Elements of monoidal topology^{*} Lecture 1: (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors

Sergejs Solovjovs

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences Prague (CZU) Kamýcká 129, 16500 Prague - Suchdol, Czech Republic

Abstract

This lecture introduces monoidal topology in the form of (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors for a monad \mathbb{T} on **Set** and a unital quantale V, and shows that the examples of these structures include preordered sets, as well as quasi-pseudo-metric, topological, approach, and closure spaces, together with their respective maps.

1. Categorical preliminaries

1.1. Monads and their algebras

Definition 1. A category **X** is a sextuple $(\mathcal{O}, \mathcal{M}, dom, cod, 1, \cdot)$, where \mathcal{O} is a class of objects (denoted X, Y, Z, etc.), \mathcal{M} is a class of morphisms (denoted f, g, h, etc.), $\mathcal{M} \xrightarrow[cod]{dom} \mathcal{O}$ (domain and codomain) and

 $\mathcal{O} \xrightarrow{1} \mathcal{M}$ (*identity morphisms* denoted $1_X, 1_Y, 1_Z$, *etc.*) are maps, and \cdot is a partial binary operation on \mathcal{M} (*composition*) such that $g \cdot f$ is defined iff cod f = dom g. Given $X, Y \in \mathcal{O}$ and $f \in \mathcal{M}$, one uses the notation $X \xrightarrow{f} Y$ as a shorthand for "dom f = X and cod f = Y". Additionally, one assumes the following axioms:

- (1) for every object $X, X \xrightarrow{1_X} X$;
- (2) for every objects X and Y, the family $\mathbf{X}(X,Y) := \{f \in \mathcal{M} \mid X \xrightarrow{f} Y\}$ is a set (hom-set);
- (3) $h \cdot (g \cdot f) = (h \cdot g) \cdot f$ for every morphisms $X \xrightarrow{f} Y, Y \xrightarrow{g} Z$ and $Z \xrightarrow{h} W$;
- (4) $1_Y \cdot f = f = f \cdot 1_X$ for every morphism $X \xrightarrow{f} Y$.

Example 2. There exist the categories **Set** of sets and maps, **Top** of topological spaces and continuous maps, **Met** of metric spaces and non-expansive maps, **Pos** of partially ordered sets and monotone maps.

Definition 3. For every category $\mathbf{X} = (\mathcal{O}, \mathcal{M}, dom, cod, 1, \cdot)$, there exists the *opposite* (or *dual*) category of \mathbf{X} , namely, the category $\mathbf{X}^{op} = (\mathcal{O}, \mathcal{M}, cod, dom, 1, *)$, in which * is defined by $f * g = g \cdot f$. In other words, \mathbf{X} and \mathbf{X}^{op} have the same objects and morphisms, whereas the domain and the codomain maps are switched, and the composition laws are the "opposites" of each other.

^{*}This lecture course was supported by the ESF Project No. CZ.1.07/2.3.00/20.0051 "Algebraic methods in Quantum Logic" of the Masaryk University in Brno, Czech Republic.

Email address: solovjovs@tf.czu.cz (Sergejs Solovjovs) *URL:* http://home.czu.cz/solovjovs (Sergejs Solovjovs)

Preprint submitted to the Masaryk University in Brno

Proposition 4. For every category \mathbf{X} , $(\mathbf{X}^{op})^{op} = \mathbf{X}$.

Definition 5. A functor F from a category \mathbf{X} to a category \mathbf{Y} is a pair of maps $\mathcal{O}_{\mathbf{X}} \xrightarrow{F_{\mathcal{O}}} \mathcal{O}_{\mathbf{Y}}$ and $\mathcal{M}_{\mathbf{X}} \xrightarrow{F_{\mathcal{M}}} \mathcal{M}_{\mathbf{Y}}$ (both denoted F), which satisfy the following axioms:

- (1) $F(X \xrightarrow{f} Y) = FX \xrightarrow{Ff} FY$ for every **X**-morphism $X \xrightarrow{f} Y$;
- (2) $F(g \cdot f) = Fg \cdot Ff$ for every **X**-morphisms $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$;
- (3) $F1_X = 1_{FX}$ for every **X**-object X.

Example 6.

- (1) Given a category **X**, there exists the identity functor $1_{\mathbf{X}}$ on **X** defined by $1_{\mathbf{X}}(X \xrightarrow{f} Y) = X \xrightarrow{f} Y$ for every **X**-morphism $X \xrightarrow{f} Y$.
- (2) There exist the forgetful functors **Top** $\xrightarrow{|-|}$ **Set**, **Met** $\xrightarrow{|-|}$ **Set**, and **Pos** $\xrightarrow{|-|}$ **Set**, as well as the powerset functor **Set** \xrightarrow{P} **Set** defined by $P(X \xrightarrow{f} Y) = PX \xrightarrow{Pf} PY$, where $PX = \{A \mid A \subseteq X\}$ and $Pf(A) = f(A) = \{f(x) \mid x \in A\}$ for every map $X \xrightarrow{f} Y$.

Remark 7. Functors can be composed componentwise as pairs of maps. The composition of two functors $\mathbf{X} \xrightarrow{F} \mathbf{Y}$ and $\mathbf{Y} \xrightarrow{G} \mathbf{Z}$ is often written GF instead of $G \cdot F$.

Definition 8. A natural transformation α from a functor $\mathbf{X} \xrightarrow{F} \mathbf{Y}$ to a functor $\mathbf{X} \xrightarrow{G} \mathbf{Y}$ is a map $\mathcal{O}_{\mathbf{X}} \xrightarrow{\alpha} \mathcal{M}_{\mathbf{Y}}$ such that $FX \xrightarrow{\alpha_X} GX$ for every $X \in \mathcal{O}_{\mathbf{X}}$, and, additionally, the diagram

commutes for every **X**-morphism $X \xrightarrow{f} Y$.

