Elements of monoidal topology^{*} Lecture 1: (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors

Sergejs Solovjovs

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences Prague (CZU) Kam´yck´a 129, 16500 Prague - Suchdol, Czech Republic

Abstract

This lecture introduces monoidal topology in the form of (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors for a monad \mathbb{T} on **Set** and a unital quantale V , and shows that the examples of these structures include preordered sets, as well as quasi-pseudo-metric, topological, approach, and closure spaces, together with their respective maps.

1. Categorical preliminaries

1.1. Monads and their algebras

Definition 1. A *category* **X** is a sextuple $(0, M, dom, cod, 1, \cdot)$, where O is a class of *objects* (denoted $X, Y, Z, etc.), M$ is a class of *morphisms* (denoted f, g, h, etc.), $M \stackrel{dom}{\longrightarrow}$ $\overrightarrow{C_{cod}}$ \mathcal{O} (*domain* and *codomain*) and

 $\mathcal{O} \to \mathcal{M}$ (*identity morphisms* denoted $1_X, 1_Y, 1_Z$, *etc.*) are maps, and \cdot is a partial binary operation on M (*composition*) such that g · f is defined iff cod $f = dom g$. Given $X, Y \in \mathcal{O}$ and $f \in \mathcal{M}$, one uses the notation $X \stackrel{f}{\rightarrow} Y$ as a shorthand for "dom $f = X$ and cod $f = Y$ ". Additionally, one assumes the following axioms:

- (1) for every object $X, X \xrightarrow{1_X} X;$
- (2) for every objects X and Y, the family $\mathbf{X}(X,Y) := \{f \in \mathcal{M} | X \stackrel{f}{\to} Y\}$ is a set (*hom-set*);
- (3) $h \cdot (g \cdot f) = (h \cdot g) \cdot f$ for every morphisms $X \xrightarrow{f} Y, Y \xrightarrow{g} Z$ and $Z \xrightarrow{h} W$;
- (4) $1_Y \cdot f = f = f \cdot 1_X$ for every morphism $X \xrightarrow{f} Y$.

Example 2. There exist the categories **Set** of sets and maps, **Top** of topological spaces and continuous maps, **Met** of metric spaces and non-expansive maps, **Pos** of partially ordered sets and monotone maps.

Definition 3. For every category $X = (0, M, dom, cod, 1, \cdot)$, there exists the *opposite* (or *dual*) *category* of **X**, namely, the category $X^{op} = (0, M, cod, dom, 1, *)$, in which $*$ is defined by $f * g = g \cdot f$. In other words, X and X^{op} have the same objects and morphisms, whereas the domain and the codomain maps are switched, and the composition laws are the "opposites" of each other.

[⋆]This lecture course was supported by the ESF Project No. CZ.1.07/2.3.00/20.0051 "Algebraic methods in Quantum Logic" of the Masaryk University in Brno, Czech Republic.

Email address: solovjovs@tf.czu.cz (Sergejs Solovjovs) *URL:* http://home.czu.cz/solovjovs (Sergejs Solovjovs)

Preprint submitted to the Masaryk University in Brno July 1, 2022

Proposition 4. For every category **X**, $(\mathbf{X}^{op})^{op} = \mathbf{X}$.

Definition 5. A *functor* F from a category **X** to a category **Y** is a pair of maps $\mathcal{O}_\mathbf{X} \xrightarrow{F_{\mathcal{O}}} \mathcal{O}_\mathbf{Y}$ and $\mathcal{M}_\mathbf{X} \xrightarrow{F_{\mathcal{M}}}$ $\mathcal{M}_{\mathbf{Y}}$ (both denoted F), which satisfy the following axioms:

- (1) $F(X \xrightarrow{f} Y) = FX \xrightarrow{Ff} FY$ for every **X**-morphism $X \xrightarrow{f} Y$;
- (2) $F(g \cdot f) = Fg \cdot Ff$ for every **X**-morphisms $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$;
- (3) $F1_X = 1_{FX}$ for every **X**-object X.

Example 6.

- (1) Given a category **X**, there exists the identity functor 1_X on **X** defined by $1_X(X \stackrel{f}{\to} Y) = X \stackrel{f}{\to} Y$ for every **X**-morphism $X \xrightarrow{f} Y$.
- (2) There exist the forgetful functors $\text{Top} \xrightarrow{|-|} \text{Set}$, $\text{Met} \xrightarrow{|-|} \text{Set}$, and $\text{Pos} \xrightarrow{|-|} \text{Set}$, as well as the powerset functor **Set** $\stackrel{P}{\to}$ **Set** defined by $P(X \stackrel{f}{\to} Y) = PX \stackrel{Pf}{\to} PY$, where $PX = \{A \mid A \subseteq X\}$ and $P f(A) = f(A) = \{ f(x) | x \in A \}$ for every map $X \xrightarrow{f} Y$.

Remark 7. Functors can be composed componentwise as pairs of maps. The composition of two functors $\mathbf{X} \stackrel{F}{\to} \mathbf{Y}$ and $\mathbf{Y} \stackrel{G}{\to} \mathbf{Z}$ is often written GF instead of $G \cdot F$.

 $\mathbf{Definition 8. A }$ *natural transformation* α from a functor $\mathbf{X} \stackrel{F}{\to} \mathbf{Y}$ to a functor $\mathbf{X} \stackrel{G}{\to} \mathbf{Y}$ is a map $\mathcal{O}_{\mathbf{X}} \stackrel{\alpha}{\to} \mathcal{M}_{\mathbf{Y}}$ such that $FX \xrightarrow{\alpha_X} GX$ for every $X \in \mathcal{O}_\mathbf{X}$, and, additionally, the diagram

commutes for every **X**-morphism $X \xrightarrow{f} Y$.

