Elements of monoidal topology Lecture 7: Kleisli monoids

Sergejs Solovjovs

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences Prague (CZU) Kamýcká 129, 16500 Prague - Suchdol, Czech Republic

Abstract

This lecture considers an alternative representation of the category $(\mathbb{T}, 2)$ -**Cat** as the category \mathbb{T} -**Mon** of monoids in the hom-set of a Kleisli category that avoids explicit use of relations or lax extensions. As a motivating example serves an isomorphism \mathbb{F} -**Mon** \cong **Top**, where \mathbb{F} is the filter monad on the category **Set**.

1. A representation of topological spaces through neighborhood filters

1.1. The filter monad on the category Set

Definition 1. The filter monad $\mathbb{F} = (F, m, e)$ on the category **Set** of sets and maps is given by

- (1) a functor **Set** \xrightarrow{F} **Set**, where $FX = \{\mathfrak{x} \mid \mathfrak{x} \text{ is a filter on } X\}$ for every set X, and $FX \xrightarrow{Ff} FY$ is defined by $Ff(\mathfrak{x}) = \{B \subseteq Y \mid f^{-1}(B) \in \mathfrak{x}\}$ for every map $X \xrightarrow{f} Y$;
- (2) a natural transformation $1_{\mathbf{Set}} \xrightarrow{e} F$, where $X \xrightarrow{e_X} FX$ is defined by $e_X(x) = \dot{x} = \{A \subseteq X \mid x \in A\}$ (principal filter);
- (3) a natural transformation $FF \xrightarrow{m} F$, where $FFX \xrightarrow{m_X} FX$ is defined by $m_X(\mathfrak{X}) = \Sigma \mathfrak{X}$ (filtered sum or Kowalsky sum), where $A \in \Sigma \mathfrak{X}$ iff $\{\mathfrak{x} \in FX \mid A \in \mathfrak{x}\} \in \mathfrak{X}$.

Remark 2. There exists the contravariant powerset functor $\operatorname{Set}^{op} \xrightarrow{P^{\bullet}} \operatorname{Set}$ defined by $P^{\bullet}(X \xrightarrow{f} Y) = PY \xrightarrow{P^{\bullet}} PX$, where PX and PY are the powersets of the sets X and Y, respectively, and $P^{\bullet}(B) = f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ for every subset $B \subseteq Y$. The functor P^{\bullet} is self-adjoint, namely, there exists an adjoint situation $(P^{\bullet})^{op} \dashv P^{\bullet} : \operatorname{Set}^{op} \to \operatorname{Set}$. This adjoint situation provides the double-powerset monad $\mathbb{P}^2 = (P^{\bullet}(P^{\bullet})^{op}, m, e)$ on the category Set. Both the filter monad \mathbb{F} and the ultrafilter monad β (recall Lecture 1) are restrictions of the above double-powerset monad \mathbb{P}^2 .

Definition 3. Given a set X, the set FX of filters on X can be partially ordered by the *refinement partial* order, i.e., for every $\mathfrak{x}, \mathfrak{y} \in FX$, $\mathfrak{x} \leq \mathfrak{y}$ iff $\mathfrak{x} \supseteq \mathfrak{y}$ (namely, given a subset $A \subseteq X$, if $A \in \mathfrak{y}$, then $A \in \mathfrak{x}$). A filter \mathfrak{x} is *finer* than \mathfrak{y} (or \mathfrak{y} is *coarser* than \mathfrak{x}) provided that $\mathfrak{x} \supseteq \mathfrak{y}$.

1.2. The Kleisli category of a monad

Definition 4. Given a monad $\mathbb{T} = (T, m, e)$ on a category \mathbf{X} , the *Kleisli category* $\mathbf{X}_{\mathbb{T}}$ associated to \mathbb{T} is defined as follows. The objects of $\mathbf{X}_{\mathbb{T}}$ are those of \mathbf{X} . Given two $\mathbf{X}_{\mathbb{T}}$ -objects X, Y, the hom-set $\mathbf{X}_{\mathbb{T}}(X,Y)$ is the hom-set $\mathbf{X}(X,TY)$ (the elements of which will be denoted $X \xrightarrow{f} Y$). Given two $\mathbf{X}_{\mathbb{T}}$ -morphisms $X \xrightarrow{f} Y$, $Y \xrightarrow{g} Z$, their *Kleisli composition* in $\mathbf{X}_{\mathbb{T}}$ is defined via the composition in \mathbf{X} as $g \circ f = m_Z \cdot Tg \cdot f$, i.e., as the \mathbf{X} -morphism $X \xrightarrow{f} TY \xrightarrow{Tg} TZ \xrightarrow{m_Z} TZ$. The identity on an $\mathbf{X}_{\mathbb{T}}$ -object X is the X-morphism $X \xrightarrow{e_X} TX$.

Email address: solovjovs@tf.czu.cz (Sergejs Solovjovs)

URL: http://home.czu.cz/solovjovs (Sergejs Solovjovs)

Preprint submitted to the Czech University of Life Sciences Prague (CZU)

Example 5. Given the powerset monad $\mathbb{P} = (P, m, e)$ (recall Lecture 1), a $\operatorname{Set}_{\mathbb{P}}$ -morphism $X \xrightarrow{f} Y$ is a map $X \xrightarrow{f} PY$, which can be considered as a relation $X \xrightarrow{r} Y$ defined by xry iff $y \in f(x)$. Given two $\operatorname{Set}_{\mathbb{P}}$ -morphisms $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$, the Kleisli composition $g \circ f$ is the composition $s \cdot r$ of the relations corresponding to g and f, respectively. Indeed, if t is the relation corresponding to $g \circ f$, then for every $x \in X$ and every $z \in Z$, xtz iff $z \in g \circ f(x)$ iff $z \in m_Z \cdot Pg \cdot f(x) = m_Z(Pg \cdot f(x)) = \bigcup Pg \cdot f(x) = \bigcup Pg(f(x)) = \bigcup_{y \in f(x)} g(y)$ iff there exists $y \in f(x)$ such that $z \in g(y)$ iff there exists $y \in Y$ such that $y \in f(x)$ and $z \in g(y)$ iff there exists $y \in Y$ such that xry and ysz iff $x(s \cdot r)z$. It follows that $\operatorname{Set}_{\mathbb{P}} = \operatorname{Rel}$.

Remark 6. Given a Kleisli category $\mathbf{X}_{\mathbb{T}}$, there exists a functor $\mathbf{X}_{\mathbb{T}} \xrightarrow{G_{\mathbb{T}}} \mathbf{X}$, $G_{\mathbb{T}}(X \xrightarrow{f} Y) = TX \xrightarrow{m_Y \cdot Tf} TY = TX \xrightarrow{Tf} TTY \xrightarrow{m_Y} TY$. The functor $G_{\mathbb{T}}$ has a left adjoint $\mathbf{X} \xrightarrow{F_{\mathbb{T}}} \mathbf{X}_{\mathbb{T}}$, $F_{\mathbb{T}}(X \xrightarrow{f} Y) = X \xrightarrow{e_Y \cdot f} Y = X \xrightarrow{f} Y \xrightarrow{f} Y$. The unit $\mathbf{1}_{\mathbf{X}} \xrightarrow{\eta_{\mathbb{T}}} G_{\mathbb{T}}F_{\mathbb{T}}$ of this adjunction is e, and the co-unit $F_{\mathbb{T}}G_{\mathbb{T}} \xrightarrow{\varepsilon_{\mathbb{T}}} \mathbf{1}_{\mathbf{X}_{\mathbb{T}}}$ is given by **X**-morphisms $TX \xrightarrow{\mathbf{1}_{TX}} TX$. The monad associated to this adjunction gives back the original monad \mathbb{T} .

Remark 7. Given sets X and Y, the hom-set $\mathbf{Set}_{\mathbb{F}}(X,Y)$ is partially ordered by the pointwise refinement partial order of Definition 3, namely, given $f, g \in \mathbf{Set}_{\mathbb{F}}(X,Y), f \leq g$ iff $f(x) \leq g(x)$ for every $x \in X$ (recall that both f and g are maps $X \xrightarrow[g]{\longrightarrow} FY$). Therefore, the partially ordered set $\mathbf{Set}_{\mathbb{F}}(X,Y)$ can be considered as a category, the objects of which are the elements of $\mathbf{Set}_{\mathbb{F}}(X,Y)$, and, for every two objects f and g, there exists precisely one morphism $f \to g$ provided that $f \leq g$.

Lemma 8. A partially ordered set S, considered as a category as in Remark 7, is a strict monoidal category (recall Lecture 4) precisely when it has a monoid structure whose multiplication $S \times S \rightarrow S$ is monotone.

Proposition 9. $(\mathbf{Set}_{\mathbb{F}}(X,X), \circ, e_X)$ is a strict monoidal category.

PROOF. In view of Lemma 8, it will be enough to show that the Kleisli composition preserves the refinement partial order. Thus, given $g_1, g_2, f_1, f_2 \in \mathbf{Set}_{\mathbb{F}}(X, X)$ such that $g_1 \leq g_2$ and $f_1 \leq f_2$, one has to show that $g_1 \circ f_1 \leq g_2 \circ f_2$, which is equivalent to $m_X \cdot Fg_1 \cdot f_1(x) \leq m_X \cdot Fg_2 \cdot f_2(x)$ for every $x \in X$, which, in its turn, is equivalent to $m_X \cdot Fg_1 \cdot f_1(x) \supseteq m_X \cdot Fg_2 \cdot f_2(x)$ for every $x \in X$. Take an arbitrary element $x \in X$. Given $A \in m_X \cdot Fg_2 \cdot f_2(x)$, by Definition 1(3), it follows that

Take an arbitrary element $x \in X$. Given $A \in m_X \cdot Fg_2 \cdot f_2(x)$, by Definition 1 (3), it follows that $\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\} \in Fg_2 \cdot f_2(x) = Fg_2(f_2(x))$, which implies by Definition 1 (1) that $g_2^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}) \in f_2(x)$. Since $f_1 \leq f_2$, it follows that $f_1(x) \supseteq f_2(x)$, and then $g_2^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}) \in f_1(x)$. Further, if $y \in g_2^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\})$, then $g_2(y) \in \{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}$, namely, $A \in g_2(y) \subseteq g_1(y)$ since $g_1 \leq g_2$. Thus, $A \in g_1(y)$ implies $g_1(y) \in \{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}$, which gives $y \in g_1^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\})$. As a consequence, one obtains that $g_2^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}) \subseteq g_1^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\})$. Since $g_2^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}) \in f_1(x)$ and $f_1(x)$ is a filter, it follows that $g_1^{-1}(\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\}) \in f_1(x)$, which implies $\{\mathfrak{r} \in FX \mid A \in \mathfrak{r}\} \in Fg_1 \cdot f_1(x)$, which finally gives $A \in m_X \cdot Fg_1 \cdot f_1(x)$. Therefore, $m_X \cdot Fg_1 \cdot f_1(x) \supseteq m_X \cdot Fg_2 \cdot f_2(x)$ as desired.