Example 9. There exists a natural transformation $1_{\mathbf{Set}} \xrightarrow{e} P$, with $X \xrightarrow{e_X} PX$ given by $e_X(x) = \{x\}$.

Remark 10. Given functors and a natural transformation as in the diagram $\mathbf{W} \xrightarrow{K} \mathbf{X} \underbrace{\bigoplus_{G}}^{F} \mathbf{Y} \xrightarrow{H} \mathbf{Z}$,

there exist the following natural transformations (whiskering by a functor from the left or right):

- (1) $HF \xrightarrow{H\alpha} HG$ given by $HFX \xrightarrow{(H\alpha)_X} HGX := HFX \xrightarrow{H(\alpha_X)} HGX;$
- (2) $FK \xrightarrow{\alpha K} GK$ given by $FKW \xrightarrow{(\alpha K)_W} GKW := FKW \xrightarrow{\alpha_{KW}} GKW$.

Definition 11. A monad \mathbb{T} on a category **X** is a triple (T, m, e), where **X** \xrightarrow{T} **X** is a functor, and $TT \xrightarrow{m} T$, $\mathbf{1_X} \xrightarrow{e} T$ are natural transformations, which make the diagrams

commute.

Example 12. There exists the powerset monad $\mathbb{P} = (P, m, e)$ on **Set**, with $X \xrightarrow{e_X} PX$ given by $e_X(x) = \{x\}$ and $PPX \xrightarrow{m_X} PX$ given by $m_X(\mathcal{A}) = \bigcup \mathcal{A}$.

Remark 13. Monads on a category \mathbf{X} are precisely the monoids in the strict monoidal category $\mathbf{X}^{\mathbf{X}}$ (see Lecture 4 for more detail on monoidal categories).

Definition 14. Given a monad \mathbb{T} on a category **X**, a \mathbb{T} -algebra (or Eilenberg-Moore algebra) is a pair (X, a), where X is an **X**-object, and $TX \xrightarrow{a} X$ is an **X**-morphism, which makes the diagrams

commute. A \mathbb{T} -homomorphism $(X,a) \xrightarrow{f} (Y,b)$ is an **X**-morphism $X \xrightarrow{f} Y$, which makes the diagram

commute. $\mathbf{X}^{\mathbb{T}}$ is the category of \mathbb{T} -algebras and \mathbb{T} -homomorphisms (the *Eilenberg-Moore category* of \mathbb{T}).

Example 15. Set^{\mathbb{P}} is isomorphic to the category Sup of \bigvee -semilattices and \bigvee -preserving maps.

1.2. Quantale-valued relations

Definition 16. A \bigvee -semilattice is a partially ordered set (V, \leq) , which has arbitrary joins (denoted \bigvee).

Remark 17. Every \bigvee -semilattice (V, \leq) is a complete lattice, in which $\perp_V := \bigvee \emptyset$ (the smallest element) and $\top_V := \bigwedge \emptyset$ (the largest element).

Definition 18. A quantale V is a \bigvee -semilattice, which is equipped with an associative binary operation $V \times V \xrightarrow{\otimes} V$ (multiplication) such that $a \otimes (\bigvee B) = \bigvee_{b \in B} a \otimes b$ and $(\bigvee B) \otimes a = \bigvee_{b \in B} (b \otimes a)$ for every $a \in V$ and every $B \subseteq V$. A quantale V is said to be

(1) unital provided that its multiplication has a unit k;

(2) commutative provided that $a \otimes b = b \otimes a$ for every $a, b \in V$.

Example 19. There exists the two-element unital quantale $2 = (\{\bot, \top\}, \land, \top)$. The extended real half-line $[0, \infty]$ gives a unital quantale $\mathsf{P}_+ = ([0, \infty]^{op}, +, 0)$.

Remark 20. Every unital quantale is a strict monoidal closed category (see Lecture 4 for more detail on monoidal categories).

Remark 21. Given a set X, there is a one-to-one correspondence between subsets of X and maps $X \to 2$. For a subset $S \subseteq X$, one defines $X \xrightarrow{\chi_S} 2$ (*characteristic map* of S) by $\chi_S(x) = \top$ iff $x \in S$, and vice versa.

Definition 22. A relation r from a set X to a set Y is a map $X \times Y \xrightarrow{r} 2$ (denoted $X \xrightarrow{r} Y$). Given $x \in X$ and $y \in Y$, one uses x r y as a shorthand for " $r(x, y) = \top$ ". The opposite (or dual) of a relation $X \xrightarrow{r} Y$ is the relation $Y \xrightarrow{r^{\circ}} X$ defined by $y r^{\circ} x$ iff x r y.

Definition 23. Rel is the category, whose objects are sets, and whose morphisms are relations $X \xrightarrow{r} Y$. Composition of relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z$ is defined by $x(s \cdot r) z$ iff there exists $y \in Y$ such that x r y and y s z. Given a set X, the identity 1_X is the diagonal $\{(x, x) \mid x \in X\}$.

Remark 24. Rel is an involutive quantaloid (hom-sets are \bigvee -semilattices w.r.t. the inclusion order, and composition preserves \bigvee in both variables; cf. Lecture 4). Additionally, **Rel** is isomorphic to the Kleisli category of the powerset monad \mathbb{P} on **Set** (see Lecture 7 for more detail on the Kleisli category of a monad).

