mikroanalýza

- analýza chemického složení
- využívá RTG záření vznikající při interakce urychlených el. a povrchu vzorku
- RTG záření je buzeno z malého objemu vzorku

elektronová mikrosonda

 el. mikroskop speciálně designovaný pro analytické účely (vysoké a stabilní proudy, osazení WDX spektrometry, malá pracovní vzdálenost)

skenovací elektronový mikroskop SEM

Elektronové mikrosonda CAMECA SXFive

TEM Jeol JEM-2100

elektronový mikroskop

 1931 Ernst Ruska a Max Knoll postavili první transmisní elektronový mikroskop (TEM)

První scanovací elektronový mikroskop

- 1937 studenti PhD. James Hillier and Albert Prebus z University of Toronto
 - postavili první scanovací elektronový mikroskop (SEM), který zvětšoval 7000x

Základy SEM elektronové mikroskopie

- vakuový systém
- elektronové dělo
 - zdroj elektronů-katoda
 - wolframové vlákno
 - LaB₆
 - field emission gun (FEG)
 - wehneltův válec
- elektronová optika
 - elektromagnetické čočky
 - clony
 - vychylovací cívky
- komora pro vzorky
 - motorizovaný držák vzorků X,Y,Z,R,T
 - otvory pro detektory
- detektory
 - BSE, SE, CL, EBSD, EDS, WDS,

vakuový systém mikroskopu

- vakuum je dobrý izolant
 - mezi katodou a anodou je rozdíl potenciálu až 50 kV na vzdálenosti 2 cm
- minimalizování rozptylu a absorpce elektronového svazku během jejich dráhy

vakuový systém

- 1. stupeň vakua 1 atm 0.1 Pa
 - rotační pumpa
 - membránová pumpa
 - scroll pumpa
 - měrky vakua typu pirani

• **2. stupeň vakua** 0.1 – 10⁻⁸ Pa

- potřebuje předčerpávání
- difúzní olejová pumpa
- turbomolekulární pumpa
- měrky vakua, tzv. ionizační
- 3. stupeň vakua 10⁻² 10⁻⁹ Pa
 - iontová pumpa
 - měří vakuum

jednotky tlaku

	N/m²	bar	mbar	mm WS	Kp/cm ² = at	Torr	atm
1 N/m² 1 Pa	1	0,00001	0,01	0,102	0,0000102	0,0075	0,00000987
1 bar	100 000	1	1 000	10 200	1,020	750	0,987
1 mbar	100	0,001	1	10,20	0,00102	0,750	0,000987
1 mm WS	9,81	0,0000981	0,0981	1	0,0001	0,07355	0,0000968
1 kp/cm² 1 at	98 100	0,981	981	10 000	1	735,5	0,968
1 Torr	133,3	0,001333	1,333	13,6	0,00136	1	0,00132
1 atm	101 300	1,013	1013	10 330	1,033	760	1

rotační pumpa

- olejová rotační vývěva
- excentricky rotující válec s pohyblivými lamelamy
- jednostupňová, dvojstupňová
- 100 000 0.1 Pa
- primární vakuum, forvakuum

dvoustupňová rotační pumpa Adixen 2015 CH rychlost čerpání rotační pumpy vs. tlak,

membránová pumpa

- diaphragm pump
- změnou tvaru membrány se mění objem plynu uvnitř pumpy
- odčerpánvání zajišťují vzduchové klapky
- zdrojem pohybu membrány je elektromotor nebo elektromagnet
- několikastupňové zapojení
- 100 000 1 Pa

Inlet Stroke Exhaust Stroke Figure 1 Operation of a liquid diaphragm pump.

Scroll pumpa

- Vzájemně se pohybující šnekovité ustrojí čerpá vzduch
- Bezolejový systém
- 1 atm 0.7 Pa

difúzní pumpa

- olejová difúzní pumpa
- nemůže pracovat samostatně, je potřeba jí čerpat pomocí RP
- speciální silikonový olej
- molekuly vzduchu jsou strhávány proudem olejových par, které kondenzují na stěnách
- 0.1 5.10⁻⁵ Pa
- je potřeba ji chladit vodou
- jednoduchá údržba
- Nevýhoda může dojít k uniku oleje do komory mikroskopu

turbomolekulární pumpa

- nemůže pracovat samostatně, je potřeba jí čerpat pomocí RP nebo membránové pumpy
- v podstatě ultra rychlý ventilátor
- až 90 000 rpm
- tlačí molekuly plynu směrem k pumpě primárního vakua
- 0.1-10⁻⁸ Pa

