Elements of monoidal topology^{*} Lecture 3: a generalization of the Kuratowski-Mrówka theorem

Sergejs Solovjovs

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences Prague (CZU) Kam´yck´a 129, 16500 Prague - Suchdol, Czech Republic

Abstract

This lecture shows an example of the application of the theory of (T, V) -categories and (T, V) -functors to general topology, i.e., a particular generalization of the Kuratowski-Mrówka theorem on the equivalence between the concepts of proper (or stably closed) and perfect map.

1. Classical Kuratowski-Mrówka theorem

1.1. Proper and perfect maps

Definition 1. Let $(X, \tau) \xrightarrow{f} (Y, \sigma)$ be a continuous map between topological spaces.

- (1) f is *closed* provided that the image under f of every closed set in (X, τ) is closed in (Y, σ) .
- (2) f is proper provided that for every topological space (Z, ϱ) , the map $X \times Z \xrightarrow{f \times 1_Z} Y \times Z$ is closed.

Remark 2. Every proper map is closed (take Z to be a singleton topological space in Definition 1 (2)).

Theorem 3. *Given a continuous map* $(X, \tau) \xrightarrow{f} (Y, \sigma)$ *between topological spaces, equivalent are:*

- (1) f *is proper;*
- (2) for every continuous map $(Z, \varrho) \stackrel{g}{\to} (Y, \sigma)$, the map $X \times_Y Z \stackrel{p_Z}{\to} Z$, which is defined by the pullback

is closed.

[⋆]This lecture course was supported by the ESF Project No. CZ.1.07/2.3.00/20.0051 "Algebraic methods in Quantum Logic" of the Masaryk University in Brno, Czech Republic.

Email address: solovjovs@tf.czu.cz (Sergejs Solovjovs) *URL:* http://home.czu.cz/solovjovs (Sergejs Solovjovs)

Preprint submitted to the Masaryk University in Brno July 1, 2022

PROOF.

 $(1) \Rightarrow (2)$: Given a continuous map $(Z, \varrho) \stackrel{g}{\rightarrow} (Y, \sigma)$ and its respective pullback

one can construct the following two diagrams (where π_X , π_Y , π_Z are product projections)

$$
X \times_Y Z
$$
\n
$$
Y \times \left\langle p_X, p_Z \right\rangle
$$
\n
$$
Y \times \left\langle p_X, p_Z \right\rangle
$$
\n
$$
Y \times \left\langle p_X, p_Z \right\rangle
$$
\n
$$
Y \times \left\langle p_X, p_Z \right\rangle
$$
\n
$$
Y \times \left\langle p_X, p_Z \right\rangle
$$
\n
$$
Y \times Z \xrightarrow{\pi_Z} Z,
$$

which then provide the diagram

$$
X \times_{Y} Z \xrightarrow{pz} Z
$$

\n
$$
\langle p_{X}, p_{Z} \rangle \downarrow \qquad \qquad \downarrow \langle g, 1_{Z} \rangle
$$

\n
$$
X \times Z \xrightarrow{f \times 1_{Z}} Y \times Z,
$$

\n
$$
(1.1)
$$

where the two vertical arrows are given by injective maps. To show that diagram (1.1) commutes, observe that for every $(x, z) \in X \times_Y Z$, on the one hand, $(f \times 1_Z) \cdot \langle p_X, p_Z \rangle (x, z) = (f \times 1_Z)(p_X(x, z), p_Z(x, z)) = (f \times 1_Z)(p_X(x, z), p_Z(x, z))$ $1_Z(x, z) = (f(x), z)$, and, on the other hand, $\langle g, 1_Z \rangle \cdot p_Z(x, z) = \langle g, 1_Z \rangle(z) = (g(z), z)$. Since $(x, z) \in X \times_Y Z$, it follows that $f(x) = g(z)$, which then implies $(f(x), z) = (g(z), z)$.

We are going to show that $X \times_Y Z$ is a closed subset of $X \times Z$. Since the map $(X, \tau) \xrightarrow{f} (Y, \sigma)$ is proper and therefore, closed by Remark 2, it follows that $f(X)$ is a closed subset of Y, and thus, $S := g^{-1}(f(X))$ is a closed subset of Z. Given $(x, z) \in (X \times Z) \setminus (X \times_Y Z)$, it follows that $z \notin S$ and therefore, $z \in Z \setminus S =: U \in \varrho$. Thus, $(x, z) \in \pi_Z^{-1}(U) =: W$, where W is an open subset of $X \times Z$. If $(x', z') \in W \cap (X \times_Y Z)$, then $z' \in U$ and $f(x') = g(z')$, namely, $z' \in Z \backslash S$ and $z' \in S$, which is a contradiction. As a consequence, W is an open subset of $X \times Z$ containing (x, z) and, moreover, disjoint from the set $X \times_Y Z$.

Since $X \times_Y Z$ is a closed subset of $X \times Z$, the inclusion $X \times_Y Z \xrightarrow{\langle px, pz \rangle} X \times Z$ is a closed map. Moreover, since the map $(X, \tau) \xrightarrow{f} (Y, \sigma)$ is proper, $X \times Z \xrightarrow{f \times 1_Z} Y \times Z$ is a closed map as well. Thus, the left-hand path in diagram (1.1) is a closed map, and thus, the right-hand path is a closed map as well. Since the inclusion $Z \xrightarrow{(g,1_Z)} Y \times Z$ is clearly injective, it follows that $X \times_Y Z \xrightarrow{p_Z} Z$ is a closed map (given a closed subset $P \subseteq X \times_Y Z$, since $\langle g, 1_Z \rangle (p_Z(P))$ is closed, $p_Z(P) = (\langle g, 1_Z \rangle)^{-1} (\langle g, 1_Z \rangle (p_Z(P)))$ is closed).

 $(2) \Rightarrow (1)$: Observe that given a topological space (Z, ϱ) , it follows that

$$
\begin{array}{c}\nX \times Z \xrightarrow{f \times 1_Z} Y \times Z \\
\pi_X \downarrow^{\square} \\
X \xrightarrow{f} Y\n\end{array}
$$

is a pullback. \Box

Remark 4. Theorem 3 motivates the terminology *stably closed* w.r.t. proper maps.

Definition 5.

 \blacksquare

- (1) Given a topological space (X, τ) , a subset $S \subseteq X$ is said to be *compact* provided that for every family $\{U_i \mid i \in I\} \subseteq \tau$ such that $S \subseteq \bigcup_{i \in I} U_i$ there exists a finite subfamily $\{U_{i_1}, \ldots, U_{i_n}\} \subseteq \{U_i \mid i \in I\}$ such that $S \subseteq \bigcup^{n}$ $\bigcup_{j=1} U_{i_j}$ (in other words, every open cover of S has a finite subcover).
- (2) A topological space (X, τ) is said to be *compact* provided that its underlying set X is compact.

Remark 6. Some authors call the property of Definition 5 *quasi-compactness*. A quasi-compact topological space (X, τ) is then said to be *compact* provided that it is additionally *Hausdorff* or T_2 -space, namely, for every distinct points $x_1, x_2 \in X$ there exist $U_1, U_2 \in \tau$ such that $x_1 \in U_1$, $x_2 \in U_2$ and $U_1 \cap U_2 = \emptyset$.

Definition 7. A continuous map $(X, \tau) \xrightarrow{f} (Y, \sigma)$ between topological spaces is called *perfect* provided that f is closed, and for every $y \in Y$, the fibre $f^{-1}(y)$ is a compact subset of X.

1.2. Kuratowski-Mrówka theorem and its generalization

Theorem 8 (Kuratowski-Mrówka). *Given a topological space* (X, τ) *, equivalent are:*

- (1) (X, τ) *is compact*;
- (2) *for every topological space* (Y, σ) *, the projection* $X \times Y \xrightarrow{\pi_Y} Y$ *is closed.*

PROOF. $(1) \Rightarrow (2)$: K. Kuratowski. $(2) \Rightarrow (1)$: S. Mrówka. □

Corollary 9. *Given a topological space* (X, τ) *, the unique continuous map* $(X, \tau) \stackrel{!X}{\longrightarrow} 1$ *(where* $1 = \{*\}$ *) is perfect iff it is proper.*

PROOF. Observe that the map $(X, \tau) \stackrel{!X}{\longrightarrow} 1$ is proper iff for every topological space (Z, ϱ) , the projection map $X \times Z \xrightarrow{\pi_Z} Z$, which is defined by the pullback

is closed (by Theorem 3) iff for every topological space (Z, ρ) , the projection map $X \times Z \xrightarrow{\pi_Z} Z$ is closed iff the space (X, τ) is compact (by Theorem 8) iff the map $(X, \tau) \stackrel{!X}{\longrightarrow} 1$ is perfect (notice that the unique map $(X, \tau) \stackrel{!X}{\longrightarrow} 1$ is clearly closed).

Theorem 10 (Bourbaki). *A continuous map between topological spaces is perfect iff it is proper.*

Remark 11. Since the category **Top** of topological spaces is an instance of the categories (\mathbb{T}, V) **-Cat**, one could ask about the analogues of Theorems 8, 10 for the latter category.

2. Proper maps in the category (T, V) **-Cat**

2.1. Categorical preliminaries

Remark 12. Every category (T, V) -**Cat** has the following two properties.

(1) The terminal object in (\mathbb{T}, V) **-Cat** is given by $(1, \mathbb{T})$, where $\mathbb{T}(\mathfrak{x}, *) = \mathbb{T}_V$ for every $\mathfrak{x} \in T1$ (observe that one takes the initial (T, V) -category structure on a terminal object in **Set** w.r.t. the empty source).

(2) The (\mathbb{T}, V) -category structure d on the pullback of (\mathbb{T}, V) -functors $(X, a) \xrightarrow{f} (Z, c)$ and $(Y, b) \xrightarrow{g} (Z, c)$

$$
(X \times_Z Y, d) \xrightarrow{p_Y} (Y, b)
$$

\n
$$
\downarrow^{\text{px}}
$$

\n
$$
(X, a) \xrightarrow{f} (Z, c)
$$
\n
$$
(2.1)
$$

is given by $d = (p_X^{\circ} \cdot a \cdot T p_X) \wedge (p_Y^{\circ} \cdot b \cdot T p_Y)$, or, in pointwise notation, $d(\mathfrak{z}, (x, y)) = a(T p_X(\mathfrak{z}), x) \wedge$ $b(T p_Y(\mathfrak{z}), y)$ for every $\mathfrak{z} \in T(X \times_Z Y)$, $x \in X$, $y \in Y$ (observe that one takes the initial (T, V) category structure on the set $X \times_Z Y$ w.r.t. the source $(U(X, a) \xleftarrow{px} X \times_Z Y \xrightarrow{p_Y} U(Y, b))$, where (\mathbb{T}, V) **-Cat** $\stackrel{U}{\rightarrow}$ **Set** is the forgetful functor).

Definition 13. A lax extension \hat{T} to V-**Rel** of a functor T on **Set** is called *left-whiskering* provided that $\hat{T}(f \cdot r) = Tf \cdot \hat{T}r$ for every V-relation $X \xrightarrow{r} Y$ and every map $Y \xrightarrow{f} Z$. ✤

Remark 14.

