
Elements of monoidal topology
Lecture 7: Kleisli monoids

Sergejs Solovjovs

Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences Prague (CZU)
Kamýcká 129, 16500 Prague - Suchdol, Czech Republic

Abstract

This lecture considers an alternative representation of the category (T, 2)-Cat as the category T-Mon of
monoids in the hom-set of a Kleisli category that avoids explicit use of relations or lax extensions. As a
motivating example serves an isomorphism F-Mon ∼= Top, where F is the filter monad on the category Set.

1. A representation of topological spaces through neighborhood filters

1.1. The filter monad on the category Set
Definition 1. The filter monad F = (F,m, e) on the category Set of sets and maps is given by

(1) a functor Set F−→ Set, where FX = {x | x is a filter on X} for every set X, and FX
Ff−−→ FY is defined

by Ff(x) = {B ⊆ Y | f−1(B) ∈ x} for every map X f−→ Y ;
(2) a natural transformation 1Set

e−→ F , where X eX−−→ FX is defined by eX(x) = ẋ = {A ⊆ X |x ∈ A}
(principal filter);

(3) a natural transformation FF
m−→ F , where FFX

mX−−→ FX is defined by mX(X) = ΣX (filtered sum or
Kowalsky sum), where A ∈ ΣX iff {x ∈ FX |A ∈ x} ∈ X.

Remark 2. There exists the contravariant powerset functor Setop P•

−−→ Set defined by P •(X
f−→ Y) =

PY
P•

−−→ PX, where PX and PY are the powersets of the sets X and Y , respectively, and P •(B) =
f−1(B) = {x ∈ X | f(x) ∈ B} for every subset B ⊆ Y . The functor P • is self-adjoint, namely, there exists
an adjoint situation (P •)

op ⊣ P • : Setop −→ Set. This adjoint situation provides the double-powerset monad
P2 = (P •(P •)

op
,m, e) on the category Set. Both the filter monad F and the ultrafilter monad β (recall

Lecture 1) are restrictions of the above double-powerset monad P2.

Definition 3. Given a set X, the set FX of filters on X can be partially ordered by the refinement partial
order, i.e., for every x, y ∈ FX, x ⩽ y iff x ⊇ y (namely, given a subset A ⊆ X, if A ∈ y, then A ∈ x). A filter
x is finer than y (or y is coarser than x) provided that x ⊇ y.

1.2. The Kleisli category of a monad
Definition 4. Given a monad T = (T,m, e) on a category X, the Kleisli category XT associated to T is
defined as follows. The objects of XT are those of X. Given two XT-objects X, Y , the hom-set XT(X,Y) is

the hom-set X(X,TY) (the elements of which will be denoted X
f−⇀ Y). Given two XT-morphisms X

f−⇀ Y ,
Y

g−⇀ Z, their Kleisli composition in XT is defined via the composition in X as g ◦f = mZ ·Tg ·f , i.e., as the
X-morphism X

f−→ TY
Tg−−→TTZ

mZ−−→ TZ. The identity on an XT-object X is the X-morphism X
eX−−→TX.

Email address: solovjovs@tf.czu.cz (Sergejs Solovjovs)
URL: http://home.czu.cz/solovjovs (Sergejs Solovjovs)

Preprint submitted to the Czech University of Life Sciences Prague (CZU) February 23, 2022

Example 5. Given the powerset monad P = (P,m, e) (recall Lecture 1), a SetP-morphism X
f−⇀ Y is a

map X
f−→ PY , which can be considered as a relation X �r // Y defined by x r y iff y ∈ f(x). Given two

SetP-morphisms X
f−⇀ Y and Y

g−⇀ Z, the Kleisli composition g ◦ f is the composition s · r of the relations
corresponding to g and f , respectively. Indeed, if t is the relation corresponding to g◦f , then for every x ∈ X
and every z ∈ Z, x t z iff z ∈ g ◦ f(x) iff z ∈ mZ · Pg · f(x) = mZ(Pg · f(x)) =

⋃
Pg · f(x) =

⋃
Pg(f(x)) =⋃

y∈f(x) g(y) iff there exists y ∈ f(x) such that z ∈ g(y) iff there exists y ∈ Y such that y ∈ f(x) and
z ∈ g(y) iff there exists y ∈ Y such that x r y and y s z iff x (s · r) z. It follows that SetP = Rel.

Remark 6. Given a Kleisli category XT, there exists a functor XT
GT−−→ X, GT(X

f−⇀ Y) = TX
mY ·Tf−−−−−→

TY = TX
Tf−−→ TTY

mY−−→ TY . The functor GT has a left adjoint X
FT−−→ XT, FT(X

f−→ Y) = X
eY ·f−−−⇀ Y =

X
f−→ Y

eY−−→ TY . The unit 1X
ηT−→ GTFT of this adjunction is e, and the co-unit FTGT

εT−→ 1XT is given by

X-morphisms TX 1TX−−−→ TX. The monad associated to this adjunction gives back the original monad T.

Remark 7. Given sets X and Y , the hom-set SetF(X,Y) is partially ordered by the pointwise refinement
partial order of Definition 3, namely, given f, g ∈ SetF(X,Y), f ⩽ g iff f(x) ⩽ g(x) for every x ∈ X (recall

that both f and g are mapsX
f
//

g
// FY). Therefore, the partially ordered set SetF(X,Y) can be considered

as a category, the objects of which are the elements of SetF(X,Y), and, for every two objects f and g, there
exists precisely one morphism f −→ g provided that f ⩽ g.

Lemma 8. A partially ordered set S, considered as a category as in Remark 7, is a strict monoidal category
(recall Lecture 4) precisely when it has a monoid structure whose multiplication S×S−→S is monotone.

Proposition 9. (SetF(X,X), ◦, eX) is a strict monoidal category.