Definition 25. Given a unital quantale V, a V-relation r from a set X to a set Y is a map $X \times Y \xrightarrow{r} V$ (denoted $X \xrightarrow{r} Y$). The opposite (or dual) of a V-relation $X \xrightarrow{r} Y$ is the V-relation $Y \xrightarrow{r^{\circ}} X$ defined by $r^{\circ}(y, x) = r(x, y)$.

Definition 26. Given a unital quantale V, V-**Rel** is the category, whose objects are sets, and whose morphisms are V-relations $X \xrightarrow{r} Y$. Composition of V-relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z$ is defined by $(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$. Given a set X, the identity 1_X is defined by

$$1_X(x,y) = \begin{cases} k, & x = y \\ \bot_V, & \text{otherwise.} \end{cases}$$

Remark 27. 2-Rel is isomorphic to Rel. V-Rel is a quantaloid (with hom-set \bigvee given by pointwise evaluation), which is involutive (w.r.t. the dual relation operation $(-)^{\circ}$) iff V is commutative (one should observe that given V-relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z$, it follows that $(s \cdot r)^{\circ} = r^{\circ} \cdot s^{\circ}$ iff $\bigvee_{y \in Y} r(x, y) \otimes s(y, z) = (s \cdot r)(x, z) = (s \cdot r)^{\circ}(z, x) = (r^{\circ} \cdot s^{\circ})(z, x) = \bigvee_{y \in Y} s^{\circ}(z, y) \otimes r^{\circ}(y, x) = \bigvee_{y \in Y} s(y, z) \otimes r(x, y)$ for every pair $(z, x) \in Z \times X$; cf. Lecture 4). Moreover, considering V as a quantaloid with one object 1 (also thought of as a singleton set $1 = \{*\}$), we get a full quantaloid embedding $V \xrightarrow{E} V$ -Rel, which is given by $E(1 \xrightarrow{a} 1) = 1 \xrightarrow{a} 1$, where $1 \times 1 \xrightarrow{a} V$ is the map with value a. Additionally, V-Rel is isomorphic to the Kleisli category w.r.t. the V-powerset monad \mathbb{P}_V on Set (an extension of the powerset monad \mathbb{P}), whose Eilenberg-Moore category is the category V-Mod of left unital V-modules.

Remark 28. To avoid trivial cases, suppose that V has at least two elements $(k \neq \bot_V)$. Then there exists a non-full embedding **Set** $\xrightarrow{(-)_{\circ}} V$ -**Rel**, which takes a map $X \xrightarrow{f} Y$ to a relation $X \xrightarrow{f_{\circ}} Y$ given by

$$f_{\circ}(x,y) = \begin{cases} k, & f(x) = y \\ \bot_{V}, & \text{otherwise.} \end{cases}$$

For the sake of simplicity, one identifies a map $X \xrightarrow{f} Y$ and its respective relation $X \xrightarrow{f_{\circ}} Y$, employing the notation f for both. It is easy to see that $1_X \leq f^{\circ} \cdot f$ and $f \cdot f^{\circ} \leq 1_Y$.

1.3. Lax extension of monads

Definition 29. Given a unital quantale V and a functor $\mathbf{Set} \xrightarrow{T} \mathbf{Set}$, a *lax extension* V-**Rel** $\xrightarrow{T} V$ -**Rel** of T to V-**Rel** is a pair of maps $\mathcal{O}_{V-\mathbf{Rel}} \xrightarrow{\hat{T}_{\mathcal{O}}} \mathcal{O}_{V-\mathbf{Rel}}$, $\mathcal{M}_{V-\mathbf{Rel}} \xrightarrow{\hat{T}_{\mathcal{M}}} \mathcal{M}_{V-\mathbf{Rel}}$ (both denoted \hat{T}), which satisfy the following axioms:

(1)
$$\hat{T}(X \xrightarrow{r} Y) = TX \xrightarrow{Tr} TY$$
 for every V-relation $X \xrightarrow{r} Y;$

(2) $\hat{T}r \leq \hat{T}s$ for every V-relations $X \xrightarrow[s]{r} Y$ such that $r \leq s$;

(3) $\hat{T}s \cdot \hat{T}r \leqslant \hat{T}(s \cdot r)$ for every V-relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z$;

(4) $Tf \leq \hat{T}f$ and $(Tf)^{\circ} \leq \hat{T}(f^{\circ})$ for every map $X \xrightarrow{f} Y$.

Example 30. The identity functor on *V*-**Rel** is a lax extension of the identity functor on **Set**. The powerset functor **Set** \xrightarrow{P} **Set** has lax extensions **Rel** $\xrightarrow{\stackrel{P}{\longrightarrow}}$ **Rel**, where, given a relation $X \xrightarrow{r} Y$,

(1) $A \check{P}r B$ iff for every $x \in A$ there exists $y \in B$ such that x r y;

(2) $A \hat{P} r B$ iff for every $y \in B$ there exists $x \in A$ such that x r y.

Every functor T on **Set** has the largest lax extension \hat{T}^{\top} to V-**Rel**, where, given a V-relation $X \xrightarrow{r} Y$, $\hat{T}^{\top}r(\mathfrak{x},\mathfrak{y}) = \top_V$ for every $\mathfrak{x} \in TX$ and every $\mathfrak{y} \in TY$.

Definition 31. Given a unital quantale V and a monad \mathbb{T} on **Set**, a *lax extension* $\hat{\mathbb{T}}$ of \mathbb{T} to V-**Rel** is a triple (\hat{T}, m, e) , where \hat{T} is a lax extension of T to V-**Rel**, and $\hat{T}\hat{T} \xrightarrow{m} \hat{T}$, $1_{V-\text{Rel}} \xrightarrow{e} \hat{T}$ are oplax natural transformations, which means

for every V-relation $X \xrightarrow{r} Y$.

