Elements of monoidal topology Lecture 4: properties of the category V-Cat

Sergejs Solovjovs

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences Prague (CZU) Kamýcká 129, 16500 Prague - Suchdol, Czech Republic

Abstract

This lecture shows that given a commutative unital quantale V, the category V-Cat, first, is symmetric monoidal closed, confirming that the category **Prost** of preordered sets is cartesian closed, and the category **QPMet** of quasi-pseudo-metric spaces is monoidal closed; and, second, has a functor taking a V-category to its dual. This lecture also shows that every unital quantale V can be seen as a V-category, introduces the category V-**Mod** of V-categories and V-modules, and describes its relationships with the category V-**Cat**.

1. Symmetric monoidal closed categories

1.1. Symmetric monoidal categories

Definition 1. A category **C** is called *monoidal* provided that it is equipped with a functor $\mathbf{C} \times \mathbf{C} \xrightarrow{\otimes} \mathbf{C}$, a distinguished **C**-object E, and natural isomorphisms $A \otimes (B \otimes C) \xrightarrow{\alpha_{A,B,C}} (A \otimes B) \otimes C$, $E \otimes A \xrightarrow{\lambda_A} A$, and $A \otimes E \xrightarrow{\rho_A} A$ for every **C**-objects A, B, C such that the following two diagrams commute

for every C-objects A, B, C, D, and, moreover, $E \otimes E \xrightarrow{\lambda_E} E = E \otimes E \xrightarrow{\rho_E} E$.

Remark 2. One usually refers to the structure of a monoidal category \mathbf{C} as follows: the functor \otimes is the *tensor product*, the object E is the *unit*, the natural isomorphism α is the *associativity* isomorphism, and the natural isomorphism λ (resp. ρ) is the *left unit* (resp. *right unit*) isomorphism. Moreover, the two commutative diagrams of Definition 1 are called the *coherence conditions*.

Remark 3. A monoidal category **C** is said to be *strict* provided that the natural isomorphisms α , λ , ρ in Definition 1 are the identity natural isomorphisms, namely, $A \otimes (B \otimes C) = (A \otimes B) \otimes C$, $E \otimes A = A$, and $A \otimes E = A$ for every **C**-objects A, B, C. The coherence conditions are then trivially satisfied.

Email address: solovjovs@tf.czu.cz (Sergejs Solovjovs)

URL: http://home.czu.cz/solovjovs (Sergejs Solovjovs)

Preprint submitted to the Czech University of Life Sciences Prague (CZU)

Definition 4. A monoidal category **C** is called *symmetric* provided that it is additionally equipped with natural isomorphisms $A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$ for every **C**-objects A, B such that the following diagrams commute

$$A \otimes (B \otimes C) \xrightarrow{\alpha_{A,B,C}} (A \otimes B) \otimes C \xrightarrow{\sigma_{A \otimes B,C}} C \otimes (A \otimes B)$$

$$\downarrow^{\alpha_{C,A,B}} A \otimes (C \otimes B) \xrightarrow{\alpha_{A,C,B}} (A \otimes C) \otimes B \xrightarrow{\sigma_{A \otimes C} \otimes 1_{B}} (C \otimes A) \otimes B$$

$$E \otimes A \xrightarrow{\sigma_{E,A}} A \otimes E \qquad A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$$

$$\downarrow^{\alpha_{C,A,B}} A \otimes B \qquad (A \otimes C) \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A \qquad (1.1)$$

for every C-objects A, B, C. Since $\lambda_E = \rho_E$, the left-hand side of diagram (1.1) gives $\sigma_{E,E} = 1_E$.

Remark 5. The commutative diagrams of Definition 4 are called the *coherence conditions*, i.e., *associativity coherence*, *unit coherence*, and *symmetry axiom*, respectively. One should also observe that strict monoidal categories generally fail to be symmetric.

Example 6.

- (1) The category **Set** of sets and maps is symmetric monoidal w.r.t. cartesian product of sets. More generally, every category with finite products is symmetric monoidal.
- (2) The category of functors on a small category with the tensor product given by the composition of functors is strict monoidal.
- (3) The category Ab of abelian groups and group homomorphisms with the usual tensor product is symmetric monoidal. More generally, given a commutative unital ring R, the category R-Mod of left R-modules and left R-module homomorphisms is symmetric monoidal w.r.t. the tensor product of R-modules.
- (4) The category **Sup** of \bigvee -semilattices and \bigvee -preserving maps equipped with the usual tensor product is symmetric monoidal.
- (5) Every unital quantale V is a strict monoidal category w.r.t. its multiplication. Commutative quantales are additionally symmetric. More generally, a preordered set S, considered as a category, is strict monoidal precisely when it is equipped with a monoid structure (\otimes, k) , whose multiplication $S \times S \xrightarrow{\otimes} S$ is monotone. Commutative monoid structures provide additionally symmetric categories.
- (6) Given a (symmetric) monoidal category \mathbf{C} , \mathbf{C}^{op} is a (symmetric) monoidal category as well.

1.2. Monoidal functors

Definition 7. A morphism of monoidal categories **C** and **D** is a functor **C** \xrightarrow{F} **D** equipped with **D**morphisms $FA \otimes_{\mathbf{D}} FB \xrightarrow{\delta_{A,B}} F(A \otimes_{\mathbf{C}} B)$ natural in **C**-objects A, B and a **D**-morphism $E_{\mathbf{D}} \xrightarrow{\varepsilon} FE_{\mathbf{C}}$ natural in $E_{\mathbf{D}}, E_{\mathbf{C}}$ such that the following three diagrams commute

$$\begin{array}{c|c} FA \otimes (FB \otimes FC) & \xrightarrow{\alpha_{FA,FB,FC}} (FA \otimes FB) \otimes FC \\ \downarrow^{1_{FA} \otimes \delta_{B,C}} & & \downarrow^{\delta_{A,B} \otimes 1_{FC}} \\ FA \otimes F(B \otimes C) & F(A \otimes B) \otimes FC \\ \downarrow^{\delta_{A,B \otimes C}} & & \downarrow^{\delta_{A \otimes B,C}} \\ F(A \otimes (B \otimes C)) & \xrightarrow{F\alpha_{A,B,C}} F((A \otimes B) \otimes C) \end{array}$$

$$\begin{array}{cccc} E\otimes FA & \xrightarrow{\lambda_{FA}} FA & FA \otimes E & \xrightarrow{\rho_{FA}} FA \\ \varepsilon\otimes 1_{FA} & & \uparrow F\lambda_A & & 1_{FA} & \varepsilon \\ FE\otimes FA & \xrightarrow{\delta_{E,A}} F(E\otimes A) & & FA \otimes FE & \xrightarrow{\delta_{A,E}} F(A\otimes E). \end{array}$$

Notice that since δ is natural, the following diagram

$$\begin{array}{c|c} FA \otimes FB & \xrightarrow{Ff \otimes Fg} & FC \otimes FD \\ \hline \delta_{A,B} & & \downarrow \\ F(A \otimes B) & \xrightarrow{F(f \otimes g)} & F(C \otimes D) \end{array}$$

commutes for every **C**-morphisms $A \xrightarrow{f} C, B \xrightarrow{g} D$.

Remark 8. The first three commutative diagrams of Definition 7 are called the *coherence conditions*, i.e., the *associativity condition*, and the two *unit conditions*, respectively.