Proof. In view of Lemma 8, it will be enough to show that the Kleisli composition preserves the refinement
partial order. Thus, given g1, g2, f1, f2 ∈ SetF(X,X) such that g1 ⩽ g2 and f1 ⩽ f2, one has to show that
g1 ◦ f1 ⩽ g2 ◦ f2, which is equivalent to mX · Fg1 · f1(x) ⩽ mX · Fg2 · f2(x) for every x ∈ X, which, in its
turn, is equivalent to mX · Fg1 · f1(x) ⊇ mX · Fg2 · f2(x) for every x ∈ X.
Take an arbitrary element x ∈ X. Given A ∈ mX · Fg2 · f2(x), by Definition 1 (3), it follows that

{x ∈ FX |A ∈ x} ∈ Fg2 ·f2(x) = Fg2(f2(x)), which implies by Definition 1 (1) that g−1
2 ({x ∈ FX |A ∈ x}) ∈

f2(x). Since f1 ⩽ f2, it follows that f1(x) ⊇ f2(x), and then g−1
2 ({x ∈ FX |A ∈ x}) ∈ f1(x). Further, if

y ∈ g−1
2 ({x ∈ FX |A ∈ x}), then g2(y) ∈ {x ∈ FX |A ∈ x}, namely, A ∈ g2(y) ⊆ g1(y) since g1 ⩽ g2. Thus,

A ∈ g1(y) implies g1(y) ∈ {x ∈ FX |A ∈ x}, which gives y ∈ g−1
1 ({x ∈ FX |A ∈ x}). As a consequence, one

obtains that g−1
2 ({x ∈ FX |A ∈ x}) ⊆ g−1

1 ({x ∈ FX |A ∈ x}). Since g−1
2 ({x ∈ FX |A ∈ x}) ∈ f1(x) and

f1(x) is a filter, it follows that g−1
1 ({x ∈ FX |A ∈ x}) ∈ f1(x), which implies {x ∈ FX |A ∈ x} ∈ Fg1 · f1(x),

which finally gives A ∈ mX · Fg1 · f1(x). Therefore, mX · Fg1 · f1(x) ⊇ mX · Fg2 · f2(x) as desired. □

1.3. Kleisli triples
Definition 10. A Kleisli triple on a category X consists of the following data:

• a function OX
T−→ OX, which sends X to TX;

• an extension operation (−)T, which sends an X-morphism X
f−→ TY to an X-morphism TX

fT

−→ TY ;

• an X-morphism X
eX−−→ TX for every X-object X;

such that
(gT · f)T = gT · fT, eT

X = 1TX , fT · eX = f

for every X-object X and every X-morphisms X
f−→ TY , Y

g−→ TZ. If one defines g ◦ f = gT · f , then the
above conditions are equivalent to this “Kleisli composition” being associative, and eX being its identity,

2

namely, given X-morphisms X
f−→ TY , Y

g−→ TZ, and Z
h−→ TW , h ◦ (g ◦ f) = h ◦ (gT · f) = hT · gT · f =

(hT · g)T · f = (hT · g) ◦ f = (h ◦ g) ◦ f , f ◦ eX = fT · eX = f , and eY ◦ f = eT
Y · f = 1TY · f = f .

Definition 11. A Kleisli triple morphism (S, (−)S, d)
α−→ (T, (−)T, e) is given by a family of X-morphisms

SX
αX−−→ TX for every X-object X such that

αY · fS = (αY · f)T · αX , αX · dX = eX

for every X-morphism X
f−→ SY . Observe that a Kleisli triple morphism is a family of X-morphisms

preserving the Kleisli composition and its identity, i.e., given X-morphisms X
f−→ SY and Y

g−→ SZ,
αZ · (g ◦S f) = αZ · gS · f = (αZ · g)T · αY · f = (αZ · g) ◦T (αY · f).

Remark 12. A Kleisli triple (T, (−)T, e) on a category X provides a monad T = (T,m, e) on X by setting

Tf = (eY · f)T for every X-morphism X
f−→ Y , and mX = (1TX)T for every X-object X. A Kleisli triple

morphism (S, (−)S, d)
α−→ (T, (−)T, e) provides then a morphism of the corresponding monads S

α−→ T.

Remark 13. Given a monad T = (T,m, e) on a category X, one gets a Kleisli triple (T, (−)T, e) by setting

fT = mY · Tf for every X-morphism X
f−→ TY . A monad morphism S

α−→ T provides then a morphism
(S, (−)S, d)

α−→ (T, (−)T, e) of the corresponding Kleisli triples.

Remark 14. The above passages from a Kleisli triple to a monad and from a monad to a Kleisli triple
are inverse to each other, namely, both definitions describe the same structure on a category X (and the
respective two definitions of Kleisli composition then correspond).

1.4. Monoids in monoidal categories

Definition 15. Let C be a monoidal category (see Lecture 4). A monoid M in C is a C-object together
with two C-morphisms M ⊗M

m−→ M and E e−→ M such that the following two diagrams commute:

M ⊗ (M ⊗M)
αM,M,M

//

1M⊗m

��

(M ⊗M)⊗M
m⊗1M // M ⊗M

m

��

M ⊗M
m

// M

E ⊗M
e⊗1M //

λM
))

M ⊗M

m

��

M ⊗ E
1M⊗e

oo

ρM

uu
M.

A homomorphism of monoids (M,m, e)
f−→ (N,n, d) is a C-morphism M

f−→ N such that the following
two diagrams commute:

M ⊗M

m

��

f⊗f
// N ⊗N

n

��

M
f

// N

E
e

~~

d

M
f

// N.

MonC stands for the category of monoids in C and their homomorphisms.

Example 16.

3

(1) The category Set is monoidal w.r.t. cartesian product of sets. The category MonSet is exactly the
category Mon of monoids and their homomorphisms in the sense of universal algebra.

(2) The category Sup of
∨
-semilattices and

∨
-preserving maps is monoidal w.r.t. the usual tensor product.

The category Quant of quantales and their homomorphisms is exactly the category MonSup.
(3) Given a partially ordered set (S,⩽), considered as a monoidal category (S,⩽,⊗, k) as in Lemma 8, a
monoid in S is an element s ∈ S such that s⊗ s ⩽ s and k ⩽ s. Observe that if s is a monoid in S, then
k ⩽ s implies s = s⊗ k ⩽ s⊗ s. Since s⊗ s ⩽ s, it follows that s⊗ s = s.

1.5. Topological spaces via neighborhood filters

Theorem 17. The category Top of topological spaces and continuous maps is (concretely) isomorphic to
the category F-Mon, the objects of which are pairs (X, ν) such that X ν−→ FX is a monoid in SetF(X,X)

(i.e., ν◦ν ⩽ ν and eX ⩽ ν), and whose morphisms (X, ν)
f−→ (Y, µ) are maps X

f−→ Y such that f♮◦ν ⩽ µ◦f♮,
where f♮ = eY · f is the image of the map f under the left adjoint functor Set −→ SetF of Remark 6.

