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0 kay, okay, I hear you. What’s the point of any of this,

right? Axioms, double and triple tori, continuum-sums,
wallpaper symmetries. For what? In the pointed phrasing of
math students around the world and throughout history:

°Q

I've tried to avoid addressing this question directly because
(and I promise this is the last time I'll remind you of this) profes-
sional mathematicians really don't care about real-world appli-
cations. That’s the domain of applied math, the opposite of pure
math, which should give you a sense for how the word “applied”
is meant to sound. But here we are, with a good chunk of pages
to go, having already run through the three main branches of
pure math, plus a little history and philosophy. So I'll entertain
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the question and say a thing or two about applied math, even if
it'll get me in trouble with the hardcore types who find this
“real life” stuff irrelevant and distracting.

In particular, this last section is about modeling. Modeling is
how math connects to the real world. Of course there are lots of
different ways math turns up in the real world, but modeling is
a sort of general framework that lets us see all these connections
clearly. It gives us a convenient way to talk about the connec-
tions, so we can explore them and learn new things.

A model consists of two main ingredients. There’s the way
the model itself works: a set of internal, mathematical rules that
determine how everything inside the abstract model-world
operates. And then (this is the important part) there’s some kind
of translation process that connects the model back to the out-
side world.
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Of course I've skimmed over all the gritty details, but even
from this rough description you can see what an arrangement
like this would allow us to do. We could observe something in
the real world, translate it into the language of the model, follow
the internal laws of the model to infer new truths, and then trans-
late it back into our reality. We could, in other words, learn things
about the real world by taking a detour through a fictional, math-
ematical world. This is new.

Let’s look at an example: music theory. Music theory is an
abstract model of how music works. You take real-world music,
a complex and chaotic parade of vibrations in the air, and you
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translate it into a symbolic system of notes and chords. Inside
that abstract system, there are certain rules or guidelines (for a
given genre or musical tradition) about which notes work with
which chords, which sequences of notes will sound tense or sad
or funky, and which chords typically follow which other chords.
These are all the makings of a model. We have a simplified rep-
resentation of a real-world thing which makes it easier to man-
age, analyze, and predict that real-world thing.
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Yes, we lost detail when we abstracted. It’s not a perfect
translation, and the model-world isn't going to be isomorphic to
the real world. That'’s fine. If you're playing in a jam session, you
mostly just need to know the chord progression, the rhythm,
and what key you're in. If you tried to analyze every aspect of
the audio flow coming into your ears, you'd get hopelessly lost.
Instead, you strip it down to the basics—you abstract. “Notes”
and “chords” aren't tangible, real-world entities. These concepts
live in model-world, they have internal rules of engagement,
and they correspond back to sounds in the real world. They're
useful theoretical constructs.

This is the key to a good model: a smart stripping-down pro-
cess that takes us to a basic but still useful unit, like a note or a
chord. When we’re working inside the model, we temporarily
pretend these things really are unbreakable atoms with fixed
laws of behavior. This isn't strictly true: A note is actually a
mishmash of overtones, echoes, and reverb all bouncing around,
pushing up against your eardrums. But if it’s useful to build a
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tiny model of the world where it is true, where a note is just a
note, well, what’s the harm in that?

Sometimes this stripping-down process goes a little too far,
and we do have to be careful about drawing real-world conclu-
sions from oversimplified models. It’s often convenient to make
assumptions that are not quite true, or even ones that are
demonstrably, laughably false. We just have to strike a good bal-
ance between simplicity and usefulness. There’s an old joke
about an academic who's called to a dairy farm to help increase
milk production and says, “I have a solution. We assume a
spherical cow. . . "

Here’s another modeling example, from economics. Say
there’s some product that lots of people want to buy. Hot sauce,
for instance. And then something happens, like a pest infesta-
tion in the chili fields, that reduces the amount of hot sauce
being produced. What happens next is predictable: The price of
hot sauce will go up. This is the kind of real-world regularity
that lends itself perfectly to modeling. When there’s a sudden
shortage of something, its price typically rises.