Definition 9. A morphism of symmetric monoidal categories \mathbf{C} and \mathbf{D} is a functor $\mathbf{C} \xrightarrow{F} \mathbf{D}$, which is a morphism of monoidal categories \mathbf{C} and \mathbf{D} , making additionally the following diagram commute

$$\begin{array}{c|c} FA \otimes FB & \xrightarrow{\sigma_{FA,FB}} FB \otimes FA \\ \hline \delta_{A,B} & & \downarrow \\ \hline & & \downarrow \\ F(A \otimes B) & \xrightarrow{F\sigma_{A,B}} F(B \otimes A) \end{array}$$

for every C-objects A, B.

Remark 10.

(1) The commutative diagram of Definition 9 is called the symmetry condition.

(2) Morphisms of (symmetric) monoidal categories are sometimes called monoidal functors.

Definition 11. A morphism of (symmetric) monoidal categories is called *strong* provided that the morphisms δ and ε of Definition 7 are isomorphisms. It is called *strict* provided that δ and ε are identities. It should be clear that strictness implies strongness, but not vice versa.

Example 12.

- (1) The forgetful functor $(\mathbf{Ab}, \otimes, \mathbb{Z}) \xrightarrow{U} (\mathbf{Set}, \times, \{*\})$ is monoidal. Given two abelian groups A, B, one defines $UA \times UB \xrightarrow{\delta_{A,B}} U(A \otimes B)$ by $\delta_{A,B}(a,b) = a \otimes b$, and $\{*\} \xrightarrow{\varepsilon} U\mathbb{Z}$ by $\varepsilon(*) = 1$. The monoidal functor U is not strong.
- (2) Every homomorphism of (commutative) unital quantales is a strict monoidal functor between (symmetric) monoidal categories.
- (3) Given two categories with finite products, every functor between them, which preserves finite products, is strong monoidal.

1.3. Monoidal closed categories

Definition 13. An object A of a monoidal category C is called \otimes -exponentiable provided that the functors $\mathbf{C} \xrightarrow{A \otimes (-)} \mathbf{C}$ and $\mathbf{C} \xrightarrow{(-) \otimes A} \mathbf{C}$ have right adjoints $\mathbf{C} \xrightarrow{A \to (-)} \mathbf{C}$ and $\mathbf{C} \xrightarrow{(-) \bullet - A} \mathbf{C}$, respectively.

Remark 14.

- (1) The functors $\mathbf{C} \xrightarrow{A \to (-)} \mathbf{C}$ and $\mathbf{C} \xrightarrow{(-) \bullet A} \mathbf{C}$ of Definition 13 are called the *right internal hom-functor* of A and the *left internal hom-functor of* A, respectively. One also sometimes uses the notation [A, -] instead of $(-) \bullet A$, and [A, -] instead of $A \to (-)$.
- (2) The existence of the internal hom-functors implies, in particular, that every **C**-object *B* has an $A \otimes (-)$ co-universal arrow $A \otimes (A \multimap B) \xrightarrow{\text{ev} \multimap B} B$ and a $(-) \otimes A$ -co-universal arrow $(B \blacklozenge A) \otimes A \xrightarrow{\text{ev}_B \twoheadleftarrow} B$, i.e., for every **C**-morphisms $A \otimes C \xrightarrow{f} B$ and $C \otimes A \xrightarrow{g} B$, there exist unique **C**-morphisms $C \xrightarrow{\hat{f}} A \multimap B$ and $C \xrightarrow{\hat{g}} B \blacklozenge A$ such that the following two diagrams commute

- (3) Since in a symmetric monoidal category **C** both functors $A \otimes (-)$ and $(-) \otimes A$ are naturally isomorphic, their right adjoint functors $A \rightarrow (-)$ and $(-) \leftarrow A$ are naturally isomorphic as well, i.e., there is no need to distinguish between right- and left-hom functors, and one can use any of the notations $-\bullet$ and $\bullet-$. The respective co-universal arrows are then called *evaluation morphisms*.
- (4) For every ⊗-exponentiable C-object A, since the functor A ⊗ (-) (resp. (-) ⊗ A) has a right adjoint A → (-) (resp. (-) A), then A ⊗ (-) (resp. (-) ⊗ A) preserves the existing colimits, and A → (-) (resp. (-) A) preserves the existing limits.

Definition 15. A monoidal category C is called *closed* provided that every its object is \otimes -exponentiable.

Remark 16.

- (1) A monoidal category **C** is sometimes called *right closed* (resp. *left closed*, *biclosed*) provided that for every its object A, the functor $A \otimes (-)$ has a right adjoint (resp. the functor $(-) \otimes A$ has right adjoint, both functors $A \otimes (-)$ and $(-) \otimes A$ have a right adjoint).
- (2) Given a category **C** with the monoidal structure defined by finite products, one says *exponentiable* instead of \times -exponentiable and generally writes B^A for the *internal hom-object* $A \rightarrow B \cong B \rightarrow A$, which is also called an *exponential* or *power object*. The morphism \hat{f} of diagram (1.2) is then called *exponential morphism for* f. The category **C** itself is then said to be *cartesian closed* provided that it is closed.

Example 17.

(1) The category **Set** is cartesian closed. Given two sets A, B, the respective power object B^A is the set of all maps $B \xrightarrow{\alpha} A$, and the respective evaluation morphism $A \times B^A \xrightarrow{\text{ev}_B} B$ is the usual evaluation map given by $\text{ev}(a, \alpha) = \alpha(a)$. Given a morphism $A \times C \xrightarrow{f} B$, the exponential morphism $C \xrightarrow{\hat{f}} B^A$ for f is defined by $\hat{f}(c) = f(-, c)$. It is easy to see that \hat{f} is a unique map making the next diagram commute

- (2) The category **Prost** of preordered sets and monotone maps is cartesian closed. Given two preordered sets A, B, the respective power object B^A is the set of all monotone maps $B \xrightarrow{\alpha} A$, and the respective evaluation morphism $A \times B^A \xrightarrow{\text{ev}_B} B$ is the usual evaluation map given by $\text{ev}(a, \alpha) = \alpha(a)$.
- (3) The category **Cat** of *small* categories (the class of objects of a category is a set) and functors is cartesian closed. Given two categories **A**, **B**, the respective power object is the functor category $\mathbf{B}^{\mathbf{A}}$, and the respective evaluation morphism $\mathbf{A} \times \mathbf{B}^{\mathbf{A}} \xrightarrow{\text{ev}_{\mathbf{B}}} \mathbf{B}$ is defined on objects by $\text{ev}_{\mathbf{B}}(A, F) = FA$ and on morphisms by $\text{ev}_{\mathbf{B}}(h, \tau) = \tau_{A'} \cdot Fh$, where $A \xrightarrow{h} A'$ is an **A**-morphism and $F \xrightarrow{\tau} F'$ is a natural transformation. Given a functor $\mathbf{A} \times \mathbf{C} \xrightarrow{F} \mathbf{B}$, the exponential morphism $\mathbf{C} \xrightarrow{\hat{F}} \mathbf{B}^{\mathbf{A}}$ is defined by $\mathbf{A} \xrightarrow{\hat{F}C} \mathbf{B}, \hat{F}C(A \xrightarrow{h} A') = F(A, C) \xrightarrow{F(h, 1_C)} F(A', C).$
- (4) The category **Top** of topological spaces and continuous maps is not cartesian closed, since the functor **Top** $\xrightarrow{\mathbb{Q}\times(-)}$ **Top** (where \mathbb{Q} is the space of rational numbers, with the topology induced by that of the real line \mathbb{R}) does not preserve quotients, and, thus, does not preserve coequalizers (notice that left adjoint functors preserve the existing colimits).
- (5) The category **Ab** of abelian groups is monoidal closed, where $A \rightarrow B = \mathbf{Ab}(A, B)$ with the pointwise structure of an abelian group. More generally, the category *R*-**Mod** of left *R*-modules is monoidal closed, where $A \rightarrow B = R$ -**Mod**(A, B) with the pointwise structure of an *R*-module (recall from Example 6 (3) that both categories **Ab** and *R*-**Mod** are symmetric).
- (6) The category **Sup** of \bigvee -semilattices is monoidal closed, where $A \to B = \mathbf{Sup}(A, B)$ with the pointwise structure of a \bigvee -semilattice (recall from Example 6 (4) that the category **Sup** is symmetric).
- (7) A unital quantale V is monoidal closed. Given $a \in V$, the maps $V \xrightarrow{a \to (-)} V$ and $V \xrightarrow{(-) \bullet -a} V$ are defined by