- (1) A lax extension \hat{T} to V-**Rel** of a functor T on **Set** satisfies $Tf \cdot \hat{T}r \leq \hat{T}(f \cdot r)$ for every V-relation $X \longrightarrow Y$ and every map $Y \stackrel{f}{\to} Z$, since $Tf \cdot \hat{T}r \leq \hat{T}f \cdot \hat{T}r \leq \hat{T}(f \cdot r)$. ✤
- (2) Recall from Lecture 2 that a lax extension \hat{T} to V-**Rel** of a functor T on **Set** is always *right-whiskering*, i.e., satisfies $\hat{T}(s \cdot f) = \hat{T}s \cdot Tf$ for every map $X \xrightarrow{f} Y$ and every V-relation $Y \xrightarrow{s} Z$. ✤

Example 15.

- (1) The lax extension \hat{P} to **Rel** of the powerset functor P on **Set** is left-whiskering. Observe that given a relation $X \xrightarrow{r} Y$ and a map $Y \xrightarrow{f} Z$, for every $A \in PX$ and every $C \in PZ$, it follows that ✤ $A \hat{P}(f \cdot r) C$ iff for every $z \in C$ there exists $x \in A$ such that $x (f \cdot r) z$ iff for every $z \in C$, there exist $x \in A$ and $y \in Y$ such that $x \, r \, y$ and $y \, f \circ z$ iff for every $z \in C$, there exist $x \in A$ and $y \in Y$ such that $x r y$ and $f(y) = z$ iff there exists $B \in PY$ such that for every $y \in B$ there exists $x \in A$ such that $x r y$ and $f(B) = C$ iff there exists $B \in PY$ such that $A \hat{P}rB$ and $f(B) = C$ iff there exists $B \in PY$ such that $A \hat{P} r B$ and $B (P f) \circ C$ iff $A (P f \cdot \hat{P} r) C$.
- (2) The lax extension $\hat{\beta}$ (resp. $\bar{\beta}$) to **Rel** (resp. P₊-**Rel**) of the ultrafilter functor β on **Set** is left-whiskering.

Definition 16. A functor T on **Set** is said to be *taut* provided that it preserves pullbacks of monomorphisms along arbitrary maps, namely, if

is a pullback and $X \stackrel{f}{\rightarrow} Y$ is a monomorphism, then

$$
\begin{array}{c}\nT(X \times_Y Z) \xrightarrow{T_{PZ}} TZ \\
T_{PX} \downarrow \\
TX \xrightarrow{T_X} TY\n\end{array}
$$

is a pullback.

Example 17.

(1) The powerset functor P on **Set** is taut. Observe first that monomorphisms in **Set** are precisely the injective maps, which are preserved by the powerset functor P (notice that an injective map $X \stackrel{f}{\rightarrow} Y$ with $X \neq \emptyset$ is a section, and sections are preserved by every functor). Given a pullback

$$
\begin{array}{ccc}\nX \times_{Y} Z & \xrightarrow{pz} Z \\
\downarrow \\
X & \xrightarrow{f} Y,\n\end{array} \tag{2.2}
$$

with a monomorphism $X \xrightarrow{f} Y$, there exists a map $P(X \times_Y Z) \xrightarrow{h} PX \times_{PY} PZ$ defined by the commutative diagram

We show that h is a bijective map. Since (2.2) is a pullback, p_Z is a monomorphism and therefore, $P p_Z$ is a monomorphism. Thus, h is a monomorphism, i.e., injective. To show that h is surjective, notice that given $(A, C) \in PX \times_{PY} PZ$, $f(A) = Pf(A) = Pf \cdot p_{PX}(A, C) = Pq \cdot p_{PZ}(A, C) = Pq(C) = q(C)$. Let $D = (A \times C) \bigcap (X \times_Y Z)$. To show that $h(D) = (A, C)$, observe that $h(D) = (Pp_X(D), Pp_Z(D))$ $(p_X(D), p_Z(D))$. Clearly, $p_X(D) \subseteq A$ and $p_Z(D) \subseteq C$. Given $a \in A$, since $f(A) = g(C)$, there exists $c \in C$ such that $f(a) = g(c)$, which implies $(a, c) \in D$, which gives $a \in p_X(D)$. As a consequence, $A \subseteq p_X(D)$, which implies $A = p_X(D)$. Similarly, $C = p_Z(D)$. Thus, $h(D) = (p_X(D), p_Z(D)) = (A, C)$.

(2) The ultrafilter functor β on **Set** is taut.

Lemma 18. *Taut functors preserve monomorphisms.*

PROOF. Observe that a map $X \stackrel{f}{\to} Y$ is a monomorphism iff the diagram

is a pullback. \Box

Remark 19. The property of being taut can be defined for a functor T on an arbitrary category **C**.

Remark 20. From now on, assume that the lax extension $\hat{\mathbb{T}}$ to V-**Rel** of a monad \mathbb{T} on **Set** satisfies the following three conditions:

- (T) T is taut:
- (W) \hat{T} is left-whiskering;

(N) $\hat{T} \stackrel{m^{\circ}}{\longrightarrow} \hat{T}\hat{T}$ is natural, which means that the diagram

$$
\begin{array}{ccc}\n T X & \xrightarrow{m_X^o} T T X \\
 \hat{T} r & & \downarrow \hat{T} \hat{T} r \\
 T Y & \xrightarrow{m_Y^o} T T Y\n\end{array}
$$

commutes for every V-relation $X \xrightarrow{r} Y$. ✤

Remark 21. Observe that given a lax extension $\hat{\mathbb{T}}$ to V-**Rel** of a monad \mathbb{T} on **Set**, since $\hat{T}\hat{T} \stackrel{m}{\rightarrow} \hat{T}$ is an oplax natural transformation (recall Lecture 1), it follows that

$$
\begin{array}{c}\nTTX \xrightarrow{mx} TX \\
\hat{T}\hat{T}r \downarrow \leq \qquad \downarrow \hat{T}r \\
TTY \xrightarrow{mx} T\hat{Y}\n\end{array}
$$

for every V-relation $X \xrightarrow{r} Y$. Thus, $m_Y \cdot \hat{T}\hat{T}r \leq \hat{T}r \cdot m_X$ implies $\hat{T}\hat{T}r \cdot m_X^{\circ} \leqslant m_Y^{\circ} \cdot m_Y \cdot \hat{T}\hat{T}r \cdot m_X^{\circ} \leqslant$ ✤ $m_Y^{\circ} \cdot \hat{T}r \cdot m_X \cdot m_X^{\circ} \leqslant m_Y^{\circ} \cdot \hat{T}r$, i.e., $\hat{T}\hat{T}r \cdot m_X^{\circ} \leqslant m_Y^{\circ} \cdot \hat{T}r$. As a consequence, one obtains that $\hat{T} \stackrel{m^{\circ}}{\longrightarrow} \hat{T}\hat{T}$ is a natural transformation iff

$$
\begin{array}{ccc}\n T X & \xrightarrow{m_X^o} T T X \\
\hat{r}_r & \leq & \uparrow \hat{r} \hat{r}_r \\
 T Y & \xrightarrow{m_Y^o} T T Y\n\end{array}
$$

for every V-relation $X \xrightarrow{r} Y$. ✤

Example 22.

- (1) The lax extension \hat{P} to **Rel** of the powerset monad P on **Set** satisfies the conditions of Remark 20. To show condition (N), observe that for every V-relation $X \stackrel{r}{\longrightarrow} Y$, given $A \in PX$ and $B \in PPY$, on the ✤ one hand, $A(m_Y^{\circ} \cdot \hat{P}r) \mathcal{B}$ iff $A(\hat{P}r) m_Y(\mathcal{B})$ iff $A(\hat{P}r) \cup \mathcal{B}$ iff for every $y \in \bigcup \mathcal{B}$ there exists $x \in A$ such that $x r y$, and, on the other hand, $A(\hat{P}\hat{P}r \cdot m_X^{\circ})$ \mathcal{B} iff there exists $\mathcal{A} \in PPX$ such that $A m_X^{\circ} \mathcal{A}$ and $\mathcal{A}(\hat{P}\hat{P}r)\mathcal{B}$ iff there exists $\mathcal{A} \in PPX$ such that $m_X(\mathcal{A}) = A$ and $\mathcal{A}(\hat{P}\hat{P}r)\mathcal{B}$ iff there exists $\mathcal{A} \in PPX$ such that $A = \bigcup A$ and for every $B \in \mathcal{B}$ there exists $A' \in \mathcal{A}$ such that $A'(\hat{P}_T)B$ iff there exists $A \in PPX$ such that $A = \bigcup A$ and for every $B \in \mathcal{B}$ there exists $A' \in \mathcal{A}$ such that for every $y \in B$ there exists $x' \in A'$ such that $x' r y$. In view of Remark 21, one has to show that $m_Y^{\circ} \cdot \hat{P}r \leq \hat{P} \hat{P}r \cdot m_X^{\circ}$. Observe that if $A(m_Y^{\circ} \cdot \hat{P}r) \mathcal{B}$, then taking $\mathcal{A} = \{A\} \in PPX$, one gets $A = \bigcup \mathcal{A}$ and for every $B \in \mathcal{B}$ there exists $A' = A \in \mathcal{A}$ such that for every $y \in B \subseteq \bigcup \mathcal{B}$ there exists $x \in A' = A$ such that $x \, r \, y$.
- (2) The lax extension $\hat{\beta}$ (resp. $\bar{\beta}$) to **Rel** (resp. P₊-**Rel**) of the ultrafilter monad on **Set** satisfies the conditions of Remark 20.

Theorem 23. *There exists a functor* (\mathbb{T}, V) **-Cat** $\stackrel{G}{\to} V$ **-Cat**, which is given by $G((X, a) \stackrel{f}{\to} (Y, b))$ = $(TX, \hat{a}) \xrightarrow{Tf} (TY, \hat{b}),$ where $\hat{a} = \hat{T}a \cdot m_X^{\circ}.$

PROOF. To show that $(T X, \hat{a})$ is a V-category, notice that, firstly, $1_{TX} = T 1_X \leq \hat{T} 1_X \leq \hat{T} (a \cdot e_X)$ $\hat{T}a \cdot Te_X \leqslant \hat{T}a \cdot m_X^{\circ} = \hat{a}$, where (†) uses the fact that $m_X \cdot Te_X = 1_{TX}$ implies $Te_X \leqslant m_X^{\circ} \cdot m_X \cdot Te_X = m_X^{\circ}$. Secondly, $a \cdot \hat{T} a \cdot m_X^{\circ} \leqslant a \cdot m_X \cdot m_X^{\circ} \leqslant a$ gives $\hat{T} a \cdot \hat{T} a \cdot (\hat{T} m_X)^{\circ} \leqslant \hat{T} a \cdot \hat{T} a \cdot \hat{T} m_X^{\circ} \leqslant \hat{T} (a \cdot \hat{T} a \cdot m_X^{\circ}) \leqslant \hat{T} a$, and therefore, $\hat{a} \cdot \hat{a} = \hat{T}a \cdot m_X^{\circ} \cdot \hat{T}a \cdot m_X^{\circ}$ $\stackrel{\text{(N)}}{=} \hat{T}a \cdot \hat{T}\hat{T}a \cdot m_{TX}^{\circ} \cdot m_X^{\circ} = \hat{T}a \cdot \hat{T}\hat{T}a \cdot (m_X \cdot m_{TX})^{\circ} \stackrel{m_X \cdot m_{TX} = m_X \cdot Tm_X}{}$ $\hat{T}a \cdot \hat{T}\hat{T}a \cdot (m_X \cdot Tm_X)^{\circ} = \hat{T}a \cdot \hat{T}\hat{T}a \cdot (Tm_X)^{\circ} \cdot m_X^{\circ} \leq \hat{T}a \cdot m_X^{\circ} = \hat{a}.$