1.3. Kleisli triples

Definition 10. A Kleisli triple on a category X consists of the following data:

- a function $\mathcal{O}_{\mathbf{X}} \xrightarrow{T} \mathcal{O}_{\mathbf{X}}$, which sends X to TX;
- an extension operation $(-)^{\mathbb{T}}$, which sends an **X**-morphism $X \xrightarrow{f} TY$ to an **X**-morphism $TX \xrightarrow{f^{\mathbb{T}}} TY$;
- an **X**-morphism $X \xrightarrow{e_X} TX$ for every **X**-object X;

such that

$$(g^{\mathbb{T}} \cdot f)^{\mathbb{T}} = g^{\mathbb{T}} \cdot f^{\mathbb{T}}, \quad e_X^{\mathbb{T}} = 1_{TX}, \quad f^{\mathbb{T}} \cdot e_X = f$$

for every **X**-object X and every **X**-morphisms $X \xrightarrow{f} TY$, $Y \xrightarrow{g} TZ$. If one defines $g \circ f = g^{\mathbb{T}} \cdot f$, then the above conditions are equivalent to this "Kleisli composition" being associative, and e_X being its identity,

namely, given **X**-morphisms $X \xrightarrow{f} TY$, $Y \xrightarrow{g} TZ$, and $Z \xrightarrow{h} TW$, $h \circ (g \circ f) = h \circ (g^{\mathbb{T}} \cdot f) = h^{\mathbb{T}} \cdot g^{\mathbb{T}} \cdot f = (h^{\mathbb{T}} \cdot g) \circ f = (h \circ g) \circ f$, $f \circ e_X = f^{\mathbb{T}} \cdot e_X = f$, and $e_Y \circ f = e_Y^{\mathbb{T}} \cdot f = 1_{TY} \cdot f = f$.

Definition 11. A Kleisli triple morphism $(S, (-)^{\mathbb{S}}, d) \xrightarrow{\alpha} (T, (-)^{\mathbb{T}}, e)$ is given by a family of **X**-morphisms $SX \xrightarrow{\alpha_X} TX$ for every **X**-object X such that

$$\alpha_Y \cdot f^{\mathbb{S}} = (\alpha_Y \cdot f)^{\mathbb{T}} \cdot \alpha_X, \quad \alpha_X \cdot d_X = e_X$$

for every **X**-morphism $X \xrightarrow{f} SY$. Observe that a Kleisli triple morphism is a family of **X**-morphisms preserving the Kleisli composition and its identity, i.e., given **X**-morphisms $X \xrightarrow{f} SY$ and $Y \xrightarrow{g} SZ$, $\alpha_Z \cdot (g \circ_{\mathbb{S}} f) = \alpha_Z \cdot g^{\mathbb{S}} \cdot f = (\alpha_Z \cdot g)^{\mathbb{T}} \cdot \alpha_Y \cdot f = (\alpha_Z \cdot g) \circ_{\mathbb{T}} (\alpha_Y \cdot f)$.

Remark 12. A Kleisli triple $(T, (-)^{\mathbb{T}}, e)$ on a category **X** provides a monad $\mathbb{T} = (T, m, e)$ on **X** by setting $Tf = (e_Y \cdot f)^{\mathbb{T}}$ for every **X**-morphism $X \xrightarrow{f} Y$, and $m_X = (1_{TX})^{\mathbb{T}}$ for every **X**-object X. A Kleisli triple morphism $(S, (-)^{\mathbb{S}}, d) \xrightarrow{\alpha} (T, (-)^{\mathbb{T}}, e)$ provides then a morphism of the corresponding monads $\mathbb{S} \xrightarrow{\alpha} \mathbb{T}$.

Remark 13. Given a monad $\mathbb{T} = (T, m, e)$ on a category **X**, one gets a Kleisli triple $(T, (-)^{\mathbb{T}}, e)$ by setting $f^{\mathbb{T}} = m_Y \cdot Tf$ for every **X**-morphism $X \xrightarrow{f} TY$. A monad morphism $\mathbb{S} \xrightarrow{\alpha} \mathbb{T}$ provides then a morphism $(S, (-)^{\mathbb{S}}, d) \xrightarrow{\alpha} (T, (-)^{\mathbb{T}}, e)$ of the corresponding Kleisli triples.

Remark 14. The above passages from a Kleisli triple to a monad and from a monad to a Kleisli triple are inverse to each other, namely, both definitions describe the same structure on a category \mathbf{X} (and the respective two definitions of Kleisli composition then correspond).

1.4. Monoids in monoidal categories

Definition 15. Let **C** be a monoidal category (see Lecture 4). A monoid M in **C** is a **C**-object together with two **C**-morphisms $M \otimes M \xrightarrow{m} M$ and $E \xrightarrow{e} M$ such that the following two diagrams commute:

A homomorphism of monoids $(M, m, e) \xrightarrow{f} (N, n, d)$ is a C-morphism $M \xrightarrow{f} N$ such that the following two diagrams commute:

 Mon_C stands for the category of monoids in C and their homomorphisms.

Example 16.

- (1) The category **Set** is monoidal w.r.t. cartesian product of sets. The category **Mon**_{Set} is exactly the category **Mon** of monoids and their homomorphisms in the sense of universal algebra.
- (2) The category Sup of V-semilattices and V-preserving maps is monoidal w.r.t. the usual tensor product. The category Quant of quantales and their homomorphisms is exactly the category Mon_{Sup}.
- (3) Given a partially ordered set (S, \leq) , considered as a monoidal category (S, \leq, \otimes, k) as in Lemma 8, a monoid in S is an element $s \in S$ such that $s \otimes s \leq s$ and $k \leq s$. Observe that if s is a monoid in S, then $k \leq s$ implies $s = s \otimes k \leq s \otimes s$. Since $s \otimes s \leq s$, it follows that $s \otimes s = s$.

1.5. Topological spaces via neighborhood filters

Theorem 17. The category **Top** of topological spaces and continuous maps is (concretely) isomorphic to the category \mathbb{F} -**Mon**, the objects of which are pairs (X, ν) such that $X \xrightarrow{\nu} FX$ is a monoid in $\mathbf{Set}_{\mathbb{F}}(X, X)$ (i.e., $\nu \circ \nu \leq \nu$ and $e_X \leq \nu$), and whose morphisms $(X, \nu) \xrightarrow{f} (Y, \mu)$ are maps $X \xrightarrow{f} Y$ such that $f_{\natural} \circ \nu \leq \mu \circ f_{\natural}$, where $f_{\natural} = e_Y \cdot f$ is the image of the map f under the left adjoint functor $\mathbf{Set} \to \mathbf{Set}_{\mathbb{F}}$ of Remark 6.

PROOF. Given a topological space (X, τ) , where τ is a topology on a set X, define a map $X \xrightarrow{\nu} FX$ by $\nu(x) = \{A \subseteq X \mid \text{there exists } U \in \tau \text{ such that } x \in U \subseteq A\}$ (neighborhood filter of x). It is easy to see that $\nu(x)$ is contained in the principal filter $e_X(x) = \dot{x}$ for every $x \in X$. Therefore, $e_X \leq \nu$ in the pointwise refinement partial order. To show that $\nu \circ \nu \leq \nu$, we will need the following simple lemma.

Lemma 18. For $x \in X$ and $A \subseteq X$, $A \in \nu(x)$ iff there exists $B \in \nu(x)$ such that $A \in \nu(y)$ for every $y \in B$.

Proof.

 \Rightarrow : If $A \in \nu(x)$, then there exists $U \in \tau$ such that $x \in U \subseteq A$. Put B = U and notice that, first, $B \in \nu(x)$ and, second, $A \in \nu(y)$ for every $y \in B$ since $U \in \tau$.

 \Leftarrow : Given $y \in B$, it follows that $A \in \nu(y)$, i.e., there exists $V_y \in \tau$ such that $y \in V_y \subseteq A$. Thus, $B \subseteq \bigcup_{y \in B} V_y \subseteq A$, which implies $A \in \nu(x)$, since $B \in \nu(x)$ and $\nu(x)$ is a filter.

Given an element $x \in X$ and a subset $A \subseteq X$, define a set $A^{\mathbb{F}} = \{\mathfrak{x} \in FX \mid A \in \mathfrak{x}\}$ (the set of filters containing A). Then $A \in \nu \circ \nu(x)$ iff $A \in m_X \cdot F\nu \cdot \nu(x)$ iff $A^{\mathbb{F}} \in F\nu \cdot \nu(x) = F\nu(\nu(x))$ iff $\nu^{-1}(A^{\mathbb{F}}) \in \nu(x)$ iff there exists $B \in \nu(x)$ such that $B \subseteq \nu^{-1}(A^{\mathbb{F}})$ iff there exists $B \in \nu(x)$ such that $A \in \nu(y)$ for every $y \in B$ iff (Lemma 18) $A \in \nu(x)$. As a consequence, one obtains $\nu \circ \nu(x) = \nu(x)$. By Example 16 (3) and the above two properties $(\nu \circ \nu \leq \nu \text{ and } e_X \leq \nu)$, a topological space (X, τ) provides a monoid ν in the monoidal category $\mathbf{Set}_{\mathbb{F}}(X, X)$.