Example 32. The identity monad \mathbb{I} on *V*-**Rel** is a lax extension of the identity monad \mathbb{I} on **Set**. The lax extensions \check{P} and \hat{P} of the powerset functor *P* provide lax extensions of the powerset monad \mathbb{P} on **Set** to **Rel**. Every monad \mathbb{T} on **Set** has the largest lax extension \mathbb{T}^{\top} to *V*-**Rel**, which is given by \hat{T}^{\top} .

2. (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors, and their examples

2.1. (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors

Definition 33. Suppose V is a unital quantale, and $\hat{\mathbb{T}}$ is a lax extension of a monad \mathbb{T} on **Set** to V-**Rel**. A (\mathbb{T}, V) -category (or (\mathbb{T}, V) -algebra, or (\mathbb{T}, V) -space, or lax algebra) is a pair (X, a), which comprises a set X and a V-relation $TX \xrightarrow{a} X$ such that

A (\mathbb{T}, V) -functor (or lax homomorphism) $(X, a) \xrightarrow{f} (Y, b)$ is a map $X \xrightarrow{f} Y$ such that

$$\begin{array}{ccc} TX & \xrightarrow{Tf} & TY \\ a \downarrow & \leqslant & \downarrow b \\ X & \xrightarrow{f} & Y. \end{array}$$

 (\mathbb{T}, V) -Cat is the category of (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors.

Definition 34. The category (\mathbb{I}, V) -**Cat** is denoted V-**Cat**, whose objects (resp. morphisms) are called V-categories (resp. V-functors).

Remark 35. There is an analogy between \mathbb{T} -algebras and \mathbb{T} -homomorphisms w.r.t. a monad \mathbb{T} on **Set**, on one hand, and (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors w.r.t. its lax extension $\hat{\mathbb{T}}$ to V-**Rel**, on the other hand.

Definition 36. Monoidal topology is a branch of categorical topology, which studies the properties of the categories of the form (\mathbb{T}, V) -**Cat**.

2.2. Examples of the categories (\mathbb{T}, V) -Cat

2.2.1. Preordered sets and quasi-pseudo-metric spaces as V-categories

Remark 37. A V-category (X, a) consists of a set X and a V-relation $X \xrightarrow{a} X$ such that (1)

which is equivalent to $1_X \leq a$, which is equivalent to $k \leq a(x, x)$ for every $x \in X$; (2)

which is equivalent to $a \cdot a \leq a$, which is equivalent to $\bigvee_{y \in X} a(x, y) \otimes a(y, z) \leq a(x, z)$ for every $x, z \in X$, which is equivalent to $a(x, y) \otimes a(y, z) \leq a(x, z)$ for every $x, y, z \in X$.

A V-functor $(X, a) \xrightarrow{f} (Y, b)$ has the property that

$$\begin{array}{c} X \xrightarrow{f} Y \\ a \downarrow & \leqslant & \downarrow b \\ X \xrightarrow{f} Y, \end{array}$$

which is equivalent to $f \cdot a \leq b \cdot f$, which is equivalent to $\bigvee_{f(z)=y} a(x,z) \leq b(f(x),y)$ for every $x \in X$ and every $y \in Y$, which is equivalent to $a(x,z) \leq b(f(x), f(z))$ for every $x, z \in X$.

Example 38. A 2-category is a pair (X, \leq) such that $x \leq x$ for every $x \in X$; and $x \leq y, y \leq z$ imply $x \leq z$ for every $x, y, z \in X$. A 2-functor $(X, \leq) \xrightarrow{f} (Y, \leq)$ is a map $X \xrightarrow{f} Y$ such that $x, z \in X$ and $x \leq z$ imply $f(x) \leq f(z)$. As a result, 2-**Cat** is the category **Prost** of preordered sets and monotone maps.

Example 39. A P₊-category is a pair (X, ρ) such that $\rho(x, x) = 0$ for every $x \in X$; and $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$ for every $x, y, z \in X$. A P₊-functor $(X, \rho) \xrightarrow{f} (Y, \varrho)$ is a map $X \xrightarrow{f} Y$ such that $\varrho(f(x), f(z)) \leq \rho(x, z)$ for every $x, z \in X$. As a result, P₊-**Cat** is the category **QPMet** of quasi-pseudo-metric spaces (generalized metric spaces in the sense of F. W. Lawvere) and non-expansive maps.

2.2.2. Topological spaces as (\mathbb{T}, V) -categories

Remark 40. It is well-known that the Eilenberg-Moore category of the ultrafilter monad on **Set** is the category of compact Hausdorff topological spaces. One cannot extend this results to the whole category **Top**, since the latter category is not of algebraic nature (e.g., bijective morphisms in **Top** are not necessarily homeomorphisms). To get the whole category **Top**, one employs a lax extension of the ultrafilter monad.

Definition 41. Given a set X, a *filter on* X is a family \mathfrak{r} of subsets of X such that

(1) $X \in \mathfrak{x};$

(2) $A \in \mathfrak{x}$ and $A \subseteq B$ imply $B \in \mathfrak{x}$;

(3) $A, B \in \mathfrak{x}$ implies $A \cap B \in \mathfrak{x}$.

A filter \mathfrak{x} is called *proper* provided that $\emptyset \notin \mathfrak{x}$. An *ultrafilter* \mathfrak{x} on a set X is a maximal element in the set of proper filters on X, ordered by inclusion.