To show that $(TX, \hat{a}) \stackrel{Tf}{\longrightarrow} (TY, \hat{b})$ is a V-functor, notice that $f \cdot a \leqslant b \cdot Tf$ gives $a \leqslant f \circ \cdot b \cdot Tf$, and therefore, $\hat{T}a \leq \hat{T}(f^{\circ} \cdot b \cdot Tf) = (Tf)^{\circ} \cdot \hat{T}b \cdot TTf$, which then yields $Tf \cdot \hat{a} = Tf \cdot \hat{T}a \cdot m_X^{\circ} \leq$ $Tf\cdot(Tf)^{\circ}\cdot\hat{T}b\cdot TTf\cdot m^\circ_X$ $Tf \cdot (Tf)^\circ \leqslant 1_{TY}$
 \leqslant $\hat{T}b \cdot TTf \cdot m_X^\circ$ $T T f \cdot m_X^\circ \leq m_Y^\circ \cdot T f$
 $\leq \hat{T} b \cdot m_Y^\circ \cdot T f = \hat{b} \cdot T f.$

Proposition 24. *Given a lax extension* $\hat{\mathbb{T}}$ *to* V-Rel *of a monad* $\mathbb{T} = (T, m, e)$ *on* Set, the natural transfor $mation$ $1_{\textbf{Set}} \xrightarrow{e} T$ provides a natural transformation $Ind \xrightarrow{e} G$, where (\mathbb{T}, V) -**Cat** \xrightarrow{Ind} **Prost**, $Ind((X, a) \xrightarrow{f}$ $(Y, b) = (X, \leq_a) \xrightarrow{f} (Y, \leq_b)$ *(with* $x \leq_a x'$ *iff* $k \leq a(e_X(x), x')$ *) is the induced preorder functor, and* **Prost** *is considered as a full subcategory of* V **-Cat** *w.r.t. the full embedding* $\text{Prost} \xrightarrow{B_i} V \text{-Cat}$ *(cf. Lecture 2).*

PROOF. It will be enough to show that given a (\mathbb{T}, V) -category (X, a) , $(Ind(X, a) = (X, \leqslant_a)) \xrightarrow{e_X} (G(X, a) = \{X, \leqslant_a\})$ $(T X, \hat{a})$ is a (\mathbb{T}, V) -functor, namely,

$$
\leqslant_{a} \frac{X}{\downarrow} \frac{e_{X}}{\leqslant} \frac{TX}{\downarrow} \hat{a}
$$

$$
X \xrightarrow{e_{X}} TX.
$$

Given $x \in X$, $\mathfrak{x} \in TX$, on the one hand, $e_X \cdot \leq_a (x, \mathfrak{x}) = \bigvee_{x' \in X} \leq_a (x, x') \otimes (e_X) \circ (x', \mathfrak{x}) = \bigvee \{k \mid x' \in X \text{ such that } x \in X, \mathfrak{x} \in TX\}$ that $k \leq a(e_X(x), x')$ and $e_X(x') = \mathfrak{x}$ } = $\int k$, there exists $x' \in X$ with $k \leq a(e_X(x), x')$ and $e_X(x') = x$ \perp_V , otherwise,

and, on the other hand, $\hat{a} \cdot e_X(x, \mathfrak{x}) = \hat{a}(e_X(x), \mathfrak{x}) = \hat{T}a \cdot m_X^{\circ}(e_X(x), \mathfrak{x}) = \bigvee_{\mathfrak{X} \in TTX} m_X^{\circ}(e_X(x), \mathfrak{X}) \otimes \hat{T}a(\mathfrak{X}, \mathfrak{x}) =$ $\bigvee_{\mathfrak{X} \in TTX}(m_X) \circ (\mathfrak{X}, e_X(x)) \otimes \hat{T}a(\mathfrak{X}, \mathfrak{x}) = \bigvee_{m_X(\mathfrak{X}) = e_X(x)} \hat{T}a(\mathfrak{X}, \mathfrak{x}) \geq \hat{T}a(e_{TX} \cdot e_X(x), \mathfrak{x})$, since $m_X(e_{TX} \cdot e_X(x)) =$ $(m_X \cdot e_{TX}) \cdot e_X(x) \stackrel{m_X \cdot e_{TX} = 1_{TX}}{=} 1_{TX} \cdot e_X(x) = e_X(x)$. If $e_X \cdot \leq_a (x, \mathfrak{x}) = k$, then there exists $x' \in X$ such that $k \leq a(e_X(x), x')$ and $e_X(x') =$ **r**, which implies $\hat{T}a(e_{TX} \cdot e_X(x), \mathfrak{x}) = \hat{T}a(e_{TX} \cdot e_X(x), e_X(x'))$ $\hat{T}a \cdot e_{TX}(e_X(x), e_X(x'))$ $\stackrel{e_X \cdot a \leqslant \hat{T} a \cdot e_{TX}}{\geqslant} e_X \cdot a(e_X(x), e_X(x')) \!=\! e_X^{\circ} \cdot e_X \cdot a(e_X(x), x')$ $\overset{1_X \leqslant e_X^{\circ} \cdot e_X}{\geqslant} a(e_X(x), x') \geqslant k.$

Remark 25. Notice that if $X \xrightarrow{e_X} TX$ is injective for every set X, then Ind is a subfunctor of G, i.e., G is an extension of the induced preorder from the underlying set X of a (\mathbb{T}, V) -category (X, a) to the set TX .

Example 26.

- (1) If \mathbb{T} is the identity monad on **Set**, then V-**Cat** $\stackrel{G}{\to}$ V-**Cat** is the identity functor.
- (2) For the lax extension $\hat{\beta}$ to **Rel** of the ultrafilter monad β on **Set**, the functor **Top** $\stackrel{G}{\rightarrow}$ **Prost** is defined by $G((X,\tau)\stackrel{f}{\to}(Y,\sigma))=(\beta X,\leqslant)\stackrel{\beta f}{\to}(\beta Y,\leqslant),$ where for every $\mathfrak{x},\mathfrak{z}\in\beta X$, $\mathfrak{x}\leqslant\mathfrak{z}$ iff $\mathfrak{z}\bigcap\tau\subseteq\mathfrak{x}$. In particular, given principal ultrafilters $\dot{x}, \dot{y} \in \beta X$, it follows that $\dot{x} \leq \dot{y}$ iff $y \in cl\{x\}$. In other words, since the principal ultrafilter natural transformation $1_{\textbf{Set}} \stackrel{e}{\rightarrow} \beta$ has injective components $X \stackrel{e}{\rightarrow} \beta X$ for every set X , one obtains that G is an extension of the induced preorder from the underlying set X of a topological space (X, τ) to the set of ultrafilters on X (cf. Remark 25).
- *2.2. Algebraic preliminaries*

Definition 27. Let (V, \vee, \otimes) be a quantale.

(1) *V* is called *strictly two-sided* provided that (V, \otimes, \top_V) is a monoid.

(2) *V* is called *cartesian closed* provided that $a \wedge (\bigvee B) = \bigvee_{b \in B} (a \wedge b)$ for every $a \in V$, $B \subseteq V$.

Remark 28. Observe that a quantale V is cartesian closed iff its underlying partially ordered set is a *frame*, namely, a complete lattice, in which finite meets distribute over arbitrary joins.

Theorem 29. *Given a unital quantale V, equivalent are:*

- (1) V *is cartesian closed;*
- (2) *the* left Frobenius law

$$
f \cdot ((f^{\circ} \cdot r) \wedge s) = r \wedge (f \cdot s) \tag{F}
$$

holds in V *-***Rel** *for every triangle of the form*

(3) *the* right Frobenius law

$$
(r \wedge (s \cdot f)) \cdot f^{\circ} = (r \cdot f^{\circ}) \wedge s
$$

holds in V *-***Rel** *for every triangle of the form*

PROOF.

 $(1) \Rightarrow (2)$: Given $y \in Y$ and $z \in Z$, on the one hand, $f \cdot ((f \circ r) \wedge s)(z, y) = \bigvee_{f(x) = y} ((f \circ r) \wedge s)(z, x) =$ $\bigvee_{f(x)=y} ((f \circ \cdot r)(z,x) \wedge s(z,x)) = \bigvee_{f(x)=y} (r(z,f(x)) \wedge s(z,x)) = \bigvee_{f(x)=y} (r(z,y) \wedge s(z,x));$ on the other hand, $(r \wedge (f \cdot s))(z, y) = r(z, y) \wedge (\bigvee_{f(x)=y} s(z, x)) \stackrel{(1)}{=} \bigvee_{f(x)=y} (r(z, y) \wedge s(z, x)).$

 $(2) \Rightarrow (1)$: Given $a \in V$ and $B \subseteq V$, consider the triangle

where $s(*,b) = b$ for every $b \in B$, and $r(*,*) = a$. It then follows that $\bigvee_{b \in B} (a \wedge b) = \bigvee_{b \in B} ((a \otimes k) \wedge b) =$ $\bigvee_{b \in B} ((r(*, *) \otimes !_{B}^{o}(*, b)) \wedge b) = \bigvee_{b \in B} ((!_{B}^{o} \cdot r)(*, b) \wedge s(*, b)) \otimes k = \bigvee_{b \in B} ((!_{B}^{o} \cdot r) \wedge s)(*, b) \otimes (!_{B})_{o}(b, *) =$ $!_B \cdot ((!_B^{\circ} \cdot r) \wedge s)(*,*) \stackrel{(2)}{=} (r \wedge (!_B \cdot s))(*,*) = r(*,*) \wedge (!_B \cdot s)(*,*) = a \wedge (\bigvee_{b \in B} s(*,b) \otimes (!_B)_{\circ}(b,*)) =$ $a \wedge (\bigvee_{b \in B} b \otimes k) = a \wedge (\bigvee B)$, i.e., $a \wedge (\bigvee B) = \bigvee_{b \in B} (a \wedge b)$.

Remark 30. From now on, V stands for a cartesian closed, strictly two-sided quantale.

Example 31. The quantales 2 and P_+ satisfy the conditions of Remark 30.

2.3. Proper (**T**, V)*-functors and their properties*

Definition 32. Given a topological space (X, τ) and an ultrafilter $\mathfrak{x} \in \beta X$, an element $x \in X$ is a *limit* of $\mathfrak x$ ($\mathfrak x$ *converges to* x) provided that $\mathfrak x$ contains every $U \in \tau$ such that $x \in U$. lim $\mathfrak x$ is the set of limits of $\mathfrak x$.