Consider a continuous map $(X,\tau) \xrightarrow{f} (Y,\sigma)$, and let ν and μ be the monoids corresponding to the spaces (X,τ) and (Y,μ) , respectively. First, we show that $Ff \cdot \nu \leq \mu \cdot f$. Indeed, given $x \in X$ and $B \subseteq Y$, $B \in \mu \cdot f(x) = \mu(f(x))$ iff there exists $V \in \sigma$ such that $f(x) \in V \subseteq B$, which implies (since f is continuous) $f^{-1}(V) \in \tau$ and $x \in f^{-1}(V) \subseteq f^{-1}(B)$, which results in $f^{-1}(B) \in \nu(x)$, which is equivalent to $B \in Ff(\nu(x)) = Ff \cdot \nu(x)$. As a consequence, one gets $Ff \cdot \nu(x) \supseteq \mu \cdot f(x)$ or $Ff \cdot \nu(x) \leq \mu \cdot f(x)$. Second, since $\mathbb{F} = (F, m, e)$ is a monad on **Set**, the following two diagrams commute:

Thus, $Ff \cdot \nu = 1_{FY} \cdot Ff \cdot \nu = m_Y \cdot Fe_Y \cdot Ff \cdot \nu = m_Y \cdot F(e_Y \cdot f) \cdot \nu = m_Y \cdot Ff_{\natural} \cdot \nu = f_{\natural} \circ \nu$ by the left-hand side of diagram (1.1), and $\mu \cdot f = 1_{FY} \cdot \mu \cdot f = m_Y \cdot F\mu \cdot e_Y \cdot f = m_Y \cdot F\mu \cdot f_{\natural} = \mu \circ f_{\natural}$ by the right-hand side of diagram (1.1). As a result, one obtains $f_{\natural} \circ \nu \leq \mu \circ f_{\natural}$.

The above constructions define a functor **Top** $\xrightarrow{G} \mathbb{F}$ -**Mon** by $G((X, \tau) \xrightarrow{f} (Y, \sigma)) = (X, \nu) \xrightarrow{f} (Y, \mu)$. To obtain a functor in the opposite direction, one proceeds as follows.

Given an \mathbb{F} -Mon-object (X, ν) , define $\tau = \{U \subseteq X \mid \text{ for every } x \in X, \text{ if } x \in U, \text{ then } U \in \nu(x)\}$. To show that τ is a topology on the set X, one notices the following.

- Since the set X is an element of every filter on X, $X \in \tau$. Since the empty set \emptyset clearly satisfies the condition on the elements of $\tau, \emptyset \in \tau$.
- Given $U, V \in \tau$, if $x \in U \cap V$, then $U \in \nu(x)$ and $V \in \nu(x)$, which implies $U \cap V \in \nu(x)$, since $\nu(x)$ is a filter. As a consequence, one obtains that $U \cap V \in \nu(x)$.
- Given $U_i \in \tau$ for every $i \in I$, if $x \in \bigcup_{i \in I} U_i$, then $x \in U_{i_0}$ for some $i_0 \in I$, which implies $U_{i_0} \in \nu(x)$. Since $U_{i_0} \subseteq \bigcup_{i \in I} U_i$ and $\nu(x)$ is a filter, $\bigcup_{i \in I} U_i \in \nu(x)$. As a result, one obtains that $\bigcup_{i \in I} U_i \in \nu(x)$.

Given an \mathbb{F} -**Mon**-morphism $(X, \nu) \xrightarrow{f} (Y, \mu)$, to show that the map $X \xrightarrow{f} Y$ provides a continuous map $(X, \tau) \xrightarrow{f} (Y, \sigma)$ (where τ and σ are obtained from ν and μ , respectively), notice that given $V \in \sigma$, for every $x \in f^{-1}(V), f^{-1}(V) \in \nu(x)$ iff $V \in Ff(\nu(x)) = Ff \cdot \nu(x)$. Since $V \in \sigma$ and $f(x) \in V$, it follows that $V \in \mu(f(x)) = \mu \cdot f(x)$. Since f is an \mathbb{F} -**Mon**-morphism, $Ff \cdot \nu(x) \supseteq \mu \cdot f(x)$, and, therefore, $V \in Ff \cdot \nu(x)$. As a consequence, one obtains that $f^{-1}(V) \in \tau$, i.e., the map $X \xrightarrow{f} Y$ is continuous.

The above constructions define a functor \mathbb{F} -**Mon** \xrightarrow{H} **Top** by $H((X,\nu) \xrightarrow{f} (Y,\mu))) = (X,\tau) \xrightarrow{f} (Y,\sigma)$. Straightforward calculations show that the functors G and H are inverse to each other and, moreover, commute with the respective forgetful functors of the constructs (**Top**, |-|) and (\mathbb{F} -**Mon**, |-|).

2. Power-enriched monads

Remark 19. Given the powerset monad \mathbb{P} on the category **Set**, the Eilenberg-Moore category $\mathbf{Set}^{\mathbb{P}}$ of \mathbb{P} (see Lecture 1) is isomorphic to the category **Sup**. Indeed, given a \mathbb{P} -algebra (X, a), one defines an operation $PX \xrightarrow{\bigvee} X$ by $\bigvee S = a(S)$ providing thus a \bigvee -semilattice (X, \bigvee) . A \mathbb{P} -homomorphism $(X, a) \xrightarrow{f} (Y, b)$ results then in a \bigvee -preserving map $(X, \bigvee) \xrightarrow{f} (Y, \bigvee)$. Conversely, given a \bigvee -semilattice (X, \bigvee) , the map $PX \xrightarrow{a} X$ defined by $a(S) = \bigvee S$ provides a \mathbb{P} -algebra (X, a). A \bigvee -preserving map $(X, \bigvee) \xrightarrow{f} (Y, \bigvee)$ results then in a \mathbb{P} -homomorphism $(X, a) \xrightarrow{f} (Y, b)$. Altogether, one obtains a concrete isomorphism $\mathbf{Set}^{\mathbb{P}} \cong \mathbf{Sup}$.

Remark 20. Given the Eilenberg-Moore category $\mathbf{X}^{\mathbb{T}}$ of a monad \mathbb{T} on a category \mathbf{X} , there exists a functor $\mathbf{X}^{\mathbb{T}} \xrightarrow{G^{\mathbb{T}}} \mathbf{X}$, $G^{\mathbb{T}}((X,a) \xrightarrow{f} (Y,b)) = X \xrightarrow{f} Y$. The functor $G^{\mathbb{T}}$ has a left adjoint $\mathbf{X} \xrightarrow{F^{\mathbb{T}}} \mathbf{X}^{\mathbb{T}}$, $F^{\mathbb{T}}(X \xrightarrow{f} Y) = (TX, m_X) \xrightarrow{Tf} (TY, m_Y)$, where (TX, m_X) is the so-called *free* \mathbb{T} -algebra on a given set X. The unit $\mathbf{1}_{\mathbf{X}} \xrightarrow{\eta^{\mathbb{T}}} G^{\mathbb{T}}F^{\mathbb{T}}$ of this adjunction is e, and the co-unit $F^{\mathbb{T}}G^{\mathbb{T}} \xrightarrow{\varepsilon^{\mathbb{T}}} \mathbf{1}_{\mathbf{X}^{\mathbb{T}}}$ is given by \mathbb{T} -homomorphisms $(TX, m_X) \xrightarrow{\varepsilon^{\mathbb{T}}_{(X,a)}=a} (X, a)$. The monad associated to this adjunction gives back the original monad \mathbb{T} .

Remark 21. Given a monad $\mathbb{T} = (T, m, e)$ on a category **X**, there exists a full and faithful *comparison* functor $\mathbf{X}_{\mathbb{T}} \xrightarrow{K} \mathbf{X}^{\mathbb{T}}$ defined by $K(X \xrightarrow{f} Y) = (TX, m_X) \xrightarrow{m_Y \cdot Tf} (TY, m_Y)$.

Proposition 22. Given a monad $\mathbb{T} = (T, m, e)$ on **Set**, there exists a one-to-one correspondence between

(1) monad morphisms $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$ (recall Lecture 2), where $\mathbb{P} = (P, n, d)$ is the powerset monad on **Set**;

(2) extensions E of the functor $\mathbf{Set} \xrightarrow{F_{\mathbb{T}}} \mathbf{Set}_{\mathbb{T}}$ along the functor $\mathbf{Set} \xrightarrow{(-)_{\circ}} \mathbf{Rel}$ (recall Lecture 1):

(3) liftings L of the functor $\mathbf{Set}_{\mathbb{T}} \xrightarrow{G_{\mathbb{T}}} \mathbf{Set}$ along the forgetful functor $\mathbf{Sup} \xrightarrow{|-|} \mathbf{Set}$:

(4) \bigvee -semilattice structures on the set TX such that the maps $TX \xrightarrow{Tf} TY$ and $TTX \xrightarrow{m_X} TX$ are \bigvee -preserving for every map $X \xrightarrow{f} Y$ and every set X.

PROOF. In view of Example 5 and Remarks 19, 20, one can identify the category **Rel** with $\mathbf{Set}_{\mathbb{P}}$, the category **Sup** with $\mathbf{Set}^{\mathbb{P}}$, and the forgetful functor $\mathbf{Sup} \xrightarrow{|-|} \mathbf{Set}$ with $\mathbf{Set}^{\mathbb{P}} \xrightarrow{G^{\mathbb{P}}} \mathbf{Set}$.

(1) \Leftrightarrow (2): Given a monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$, one defines a functor $\mathbf{Set}_{\mathbb{P}} \xrightarrow{E} \mathbf{Set}_{\mathbb{T}}$ by $E(X \xrightarrow{f} Y) = X \xrightarrow{\tau_Y \cdot f} Y$. Given now a map $X \xrightarrow{g} Y$, $E(-)_{\circ}(X \xrightarrow{g} Y) = X \xrightarrow{\tau_Y \cdot s} Y$, where $X \xrightarrow{s} PY$ is defined by $s(x) = \{f(x)\}$, and $F_{\mathbb{T}}(X \xrightarrow{g} Y) = X \xrightarrow{e_Y \cdot f} Y$. For every $x \in X$, $\tau_Y \cdot s(x) = \tau_Y(\{f(x)\}) = \tau_Y \cdot d_Y(f(x)) \xrightarrow{\tau_Y \cdot d_Y = e_Y} e_Y(f(x)) = e_Y \cdot f(x)$. Thus, $\tau_Y \cdot s = e_Y \cdot f$, i.e., the required triangle commutes.

Conversely, given an extension $\operatorname{Set}_{\mathbb{P}} \xrightarrow{E} \operatorname{Set}_{\mathbb{T}}$, define a monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$ by $PX \xrightarrow{\tau_X} TX = PX \xrightarrow{E1_{PX}} TX$. Diagram chasing shows that τ satisfies all the required properties.