Example 9. There exists a natural transformation $1_{\textbf{Set}} \stackrel{e}{\to} P$, with $X \stackrel{e_X}{\longrightarrow} PX$ given by $e_X(x) = \{x\}.$

Remark 10. Given functors and a natural transformation as in the diagram $W \stackrel{K}{\longrightarrow} X$ F & G \overrightarrow{A} **Y** $\stackrel{H}{\longrightarrow}$ **Z**,

there exist the following natural transformations (*whiskering by a functor* from the left or right):

- (1) $HF \xrightarrow{H\alpha} HG$ given by $HFX \xrightarrow{(H\alpha)_X} HGX := HFX \xrightarrow{H(\alpha_X)} HGX;$
- (2) $FK \xrightarrow{\alpha K} GK$ given by $FKW \xrightarrow{(\alpha K)_{W}} GKW := FKW \xrightarrow{\alpha_{KW}} GKW$.

Definition 11. A *monad* \mathbb{T} on a category **X** is a triple (T, m, e) , where $\mathbf{X} \xrightarrow{T} \mathbf{X}$ is a functor, and $TT \xrightarrow{m} T$, $1\textbf{x}$ $\stackrel{e}{\rightarrow}$ T are natural transformations, which make the diagrams

commute.

Example 12. There exists the powerset monad $\mathbb{P} = (P, m, e)$ on **Set**, with $X \xrightarrow{e_X} PX$ given by $e_X(x) = \{x\}$ and $PPX \xrightarrow{m_X} PX$ given by $m_X(\mathcal{A}) = \bigcup \mathcal{A}$.

Remark 13. Monads on a category **X** are precisely the monoids in the strict monoidal category **X ^X** (see Lecture 4 for more detail on monoidal categories).

Definition 14. Given a monad $\mathbb T$ on a category $\mathbf X$, a $\mathbb T$ *-algebra* (or *Eilenberg-Moore algebra*) is a pair (X, a) , where X is an **X**-object, and $TX \xrightarrow{\alpha} X$ is an **X**-morphism, which makes the diagrams

commute. A \mathbb{T} *-homomorphism* $(X, a) \stackrel{f}{\to} (Y, b)$ is an **X**-morphism $X \stackrel{f}{\to} Y$, which makes the diagram

commute. **X T** is the category of **T**-algebras and **T**-homomorphisms (the *Eilenberg-Moore category* of **T**).

Example 15. Set^{ \mathbb{P} **} is isomorphic to the category Sup** of $\sqrt{\ }$ -semilattices and $\sqrt{\ }$ -preserving maps.

1.2. Quantale-valued relations

Definition 16. A \bigvee -semilattice is a partially ordered set (V, \leq) , which has arbitrary joins (denoted \bigvee).

Remark 17. Every \bigvee -semilattice (V, \leqslant) is a complete lattice, in which $\bot_V := \bigvee \varnothing$ (the smallest element) and $\top_V := \bigwedge \varnothing$ (the largest element).

Definition 18. A *quantale* V is a \vee -semilattice, which is equipped with an associative binary operation $V \times V \stackrel{\otimes}{\longrightarrow} V$ (*multiplication*) such that $a \otimes (\bigvee B) = \bigvee_{b \in B} a \otimes b$ and $(\bigvee B) \otimes a = \bigvee_{b \in B} (b \otimes a)$ for every $a \in V$ and every $B \subseteq V$. A quantale V is said to be

(1) *unital* provided that its multiplication has a unit k;

(2) *commutative* provided that $a \otimes b = b \otimes a$ for every $a, b \in V$.

Example 19. There exists the two-element unital quantale $2 = (\{\bot, \top\}, \land, \top)$. The extended real half-line $[0, \infty]$ gives a unital quantale $P_+ = ([0, \infty]^{op}, +, 0)$.

Remark 20. Every unital quantale is a strict monoidal closed category (see Lecture 4 for more detail on monoidal categories).

Remark 21. Given a set X, there is a one-to-one correspondence between subsets of X and maps $X \to 2$. For a subset $S \subseteq X$, one defines $X \xrightarrow{xs} 2$ (*characteristic map* of S) by $\chi_S(x) = \top$ iff $x \in S$, and vice versa.

Definition 22. A *relation* r *from* a set X *to* a set Y is a map $X \times Y \xrightarrow{r} 2$ (denoted $X \xrightarrow{r} Y$). Given ✤ $x \in X$ and $y \in Y$, one uses $x \, r \, y$ as a shorthand for " $r(x, y) = T$ ". The *opposite* (or *dual*) of a relation $X \xrightarrow{r} Y$ is the relation $Y \xrightarrow{r^{\circ}} X$ defined by $y r^{\circ} x$ iff $x r y$. ✤ ✤

Definition 23. Rel is the category, whose objects are sets, and whose morphisms are relations $X \stackrel{r}{\longrightarrow} Y$. ✤ Composition of relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z$ is defined by $x(s \cdot r) z$ iff there exists $y \in Y$ such that ✤ ✤ $x r y$ and $y s z$. Given a set X, the identity 1_X is the diagonal $\{(x, x) | x \in X\}$.

Remark 24. Rel is an involutive quantaloid (hom-sets are \vee -semilattices w.r.t. the inclusion order, and composition preserves \vee in both variables; cf. Lecture 4). Additionally, **Rel** is isomorphic to the Kleisli category of the powerset monad $\mathbb P$ on **Set** (see Lecture 7 for more detail on the Kleisli category of a monad).

Definition 25. Given a unital quantale V, a V-relation r from a set X to a set Y is a map $X \times Y \stackrel{r}{\to} V$ (denoted $X \xrightarrow{r} Y$). The *opposite* (or *dual*) of a V-relation $X \xrightarrow{r} Y$ is the V-relation $Y \xrightarrow{r^{\circ}} X$ ✤ ✤ ✤ defined by $r^{\circ}(y, x) = r(x, y)$.