Proof. Given a topological space (X, τ), where τ is a topology on a set X, define a map X
ν−→ FX by

ν(x) = {A ⊆ X | there exists U ∈ τ such that x ∈ U ⊆ A} (neighborhood filter of x). It is easy to see that
ν(x) is contained in the principal filter eX(x) = ẋ for every x ∈ X. Therefore, eX ⩽ ν in the pointwise
refinement partial order. To show that ν ◦ ν ⩽ ν, we will need the following simple lemma.

Lemma 18. For x ∈ X and A ⊆ X, A ∈ ν(x) iff there exists B ∈ ν(x) such that A ∈ ν(y) for every y ∈ B.

Proof.
⇒: If A ∈ ν(x), then there exists U ∈ τ such that x ∈ U ⊆ A. Put B = U and notice that, first,

B ∈ ν(x) and, second, A ∈ ν(y) for every y ∈ B since U ∈ τ .
⇐: Given y ∈ B, it follows that A ∈ ν(y), i.e., there exists Vy ∈ τ such that y ∈ Vy ⊆ A. Thus,

B ⊆
⋃

y∈B Vy ⊆ A, which implies A ∈ ν(x), since B ∈ ν(x) and ν(x) is a filter. □

Given an element x ∈ X and a subset A ⊆ X, define a set AF = {x ∈ FX |A ∈ x} (the set of filters
containing A). Then A ∈ ν ◦ ν(x) iff A ∈ mX ·Fν · ν(x) iff AF ∈ Fν · ν(x) = Fν(ν(x)) iff ν−1(AF) ∈ ν(x) iff
there exists B ∈ ν(x) such that B ⊆ ν−1(AF) iff there exists B ∈ ν(x) such that ν(y) ∈ AF for every y ∈ B
iff there exists B ∈ ν(x) such that A ∈ ν(y) for every y ∈ B iff (Lemma 18) A ∈ ν(x). As a consequence,
one obtains ν ◦ ν(x) = ν(x). By Example 16 (3) and the above two properties (ν ◦ ν ⩽ ν and eX ⩽ ν), a
topological space (X, τ) provides a monoid ν in the monoidal category SetF(X,X).

Consider a continuous map (X, τ)
f−→ (Y, σ), and let ν and µ be the monoids corresponding to the

spaces (X, τ) and (Y, µ), respectively. First, we show that Ff · ν ⩽ µ · f . Indeed, given x ∈ X and
B ⊆ Y , B ∈ µ · f(x) = µ(f(x)) iff there exists V ∈ σ such that f(x) ∈ V ⊆ B, which implies (since f is
continuous) f−1(V) ∈ τ and x ∈ f−1(V) ⊆ f−1(B), which results in f−1(B) ∈ ν(x), which is equivalent to
B ∈ Ff(ν(x)) = Ff · ν(x). As a consequence, one gets Ff · ν(x) ⊇ µ · f(x) or Ff · ν(x) ⩽ µ · f(x). Second,
since F = (F,m, e) is a monad on Set, the following two diagrams commute:

FY
FeY //

1FY
##

FFY

mY

��

FY

Y
eY //

µ

��

FY

Fµ

��

FY
eFY //

1FY
##

FFY

mY

��

FY.

(1.1)

Thus, Ff · ν = 1FY · Ff · ν = mY · FeY · Ff · ν = mY · F (eY · f) · ν = mY · Ff♮ · ν = f♮ ◦ ν by the left-hand
side of diagram (1.1), and µ · f = 1FY · µ · f = mY · Fµ · eY · f = mY · Fµ · f♮ = µ ◦ f♮ by the right-hand
side of diagram (1.1). As a result, one obtains f♮ ◦ ν ⩽ µ ◦ f♮.

4

The above constructions define a functor Top G−→ F-Mon by G((X, τ)
f−→ (Y, σ))) = (X, ν)

f−→ (Y, µ). To
obtain a functor in the opposite direction, one proceeds as follows.
Given an F-Mon-object (X, ν), define τ = {U ⊆ X | for every x ∈ X, if x ∈ U, then U ∈ ν(x)}. To

show that τ is a topology on the set X, one notices the following.

• Since the set X is an element of every filter on X, X ∈ τ . Since the empty set ∅ clearly satisfies the
condition on the elements of τ , ∅ ∈ τ .

• Given U, V ∈ τ , if x ∈ U
⋂
V , then U ∈ ν(x) and V ∈ ν(x), which implies U

⋂
V ∈ ν(x), since ν(x) is

a filter. As a consequence, one obtains that U
⋂
V ∈ ν(x).

• Given Ui ∈ τ for every i ∈ I, if x ∈
⋃

i∈I Ui, then x ∈ Ui0 for some i0 ∈ I, which implies Ui0 ∈ ν(x).
Since Ui0 ⊆

⋃
i∈I Ui and ν(x) is a filter,

⋃
i∈I Ui ∈ ν(x). As a result, one obtains that

⋃
i∈I Ui ∈ ν(x).

Given an F-Mon-morphism (X, ν)
f−→ (Y, µ), to show that the map X

f−→ Y provides a continuous map

(X, τ)
f−→ (Y, σ) (where τ and σ are obtained from ν and µ, respectively), notice that given V ∈ σ, for every

x ∈ f−1(V), f−1(V) ∈ ν(x) iff V ∈ Ff(ν(x)) = Ff · ν(x). Since V ∈ σ and f(x) ∈ V , it follows that
V ∈ µ(f(x)) = µ · f(x). Since f is an F-Mon-morphism, Ff · ν(x) ⊇ µ · f(x), and, therefore, V ∈ Ff · ν(x).
As a consequence, one obtains that f−1(V) ∈ τ , i.e., the map X

f−→ Y is continuous.