(1) \Leftrightarrow (3): Given a monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$, one defines a functor $\mathbf{Set}_{\mathbb{T}} \xrightarrow{L} \mathbf{Set}^{\mathbb{P}}$ by $L(X \xrightarrow{f} Y) = (TX, m_X \cdot \tau_{TX}) \xrightarrow{m_Y \cdot T_f} (TY, m_Y \cdot \tau_{TY})$ (cf. Remark 21). Notice that $G^{\mathbb{P}}L(X \xrightarrow{f} Y) = TX \xrightarrow{m_Y \cdot T_f} TY = G_{\mathbb{T}}(X \xrightarrow{f} Y)$, namely, the required triangle commutes.

Conversely, given a lifting $\operatorname{\mathbf{Set}}_{\mathbb{T}} \xrightarrow{L} \operatorname{\mathbf{Set}}^{\mathbb{P}}$, define a monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$ by $PX \xrightarrow{\tau_X} TX = PX \xrightarrow{Pe_X} PTX \xrightarrow{a} TX$, where *a* is the structure map of the Eilenberg-Moore algebra LX = (TX, a) (recall that $G^{\mathbb{P}}LX = G_{\mathbb{T}}X = TX$). Diagram chasing shows that τ satisfies all the required properties.

(3) \Leftrightarrow (4): Given a map $X \xrightarrow{f} Y$, one obtains a $\mathbf{Set}_{\mathbb{T}}$ -morphism $X \xrightarrow{e_Y \cdot f} Y$. Since $G^{\mathbb{P}}L(X \xrightarrow{e_Y \cdot f} Y) = G_{\mathbb{T}}(X \xrightarrow{e_Y \cdot f} Y) = TX \xrightarrow{m_Y \cdot T(e_Y \cdot f)} TY$ and $m_Y \cdot T(e_Y \cdot f) = m_Y \cdot Te_Y \cdot Tf = (m_Y \cdot Te_Y) \cdot Tf = 1_{TY} \cdot Tf = Tf$, it follows that the functor L sends a $\mathbf{Set}_{\mathbb{T}}$ -morphism $X \xrightarrow{e_Y \cdot f} Y$ to a \bigvee -preserving map $TX \xrightarrow{Tf} TY$. Moreover, since $TX \xrightarrow{1_{TX}} X$ is a $\mathbf{Set}_{\mathbb{T}}$ -morphism, $G^{\mathbb{P}}L(TX \xrightarrow{1_{TX}} X) = G_{\mathbb{T}}(TX \xrightarrow{1_{TX}} X) = TTX \xrightarrow{m_X \cdot T1_{TX}} TX$ and $m_X \cdot T1_{TX} = m_X \cdot 1_{TTX} = m_X$ together imply that the functor L sends a $\mathbf{Set}_{\mathbb{T}}$ -morphism $TX \xrightarrow{1_{TX}} X$ to a \bigvee -preserving map $TTX \xrightarrow{m_X} TX$. As a consequence, it follows that the conditions of item (4) are just pointwise restatements of the condition of item (3).

Remark 23.

(1) Given a morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$ of monads on **Set**, Proposition 22(3) equips the underlying set TX of a free \mathbb{T} -algebra with a partial order given by

$$\mathfrak{x} \leqslant \mathfrak{y} \text{ iff } m_X \cdot \tau_{TX}(\{\mathfrak{x},\mathfrak{y}\}) = \mathfrak{y}$$

$$(2.1)$$

for every $\mathfrak{x}, \mathfrak{y} \in TX$ (cf. Remark 19).

(2) For every set X, the map $PX \xrightarrow{\tau_X} TX$ is monotone, since given $A, B \in PX$ with $A \subseteq B$, the diagram

commutes (τ is a morphism of monads). As a consequence, $m_X \cdot \tau_{TX}(\{\tau_X(A), \tau_X(B)\}) = m_X \cdot \tau_{TX} \cdot P\tau_X(\{A, B\}) = \tau_X \cdot n_X(\{A, B\}) = \tau_X(A \bigcup B) = \tau_X(B)$, namely, $\tau_X(A) \leq \tau_X(B)$.

- (3) The hom-sets $\mathbf{Set}_{\mathbb{T}}(X,Y)$ become partially ordered by the respective pointwise order, i.e., for every **X**-morphisms $X \xrightarrow[q]{q} TY$, $f \leq g$ iff $f(x) \leq g(x)$ for every $x \in X$.
- (4) Given $f, g \in \mathbf{Set}_{\mathbb{T}}(X, Y)$ and $h \in \mathbf{Set}_{\mathbb{T}}(Y, Z)$, if $f \leq g$, then $h \circ f = m_Z \cdot Th \cdot f \leq m_Z \cdot Th \cdot g = h \circ g$, since Th, m_Z are monotone by Proposition 22 (4), i.e., composition on the right is monotone. Composition on the left $\operatorname{\mathbf{Set}}_{\mathbb{T}}(Y,Z) \xrightarrow{(-)^{\mathbb{T}} \cdot f} \operatorname{\mathbf{Set}}_{\mathbb{T}}(X,Z)$ for an **X**-morphism $X \xrightarrow{f} TY$ may though fail to be monotone. (5) To make $\operatorname{\mathbf{Set}}_{\mathbb{T}}$ a partially ordered category (recall Lecture 4), it is enough $(-)^{\mathbb{T}}$ to be order-preserving,

i.e., $f \leq g$ implies $f^{\mathbb{T}} \leq g^{\mathbb{T}}$ for every **X**-morphisms $X \xrightarrow{f} TY$. If this condition is satisfied, then the functors $\operatorname{\mathbf{Rel}} \xrightarrow{E} \operatorname{\mathbf{Set}}_{\mathbb{T}}$ and $\operatorname{\mathbf{Set}}_{\mathbb{T}} \xrightarrow{L} \operatorname{\mathbf{Sup}}$ of Proposition 22 become functors between partially ordered categories, i.e., preserve the partial order on hom-sets (notice that $Lf = f^{\mathbb{T}}$ for every $\operatorname{\mathbf{Set}}_{\mathbb{T}}$ -morphism

 $X \xrightarrow{f} Y$; and $Ef = \tau_Y \cdot f$ for every $\mathbf{Set}_{\mathbb{P}}$ -morphism $X \xrightarrow{f} Y$, where the map τ_Y is monotone).

Definition 24. A power-enriched monad is a pair (\mathbb{T}, τ) , where \mathbb{T} is a monad on **Set** and $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$ is a monad morphism such that $f \leq g$ implies $f^{\mathbb{T}} \leq g^{\mathbb{T}}$ for every **Set**-morphisms $X \xrightarrow{f} TY$. A morphism $(\mathbb{S}, \sigma) \xrightarrow{\alpha} (\mathbb{T}, \tau)$ of power-enriched monads is a monad morphism $\mathbb{S} \xrightarrow{\alpha} \mathbb{T}$ such that the next triangle commutes

Example 25.

- (1) There exist exactly two trivial monads on **Set** (admitting only trivial T-algebras), i.e., the monad sending every set to a singleton $1 = \{*\}$, and the monad sending the empty set to itself and all the other sets to 1 (recall Lecture 5). The first one, denoted 1, is clearly power-enriched, where the unique monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{1}$ is given by the unique maps $PX \xrightarrow{!_X} \mathbb{1}$ for every set X. The second one, say \mathbb{T} , is clearly not power-enriched, since there exists no map $P \varnothing = 1 \rightarrow \varnothing = T \varnothing$.
- (2) The powerset monad \mathbb{P} with the identity monad morphism $\mathbb{P} \xrightarrow{1_{\mathbb{P}}} \mathbb{P}$ is power-enriched. The partial order on the sets PX induced by condition (2.1) is the usual inclusion of subsets, since \bigvee is the union of sets.
- (3) The filter monad \mathbb{F} is power-enriched, since the principal filter natural transformation τ defined on a set X by $PX \xrightarrow{\tau_X} FX$, $\tau_X(A) = \dot{A} = \{B \subseteq X \mid A \subseteq B\}$ (principal filter) provides a monad morphism $\mathbb{P} \xrightarrow{\tau}$ F. The partial order on FX induced by condition (2.1) is the refinement partial order of Definition 3, and the operation \bigvee on FX is given by the intersection of filters. For the latter statement, observe that given a subset $\{\mathfrak{x}_s \mid s \in S\} \subseteq FX, \ \bigvee \{\mathfrak{x}_s \mid s \in S\} = m_X \cdot \tau_{FX}(\{\mathfrak{x}_s \mid s \in S\})$. Therefore, given $A \subseteq X, A \in \bigvee \{\mathfrak{x}_s \mid s \in S\} \text{ iff } A \in m_X \cdot \tau_{FX}(\{\mathfrak{x}_s \mid s \in S\}) \text{ iff } \{\mathfrak{z} \in FX \mid A \in \mathfrak{z}\} \in \tau_{FX}(\{\mathfrak{x}_s \mid s \in S\}) \text{ iff } \{\mathfrak{z} \in FX \mid A \in \mathfrak{z}\} \in \{B \subseteq FX \mid \mathfrak{x}_s \mid s \in S\} \subseteq B\} \text{ iff } \{\mathfrak{x}_s \mid s \in S\} \subseteq \{\mathfrak{z} \in FX \mid A \in \mathfrak{z}\} \text{ iff } A \in \mathfrak{x}_s \text{ for every } \{\mathfrak{x}_s \mid s \in S\} \subseteq \{\mathfrak{z} \in FX \mid A \in \mathfrak{z}\} \text{ iff } A \in \mathfrak{x}_s \text{ for every } \{\mathfrak{x}_s \mid s \in S\} \subseteq \{\mathfrak{z} \in FX \mid A \in \mathfrak{z}\} \text{ iff } A \in \mathfrak{x}_s \text{ for every } \{\mathfrak{x}_s \mid s \in S\} \in \{\mathfrak{z} \in S\} \in \mathfrak{z}\}$ $s \in S$ iff $A \in \bigcap_{s \in S} \mathfrak{x}_s$. The former statement follows then from the latter, since given $\mathfrak{x}, \mathfrak{y} \in FX$, $\mathfrak{x} \leq \mathfrak{y}$ iff $m_X \cdot \tau_{FX}({\mathfrak{x}}, \mathfrak{y}) = \mathfrak{y}$ iff $\mathfrak{x} \cap \mathfrak{y} = \mathfrak{y}$ iff $\mathfrak{x} \supseteq \mathfrak{y}$.
- (4) The ultrafilter monad β is not power-enriched, since $\beta \emptyset = \emptyset$ (recall from Lecture 1 that an ultrafilter cannot contain the empty set), which is not a \bigvee -semilattice (observe that every \bigvee -semilattice contains a distinguished element $\bigvee \emptyset$, i.e., the underlying set of every \bigvee -semilattice is non-empty).