Definition 26. Given a unital quantale V , V -**Rel** is the category, whose objects are sets, and whose morphisms are V-relations $X \xrightarrow{r} Y$. Composition of V-relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z$ is defined ✤ ✤ ✤ by $(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$. Given a set X, the identity 1_X is defined by

$$
1_X(x,y) = \begin{cases} k, & x = y \\ \perp_V, & \text{otherwise.} \end{cases}
$$

Remark 27. 2-**Rel** is isomorphic to **Rel**. *V*-**Rel** is a quantaloid (with hom-set \vee given by pointwise evaluation), which is involutive (w.r.t. the dual relation operation $(-)^{\circ}$) iff V is commutative (one should observe that given V-relations $X \longrightarrow Y$ and $Y \longrightarrow Z$, it follows that $(s \cdot r)^{\circ} = r^{\circ} \cdot s^{\circ}$ iff $\bigvee_{y \in Y} r(x, y) \otimes$ ✤ ✤ $s(y, z) = (s \cdot r)(x, z) = (s \cdot r)^{\circ}(z, x) = (r^{\circ} \cdot s^{\circ})(z, x) = \bigvee_{y \in Y} s^{\circ}(z, y) \otimes r^{\circ}(y, x) = \bigvee_{y \in Y} s(y, z) \otimes r(x, y)$ for every pair $(z, x) \in Z \times X$; cf. Lecture 4). Moreover, considering V as a quantaloid with one object 1 (also thought of as a singleton set $1 = \{*\}$, we get a full quantaloid embedding $V \xrightarrow{E} V$ -**Rel**, which is given by $E(1 \xrightarrow{a} 1) = 1 \xrightarrow{a} 1$, where $1 \times 1 \xrightarrow{a} V$ is the map with value a. Additionally, V-**Rel** is isomorphic to the Kleisli category w.r.t. the V-powerset monad \mathbb{P}_V on **Set** (an extension of the powerset monad \mathbb{P}), whose Eilenberg-Moore category is the category V-**Mod** of left unital V-modules.

Remark 28. To avoid trivial cases, suppose that V has at least two elements $(k \neq \bot_V)$. Then there exists a non-full embedding $\textbf{Set} \xrightarrow{(-)_{\circ}} V \textbf{-Rel}$, which takes a map $X \xrightarrow{f} Y$ to a relation $X \xrightarrow{f_{\circ}} Y$ given by ✤

$$
f_{\circ}(x, y) = \begin{cases} k, & f(x) = y \\ \perp_V, & \text{otherwise.} \end{cases}
$$

For the sake of simplicity, one identifies a map $X \xrightarrow{f} Y$ and its respective relation $X \xrightarrow{f_{\circ}} Y$, employing ✤ the notation f for both. It is easy to see that $1_X \leqslant f^{\circ} \cdot f$ and $f \cdot f^{\circ} \leqslant 1_Y$.

1.3. Lax extension of monads

Definition 29. Given a unital quantale V and a functor $\textbf{Set} \overset{T}{\to} \textbf{Set}$, a *lax extension* V-**Rel** $\overset{\hat{T}}{\to}$ V-**Rel** of T to V**-Rel** is a pair of maps $\mathcal{O}_{V\text{-}\text{Rel}} \xrightarrow{\hat{T}_{\mathcal{O}}} \mathcal{O}_{V\text{-}\text{Rel}}$, $\mathcal{M}_{V\text{-}\text{Rel}} \xrightarrow{\hat{T}_{\mathcal{M}}} \mathcal{M}_{V\text{-}\text{Rel}}$ (both denoted \hat{T}), which satisfy the following axioms:

(1)
$$
\hat{T}(X \xrightarrow{r} Y) = TX \xrightarrow{\hat{T}_r} TY
$$
 for every V-relation $X \xrightarrow{r} Y$;

(2) $\hat{T}r \leq \hat{T}s$ for every V-relations $X \longrightarrow$ ✤ ✤ $\xrightarrow{s} Y$ such that $r \leq s$;

(3) $\hat{T}s \cdot \hat{T}r \leq \hat{T}(s \cdot r)$ for every V-relations $X \xrightarrow{r} Y$ and $Y \xrightarrow{s} Z;$ ✤ ✤

(4) $Tf \leq \hat{T}f$ and $(Tf)^\circ \leq \hat{T}(f^\circ)$ for every map $X \xrightarrow{f} Y$.

Example 30. The identity functor on V-Rel is a lax extension of the identity functor on Set. The powerset $\text{functor } \mathbf{Set} \stackrel{P}{\longrightarrow} \mathbf{Set} \text{ has lax extensions } \textbf{Rel} \stackrel{\check{P}}{\longrightarrow}$ \overrightarrow{P} **Rel**, where, given a relation $X \xrightarrow{r} Y$, ✤

(1) $A \check{P} r B$ iff for every $x \in A$ there exists $y \in B$ such that $x r y$;

(2) $\hat{A} \hat{P} r B$ iff for every $y \in B$ there exists $x \in A$ such that $x r y$.

Every functor T on **Set** has the largest lax extension \hat{T}^{\top} to V-**Rel**, where, given a V-relation $X \xrightarrow{r} Y$, ✤ $\hat{T}^{\top}r(\mathfrak{x},\mathfrak{y})=\top_V$ for every $\mathfrak{x}\in TX$ and every $\mathfrak{y}\in TY$.