The above constructions define a functor F-Mon H−→ Top by H((X, ν)
f−→ (Y, µ))) = (X, τ)

f−→ (Y, σ).
Straightforward calculations show that the functors G and H are inverse to each other and, moreover,
commute with the respective forgetful functors of the constructs (Top, | − |) and (F-Mon, | − |). □

2. Power-enriched monads

Remark 19. Given the powerset monad P on the category Set, the Eilenberg-Moore category SetP of P
(see Lecture 1) is isomorphic to the category Sup. Indeed, given a P-algebra (X, a), one defines an operation

PX
∨
−→ X by

∨
S = a(S) providing thus a

∨
-semilattice (X,

∨
). A P-homomorphism (X, a)

f−→ (Y, b) results

then in a
∨
-preserving map (X,

∨
)

f−→ (Y,
∨
). Conversely, given a

∨
-semilattice (X,

∨
), the map PX

a−→ X

defined by a(S) =
∨
S provides a P-algebra (X, a). A

∨
-preserving map (X,

∨
)

f−→ (Y,
∨
) results then in a

P-homomorphism (X, a)
f−→ (Y, b). Altogether, one obtains a concrete isomorphism SetP ∼= Sup.

Remark 20. Given the Eilenberg-Moore category XT of a monad T on a category X, there exists a functor

XT GT

−−→ X, GT((X, a)
f−→ (Y, b)) = X

f−→ Y . The functor GT has a left adjoint X FT

−−→ XT, FT(X
f−→

Y) = (TX,mX)
Tf−−→ (TY,mY), where (TX,mX) is the so-called free T-algebra on a given set X. The

unit 1X
ηT

−→ GTFT of this adjunction is e, and the co-unit FTGT εT

−→ 1XT is given by T-homomorphisms

(TX,mX)
εT
(X,a)=a

−−−−−−→ (X, a). The monad associated to this adjunction gives back the original monad T.

Remark 21. Given a monad T = (T,m, e) on a category X, there exists a full and faithful comparison

functor XT
K−→ XT defined by K(X

f−⇀ Y) = (TX,mX)
mY ·Tf−−−−−→ (TY,mY).

Proposition 22. Given a monad T = (T,m, e) on Set, there exists a one-to-one correspondence between

(1) monad morphisms P
τ−→ T (recall Lecture 2), where P = (P, n, d) is the powerset monad on Set;

(2) extensions E of the functor Set FT−−→ SetT along the functor Set
(−)◦−−−→ Rel (recall Lecture 1):

Rel E // SetT

Set

(−)◦

OO

FT

;;

5

(3) liftings L of the functor SetT
GT−−→ Set along the forgetful functor Sup |−|−−→ Set:

SetT

GT ##

L // Sup

|−|
��

Set

(4)
∨
-semilattice structures on the set TX such that the maps TX

Tf−−→ TY and TTX
mX−−→ TX are

∨
-

preserving for every map X
f−→ Y and every set X.

Proof. In view of Example 5 and Remarks 19, 20, one can identify the category Rel with SetP, the

category Sup with SetP, and the forgetful functor Sup
|−|−−→ Set with SetP GP

−−→ Set.
(1) ⇔ (2): Given a monad morphism P

τ−→ T, one defines a functor SetP
E−→ SetT by E(X

f−⇀ Y) =

X
τY ·f−−−⇀ Y . Given now a map X

g−→ Y , E(−)◦(X
g−→ Y) = X

τY ·s−−−⇀ Y , where X
s−→ PY is defined

by s(x) = {f(x)}, and FT(X
g−→ Y) = X

eY ·f−−−⇀ Y . For every x ∈ X, τY · s(x) = τY ({f(x)}) = τY ·
dY (f(x))

τY ·dY =eY= eY (f(x)) = eY · f(x). Thus, τY · s = eY · f , i.e., the required triangle commutes.
Conversely, given an extension SetP

E−→ SetT, define a monad morphism P
τ−→ T by PX

τX−−→ TX =

PX
E1PX−−−−→ TX. Diagram chasing shows that τ satisfies all the required properties.

(1) ⇔ (3): Given a monad morphism P
τ−→ T, one defines a functor SetT

L−→ SetP by L(X
f−⇀ Y) =

(TX,mX · τTX)
mY ·Tf−−−−−→ (TY,mY · τTY) (cf. Remark 21). Notice that GPL(X

f−⇀ Y) = TX
mY ·Tf−−−−−→ TY =

GT(X
f−⇀ Y), namely, the required triangle commutes.

Conversely, given a lifting SetT
L−→ SetP, define a monad morphism P

τ−→ T by PX
τX−−→ TX = PX

PeX−−−→
PTX

a−→ TX, where a is the structure map of the Eilenberg-Moore algebra LX = (TX, a) (recall that
GPLX = GTX = TX). Diagram chasing shows that τ satisfies all the required properties.

(3) ⇔ (4): Given a map X
f−→ Y , one obtains a SetT-morphism X

eY ·f−−−⇀ Y . Since GPL(X
eY ·f−−−⇀ Y) =

GT(X
eY ·f−−−⇀ Y) = TX

mY ·T (eY ·f)−−−−−−−−→ TY andmY ·T (eY ·f) = mY ·TeY ·Tf = (mY ·TeY)·Tf = 1TY ·Tf = Tf ,

it follows that the functor L sends a SetT-morphism X
eY ·f−−−⇀ Y to a

∨
-preserving map TX

Tf−−→ TY .

Moreover, since TX 1TX−−−⇀ X is a SetT-morphism, GPL(TX
1TX−−−⇀ X) = GT(TX

1TX−−−⇀ X) = TTX
mX ·T1TX−−−−−−−→

TX and mX · T1TX = mX · 1TTX = mX together imply that the functor L sends a SetT-morphism
TX

1TX−−−⇀ X to a
∨
-preserving map TTX

mX−−→ TX. As a consequence, it follows that the conditions of
item (4) are just pointwise restatements of the condition of item (3). □

Remark 23.

(1) Given a morphism P
τ−→ T of monads on Set, Proposition 22 (3) equips the underlying set TX of a free

T-algebra with a partial order given by

x ⩽ y iff mX · τTX({x, y}) = y (2.1)

for every x, y ∈ TX (cf. Remark 19).
(2) For every set X, the map PX

τX−−→ TX is monotone, since given A,B ∈ PX with A ⊆ B, the diagram

PPX

nX

��

PτX // PTX
τTX // TTX

mX

��

PX
τX

// TX

commutes (τ is a morphism of monads). As a consequence, mX · τTX({τX(A), τX(B)}) = mX · τTX ·
PτX({A,B}) = τX · nX({A,B}) = τX(A

⋃
B) = τX(B), namely, τX(A) ⩽ τX(B).

6

(3) The hom-sets SetT(X,Y) become partially ordered by the respective pointwise order, i.e., for every

X-morphisms X
f
//

g
// TY , f ⩽ g iff f(x) ⩽ g(x) for every x ∈ X.