Theorem 33. *Given topological spaces* (X, τ) *and* (Y, σ) *, a continuous map* $X \stackrel{f}{\to} Y$ *is proper iff for every ultrafilter* $\mathfrak{x} \in \beta X$ *and every* $y \in \lim \beta f(\mathfrak{x})$ *, there exists* $x \in \lim \mathfrak{x}$ *such that* $f(x) = y$ *.*

Remark 34. Representing the category **Top** as $(\beta, 2)$ -**Cat**, one gets that a $(\beta, 2)$ -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$ is proper iff $b(\beta f(\mathfrak{x}), y) \leqslant \bigvee_{f(x)=y} a(\mathfrak{x}, x)$ for every $\mathfrak{x} \in \beta X$, $y \in Y$ iff $b \cdot \beta f(\mathfrak{x}, y) \leqslant f \cdot a(\mathfrak{x}, y)$ for every $\mathfrak{x} \in \beta X$, $y \in Y$ iff $b \cdot \beta f \leqslant f \cdot a$ in **Rel** iff $f \cdot a = b \cdot \beta f$ in **Rel** $(f \cdot a \leqslant b \cdot \beta f$ is the definition of $(\beta, 2)$ -functors).

Definition 35. A (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$ is *proper* provided that the diagram

commutes, i.e., $f \cdot a = b \cdot Tf$.

Example 36.

- (1) **Prost**: an order-preserving map $(X, \leqslant_X) \stackrel{f}{\to} (Y, \leqslant_Y)$ is proper iff $f \cdot \leqslant_X = \leqslant_Y \cdot f$ iff for every $x \in X$ and every $y \in Y$ such that $f(x) \leq y$, there exists $z \in X$ such that $x \leq z$ and $f(z) = y$.
- (2) **QPMet**: a non-expansive map $(X, \rho) \stackrel{f}{\to} (Y, \rho)$ is proper iff $\varrho(f(x), y) = \inf \{ \rho(x, z) \mid z \in X \text{ and } f(z) = 0 \}$ y} for every $x \in X, y \in Y$.
- (3) **Top**: Definition 35 gives precisely the proper maps of Definition 1 (2).
- (4) **App**: a non-expansive map $(X, \delta) \xrightarrow{f} (Y, \sigma)$ is proper iff $\sup_{f^{-1}(B) \in \mathfrak{x}} \sigma(y, B) = \inf_{f(x) = y} \sup_{A \in \mathfrak{x}} \delta(x, A)$ for every $\mathfrak{x} \in \beta X$, $y \in Y$.
- (5) **Cls**: a continuous map $(X, c) \stackrel{f}{\to} (Y, d)$ is proper iff for every $A \in PX$, $y \in Y$ such that $y \in d(f(A))$, there exists $x \in X$ such that $x \in c(A)$ and $f(x) = y$ iff $d(f(A)) \subset f(c(A))$ for every $A \in PX$.

Theorem 37. *Proper maps are stable under pullbacks in* (T, V) -Cat.

PROOF. Notice that given a pullback diagram

in **Set**, it follows that

$$
g^{\circ} \cdot f = p_Y \cdot p_X^{\circ}, \tag{2.3}
$$

since given $x \in X$ and $y \in Y$, $g^{\circ} \cdot f(x, y) = f_{\circ}(x, g(y)) = \begin{cases} k, & f(x) = g(y) \end{cases}$ \perp_V , otherwise $\int k$, $(x, y) \in X \times Z$ Y \perp_V , otherwise \perp

$$
\bigvee_{(x',y')\in X\times ZY} p_X((x',y'),x)\otimes p_Y((x',y'),y) = \bigvee_{(x',y')\in X\times ZY} p_X^{\circ}(x,(x',y'))\otimes p_Y((x',y'),y) = p_Y\cdot p_X^{\circ}(x,y).
$$

Consider now diagram (2.1), in which f is proper. To show that p_Y is proper, notice that $b\cdot Tp_Y = (b\wedge b)\cdot Tp_Y \leq (b\wedge b)\cdot Tp_Y \leq (g^{\circ}\cdot c\cdot Tg)\wedge b)\cdot Tp_Y = (g^{\circ}\cdot c\cdot Tg\cdot Tp_Y)\wedge (b\cdot Tp_Y) = (g^{\circ}\cdot c\cdot T(g\cdot p_Y))\wedge (b\cdot Tp_Y)^{g\cdot p_Y} \equiv^{f\cdot p_X} (g^{\circ}\cdot c\cdot T(f\cdot p_X)) \wedge (b\cdot Tp_Y) = (g^{\circ}\cdot c\cdot Tf\cdot Tp_X) \wedge (b\cdot Tp_Y)^{c\cdot T\neq f\cdot a} (g^{\circ}\cdot f\cdot a\cdot Tp_X) \wedge (b\cdot Tp_Y)^{(\frac{2.3}{2})}$

$$
(p_Y\cdot p_X^{\circ}\cdot a\cdot Tp_X) \wedge (b\cdot Tp_Y) \stackrel{(F)}{=} p_Y\cdot ((p_X^{\circ}\cdot a\cdot Tp_X) \wedge (p_Y^{\circ}\cdot b\cdot Tp_Y)) = p_Y\cdot d.
$$

Definition 38. Given a (\mathbb{T}, V) -functor $(X, a) \xrightarrow{f} (Y, b)$, the *fibre of* f *on* y is the pullback $(f^{-1}(y), \tilde{a}) \xrightarrow{!_{f^{-1}(y)}}$ $(1, 1^{\sharp})$ of f along the (\mathbb{T}, V) -functor $(1, 1^{\sharp}) \stackrel{y}{\rightarrow} (Y, b)$, where $1^{\sharp} = e_1^{\circ} \cdot \hat{T}1_1$ is the discrete structure on 1, i.e.,

$$
(f^{-1}(y), \tilde{a}) \xrightarrow{\cdot f^{-1}(y)} (1, 1^{\sharp})
$$

\n
$$
i_{f^{-1}(y)} \downarrow \qquad \qquad y
$$

\n
$$
(X, a) \xrightarrow{\cdot f} (Y, b),
$$

\n
$$
(2.4)
$$

where $\tilde{a} = (i_{f^{-1}(y)}^{\circ} \cdot a \cdot Ti_{f^{-1}(y)}) \wedge (i_{f^{-1}(y)}^{\circ} \cdot e_1^{\circ} \cdot \hat{T}1_1 \cdot T!_{f^{-1}(y)})$, or, in pointwise notation, $\tilde{a}(\mathfrak{x}, x) = a(\mathfrak{x}, x) \wedge$ $\hat{T}1_1(T!_{f^{-1}(y)}(\mathfrak{x}), e_1(*))$ for every $\mathfrak{x} \in T(f^{-1}(y))$ and every $x \in f^{-1}(y)$.

Theorem 39. *A* (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$ is proper iff all its fibres are proper, and the V-functor $(TX, \hat{a}) \xrightarrow{Tf} (TY, \hat{b})$ *is proper.*

PROOF. For the necessity, notice that Theorem 37 provides properness of fibres. To show the second claim, notice first that for every lax extension $\hat{\mathbb{T}}$ to V-**Rel** of a monad \mathbb{T} on **Set**, and every set X, one can obtain

$$
\hat{T}1_X = \hat{T}(e_X^\circ) \cdot m_X^\circ \tag{2.5}
$$

(see Lecture 2 for more detail). Then $\hat{b} \cdot Tf = \hat{T}b \cdot m_Y^{\circ} \cdot Tf \leq \hat{T}b \cdot m_Y^{\circ} \cdot \hat{T}f \stackrel{(\mathbf{N})}{=} \hat{T}b \cdot \hat{T}f \cdot m_X^{\circ} \leq \hat{T}(b \cdot \hat{T}f) \cdot m_X^{\circ}$ $\overset{(\dagger)}{\leq}$ $\hat{T}(b \cdot Tf) \cdot m_X^{\circ}$ $\stackrel{b\cdot Tf=f\cdot a}{=} \hat{T}(f\cdot a)\cdot m_X^{\circ}$ $\stackrel{(W)}{=} Tf \cdot \hat{T}a \cdot m_X^{\circ} = Tf \cdot \hat{a}$, where (†) uses the fact that $b \cdot \hat{T}f = b \cdot \hat{T}(1_Y \cdot f) =$ $b\cdot\hat{T}1_Y\cdot Tf\stackrel{(2.5)}{=}\,b\cdot\hat{T}(e_Y^\circ)\cdot m_Y^\circ\cdot Tf\stackrel{e_Y^\circ\leqslant b}{\leqslant}b\cdot\hat{T}b\cdot m_Y^\circ\cdot Tf$ $\stackrel{b\cdot \hat{T}b\leqslant b\cdot m_Y}{\leqslant} b\cdot m_Y\cdot m_Y^\circ\cdot Tf$ $\stackrel{m_Y \cdot m_Y^\circ \leqslant 1_{TY}}{\leqslant} b \cdot Tf.$

The sufficiency can be shown as follows. Firstly, notice that a sink $(X_i \stackrel{f_i}{\to} X)_I$ in **Set** is an epi-sink iff

$$
\bigvee_{i \in I} f_i \cdot f_i^\circ = 1_X. \tag{2.6}
$$

Secondly, notice that $b = b \cdot 1^{\circ}_{TY} = b \cdot (m_Y \cdot e_{TY})^{\circ} = b \cdot e^{\circ}_{TY} \cdot m^{\circ}_Y$ $\int_{0}^{\infty} e_Y^{\infty} \cdot \hat{T}b \cdot e_Y^{\infty} \cdot \hat{T}b \cdot m_Y^{\infty} = e_Y^{\infty} \cdot \hat{b}$. It follows then that $b \cdot Tf \leqslant e_Y^{\circ} \cdot \hat{b} \cdot Tf \stackrel{\hat{b} \cdot Tf=Tf \cdot \hat{a}}{=} e_Y^{\circ} \cdot Tf \cdot \hat{a} = e_Y^{\circ} \cdot Tf \cdot \hat{T}a \cdot m_X^{\circ} = 1_Y \cdot e_Y^{\circ} \cdot Tf \cdot \hat{T}a \cdot m_X^{\circ}$ $\overline{\overline{}}$ $\begin{split} (\bigvee_{y\in Y}y\cdot y^{\circ})\cdot e_{Y}^{\circ}\cdot Tf\cdot \hat{T}a\cdot m_{X}^{\circ}=(\bigvee_{y\in Y}y\cdot y^{\circ}\cdot e_{Y}^{\circ}\cdot Tf)\cdot \hat{T}a\cdot m_{X}^{\circ}=(\bigvee_{y\in Y}y\cdot (e_{Y}\cdot y)^{\circ}\cdot Tf)\cdot \hat{T}a\cdot m_{X}^{\circ}\stackrel{e_{Y}\cdot y=Ty\cdot e_{1}}{=}0\end{split}$ $(\bigvee_{y\in Y} y\cdot (Ty\cdot e_1)\circ \cdot Tf)\cdot \hat{T}a\cdot m_X^{\circ} = (\bigvee_{y\in Y} y\cdot e_1^{\circ}\cdot (Ty)^{\circ}\cdot Tf)\cdot \hat{T}a\cdot m_X^{\circ} = r_1$, where (†) uses that fact that $(1 \overset{y}{\to} Y)_Y$ is an epi-sink in **Set**. Since the underlying **Set**-diagram of (2.4) is a pullback along the monomorphism $1 \stackrel{y}{\rightarrow} Y$, by (T),