iontová pumpa

- žádné pohyblivé části
- mezi elektrodami IP vysoké napětí 5-10 kV
- molekuly plynu ionizovány, urychleny a vystřeleny směrem ke katodě
- pravděpodobnost ionizace zvýšena silným magnetickým polem, pohyb částic po spirále
- ionty plynu jsou do katody implantovány a/nebo vyrazí atomy katody, které se usadí na jiných částech IP. Jejich usazováním dochází také i izolací molekul plynu.
- katoda je nejčastěji vyrobena z Ti nebo Ti/Ta slitin v závislosti na plynu (vzduch, Ar, He,....)
- nedochází k transportu plynu, ale k sorpci na povrch elementů IP
- 10⁻² 10⁻⁹ Pa
- velikost el. proudu mezi elektrodami závisí na kvalitě vakua. Čím horší vakuum, tím větší proud.
- IP tudíž rovněž měří kvalitu vakua (tlak)

schéma iontové pumpy

STRUCTURE OF TRIODE SPUTTER ION PUMP

měrka vakua - pirani

- rozsah 100 000 Pa 10⁻³ Pa
- pro nízké stupně vakua
- rozžhavené vlákno měrky je ochlazováno molekulami plynu, které mu odnímají teplo.
- pro měření tlaku se využívá závislosti elektrického odporu rozžhaveného vlákna na teplotě
- měří se proud protékající vláknem při konstantním napětí
- I=U/R
- po kalibraci dostaneme přímou závislost odporu vlákna na tlaku

ionizační měrky vakua

- se žhavou katodou
 - 0.1-10⁻⁶ Pa
 - rozžhavená katoda generuje elektrony
 - e⁻ urychleny napětím na mřížce
 - e⁻ ionizují plyn a pozitivní iony dopadají na sběrnou elektrodu.
 - iontový proud závisí na tlaku okolního plynu
 - tzv. Bayard-Alpert měrka
- se studenou katodou
 - 0.1-10⁻¹⁰ Pa
 - napětí několik kV
 - měří se el. proud mezi katodou a anodou
 - dráha elektronů prodloužena megnetickým polem
 - tzv. penning nebo inverted magnetron

FIG. 2. Diagram of typical cold-cathode electrode geometries.

Ŧ

elektronové dělo

- Zařízení produkující elektrony uspořádané do svazku (paprsku)
- elektrony opustí zdroj katodu po dodání určitého množství energie.
- tři hlavní typy
 - termionické zdroje
 - "field emission" zdroje
 - "thermal-field" zdroje

02.2010 15:

termionické zdroje

- energie potřebná k emisi elektronů z katody je dodána v podobě tepla – termoemise
 - wolframová katoda
 - katoda z LaB₆ krystalu

work function pro jednotlivé prvky

Element	eV	Element	eV	Element	eV	Element	eV	Element	eV
Ag:	4.52 – 4.74	AI:	4.06 – 4.26	As:	3.75	Au:	5.1 – 5.47	B:	~4.45
Ba:	2.52 – 2.7	Be:	4.98	Bi:	4.31	C:	~5	Ca:	2.87
Cd:	4.08	Ce:	2.9	Co:	5	Cr:	4.5	Cs:	2.14
Cu:	4.53 – 5.10	Eu:	2.5	Fe:	4.67 – 4.81	Ga:	4.32	Gd:	2.9
Hf:	3.9	Hg:	4.475	ln:	4.09	lr:	5.00 – 5.67	K:	2.29
La:	3.5	Li:	2.93	Lu:	~3.3	Mg:	3.66	Mn:	4.1
Mo:	4.36 – 4.95	Na:	2.36	Nb:	3.95 – 4.87	Nd:	3.2	Ni:	5.04 – 5.35
Os:	5.93	Pb:	4.25	Pd:	5.22 – 5.6	Pt:	5.12 – 5.93	Rb:	2.261
Re:	4.72	Rh:	4.98	Ru:	4.71	Sb:	4.55 – 4.7	Sc:	3.5
Se:	5.9	Si:	4.60 – 4.85	Sm:	2.7	Sn:	4.42	Sr:	~2.59
Ta:	4.00 - 4.80	Tb:	3	Te:	4.95	Th:	3.4	Ti:	4.33
TI:	~3.84	U:	3.63 – 3.90	V:	4.3	W :	4.32 – 5.22	Y:	3.1
Yb:	2.6	Zn:	3.63 – 4.9	Zr:	4.05	LaB6	2.5	CeB6	2.5

http://en.wikipedia.org/wiki/Work_function

Wolframová katoda

- ohnutý W (W, Ir) drát 100-150 um v průměru
- žhavení na cca 2700 K
- životnost cca 100-1000 hodin

- žhavení katody produkce pomalých elektronů
 - wehneltův válec rozdíl napětí mezi katodou a wehneltem je X00 V
 - usměrnění termálních elektronů, rozdíl potenciálu určuje emisní proud, elektrostatická čočka
- urychlovací napětí mezi katodou a anodou je 0.2-40 KV, obvykle od 10 do 30 kV
 - ohnisko (10-100 um) "efektivní zdroj" elektronů
- uprostřed anody je otvor, kterým elektrony postupují dále k soustavě elmg. čoček

