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Theorem 1 Let V be an n-dimensional vector space and Φ : V → V be a
linear mapping of V into itself. Then there is a basis of V such that the matrix
representing Φ with respect to the basis is

J1

J2

. . .
. . .

Jk


where empty space is filled by 0’s and J1, . . . , Jk are square matrices, called
Jordan blocks, of the form

Ji =


λi 1

λi 1
. . . . . .

λi 1
λi


for i = 1, . . . , k, where λ1, . . . , λk are complex numbers and empty space is filled
by 0’s.

Conclusion 1 (Jordan’s normal form of a matrix) Let A be a square ma-
trix; there is a regular matrix P such that the matrix P−1AP has the form
described in the preceeding theorem.

The matrix form shown in the theorem is called Jordan canonical form or
Jordan normal form.

Remark: The numbers λ1, . . . , λk of the theorem need not be distinct. E.g.,
the unit matrix is a matrix is a matrix in Jordan canonical form, where Jordan
blocks are matrices of size 1× 1 equal to (3), i.e. with λ1 = · · · = λk = 1.

We need one definition
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Definition 1 We say that a vector space V is a direct sum of its subspaces
V1, . . . , Vm, if for each vector v ∈ V there is the unique sequence of vectors
v1, . . . , vm such that vi ∈ Vi for i = 1, . . . ,m and v = v1 + · · · + vm. In such a
case we write V = V1 ⊕ V2 ⊕ · · · ⊕ Vm.

Uniqueness in the definition means that it must be Vi ∩ Vj = 0 for any two
different i and j in the range 1 ≤ i, j ≤ m, because if a non-zero vector v was
a member of both Vi and Vj then the uniqueness of the sequence v1, . . . , vm is
corupted: it would be possible to choose vi = v and the other vector equal to
0, of vj = v and others vectors equal to the null vector.
Thus, dim(V ) = dim(V1) + · · ·+ dim(Vm).

The proof of the theorem is based of the following two lemmae:

Lemma 1 Let V be an n-dimensional vector space and Φ : V → V be a linear
mapping of V into itself. Let λ1, . . . , λr be different eigenvalues of Φ. Then
there are integer s1, . . . , sr such that

V = Ker(Φ− λ1I)s1 ⊕ · · · ⊕Ker(Φ− λrI)sr .

Proof Choose first one of the eigenvalues of Φ and denote it by λ.

Part 1
Define Wi = Ker(Φ− λI)i for each natural number i. It is clear that

W1 ⊂W2 ⊂W3 ⊂ . . . ⊂Wi ⊂ . . .

Since we suppose that V has finite dimension, the sequence could not be strictly
increasing forever, but there must be a number t such that Wt = Wt+1. Assume
that t is the smallest among such numbers. It is almost obvious that this would
imply Wt+1 = Wt+2 = Wt+3 = · · ·.

Part 2
We will prove that Ker(Φ− λI)t ∩ Im(Φ− λI)t = 0.
Assume that a non-zero vector v belongs to Ker(Φ− λI)t ∩ Im(Φ− λI)t.
This implies that
there exists w ∈ V such that v = (Φ− λI)t(w) (because v ∈ Im(Φ− λI)t)
and also (Φ− λI)t(v) = 0 (because v ∈ Ker(Φ− λI)t).

Thus, (Φ − λI)2t(w) = (Φ − λI)t(v) = 0, and hence w ∈ W2t. But since
Wt = W2t, it is also w ∈Wt = Ker(Φ− λI)t, and hence v = (Φ− λI)t(w) = 0.

Part 3
We already know that dim(V ) = dim(Ker(Φ−λI)t)+dim(Im(Φ−λI)t). More-
over, we know that if V1 and V2 are subspaces of V , then the subspace that spans
both V1 and V2 has the dimension dim(V1) + dim(V2)− dim(V1 ∩V2). Applying
this to V1 = Ker(Φ − λI)t and V2 = Ker(Φ − λI)t (i.e., dim(V1 ∩ V2) = 0), we
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obtain that the dimension of the subspace of V that spans both Ker(Φ − λI)t

and Im(Φ− λI)t is equal to dim(V ), and hence

V = Ker(Φ− λI)t)⊕ Im(Φ− λI)t.