$$a \otimes c \leqslant b$$
 iff $c \leqslant a - b$ $c \otimes a \leqslant b$ iff $c \leqslant b - a$

for every $c, b \in V$. In particular, $a - b = \bigvee \{c \in V \mid a \otimes c \leq b\}$ and $b - a = \bigvee \{c \in V \mid c \otimes a \leq b\}$. If the quantale V is commutative, then the maps a - (-) and (-) - a coincide (recall from Example 6(5) that V is then a symmetric monoidal category). Additionally, by Remark 14(4), it follows that both maps a - (-) and (-) - a are \bigwedge -preserving. In particular, they preserve the largest element \top_V .

Proposition 18. Let \mathbf{C} be a monoidal closed category, and let A, B, C be \mathbf{C} -objects. There exist the following natural isomorphisms:

- (1) $(A \otimes B) \rightarrow C \cong B \rightarrow (A \rightarrow C);$ (2) $C \rightarrow (A \otimes B) \cong (C \rightarrow B) \rightarrow A;$
- (3) $(A \rightarrow C) \rightarrow B \cong A \rightarrow (C \rightarrow B).$

If **C** is cartesian closed, then $C^{A \times B} \cong (C^A)^B \cong (C^B)^A$.

PROOF. As an illustration, we show the proof of items (1) - (3) in case of **C** being a unital quantale V.

- (1) Given $v \in V$, in view of Example 17 (7), it follows that $v \leq (a \otimes b) c$ iff $(a \otimes b) \otimes v \leq c$ iff $a \otimes (b \otimes v) \leq c$ iff $b \otimes v \leq a c$ iff $v \leq b (a c)$. As a result, one gets $(a \otimes b) c = b (a c)$.
- (2) Given $v \in V$, in view of Example 17 (7), it follows that $v \leq c \bullet (a \otimes b)$ iff $v \otimes (a \otimes b) \leq c$ iff $(v \otimes a) \otimes b \leq c$ iff $v \otimes a \leq c \bullet b$ iff $v \leq (c \bullet b) \bullet a$. As a result, one gets $c \bullet (a \otimes b) = (c \bullet b) \bullet a$.
- (3) Given $v \in V$, in view of Example 17 (7), it follows that $v \leq (a c) b$ iff $v \otimes b \leq a c$ iff $a \otimes (v \otimes b) \leq c$ iff $(a \otimes v) \otimes b \leq c$ iff $a \otimes v \leq c b$ iff $v \leq a (c b)$. Thus, one gets (a c) b = a (c b). \Box

Remark 19. Given a monoidal closed category **C** and a **C**-object *C*, there exists a functor $\mathbf{C}^{op} \xrightarrow{(-) \bullet C} \mathbf{C}$ defined for a **C**-morphism $A \xrightarrow{f} B$ by $(-) \bullet C(A \xrightarrow{f} B) = B \bullet C \xrightarrow{f \bullet C} A \bullet C$, where $B \bullet C \xrightarrow{f \bullet C} C$

 $A \rightarrow C$ is the unique **C**-morphism making the diagram

$$\begin{array}{c|c} A \otimes (B \multimap C) & \xrightarrow{f \otimes 1_B \multimap C} B \otimes (B \multimap C) \\ 1_A \otimes (f \multimap C) & & \downarrow \\ A \otimes (A \multimap C) & & \downarrow ev^B_{\multimap C} \\ & & \downarrow ev^B_{\multimap C} \end{array}$$

commute.

Proposition 20. Given a symmetric monoidal closed category **C**, for every **C**-object *C*, it follows that the functor $\mathbf{C}^{op} \xrightarrow{(-) - \bullet C} \mathbf{C}$ has a left adjoint, which is given by the dual functor $\mathbf{C} \xrightarrow{((-) - \bullet C)^{op}} \mathbf{C}^{op}$.

Remark 21.

- (1) For every object C of a symmetric monoidal closed category **C**, since the functor $\mathbf{C}^{op} \xrightarrow{(-) \bullet C} \mathbf{C}$ has a left adjoint, it preserves the existing limits, i.e., it takes colimits to limits. In particular, for every element c of a commutative unital quantale V, the map $(-) \bullet c$ takes \bigvee to \bigwedge .
- (2) Given a (not necessarily unital) quantale V, the map (-) c (defined as in Example 17 (7)) takes \bigvee to \bigwedge , which can be seen as follows. Given a subset $S \subseteq V$, for every $v \in V$, $v \leq (\bigvee S) c$ iff $(\bigvee S) \otimes v \leq c$ iff $\bigvee_{s \in S} (s \otimes v) \leq c$ iff $s \otimes v \leq c$ for every $s \in S$ iff $v \leq s c$ for every $s \in S$ iff $v \leq \bigwedge_{s \in S} (s c)$. As a consequence, one gets that $(\bigvee S) c = \bigwedge_{s \in S} (s c)$. Similar result holds for the map c (-).

Example 22. If **C** is the cartesian closed category **Set** and *C* is the two-element set 2, then, for every set *A*, the internal hom-object $2^A = A - 2$ is the powerset *PA* of *A*. The functor $2^{(-)} = (-) - 2$ is then precisely the contravariant powerset functor $\operatorname{Set}^{op} \xrightarrow{Q} \operatorname{Set}$ defined on a map $B \xrightarrow{f} A$ by $Q(A \xrightarrow{f^{op}} B) = PA \xrightarrow{f^{-1}} PB$, where $f^{-1}(S)$ is the preimage of a subset $S \subseteq A$, i.e., $f^{-1}(S) = \{b \in B \mid f(b) \in S\}$.

2. Properties of the category V-Cat

2.1. Symmetric monoidal closed structure on the category V-Cat

Definition 23. Let V be a unital quantale, and let (X, a), (Y, b) be V-categories.

(1) Define a V-relation [-, -] on the set V-Cat $((X, a), (Y, b)) = \{X \xrightarrow{f} Y \mid f \text{ is a } V \text{-functor}\}$ by

$$[f,g] = \bigwedge_{x \in X} b(f(x),g(x))$$

and let [(X, a), (Y, b)] stand for the pair (V-Cat((X, a), (Y, b)), [-, -]).

(2) Define a V-relation $a \otimes b$ on the set $X \times Y$ (the cartesian product of the sets X and Y) by

$$(a \otimes b)((x_1, y_1), (x_2, y_2)) = a(x_1, x_2) \otimes b(y_1, y_2)$$

for every $x_1, x_2 \in X$ and every $y_1, y_2 \in Y$, and let $(X, a) \otimes (Y, b)$ stand for the pair $(X \times Y, a \otimes b)$.