Definition 31. Given a unital quantale V and a monad \mathbb{T} on **Set**, a *lax extension* $\hat{\mathbb{T}}$ of \mathbb{T} to V-**Rel** is a triple (\hat{T}, m, e) , where \hat{T} is a lax extension of T to V-**Rel**, and $\hat{T}\hat{T} \stackrel{m}{\longrightarrow} \hat{T}$, 1_{V} -**Rel** $\stackrel{e}{\rightarrow} \hat{T}$ are *oplax natural transformations*, which means

$$
\begin{array}{ccc}\nTTX \xrightarrow{m_X} TX & \text{and} & X \xrightarrow{e_X} TX \\
\hat{T}\hat{T}r \downarrow & \leq & \downarrow \hat{T}r \\
TTY \xrightarrow{m_Y} TY & & Y \xrightarrow{e_Y} TY\n\end{array}
$$

for every V-relation $X \xrightarrow{r} Y$. ✤

Example 32. The identity monad **I** on V -**Rel** is a lax extension of the identity monad **I** on **Set**. The lax extensions \check{P} and \hat{P} of the powerset functor P provide lax extensions of the powerset monad $\mathbb P$ on **Set** to **Rel.** Every monad \mathbb{T} on **Set** has the largest lax extension \mathbb{T}^{\top} to V-**Rel**, which is given by \hat{T}^{\top} .

2. (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors, and their examples

2.1. (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors

Definition 33. Suppose V is a unital quantale, and $\hat{\mathbb{T}}$ is a lax extension of a monad \mathbb{T} on **Set** to V-**Rel**. A (\mathbb{T}, V) *-category* (or (\mathbb{T}, V) *-algebra*, or (\mathbb{T}, V) *-space*, or *lax algebra*) is a pair (X, a) , which comprises a set X and a V-relation $TX \xrightarrow{a} X$ such that

A (\mathbb{T}, V) -functor (or *lax homomorphism*) $(X, a) \xrightarrow{f} (Y, b)$ is a map $X \xrightarrow{f} Y$ such that

$$
TX \xrightarrow{Tf} TY
$$

\n
$$
a \downarrow \leq \qquad \downarrow b
$$

\n
$$
X \xrightarrow{f} Y.
$$

 (\mathbb{T}, V) -**Cat** is the category of (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors.

Definition 34. The category (I, V) -**Cat** is denoted V-**Cat**, whose objects (resp. morphisms) are called V *-categories* (resp. V *-functors*).

Remark 35. There is an analogy between **T**-algebras and **T**-homomorphisms w.r.t. a monad **T** on **Set**, on one hand, and (\mathbb{T}, V) -categories and (\mathbb{T}, V) -functors w.r.t. its lax extension $\hat{\mathbb{T}}$ to V-**Rel**, on the other hand.

Definition 36. *Monoidal topology* is a branch of categorical topology, which studies the properties of the categories of the form (T, V) **-Cat**.

2.2. Examples of the categories (**T**, V)*-***Cat**

2.2.1. Preordered sets and quasi-pseudo-metric spaces as V *-categories*

Remark 37. A V-category (X, a) consists of a set X and a V-relation $X \xrightarrow{a} X$ such that ✤ (1)

which is equivalent to $1_X \leq a$, which is equivalent to $k \leq a(x, x)$ for every $x \in X$;

(2)

which is equivalent to $a \cdot a \leqslant a$, which is equivalent to $\bigvee_{y \in X} a(x, y) \otimes a(y, z) \leqslant a(x, z)$ for every $x, z \in X$, which is equivalent to $a(x, y) \otimes a(y, z) \leqslant a(x, z)$ for every $x, y, z \in X$.

A V-functor $(X, a) \xrightarrow{f} (Y, b)$ has the property that

$$
X \xrightarrow{f} Y
$$

\n
$$
a \downarrow \leq \downarrow b
$$

\n
$$
X \xrightarrow{f} Y,
$$

which is equivalent to $f \cdot a \leqslant b \cdot f$, which is equivalent to $\bigvee_{f(z)=y} a(x, z) \leqslant b(f(x), y)$ for every $x \in X$ and every $y \in Y$, which is equivalent to $a(x, z) \leqslant b(f(x), f(z))$ for every $x, z \in X$.

Example 38. A 2-category is a pair (X, \leqslant) such that $x \leqslant x$ for every $x \in X$; and $x \leqslant y$, $y \leqslant z$ imply $x \leqslant z$ for every $x, y, z \in X$. A 2-functor $(X, \leqslant) \stackrel{f}{\to} (Y, \leqslant)$ is a map $X \stackrel{f}{\to} Y$ such that $x, z \in X$ and $x \leqslant z$ imply $f(x) \leq f(z)$. As a result, 2-**Cat** is the category **Prost** of preordered sets and monotone maps.

Example 39. A P₊-category is a pair (X, ρ) such that $\rho(x, x) = 0$ for every $x \in X$; and $\rho(x, z) \leq \rho(x, y) + \rho(x, y)$ $\rho(y, z)$ for every $x, y, z \in X$. A P_{+} -functor $(X, \rho) \stackrel{f}{\to} (Y, \rho)$ is a map $X \stackrel{f}{\to} Y$ such that $\rho(f(x), f(z)) \leqslant \rho(x, z)$ for every $x, z \in X$. As a result, P_{+} -**Cat** is the category **QPMet** of quasi-pseudo-metric spaces (generalized metric spaces in the sense of F. W. Lawvere) and non-expansive maps.

2.2.2. Topological spaces as (**T**, V)*-categories*

Remark 40. It is well-known that the Eilenberg-Moore category of the ultrafilter monad on **Set** is the category of compact Hausdorff topological spaces. One cannot extend this results to the whole category **Top**, since the latter category is not of algebraic nature (e.g., bijective morphisms in **Top** are not necessarily homeomorphisms). To get the whole category **Top**, one employs a lax extension of the ultrafilter monad.

Definition 41. Given a set X, a *filter on* X is a family $\mathfrak x$ of subsets of X such that

(1) $X \in \mathfrak{x}$;

(2) $A \in \mathfrak{x}$ and $A \subseteq B$ imply $B \in \mathfrak{x}$;

(3) $A, B \in \mathfrak{x}$ implies $A \cap B \in \mathfrak{x}$.