3. Kleisli monoids

Definition 26. Given a monad $\mathbb{T} = (T, m, e)$ on a category X such that the respective Kleisli category $X_{\mathbb{T}}$ is a partially ordered category, \mathbb{T} -Mon is the category of \mathbb{T} -monoids (or Kleisli monoids), whose objects are pairs (X, ν) , where X is an **X**-object, and $X \xrightarrow{\nu} X$ is an **X**_T-morphism, which is *reflexive* $(e_X \leq \nu)$ and *transitive* $(\nu \circ \nu \leq \nu)$, where \circ is the Kleisli composition in the category **X**_T; and whose morphisms $(X, \nu) \xrightarrow{f} (Y, \mu)$ are **X**-morphisms $X \xrightarrow{f} Y$ such that $Tf \cdot \nu \leq \mu \cdot f$, i.e.,

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y \\ \downarrow & \downarrow & \downarrow \\ TX & \stackrel{f}{\longrightarrow} TY \end{array}$$

or equivalently $f_{\natural} \circ \nu \leqslant \mu \circ f_{\natural}$, where $f_{\natural} = e_Y \cdot f$, i.e.,

$$\begin{array}{c|c} X & \xrightarrow{f_{\natural}} Y \\ \nu & \downarrow & \leqslant & \downarrow \mu \\ \chi & \xrightarrow{f_{\natural}} Y. \end{array}$$

If $\mathbb{T} = (T, \tau)$ is a power-enriched monad, then the partial order on the hom-sets of $\mathbf{X}_{\mathbb{T}}$ depends on τ . **Remark 27.** Given a \mathbb{T} -monoid $(X, \nu), \nu = \nu \circ e_X \leq \nu \circ \nu \leq \nu$ implies $\nu \circ \nu = \nu$.

Remark 28. Given a T-monoid (X, ν) , the functor $\mathbf{X}_{\mathbb{T}} \xrightarrow{G_{\mathbb{T}} = (-)^{\mathbb{T}}} \mathbf{X}$ has the following property (preservation of idempotency): $\nu^{\mathbb{T}} = (\nu \circ \nu)^{\mathbb{T}} = (m_X \cdot T\nu \cdot \nu)^{\mathbb{T}} = m_X \cdot T(m_X \cdot T\nu \cdot \nu) = m_X \cdot Tm_X \cdot TT\nu \cdot T\nu \stackrel{(\dagger)}{=} m_X \cdot T\nu \cdot m_X \cdot T\nu = \nu^{\mathbb{T}} \cdot \nu^{\mathbb{T}}$, where (\dagger) relies on commutativity of the following diagram

$$\begin{array}{ccc} TTX & \xrightarrow{TT\nu} TTTX & \xrightarrow{Tm_X} TTX \\ m_X & & & \downarrow m_{TX} & & \downarrow m_X \\ TX & \xrightarrow{T\nu} TTX & \xrightarrow{m_X} TX. \end{array}$$

Example 29.

- (1) If \mathbb{T} is the trivial monad $\mathbb{1}$ on the category **Set** of Example 25 (1), then the respective Kleisli monoids are pairs $(X, X \xrightarrow{!_X} \{*\})$, and the respective morphisms are maps $X \xrightarrow{f} Y$, i.e., $\mathbb{1}$ -**Mon** \cong **Set**.
- (2) If \mathbb{T} is the powerset monad \mathbb{P} with the identity monad morphism $\mathbb{P} \xrightarrow{1_{\mathbb{P}}} \mathbb{P}$, then \mathbb{P} -Mon is the category **Prost** of preordered sets and monotone maps that can be seen as follows. First, given a set X, the partial order on PX is the inclusion of sets. Second, a map $X \xrightarrow{\nu} PX$ induces a relation \leq on X by $x \leq y$ iff $x \in \nu(y)$. If ν is reflexive $(e_X \leq \nu)$, then given $x \in X$, $e_X(x) = \{x\} \subseteq \nu(x)$ implies $x \in \nu(x)$ implies $x \leq x$, i.e., \leq is a reflexive relation. If ν is transitive $(\nu \circ \nu \leq \nu)$, then given $z \in X$, $\nu \circ \nu(z) \leq \nu(z)$ implies $m_X \cdot P\nu \cdot \nu(z) \subseteq \nu(z)$ implies $\bigcup P\nu(\nu(z)) \subseteq \nu(z)$ implies $\bigcup_{y \in \nu(z)} \nu(y) \subseteq \nu(z)$. Thus, given $x, y, z \in X$ such that $x \leq y$ and $y \leq z$, $x \in \nu(y)$ and $y \in \nu(z)$ implies $x \in \bigcup_{y \in \nu(z)} \nu(y) \subseteq \nu(z)$ implies $x \in \nu(z)$ implies $x \leq z$, i.e., \leq is a transitive relation. Third, given a \mathbb{P} -monoid morphism $(X, \nu) \xrightarrow{f} (Y, \mu), x_1 \leq x_2$

implies $x \leq z$, i.e., \leq is a transitive relation. Third, given a P-monoid morphism $(X, \nu) \xrightarrow{\rightarrow} (Y, \mu), x_1 \leq x_2$ implies $x_1 \in \nu(x_2)$ implies $f(x_1) \in f(\nu(x_2)) = Pf \cdot \nu(x_2) \subseteq \mu \cdot f(x_2) = \mu(f(x_2))$ implies $f(x_1) \leq f(x_2)$, i.e., the map $X \xrightarrow{f} Y$ is monotone. Fourth, the above-mentioned arguments are reversible.

(3) The filter monad \mathbb{F} with the principal filter natural transformation $\mathbb{P} \xrightarrow{\tau} \mathbb{F}$ provides the category \mathbb{F} -Mon, which is isomorphic to the category **Top** of topological spaces and continuous maps by Theorem 17.

Proposition 30. A morphism of power-enriched monads $(\mathbb{S} = (S, n, d), \sigma) \xrightarrow{\alpha} (\mathbb{T} = (T, m, e), \tau)$ provides a concrete functor \mathbb{S} -Mon $\xrightarrow{F_{\alpha}} \mathbb{T}$ -Mon defined by $F_{\alpha}((X, \nu) \xrightarrow{f} (Y, \mu)) = (X, \alpha_X \cdot \nu) \xrightarrow{f} (Y, \alpha_Y \cdot \mu).$

PROOF. First, observe that there exists a functor $\mathbf{Set}_{\mathbb{S}} \xrightarrow{\mathbf{Set}_{\alpha}} \mathbf{Set}_{\mathbb{T}}$ defined by $\mathbf{Set}_{\alpha}(X \xrightarrow{f} Y) = X \xrightarrow{\alpha_Y \cdot f} Y$. To show that \mathbf{Set}_{α} preserves the Kleisli composition, notice that given $\mathbf{Set}_{\mathbb{S}}$ -morphisms $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$, $\mathbf{Set}_{\alpha}(g \circ f) = \alpha_Z \cdot (g \circ f) = \alpha_Z \cdot n_Z \cdot Sg \cdot f \xrightarrow{(\dagger)} m_Z \cdot T\alpha_Z \cdot Tg \cdot \alpha_Y \cdot f = m_Z \cdot T(\alpha_Z \cdot g) \cdot \alpha_Y \cdot f = (\alpha_Z \cdot g) \circ (\alpha_Y \cdot f) =$ $\mathbf{Set}_{\alpha}g \circ \mathbf{Set}_{\alpha}f$, where (\dagger) relies on commutativity of the following diagram

$$\begin{array}{c} SY \xrightarrow{Sg} SSZ \xrightarrow{n_Z} SZ \xrightarrow{n_Z} SZ \\ \downarrow^{\alpha_Y} \downarrow & \downarrow^{\alpha_{SZ}} \downarrow^{\alpha_Z} \downarrow^{\alpha_Z} \\ TY \xrightarrow{Tg} TSZ \xrightarrow{T\alpha_Z} TTZ \xrightarrow{m_Z} TZ. \end{array}$$

Second, notice that given a set X, the map $SX \xrightarrow{\alpha_X} TX$ is \bigvee -preserving, which follows from the next commutative diagram

and the definition of \bigvee on the sets SX and TX. In particular, it follows that the map α_X is monotone.

Third, observe that the functor F_{α} is correct on objects, since given an S-monoid (X, ν) , $d_X \leq \nu$ implies $e_X = \alpha_X \cdot d_X \leq \alpha_X \cdot \nu$ (since α is a monad morphism, whose components are monotone), and $\nu \circ \nu \leq \nu$ implies $\nu \circ \nu = \nu$ (by Remark 27) implies $(\alpha_X \cdot \nu) \circ (\alpha_X \cdot \nu) = \alpha_X \cdot (\nu \circ \nu) = \alpha_X \cdot \nu$ (since **Set**_{α} is a functor).

Fourth, notice that the functor F_{α} is correct on morphisms, since given an S-monoid morphism $(X, \nu) \xrightarrow{f} (Y, \mu)$, $Sf \cdot \nu \leq \mu \cdot f$ implies $\alpha_Y \cdot Sf \cdot \nu \leq \alpha_Y \cdot \mu \cdot f$ (since α_Y is monotone) implies $Tf \cdot \alpha_X \cdot \nu \leq \alpha_Y \cdot \mu \cdot f$ by commutativity of the following diagram

$$\begin{array}{c} SX \xrightarrow{\alpha_X} TX \\ Sf \downarrow & \downarrow^{T_J} \\ SY \xrightarrow{\alpha_Y} TY. \end{array}$$

Fifth, the functor F_{α} is concrete, since it does not change the underlying sets of Kleisli monoids.