Example 42. Given a set X, every $x \in X$ provides the *principal* ultrafilter $\dot{x} = \{A \subseteq X \mid x \in A\}$ on X.

Remark 43. A proper filter \mathfrak{x} on X is an ultrafilter on X iff for every $A \subseteq X$, either $A \in \mathfrak{x}$ or $X \setminus A \in \mathfrak{x}$.

Definition 44. The *ultrafilter monad* $\beta = (\beta, m, e)$ on **Set** is given by

- (1) a functor **Set** $\xrightarrow{\beta}$ **Set**, where $\beta X = \{\mathfrak{x} \mid \mathfrak{x} \text{ is an ultrafilter on } X\}$ for every set X, and $\beta X \xrightarrow{\beta f} \beta Y$ is defined by $\beta f(\mathfrak{x}) = \{B \subseteq Y \mid f^{-1}(B) \in \mathfrak{x}\}$ for every map $X \xrightarrow{f} Y$;
- (2) a natural transformation $1_{\mathbf{Set}} \xrightarrow{e} \beta$, where $X \xrightarrow{e_X} \beta X$ is defined by $e_X(x) = \dot{x}$;
- (3) a natural transformation $\beta\beta \xrightarrow{m} \beta$, where $\beta\beta X \xrightarrow{m_X} \beta X$ is defined by $m_X(\mathfrak{X}) = \Sigma \mathfrak{X}$ (filtered sum or Kowalsky sum), where $A \in \Sigma \mathfrak{X}$ iff $\{\mathfrak{x} \in \beta X \mid A \in \mathfrak{x}\} \in \mathfrak{X}$.

Theorem 45. Given a relation $X \xrightarrow{r} Y$, define $\mathfrak{x} \hat{\beta} r \mathfrak{y}$ iff for every $A \in \mathfrak{x}$ and every $B \in \mathfrak{y}$, there exist $x \in A$ and $y \in B$ such that x r y. Then $\hat{\beta} = (\hat{\beta}, m, e)$ is a lax extension to **Rel** of the ultrafilter monad β , in which, additionally, **Rel** $\xrightarrow{\hat{\beta}}$ **Rel** is a functor, and $\hat{\beta}\hat{\beta} \xrightarrow{m} \hat{\beta}$ is a natural transformation.

Remark 46. Every $(\beta, 2)$ -category (X, a) has the following two properties:

- (1) $1_X \leq a \cdot e_X$, which is equivalent to $\dot{x} a x$ for every $x \in X$;
- (2) $a \cdot \hat{\beta}a \leq a \cdot m_X$, which is equivalent to $\mathfrak{X}(\hat{\beta}a)\mathfrak{x}$ and $\mathfrak{x}ax$ imply $(\Sigma\mathfrak{X})ax$ for every $\mathfrak{X} \in \beta\beta X$, every $\mathfrak{x} \in \beta X$, and every $x \in X$.

Every $(\beta, 2)$ -functor $(X, a) \xrightarrow{f} (Y, b)$ satisfies the condition $f \cdot a \leq b \cdot \beta f$, which is equivalent to $\mathfrak{x} a x$ implies $\beta f(\mathfrak{x}) b f(x)$ for every $\mathfrak{x} \in \beta X$ and every $x \in X$.

Definition 47. Given a set X, a closure operation on X is a monotone map $PX \xrightarrow{c} PX$ (w.r.t. the inclusion order) such that $1_{PX} \leq c$ and $c \cdot c \leq c$ (pointwise evaluation as maps). A closure operation c on X is *finitely additive* provided that $c(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} c(A_i)$ for every finite family $\{A_i \mid i \in I\} \subseteq PX$ (equivalently, $c(\emptyset) = \emptyset$ and $c(A \bigcup B) = c(A) \bigcup c(B)$ for every $A, B \in PX$).

Proposition 48. A closure operation c on a set X is finitely additive iff the family $\tau = \{X \setminus A \mid c(A) = A\}$ is a topology on X, i.e., there exists a one-to-one correspondence between finitely additive closure operations on X and topologies on X.

PROOF. As an illustration, one could verify that τ is closed under finite intersections provided that c is finitely additive. Given a finite family $\{X \setminus A_i \mid i \in I\} \subseteq \tau$, it follows that $\bigcap_{i \in I} (X \setminus A_i) = X \setminus (\bigcup_{i \in I} A_i) \stackrel{(\dagger \dagger)}{\in} \tau$, where (\dagger) relies on finite additivity of c, and $(\dagger \dagger)$ follows from the property $c \cdot c = c$ of every closure operation c on X (observe that $1_{PX} \leq c$ implies $c \leq c \cdot c$).

Observe that τ is closed under arbitrary unions for every closure operation c on X, since given a family $\{X \setminus A_i \mid i \in I\} \subseteq \tau$, it follows that $\bigcup_{i \in I} (X \setminus A_i) = X \setminus (\bigcap_{i \in I} A_i) = X \setminus (\bigcap_{i \in I} c(A_i)) \stackrel{(\dagger)}{=} X \setminus c(\bigcap_{i \in I} A_i) \in \tau$, where (\dagger) relies on the fact that $\bigcap_{i \in I} c(A_i) = c(\bigcap_{i \in I} A_i)$, since, on the one hand, $\bigcap_{i \in I} A_i \subseteq A_j$ for every $j \in I$ implies $c(\bigcap_{i \in I} A_i) \subseteq c(A_j)$ for every $j \in I$ implies $c(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} c(A_i)$; and, on the other hand, $\bigcap_{i \in I} c(A_i) \stackrel{(\dagger\dagger)}{=} \bigcap_{i \in I} A_i \subseteq c(\bigcap_{i \in I} A_i)$, where $(\dagger\dagger)$ relies on the fact that $c(A_i) = A_i$ for every $i \in I$.