A filter x is called *proper* provided that $\emptyset \notin \mathfrak{x}$. An *ultrafilter* x on a set X is a maximal element in the set of proper filters on X, ordered by inclusion.

Example 42. Given a set X, every $x \in X$ provides the *principal* ultrafilter $\dot{x} = \{A \subseteq X \mid x \in A\}$ on X.

Remark 43. A proper filter x on X is an ultrafilter on X iff for every $A \subseteq X$, either $A \in \mathfrak{x}$ or $X \setminus A \in \mathfrak{x}$.

Definition 44. The *ultrafilter monad* $\beta = (\beta, m, e)$ on **Set** is given by

- (1) a functor **Set** $\stackrel{\beta}{\rightarrow}$ **Set**, where $\beta X = \{x \mid x$ is an ultrafilter on X for every set X, and $\beta X \stackrel{\beta f}{\rightarrow} \beta Y$ is defined by $\beta f(\mathfrak{x}) = \{ B \subseteq Y \mid f^{-1}(B) \in \mathfrak{x} \}$ for every map $X \xrightarrow{f} Y$;
- (2) a natural transformation $1_{\textbf{Set}} \stackrel{e}{\rightarrow} \beta$, where $X \stackrel{ex}{\rightarrow} \beta X$ is defined by $e_X(x) = \dot{x}$;
- (3) a natural transformation $\beta \beta \stackrel{m}{\rightarrow} \beta$, where $\beta \beta X \stackrel{m_X}{\rightarrow} \beta X$ is defined by $m_X(\mathfrak{X}) = \Sigma \mathfrak{X}$ (*filtered sum* or *Kowalsky sum*), where $A \in \Sigma \mathfrak{X}$ iff $\{ \mathfrak{x} \in \beta X \mid A \in \mathfrak{x} \} \in \mathfrak{X}$.

Theorem 45. *Given a relation* $X \longrightarrow Y$, *define* $\mathfrak{p} \hat{\beta}$ r \mathfrak{p} *iff for every* $A \in \mathfrak{x}$ *and every* $B \in \mathfrak{y}$ *, there exist* ✤ $x \in A$ and $y \in B$ such that $x \, r \, y$. Then $\hat{\beta} = (\hat{\beta}, m, e)$ is a lax extension to **Rel** of the ultrafilter monad β , in *which, additionally,* **Rel** $\stackrel{\hat{\beta}}{\rightarrow}$ **Rel** *is a functor, and* $\hat{\beta}\hat{\beta} \stackrel{m}{\rightarrow} \hat{\beta}$ *is a natural transformation.*

Remark 46. Every $(\beta, 2)$ -category (X, a) has the following two properties:

- (1) $1_X \leq a \cdot e_X$, which is equivalent to $\dot{x} a x$ for every $x \in X$;
- (2) $a \cdot \hat{\beta}a \leq a \cdot m_X$, which is equivalent to $\mathfrak{X}(\hat{\beta}a)$ x and $\mathfrak{x} a x$ imply $(\Sigma \mathfrak{X}) a x$ for every $\mathfrak{X} \in \beta\beta X$, every $\mathfrak{x} \in \beta X$, and every $x \in X$.

Every (β , 2)-functor $(X, a) \stackrel{f}{\to} (Y, b)$ satisfies the condition $f \cdot a \leqslant b \cdot \beta f$, which is equivalent to $\mathfrak{p} a x$ implies $\beta f(\mathfrak{x})$ b $f(x)$ for every $\mathfrak{x} \in \beta X$ and every $x \in X$.

Definition 47. Given a set X, a *closure operation* on X is a monotone map $PX \xrightarrow{c} PX$ (w.r.t. the inclusion order) such that $1_{PX} \leq c$ and $c \cdot c \leq c$ (pointwise evaluation as maps). A closure operation c on X is *finitely additive* provided that $c(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} c(A_i)$ for every finite family $\{A_i | i \in I\} \subseteq PX$ (equivalently, $c(\emptyset) = \emptyset$ and $c(A \cup B) = c(A) \cup c(B)$ for every $A, B \in PX$).

Proposition 48. *A closure operation* c *on a set* X *is finitely additive iff the family* $\tau = \{X \setminus A | c(A) = A\}$ *is a topology on* X*, i.e., there exists a one-to-one correspondence between finitely additive closure operations on* X *and topologies on* X*.*

PROOF. As an illustration, one could verify that τ is closed under finite intersections provided that c is finitely additive. Given a finite family $\{X\setminus A_i | i \in I\} \subseteq \tau$, it follows that $\bigcap_{i \in I} (X \setminus A_i) = X \setminus (\bigcup_{i \in I} A_i) = X$ $X\setminus(\bigcup_{i\in I}c(A_i))\stackrel{(\dagger)}{=} X\setminus c(\bigcup_{i\in I}A_i)\stackrel{(\dagger\dagger)}{\in}\tau$, where (\dagger) relies on finite additivity of c, and $(\dagger\dagger)$ follows from the property $c \cdot c = c$ of every closure operation c on X (observe that $1_{PX} \leq c$ implies $c \leq c \cdot c$).