JEOL K-type filament

CAMECA

funkce wenheltu

vliv žhavení vlákna na proud dopadajících elektronů

LaB₆ zdroj

materiál katody –hexaborid lanthanu zbroušený do hrotu

nízká hodnota "work function" 2,5 eV

větší prostorová proudová hustota ve srovnání s W při nižší teplotě žhavení = ostřejší elektronový obraz

delší životnost, cca X měsíců

http://www.semitracks.com/index.php/blog/archive-blog-posts

http://www.tedpella.com/apertures-and-filaments_html/Kimball-lab6-cathodes.htm

studený "field emission" zdroj

- emise elektronovým polem
 - emise elektronů z katody (monokrystal W, hrot) je vyvolána silným elektrostatickým polem, pro kovy obvykle více než 1 GV/m
 - potenciál elektrostatického pole je silně závislý na E_f work function katody
 - vyžaduje vakuum kolem 1.5 10⁻⁷Pa

teplý "field emission" zdroj

field emise z předehřáté katody

na povrchu katody je vrstva ZrO₂=nižší work function

nevyžaduje tak vysoké vakuum

cca 10 x větší prostorovou proudovou hustotu než studený FE

není třeba tak velké elektrostatické pole jak u studeného FE zdroje

žhavení na 1000-1800 K hrotu snižuje nutnost vysokého elektrostatického pole

FIGURE 3.

A ZrO/W Thermal field emission electron source. The singe crystal tungsten is coated with a layer of zirconium oxide to reduce the work function barrier.

suppressor-odfiltruje elektrony vzniklé termální emisí

první anoda slouží k extrakci elektronů

druhá anoda slouží k urychlení elektronů

emisní proud cca do 200uA

Virtual source formation in field-emission gun. Distance d depends on voltage ratio V_0/V_1 .

http://www.nanophys.kth.se/nanophys/facilities/ nfl/manual/sem-adjust/semadj2.html

srovnání W, LaB₆ a FEG

http://www.ammrf.org.au/myscope/sem/practice/principles/gun.php

http://www.ammrf.org.au/myscope/
srovnání W, LaB₆, FEG

Reed, 2005: Electron Microprobe Analysis and scanning Electron Microscopy in Geology.

Comparison od W, LaB₆, and thermal FEG

Sample: Evaporated gold particles Acc. V.: 10kV Mag.: 5000x Probe Current - 100 nA

5µm

elektronová optika

dodatečné centrování elektronového svazku

princip elektromagnetické čočky

Optical lens Light source

Image is inverted

 na elektricky nabitou částici pohybující se v magnetickém poli působí tzv. Lorentzova síla, která mění její směr, nikoli však rychlost

 $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$

vady elektromagnetických čoček

Spherical Aberration

lze minimalizovat vložením clony před čočku Chromatic Aberration

je minimální, protože elektrony mají stejnou energii

kondenzorová čočka

- el. svazek je po průchodu anodou značně divergentní a pro je třeba jej zkolimovat
- změnou ohniska kontroluje množství elektronů, které projdou clonou
 - změna proudu elektronů (X0 pA-X00 nA)
 - hrubá regulace proudu

Condenser Lens Current

dodatečný regulátor proudu

fluktuace žhavícího proudu katody nebo proudu elmg. čoček může způsobit variaci proudu elektronového svazku.

1-kondenzorová čočka
PFL-probe forming lens-objektivová čočka
2-omezující clona regulátoru
3-sběrná clona regulátoru
4-zdroj proudu elmg čočky
5-zesilovač, elektronika
6-vzorek

objektivová čočka

 čočka, která určuje fokusaci elektronového svazku na vzorek, popřípadě průměr svazku

filament

Si(Li) detector

arid

aperture

9(+)

irst ('condensing') lens

cond ('objective') lens

viewing microscope

vychylovací cívky a stigmátor

 stigmátor – soustava cívek korigující aberace elmg. čoček, nehomogenitu a tvar svazku elektronu

 vychylovací cívky provádí rastrování svazku elektronů po vzorku

With astigmatism

Over focus

Exact focus

Under focus

interakce vzorku s elektronovým svazkem

interakce vzorku s elektronovým svazkem

- reakcí urychlených elektronů s hmotou vzorku vzniká celá řada fotonů a elektronů
 - elastické srážky el. mění dráhu ale téměř nemění energii a rychlost.
 - zpětně odražené elektrony BSE
 - prošlé elektrony TE
 - neelastické srážky el. ztrácí energii při interakci s s elektrony v el. obalech atomů vzorku.
 - sekundární elektrony SE
 - fotony v oblasti viditelného světla katodová luminiscence CL
 - Augerovy elektrony
 - charakteristické RTG záření
 - spojité RTG záření
 - teplo
- detekce těchto signálů nám slouží k detailní charakteristice studovaného vzorku

excitační objem

- prostor, v kterém probíhá interakce urychlených elektronů, popřípadě RTG záření s hmotou vzorku
- zvětšuje se s rostoucí energií elektronového svazku
- zmenšuje se s rostoucím atomovým číslem vzorku
- jeho tvar závisí na šířce elektronového svazku