Proposition 24. Give a unital quantale V and V-categories (X, a), (Y, b), the following holds:

- (1) [(X, a), (Y, b)] is a V-category;
- (2) If the quantale V is commutative, then $(X, a) \otimes (Y, b)$ is a V-category.

PROOF. In both cases, one shows the two required properties of a V-category (see Lecture 1).

- (1) First, given $f \in V$ -**Cat**((X, a), (Y, b)), it follows that $[f, f] = \bigwedge_{x \in X} b(f(x), f(x)) \ge \bigwedge_{x \in X} k \ge k$, namely, $k \le [f, f]$. Second, given $f, g, h \in V$ -**Cat**((X, a), (Y, b)), it follows that $[f, g] \otimes [g, h] = (\bigwedge_{x \in X} b(f(x), g(x))) \otimes (\bigwedge_{x \in X} b(g(x), h(x))) \le \bigwedge_{x \in X} (b(f(x), g(x)) \otimes b(g(x), h(x))) \le (\text{since } (Y, b) \text{ is a } V$ -category) $\le \bigwedge_{x \in X} b(f(x), h(x)) = [f, h]$, namely, $[f, g] \otimes [g, h] \le [f, h]$.
- (2) First, given $x \in X$ and $y \in Y$, it follows that $(a \otimes b)((x, y), (x, y)) = a(x, x) \otimes b(y, y) \ge k \otimes k = k$, namely, $k \le (a \otimes b)((x, y), (x, y))$. Second, given $x_1, x_2, x_3 \in X$ and $y_1, y_2, y_3 \in Y$, it follows that $(a \otimes b)((x_1, y_1), (x_2, y_2)) \otimes (a \otimes b)((x_2, y_2), (x_3, y_3)) = (a(x_1, x_2) \otimes b(y_1, y_2)) \otimes (a(x_2, x_3) \otimes b(y_2, y_3)) =$ (since the quantale V is commutative) $= (a(x_1, x_2) \otimes a(x_2, x_3)) \otimes (b(y_1, y_2) \otimes b(y_2, y_3)) \le$ (since both (X, a) and (Y, b) are V-categories) $\le a(x_1, x_3) \otimes b(y_1, y_3) = (a \otimes b)((x_1, y_1), (x_3, y_3))$, namely, $(a \otimes b)((x_1, y_1), (x_2, y_2)) \otimes (a \otimes b)((x_2, y_2), (x_3, y_3)) \le (a \otimes b)((x_1, y_1), (x_3, y_3))$.

Remark 25. Notice that given V-categories (X, a), (Y, b) over a commutative unital quantale V, $(X, a) \otimes (Y, b)$ is not the product V-category $(X, a) \times (Y, b)$. Indeed, following the results of Lecture 2, V-Cat is a topological category over Set, and, therefore, the limits in V-Cat are lifted from those in Set by the forgetful functor. In particular, the product V-category of (X, a) and (Y, b) is V-category $(X \times Y, c)$, where V-relation c is given by $c((x_1, y_1), (x_2, y_2)) = a(x_1, x_2) \wedge b(y_1, y_2)$ for every $x_1, x_2 \in X$ and every $y_1, y_2 \in Y$.

Example 26. If $V = P_+$, then P_+ -categories (X, a), (Y, b) are quasi-pseudo-metric spaces (generalized metric spaces in the sense of F. W. Lawvere). It then follows that $[f, g] = \sup_{x \in X} b(f(x), g(x))$ is the usual "sup-metric" on the function space [X, Y], and, moreover, $(a \otimes b)((x_1, y_1), (x_2, y_2)) = a(x_1, x_2) + b(y_1, y_2)$ equips $X \times Y$ with the usual "+-metric".

Proposition 27. Given a V-category [(X, a), (Y, b)], $[f, g] = \bigwedge_{x_1, x_2 \in X} a(x_1, x_2) - b(f(x_1), g(x_2))$ for every $f, g \in V$ -Cat((X, a), (Y, b)).

PROOF. Given $x_1, x_2 \in X$, it follows that $a(x_1, x_2) \otimes b(f(x_2), g(x_2)) \leq (f \text{ is a } V \text{-functor}) \leq b(f(x_1), f(x_2)) \otimes b(f(x_2), g(x_2)) \leq ((Y, b) \text{ is a } V \text{-category}) \leq b(f(x_1), g(x_2)), \text{ i.e., } b(f(x_2), g(x_2)) \leq a(x_1, x_2) \twoheadrightarrow b(f(x_1), g(x_2)).$ Thus, $[f, g] = \bigwedge_{x \in X} b(f(x), g(x)) = \bigwedge_{x_1, x_2 \in X} b(f(x_2), g(x_2)) \leq \bigwedge_{x_1, x_2 \in X} a(x_1, x_2) \twoheadrightarrow b(f(x_1), g(x_2)).$ Given $x \in X, k \leq a(x, x)$ and Remark 21 (2) together imply $a(x, x) \twoheadrightarrow b(f(x), g(x)) \leq k \twoheadrightarrow b(f(x), g(x)) \leq k = b(f(x), g(x)$

Given $x \in X$, $k \leq a(x, x)$ and Remark 21 (2) together imply $a(x, x) \rightarrow b(f(x), g(x)) \leq k \rightarrow b(f(x), g(x)) \leq b(f(x), g(x))$. Thus, it follows that $\bigwedge_{x_1, x_2 \in X} a(x_1, x_2) \rightarrow b(f(x_1), g(x_2)) \leq \bigwedge_{x \in X} a(x, x) \rightarrow b(f(x), g(x)) \leq \bigwedge_{x \in X} b(f(x), g(x)) = [f, g]$, which finishes the proof.

Remark 28. By analogy with Proposition 27, one can show that given a V-category $[(X, a), (Y, b)], [f, g] = \bigwedge_{x_1, x_2 \in X} b(f(x_1), g(x_2)) \bullet - a(x_1, x_2)$ for every $f, g \in V$ -**Cat**((X, a), (Y, b)).

Theorem 29. Given a commutative unital quantale V, the category V-Cat is symmetric monoidal closed.

PROOF. First, define the tensor product functor V-**Cat** $\times V$ -**Cat** $\stackrel{\otimes}{\to} V$ -**Cat** by $\otimes(((X_1, a_1), (Y_1, b_1)) \xrightarrow{(f,g)} ((X_2, a_2), (Y_2, b_2))) = (X_1 \times Y_1, a_1 \otimes b_1) \xrightarrow{f \times g} (X_2 \times Y_2, a_2 \otimes b_2)$. To show that the functor is correct on morphisms, notice that given $x_1, x'_1 \in X$ and $y_1, y'_1 \in Y_1$, it follows that $(a_1 \otimes b_1)((x_1, y_1), (x'_1, y'_1)) = a_1(x_1, x'_1) \otimes b_1(y_1, y'_1) \leq (\text{both } f \text{ and } g \text{ are } V$ -functors) $\leq a_2(f(x_1), f(x'_1)) \otimes b_2(g(y_1), g(y'_1)) = (a_2 \otimes b_2)((f \times g)(x_1, y_1), (f \times g)(x'_1, y'_1))$.

Second, define the unit $E = (\{*\}, \underline{k})$, where $\underline{k}(*, *) = k$.