Part 4
Both Ker(Φ−λI)t and Im(Φ−λI)t are invariant subspaces of Φ (a subspace U
of V is an invariant subspace of Φ, if v ∈ U implies Φ(v) ∈ U).
Note that

Φ(Φ− λI) = ΦΦ− λ(ΦI) = ΦΦ− λ(IΦ) = (Φ− λI)Φ.

This implies that
if v ∈ Ker(Φ− λI)t, then (Φ− λI)t(v) = 0, and

0 = Φ(0) = Φ(Φ− λI)t(v) = (Φ− λI)tΦ(v),

and hence Φ(v) ∈ Ker(Φ− λI)t, and
if v ∈ Im(Φ− λI)t, then v = (Φ− λI)t(w) for some w ∈ V , and

Φ(v) = Φ(Φ− λI)t(w) = (Φ− λI)tΦ(w),

i.e., Φ(v) ∈ Im(Φ− λI)t.

Part 5
Now, the lemma can be proved by the induction on the number of different
eigenvalues of Φ: if λ1, . . . , λr are different eigenvalues of Φ and we put λ of
Parts 1-4 to be λ1, then the eigenvalues of the restriction of Φ to Im(Φ − λI)t

are λ2, . . . , λr, and, by the induction hypothesis,

Im(Φ− λI)t = Ker(Φ− λ2I)s2 ⊕ · · · ⊕Ker(Φ− λrI)sr

for some s2, . . . , sr. ♣

The second lemma that we will use in order to prove the Jordan form theorems
is

Lemma 2 (Mark Wildon[1]) Let V be an n-dimensional vector space and
T : V → V be a linear mapping of V into itself such that T s = 0 for some natural
number s. Then there are vectors u1, . . . , uk and natural numbers a1, . . . , ak such
that

T ai(ui) = 0 for i = 1, . . . , k,

and the vectors

u1, T (u1), . . . , T a1−1(u1), . . . , uk, T (uk), . . . , T ak−1(uk)

are non-zero vectors that form a basis of V .
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Proof If T itself maps all vectors to 0, then it is sufficient to put u1, . . . , uk to
be a basis of V and a1 = · · · = ak = 1.

Now, the proof is by induction on the dimension of V . Suppose first that
the dimension of V is 1: in this case T s could be a constant mapping to 0 only
if T is, and we use the previous statement.

Let us suppose that the lemma holds for all cases when the dimension is
smaller than n, and we will prove the lemma for n. Consider the vector space
Im(T ). If dim(Im(T )) = 0, then T is a zero mapping and the lemma follows.
The assumption dim(Im(T )) = n would imply that T is a one-to-one mapping,
which would contradict to the assumption that T s = 0 for some s. Thus, we
can assume that 0 < dim(Im(T )) < n and, by the induction hypothesis, there
are vectors v1, . . . , v` and natural numbers b1, . . . , b` such that

T bi(vi) = 0 for i = 1, . . . , `, and

v1, T (v1), . . . , T b1−1(v1), . . . , v`, T (v`), . . . , T b`−1(v`) (1)

form a basis of Im(T ).
For each i = 1, . . . , `, vi ∈ Im(T ), and hence we can choose wi ∈ V such that

T (wi) = vi. Vectors T b1−1(v1), . . . , T b`−1(v`) are linearly independent vectors
in Ker(T ). Steinitz theorem says that we can extend these vectors to a basis

T b1−1(v1), . . . , T b`−1(v`), z1, . . . , zm (2)

of Ker(T ).
Note that in our notation, T j(wi) = T j−1(vi) for all relevant i and j.
Now it is sufficient to prove that the vectors

w1, T (w1), . . . , T b1(w1), . . . , w`, T (w`), . . . , T b`(w`), z1, . . . , zm (3)

form a basis of V .
We will first prove their linear independence. Assume that

α1,0w1 + α1,1T (v1) + · · ·+ α1,b1T
b1(w1) + · · ·+ α`,0w` + · · ·+ α`,b`

T b`(w`)+

+β1z1 + · · ·+ βmzm = 0.