Interaction volume for electrons in a bulk sample. Distances are for 20 kV electrons in Cu. For A1, multiply by 3

Target	5 keV	10 keV	20 keV	30 keV
Aluminium	0.41 µm	1.32	4.2	8.3
Copper	0.15	0.46	1.47	2.89
Gold	0.085	0.27	0.86	1.70

excitační objem

zpětně rozptýlené/odražené elektrony - BSE

- vznikají při elastických srážkách s atomy vzorku
- BSE –Back Scattered Electrons
- BEI Back-scattered Electron Image
- $E_e \approx E_0, \Delta E < 1 \text{ eV}$
- obecně jsou za BSE považovány všechny el. nad 50eV
- produkce BSE určuje η_b (back scattering coefficient), který je silně závislý na průměrném atomovém čísle Z vzorku

 $\eta = -0.0254 + 0.016 \text{ Z} - 0.000186 \text{ Z}^2 + 8.3 \times 10^{-7} \text{Z}^3$.5 .4 .4 .4 .3 .2 .1 .2 .1 .20 40 60 80 Z

 $Z = w_1 z_1 + w_2 z_2 + w_3 z_3 \dots + w_n z_n$

 $Z_{SiO_2} = 0.4674 \text{ x } 14 + 0.5326 \text{ x } 8 = 10.8044$

BSE podávají informace o fázovém kontrastu studovaného vzorku

scintilační BSE detektor

• "ROBINSON" detector

polovodičový BSE detektor

• solid state detector

BSE fotografie

sekundární elektrony SE

- SE Secondary Electrons
- SEI Secondary Electrons Image
- SE jsou emitovány z el. obalu atomů v důsledku interakce s primárními elektrony
- energie do 50 eV nejčastěji 2-10 eV
- vzhledem k jejich malé energii, vzorek mohou opustit pouze SE produkované v oblasti do 500 Å pod povrchem.
- Kolik SE opustí vzorek závisí především na morfologii vzorku a méně již na atomovém čísle vzorku
- počet SE na jeden urychlený elektron (10-30 keV) je obvykle δ = 0.1-0.2

detekce SE

Everhart and Thornley detektor

SE fotografie

Syntetický zeolit

Pyl povijnice nachové

Uhlíková nanovlákna

SEM obrázky+photoshop

katodová luminiscence

- produkce fotonů ve viditelné části spektra
 - odráží změny chemismu aktivátorů CL (Mn, REE,...) v ppm
 - informace o vnitřní textuře vzorku
- scintilační detektor pouze černobílé (panchromatické) zobrazení
- CL spektrometr měření spektrální charakteristiky

CL způsobená variací N odhalující růstovou historii krystalu diamantu

RTG záření

spojité RTG záření

Spojité

- neelastické srážky
- brzdné záření bremsstrahlung
- dosahuje energie 0- eV~ U_{acc}

X-ray energy

The bremsstrahlung and characteristic X-ray intensity as a function of energy. The generated intensity increases rapidly at low energies but low energy X-rays are absorbed by the specimen and the detector. E_0 is the energy of the electron beam causing the X-ray emission. Two families of characteristic lines are shown superimposed on the bremsstrahlung.

Williams and Carter p 57

- cca 0.X procento urychlených elektronů narazí na elektron v elektronovém obalu atomu vzorku a vyrazí jej – SE
- vakance je zaplněna elektronem z vnějšího obalu, při přechodu je vyzářeno RTG záření určité vlnové délky (energie), charakteristické pro daný prvek.
- více typů přechodů,
- K, L, M čáry

http://www.matter.org.uk/tem/electron_atom_interaction/x-ray_and_auger.htm

urce	Shell Filled						
Shell	к	L	L	LIII	M _{III}	M _{IV}	MV
L L L	Κ _{α/2} (50) Κ _{α(1} (100)						
M _I M _{II} M _{IV} M _V	К _{β3} (1) К _{β1} (20) К _{β5'} К _{β5'}	Lβ ₄ (5) Lβ ₃ (6) Lβ ₁₀ Lβ ₉	L _η (1) L _{β17} L _{β1} (50)	L _L (2) Lt (0.01) L _S (0.01) L _{CK2} (10) L _{CK1} (100)			
N _I N _{II} N _{IV} N _V N _V N _{VI}	К _{β2*} (5) К _{β2'} К _{β4} К _{β4}	L _{γ2} (1) L _{γ3} (2)	L _{γ5} (0.1) L _{γ1} (10) L _V L _V	Lβ ₆ (0.1) Lβ ₁₅ (1) Lβ ₂ (20)	M _{γ2} (1) M _{γ1} (1)	Mβ ₁ (50)	Μα ₂ (100) Μα ₁ (100)
0 ₁ 0 ₁₁ 0 ₁₁₁ 0 _{1V} 0 _V	K _{δ2} (0.1) K _{δ1} , (0.1)	L _{γ4} L _{γ4}	L _{Y8} L _{Y8}	ե _{թ7} ե _{թ5} ե _{թ5}			