Third, given V-categories (X, a), (Y, b), and (Z, c), define the natural isomorphism $(X, a) \otimes ((Y, b) \otimes (Z, c)) \xrightarrow{\alpha_{(X,a),(Y,b),(Z,c)}} ((X, a) \otimes (Y, b)) \otimes (Z, c)$ by $\alpha_{(X,a),(Y,b),(Z,c)}(x, (y, z)) = ((x, y), z)$. Further, define the natural isomorphism $E \otimes (X, a) \xrightarrow{\lambda_{(X,a)}} (X, a)$ by $\lambda_{(X,a)}(*, x) = x$ (the projection map) and the natural transformation $(X, a) \otimes E \xrightarrow{\rho_{(X,a)}} (X, a)$ by $\rho_{(X,a)}(x, *) = x$ (the projection map again). To show that, e.g., the map $\lambda_{(X,a)}$ is a V-functor, notice that for every $x_1, x_2 \in X$, it follows that $(\underline{k} \otimes a)((*, x_1), (*, x_2)) = \underline{k}(*, *) \otimes a(x_1, x_2) = k \otimes a(x_1, x_2) = a(x_1, x_2) = a(\lambda_{(X,a)}(*, x_1), \lambda_{(X,a)}(*, x_2))$. Moreover, commutativity of the diagrams of Definition 1 is immediate. For example, for the triangle, notice that $(\rho_{(X,a)} \otimes 1_{(Y,b)}) \cdot \alpha_{(X,a),E,(Y,b)}(x, (*, y)) = \rho_{(X,a)} \times 1_{(Y,b)}((x, *), y) = (x, y) = 1_{(X,a)} \times \lambda_{(Y,b)}(x, (*, y)) = 1_{(X,a)} \otimes \lambda_{(Y,b)}(x, (*, y))$.

Fourth, given V-categories (X, a), (Y, b), define the natural isomorphism $(X, a) \otimes (Y, b) \xrightarrow{\sigma_{(X,a),(Y,b)}} (Y, b) \otimes (X, a)$ by $\sigma_{(X,a),(Y,b)}(x, y) = (y, x)$. The above structure then makes V-**Cat** a symmetric monoidal category.

Fifth, to show that the category V-**Cat** is closed, by Remark 14 (3), it is enough to show that given V-categories (X, a) and (Y, b), the map $(X, a) \otimes [(X, a), (Y, B)] \xrightarrow{\operatorname{ev}_{(Y,b)}} (Y, b)$, defined by $\operatorname{ev}_{(Y,b)}(x, f) = f(x)$, provides an $(X, a) \otimes (-)$ -co-universal arrow for (Y, b).

To check that the map $\operatorname{ev}_{(Y,b)}$ provides a V-functor, notice that given $x_1, x_2 \in X$ and $f, g \in V$ -**Cat**((X, a), (Y, b)), it follows that $(a \otimes [-, -])((x_1, f), (x_2, g)) = a(x_1, x_2) \otimes [f, g] = (\operatorname{Proposition} 27) = a(x_1, x_2) \otimes (\bigwedge_{x'_1, x'_2 \in X} a(x'_1, x'_2) \to b(f(x'_1), g(x'_2))) \leqslant a(x_1, x_2) \otimes (a(x_1, x_2) \to b(f(x_1), g(x_2))) \leqslant (\operatorname{Example} 17(7)) \leqslant b(f(x_1), g(x_2)) = b(\operatorname{ev}_{(Y,b)}(x_1, f), \operatorname{ev}_{(Y,b)}(x_2, g)).$

Given a V-functor $(X, a) \otimes (Z, c) \xrightarrow{f} (Y, b)$, define a map $Z \xrightarrow{f} V$ -**Cat**((X, a), (Y, b)) by $\hat{f}(z) = f(-, z)$. To show that the map \hat{f} is correct, i.e., $\hat{f}(z)$ is a V-functor for every $z \in Z$, notice that given $x_1, x_2 \in X$, it follows that $b((\hat{f}(z))(x_1), (\hat{f}(z))(x_2)) = b(f(x_1, z), f(x_2, z)) \ge (f$ is a V-functor) $\ge (a \otimes c)((x_1, z), (x_2, z)) = a(x_1, x_2) \otimes c(z, z) \ge ((Z, c)$ is a V-category) $\ge a(x_1, x_2) \otimes k = a(x_1, x_2)$.

To show that the map \hat{f} is a V-functor, one could observe that given $z_1, z_2 \in Z$, it follows that $[\hat{f}(z_1), \hat{f}(z_2)] = (\text{Definition } 23(1)) = \bigwedge_{x \in X} b((\hat{f}(z_1))(x), (\hat{f}(z_2))(x)) = \bigwedge_{x \in X} b(f(x, z_1), f(x, z_2)) \ge (f \text{ is a } V\text{-functor}) \ge \bigwedge_{x \in X} (a \otimes c)((x, x), (z_1, z_2)) \ge \bigwedge_{x \in X} (a(x, x) \otimes c(z_1, z_2)) \ge ((X, a) \text{ is a } V\text{-category}) \ge \bigwedge_{x \in X} (k \otimes c(z_1, z_2)) = \bigwedge_{x \in X} c(z_1, z_2).$

Lastly, it is easy to see that \hat{f} is the unique V-functor making the following triangle commute

Example 30.

- (1) If V is the two-element unital quantale $2 = (\{\bot, \top\}, \land, \top)$ (recall Lecture 1), then Theorem 29 confirms that the category **Prost** of preordered sets is cartesian closed (cf. Example 17 (2)).
- (2) If V is the extended real half-line $\mathsf{P}_+ = ([0,\infty]^{op}, +, 0)$ (recall Lecture 1), then Theorem 29 confirms that the category **QPMet** of quasi-pseudo-metric spaces (generalized metric spaces in the sense of F. W. Lawvere) is monoidal closed. Following Remark 25, notice that given P_+ -categories (X, a), (Y, b), the monoidal product $(X, a) \otimes (Y, b)$ is not the product P_+ -category $(X, a) \times (Y, b)$, since V-category structure on $(X, a) \otimes (Y, b)$ is given by the "+-metric" (cf. Example 26), whereas V-category structure on $(X, a) \times (Y, b)$ is given by $c((x_1, y_1), (x_2, y_2)) = \max\{a(x_1, x_2), b(y_1, y_2)\}.$

2.2. Dual V-categories and their induced functor

Definition 31. Given a V-category (X, a), define a V-relation a° on X by $a^{\circ}(x, y) = a(y, x)$.

Proposition 32. Given a V-category (X, a) over a commutative unital quantale $V, (X, a^{\circ})$ is a V-category.

PROOF. First, given $x \in X$, it follows that $a^{\circ}(x, x) = a(x, x) \ge ((X, a)$ is a V-category) $\ge k$. Second, given $x, y, z \in X$, it follows that $a^{\circ}(x, y) \otimes a^{\circ}(y, z) = a(y, x) \otimes a(z, y) = (V$ is commutative) $= a(z, y) \otimes a(y, x) \le ((X, a)$ is a V-category) $\le a(z, x) = a^{\circ}(x, z)$, i.e., $a^{\circ}(x, y) \otimes a^{\circ}(y, z) \le a^{\circ}(x, z)$.

Remark 33. Given a V-category (X, a) over a commutative unital quantale $V, (X, a)^{op} = (X, a^{\circ})$ is called the *dual* V-category of (X, a).