Apply the linear mapping T to the equation to get

α1,0T (w1)+α1,1T
2(w1)+· · ·+α1,b1−1T

b1(w1)+· · ·+α`,0T (w`)+· · ·+α`,b`−1T
b`(w`) = 0

i.e.,

α1,0v1+α1,1T (v1)+· · ·+α1,b1−1T
b1−1(v1)+· · ·+α`,0v`+· · ·+α`,b`−1T

b`−1(v`) = 0

and since the left side of the last equation is a linear combination of elements
of a basis (1) of Im(T ), the corresponding α’s must be 0.
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Putting α1,0 = α1,1 = · · · = α1,b1−1 = · · · = α`,0 = · · · = α`,b`−1 = 0 into
the original equation, we get

α1,b1T
b1(w1) + · · ·+ α`,b`

T b`(w`) + β1z1 + · · ·+ βmzm = 0,

but the left side of this equation is a linear combination of elements of a basis (2)
of Ker(T ), and hence even α’s in the last equation are equal t 0, which proves
the linear independence of the original system of vectors listed in (3).

In order to prove that the system (3) forms a basis of V we just need to
prove that the number of vectors in (3) is equal to the dimension of V . The
system (1) is a basis of Im(T ), which means that dim(Im(T )) = b1 + · · · + b`.
Moreover, the system (2) is a basis of ker(T ), i.e., dim(Ker(T )) = `+m. Using
the theorem on the dimension of the image and the kernel of a linear mapping,
we get that

dim(V ) = dim(Im(T )) + dim(Ker(T )) = b1 + · · ·+ b` + `+m =

= (1 + b1) + · · ·+ (1 + b`) +m,

which is exactly the number of vectors of the system (3). ♣

An example for the Wildon’s lemma: Let V be a vector space of the
dimension 3 and T (x1, x2, x3) = (x2 + x3, 0, 0). Then Im(T ) is one-dimensional
vector space generated by the vector (1, 0, 0). We can easily choose ` = 1,
v1 = (1, 0, 0), and a1 = 1.

Now, there are two important vectors that T maps to v1, namely (0, 1, 0)
and (0, 0, 1). Moreover, any vector (x1, x2, 1 − x2) maps into v1 as well. We
choose one of them as w1, e.g., (0, 0, 1). Now, what about the vector (0, 1, 0)
and other vectors that map into v1? If T (w) = v1 for some vector w other than
w1 (e.g., if w = (0, 1, 0)), then T (w − w1) = v1 − v1 = 0, and hence w − w1

is a member of Ker(T ) that was not included in Im(T ), and we can choose
that vector as z1, an additional member of a basis of Ker(T ). Thus, we obtain
the basis w1 = (0, 0, 1), v1 = (1, 0, 0), and z1 = (0, 1,−1), and we know that
T (w1) = v1, T (v1) = 0, and we also have T (z1) = 0. ♣

Proof of the Theorem:
Using the first lemma, there are integer s1, . . . , sr such that

V = Ker(Φ− λ1I)s1 ⊕ · · · ⊕Ker(Φ− λrI)sr ,

where λ1, . . . , λs are different eigenvalues of Φ.
Assume a basis of V obtained so that we concatenate bases of Ker(Φ −

λ1I)s1 , . . . ,Ker(Φ− λrI)sr . With respect to such a basis, the matrix represen-
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tation of Φ is a matrix of the form
J1

J2

. . .
. . .

Jk

 ,

where J1, . . . , Jk are general square matrices; Ji is the matrix of the restriction
of Φ to Ker(Φ− λiI)si with respect to the chosen basis.

However, if the basis of Ker(Φ − λiI)si was constructed using Wildon’s
lemma, then each Ji turns to be

Ji,1

Ji,2

. . .
. . .

Ji,`i

 ,

where each Ji,j is a Jordan block with λi on the diagonal; each Jordan block
corresponds to one chain of vectors vj , T (vj), . . . , T aj−1, where T = (Φ−λiI)si .
♣
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