Of course, a “price” isn't really ever just a single number. It
depends on where you buy your hot sauce, who's selling it to
you, how that person’s business model works, maybe even how
wealthy that person thinks you are. When the shortage hap-
pens, sellers who don't hear about it immediately might keep
selling hot sauce at the original price until it runs out. Or buyers
who don't know about the shortage might refuse to buy it at a
higher price. Or within a certain community there may be an
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expectation of what the “fair price” of hot sauce is, and sellers
could be ostracized for jacking up prices. It’s hard to imagine
something more complicated, with more moving parts under
the hood, than a price.

But when were modeling, we can make the simplifying
assumption that price is just a single number, the same every-
where. We can also assume that the “demand curve” and “sup-
ply curve” (more abstractions invented for our modeling
convenience) are simple functions that, depending on price, teil
you exactly how much hot sauce will be desired and how much
will be produced. We can assume that, in a “competitive mar-
ket” (another abstraction), everything will settle into an “equi-
librium price” (and another). Within the theoretical world built
from these assumptions, we can solve for the equilibrium and
convert it back to a prediction of what the real-world price will
be. And in some cases, this supply-demand model actually
makes pretty decent predictions.

Of course, we have to be careful about which assumptions
we make. One of the standard assumptions of neoclassical eco-
nomics is that humans are rational actors: that we have innate
and consistent preferences, that we seek out the highest-paying
jobs and the lowest-priced products, that we have complete
information about pretty much everything. Most of this is not,
in the real world, accurate. These are simplifying assumptions
that let us make predictions. If the predictions tend to come
true, great! The model is useful. That doesn’t mean the assump-
tions are true. There are plenty of ways in which humans very
much don't act rationally: We're overly risk-averse, we don’t plan
for the future well, we buy expensive things to flex our wealth,
we discriminate, we give jobs to friends and family over more
qualified outsiders, the list goes on and on. If you try to apply
the standard models in these cases, they’ll break down and
make poor predictions.
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This is a crucial point about modeling in general: A model
works only within a certain scope. The assumptions you use to
make good predictions in one area (like economics) could be
totally different from the assumptions you use to make good
predictions in another area (like sociology). This doesn’t mean
one model is right and the other is wrong. It just means you
have to know when to use which. If you think you have a single,
consistent model that works in all contexts, you're probably just
ignoring or downplaying the contexts where it doesn’t work. No
model is sacred.

One more example: Have you ever watched a movie and,
about halfway through, been able to predict most of what hap-
pens for the rest of the movie? When you think about it, that’s a
pretty remarkable feat. How can you see the future like that?
You must have a mental model of “how movies usually work”
that you've developed from watching movies all your life. You
simplify the flow of information coming into your ears and eyes,
turning pixels into abstract units like characters, dialog, motives,
relationships. Then you apply some unspoken rules: “If they
show a loaded gun, it'll get shot before the movie’s over” or
“That character who's super racist will definitely get their come-
uppance” or “Around the last twenty minutes of the movie
they’ll break up over this character flaw but then he’ll learn his
lesson and make a grand romantic gesture and they’ll reunite
dramatically and live happily ever after.” Sure, these aren’t strict
mathematical rules, and the predictions might not be accurate
every time, but you're still doing some rudimentary modeling.
You're building a set of rules in your head that you can apply
across a variety of similar real-world circumstances.

And really, when it comes down to it, this is what’s going on
in our heads all the time. We interpret the world around us not
as flashes of light and sound; we chunk it into things, entities,
units of analysis we expect to behave in certain ways. We see

168



Models

something we categorize as a “car” and something we catego-
rize as a “green light” and we think, Cars typically keep driving
through green lights. If I cross the street now I'll likely be hit. Human
perception and cognition are all about pattern recognition, and
to recognize patterns we first have to abstract the continuous,
fuzzy reality around us into discrete objects that can behave in
patterned ways.

Notice, also: Models don’t have to be mathematical. The
internal rules of model-world can be rough and qualitative,
things like “Opposites attract” or “Birds of a feather flock
together.” If anything, it should be far easier to build these kinds
of non-mathematical models. A model that makes precise
numerical predictions, after all, is very easy to prove wrong.

Which is why it’s surprising that our world makes itself so
intelligible to mathematical modeling. A remarkable number of
things, if you pay close attention, are practically screaming for
us to use math to describe their behavior.