Definition 49. Given a topological space (X, τ) , a filter \mathfrak{x} on X converges to an element $x \in X$ provided that $U \in \mathfrak{x}$ for every $U \in \tau$ such that $x \in U$. If \mathfrak{x} converges to x, then x is called a *limit* of \mathfrak{x} . The set of limits of a filter \mathfrak{x} is denoted lim \mathfrak{x} .

Proposition 50. Given a finitely additive closure operation c on a set X, the following hold:

(1) for every $A \subseteq X$ and every $x \in X$, $x \in c(A)$ iff there exists $\mathfrak{x} \in \beta X$ such that $A \in \mathfrak{x}$ and $x \in \lim \mathfrak{x}$; (2) for every $\mathfrak{x} \in \beta X$ and every $x \in X$, $x \in \lim \mathfrak{x}$ iff $x \in c(A)$ for every $A \in \mathfrak{x}$.

PROOF. As an illustration, one can show " \Rightarrow " of (2). Given $A \in \mathfrak{x}$, for every $U \in \tau$ (cf. Proposition 48) such that $x \in U$, it follows that $U \in \mathfrak{x}$ (since $x \in \lim \mathfrak{x}$) and, therefore, $U \bigcap A \in \mathfrak{x}$ (since \mathfrak{x} is a filter), which implies $U \bigcap A \neq \emptyset$ (since \mathfrak{x} is an ultrafilter). Thus, $x \in c(A)$. In a similar way, one can show " \Leftarrow " of (1). \Box

Theorem 51. The category $(\beta, 2)$ -Cat is isomorphic to the category Top.

PROOF. The isomorphism between $(\beta, 2)$ -categories and topological spaces is based in the idea that given a set X, a $(\beta, 2)$ -category structure $\beta X \xrightarrow{a} X$ on X represents a convergence relation between ultrafilters on X and elements of X (i.e., a specifies which ultrafilter converges to which element). One then associates with a a finitely additive closure operation c on X, and also shows that every finitely additive closure

operation c on X determines a convergence relation $\beta X \xrightarrow{a} X$, which is a $(\beta, 2)$ -category structure on X.

Given a $(\beta, 2)$ -category (X, a), one defines a closure operation $PX \xrightarrow{\mathtt{clos}(a)} PX$ on X by $(\mathtt{clos}(a))(A) = \{x \in X \mid \text{there exists } \mathfrak{x} \in \beta X \text{ such that } A \in \mathfrak{x} \text{ and } \mathfrak{x}ax\}$ (cf. Proposition 50(1)). Given a finitely additive

closure operation c on X, one defines a $(\beta, 2)$ -category structure $\beta X \xrightarrow{\operatorname{conv}(c)} X$ on X by $\operatorname{\mathfrak{x}}\operatorname{conv}(c) x$ iff $x \in c(A)$ for every $A \in \mathfrak{x}$ (cf. Proposition 50 (2)).

To show that, e.g., $1_{PX} \leq \operatorname{clos}(a)$, notice that given $A \subseteq X$, for every $x \in A$, it follows that $A \in \dot{x}$ and $\dot{x} a x$, i.e., $x \in (\operatorname{clos}(a))(A)$, which implies $A \subseteq (\operatorname{clos}(a))(A)$. To show that, e.g., $1_X \leq \operatorname{conv}(c) \cdot e_X$, notice that given $x \in X$, it follows that $\dot{x} \operatorname{conv}(c) x$, since given $A \subseteq X$, $A \in \dot{x}$ implies $x \in A \subseteq c(A)$, i.e., $x \in c(A)$. \Box

2.2.3. Approach spaces as (\mathbb{T}, V) -categories

Definition 52. An approach space is a pair (X, δ) , where X is a set, and $X \times PX \xrightarrow{\delta} [0, \infty]$ is a map (approach distance) such that

(1) $\delta(x, \{x\}) = 0$ for every $x \in X$;

(2) $\delta(x, \emptyset) = \infty$ for every $x \in X$;

(3) $\delta(x, A \bigcup B) = \min\{\delta(x, A), \delta(x, B)\}$ for every $x \in X$ and every $A, B \subseteq X$;

(4) $\delta(x,A) \leq \delta(x,A^{(u)}) + u$, where $A^{(u)} = \{y \in X \mid \delta(y,A) \leq u\}$ for every $x \in X, A \subseteq X, u \in [0,\infty]$.

A morphism $(X, \delta) \xrightarrow{f} (Y, \sigma)$ of approach spaces is a *non-expansive map* $X \xrightarrow{f} Y$, i.e., $\sigma(f(x), f(A)) \leq \delta(x, A)$ for every $x \in X$ and every $A \subseteq X$. App is the category of approach spaces and non-expansive maps.

Remark 53. Approach spaces provide a unifying framework for topological, metric, and uniform spaces.

Remark 54. Every topological space (X, τ) gives an approach space (X, δ) , in which

$$\delta(x, A) = \begin{cases} 0, & x \in cl(A) \text{ (the closure of the set } A \text{ w.r.t. } \tau) \\ \infty, & \text{otherwise} \end{cases}$$

for every $x \in X$ and every $A \in PX$. One gets thus a full embedding **Top** \hookrightarrow **App**.

Remark 55. Every quasi-pseudo-metric space (X, ρ) gives an approach space (X, δ) , in which $\delta(x, A) = \inf\{\rho(y, x) | y \in A\}$ for every $x \in X$ and every $A \in PX$. One gets thus a full embedding **QPMet** \hookrightarrow **App**.