Observe that τ is closed under arbitrary unions for every closure operation c on X, since given a family $\{X\setminus A_i\,|\,i\in I\}\subseteq \tau$, it follows that $\bigcup_{i\in I}(X\setminus A_i)=X\setminus(\bigcap_{i\in I}A_i)=X\setminus(\bigcap_{i\in I}c(A_i))\stackrel{(\dagger)}{=}X\setminus c(\bigcap_{i\in I}A_i)\in \tau$, where (†) relies on the fact that $\bigcap_{i\in I} c(A_i) = c(\bigcap_{i\in I} A_i)$, since, on the one hand, $\bigcap_{i\in I} A_i \subseteq A_j$ for every $j \in I$ implies $c(\bigcap_{i \in I} A_i) \subseteq c(A_j)$ for every $j \in I$ implies $c(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} c(A_i)$; and, on the other hand, $\bigcap_{i\in I} c(A_i) \stackrel{\text{(†t)}}{=} \bigcap_{i\in I} A_i \subseteq c(\bigcap_{i\in I} A_i)$, where $(\dagger\dagger)$ relies on the fact that $c(A_i) = A_i$ for every $i \in I$.

Definition 49. Given a topological space (X, τ) , a filter x on X *converges* to an element $x \in X$ provided that $U \in \mathfrak{x}$ for every $U \in \tau$ such that $x \in U$. If \mathfrak{x} converges to x, then x is called a *limit* of \mathfrak{x} . The set of limits of a filter x is denoted lim x .

Proposition 50. *Given a finitely additive closure operation* c *on a set* X*, the following hold:*

(1) *for every* $A \subseteq X$ *and every* $x \in X$ *,* $x \in c(A)$ *iff there exists* $\mathfrak{x} \in \beta X$ *such that* $A \in \mathfrak{x}$ *and* $x \in \lim \mathfrak{x}$ *;* (2) *for every* $\mathfrak{x} \in \beta X$ *and every* $x \in X$ *,* $x \in \lim \mathfrak{x}$ *iff* $x \in c(A)$ *for every* $A \in \mathfrak{x}$ *.*

PROOF. As an illustration, one can show "⇒" of (2). Given $A \in \mathfrak{r}$, for every $U \in \tau$ (cf. Proposition 48) such that $x \in U$, it follows that $U \in \mathfrak{x}$ (since $x \in \lim \mathfrak{x}$) and, therefore, $U \cap A \in \mathfrak{x}$ (since \mathfrak{x} is a filter), which implies $U \cap A \neq \emptyset$ (since x is an ultrafilter). Thus, $x \in c(A)$. In a similar way, one can show " \Leftarrow " of (1). \Box

Theorem 51. *The category* (**β**, 2)*-***Cat** *is isomorphic to the category* **Top***.*

PROOF. The isomorphism between (β, 2)-categories and topological spaces is based in the idea that given a set X, a (β , 2)-category structure $\beta X \stackrel{a}{\longrightarrow} X$ on X represents a convergence relation between ultrafilters on X and elements of X (i.e., a specifies which ultrafilter converges to which element). One then associates with a a finitely additive closure operation c on X , and also shows that every finitely additive closure

operation c on X determines a convergence relation $\beta X \stackrel{a}{\longrightarrow} X$, which is a $(\beta, 2)$ -category structure on X.

Given a (β , 2)-category (X, a) , one defines a closure operation $PX \xrightarrow{c \text{los}(a)} PX$ on X by $(c \text{los}(a))(A) =$ ${x \in X}$ there exists $x \in \beta X$ such that $A \in x$ and $x a x$ (cf. Proposition 50(1)). Given a finitely additive

closure operation c on X, one defines a (β , 2)-category structure $\beta X \longrightarrow X$ on X by $\mathfrak{p} \text{ conv}(c) x$ iff $x \in c(A)$ for every $A \in \mathfrak{x}$ (cf. Proposition 50(2)).

To show that, e.g., $1_{PX} \le \text{clos}(a)$, notice that given $A \subseteq X$, for every $x \in A$, it follows that $A \in \dot{x}$ and $\dot{x} a x$, i.e., $x \in (\texttt{clos}(a))(A)$, which implies $A \subseteq (\texttt{clos}(a))(A)$. To show that, e.g., $1_X \leq \texttt{conv}(c) \cdot e_X$, notice that given $x \in X$, it follows that \dot{x} conv (c) , since given $A \subseteq X$, $A \in \dot{x}$ implies $x \in A \subseteq c(A)$, i.e., $x \in c(A)$. \Box

2.2.3. Approach spaces as (**T**, V)*-categories*

Definition 52. An *approach space* is a pair (X, δ) , where X is a set, and $X \times PX \stackrel{\delta}{\rightarrow} [0, \infty]$ is a map (*approach distance*) such that

(1) $\delta(x,\{x\})=0$ for every $x \in X$;

(2) $\delta(x, \varnothing) = \infty$ for every $x \in X$;

(3) $\delta(x, A \cup B) = \min{\{\delta(x, A), \delta(x, B)\}}$ for every $x \in X$ and every $A, B \subseteq X$;

(4) $\delta(x, A) \leq \delta(x, A^{(u)}) + u$, where $A^{(u)} = \{y \in X \mid \delta(y, A) \leq u\}$ for every $x \in X, A \subseteq X, u \in [0, \infty]$.

A morphism $(X, \delta) \stackrel{f}{\to} (Y, \sigma)$ of approach spaces is a *non-expansive map* $X \stackrel{f}{\to} Y$, i.e., $\sigma(f(x), f(A)) \leq \delta(x, A)$ for every $x \in X$ and every $A \subseteq X$. **App** is the category of approach spaces and non-expansive maps.

Remark 53. Approach spaces provide a unifying framework for topological, metric, and uniform spaces.

Remark 54. Every topological space (X, τ) gives an approach space (X, δ) , in which

$$
\delta(x, A) = \begin{cases} 0, & x \in cl(A) \text{ (the closure of the set } A \text{ w.r.t. } \tau) \\ \infty, & \text{otherwise} \end{cases}
$$

for every $x \in X$ and every $A \in PX$. One gets thus a full embedding $\text{Top} \hookrightarrow \text{App}$.

Remark 55. Every quasi-pseudo-metric space (X, ρ) gives an approach space (X, δ) , in which $\delta(x, A)$ = $\inf \{ \rho(y, x) | y \in A \}$ for every $x \in X$ and every $A \in PX$. One gets thus a full embedding **QPMet** \hookrightarrow **App**.