(4) Given f, g ∈ SetT(X,Y) and h ∈ SetT(Y,Z), if f ⩽ g, then h◦f = mZ ·Th ·f ⩽ mZ ·Th ·g = h◦g, since
Th, mZ are monotone by Proposition 22 (4), i.e., composition on the right is monotone. Composition on

the left SetT(Y,Z)
(−)T·f−−−−→ SetT(X,Z) for an X-morphism X

f−→ TY may though fail to be monotone.
(5) To make SetT a partially ordered category (recall Lecture 4), it is enough (−)T to be order-preserving,

i.e., f ⩽ g implies fT ⩽ gT for every X-morphisms X
f
//

g
// TY. If this condition is satisfied, then the

functors Rel E−→ SetT and SetT
L−→ Sup of Proposition 22 become functors between partially ordered

categories, i.e., preserve the partial order on hom-sets (notice that Lf = fT for every SetT-morphism

X
f−⇀ Y ; and Ef = τY · f for every SetP-morphism X

f−⇀ Y , where the map τY is monotone).

Definition 24. A power-enriched monad is a pair (T, τ), where T is a monad on Set and P
τ−→ T is

a monad morphism such that f ⩽ g implies fT ⩽ gT for every Set-morphismsX
f
//

g
// TY. A morphism

(S, σ)
α−→ (T, τ) of power-enriched monads is a monad morphism S

α−→ T such that the next triangle commutes

P
σ

��

τ

��

S
α

// T.

Example 25.

(1) There exist exactly two trivial monads on Set (admitting only trivial T-algebras), i.e., the monad sending
every set to a singleton 1 = {∗}, and the monad sending the empty set to itself and all the other sets
to 1 (recall Lecture 5). The first one, denoted 1, is clearly power-enriched, where the unique monad

morphism P
τ−→ 1 is given by the unique maps PX

!X−→ 1 for every set X. The second one, say T, is
clearly not power-enriched, since there exists no map P∅ = 1 −→ ∅ = T∅.

(2) The powerset monad P with the identity monad morphism P
1P−→ P is power-enriched. The partial order

on the sets PX induced by condition (2.1) is the usual inclusion of subsets, since
∨
is the union of sets.

(3) The filter monad F is power-enriched, since the principal filter natural transformation τ defined on a set
X by PX

τX−−→ FX, τX(A) = Ȧ = {B ⊆ X |A ⊆ B} (principal filter) provides a monad morphism P
τ−→

F. The partial order on FX induced by condition (2.1) is the refinement partial order of Definition 3,
and the operation

∨
on FX is given by the intersection of filters. For the latter statement, observe

that given a subset {xs | s ∈ S} ⊆ FX,
∨
{xs | s ∈ S} = mX · τFX({xs | s ∈ S}). Therefore, given

A ⊆ X, A ∈
∨
{xs | s ∈ S} iff A ∈ mX · τFX({xs | s ∈ S}) iff {z ∈ FX |A ∈ z} ∈ τFX({xs | s ∈ S}) iff

{z ∈ FX |A ∈ z} ∈ {B ⊆ FX | {xs | s ∈ S} ⊆ B} iff {xs | s ∈ S} ⊆ {z ∈ FX |A ∈ z} iff A ∈ xs for every
s ∈ S iff A ∈

⋂
s∈S xs. The former statement follows then from the latter, since given x, y ∈ FX, x ⩽ y

iff mX · τFX({x, y}) = y iff x
⋂
y = y iff x ⊇ y.

(4) The ultrafilter monad β is not power-enriched, since β∅ = ∅ (recall from Lecture 1 that an ultrafilter
cannot contain the empty set), which is not a

∨
-semilattice (observe that every

∨
-semilattice contains

a distinguished element
∨
∅, i.e., the underlying set of every

∨
-semilattice is non-empty).

3. Kleisli monoids

Definition 26. Given a monad T = (T,m, e) on a category X such that the respective Kleisli category XT

is a partially ordered category, T-Mon is the category of T-monoids (or Kleisli monoids), whose objects

7

are pairs (X, ν), where X is an X-object, and X
ν−⇀ X is an XT-morphism, which is reflexive (eX ⩽ ν)

and transitive (ν ◦ ν ⩽ ν), where ◦ is the Kleisli composition in the category XT; and whose morphisms

(X, ν)
f−→ (Y, µ) are X-morphisms X

f−→ Y such that Tf · ν ⩽ µ · f , i.e.,

X
f
//

ν

��

⩽

Y

µ

��

TX
Tf
// TY

or equivalently f♮ ◦ ν ⩽ µ ◦ f♮, where f♮ = eY · f , i.e.,

X
f♮
//

ν

��

⩽

Y

µ

��

X
f♮

// Y.

If T = (T, τ) is a power-enriched monad, then the partial order on the hom-sets of XT depends on τ .

Remark 27. Given a T-monoid (X, ν), ν = ν ◦ eX ⩽ ν ◦ ν ⩽ ν implies ν ◦ ν = ν.

Remark 28. Given a T-monoid (X, ν), the functorXT
GT=(−)T

−−−−−−→ X has the following property (preservation
of idempotency): νT = (ν ◦ ν)T = (mX · Tν · ν)T = mX · T (mX · Tν · ν) = mX · TmX · TTν · Tν (†)

=
mX · Tν ·mX · Tν = νT · νT, where (†) relies on commutativity of the following diagram

TTX

mX

��

TTν // TTTX

mTX

��

TmX // TTX

mX

��

TX
Tν

// TTX
mX

// TX.

Example 29.

(1) If T is the trivial monad 1 on the category Set of Example 25 (1), then the respective Kleisli monoids

are pairs (X,X
!X−→ {∗}), and the respective morphisms are maps X f−→ Y , i.e., 1-Mon ∼= Set.