Theorem 56. Given a P_+ -relation $X \xrightarrow{r} Y$, define a map $\beta X \times \beta Y \xrightarrow{\overline{\beta}r} P_+$ by

$$\bar{\beta}r(\mathfrak{x},\mathfrak{y}) = \bigwedge_{A \in \mathfrak{x}, B \in \mathfrak{y}} \bigvee_{x \in A, y \in B} r(x,y).$$

Then $\bar{\beta} = (\bar{\beta}, m, e)$ is a lax extension to P_+ -**Rel** of the ultrafilter monad β , in which, additionally, V-**Rel** $\xrightarrow{\beta}$ V-**Rel** is a functor, and $\bar{\beta}\bar{\beta} \xrightarrow{m} \bar{\beta}$ is a natural transformation.

Remark 57. Every (β, P_+) -category (X, a) has the following two properties:

(1) $1_X \leq a \cdot e_X$, which is equivalent to $a(\dot{x}, x) = 0$ for every $x \in X$;

 $(2) \ a \cdot \bar{\beta}a \leqslant a \cdot m_X, \text{ which is equivalent to } a(\Sigma \mathfrak{X}, x) \leqslant \bar{\beta}a(\mathfrak{X}, \mathfrak{x}) + a(\mathfrak{x}, x) \text{ for every } \mathfrak{X} \in \beta\beta X, \, \mathfrak{x} \in \beta X, \, x \in X.$

Every (β, P_+) -functor $(X, a) \xrightarrow{f} (Y, b)$ satisfies the condition $f \cdot a \leq b \cdot \beta f$, which is equivalent to $b(\beta f(\mathfrak{x}), f(x)) \leq a(\mathfrak{x}, x)$ for every $\mathfrak{x} \in \beta X$ and every $x \in X$.

Theorem 58. The category (β, P_+) -Cat is isomorphic to the category App.

PROOF. Following the analogy of Theorem 51, given a (β, P_+) -category (X, a), one defines an approach distance $X \times PX \xrightarrow{\mathtt{clos}(a)} [0, \infty]$ by $(\mathtt{clos}(a))(x, A) = \inf\{a(\mathfrak{x}, x) \mid \mathfrak{x} \in \beta A\}$. Given an approach space (X, δ) , one defines a (β, P_+) -category structure $\beta X \xrightarrow{\mathtt{conv}(\delta)} X$ by $(\mathtt{conv}(\delta))(\mathfrak{x}, x) = \sup\{\delta(x, A) \mid A \in \mathfrak{x}\}$. \Box

Remark 59. Theorem 58 actually says that approach spaces provide "numerified topological spaces", since a classical convergence relation is replaced with a numerified "degree of convergence".

2.2.4. Closure spaces as (\mathbb{T}, V) -categories

Definition 60. A closure space is a pair (X, c), where X is a set, and $PX \xrightarrow{c} PX$ is a closure operation on X. A map $(X, c) \xrightarrow{f} (Y, d)$ between closure spaces is *continuous* provided that $f(c(A)) \subseteq d(f(A))$ for every $A \subseteq X$. Cls is the category of closure spaces and continuous maps.

Theorem 61. The lax extension $\hat{\mathbb{P}}$ of the powerset monad \mathbb{P} provides the category ($\mathbb{P}, 2$)-Cat, which is isomorphic to the category Cls.

PROOF. Every $(\mathbb{P}, 2)$ -category (X, a) has the following two properties:

- (1) $1_X \leq a \cdot e_X$, which is equivalent to $\{x\} a x$ for every $x \in X$;
- (2) $a \cdot \hat{P}a \leq a \cdot m_X$, which is equivalent to $\mathcal{A}(\hat{P}a)B$ (i.e., for every $y \in B$, there exists $A \in \mathcal{A}$ such that A a y) and B a x imply $(\bigcup \mathcal{A}) a x$ for every $\mathcal{A} \in PPX$, every $B \in PX$, and every $x \in X$.

Every $(\mathbb{P}, 2)$ -functor $(X, a) \xrightarrow{f} (Y, b)$ satisfies the condition $f \cdot a \leq b \cdot Pf$, which is equivalent to A a x implies Pf(A) b f(x) (i.e., f(A) b f(x)) for every $A \in PX$ and every $x \in X$.

Given a set X, there exists a bijective correspondence between $(\mathbb{P}, 2)$ -category structures $PX \xrightarrow{a} X$ and closure operations $PX \xrightarrow{c} PX$, which is given by Aax iff $x \in c(A)$ for every $A \in PX$, $x \in X$. Additionally, a $(\mathbb{P}, 2)$ -functor $(X, a) \xrightarrow{f} (Y, b)$ provides a continuous map $(X, c) \xrightarrow{f} (Y, d)$ and vice versa.

To show that, e.g., $1_{PX} \leq c$ (for a given ($\mathbb{P}, 2$)-category structure $PX \xrightarrow{a} X$ on X), observe that for every $A \in PX$, $x \in A$ implies $\{x\} a x$ (by item (1) above) implies $\{\{y\} | y \in A\} \hat{P}a\{x\}$ and $\{x\} a x$ implies $(\bigcup\{\{y\} | y \in A\}) a x$ (by item (2) above) implies A a x implies $x \in c(A)$, which results in $A \subseteq c(A)$.

To show that, e.g., $1_X \leq a \cdot e_X$ (for a given closure operation $PX \xrightarrow{c} PX$ on X), observe that for every $x \in X, x \in \{x\} \subseteq c\{x\}$ implies $x \in c\{x\}$ implies $\{x\} a x$, which is exactly the condition of item (1) above.