Theorem 56. *Given a* P_+ -relation $X \xrightarrow{r} Y$, *define a map* $\beta X \times \beta Y \xrightarrow{\bar{\beta}r} P_+$ *by* ✤

$$
\bar{\beta}r(\mathfrak{x},\mathfrak{y})=\bigwedge_{A\in\mathfrak{x},B\in\mathfrak{y}}\bigvee_{x\in A,y\in B}r(x,y).
$$

 $Then \overline{\beta} = (\overline{\beta}, m, e)$ *is a lax extension to* P_+ -**Rel** *of the ultrafilter monad* β *, in which, additionally,* V-**Rel** $\frac{\overline{\beta}}{\rightarrow}$ V-**Rel** *is a functor, and* $\bar{\beta}\bar{\beta} \xrightarrow{m} \bar{\beta}$ *is a natural transformation.*

Remark 57. Every (β, P_+) -category (X, a) has the following two properties:

(1) $1_X \leq a \cdot e_X$, which is equivalent to $a(x, x) = 0$ for every $x \in X$;

(2) $a \cdot \bar{\beta}a \leqslant a \cdot m_X$, which is equivalent to $a(\Sigma \mathfrak{X}, x) \leqslant \bar{\beta}a(\mathfrak{X}, x) + a(x, x)$ for every $\mathfrak{X} \in \beta \beta X$, $x \in \beta X$, $x \in X$.

Every (β, P_+) -functor $(X, a) \stackrel{f}{\to} (Y, b)$ satisfies the condition $f \cdot a \leqslant b \cdot \beta f$, which is equivalent to $b(\beta f(\mathfrak{x}), f(x)) \leq a(\mathfrak{x}, x)$ for every $\mathfrak{x} \in \beta X$ and every $x \in X$.

Theorem 58. *The category* (β, P_+) -**Cat** *is isomorphic to the category* **App***.*

PROOF. Following the analogy of Theorem 51, given a (β, P_+) -category (X, a) , one defines an approach distance $X \times PX \xrightarrow{c \text{los}(a)} [0, \infty]$ by $(c \text{los}(a))(x, A) = \inf \{a(\mathfrak{x}, x) \mid \mathfrak{x} \in \beta A\}$. Given an approach space (X, δ) , one defines a (β, P_+) -category structure $\beta X \longrightarrow X$ by $(\text{conv}(\delta))(\mathfrak{x}, x) = \sup{\{\delta(x, A) | A \in \mathfrak{x}\}}$.

Remark 59. Theorem 58 actually says that approach spaces provide "numerified topological spaces", since a classical convergence relation is replaced with a numerified "degree of convergence".

2.2.4. Closure spaces as (**T**, V)*-categories*

Definition 60. A *closure space* is a pair (X, c) , where X is a set, and PX $\stackrel{c}{\rightarrow} PX$ is a closure operation on X. A map $(X, c) \xrightarrow{f} (Y, d)$ between closure spaces is *continuous* provided that $f(c(A)) \subseteq d(f(A))$ for every $A \subseteq X$. **Cls** is the category of closure spaces and continuous maps.

Theorem 61. *The lax extension* \hat{P} *of the powerset monad* P *provides the category* (P , 2) $-$ **Cat***, which is isomorphic to the category* **Cls***.*

PROOF. Every $(\mathbb{P}, 2)$ -category (X, a) has the following two properties:

- (1) $1_X \leq a \cdot e_X$, which is equivalent to $\{x\}$ a x for every $x \in X$;
- (2) $a \cdot \hat{P} a \leq a \cdot m_X$, which is equivalent to $A(\hat{P} a) B$ (i.e., for every $y \in B$, there exists $A \in \mathcal{A}$ such that $A \, a \, y$ and $B \, a \, x$ imply $(\bigcup \mathcal{A}) \, a \, x$ for every $\mathcal{A} \in PPX$, every $B \in PX$, and every $x \in X$.

Every $(\mathbb{P}, 2)$ -functor $(X, a) \stackrel{f}{\to} (Y, b)$ satisfies the condition $f \cdot a \leq b \cdot Pf$, which is equivalent to A a x implies $P f(A) b f(x)$ (i.e., $f(A) b f(x)$) for every $A \in PX$ and every $x \in X$.

Given a set X, there exists a bijective correspondence between $(\mathbb{P}, 2)$ -category structures $PX \xrightarrow{a} X$ and closure operations $PX \stackrel{c}{\rightarrow} PX$, which is given by $A \, a \, x$ iff $x \in c(A)$ for every $A \in PX$, $x \in X$. Additionally, a $(\mathbb{P}, 2)$ -functor $(X, a) \stackrel{f}{\to} (Y, b)$ provides a continuous map $(X, c) \stackrel{f}{\to} (Y, d)$ and vice versa.

To show that, e.g., $1_{PX} \leq c$ (for a given $(\mathbb{P}, 2)$ -category structure $PX \xrightarrow{a} X$ on X), observe that for every $A \in PX$, $x \in A$ implies $\{x\}$ a x (by item (1) above) implies $\{\{y\} | y \in A\}$ $\hat{P}a\{x\}$ and $\{x\}$ a x implies $(\bigcup {\{y\} | y \in A}\}\) a x$ (by item (2) above) implies $A a x$ implies $x \in c(A)$, which results in $A \subseteq c(A)$.

To show that, e.g., $1_X \leq a \cdot e_X$ (for a given closure operation $PX \stackrel{c}{\rightarrow} PX$ on X), observe that for every $x \in X$, $x \in \{x\} \subseteq c\{x\}$ implies $x \in c\{x\}$ implies $\{x\}$ a x, which is exactly the condition of item (1) above.