$$
T(f^{-1}(y)) \xrightarrow{T!_{f^{-1}(y)}} T1
$$

\n
$$
T^{i_{f^{-1}(y)}} \downarrow TX \xrightarrow{Tf} TY
$$

is a pullback as well. Similar to (2.3), $(Ty)^{\circ} \cdot Tf = T!_{f^{-1}(y)} \cdot (Ti_{f^{-1}(y)})^{\circ}$, and then $r_1 = (\bigvee_{y \in Y} y \cdot e_1^{\circ} \cdot \bigcirc \cdot f(x))$ $T!_{f^{-1}(y)}\cdot (Ti_{f^{-1}(y)})^{\circ})\cdot \hat{T}a\cdot m_X^{\circ}=(\bigvee_{y\in Y}y\cdot e_1^{\circ}\cdot T1_1\cdot T!_{f^{-1}(y)}\cdot (Ti_{f^{-1}(y)})^{\circ})\cdot \hat{T}a\cdot m_X^{\circ}\leqslant (\bigvee_{y\in Y}y\cdot e_1^{\circ}\cdot \hat{T}1_1\cdot T!_{f^{-1}(y)}\cdot (Ti_{f^{-1}(y)})^{\circ})$ $T!_{f^{-1}(y)} \cdot (Ti_{f^{-1}(y)})^{\circ}) \cdot \hat{T}a \cdot m_X^{\circ} = r_2.$ Given $y \in Y$, properness of the fibres of f implies that the (\mathbb{T}, V) -functor $(f^{-1}(y),\tilde{a})\xrightarrow[]{!_{f^{-1}(y)}}(1,1^{\sharp})$ is proper, i.e., $1^{\sharp} \cdot T!_{f^{-1}(y)} =!_{f^{-1}(y)} \cdot \tilde{a}$. Definition 38 implies that $e_1^{\circ} \cdot \hat{T}1_1 \cdot T!_{f^{-1}(y)} =$ $1^{\sharp}\cdot T!_{f^{-1}(y)}=!_{f^{-1}(y)}\cdot \tilde{a} =!_{f^{-1}(y)}\cdot ((i_{f^{-1}(y)}^{\circ}\cdot a\cdot Ti_{f^{-1}(y)})\wedge (!_{f^{-1}(y)}^{\circ}\cdot e_{1}^{\circ}\cdot \hat{T}1_{1}\cdot T!_{f^{-1}(y)}))\leqslant !_{f^{-1}(y)}\cdot i_{f^{-1}(y)}^{\circ}\cdot a\cdot T!_{f^{-1}(y)}$

$$
\label{eq:2.1} \begin{split} & Ti_{f^{-1}(y)}, \text{ and thus, } r_2 \leqslant (\bigvee_{y \in Y} y \cdot !_{f^{-1}(y)} \cdot i_{f^{-1}(y)}^{\circ} \cdot a \cdot Ti_{f^{-1}(y)} \cdot (Ti_{f^{-1}(y)})^{\circ}) \cdot \hat{T}a \cdot m_X^{\circ} \overset{Ti_{f^{-1}(y)} \cdot (Ti_{f^{-1}(y)})^{\circ} \leqslant 1_{TX}}{\leqslant} \\ & (\bigvee_{y \in Y} y \cdot !_{f^{-1}(y)} \cdot i_{f^{-1}(y)}^{\circ} \cdot a) \cdot \hat{T}a \cdot m_X^{\circ} \overset{y \cdot !_{f^{-1}(y)} = f \cdot i_{f^{-1}(y)}}{=} (\bigvee_{y \in Y} f \cdot i_{f^{-1}(y)} \cdot i_{f^{-1}(y)}^{\circ} \cdot a) \cdot \hat{T}a \cdot m_X^{\circ} \overset{i_{f^{-1}(y)} \cdot i_{f^{-1}(y)}^{\circ} \leqslant 1_{TX}}{\leqslant} \\ & (\bigvee_{y \in Y} f \cdot a) \cdot \hat{T}a \cdot m_X^{\circ} \leqslant f \cdot a \cdot \hat{T}a \cdot m_X^{\circ} \overset{a \cdot \hat{T}a \leqslant m_X}{\leqslant} f \cdot a \cdot m_X \cdot m_X^{\circ} \overset{mx \cdot m_X^{\circ} \leqslant 1_{TX}}{\leqslant} f \cdot a. \end{split} \qquad \qquad \Box
$$

Theorem 40. If $\hat{T} \stackrel{e^{\circ}}{\longrightarrow} 1_{V}$ -**Rel** is a natural transformation, then every (\mathbb{T}, V) -functor has proper fibres. **PROOF.** Given a (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$, one has to show that the diagram

$$
T(f^{-1}(y)) \xrightarrow{T!_{f^{-1}(y)}} T1
$$

\n
$$
\tilde{a} \downarrow \qquad \qquad \downarrow 1^{\sharp}
$$

\n
$$
f^{-1}(y) \xrightarrow{\qquad \qquad \downarrow 1^{\sharp}}
$$

commutes. The condition of the theorem implies commutativity of the diagram

$$
T(f^{-1}(y)) \xrightarrow{\hat{T}!_{f^{-1}(y)}} T1 \xrightarrow{\hat{T}1_1} TX
$$

$$
e_{f^{-1}(y)}^{\circ} \downarrow \qquad e_1^{\circ} \downarrow \qquad e_1^{\circ} \downarrow \qquad e_1^{\circ}
$$

$$
f^{-1}(y) \xrightarrow{\qquad \qquad !_{f^{-1}(y)}} 1 \xrightarrow{\qquad \qquad } 1.
$$

Given $\mathfrak{x} \in T(f^{-1}(y))$, it follows then that $1^{\sharp} \cdot T!_{f^{-1}(y)}(\mathfrak{x},*) = e_1^{\circ} \cdot \hat{T}1_1 \cdot T!_{f^{-1}(y)}(\mathfrak{x},*) \leqslant e_1^{\circ} \cdot \hat{T}1_1 \cdot \hat{T}!_{f^{-1}(y)}(\mathfrak{x},*) =$ $!_{f^{-1}(y)} \cdot e_{f^{-1}(y)}^{\circ}(\mathfrak{x},*) = \bigvee_{f(x)=y} e_{f^{-1}(y)}^{\circ}(\mathfrak{x},x)$ $e_{f^{-1}(y)}^{\circ} \leq \tilde{a}$ $\begin{array}{ll} \n\searrow & \bigvee_{f(x)=y} \tilde{a}(\mathfrak{x},x) = I_{f^{-1}(y)} \cdot \tilde{a}(\mathfrak{x},*) \n\end{array}$

Corollary 41. If $\hat{T} \stackrel{e^{\circ}}{\longrightarrow} 1_{V}$ -Rel *is a natural transformation, then a* (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$ *is proper iff the* V-functor $(TX, \hat{a}) \xrightarrow{Tf} (TY, \hat{b})$ *is proper.*

PROOF. Follows from Theorems 39, 40. \Box

Remark 42. Observe that given a lax extension $\hat{\mathbb{T}}$ to V-**Rel** of a monad \mathbb{T} on **Set**, since $1_{V\text{-}\mathbf{Rel}} \stackrel{e}{\rightarrow} \hat{T}$ is an oplax natural transformation (recall Lecture 1), it follows that

$$
X \xrightarrow{ex} TX
$$

\n
$$
r \downarrow \leq \qquad \qquad \downarrow \hat{T}r
$$

\n
$$
Y \xrightarrow{e_Y} TY
$$

for every V-relation $X \longrightarrow Y$. Thus, $e_Y \cdot r \leq \hat{T} r \cdot e_X$ implies $r \cdot e_X^{\circ} \leqslant e_Y^{\circ} \cdot r \cdot e_X^{\circ} \leqslant e_Y^{\circ} \cdot \hat{T} r \cdot e_X \cdot e_X^{\circ} \leqslant e_Y^{\circ} \cdot \hat{T} r$, ✤ i.e., $r \cdot e_X^{\circ} \leqslant e_Y^{\circ} \cdot \hat{T}r$. As a consequence, one obtains that $\hat{T} \xrightarrow{e^{\circ}} 1_{V\text{-}\text{Rel}}$ is a natural transformation iff

$$
\begin{array}{ccc}\n & e_X^{\circ} & X \\
 & \uparrow & \searrow & X \\
 & \uparrow & & \downarrow & \\
 & TY & \xrightarrow{\cdot} & Y \\
 & & e_Y^{\circ} & & \n\end{array}
$$

for every V-relation $X \xrightarrow{r} Y$. ✤

Remark 43.

- (1) The lax extension \hat{P} of the powerset monad P on **Set** to **Rel** fails to satisfy the condition of Corollary 41. Observe that following Remark 42, it is enough to a find a relation $X \longrightarrow Y$ such that $e_Y^{\circ} \cdot \hat{P}r \nleq r \cdot e_X^{\circ}$. ✤ Given $A \in PX$ and $y \in Y$, on the one hand, $A(e_Y^{\circ} \cdot \hat{P}r) y$ iff $A(\hat{P}r) e_Y(y)$ iff $A \hat{P}r \{y\}$ iff there exists $x \in A$ such that $x r y$ (recall Lecture 1), and, on the other hand, $A (r \cdot e_X^{\circ}) y$ iff there exists $x \in X$ such that $A e^{\circ}_X x$ and $x r y$ iff there exists $x \in X$ such that $e_X(x) = A$ and $x r y$ iff there exists $x \in X$ such that $A = \{x\}$ and $x r y$. If $X = Y = \{0, 1\}$ and $r = \{(0, 0), (1, 1)\} \subseteq X \times Y$, then $X (e_Y^{\circ} \cdot \hat{P}r)$ (since
- (2) The lax extension β (resp. β) of the ultrafilter monad β on **Set** to **Rel** (resp. P₊-**Rel**) fails to satisfy the condition of Corollary 41.
- (3) There exist monads on **Set**, whose lax extensions satisfy the condition of Corollary 41.

 $(0 r 0)$, but X and 0 fail to be in relation $r \cdot e_X^{\circ}$ since $\{0\} \neq \{0, 1\}.$

2.4. Compact (**T**, V)*-categories*

Definition 44. A (\mathbb{T}, V) -category (X, a) is said to be *compact* provided that the unique (\mathbb{T}, V) -functor $(X, a) \xrightarrow{!X} (1, \top)$ is proper.

Example 45. Given a compact (\mathbb{T}, V) -category (X, a) , it follows that $!_X \cdot a = \mathbb{T} \cdot T!_X$, or, in pointwise notation, $\bigvee_{x \in X} a(x, x) = \top_V$ for every $x \in TX$.