(2) If T is the powerset monad P with the identity monad morphism P
1P−→ P, then P-Mon is the category

Prost of preordered sets and monotone maps that can be seen as follows. First, given a set X, the
partial order on PX is the inclusion of sets. Second, a map X ν−→ PX induces a relation ⩽ on X by x ⩽ y
iff x ∈ ν(y). If ν is reflexive (eX ⩽ ν), then given x ∈ X, eX(x) = {x} ⊆ ν(x) implies x ∈ ν(x) implies
x ⩽ x, i.e., ⩽ is a reflexive relation. If ν is transitive (ν◦ν ⩽ ν), then given z ∈ X, ν◦ν(z) ⩽ ν(z) implies
mX · Pν · ν(z) ⊆ ν(z) implies

⋃
Pν(ν(z)) ⊆ ν(z) implies

⋃
y∈ν(z) ν(y) ⊆ ν(z). Thus, given x, y, z ∈ X

such that x ⩽ y and y ⩽ z, x ∈ ν(y) and y ∈ ν(z) implies x ∈
⋃

y∈ν(z) ν(y) ⊆ ν(z) implies x ∈ ν(z)

implies x ⩽ z, i.e., ⩽ is a transitive relation. Third, given a P-monoid morphism (X, ν)
f−→ (Y, µ), x1 ⩽ x2

implies x1 ∈ ν(x2) implies f(x1) ∈ f(ν(x2)) = Pf · ν(x2) ⊆ µ · f(x2) = µ(f(x2)) implies f(x1) ⩽ f(x2),

i.e., the map X
f−→ Y is monotone. Fourth, the above-mentioned arguments are reversible.

(3) The filter monad F with the principal filter natural transformation P
τ−→ F provides the category F-Mon,

which is isomorphic to the category Top of topological spaces and continuous maps by Theorem 17.

Proposition 30. A morphism of power-enriched monads (S = (S, n, d), σ)
α−→ (T = (T,m, e), τ) provides a

concrete functor S-Mon Fα−−→ T-Mon defined by Fα((X, ν)
f−→ (Y, µ)) = (X,αX · ν) f−→ (Y, αY · µ).

8

Proof. First, observe that there exists a functor SetS
Setα−−−→ SetT defined by Setα(X

f−⇀ Y) = X
αY ·f−−−⇀ Y .

To show that Setα preserves the Kleisli composition, notice that given SetS-morphisms X
f−⇀ Y and Y

g−⇀ Z,

Setα(g◦f) = αZ ·(g◦f) = αZ ·nZ ·Sg ·f (†)
= mZ ·TαZ ·Tg ·αY ·f = mZ ·T (αZ ·g) ·αY ·f = (αZ ·g)◦(αY ·f) =

Setαg ◦ Setαf , where (†) relies on commutativity of the following diagram

SY

αY

��

Sg
// SSZ

αSZ

��

nZ // SZ

αZ

��

TY
Tg
// TSZ

TαZ

// TTZ
mZ

// TZ.

Second, notice that given a set X, the map SX
αX−−→ TX is

∨
-preserving, which follows from the next

commutative diagram

PSX

σSX

��

PαX // PTX

τTX

��

σTX

zz

SSX

nX

��

SαX // STX
αTX // TTX

mX

��

SX
αX

// TX

and the definition of
∨
on the sets SX and TX. In particular, it follows that the map αX is monotone.

Third, observe that the functor Fα is correct on objects, since given an S-monoid (X, ν), dX ⩽ ν implies
eX = αX · dX ⩽ αX · ν (since α is a monad morphism, whose components are monotone), and ν ◦ ν ⩽ ν
implies ν ◦ ν = ν (by Remark 27) implies (αX · ν) ◦ (αX · ν) = αX · (ν ◦ ν) = αX · ν (since Setα is a functor).
Fourth, notice that the functor Fα is correct on morphisms, since given an S-monoid morphism (X, ν)

f−→
(Y, µ), Sf · ν ⩽ µ · f implies αY · Sf · ν ⩽ αY · µ · f (since αY is monotone) implies Tf · αX · ν ⩽ αY · µ · f
by commutativity of the following diagram

SX
αX //

Sf

��

TX

Tf

��

SY
αY

// TY.

Fifth, the functor Fα is concrete, since it does not change the underlying sets of Kleisli monoids. □

4. The Kleisli extension

Definition 31. Define a functor Relop
(−)♭−−−→ SetP by (X �r // Y)♭ = Y

r♭−⇀ X, where the map Y r♭−→ PX

is given by x ∈ r♭(y) iff x r y (representing the opposite relation Y �r
◦
// X; cf. Example 5).

Definition 32. The functors of Definition 31 and Proposition 22 provide a functor Relop
(−)τ−−−→ SetP =

Relop
(−)♭−−−→ SetP

E−→ SetT
L−→ SetP, (X �r // Y)τ = TY

rτ−→ TX, where rτ = mX ·T (τX · r♭) = (τX · r♭)T.

Definition 33. Given a power-enriched monad (T, τ), the Kleisli extension Ť of T to Rel (w.r.t. τ) is

provided by the functions Rel(X,Y)
Ť=ŤX,Y−−−−−→ Rel(TX, TY) (for every pair of sets X and Y) such that

for every relation X �r // Y , and every x ∈ TX, y ∈ TY , it follows that x (Ť r) y iff x ⩽ rτ (y), which is

equivalently described by a map TY
(Ť r)♭=↓TX ·rτ−−−−−−−−−→ PTX, where ↓TX (x) = {z ∈ TX | z ⩽ x} (lower set).

9

Example 34.

(1) Given the terminal power-enriched monad (1, !), the Kleisli extension of a relation X
�r // Y is the

relation {∗} �1̌r // {∗} such that ∗ (1̌r) ∗.
(2) Given the powerset monad (P = (P,m, e), 1P), the respective Kleisli extension can be described as

follows. Given a relation X �r // Y , for every A ∈ PX, B ∈ PY , it follows that A ⩽ r1P(B) iff
A ⊆ r1P(B) iff A ⊆ mX · P (1X · r♭)(B) iff A ⊆

⋃
Pr♭(B) =

⋃
y∈B r♭(y) iff for every x ∈ A, there exists

y ∈ B such that x ∈ r♭(y) iff for every x ∈ A, there exists y ∈ B such that x r y iff A ⊆ r◦(B), where
r◦(B) = {x ∈ X | there exists y ∈ B such that x r y}. As a consequence, A P̌r B iff A ⊆ r◦(B), i.e., one
obtains the lax extension of the functor P from Lecture 1.