4. The Kleisli extension

Definition 31. Define a functor $\operatorname{Rel}^{op} \xrightarrow{(-)^{\flat}} \operatorname{Set}_{\mathbb{P}}$ by $(X \xrightarrow{r} Y)^{\flat} = Y \xrightarrow{r^{\flat}} X$, where the map $Y \xrightarrow{r^{\flat}} PX$ is given by $x \in r^{\flat}(y)$ iff x r y (representing the opposite relation $Y \xrightarrow{r^{\circ}} X$; cf. Example 5).

Definition 32. The functors of Definition 31 and Proposition 22 provide a functor $\operatorname{Rel}^{op} \xrightarrow{(-)^{\tau}} \operatorname{Set}^{\mathbb{P}} = \operatorname{Rel}^{op} \xrightarrow{(-)^{\flat}} \operatorname{Set}_{\mathbb{P}} \xrightarrow{E} \operatorname{Set}_{\mathbb{T}} \xrightarrow{L} \operatorname{Set}^{\mathbb{P}}, (X \xrightarrow{r} Y)^{\tau} = TY \xrightarrow{r^{\tau}} TX$, where $r^{\tau} = m_X \cdot T(\tau_X \cdot r^{\flat}) = (\tau_X \cdot r^{\flat})^{\mathbb{T}}$. **Definition 33.** Given a power-enriched monad (\mathbb{T}, τ) , the *Kleisli extension* \check{T} of T to Rel (w.r.t. τ) is provided by the functions $\operatorname{Rel}(X,Y) \xrightarrow{\check{T}=\check{T}_{X,Y}} \operatorname{Rel}(TX,TY)$ (for every pair of sets X and Y) such that for every relation $X \xrightarrow{r} Y$, and every $\mathfrak{x} \in TX$, $\mathfrak{y} \in TY$, it follows that $\mathfrak{x}(\check{T}r)\mathfrak{y}$ iff $\mathfrak{x} \leq r^{\tau}(\mathfrak{y})$, which is equivalently described by a map $TY \xrightarrow{(\check{T}r)^{\flat} = \downarrow_{TX} \cdot r^{\tau}} PTX$, where $\downarrow_{TX}(\mathfrak{x}) = \{\mathfrak{z} \in TX \mid \mathfrak{z} \leq \mathfrak{x}\}$ (*lower set*).

Example 34.

- (1) Given the terminal power-enriched monad (1, !), the Kleisli extension of a relation $X \xrightarrow{r} Y$ is the relation $\{*\} \xrightarrow{\tilde{1}r} \{*\}$ such that $*(\tilde{1}r)*$.
- (2) Given the powerset monad $(\mathbb{P} = (P, m, e), 1_{\mathbb{P}})$, the respective Kleisli extension can be described as follows. Given a relation $X \xrightarrow{r} Y$, for every $A \in PX$, $B \in PY$, it follows that $A \leq r^{1_{\mathbb{P}}}(B)$ iff $A \subseteq r^{1_{\mathbb{P}}}(B)$ iff $A \subseteq m_X \cdot P(1_X \cdot r^{\flat})(B)$ iff $A \subseteq \bigcup Pr^{\flat}(B) = \bigcup_{y \in B} r^{\flat}(y)$ iff for every $x \in A$, there exists $y \in B$ such that $x \in r^{\flat}(y)$ iff for every $x \in A$, there exists $y \in B$ such that x r y iff $A \subseteq r^{\circ}(B)$, where $r^{\circ}(B) = \{x \in X \mid \text{there exists } y \in B \text{ such that } x r y\}$. As a consequence, $A \check{P}r B$ iff $A \subseteq r^{\circ}(B)$, i.e., one obtains the lax extension of the functor P from Lecture 1.
- (3) Given the filter monad $(\mathbb{F} = (F, m, e), \tau)$, where $\mathbb{P} \xrightarrow{\tau} \mathbb{F}$ is the principal filter natural transformation, the respective Kleisli extension can be described as follows. Given a relation $X \xrightarrow{r} Y$, a subset $A \subseteq X$, and a filter $\mathfrak{y} \in FY$, it follows by Definition 1 that $A \in m_X \cdot F(\tau_X \cdot r^{\flat})(\mathfrak{y})$ iff $A^{\mathbb{F}} = \{\mathfrak{x} \in FX \mid A \in \mathfrak{x}\} \in F(\tau_X \cdot r^{\flat})(\mathfrak{y})$ iff $(\tau_X \cdot r^{\flat})^{-1}(A^{\mathbb{F}}) \in \mathfrak{y}$ iff $\{y \in Y \mid \tau_X \cdot r^{\flat}(y) \in A^{\mathbb{F}}\} \in \mathfrak{y}$ iff $\{y \in Y \mid A \in \tau_X \cdot r^{\flat}(y)\} \in \mathfrak{y}$ iff $\{y \in Y \mid r^{\flat}(y) \subseteq A\} \in \mathfrak{y}$ (since $\tau_X(B) = \{C \subseteq X \mid B \subseteq C\}$) iff there exists $B \in \mathfrak{y}$ such that $r^{\circ}(B) \subseteq A$. As a consequence, $r^{\tau}(\mathfrak{y}) = m_X \cdot F(\tau_X \cdot r^{\flat})(\mathfrak{y}) = \uparrow_{PX} \{r^{\circ}(B) \mid B \in \mathfrak{y}\}$, where given a partially ordered set (Z, \leqslant) and a subset $S \subseteq Z, \uparrow_Z(S) = \{z \in Z \mid \text{there exists } s \in S \text{ such that } s \leqslant z\}$. Thus, given $\mathfrak{x} \in FX$ and $\mathfrak{y} \in FY$, it follows that $\mathfrak{x}(\check{Fr})\mathfrak{y}$ iff $\mathfrak{x} \notin r^{\tau}(\mathfrak{y})$ iff $\mathfrak{x} \supseteq r^{\tau}(\mathfrak{y})$ iff $\mathfrak{x} \supseteq r^{\circ}[\mathfrak{y}]$, where $r^{\circ}[\mathfrak{y}] = \{r^{\circ}(B) \mid B \in \mathfrak{y}\}$. Observe that the Kleisli extension of the filter monad coincides with the respective lax extension \check{F} .

Definition 35. A lax functor $\mathbf{C} \xrightarrow{F} \mathbf{D}$ of preordered categories (recall Lecture 4) is a pair of maps $\mathcal{O}_{\mathbf{C}} \xrightarrow{F_{\mathcal{O}}} \mathcal{O}_{\mathbf{D}}$, $\mathcal{M}_{\mathbf{C}} \xrightarrow{F_{\mathcal{M}}} \mathcal{M}_{\mathbf{D}}$ (both denoted F), which satisfy the following axioms:

- (1) $F(X \xrightarrow{f} Y) = FX \xrightarrow{Ff} FY$ for every **C**-morphism $X \xrightarrow{f} Y$;
- (2) $Ff \leq Fg$ for every **C**-morphisms $X \xrightarrow{f} Y$ such that $f \leq g$;
- (3) $Fg \cdot Ff \leq F(g \cdot f)$ for every **C**-morphisms $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$;
- (4) $1_{FC} \leq F 1_C$ for every **C**-object *C*.

Remark 36.

- (1) Recall from Lecture 4 that there is a functor $(V-\mathbf{Cat})^{op} \xrightarrow{(-)^*} V-\mathbf{Mod}$ defined by $((X, a) \xrightarrow{f} (Y, b))^* = (Y, b) \xrightarrow{f^*} (X, a)$, where $f^* = f^\circ \cdot b$. In case of V = 2, this functor induces a functor $\mathbf{Prost} \xrightarrow{(-)^*} \mathbf{Mod}^{op}$ defined by $((X, \leqslant_X) \xrightarrow{f} (Y, \leqslant_Y))^* = (Y, \leqslant_Y) \xrightarrow{f^* = f^\circ \cdot (\leqslant_Y)} (X, \leqslant_X)$.
- (2) There exists a lax functor $\operatorname{Mod} \xrightarrow{|-|_L} \operatorname{Rel}$ defined by $|(X, \leq_X) \xrightarrow{r} (Y, \leq_Y)|_L = X \xrightarrow{r} Y$, which preserves the composition, but given a preordered set $(X, \leq_X), 1_{|(X, \leq_X)|_L} = 1_X \leq (\leq_X) = |1_{(X, \leq_X)}|_L$.

Remark 37. In the definition of lax extension of a **Set**-functor T to the category V-**Rel** (recall Lecture 1), the following statements are equivalent:

- (1) $Tf \leq \hat{T}f$ and $(Tf)^{\circ} \leq \hat{T}(f^{\circ})$ for every map $X \xrightarrow{f} Y$;
- (2) $(Tf)^{\circ} \leq \hat{T}(f^{\circ})$ and $\hat{T}(f^{\circ} \cdot r) = (Tf)^{\circ} \cdot \hat{T}r$ for every map $X \xrightarrow{f} Y$ and every relation $Z \xrightarrow{r} Y$.

Proposition 38. Given a power-enriched monad (\mathbb{T}, τ) , the Kleisli extension \check{T} of T to **Rel** provides a lax extension $\check{\mathbb{T}} = (\check{T}, m, e)$ of $\mathbb{T} = (T, m, e)$ to **Rel**.

PROOF. To show that $\operatorname{\mathbf{Rel}} \xrightarrow{\tilde{T}} \operatorname{\mathbf{Rel}}$ is a lax functor, one can express it as a composition of lax functors as follows. Observe first that given a relation $X \xrightarrow{r} Y$, $TX \xrightarrow{\tilde{T}_r} TY$ can be expressed as $TX \xrightarrow{(r^{\tau})^*} TY$ with the help of the functor $(-)^*$ of Remark 36 (1). Thus, the Kleisli extension \tilde{T}^{op} can be written as the composition of functors $\operatorname{\mathbf{Rel}}^{op} \xrightarrow{(-)^{\tau}} \operatorname{\mathbf{Sup}} \xrightarrow{|-|} \operatorname{\mathbf{Prost}} \xrightarrow{(-)^*} \operatorname{\mathbf{Mod}}^{op}$, where |-| is the forgetful functor. Notice second that the Kleisli extension \tilde{T}^{op} can be expressed as the following composition

$$\operatorname{\mathbf{Rel}}^{op} \xrightarrow{(-)^{\flat}} \operatorname{\mathbf{Set}}_{\mathbb{P}} \xrightarrow{E} \operatorname{\mathbf{Set}}_{\mathbb{T}} \xrightarrow{L} \operatorname{\mathbf{Sup}} \xrightarrow{|-|} \operatorname{\mathbf{Prost}} \xrightarrow{(-)^{\ast}} \operatorname{\mathbf{Mod}}^{op} \xrightarrow{|-|_{L}} \operatorname{\mathbf{Rel}}^{op}$$

where all the arrows (except the last one) are functors, and the last arrow is the lax functor of Remark 36 (2).