- (1) **Prost**: a preordered set (X, \leqslant) is compact provided that for every $y \in X$, there exists $x \in X$ such that $y \leq x$, which is always true (choose $x = y$).
- (2) **QPMet**: a quasi-pseudo-metric space (X, ρ) is compact provided that inf_{x∈X} $\rho(y, x) = 0$ for every $y \in X$, which is always true (choose $x = y$).
- (3) **Top**: a topological space (X, τ) is compact provided that every ultrafilter on X has a limit point, which is precisely the standard definition of compactness of topological spaces.
- (4) **App**: an approach space (X, δ) is compact provided that $\inf_{x \in X} \sup_{A \in \mathfrak{x}} \delta(x, A) = 0$ for every $\mathfrak{x} \in \beta X$.
- (5) **Cls**: a closure space (X, c) is compact provided that $c(A) \neq \emptyset$ for every $A \in PX$. Observe that given $A \in PX$, it follows that $A \subseteq c(A)$, which implies that $c(A) \neq \emptyset$ provided that $A \neq \emptyset$. Thus, a closure space (X, c) is compact iff $c(\emptyset) \neq \emptyset$. It then follows that a closure space induced by a topological space is never compact, since \emptyset is closed $(c(\emptyset) = \emptyset)$ in every topological space.

Remark 46. If $T1 \cong 1$, then the (\mathbb{T}, V) -category $(1, 1^{\sharp})$ (which is additionally a separator in (\mathbb{T}, V) -**Cat**) coincides with the terminal object $(1, \top)$ (since $1^{\sharp}(*, *) = e_1^{\circ} \cdot \hat{T}1_1(*, *) = \hat{T}1_1(*, *_{1}(*) = \hat{T}1_1(*, *) \ge$ $1_1(*,*) = \top_V$, and therefore, it follows that (X, a) is compact iff the only fibre of $(X, a) \stackrel{!}{\longrightarrow} (1, \top)$ is proper, since the respective fibre is then given by the pullback

$$
(X, a) \xrightarrow{1_X} (1, \top)
$$

\n
$$
\downarrow^{1_X} \qquad \qquad \downarrow^{1_1}
$$

\n
$$
(X, a) \xrightarrow{-1_X} (1, \top).
$$

Example 47.

- (1) For the powerset functor P on **Set**, $P1 = \{ \emptyset, \{*\} \} \not\cong \{*\} = 1$.
- (2) For the ultrafilter functor β on **Set**, β 1 \cong 1.

Theorem 48. *If* (X, a) *is a compact* (T, V) -category, then the fibre of the (T, V) -functor $(X, a) \stackrel{!_{X}}{\longrightarrow} (1, T)$ *is proper. If the two structures* 1^{\sharp} *and* \top *on* 1 *coincide, then the converse is true.*

PROOF. Follows from Theorem 37 and the arguments of Remark 46. □

Corollary 49. Suppose that \top is the discrete structure on 1. Given a (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\to} (Y, b)$, *equivalent are:*

- (1) f *is proper;*
- (2) the V-functor $(TX, \hat{a}) \xrightarrow{Tf} (TY, \hat{b})$ is proper and f has compact fibres.

PROOF. Follows from Theorems 39, 48. □

Corollary 50. *If* \top *is the discrete structure on* 1, and $\hat{T} \stackrel{e^{\circ}}{\longrightarrow} 1_{V}$ **·Rel** *is a natural transformation, then every* (**T**, V)*-category is compact.*

PROOF. Recall Theorem 40. \Box

Theorem 51. *If the lax extension* \hat{T} *to* V-Rel *of a functor* T *on* Set *is flat, then* $\top = 1^{\sharp}$ *iff* $T1 \cong 1$ *.*

PROOF. The sufficiency is clear. For the necessity, notice that given $\mathfrak{x} \in T1$, it follows that $\top_V = \top(\mathfrak{x}, *) =$ $1^{\sharp}(\mathfrak{x},*) = e_1^{\circ} \cdot \hat{T} 1_1(\mathfrak{x},*) \stackrel{\hat{T} \text{ is flat}}{=} e_1^{\circ} \cdot T 1_1(\mathfrak{x},*) = e_1^{\circ}(\mathfrak{x},*)$, and therefore, $\mathfrak{x} = e_1(*)$.

3. Closed maps in the category (T, V) -Cat

Lemma 52. *A continuous map* $(X, \tau) \stackrel{f}{\to} (Y, \sigma)$ *between topological spaces is closed iff* $cl(f(A)) \subseteq f(cl(A))$ *for every* $A \subseteq X$.

PROOF.

 \Rightarrow : Given a subset $A \subseteq X$, if f is closed, then $f(cl(A))$ is closed. Thus, $A \subseteq cl(A)$ implies $f(A) \subseteq f(cl(A))$ implies $cl(f(A)) \subseteq cl(f(cl(A))) = f(cl(A)),$ i.e., $cl(f(A)) \subseteq f(cl(A)).$

 \Leftarrow : Given a subset $A \subseteq X$, since $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ and $f^{-1}(cl(f(A)))$ is closed, $cl(A) \subseteq f^{-1}(cl(f(A)))$ and then $f(cl(A)) \subseteq f(f^{-1}(cl(f(A)))) \subseteq cl(f(A)),$ i.e., $f(cl(A)) \subseteq cl(f(A))$. Thus, $f(cl(A)) = cl(f(A))$ by the assumption of the lemma. If A is closed, then $f(A) = f(cl(A)) = cl(f(A))$. \Box

Lemma 53. *Given a topological space* (X, τ) *and* $A \subseteq X$ *, it follows that* $cl(A) = \bigcup_{x \in \beta X}$ *and* $A \in \mathfrak{g}$ lim \mathfrak{x} *.*

Definition 54. A (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\to} (Y, b)$ is *closed* provided that for every $A \subseteq X$,

$$
f \cdot a \cdot Ti_A \cdot !^{\circ}_{TA} = b \cdot Tf \cdot Ti_A \cdot !^{\circ}_{TA}, \qquad (3.1)
$$

where $A \xrightarrow{i_A} X$ is the inclusion map and $TA \xrightarrow{i_{TA}} 1$ is the unique map.

Remark 55. Observe that given a V-relation $TX \xrightarrow{r} X$, for every subset $A \subseteq X$, the composite V- $\text{relation 1} \longrightarrow T A \xrightarrow{T_{i_A}} T X \longrightarrow^{r} X \text{ in pointwise notation provides } r \cdot T_{i_A} \cdot !_{TA}^{\circ}(*,x) = \bigvee_{\mathfrak{y} \in T A} !_{TA}^{\circ}(*, \mathfrak{y}) \otimes_{\mathfrak{y} \in T A} !_{TA}^{\circ}(*,x)$ ✤ $(r \cdot Ti_A)(\mathfrak{y}, x) = \bigvee_{\mathfrak{y} \in TA} (\cdot|_{TA})_{\circ}(\mathfrak{y}, *) \otimes (\bigvee_{\mathfrak{x} \in TX} (Ti_A)_{\circ}(\mathfrak{y}, \mathfrak{x}) \otimes r(\mathfrak{x}, x)) = \bigvee_{\mathfrak{y} \in TA} r(Ti_A(\mathfrak{y}), x)$ for every $x \in X$.

Lemma 56. *Given a* (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$, the following are equivalent:

- (1) f *is closed;*
- (2) $b \cdot Tf \cdot Ti_{A} \cdot !_{TA}^{\circ} \leqslant f \cdot a \cdot Ti_{A} \cdot !_{TA}^{\circ}$ for every $A \subseteq X$.

PROOF. Recall that since $(X, a) \stackrel{f}{\to} (Y, b)$ is a (\mathbb{T}, V) -functor, it follows that $f \cdot a \leqslant b \cdot Tf$.

Example 57. Let $(X, a) \stackrel{f}{\to} (Y, b)$ be a (\mathbb{T}, V) -functor. Given $A \subseteq X$, denote by $A \stackrel{f}{\to} f(A)$ the restriction of f to A and $f(A)$, respectively. Commutativity of the diagram

$$
\begin{array}{ccc}\n&\stackrel{!_{T_A}^\circ}{\longrightarrow} T A &\stackrel{Ti_A}{\longrightarrow} TX\\ &\swarrow&&\downarrow T\\ \stackrel{!_{T(f(A))}^\circ}{\longrightarrow} &\swarrow &\searrow T\\ T(f(A)) &\stackrel{\longrightarrow}{T i_{f(A)}} T Y\end{array}
$$

and Lemma 56 replace (3.1) with $b \cdot Ti_{f(A)} \cdot l^{\circ}_{T(f(A))} \leqslant f \cdot a \cdot Ti_{A} \cdot l^{\circ}_{T A}$, which, in pointwise notation, provides

$$
\bigvee_{\mathfrak{y}\in T(f(A))} b(Ti_{f(A)}(\mathfrak{y}),y) \leq \bigvee_{\mathfrak{x}\in TA} \bigvee_{f(x)=y} a(Ti_A(\mathfrak{x}),x)
$$
\n(3.2)

for every $y \in Y$. In some particular cases, (3.2) can be rewritten as follows.

- (1) **Prost**: an order-preserving map $(X, \leq) \stackrel{f}{\to} (Y, \leq)$ is closed iff for every $x \in X$ and every $y \in Y$ such that $f(x) \leq y$, there exists $z \in X$ such that $x \leq z$ and $f(z) = y$.
- (2) **QPMet**: a non-expansive map $(X, \rho) \xrightarrow{f} (Y, \rho)$ is closed iff $\inf{\rho(x, z) | z \in X \text{ and } f(z) = y} \leq$ $\varrho(f(x), y)$ for every $x \in X, y \in Y$.
- (3) **Top**: one gets precisely the result of Lemma 52.
- (4) **App**: a non-expansive map $(X, \delta) \xrightarrow{f} (Y, \sigma)$ is closed iff $\inf_{f(x)=y} \delta(x, A) \leq \sigma(y, f(A))$ for every $A \subseteq X$.
- (5) **Cls**: a continuous map $(X, c) \xrightarrow{f} (Y, d)$ is closed iff $\bigcup \{d(C) | C \subseteq f(A)\} \subseteq \bigcup \{f(c(B)) | B \subseteq A\}$ for every $A \in PX$ iff $d(f(A)) \subseteq f(c(A)).$

Theorem 58. *Every proper* (\mathbb{T}, V) *-functor is closed.*

PROOF. Follows directly from the definition of the two concepts. □

Theorem 59. Suppose every (T, V) -category (X, a) has the property that given $\mathfrak{x} \in TX$, there exists $A \subseteq X$ *such that*

$$
\mathfrak{x}\in Ti_A(TA) \quad and \quad a\cdot Ti_A \cdot !_{TA}^{\circ} \leqslant a\cdot \mathfrak{x}, \text{ where } \mathfrak{x} \text{ is considered as a map } 1 \xrightarrow{\mathfrak{x}} TX. \tag{3.3}
$$

Then every closed (\mathbb{T}, V) *-functor* $(X, a) \stackrel{f}{\to} (Y, b)$ *is proper.*

PROOF. To show that $b \cdot Tf \leqslant f \cdot a$, notice that given $\mathfrak{x} \in TX$ and $y \in Y$, $b \cdot Tf(\mathfrak{x}, y) \stackrel{(\dagger)}{=} b \cdot Tf(Ti_A(\mathfrak{z}), y) =$ $b \cdot Tf \cdot Ti_A(\mathfrak{z},y) \leqslant \bigvee_{\mathfrak{w} \in TA} b \cdot Tf \cdot Ti_A(\mathfrak{w},y) = b \cdot Tf \cdot Ti_A \cdot!_{TA}^{\circ}(\ast,y) \stackrel{(\dagger \dagger)}{=} f \cdot a \cdot Ti_A \cdot!_{TA}^{\circ}(\ast,y) \stackrel{(\dagger \dagger \dagger)}{\leqslant} f \cdot a \cdot \mathfrak{x}(\ast,y) =$ $f \cdot a(\mathfrak{x}, y)$, where (†) (resp. († † †)) relies on the left-hand (resp. right-hand) side of (3.3), and († †) uses the closedness of the (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\to} (Y, b)$.