Proposition 34. Given a commutative unital quantale V, there exists a functor V-Cat $\xrightarrow{(-)^{op}}$ V-Cat defined by $((X, a) \xrightarrow{f} (Y, b)) = (X, a^{\circ}) \xrightarrow{f} (Y, b^{\circ}).$

PROOF. Given a V-functor $(X, a) \xrightarrow{f} (Y, b)$, it is enough to show that $(X, a^{\circ}) \xrightarrow{f} (Y, b^{\circ})$ is a V-functor. Given $x_1, x_2 \in X$, $a^{\circ}(x_1, x_2) = a(x_2, x_1) \leq (f$ is a V-functor) $\leq b(f(x_2), f(x_1)) = b^{\circ}(f(x_1), f(x_2))$.

2.3. Unital quantale V as a V-category

Proposition 35. Given a unital quantale V, the pair $(V, -\bullet)$ is a V-category.

PROOF. Recall that Example 17 (7) defined the map $V \xrightarrow{(-) \to (-)} V$ by $a \to b = \bigvee \{c \in V \mid a \otimes c \leq b\}$, which is a V-relation $V \xrightarrow{(-) \to (-)} V$. We show the two required properties of a V-category (see Lecture 1).

- (1) Given $v \in V$, $v \otimes k = v \leq v$ implies $k \leq v \bullet v$.
- (2) Given $u, v, w \in V$, $u \multimap v \leqslant u \multimap v$ and $v \multimap w \leqslant v \multimap w$ imply $u \otimes (u \multimap v) \leqslant v$ and $v \otimes (v \multimap w) \leqslant w$ imply $u \otimes (u \multimap v) \otimes (v \multimap w) \leqslant v \otimes (v \multimap w) \leqslant w$ implies $(u \multimap v) \otimes (v \multimap w) \leqslant u \multimap w$. \Box

Example 36.

- (1) If V is the two-element unital quantale $2 = (\{\bot, \top\}, \land, \top)$ (recall Lecture 1), then $(-) \rightarrow (-)$ is the partial order of 2, i.e., for every $u, v \in 2$, it follows that $u \rightarrow v = \top$ iff $u \leq v$.
- (2) If V is the extended real half-line $\mathsf{P}_+ = ([0, \infty]^{op}, +, 0)$ (recall Lecture 1), then $(-) \bullet (-)$ is the truncated difference, i.e., for every $u, v \in \mathsf{P}_+$,

$$u - \mathbf{v} = \inf\{w \in [0,\infty] \mid v \leqslant u + w\} = \begin{cases} v - u, & u \leqslant v < \infty\\ 0, & v \leqslant u\\ \infty, & u < v = \infty \end{cases}$$

2.4. The category V-Mod

2.4.1. Ordered categories and quantaloids

Definition 37. A category **C** is called *preordered* provided that every its hom-set $\mathbf{C}(A, B)$ is a preordered set, and the composition of morphisms is monotone in both variables, i.e., given **C**-morphisms $A \xrightarrow{f} B \xrightarrow{g_1}{g_2} C \xrightarrow{h} D$, if $g_1 \leq g_2$, then $h \cdot g_1 \leq h \cdot g_2$ and $g_1 \cdot f \leq g_2 \cdot f$. Moreover, if the preorder on the hom-sets of **C** is a partial order, then the category **C** is called *partially ordered*.

Remark 38. The condition on composition of morphism in a preordered category **C** of Definition 37 is equivalent to the following: given **C**-morphisms $A \xrightarrow{f} B \xrightarrow{g_1}_{q_2} C \xrightarrow{h} D$, if $g_1 \leq g_2$, then $h \cdot g_1 \cdot f \leq h \cdot g_2 \cdot f$.

Example 39.

- (1) **Prost** is a preordered category, where **Prost** $((X, \leq_X), (Y, \leq_Y))$ is equipped with a pointwise order.
- (2) **Sup** is a partially ordered category.
- (3) The category V-**Rel** of sets (as objects) and V-relations (as morphisms) is partially ordered by pointwise evaluation of V-relations (for V-relations $X \xrightarrow[s]{r} Y$, $r \leq s$ iff $r(x, y) \leq s(x, y)$ for every $x \in X$, $y \in Y$).
- (4) V-Cat is a partially ordered category with the partial order inherited from the category V-Rel.
- (5) Every category is partially ordered if equipped with the partial order given by equality.

Remark 40.

- (1) Given a preordered category \mathbf{C} , its dual category \mathbf{C}^{op} is also preordered.
- (2) For every preordered category \mathbf{C} , there exists the *conjugate* preordered category \mathbf{C}^{co} , which has the same morphisms but employs the dual preorder on hom-sets, i.e., $\mathbf{C}^{co}(A, B) = (\mathbf{C}(A, B), \geq) = (\mathbf{C}(A, B))^{op}$. Moreover, it is easy to verify that $\mathbf{C}^{op\,co} = \mathbf{C}^{co\,op}$.

Definition 41. A morphism $A \xrightarrow{f} B$ of a preordered category **C** is said to be a *map* provided that there exists a **C**-morphism $B \xrightarrow{g} A$ such that $1_A \leq g \cdot f$ and $f \cdot g \leq 1_B$. One uses the notation $f \dashv g$, where f is the *left adjoint* and g is the *right adjoint* of the *adjunction*.

Remark 42.

(1) The terminology of Definition 41 is motivated by the category **Rel**, where a relation $X \xrightarrow{r} Y$ is a map in **Rel** exactly when it is the graph of a morphism $X \xrightarrow{r} Y$ in **Set**. The existence of a relation

 $Y \xrightarrow{s} X$ such that $1_X \leq s \cdot r$ means that for every $x \in X$, there exists $y \in Y$ such that x r y and y s x; and $r \cdot s \leq 1_Y$ means that for every $x \in X$ and every $y_1, y_2 \in Y$, if $y_1 s x$ and $x r y_2$, then $y_1 = y_2$. One can thus define a unique map $X \xrightarrow{r} Y$ in **Set** by r(x) = y iff x r y. One can also check that $s = r^{\circ}$.

(2) In every preordered category \mathbf{C} , a right adjoint g of a map f as in Definition 41 is uniquely determined up to " \cong ", i.e., if both g_1 and g_2 are right adjoints of f, then $g_1 \leq g_2$ and $g_2 \leq g_1$. Moreover, in a partially ordered category \mathbf{C} , a right adjoint g to a map f is determined uniquely.

Definition 43. A category **C** is a said to be a *quantaloid* provided that every its hom-set $\mathbf{C}(A, B)$ is a \bigvee -semilattice, and the composition of morphisms is \bigvee -preserving in both variables, i.e., given **C**-morphisms $A \xrightarrow{f} B \xrightarrow{g_i} C \xrightarrow{h} D$ with $i \in I$, it follows that $h \cdot (\bigvee_{i \in I} g_i) = \bigvee_{i \in I} (h \cdot g_i)$ and $(\bigvee_{i \in I} g_i) \cdot f = \bigvee_{i \in I} (g_i \cdot f)$.

Remark 44. Every quantaloid is a partially ordered category.

Example 45.

- (1) The categories \mathbf{Sup} and V- \mathbf{Rel} are quantaloids.
- (2) A category \mathbf{C} partially ordered by equality is a quantaloid iff its hom-sets have at most one element.
- (3) Unital quantales are precisely the quantaloids with one object.
- (4) Given a quantaloid \mathbf{C} , the dual category \mathbf{C}^{op} is a quantaloid, but the conjugate category \mathbf{C}^{co} is generally not a quantaloid, since composition of morphisms will generally preserve \bigwedge and not \bigvee .