To show that $(Tf)^{\circ} \leq \check{T}(f^{\circ})$ for every map $X \xrightarrow{f} Y$, one can consider the following commutative (except for the down right part, where one should notice that given a monotone map $(X, \leq_X) \xrightarrow{f} (Y, \leq_Y)$, it follows that $f^{\circ} \leq f^{\circ} \cdot (\leq_Y)$, since $1_X \leq (\leq_Y)$ diagram:

The second condition of Definition 37 (2), i.e., $\check{T}(f^{\circ} \cdot r) = (Tf)^{\circ} \cdot \check{T}r$ for every map $X \xrightarrow{f} Y$ and every relation $Z \xrightarrow{r} Y$ can be shown as follows. Given $\mathfrak{x} \in TX$ and $\mathfrak{z} \in TZ$, $\mathfrak{x}\check{T}(f^{\circ} \cdot r)\mathfrak{z}$ iff $\mathfrak{x} \leq (f^{\circ} \cdot r)^{\tau}(\mathfrak{z})$ iff $\mathfrak{x} \leq r^{\tau} \cdot (f^{\circ})^{\tau}(\mathfrak{z})$ (since $\operatorname{\mathbf{Rel}}^{op} \xrightarrow{(-)^{\tau}} \operatorname{\mathbf{Prost}}$ is a functor) iff $\mathfrak{x} \leq r^{\tau} \cdot Tf(\mathfrak{z})$ (by diagram (4.1)) iff $\mathfrak{x} ((Tf)^{\circ} \cdot \check{T}r)\mathfrak{z}$. Altogether, it follows that \check{T} is a lax extension of the **Set**-functor T to the category **Rel**. To show that

for every relation $X \xrightarrow{r} Y$, notice first that the following commutative diagram

implies $\tau_X = m_X \cdot \tau_{TX} \cdot Pe_X = \bigvee_{TX} \cdot Pe_X$ (recall condition (2.1)). Observe second that given $x \in X$ and $y \in Y$ such that x r y, it follows that (recall Definition 31) $e_X(x) \leq \bigvee_{x' \in r^\flat(y)} e_X(x') = \bigvee_{TX} Pe_X(r^\flat(y)) = \tau_X \cdot r^\flat(y) \stackrel{(\dagger)}{=} m_X \cdot T\tau_X \cdot Tr^\flat \cdot e_Y(y) = m_X \cdot T(\tau_X \cdot r^\flat) \cdot e_Y(y) = (\tau_X \cdot r^\flat)^{\mathbb{T}} \cdot e_Y(y) \stackrel{\text{Definition 32}}{=} r^\tau \cdot e_Y(y)$, where

(†) relies on commutativity of the following diagram:

As a consequence, one obtains that $e_X(x)(\check{T}r)e_Y(y)$.

Lastly, to show that

$$\begin{array}{ccc} TTX & \xrightarrow{m_X} TX \\ \tilde{T}\tilde{T}r & \downarrow & \leqslant & \downarrow \tilde{T}r \\ TTY & \xrightarrow{m_Y} TY \end{array}$$

for every relation $X \xrightarrow{r} Y$, observe first that $m_X \cdot \tau_{TX} \cdot \downarrow_{TX} = \bigvee_{TX} \cdot \downarrow_{TX} = 1_{TX}$, and notice second that $(r^{\tau})^{\mathbb{T}} = (r^{\tau} \cdot 1_{TY})^{\mathbb{T}} \xrightarrow{\text{Definition 32}} ((\tau_X \cdot r^{\flat})^{\mathbb{T}} \cdot 1_{TY})^{\mathbb{T}} \xrightarrow{\text{Definition 10}} (\tau_X \cdot r^{\flat})^{\mathbb{T}} \cdot 1_{TY}^{\mathbb{T}} \xrightarrow{\text{Definition 32}} r^{\tau} \cdot m_Y$. Therefore, given $\mathfrak{X} \in TTX$ and $\mathfrak{Y} \in TTY$ such that $\mathfrak{X} (\check{T}\check{T}r) \mathfrak{Y}$, it follows that $\mathfrak{X} \leq (\check{T}r)^{\tau}(\mathfrak{Y})$, which implies $m_X(\mathfrak{X}) \xrightarrow{\text{Proposition 22(4)}} m_X((\check{T}r)^{\tau}(\mathfrak{Y})) = m_X \cdot (\check{T}r)^{\tau}(\mathfrak{Y}) \xrightarrow{\text{Definition 32}} m_X \cdot (\tau_{TX} \cdot (\check{T}r)^{\flat})^{\mathbb{T}}(\mathfrak{Y}) \xrightarrow{\text{Definition 33}} 1_{TX}^{\mathbb{T}} \cdot (\tau_{TX} \cdot \downarrow_{TX} \cdot r^{\tau})^{\mathbb{T}}(\mathfrak{Y}) \xrightarrow{\text{Definition 10}} (1_{TX}^{\mathbb{T}} \cdot \tau_{TX} \cdot \downarrow_{TX} \cdot r^{\tau})^{\mathbb{T}}(\mathfrak{Y}) = (m_X \cdot \tau_{TX} \cdot \downarrow_{TX} \cdot r^{\tau})^{\mathbb{T}}(\mathfrak{Y}) = (r^{\tau})^{\mathbb{T}}(\mathfrak{Y})$. As a consequence, one arrives at $\mathfrak{X} (\check{T}r)\mathfrak{Y}$, which finishes the proof. \Box

Proposition 39. Given a monad $\mathbb{T} = (T, m, e)$ on Set, there exists a functor Set $\xrightarrow{\tilde{T}} (\mathbb{T}, 2)$ -Cat defined by $\tilde{T}(X \xrightarrow{f} Y) = (TX, \tilde{m}_X) \xrightarrow{T_f} (TY, \tilde{m}_Y)$, where $\tilde{m}_X = \hat{T}1_X \cdot m_X$. The functor makes the following triangle

commute (|-| is the forgetful functor). The preorder on TX induced by \tilde{m}_X is given by $\mathfrak{x} \leq \mathfrak{y}$ iff $\mathfrak{x} \hat{T} 1_X \mathfrak{y}$.

Remark 40. Since the Kleisli extension provides a power-enriched monad (\mathbb{T}, τ) with a lax extension, there exists an induced preorder on TX associated with \check{T} as in Proposition 39, i.e., $\mathfrak{x} \leq_{\mathrm{ind}} \mathfrak{y}$ iff $\mathfrak{x}\check{T}1_X\mathfrak{y}$. There also exists a partial order on TX provided by the monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$ as in Remark 23 (1), i.e., $\mathfrak{x} \leq_{\tau} \mathfrak{y}$

iff $m_X \cdot \tau_{TX}(\{\mathfrak{x}, \mathfrak{y}\}) = \mathfrak{y}$. Following Definition 33, $\mathfrak{x}(\check{T}r)\mathfrak{y}$ iff $\mathfrak{x} \leq_{\tau} r^{\tau}(\mathfrak{y})$ for every relation $X \xrightarrow{r} X$. Thus, if $r = 1_X$, then $\mathfrak{x}(\check{T}1_X)\mathfrak{y}$ iff $\mathfrak{x} \leq_{\tau} (1_X)^{\tau}(\mathfrak{y})$ iff $\mathfrak{x} \leq_{\tau} \mathfrak{y}$, since $(-)^{\tau}$ is a functor. Thus, the induced preorder associated with the lax extension \check{T} coincides with the partial order provided by the monad morphism τ . Also notice that \check{T} fails to preserve identity relations unless $\mathbb{T} = \mathfrak{1}$ is the terminal power-enriched monad.

Theorem 41. Given a power-enriched monad (\mathbb{T}, τ) equipped with its Kleisli extension \check{T} , there exists a concrete isomorphism $(\mathbb{T}, 2)$ -Cat $\cong \mathbb{T}$ -Mon.

PROOF. The proof relies on a lax algebraic generalization of the classical correspondence between convergence and neighborhoods in topological spaces. In particular, given a topological space X, a filter \mathfrak{r} on X converges to some point $y \in X$ precisely when \mathfrak{r} is finer than the neighborhood filter of y. This correspondence can be formalized via maps $\mathbf{Set}(X, FX) \xrightarrow{\text{conv}} \mathbf{Rel}(FX, X)$ and $\mathbf{Rel}(FX, X) \xrightarrow{\text{nbhd}} \mathbf{Set}(X, FX)$, replacing

the filter monad \mathbb{F} with a power-enriched monad (\mathbb{T}, τ) and identifying $\operatorname{Rel}(TX, X)$ with $\operatorname{Set}(X, PTX)$, isomorphic as ordered sets. One thus defines $\operatorname{conv}(\nu) = \downarrow_{TX} \cdot \nu$ and $\operatorname{nbhd}(r) = \bigvee_{TX} \cdot r^{\flat}$ for every map $X \xrightarrow{\nu} TX$

and every relation $TX \xrightarrow{r} X$. In pointwise notation, these maps can be written as $\mathfrak{r} \operatorname{conv}(\nu) x$ iff $\mathfrak{r} \leq \nu(x)$ and $(\operatorname{nbhd}(r))(x) = \bigvee \{\mathfrak{y} \in TX \mid \mathfrak{y} \in r^{\flat}(x)\} = \bigvee \{\mathfrak{y} \in TX \mid \mathfrak{y} r x\}$ for every $\mathfrak{x} \in TX$ and every $x \in X$.

Lemma 42. Given a \bigvee -semilattice A, there exists the adjunction $\bigvee \dashv \downarrow : A \to PA$, where PA is the powerset of A ordered by set inclusion, and $\downarrow (a) = \downarrow a = \{b \in A \mid b \leq a\}$, such that $\bigvee \cdot \downarrow = 1_A$.