Lemma 60. *The categories* V-Cat *and* $(P, 2)$ -Cat *(for the lax extension* \hat{P} *to* Rel *of the powerset monad* **P** *on* **Set***) satisfy condition* (3.3)*.*

PROOF. The case of V-**Cat** is clear (given $y \in X$, take the singleton set $A = \{y\}$). To show condition (3.3) for the category $(\mathbb{P}, 2)$ **-Cat**, recall that every $(\mathbb{P}, 2)$ -category (X, a) can be equivalently described as a closure space (X, c) , in which, given $A \in PX$ and $x \in X$, $x \in c(A)$ iff $A \, a \, x$. Therefore, if $B \subseteq A \in PX$, then $B \, a \, x$ implies $x \in c(B)$ implies $x \in c(A)$ implies $A \, a \, x$. As a result, given $A \in PX$, for every $x \in X$, it follows that $a\cdot Pi_{A}\cdot\mathop{\mathbf{P}}\nolimits_{A}(*,x)=\textstyle{\bigvee}_{B\in P A}a\cdot Pi_{A}(B,x)=\textstyle{\bigvee}_{B\in P A}a(Pi_{A}(B),x)=\textstyle{\bigvee}_{B\in P A}a(B,x)\leqslant a(A,x)=a\cdot A(*,x).$

Corollary 61. *The concepts of proper and closed map are equivalent in the categories* V *-***Cat***,* (**P**, 2)*-***Cat***.* Thus, for every (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\to} (Y, b)$, the V-functor $(T X, \hat{a}) \stackrel{T f}{\to} (T Y, \hat{b})$ is proper iff it is closed.

Definition 62. A monad **T** on the category **Set** is said to be *non-trivial* provided that it admits Eilenberg-Moore algebras, whose underlying sets have more than one element.

Proposition 63. Let \mathbb{T} be non-trivial, let $T\emptyset = \emptyset$, and let \hat{T} be flat. If every (\mathbb{T}, V) -category (X, a) satisfies *condition (3.3), then* T *is isomorphic to the identity functor on* **Set***.*

PROOF. Given a set X, the assumption on non-triviality of \mathbb{T} and [7, Subsection 3.1] together imply that the map $X \xrightarrow{e_X} TX$ is injective. We show that the map is also surjective.

Since \hat{T} is flat, the discrete (\mathbb{T}, V) -category structure on X is provided by $1_X^{\sharp} = e_X^{\circ} \cdot \hat{T} 1_X = e_X^{\circ}$. Given $\mathfrak{x} \in TX$, there exists $A \subseteq X$, which satisfies condition (3.3) w.r.t. e_X° . Since $\mathfrak{x} \in Ti_A(TA)$, $A \neq \emptyset$ (by the assumption of the proposition), and therefore, there exists $x \in A$. One gets then that $k \leq e_X^{\circ}(e_X(x), x) \leq$ $\bigvee_{\mathfrak{y}\in TA}e_X^{\circ}\cdot Ti_A(\mathfrak{y},x) = e_X^{\circ}\cdot Ti_A \cdot !_{TA}^{\circ}(\ast,x) \stackrel{(3.3)}{\leqslant} e_X^{\circ}\cdot \mathfrak{x}(\ast,x) = e_X^{\circ}(\mathfrak{x},x)$, which yields the desired $e_X(x) = \mathfrak{x}$. \Box

Remark 64. Notice that while the ultrafilter monad β on **Set** has the property $\beta \varnothing = \varnothing$, the powerset monad **P** on **Set** satisfies the converse condition $P\emptyset \neq \emptyset$. In particular, the category (\emptyset , 2)-**Cat** (for the lax extension $\hat{\beta}$ of the ultrafilter monad β) does not satisfy condition (3.3).

Definition 65. Given a topological category (A, U) over **X**, an **A**-morphism $A \xrightarrow{f} B$ is said to be an *embedding* provided that f is initial, and its underlying **X**-morphism $UA \xrightarrow{Uf} UB$ is a monomorphism.

Remark 66. A (\mathbb{T}, V) -functor $(X, a) \stackrel{f}{\to} (Y, b)$ is an embedding provided that the map $X \stackrel{f}{\to} Y$ is injective and $a = f^{\circ} \cdot b \cdot Tf$.

Theorem 67. If $(X, a) \stackrel{f}{\rightarrow} (Y, b)$ is an embedding (\mathbb{T}, V) -functor, then f is closed iff f is proper.

PROOF. The sufficiency follows from Theorem 58. For the necessity, we notice that $f \cdot a \cdot_{TX}^0 = b \cdot Tf \cdot_{TX}^0$ since f is closed (take $A = X$ in Definition 54), and also fix $x_0 \in TX$. For every $y \in f(X)$, it follows that $f \cdot a(\mathfrak{x}_0, y) = \bigvee_{f(x) = y} a(\mathfrak{x}_0, x) \stackrel{\text{(f)}}{=} a(\mathfrak{x}_0, f^{-1}(y)) \stackrel{\text{(f)}}{=} f^{\circ} \cdot b \cdot Tf(\mathfrak{x}_0, f^{-1}(y)) = b \cdot Tf(\mathfrak{x}_0, f(f^{-1}(y))) =$ $b \cdot Tf(\mathfrak{x}_0, y)$, where (†) relies on the embedding assumption. For every $y \notin f(X)$, it follows that $b \cdot Tf(\mathfrak{x}_0, y)$ $\bigvee_{\mathbf{x}\in TX} b(Tf(\mathbf{x}),y) = b \cdot Tf \cdot \mathbb{I}_{TX}^{\circ}(*,y) \stackrel{(\dagger\dagger)}{=} f \cdot a \cdot \mathbb{I}_{TX}^{\circ}(*,y) = \bigvee_{\mathbf{x}\in TX} \bigvee_{f(x)=y} a(\mathbf{x},x) = \bot_V$, which yields the desired $b \cdot Tf(\mathfrak{x}_0, y) = \bot_V = f \cdot a(\mathfrak{x}_0, y)$, where (††) relies on the above property of closed maps.

Remark 68. The result of Theorem 67 extends the classical one in the category **Top**, which states that the embedding assumption makes the concepts of closedness and properness equivalent.

4. Generalized Kuratowski-Mrówka theorem

Remark 69. Given a (\mathbb{T}, V) -category (X, a) and $\mathfrak{x} \in TX$, define $Y = X \cup \{w\}$, and let a V-relation $TY \xrightarrow{b} Y$ be given by

$$
b(\mathfrak{y}, y) = \begin{cases} \top_V, & \mathfrak{y} = e_Y(y) \text{ or } (\mathfrak{y} = Ti_X(\mathfrak{x}) \text{ and } y = w) \\ \bot_V, & \text{otherwise.} \end{cases}
$$

Below, sufficient conditions are provided for the above construction to define a (\mathbb{T}, V) -category (Y, b) .

Definition 70.

- (1) A V-relation $X \longrightarrow Y$ is said to *have finite fibres* provided that the set $r^{\circ}(y) = \{x \in X \mid \bot_V < r(x, y)\}$ ✤ is finite for every $y \in Y$.
- (2) A lax natural transformation $1_{V\text{-}\text{Rel}} \stackrel{e}{\rightarrow} \hat{T}$ is said to be *finitely* (-)°-*strict* provided that the diagram

commutes for every V-relation $X \xrightarrow{r} Y$ with finite fibres. ✤

Example 71.

- (1) The lax natural transformation $1_{\text{Rel}} \stackrel{e}{\rightarrow} \hat{\beta}$ (resp. $1_{V\text{-Rel}} \stackrel{e}{\rightarrow} \bar{\beta}$) of the extension $\hat{\beta}$ (resp. $\bar{\beta}$) to **Rel** (resp. P_+ -Rel) of the ultrafilter monad β on **Set** is finitely $(-)^\circ$ -strict.
- (2) The lax natural transformation $1_{\text{Rel}} \stackrel{e}{\rightarrow} \hat{P}$ of the extension \hat{P} to **Rel** of the powerset monad P on **Set** fails to be finitely $(-)^\circ$ -strict (cf. Remark 43(1)).

Remark 72. The V-relation $TY \xrightarrow{b} Y$ of Remark 69 has finite fibres.

Theorem 73. If \hat{T} is flat and 1_{V} -**Rel** $\stackrel{e}{\rightarrow} \hat{T}$ is finitely $(-)^{\circ}$ -strict, then (Y, b) is a (\mathbb{T}, V) -category.

PROOF. The definition of the map b gives $1_Y \leq b \cdot e_Y$. The condition $b \cdot \hat{T} b \leq b \cdot m_Y$ can be shown as follows. Given $\mathfrak{Y} \in TTY$ and $y \in Y$, one gets that $b \cdot \hat{T}b(\mathfrak{Y},y) = \bigvee_{\mathfrak{y} \in TY} \hat{T}b(\mathfrak{Y},\mathfrak{y}) \otimes b(\mathfrak{y},y)$ and $b \cdot m_Y(\mathfrak{Y},y) =$

 $b(m_Y(\mathfrak{Y}), y)$. If there exists $\mathfrak{y} \in TY$ such that $\bot_V < \hat{T}b(\mathfrak{Y}, \mathfrak{y}) \otimes b(\mathfrak{y}, y)$ (otherwise, the claim is clear), then $b(\mathfrak{y}, y) = \top_V$, and therefore, $\mathfrak{y} = e_Y(y)$ or $(\mathfrak{y} = T_i(X(\mathfrak{x}))$ and $y = w)$.

If $\mathfrak{y} = e_Y(y)$, then $\hat{T}b(\mathfrak{Y}, \mathfrak{y}) \otimes b(\mathfrak{y}, y) = \hat{T}b(\mathfrak{Y}, e_Y(y)) = e_Y^{\circ} \cdot \hat{T}b(\mathfrak{Y}, y)$. Since the *V*-relation *b* has finite fibres, apply finite $(-)^\circ$ -strictness of e and get $e_Y^\circ \cdot \hat{T}b = b \cdot e_{TY}^\circ$. As a consequence, $e_Y^\circ \cdot \hat{T}b(\mathfrak{Y},y) =$ $b \cdot e_{TY}^{\circ}(\mathfrak{Y},y) \stackrel{(\dagger)}{\leq} b \cdot m_Y(\mathfrak{Y},y) = b(m_Y(\mathfrak{Y}),y)$, where (\dagger) uses the fact that $m_Y \cdot e_{TY} = 1_{TY}$ implies $e_{TY}^{\circ} \leq m_Y$.