Definition 46. A homomorphism of quantaloids $\mathbf{C} \xrightarrow{F} \mathbf{D}$ is a functor which preserves \bigvee on hom-sets, i.e., given \mathbf{C} -morphisms $A \xrightarrow{f_i} B$ for $i \in I$, it follows that $F(\bigvee_{i \in I} f_i) = \bigvee_{i \in I} Ff_i$.

Example 47. Every homomorphism of unital quantales provides a homomorphism of quantaloids.

Definition 48. A quantaloid **C** is said to be *involutive* provided that it comes equipped with a quantaloid homomorphism $\mathbf{C}^{op} \xrightarrow{(-)^{\circ}} \mathbf{C}$ (called *involution*) such that $C^{\circ} = C$ for every **C**-object C and $(f^{\circ})^{\circ} = f$ for every **C**-morphism $A \xrightarrow{f} B$. In particular, given **C**-morphisms $A \xrightarrow{f_i} B$ for $i \in I$, $(\bigvee_{i \in I} f_i)^{\circ} = \bigvee_{i \in I} f_i^{\circ}$.

2.4.2. V-modules

Definition 49. Given V-categories (X, a), (Y, b) over a unital quantale V, a V-relation $X \xrightarrow{r} Y$ is called V-module (also V-bimodule, V-profunctor, or V-distributor) provided that $r \cdot a \leq r$ and $b \cdot r \leq r$. One

denotes a V-module between V-categories (X, a) and (Y, b) by $(X, a) \xrightarrow{r} (Y, b)$.

Proposition 50. For a V-relation $X \xrightarrow{r} Y$ between V-categories (X, a) and (Y, b) equivalent are:

- (1) r is a V-module;
- (2) $r \cdot a = r$ and $b \cdot r = r$;
- (3) $b \cdot r \cdot a = r$.

PROOF. For (1) \Rightarrow (2), it will be enough to verify that given a V-module $(X, a) \xrightarrow{r} (Y, b)$, it follows that $r \leq r \cdot a$ and $r \leq b \cdot r$. For the former, notice that given $x \in X$ and $y \in Y$, one gets that $(r \cdot a)(x, y) = \bigvee_{x' \in X} a(x, x') \otimes r(x', y) \geq a(x, x) \otimes r(x, y) \geq ((X, a) \text{ is a V-category}) \geq k \otimes r(x, y) = r(x, y);$ and for the latter, observe that given $x \in X$ and $y \in Y$, one obtains that $(b \cdot r)(x, y) = \bigvee_{y' \in Y} r(x, y') \otimes b(y', y) \geq r(x, y) \otimes b(y, y) \geq ((Y, b) \text{ is a V-category}) \geq r(x, y) \otimes k = r(x, y).$

For (2) \Rightarrow (3), notice that $b \cdot r \cdot a = b \cdot (r \cdot a) = b \cdot r = r$.

For (3) \Rightarrow (1), observe that, first, $r \cdot a = 1_Y \cdot r \cdot a \leq ((Y, b) \text{ is a } V \text{-category}) \leq b \cdot r \cdot a = r$ and, second, $b \cdot r = b \cdot r \cdot 1_X \leq ((X, a) \text{ is a } V \text{-category}) \leq b \cdot r \cdot a = r$.

Example 51. If V = 2, then 2-modules are precisely the classical *modules* between preordered sets, i.e., relations $X \xrightarrow{r} Y$ (where (X, \leq_X) , (Y, \leq_Y) are preordered sets) such that $(\leq_Y) \cdot r \cdot (\leq_X) \leq r$. The latter condition means that for every $x_1, x_2 \in X$, $y_1, y_2 \in Y$, $x_2 \leq_X x_1$ and $x_1 r y_1$ and $y_1 \leq_Y y_2$ together imply $x_2 r y_2$, i.e., the map $X^{op} \times Y \xrightarrow{r} 2$ is monotone, where $X^{op} \times Y$ is given the component-wise preorder.

Proposition 52.

(1) If
$$(X,a) \xrightarrow{r} (Y,b), (Y,b) \xrightarrow{s} (Z,c)$$
 are V-modules, then $X \xrightarrow{s \cdot r} Z$ is a V-module.

(2) Given a V-category $(X, a), X \xrightarrow{a} X$ is a V-module.

Proof.

- (1) In view of Proposition 50, $c \cdot s \cdot r \cdot b = (c \cdot s) \cdot (r \cdot b) = (both r and s are V-modules) = s \cdot r$.
- (2) First, $a \cdot a \leq a$ ((X, a) is a V-category), and, second, $a = a \cdot 1_X \leq ((X, a)$ is a V-category) $\leq a \cdot a$. As a consequence, it follows that $a \cdot a = a$.

Remark 53.

(1) In view of Proposition 50 (2) and Proposition 52, there exists the category V-Mod of V-categories (as objects) and V-modules (as morphisms), where given a V-category (X, a), it follows that V-relation

 $X \xrightarrow{a} X$ provides the identity morphism on (X, a).

(2) The category V-Mod is a partially ordered category with the partial order on hom-sets inherited from the partially ordered category V-Rel. Moreover, the category V-Mod is a quantaloid with ∨ in hom-sets formed by pointwise evaluation precisely as in the category V-Rel.

Remark 54. Recall from Lecture 1 that for a unital quantale V, there is a functor Set $\xrightarrow{(-)_{\circ}} V$ -Rel, which is a non-full embedding if V has at least two elements. There also exists a functor Set $\xrightarrow{op} \xrightarrow{(-)^{\circ}} V$ -Rel.

Lemma 55. Given a V-functor $(X, a) \xrightarrow{f} (Y, b)$ over a unital quantale V, it follows that $a \cdot f^{\circ} \leq f^{\circ} \cdot b$.

PROOF. Since f is a V-functor, it follows that $f \cdot a \leq b \cdot f$. Recall from Lecture 1 that $1_X \leq f^{\circ} \cdot f$ and $f \cdot f^{\circ} \leq 1_Y$ for every map $X \xrightarrow{f} Y$. Thus, $a \leq f^{\circ} \cdot f \cdot a \leq f^{\circ} \cdot b \cdot f$ implies $a \cdot f^{\circ} \leq f^{\circ} \cdot b \cdot f \cdot f^{\circ} \leq f^{\circ} \cdot b$. \Box

Proposition 56.

- (1) There exists a functor V-Cat $\xrightarrow{(-)_*}$ V-Mod defined by $((X,a) \xrightarrow{f} (Y,b))_* = (X,a) \xrightarrow{f_*} (Y,b)$, where $f_* = b \cdot f$, i.e., $f_*(x,y) = b(f(x),y)$ for every $x \in X$ and every $y \in Y$.
- (2) There exists a functor $(V-\mathbf{Cat})^{op} \xrightarrow{(-)^*} V-\mathbf{Mod}$ defined by $((X,a) \xrightarrow{f} (Y,b))^* = (Y,b) \xrightarrow{f^*} (X,a)$, where $f^* = f^\circ \cdot b$, i.e., $f^*(y,x) = b(y,f(x))$ for every $x \in X$ and every $y \in Y$.

Proof.