Element	Kαı	Kaz	Kβı	Lα ₁ L	.α ₂ Lβ ₁	ι Цβ2	Lý 1	Mα ₁	
3 li	54.3								
4 Be	108.50								
5 B	183.3								
6.0	277								
7 N	392.4								
8.0	524.9								
9 F	676.8								
10 Ne	848.6	848.6							
11 Na	1 040.0	1 040 98	1 071 1						
12 Mg	1 253 60	1,253,60	1.302.2						
13 A1	1 486 70	1,286.27	1 557 45						
14 Si	1 739 98	1,739,38	1 835 94						
15 P	2,013,7	20127	2 139 1						
16 S	2 307 84	2,306,64	2 464 04						
17 C1	2,622,39	2,620,78	2,815.6						
18 Ar	2,957,70	2,955,63	3,190.5						
19 K	3,313,8	3311.1	3 589.6						
20 Ca	3.691.68	3,688,09	4.012.7	341.3	341.3	344,9			
21 Sc	4.090.6	4.086.1	4,460,5	395.4	395.4	399.6			
22 Ti	4,510,84	4,504,86	4,931,81	452.2	452.2	458.4			
23 V	4.952.20	4,944.64	5,427,29	511.3	511.3	519.2			
24 Cr	5,414.72	5,405,509	5,946.71	572.8	572.8	582.8			
25 Mn	5.898.75	5,887,65	6,490,45	637.4	637.4	648.8			
26 Fe	6.403.84	6.390.84	7.057.98	705.0	705.0	718.5			
27 Co	6,930.32	6,915.30	7,649.43	776.2	776.2	791.4			
28 Ni	7,478.15	7,460.89	8,264.66	851.5	851.5	868.8			
29 Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8			
30 Zn	8,638.86	8,615.78	9,572.0	1,011.7	1,011.7	1,034.7			
31 Ga	9,251.74	9,224.82	10,264.2	1,097.92	1,097.92	1,124.8			
32 Ge	9,886.42	9,855.32	10,982.1	1,188.00	1,188.00	1,218.5			
33 As	10,543.72	10,507.99	11,726.2	1,282.0	1,282.0	1,317.0			
34 Se	11,222.4	11,181.4	12,495.9	1,379.10	1,379.10	1,419.23			
35 Br	11,924.2	11,877.6	13,291.4	1,480.43	1,480.43	1,525.90			
36 Kr	12,649	12,598	14,112	1,586.0	1,586.0	1,636.6			
37 Rb	13,395.3	13,335.8	14,961.3	1,694.13	1,692.56	1,752.17			
38 Sr	14,165	14,097.9	15,835.7	1,806.56	1,804.74	1,871.72			
39 Y	14,958.4	14,882.9	16,737.8	1,922.56	1,920.47	1,995.84			
40 Zr	15,775,1	15.690.9	17.667.8	2.042.36	2.039.9	2.124.4	2.219.4	2,302.7	

Emisní čáry, [eV]

Augerovy elektrony

- standardní produkce charakteristického RTG
- pokud foton charakteristického RTG záření koliduje s elektronem ve vnějších slupkách el. obalu o podobné energii, dojde k vytržení elektronu, tzv. Augerova elektronu.
- jeho energie je malá a rovná se rozdílu energií fotonu a původního elektronu X00-X000 eV
- s rostoucím atomovým číslem produkce Ae klesá.
- detailní charakteristika povrchu

elektronová mikroanalýza

- elektronová mikroanalýza (EMPA) je relativně nedestruktivní metoda pro určení chemického složení pevných látek z malého objemu.
- metoda využívá elektronů emitovaných z katody urychlených na 10-30 keV, které při dopadu na vzorek vyvolají produkci RTG záření z objemu cca 3-5 µm³
- detekcí charakteristického RTG záření můžeme určit chemické složení studovaného materiálu

elektronová mikroanalýza

- EMPA (EPMA) je nástroj ke kvalitativní či kvantitativní chemické analýze fází mikrometrových rozměrů
- relativně nedestruktivní metoda založena na detekci charakteristického RTG záření
- energiově disperzní systém (EDS, EDX)
 - využívá částicovou povahu záření
 - polovodičový detektor
- vlnově disperzní systém (WDS, WDX)
 - využívá vlnovou povahu záření
 - založen na RTG difrakci
- urychlovací napětí 15 kV pro silikáty a 25 kV pro sulfidy a kovy

energiově disperzní systém (EDS)