To verify that a $(\mathbb{P}, 2)$ -functor $(X, a) \xrightarrow{f} (Y, b)$ provides a continuous map $(X, c) \xrightarrow{f} (Y, d)$, observe that for every $A \in PX$, $x \in c(A)$ implies A a x implies f(A) b f(x) (since f is a $(\mathbb{P}, 2)$ -functor) implies $f(x) \in d(f(A))$. As a consequence, one obtains that $f(c(A)) \subseteq d(f(A))$.

To check that a continuous map $(X,c) \xrightarrow{f} (Y,d)$ provides a $(\mathbb{P},2)$ -functor $(X,a) \xrightarrow{f} (Y,b)$, observe that for every $A \in PX$ and every $x \in X$, A a x implies $x \in c(A)$ implies $f(x) \in d(f(A))$ (since f is continuous) implies f(A) b f(x), which is exactly the above-mentioned condition of $(\mathbb{P},2)$ -functors. \Box

Definition 62. There exists the *finite-powerset monad* $\mathbb{P}_{\text{fin}} = (P_{\text{fin}}, m, e)$ on **Set**, in which the functor **Set** $\xrightarrow{P_{\text{fin}}}$ **Set** is given on objects by $P_{\text{fin}}X = \{A \subseteq X \mid A \text{ is finite}\}$. The natural transformations m and e are the restrictions of the respective natural transformations of the powerset monad \mathbb{P} on **Set**.

Definition 63. A closure space (X, c) is called *finitary* (or *algebraic*) provided that $c(A) = \bigcup_{B \in P_{\text{fin}}A} c(B)$ for every $A \in PX$. **Cls**_{fin} is the full subcategory of **Cls** of finitary closure spaces.

Theorem 64. The lax extension $\hat{\mathbb{P}}_{fin}$ of the finite-powerset monad \mathbb{P}_{fin} provides the category (\mathbb{P}_{fin} , 2)-Cat, which is isomorphic to the category Cls_{fin}.

PROOF. One uses the following modification of the proof of Theorem 61.

Given a set X, there exists a bijective correspondence between $(\mathbb{P}_{\text{fin}}, 2)$ -category structures $P_{\text{fin}}X \xrightarrow{a} X$ and closure operations $P_{\text{fin}}X \xrightarrow{c_{\text{fin}}} P_{\text{fin}}X$, which is given by A a x iff $x \in c_{\text{fin}}(A)$ for every $A \in P_{\text{fin}}X$, $x \in X$. Moreover, a $(\mathbb{P}_{\text{fin}}, 2)$ -functor $(X, a) \xrightarrow{f} (Y, b)$ provides a continuous map $(X, c_{\text{fin}}) \xrightarrow{f} (Y, d_{\text{fin}})$ and vice versa.

Given a set X, there also exists a bijective correspondence between closure operations $P_{\text{fin}}X \xrightarrow{c_{\text{fin}}} P_{\text{fin}}X$ and algebraic closure operations $PX \xrightarrow{c} PX$, which is given in one direction by $x \in c(A)$ iff there exists

 $B \in P_{\text{fin}}A$ such that $x \in c_{\text{fin}}(B)$ for every $A \in PX$, $x \in X$, and the opposite direction is the restriction of c to $P_{\text{fin}}X$. This correspondence respects continuity of maps, e.g., given a continuous map $(X, c_{\text{fin}}) \xrightarrow{f} (Y, d_{\text{fin}})$, for every $x \in X$ and every $A \in PX$, $x \in c(A)$ implies the existence of $B \in P_{\text{fin}}A$ such that $x \in c_{\text{fin}}(B)$ implies $f(x) \in d_{\text{fin}}(f(B))$ (since f is continuous) implies $f(x) \in d(f(B))$ (since $f(B) \in P_{\text{fin}}(f(A))$).

References

- [1] M. Barr, Relational algebras, Reports of the Midwest Category Seminar, vol. IV, Lect. Notes Math. 137, 1970, pp. 39-55.
- [2] M. M. Clementino and D. Hofmann, On extensions of lax monads, Theory Appl. Categ. 13 (2004), 41-60.
- M. M. Clementino, D. Hofmann, and W. Tholen, One setting for all: Metric, topology, uniformity, approach structure, Appl. Categ. Struct. 12 (2004), no. 2, 127–154.
- [4] R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, 1989.
- [5] H. Herrlich, Topologie I. Topologische Räume. Unter Mitarb. von H. Bargenda, vol. 2, Heldermann Verlag, Lemgo, 1986.
 [6] D. Hofmann, G. J. Seal, and W. Tholen (eds.), Monoidal Topology: A Categorical Approach to Order, Metric and Topology,
- Cambridge University Press, 2014. [7] D. Kruml and J. Paseka, Algebraic and Categorical Aspects of Quantales, Handbook of Algebra (M. Hazewinkel, ed.),
- vol. 5, Elsevier, 2008, pp. 323–362.
- [8] H. P. Künzi, Complete quasi-pseudo-metric spaces, Acta Math. Hung. 59 (1992), no. 1-2, 121–146.
- [9] R. Lowen, Approach spaces a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183–226.
- [10] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag, 1998.
- [11] J. MacDonald and M. Sobral, Aspects of Monads, Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory (M. C. Pedicchio and W. Tholen, eds.), Cambridge University Press, 2004, pp. 213–268.
- [12] E. G. Manes, A triple theoretic construction of compact algebras, Semin. Triples and Categorical Homology Theory, ETH, Zurich, 1966/67, Lect. Notes Math., vol. 80, 1969, pp. 91–118.
- [13] K. I. Rosenthal, The Theory of Quantaloids, Addison Wesley Longman, 1996.