- (1) To show that f_{*} is a V-module, consider Definition 49: f_{*} ⋅ a = b ⋅ f ⋅ a ≤ (f is a V-functor) ≤ b ⋅ b ⋅ f ≤ ((Y,b) is a V-category) ≤ b ⋅ f = f_{*}. To show that (-)_{*} preserves composition of morphisms, notice that given V-functors (X, a) ^f→ (Y,b), (Y,b) ^g→ (Z,c), it follows that (g ⋅ f)_{*} = c ⋅ g ⋅ f = c ⋅ g ⋅ 1_Y ⋅ f ≤ ((Y,b) is a V-category) ≤ c ⋅ g ⋅ b ⋅ f = g_{*} ⋅ f_{*}. Moreover, g_{*} ⋅ f_{*} = c ⋅ g ⋅ b ⋅ f ≤ (g is V-functor) ≤ c ⋅ c ⋅ g ⋅ f ≤ ((Z,c) is a V-category) ≤ c ⋅ g ⋅ b ⋅ f = (g ⋅ f)_{*}. To show that (-)_{*} preserves identities, notice that given a V-category (X,a), (1_X)_{*} = a ⋅ 1_X = a.
 (2) To show that f^{*} is a V-module, consider Definition 49: f^{*} ⋅ b = f[°] ⋅ b ⋅ b ≤ ((Y,b) is a V-category) ≤ f[°] ⋅ b = f^{*}.
- (2) To show that f^* is a V-module, consider Definition 49: $f^* \cdot b = f^\circ \cdot b \cdot b \leq ((Y, b) \text{ is a } V\text{-category}) \leq f^\circ \cdot b = f^*$ and $a \cdot f^* = a \cdot f^\circ \cdot b \leq (\text{Lemma 55 for } f) \leq f^\circ \cdot b \cdot b \leq ((Y, b) \text{ is a } V\text{-category}) \leq f^\circ \cdot b = f^*$. To show that $(-)^*$ preserves composition of morphisms, notice that given V-functors $(X, a) \xrightarrow{f} (Y, b)$, $(Y, b) \xrightarrow{g} (Z, c)$, it follows that $(g \cdot f)^* = (g \cdot f)^\circ \cdot c = f^\circ \cdot g^\circ \cdot c = f^\circ \cdot 1_Y \cdot g^\circ \cdot c \leq ((Y, b) \text{ is a } V\text{-category}) \leq f^\circ \cdot b \cdot g^\circ \cdot c = f^* \cdot g^*$. Moreover, $f^* \cdot g^* = f^\circ \cdot b \cdot g^\circ \cdot c \leq (\text{Lemma 55 for } g) \leq f^\circ \cdot g^\circ \cdot c \cdot c \leq ((Z, c) \text{ is a } V\text{-category}) \leq f^\circ \cdot g^\circ \cdot c = (g \cdot f)^\circ \cdot c = (g \cdot f)^*$. To show that $(-)^*$ preserves identities, one should observe that given a V-category (X, a), it follows that $(1_X)^* = (1_X)^\circ \cdot a = 1_X \cdot a = a$.

Remark 57.

- (1) The functors of Proposition 56 provide a structured version of the functors of Remark 54, i.e., **Set** $\xrightarrow{(-)_{\circ}} V$ -**Rel** $\xleftarrow{(-)^{\circ}} \mathbf{Set}^{op}$ is replaced with V-**Cat** $\xrightarrow{(-)_{*}} V$ -**Mod** $\xleftarrow{(-)^{*}} (V$ -**Cat**) \xrightarrow{op} .
- (2) In case the quantale V has at least two elements, unlike the functor **Set** $\xrightarrow{(-)_{\circ}} V$ -**Rel**, the functor V-**Cat** $\xrightarrow{(-)_{*}} V$ -**Mod** is not faithful. Consider, e.g., a V-category $(\mathbb{R}, \underline{k})$, where $\underline{k}(x, y) = k$ for every real numbers x, y. Then every map $\mathbb{R} \xrightarrow{f} \mathbb{R}$ provides a V-functor $(\mathbb{R}, \underline{k}) \xrightarrow{f} (\mathbb{R}, \underline{k})$. However, $f_* = \underline{k} \cdot f$ implies $f_*(x, y) = \underline{k}(f(x), y) = k$ for every $x, y \in \mathbb{R}$, which then gives $f_* = \underline{k} = 1_{(\mathbb{R},k)}$.

Proposition 58. Given a V-functor $(X, a) \xrightarrow{f} (Y, b)$, it follows that $f_* \cdot f^* \leq (1_Y)^*$ and $(1_X)^* \leq f^* \cdot f_*$.

PROOF. First, $f_* \cdot f^* = b \cdot f \cdot f^\circ \cdot b \leq (\text{since } f \cdot f^\circ \leq 1_Y) \leq b \cdot b \leq ((Y, b) \text{ is a } V\text{-category}) \leq b = 1_Y \cdot b = (1_Y)^\circ \cdot b = (1_Y)^*$. Second, $f^* \cdot f_* = f^\circ \cdot b \cdot b \cdot f \geq (f \text{ is a } V\text{-functor}) \geq a \cdot f^\circ \cdot f \cdot a \geq (\text{since } f^\circ \cdot f \geq 1_X) \geq a \cdot a = (\text{Proposition 52}(2)) = a = 1_X \cdot a = (1_X)^\circ \cdot a = (1_X)^*$.

Remark 59.

- (1) Proposition 58 provides a structured version of the adjunction $f_{\circ} \dashv f^{\circ}$ valid in V-Rel for every map $X \xrightarrow{f} Y$, in the form of $f_* \dashv f^*$ valid in V-Mod for every V-functor $(X, a) \xrightarrow{f} (Y, b)$.
- (2) $(1_Y)^*$ and $(1_X)^*$ in Proposition 58 can be replaced with $(1_Y)_*$ and $(1_X)_*$.

Proposition 60. Given the dual V-category functor V-Cat $\xrightarrow{(-)^{op}}$ V-Cat, it follows that $(f^{op})_* = (f^*)^{\circ}$ and $(f^{op})^* = (f_*)^{\circ}$ for every V-functor $(X, a) \xrightarrow{f} (Y, b)$.

PROOF. Given a V-functor $(X, a) \xrightarrow{f} (Y, b)$, since $((X, a) \xrightarrow{f} (Y, b))^{op} = (X, a^{\circ}) \xrightarrow{f} (Y, b^{\circ})$ by Proposition 34, it follows that $(f^{op})_* = b^{\circ} \cdot f = (f^{\circ} \cdot b)^{\circ} = (f^*)^{\circ}$ and $(f^{op})^* = f^{\circ} \cdot b^{\circ} = (b \cdot f)^{\circ} = (f_*)^{\circ}$.

References

- [1] F. Borceux, Handbook of Categorical Algebra. Volume 2: Categories and Structures, Cambridge University Press, 1994.
- [2] M. M. Clementino and D. Hofmann, Exponentiation in V-categories, Topology Appl. 153 (2006), no. 16, 3113–3128.
- [3] P. Eklund, J. Gutiérrez García, U. Höhle, and J. Kortelainen, Semigroups in Complete Lattices. Quantales, Modules and Related Topics, vol. 54, Cham: Springer, 2018.
- [4] D. Hofmann, G. J. Seal, and W. Tholen (eds.), Monoidal Topology: A Categorical Approach to Order, Metric and Topology, Cambridge University Press, 2014.
- [5] G. M. Kelly, Basic Concepts of Enriched Category Theory, Repr. Theory Appl. Categ. 2005 (2005), no. 10, 1–136.
- [6] F. W. Lawvere, Metric spaces, generalized logic and closed categories, Repr. Theory Appl. Categ. 1 (2002), 1–37.
- [7] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag, 1998.
- [8] K. I. Rosenthal, Quantales and Their Applications, Addison Wesley Longman, 1990.
- [9] K. I. Rosenthal, The Theory of Quantaloids, Addison Wesley Longman, 1996.