- polovodičový detektor Si:Li
 - plocha 10mm²-40mm²
 - napětí 500-600V
- RTG záření generuje páry elektron-díra, které zvyšují vodivost detektoru
- RTG o větší E generuje více def. páru => větší proudový impulz
- klasické typy: detekce od Na po U
- moderní typy: od (Be) B po U
- nutné chladit LN₂ nebo peltierovými

energiově disperzní systém (EDS)

- výhody
 - načítá se celé spektrum současně
 - rychlá analýza 30, 60 s
 - levnější než WDS
- nevýhody
 - špatné rozlišení 130 -150 eV na kanál
 - množství koincidencí Pb-Bi-S, Mo-S, As-Mg, Na-Zn, Ba-Ti
 - vysoká mez detekce 0,1 1,0 hm.%

energiově disperzní systém (EDS)

- pozice píku závisí na jeho energii
- velikost (plocha) píku určuje množství prvku
- koncentrace prvku se vypočítá na základě poměru plochy píku neznámé fáze a plochy píku standardu.

vlnově disperzní systém (WDS)

- pracuje s vlnovou charakteristikou záření
- využívá difrakce RTG záření na krystalu monochromátoru
- zdroj záření, nonochromátor a detektor musí ležet na Rowlandově kružníci
- pokud je splněna Braggova podmínka, záření je difraktováno směrem k detektoru, pokud ne, záření je pohlceno
- krystaly jsou zahnuté (sbroušené) a orientované tak, aby difrakční roviny ležely co největší plochou na RK

- $n\lambda=2d~sin\theta$
- where, n = an integer (1, 2, 3...),
- $\lambda =$ wavelen gth,
- d = d-spacing of the crystal,
- and θ = incident angle (measured from crystal surface)

WDS-krystaly

WDS - krystaly

- Lithium fluoride 200 (LIF), 2d = 4.028 Å
- Potassium acid pthalate 1011 (KAP), 2d = 26.6 Å
- Ammonium dihydrogen phosphate 011 (ADP), 2d = 10.648 Å
- Rubidium acid pthalate (RAP), 2d = 26.1 Å
- Pentaerythritol 002 (PET), 2d = 8.742 Å
- Thallium acid pthalate 1011 (TAP), 2d = 25.75 Å, and
- Lead sterate or Lead octodecamoate (ODPB), 2d = 100 Å

WDS – uspořádání spektrometru

WDS - detektor

- proporcionální plynový detektor
- "gass flow"
- plyn argon methan 9:1
- difraktované RTG záření ionizuje plyn v detektoru a dojde k vyboji
 - methan je zhášeč výbo

WDS – principy měření

- měří se počet pulzů v maximu píku a na pozadí před a za píkem
 - realný počet pulzů v maximu píku v závislosti na proudu el. svazku
 - cts.s⁻¹.nA⁻¹
- srovná se s počtem cts.s⁻
 ¹.nA⁻¹ standardu daného prvku
 - spočte se koncentrace

Weight Percent MgO

vlnově disperzní systém (WDS)

• výhody

- dobré spektrální rozlišení 6 eV na kanál
- nízké detekční limity 0.0X
- menší množství koincidencí
- až 5 spektrometrů
- nevýhody
 - časově náročnější analýzy minimálně 3-4 min
 - větší nároky na kvalitu vzorku
 - finančně náročnější zařízení
 - měříme pouze zvolené prvky

Energy Resolution of EDS vs WDS

EDS, WDS - ZAF korekce

• teoreticky

$$C_{unk}^{A} = C_{std}^{A} \left(\frac{I_{unk}^{A}}{I_{std}^{A}} \right)$$

where C_{unk}^A = concentration of A in the unknown, C_{std}^A = concentration of A in the standard, I_{unk}^A = the background-corrected intensity of A X-rays in the unknown, and I_{std}^A = background-corrected intensity of A X-rays in the standard.

- Z korekce na BSE
 - BSE opouštějí vzorek aniž by došlo k produkci RTG záření
 - množství BSE závisí na atomovém čísle Z
 - korekce na ztrátu E (produkce RTG) kvůli BSE
- A charakteristické záření je částečně pohlcováno hmotou vzorku v závislosti na chemickém složení zkoumané oblasti a energii daného RTG záření
- F charakteristické a spojité RTG záření vyvolává emisi sekundárního RTG záření o nižší energii