To verify that a $(\mathbb{P}, 2)$ -functor $(X, a) \stackrel{f}{\to} (Y, b)$ provides a continuous map $(X, c) \stackrel{f}{\to} (Y, d)$, observe that for every $A \in PX$, $x \in c(A)$ implies $A \cdot a \cdot x$ implies $f(A) \cdot b \cdot f(x)$ (since f is a $(\mathbb{P}, 2)$ -functor) implies $f(x) \in d(f(A))$. As a consequence, one obtains that $f(c(A)) \subseteq d(f(A))$.

To check that a continuous map $(X, c) \xrightarrow{f} (Y, d)$ provides a $(\mathbb{P}, 2)$ -functor $(X, a) \xrightarrow{f} (Y, b)$, observe that for every $A \in PX$ and every $x \in X$, $A \, a \, x$ implies $x \in c(A)$ implies $f(x) \in d(f(A))$ (since f is continuous) implies $f(A) b f(x)$, which is exactly the above-mentioned condition of $(\mathbb{P}, 2)$ -functors.

Definition 62. There exists the *finite-powerset monad* $P_{fin} = (P_{fin}, m, e)$ on **Set**, in which the functor **Set** $\frac{P_{fin}}{P_{fin}}$ **Set** is given on objects by $P_{fin}X = \{A \subseteq X \mid A \text{ is finite}\}\.$ The natural transformations m and e are the restrictions of the respective natural transformations of the powerset monad **P** on **Set**.

Definition 63. A closure space (X, c) is called *finitary* (or *algebraic*) provided that $c(A) = \bigcup_{B \in P_{fin} A} c(B)$ for every $A \in PX$. Cls_{fin} is the full subcategory of Cls of finitary closure spaces.

Theorem 64. The lax extension \hat{P}_{fin} of the finite-powerset monad P_{fin} provides the category (P_{fin} , 2) $-$ **Cat**, *which is isomorphic to the category* Cls_{fin} *.*

PROOF. One uses the following modification of the proof of Theorem 61.

Given a set X, there exists a bijective correspondence between $(\mathbb{P}_{fin}, 2)$ -category structures $P_{fin}X \stackrel{a}{\longrightarrow} X$ ✤ and closure operations $P_{fin}X \xrightarrow{c_{fin}} P_{fin}X$, which is given by $A \, a \, x$ iff $x \in c_{fin}(A)$ for every $A \in P_{fin}X$, $x \in X$. Moreover, a $(\mathbb{P}_{fin}, 2)$ -functor $(X, a) \stackrel{f}{\to} (Y, b)$ provides a continuous map $(X, c_{fin}) \stackrel{f}{\to} (Y, d_{fin})$ and vice versa.

Given a set X, there also exists a bijective correspondence between closure operations $P_{fin}X \stackrel{c_{fin}}{\longrightarrow} P_{fin}X$ and algebraic closure operations $PX \stackrel{c}{\rightarrow} PX$, which is given in one direction by $x \in c(A)$ iff there exists

 $B \in P_{fin}A$ such that $x \in c_{fin}(B)$ for every $A \in PX$, $x \in X$, and the opposite direction is the restriction of c to

 $P_{fin}X$. This correspondence respects continuity of maps, e.g., given a continuous map $(X, c_{fin}) \stackrel{f}{\rightarrow} (Y, d_{fin}),$ for every $x \in X$ and every $A \in PX$, $x \in c(A)$ implies the existence of $B \in P_{fin}A$ such that $x \in c_{fin}(B)$ implies $f(x) \in d_{fin}(f(B))$ (since f is continuous) implies $f(x) \in d(f(B))$ (since $f(B) \in P_{fin}(f(A))$).

References

- [1] M. Barr, *Relational algebras*, Reports of the Midwest Category Seminar, vol. IV, Lect. Notes Math. 137, 1970, pp. 39–55.
- [2] M. M. Clementino and D. Hofmann, *On extensions of lax monads*, Theory Appl. Categ. **13** (2004), 41–60.
- [3] M. M. Clementino, D. Hofmann, and W. Tholen, *One setting for all: Metric, topology, uniformity, approach structure*, Appl. Categ. Struct. **12** (2004), no. 2, 127–154.
- [4] R. Engelking, *General Topology*, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, 1989.
- [5] H. Herrlich, *Topologie I. Topologische R¨aume. Unter Mitarb. von H. Bargenda*, vol. 2, Heldermann Verlag, Lemgo, 1986. [6] D. Hofmann, G. J. Seal, and W. Tholen (eds.), *Monoidal Topology: A Categorical Approach to Order, Metric and Topology*,
- Cambridge University Press, 2014. [7] D. Kruml and J. Paseka, *Algebraic and Categorical Aspects of Quantales*, Handbook of Algebra (M. Hazewinkel, ed.), vol. 5, Elsevier, 2008, pp. 323–362.
- [8] H. P. K¨unzi, *Complete quasi-pseudo-metric spaces*, Acta Math. Hung. **59** (1992), no. 1-2, 121–146.
- [9] R. Lowen, *Approach spaces a common supercategory of TOP and MET*, Math. Nachr. **141** (1989), 183–226.
- [10] S. Mac Lane, *Categories for the Working Mathematician*, 2nd ed., Springer-Verlag, 1998.
- [11] J. MacDonald and M. Sobral, *Aspects of Monads*, Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory (M. C. Pedicchio and W. Tholen, eds.), Cambridge University Press, 2004, pp. 213–268.
- [12] E. G. Manes, *A triple theoretic construction of compact algebras*, Semin. Triples and Categorical Homology Theory, ETH, Zurich, 1966/67, Lect. Notes Math., vol. 80, 1969, pp. 91–118.
- [13] K. I. Rosenthal, *The Theory of Quantaloids*, Addison Wesley Longman, 1996.