(3) Given the filter monad (F = (F,m, e), τ), where P
τ−→ F is the principal filter natural transformation, the

respective Kleisli extension can be described as follows. Given a relation X �r // Y , a subset A ⊆ X,
and a filter y ∈ FY , it follows by Definition 1 that A ∈ mX · F (τX · r♭)(y) iff AF = {x ∈ FX |A ∈ x} ∈
F (τX · r♭)(y) iff (τX · r♭)−1(AF) ∈ y iff {y ∈ Y | τX · r♭(y) ∈ AF} ∈ y iff {y ∈ Y |A ∈ τX · r♭(y)} ∈ y iff
{y ∈ Y | r♭(y) ⊆ A} ∈ y (since τX(B) = {C ⊆ X |B ⊆ C}) iff there exists B ∈ y such that r◦(B) ⊆ A.
As a consequence, rτ (y) = mX ·F (τX · r♭)(y) =↑PX {r◦(B) |B ∈ y}, where given a partially ordered set
(Z,⩽) and a subset S ⊆ Z, ↑Z (S) = {z ∈ Z | there exists s ∈ S such that s ⩽ z}. Thus, given x ∈ FX
and y ∈ FY , it follows that x (F̌ r) y iff x ⩽ rτ (y) iff x ⊇ rτ (y) iff x ⊇ r◦[y], where r◦[y] = {r◦(B) |B ∈ y}.
Observe that the Kleisli extension of the filter monad coincides with the respective lax extension F̌ .

Definition 35. A lax functor C F−→ D of preordered categories (recall Lecture 4) is a pair of maps OC
FO−−→

OD,MC
FM−−→ MD (both denoted F), which satisfy the following axioms:

(1) F (X
f−→ Y) = FX

Ff−−→ FY for every C-morphism X
f−→ Y ;

(2) Ff ⩽ Fg for every C-morphisms X
f
//

g
// Y such that f ⩽ g;

(3) Fg · Ff ⩽ F (g · f) for every C-morphisms X f−→ Y and Y
g−→ Z;

(4) 1FC ⩽ F1C for every C-object C.

Remark 36.

(1) Recall from Lecture 4 that there is a functor (V -Cat)op
(−)∗−−−→ V -Mod defined by ((X, a)

f−→ (Y, b))∗ =

(Y, b) ◦
f∗

// (X, a), where f∗ = f◦ · b. In case of V = 2, this functor induces a functor Prost
(−)∗−−−→

Modop defined by ((X,⩽X)
f−→ (Y,⩽Y))

∗ = (Y,⩽Y) ◦
f∗=f◦·(⩽Y)

// (X,⩽X).

(2) There exists a lax functor Mod
|−|L−−−→ Rel defined by |(X,⩽X) ◦

r
// (Y,⩽Y)|L = X

�r // Y , which
preserves the composition, but given a preordered set (X,⩽X), 1|(X,⩽X)|L = 1X ⩽ (⩽X) = |1(X,⩽X)|L.

Remark 37. In the definition of lax extension of a Set-functor T to the category V -Rel (recall Lecture 1),
the following statements are equivalent:

(1) Tf ⩽ T̂ f and (Tf)◦ ⩽ T̂ (f◦) for every map X
f−→ Y ;

(2) (Tf)◦ ⩽ T̂ (f◦) and T̂ (f◦ · r) = (Tf)◦ · T̂ r for every map X f−→ Y and every relation Z �r // Y .

Proposition 38. Given a power-enriched monad (T, τ), the Kleisli extension Ť of T to Rel provides a lax
extension Ť = (Ť ,m, e) of T = (T,m, e) to Rel.

10

Proof. To show that Rel Ť−→ Rel is a lax functor, one can express it as a composition of lax functors as

follows. Observe first that given a relation X
�r // Y , TX �Ť r

// TY can be expressed as TX �(rτ)∗

// TY
with the help of the functor (−)

∗ of Remark 36 (1). Thus, the Kleisli extension Ť op can be written as the

composition of functors Relop
(−)τ−−−→ Sup |−|−−→ Prost (−)∗−−−→ Modop, where | − | is the forgetful functor.

Notice second that the Kleisli extension Ť op can be expressed as the following composition

Relop
(−)♭
// SetP

E // SetT
L // Sup

|−|
// Prost

(−)∗
//Modop

|−|L
// Relop,

where all the arrows (except the last one) are functors, and the last arrow is the lax functor of Remark 36 (2).

To show that (Tf)◦ ⩽ Ť (f◦) for every map X
f−→ Y , one can consider the following commutative (except

for the down right part, where one should notice that given a monotone map (X,⩽X)
f−→ (Y,⩽Y), it follows

that f◦ ⩽ f◦ · (⩽Y), since 1X ⩽ (⩽Y)) diagram:

Relop
(−)τ

,,

Ť op

**
(−)♭ // SetP

E // SetT

GT

##

L // Sup

|−|
��

|−| // Prost

|−|
{{

(−)∗
//Modop

⩽

|−|L // Relop

1Relop

��

Set

FP

OO

FT

;;

(−)◦

dd

T
// Set

(−)◦
// Relop.

(4.1)

The second condition of Definition 37 (2), i.e., Ť (f◦ · r) = (Tf)◦ · Ť r for every map X
f−→ Y and every

relation Z �r // Y can be shown as follows. Given x ∈ TX and z ∈ TZ, x Ť (f◦ · r) z iff x ⩽ (f◦ · r)τ (z) iff
x ⩽ rτ · (f◦)τ (z) (since Relop

(−)τ−−−→ Prost is a functor) iff x ⩽ rτ ·Tf(z) (by diagram (4.1)) iff x ((Tf)◦ · Ť r) z.
Altogether, it follows that Ť is a lax extension of the Set-functor T to the category Rel. To show that

X
eX //

_r

��

⩽

TX

_ Ť r

��

Y
eY
// TY

for every relation X �r // Y , notice first that the following commutative diagram

PX

PeX

$$

1PX
##

PdX // PPX

nX

��

PτX // PTX
τTX // TTX

mX

��

PX
τX

// TX

implies τX = mX · τTX · PeX =
∨

TX ·PeX (recall condition (2.1)). Observe second that given x ∈ X and
y ∈ Y such that x r y, it follows that (recall Definition 31) eX(x) ⩽

∨
x′∈r♭(y) eX(x′) =

∨
TX PeX(r♭(y)) =

τX · r♭(y) (†)
= mX · TτX · Tr♭ · eY (y) = mX · T (τX · r♭) · eY (y) = (τX · r♭)T · eY (y)

Definition 32
= rτ · eY (y), where

11

(†) relies on commutativity of the following diagram:

Y

r♭

��

eY // TY

Tr♭

��

PX

ePX

$$

1PX
##

dPX // PPX

nX

��

τPX // PTX
TτX // TTX

mX

��

PX
τX

// TX.