If $\mathfrak{y} = Ti_X(\mathfrak{x})$ and $y = w$, then $\hat{T}b(\mathfrak{Y}, \mathfrak{y}) \otimes b(\mathfrak{y}, y) = \hat{T}b(\mathfrak{Y}, Ti_X(\mathfrak{x})) = (Ti_X)^\circ \cdot \hat{T}b(\mathfrak{Y}, \mathfrak{x}) = \hat{T}(i_X^\circ \cdot b)(\mathfrak{Y}, \mathfrak{x}).$ Since for every $\mathfrak{z} \in TY$ and every $x \in X$,

$$
i_X^{\circ} \cdot b(\mathfrak{z}, x) = b(\mathfrak{z}, i_X(x)) = \begin{cases} \top_V, & \mathfrak{z} = e_Y \cdot i_X(x) \\ \bot_V, & \text{otherwise} \end{cases} = (e_Y \cdot i_X)^{\circ} (\mathfrak{z}, x),
$$

it follows that $\hat{T}(i_X^{\circ} \cdot b) = \hat{T}(e_Y \cdot i_X)^{\circ} = (Te_Y \cdot Ti_X)^{\circ}$, since \hat{T} is flat. Moreover, $\bot_V < (Te_Y \cdot Ti_X)^{\circ}(\mathfrak{Y}, \mathfrak{x})$ implies $T e_Y \cdot T i_X(\mathfrak{x}) = \mathfrak{Y}$. As a result, $b(m_Y(\mathfrak{Y}), y) = b(m_Y \cdot T e_Y \cdot T i_X(\mathfrak{x}), w) = b(T i_X(\mathfrak{x}), w) = \top_V$.

Remark 74. The (\mathbb{T}, V) -category (Y, b) constructed in Remark 69 is called the *test structure for* x.

Theorem 75 (Generalized Kuratowski-Mrówka theorem). Let \hat{T} be flat and let 1_{V} - $_{Rel} \stackrel{e}{\rightarrow} \hat{T}$ be fini*tely* $(-)^\circ$ -strict. Given a (\mathbb{T}, V) -category (X, a) , the following are equivalent:

(1) (X, a) *is compact;*

(2) for every (\mathbb{T}, V) -category (Z, c) , the projection $(X, a) \times (Z, c) \stackrel{\pi_Z}{\longrightarrow} (Z, c)$ is closed.

PROOF.

 $(1) \Rightarrow (2)$: Since (X, a) is compact, then $(X, a) \xrightarrow{\downarrow X} (1, \top)$ is proper, and therefore, its pullback along every (\mathbb{T}, V) -functor is proper by Theorem 37. In particular, the pullback

$$
(X, a) \times (Z, c) \xrightarrow{\pi_Z} (Z, c)
$$

$$
\pi_X \downarrow \qquad \qquad \downarrow: \qquad \down
$$

provides the proper map $(X, a) \times (Z, c) \xrightarrow{\pi_Z} (Z, c)$, which is then necessarily closed by Theorem 58. $(2) \Rightarrow (1)$: One has to show that the diagram

commutes. Given $\mathfrak{x} \in TX$, there exists the respective test structure (Y, b) , constructed in Theorem 73. Moreover, one has the following diagram

$$
1 \xrightarrow{\begin{array}{c} T1_X \\ \downarrow \vdash rX \\ 1 \end{array}} T X \xrightarrow{\begin{array}{c} T1_X \\ \uparrow \pi_X \\ \uparrow \vdash rX \\ \hline \end{array}} \begin{array}{c} TX \xrightarrow{\begin{array}{c} a \\ \uparrow \vdash x \\ \uparrow \pi_X \\ \hline \end{array}} X \\ \xrightarrow{\begin{array}{c} T\pi_X \\ \uparrow \vdash x \\ \hline \end{array}} T(X \times Y) \xrightarrow{\begin{array}{c} c \\ \uparrow \vdash x \\ \hline \end{array}} X \times Y \\ \xrightarrow{\begin{array}{c} T\pi_Y \\ \uparrow \vdash x \\ \hline \end{array}} \begin{array}{c} T \times Y \xrightarrow{\begin{array}{c} a \\ \uparrow \vdash x \\ \hline \end{array}} Y \\ \xrightarrow{\begin{array}{c} T\pi_Y \\ \uparrow \vdash x \\ \hline \end{array}} Y \\ \xrightarrow{\begin{array}{c} T\pi_Y \\ \uparrow \vdash x \\ \hline \end{array}} Y, \xrightarrow{\begin{array}{c} \uparrow \vdash x \\ \hline \end{array}} Y, \xrightarrow{\begin{array}{c} \uparrow \vdash x \\ \hline \end{array}}
$$

where the triangles are commutative, whereas the rectangles are lax commutative. It follows then that

$$
\top \cdot T!_{X}(\mathfrak{x},*) = \top_{V} = b(Ti_{X}(\mathfrak{x}),w) \leq \bigvee_{\mathfrak{z} \in TX} b(Ti_{X}(\mathfrak{z}),w) = b \cdot Ti_{X} \cdot !_{TX}^{\circ}(*,w) =
$$

$$
b \cdot T\pi_{Y} \cdot T\langle 1_{X},i_{X}\rangle \cdot !_{TX}^{\circ}(*,w) \stackrel{(\dagger)}{=} \pi_{Y} \cdot c \cdot T\langle 1_{X},i_{X}\rangle \cdot !_{TX}^{\circ}(*,w) = \bigvee_{x \in X} \bigvee_{\mathfrak{z} \in TX} c(T\langle 1_{X},i_{X}\rangle(\mathfrak{z}),(x,w)) \stackrel{(\dagger)}{=} \bigvee_{x \in X} \bigvee_{\mathfrak{z} \in TX} ((\pi_{X}^{\circ} \cdot a \cdot T\pi_{X}) \wedge (\pi_{Y}^{\circ} \cdot b \cdot T\pi_{Y}))(T\langle 1_{X},i_{X}\rangle(\mathfrak{z}),(x,w)) =
$$

$$
\bigvee_{x \in X} \bigvee_{\mathfrak{z} \in TX} a(T\pi_{X} \cdot T\langle 1_{X},i_{X}\rangle(\mathfrak{z}),\pi_{X}(x,w)) \wedge b(T\pi_{Y} \cdot T\langle 1_{X},i_{X}\rangle(\mathfrak{z}),\pi_{Y}(x,w)) =
$$

$$
\bigvee_{x \in X} \bigvee_{\mathfrak{z} \in TX} a(\mathfrak{z},x) \wedge b(Ti_{X}(\mathfrak{z}),w) \stackrel{(\dagger \dagger)}{=} \bigvee_{x \in X} a(\mathfrak{x},x) \wedge b(Ti_{X}(\mathfrak{x}),w) = \bigvee_{x \in X} a(\mathfrak{x},x) =:_{X} \cdot a(\mathfrak{x},*)
$$

where (†) uses the assumption on closedness, (††) relies on the construction of pullbacks in the category (\mathbb{T}, V) -**Cat** given in Remark 12(2), whereas († † †) uses the fact that if $Ti_X(\mathfrak{z}) = e_Y(w)$ for some $\mathfrak{z} \in TX$, then, since $X \xrightarrow{i_X} Y$ has finite fibres, and, moreover, \hat{T} is flat, the diagram

commutes, which gives $\top_V = e_Y^{\circ} \cdot Ti_X(\mathfrak{z}, w) = i_X \cdot e_X^{\circ}(\mathfrak{z}, w)$, and therefore, there exists $x \in X$ such that $i_X(x) = w$, which is a contradiction.

5. Generalized Bourbaki theorem

Theorem 76 (Generalized Bourbaki theorem). Let $T1 \cong 1$, let \hat{T} be flat, and let 1_{V} -Rel $\stackrel{e}{\rightarrow} \hat{T}$ be *finitely* $(-)$ °-strict. Given a (T, V) -functor $(X, a) \stackrel{f}{\rightarrow} (Y, b)$, the following are equivalent:

(1) f *is proper;*

(2) *every pullback of f is closed, and* $(TX, \hat{a}) \xrightarrow{T_f} (TY, \hat{b})$ *is closed*;

(3) *all fibres of* f are compact, and $(T X, \hat{a}) \xrightarrow{T f} (T Y, \hat{b})$ is closed.

PROOF.

 $(1) \Rightarrow (2)$: Follows from Theorems 39, 37 and 58.

 (2) ⇒ (3) : Follows from Theorem 75 and the assumption $T1 \cong 1$ (and therefore, $1^{\sharp} = \top$), through the composition of the pullbacks

(f −1 (y), a˜) × (Z, c) πf−1(y) ^π^Z /(Z, c) !Z (f −1 (y), a˜) _ if−1(y) !f−1(y) /(1, ⊤) y (X, a) f /(Y, b)

for every (\mathbb{T}, V) -category (Z, c) .

 $(3) \Rightarrow (1)$: Follows from Corollaries 49, 61.

Remark 77.

- (1) Without the assumption $T1 \cong 1$, stably closed maps need not be proper.
- (2) It is unclear, whether the condition " $(TX, \hat{a}) \xrightarrow{T_f} (TY, \hat{b})$ is closed" can be removed from Theorem 76 (2), and also, whether it can be replaced by the condition " $(X, a) \stackrel{f}{\to} (Y, b)$ is closed" in Theorem 76(3).

Example 78.

- (1) By Corollary 50, every object of the category **Prost** (resp. **QPMet**) is compact. By Corollary 61, proper and closed maps in the category **Prost** (resp. **QPMet**) are equivalent concepts.
- (2) In **Top**, one gets the above-mentioned Kuratowski-Mrówka and Bourbaki theorems.
- (3) In **App**, one gets the results from the theory of approach spaces of [3].
- (4) In case of the powerset functor P on Set, it follows that $P_1 \not\cong 1$, $1_{\text{Rel}} \stackrel{e}{\to} \hat{P}$ is not finitely $(-)^\circ$ -strict (Example 71), and \hat{P} is not flat (Lecture 2). Thus, Theorems 75, 76 are not applicable to the category **Cls**. Corollary 61 though shows that the concepts of proper and closed map in **Cls** are equivalent.

References

- [1] N. Bourbaki, *Elements of mathematics. General topology. Part 1*, Addison-Wesley Publishing Company, 1966.
- [2] M. M. Clementino and W. Tholen, *Proper maps for lax algebras and the Kuratowski-Mrówka theorem*, Theory Appl. Categ. **27** (2013), no. 14, 327–346.
- [3] E. Colebunders, R. Lowen, and P. Wuyts, *A Kuratowski-Mrówka theorem in approach theory*, Topology Appl. **153** (2005), no. 5-6, 756–766.
- [4] R. Engelking, *General Topology*, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, 1989.

- [5] D. Hofmann, G. J. Seal, and W. Tholen (eds.), *Monoidal Topology: A Categorical Approach to Order, Metric and Topology*, Cambridge University Press, 2014.
- [6] K. Kuratowski, *Topology II. New Edition, Revised and Augmented*, New York, NY: Academic Press; Warszawa: PWN-Polish Scientific Publishers, 1968.
- [7] J. MacDonald and M. Sobral, *Aspects of Monads*, Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory (M. C. Pedicchio and W. Tholen, eds.), Cambridge University Press, 2004, pp. 213–268.
- [8] E. G. Manes, *Taut monads and* T0*-spaces*, Theoretical Computer Science **275** (2002), no. 1–2, 79 109.
- [9] S. Mrówka, *Compactness and product spaces*, Colloq. Math. **7** (1959), 19–22.