PROOF. Given $a \in A$ and $S \subseteq A$, it follows that $\bigvee S \leq a$ iff $S \subseteq \downarrow a$, and, moreover, $\bigvee \downarrow a = a$.

Proposition 43. When $\mathbf{Set}(X, TX)$ and $\mathbf{Rel}(TX, X)$ are equipped with pointwise partial order, there exists an adjunction (recall Lecture 4) $\mathbf{nbhd} \dashv \mathbf{conv} : \mathbf{Set}(X, TX) \rightarrow \mathbf{Rel}(TX, X)$ for every set X. Additionally, the fixpoints of $\mathbf{conv} \cdot \mathbf{nbhd}$ are precisely the unitary relations (recall Lecture 6), and $\mathbf{nbhd} \cdot \mathbf{conv} = \mathbf{1}_{\mathbf{Set}(X,TX)}$, so that the fixpoints of $\mathbf{nbhd} \cdot \mathbf{conv}$ are the maps $X \xrightarrow{\nu} TX$.

PROOF. Notice that given a map $X \xrightarrow{\nu} TX$ and a relation $TX \xrightarrow{r} X$, it follows that $nbhd(r) \leq \nu$ iff $(nbhd(r))(x) \leq \nu(x)$ for every $x \in X$ iff $\bigvee \{ \mathfrak{x} \in TX | \mathfrak{x}rx \} \leq \nu(x)$ for every $x \in X$ iff (Lemma 42) $\{ \mathfrak{x} \in TX | \mathfrak{x}rx \} \subseteq \downarrow \nu(x)$ for every $x \in X$ iff $\mathfrak{x}rx$ implies $\mathfrak{x} \leq \nu(x)$ for every $\mathfrak{x} \in TX$ and every $x \in X$ iff $\mathfrak{x}rx$ implies $\mathfrak{x} \operatorname{conv}(\nu)x$ for every $\mathfrak{x} \in TX$ and every $x \in X$ iff $r \subseteq \operatorname{conv}(\nu)$ iff $r \leq \operatorname{conv}(\nu)$. As a consequence, $nbhd(r) \leq nbhd(r)$ implies $r \leq \operatorname{conv} \cdot nbhd(r)$, and $\operatorname{conv}(\nu) \leq \operatorname{conv}(\nu)$ implies $nbhd \cdot \operatorname{conv}(\nu) \leq \nu$, i.e., $1_{\operatorname{Rel}(TX,X)} \leq \operatorname{conv} \cdot nbhd$ and $nbhd \cdot \operatorname{conv} \leq 1_{\operatorname{Set}(X,TX)}$. Moreover, both nbhd and conv are monotone maps.

Given a map $X \xrightarrow{\nu} TX$, for every $x \in X$, it follows that $(\mathtt{nbhd} \cdot \mathtt{conv}(\nu))(x) = (\mathtt{nbhd}(\mathtt{conv}(\nu)))(x) = \bigvee \{\mathfrak{x} \in TX \mid \mathfrak{x} \in \mathsf{conv}(\nu) x\} = \bigvee \{\mathfrak{x} \in TX \mid \mathfrak{x} \leq \nu(x)\} = \bigvee \downarrow \nu(x) \xrightarrow{\mathrm{Lemma } 42} \nu(x), \text{ namely, } \mathtt{nbhd} \cdot \mathtt{conv}(\nu) = \nu$. As a result, one obtains that $\mathtt{nbhd} \cdot \mathtt{conv} = 1_{\mathbf{Set}(X,TX)}$, i.e., the fixpoints of $\mathtt{nbhd} \cdot \mathtt{conv}$ are the maps $X \xrightarrow{\nu} TX$. The statement on unitary relations relies on a sequence of technical calculations. \Box

The statement on unitary relations refers on a sequence of technical calculations.

Moreover, the above adjoint maps nbhd and conv are monoid homomorphisms between $\mathbf{Set}_{\mathbb{T}}(X, X)$ and $(\mathbb{T}, 2)$ -**URel**^{op}(X, X) (the set of unitary relations $TX \xrightarrow{r} X$), namely, they satisfy

$$\begin{split} \texttt{nbhd}(s \circ r) &= \texttt{nbhd}(r) \circ \texttt{nbhd}(s) & \texttt{conv}(\mu) \circ \texttt{conv}(\nu) &= \texttt{conv}(\nu \circ \mu) \\ \texttt{nbhd}(1_X^\natural) &= e_X & \texttt{conv}(e_X) &= 1_X^\natural \end{split}$$

for all unitary relations $TX \xrightarrow[s]{r} X$, and all maps $X \xrightarrow[\nu]{\nu} TX$, where $s \circ r = s \cdot \check{T}r \cdot m_X^\circ$ (*Kleisli convolution*)

and $1_X^{\natural} = e_X^{\circ} \circ e_X^{\circ}$ (properties of power-enriched monads imply that the Kleisli convolution is associative).

Lemma 44. For a set X, a relation $TX \xrightarrow{a} X$ provides a $(\mathbb{T}, 2)$ -category (X, a) iff $a \circ a = a$ and $1_X^{\natural} \leq a$.

PROOF. $\Rightarrow: \text{ First, notice that given a } (\mathbb{T}, 2)\text{-category } (X, a), \text{ it follows that } a \cdot \hat{T}a \leqslant a \cdot m_X \text{ and } 1_X \leqslant a \cdot e_X \text{ (recall Lecture 1), which implies } a \circ a = a \cdot \hat{T}a \cdot m_X^\circ \leqslant a \cdot m_X \cdot m_X^\circ \leqslant a \text{ and } e_X^\circ \leqslant a \cdot e_X \cdot e_X^\circ \leqslant a \cdot e_X^\circ \cdot e_X^\circ \leqslant a \cdot e_X^\circ \cdot e_X^\circ \leqslant a \cdot e_X^\circ \otimes e_X^\circ \otimes a \cdot e_X^\circ \otimes e_X^\circ \otimes a \cdot e_X^\circ \otimes e_X^\circ \otimes a \cdot e_X^\circ \otimes a \circ e_$

 $\Leftarrow: \text{Observe that, first, } a \circ a = a \text{ implies } a \cdot \hat{T} a \cdot m_X^\circ = a \circ a \leqslant a \text{ implies } a \cdot \hat{T} a \overset{TTX \leqslant m_X}{\leqslant} \overset{TTX \leqslant m_X}{\leqslant} a \cdot \hat{T} a \cdot m_X^\circ \cdot m_X \leqslant a \cdot m_X \text{ (i.e., } a \cdot \hat{T} a \leqslant a \cdot m_X \text{), and, second, } 1_X^{\natural} \leqslant a \text{ implies } e_X^\circ = e_X^\circ \cdot 1_{TX} = e_X^\circ \cdot T 1_X \overset{\hat{T} \text{ is a lax extension of } T}{\leqslant} e_X^\circ \cdot \hat{T} 1_X = e_X^\circ \cdot \hat{T} e_X^\circ \cdot m_X^\circ = e_X^\circ \circ e_X^\circ \leqslant a \text{ implies } 1_X \leqslant e_X^\circ \cdot e_X \leqslant a \cdot e_X \text{ (i.e., } 1_X \leqslant a \cdot e_X \text{).}$

Given a $(\mathbb{T}, 2)$ -algebra (X, r), it follows that $(X, \mathsf{nbhd}(r))$ is a \mathbb{T} -monoid, and conversely if (X, ν) is a \mathbb{T} -monoid, then $(X, \mathsf{conv}(\nu))$ is a $(\mathbb{T}, 2)$ -algebra. Moreover, this one-to-one correspondence is functorial. \Box

Corollary 45. The category **Top** is concretely isomorphic to the category $(\mathbb{F}, 2)$ -**Cat**, whose objects are pairs (X, a), where $FX \xrightarrow{a} X$ is a relation, which represents convergence and which satisfies (denoting "a" and " $\hat{F}a$ " by " \longrightarrow ") $\mathfrak{X} \longrightarrow \mathfrak{y}$ and $\mathfrak{y} \longrightarrow z$ imply $\mathfrak{X} \longrightarrow z$, and $\dot{x} \longrightarrow x$ for every $\mathfrak{X} \in FFX$, $\mathfrak{y} \in FX$, $x, z \in X$ (notice that $\mathfrak{X} \longrightarrow \mathfrak{y}$ iff $\mathfrak{X} \supseteq a^{\circ}[\mathfrak{y}]$ as in Example 34 (3)); and whose morphisms $(X, a) \xrightarrow{f} (Y, b)$ are convergence-preserving maps $X \xrightarrow{f} Y$, namely, $\mathfrak{x} \longrightarrow z$ implies $Ff(\mathfrak{x}) \longrightarrow f(z)$ for every $\mathfrak{x} \in FX$, $z \in X$.

PROOF. The statement follows from Theorems 17, 41.

Corollary 46. Given the up-set monad \mathbb{U} (for a set X, $UX = \{\mathfrak{a} \subseteq PX \mid \uparrow_{PX} \mathfrak{a} = \mathfrak{a}\}$) equipped with the Kleisli extension associated with the principal filter natural transformation, there is a concrete isomorphism $\mathbf{Cls} \cong (\mathbb{U}, 2)$ - \mathbf{Cat} , where \mathbf{Cls} is the category of closure spaces and continuous maps (cf. Lecture 1).

References

- J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories: the Joy of Cats, Repr. Theory Appl. Categ. 17 (2006), 1–507.
- [2] D. Hofmann and G. J. Seal, A cottage industry of lax extensions, Categ. Gen. Algebr. Struct. Appl. 3 (2015), no. 1, 113–151.
 [3] D. Hofmann, G. J. Seal, and W. Tholen (eds.), Monoidal Topology: A Categorical Approach to Order, Metric and Topology,
- [5] D. Hohnam, G. J. Seal, and W. Filoren (eds.), Monotaut Topology. A Categorical Approach to Order, Metric and Topology, Cambridge University Press, 2014.
 [4] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag, 1998.
- [5] J. MacDonald and M. Sobral, Aspects of Monads, Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory (M. C. Pedicchio and W. Tholen, eds.), Cambridge University Press, 2004, pp. 213–268.
- [6] G. J. Seal, A Kleisli-based approach to lax algebras, Appl. Categ. Structures 17 (2009), no. 1, 75–89.
- [7] G. J. Seal, Tensors, monads and actions, Theory Appl. Categ. 28 (2013), 403–434.