ZAF korekce

- Je třeba zahrnout i neanalyzované prvky
- Kyslík
- Lehké prvky, které nejsou obvykle měřeny – B, C, Be, apod

příprava vzorků pro elektronovou mikroskopii a mikroanalýzu

příprava vzorků pro elektronovou mikroskopii

- na vzorky je nutné nanést vrstvu vodivého materiálu
 - pro analýzu C
 - pro focení Au, Ir, Pd,...
- U nízkovakuových mikroskopů (environmentálních) lze pozorovat vzorek i bez pokovení (větší tlak v komoře, nižší urychlovací napětí)
- pro kvalitní mikroanalýzu je potřeba leštěný povrch vzorku, kolmý na elektronový svazek.
 - leštěné výbrusy, nábrusy

pokovení zlatem, platinou

- většinou pro el. mikroskopii
- reliéfní vzorky
- vakuová magnetronová naprašovačka
- doba pokovení cca 0.5 hod

nanesení uhlíkové vrstvy

- uhlíková naparašovačka
- pro mikroanalýzu
- rozžhavením uhlíkových elektrod ve vakuu dojde k nanesení uhlíkové vrstvy na chladnější tělesa
- uhlíkové elektrody, uhlíkový provázek
- doba pokovení cca 3-4 hod.
- 4 výbrusy, 8 nábrusů
- výbrusy a nábrusy je třeba řádně očistit od mastnoty a prachu
- pro kvalitní mikroanalýzu je nezbytná homogenní uhlíková vrstva definované tloušťky
- uhlíková vrstva je náchylná otěr

vzorky pro mikrosondu Cameca SX 100

- klasické leštěné výbrusy 28x47 mm
- nábrusy Ø 25 mm, výška do 20 mm
- reliéfní vzorky 10x10x8 mm
- kvalitně naleštěny
- porézní vzorky musí být syceny pryskyřicí pod vakuem, jinak se prodlužuje doba vakuování
- vzorky musí být řádně označeny popiskou
- na vzorcích musí být zaznačena místa, kde se bude analyzovat (tuž, permanentní fix –ze spodní stany)
 - maximální zorné pole 2,5 x 1,9 mm, t.j. ~1/250 plochy výbrusu
- vzorky musíte znát a musíte vědět co chcete analyzovat

vzorky pro mikrosondu Cameca SX 100

- je dobré mít s sebou nákres vzorku, popřípadě fotografii výbrusu či nábrusu
- Pokud zkoumáte výbrusy, je vhodné mít s sebou jejich scan s vyznačenými místy k analýze nebo k zaznačení pozice nalezených fází.

- u studovaných musíte vědět, které prvky chcete analyzovat
 - u WD analýzy se analyzují prvky, které se zadají
 - Nastudovat si literaturu o minerálech, které hodláte měřit

analytické možnosti a výstupy mikrosondy Cameca SX 100

- bodová analýza, profil z bodových analýz
- liniový scan (liniový profil)
- mapa prvků (RTG mapa, plošná distribuce)
- WDS scan
- CHIME datování
- fotografie BSE
- fotografie SE
- fotografie CL

bodová WDS analýza

- analýza daného místa (min 5x5 µm)
- měří se 5 prvků současně
- doba analýzy závisí na počtu analyzovaných prvků a požadované mezi detekce
 - 10-40 s na píku, a 2 x ½ času na pozadí
 - přesnou analýzu daného místa, až do hodnot kolem X00 ppm
- silikáty 4-5 minut, monazit- 18 minut
- profil z bodových analýz
 - změna chemismu v daném profilu

Ovida																
	TiOO	0-0	F-000	14-000	N-00	0:00	410.00	M-0	1/00	0.000	D-0	D005	Tatal	0	Data	
DataSet/Po	ind2	CaO	Fe2O3	Mn2O3	Nazo	SIO2	AI2O3	MgO	K20	Cr203	BaO	P205	lotal	Comment	Date	
1/1.	0.081	0	4.308	16.59	0.004	34.818	44.17	0.112	0	0.004	0	0.008	100.102	koj5		5/5/2006 9:32
2/1.	0.083	0.017	4.352	17.06	0	34.252	43.579	0.118	0.001	0.013	0.001	0	99.49	koj5		5/5/2006 9:36
3/1.	0.06	0	4.32	17.434	0.041	34.296	43.955	0.105	0.012	0.007	0.012	0.032	100.275	koj5		5/5/2006 9:41
4/1.	0.061	0.003	4.265	16.478	0.028	34.058	44.28	0.124	0	0.005	0	0.017	99.361	koj5		5/5/2006 9:55
Det.Lim ppr	n															
DataSet/Po	Thit	Ca	Fe	Mn	Na	Si	AI	Mg	К	Cr	Ва	Р	0	Comment	Date	
1/1.	220	381	887	662	471	434	437	204	1	280	696	374		koj5		5/5/2006 9:32
2/1.	209	335	774	626	482	394	431	217	326	272	643	341		koj5		5/5/2006 9:36
3/1.	219	344	848	611	428	402	428	215	299	268	650	319		koj5		5/5/2006 9:41
4/1.	225	362	845	675	452	430	420	214	312	275	679	347		koj5		5/5/2006 9:55
StdDev wt%	6															
DataSet/Po	Thit	Ca	Fe	Mn	Na	Si	AI	Mg	К	Cr	Ва	Р	0	Comment	Date	
1/1.	0.02	0.031	0.244	0.378	0.039	0.363	0.551	0.022	0	0.023	0.055	0.031		koj5		5/5/2006 9:32
2/1.	0.019	0.029	0.237	0.378	0.038	0.352	0.539	0.023	0.027	0.023	0.053	0.028		koj5		5/5/2006 9:36
3/1.	0.02	0.028	0.238	0.384	0.04	0.353	0.543	0.022	0.026	0.022	0.054	0.028		koj5		5/5/2006 9:41
4/1.	0.02	0.03	0.242	0.377	0.04	0.358	0.552	0.023	0.026	0.023	0.055	0.03		koj5		5/5/2006 9:55