Here, take any small object. Your keys will do. Toss it up
from your left hand and catch it in your right hand. The path it
makes through the air is a perfect parabola. No matter how you
throw it, it'll always follow a parabolic path. It recreates a math-
ematical object, a precise geometric shape, in real life!

Or take a piece of string and dangle it between two points.
It’ll settle into a shape called a catenary, a perfect replica of a
graph called the hyperbolic cosine. Telephone wires, unweighted
necklaces, velvet VIP ropes—no matter the material, it'll always
make this same shape. (The formula for this shape, by the way,
involves an irrational number called e that arises from the study
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of compound interest, and which has absolutely no right being
in the equation for how strings hang.)

One more shape. This one’s a bit more involved. Set up a
camera on a tripod and point it at the sky. Pick a time of day to
take a picture. Leave it in the exact same position, and take a
picture at the same time the next day, and the next, and keep
doing this every day for a year. The path of the sun over the
course of a year will trace out a mathematical shape called an
analemma.
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I'm giving examples of complicated shapes, because simple
mathematical shapes are so commonplace in nature that we
hardly notice them. When you blow soap bubbles they form per-
fect spheres. Drop a pebble in a pond and the ripples will travel
out in perfect circles. These examples don't seem quite so sur-
prising, but they also point to there being some sort of mathe-
matical logic operating behind the scenes.

This bizarre recurrence of mathematical phenomena in the
natural world goes far beyond physical shapes. Another famil-
iar example, which we really shouldn’t take for granted, is the
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bell curve: a formula for predicting the distribution of almost
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Here, for instance, is the distribution of women’s height in the
United States:

any numerical property in any naturally occurring data set.
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Here’s the distribution of song length for all Billboard num-
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And here’s the distribution of where the ball ends up in The
Price Is Right game Plinko:
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No, it’s not precisely the same shape every time-——you have to
allow for some randomness. But the bigger the sample size, gen-
erally speaking, the closer you get to a smooth, symmetric bell
curve. (The equation of this curve, by the way, not only includes
e—the compound interest number—but also &, the ratio of a cir-
cle’s circumference to its diameter. After a point, doesn’t this
start to feel like some kind of cosmic joke?)

This is the eeriest thing for me, when the exact same formula
pops up in different fields of study, in entirely unrelated con-
texts that don't seem like they should be analogous. So, for

172



Models

instance, the famous gravity equation tells us the force of attrac-
tion between two macroscopic objects if we know their masses:

weight we iah‘l—

But it also tells us the force of attraction or repulsion between
two microscopic particles if we know their charges:
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And (brace yourself) it also gives us a good estimate for the
amount of trade between two countries if we know their GDPs:
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Better yet, the mathematical process known as “simple har-
monic motion” identically describes the vibration of a plucked
string, the length of a day* and average temperature over the
course of a year, the population of species in predator—prey rela-
tionships, the height of a point on a rotating circle, the level of
the tides, and the compression of a spring.
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What the hell is going on here? Our goal in making models,
remember, is just to be useful, to find a nice and convenient sys-
tem to summarize what we observe in an orderly way. The rules
of a model can take any form, rough or precise. But for some
reason, time and again, we find that the world is best modeled
by mathematical rules, which work with shockingly high pre-
cision, and which sometimes repeat themselves from place to
place.

In pretty much every case, by the way, the math came first
historically. Pure mathematicians have always just studied
whatever they find interesting. But what typically ends up hap-
pening is that, hundreds of years after a new area of math is
identified and explored, a new area of empirical science pops up
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that requires exactly those same mathematical concepts and
results. We're not inventing math to fit our world—we're discov-
ering what math is out there, and then later realizing that our
world happens to look exactly like it.

How can we explain this? Why is the world so susceptible to
mathematical modeling?

The most honest answer is that no one really knows for sure.
This is a hot topic for debate among philosophers of math, and
I'm not going to pretend I know the answer. Within the pure
math community, though, there’s one theory that seems to be
very popular. People won't come out and say it quite like this,
but I've run it by enough people to feel confident saying a lot of
us believe it’s true.

Maybe we observe mathematical patterns in nature because
the world itself is made of math. Maybe the universe is fundamen-
tally mathematical in character, and there’s a One True Model
that perfectly describes its behavior.

Let’s not mince words: That sounds insane. But hear us out.
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