liniový profil

- kontinuální změna koncentrace vybraných prvků podél přímky
 - v relativních hodnotách
 - lze kvantifikovat, ale je to málo přesné
- zadáváme počátek a konec přímky, počet bodů, popřípadě krok a dobu setrvání na jednom bodě
- až 5 prvků současně
- 500 μ m délka, krok 1 μ m, dwell time 1 s = 500s 8m 20s
- 500 μ m délka, krok 1 μ m, dwell time 5 s = 5000s 83m 20s
- v případě kvantifikovaného profilu načítáme stejnou dobu ještě pozadí
- v případě více než 5 prvků se doba zvyšuje

plošná distribuce

- zobrazení změny chemického složení na ploše
- až 5 prvků současně
- zastoupení prvku je vyjádřeno ve stupních šedi nebo ve falešných barvách
 - relativní obsah nebo možno kvantifikovat
- nastavíme střed plochy, šířku, výšku plochy → počet bodů na řádce, počet řádek, dwell time

	10ms	100ms	1000ms
64x64	45s	6m 30s	1h 8m 16s
128x128	2m 44s	27m 20s	4h 33m 4s
256x256	10m 15s	1h 49m 13s	18h 12m 16s
512x512	43m 4s	7h 16m 54s	72h 49m 4s

WDS scan

- zaznamenává spektrum RTG záření
- plný rozsah krystalu (monochromátoru), jen určitý výřez
- typ krystalu, prektrometr, mezní hodnoty, krok, dwell time

WDS scan provedený na mikrosondě JEOL

CHIME datování

- použitelné pro monazit, uraninit, zirkonolit
- měří se obsah U, Th a Pb
- vychází se z předpokladu, že veškeré Pb je radiogenní
- neměří se izotopy
- doba měření jedné analýzy cca 18 min
- chyba cca 15-70 mil let
- 10-20 analýz váženým průměrem lze dosáhnou chybu 5-10 Ma

		2 sigma											
Age Ma	Age err Ma	D==>0	Pb corr	Th*	PbO corr	UO2 corr	0.2						
395.3	25.0	-2.775558E-16	0.147436792	8.290496	0.158821	0.6725			y = 0.01	84x - 0.00	22		
389.5	22.7	-2.498002E-16	0.160345214	9.156454	0.172727	0.6950			R ² =	0.9874		•/•	
408.3	42.1	-2.220446E-16	0.084097516	4.585838	0.090591	0.2150	0.15						_
385.7	39.6	2.359224E-16	0.084473734	4.875534	0.090997	0.2981	5				.**		
403.7	37.1	1.387779E-16	0.094258212	5.195871	0.101537	0.2886	א ל 101						
380.6	40.1	-2.220446E-16	0.0823216	4.817486	0.088678	0.2742							
408.3	30.3	0	0.089845216	4.898034	0.242239	0.096783	۹.		•				
415.8	23.1	0	0.132144911	7.071589	0.349163	0.142349	0.05						_
413.8	25.3	2.35922E-16	0.119896928	6.446853	0.327787	0.129155							
419.2	19.6	7.21645E-16	0.156776461	8.331215	0.25938	0.168882							
397.6	23.3	-5.55112E-16	0.125273037	7.018438	0.305043	0.134946	0	0	2 /	1 6		0	10
395.1	28.1	-2.77556E-16	0.093686852	5.268959	0.4719	0.100921		0	2 -	+ U		2	10
401.4	23.0	5.55112E-16	0.116441491	6.441474	0.606817	0.125433	Th* [wt. %]						
385.3	38.9	0	0.06596288	3.811594	0.226596	0.071056				ç	4		
403.1	31.7	-4.02456E-16	0.084830537	4.685376	0.221784	0.091381	Mean =	403.1±6.	3 [1.6%]	95% con	f.		
393.9	29.0	0	0.090400899	5.109801	0.279255	0.097381	Wtd by	data-pt e	rrs only, U	of 18 rej.			
413.7	24.2	7.07767E-16	0.114023872	6.132927	0.320669	0.122828	UNSVID	– 0.00, p	robability	- 0.04			
403.7	25.6	4.71845E-16	0.105171949	5.792736	0.40732	0.113293							
	I								1	1			

Stanovení oxidačního stavu přechodných prvků (Fe, Mn..)