As a consequence, one obtains that eX(x) (Ť r) eY (y).
Lastly, to show that

TTX
mX //

_Ť Ť r

��

⩽

TX

_ Ť r

��

TTY
mY

// TY

for every relation X
�r // Y , observe first that mX · τTX · ↓TX=

∨
TX · ↓TX= 1TX , and notice second

that (rτ)T = (rτ · 1TY)
T Definition 32= ((τX · r♭)T · 1TY)

T Definition 10= (τX · r♭)T · 1T
TY

Definition 32
= rτ · mY .

Therefore, given X ∈ TTX and Y ∈ TTY such that X (Ť Ť r)Y, it follows that X ⩽ (Ť r)τ (Y), which implies

mX(X)
Proposition 22 (4)

⩽ mX((Ť r)τ (Y)) = mX · (Ť r)τ (Y)
Definition 32

= mX · (τTX · (Ť r)♭)T(Y)
Definition 33

=

1T
TX · (τTX · ↓TX ·rτ)T(Y)

Definition 10
= (1T

TX · τTX · ↓TX ·rτ)T(Y) = (mX · τTX · ↓TX ·rτ)T(Y) = (rτ)T(Y) =
rτ ·mY (Y). As a consequence, one arrives at X (Ť r)Y, which finishes the proof. □

Proposition 39. Given a monad T = (T,m, e) on Set, there exists a functor Set T̃−→ (T, 2)-Cat defined by

T̃ (X
f−→ Y) = (TX, m̃X)

Tf−−→ (TY, m̃Y), where m̃X = T̂1X ·mX . The functor makes the following triangle

Set T //

T̃ %%

Set

(T, 2)-Cat
|−|

99

commute (| − | is the forgetful functor). The preorder on TX induced by m̃X is given by x ⩽ y iff x T̂1X y.

Remark 40. Since the Kleisli extension provides a power-enriched monad (T, τ) with a lax extension, there
exists an induced preorder on TX associated with Ť as in Proposition 39, i.e., x ⩽ind y iff x Ť1X y. There
also exists a partial order on TX provided by the monad morphism P

τ−→ T as in Remark 23 (1), i.e., x ⩽τ y

iff mX · τTX({x, y}) = y. Following Definition 33, x (Ť r) y iff x ⩽τ rτ (y) for every relation X �r // X. Thus,
if r = 1X , then x (Ť1X) y iff x ⩽τ (1X)τ (y) iff x ⩽τ y, since (−)τ is a functor. Thus, the induced preorder
associated with the lax extension Ť coincides with the partial order provided by the monad morphism τ .
Also notice that Ť fails to preserve identity relations unless T = 1 is the terminal power-enriched monad.

Theorem 41. Given a power-enriched monad (T, τ) equipped with its Kleisli extension Ť , there exists a
concrete isomorphism (T, 2)-Cat ∼= T-Mon.

Proof. The proof relies on a lax algebraic generalization of the classical correspondence between conver-
gence and neighborhoods in topological spaces. In particular, given a topological space X, a filter x on X
converges to some point y ∈ X precisely when x is finer than the neighborhood filter of y. This correspondence
can be formalized via maps Set(X,FX)

conv−−−→ Rel(FX,X) and Rel(FX,X)
nbhd−−−→ Set(X,FX), replacing

12

the filter monad F with a power-enriched monad (T, τ) and identifying Rel(TX,X) with Set(X,PTX), iso-
morphic as ordered sets. One thus defines conv(ν) =↓TX ·ν and nbhd(r) =

∨
TX ·r♭ for every map X ν−→ TX

and every relation TX �r // X. In pointwise notation, these maps can be written as x conv(ν)x iff x ⩽ ν(x)
and (nbhd(r))(x) =

∨
{y ∈ TX | y ∈ r♭(x)} =

∨
{y ∈ TX | y r x} for every x ∈ TX and every x ∈ X.

Lemma 42. Given a
∨
-semilattice A, there exists the adjunction

∨
⊣ ↓ : A −→ PA, where PA is the

powerset of A ordered by set inclusion, and ↓ (a) =↓ a = {b ∈ A | b ⩽ a}, such that
∨

· ↓ = 1A.

Proof. Given a ∈ A and S ⊆ A, it follows that
∨
S ⩽ a iff S ⊆↓ a, and, moreover,

∨
↓ a = a. □

Proposition 43. When Set(X,TX) and Rel(TX,X) are equipped with pointwise partial order, there exists
an adjunction (recall Lecture 4) nbhd ⊣ conv : Set(X,TX) −→ Rel(TX,X) for every set X. Additionally,
the fixpoints of conv·nbhd are precisely the unitary relations (recall Lecture 6), and nbhd·conv = 1Set(X,TX),
so that the fixpoints of nbhd · conv are the maps X ν−→ TX.

Proof. Notice that given a map X
ν−→ TX and a relation TX �r // X, it follows that nbhd(r) ⩽ ν

iff (nbhd(r))(x) ⩽ ν(x) for every x ∈ X iff
∨
{x ∈ TX | x r x} ⩽ ν(x) for every x ∈ X iff (Lemma 42)

{x ∈ TX | x r x} ⊆↓ ν(x) for every x ∈ X iff x r x implies x ⩽ ν(x) for every x ∈ TX and every x ∈ X iff x r x
implies x conv(ν)x for every x ∈ TX and every x ∈ X iff r ⊆ conv(ν) iff r ⩽ conv(ν). As a consequence,
nbhd(r) ⩽ nbhd(r) implies r ⩽ conv · nbhd(r), and conv(ν) ⩽ conv(ν) implies nbhd · conv(ν) ⩽ ν, i.e.,
1Rel(TX,X) ⩽ conv ·nbhd and nbhd ·conv ⩽ 1Set(X,TX). Moreover, both nbhd and conv are monotone maps.
Given a map X

ν−→ TX, for every x ∈ X, it follows that (nbhd · conv(ν))(x) = (nbhd(conv(ν)))(x) =∨
{x ∈ TX | x conv(ν)x} =

∨
{x ∈ TX | x ⩽ ν(x)} =

∨
↓ ν(x)

Lemma 42
= ν(x), namely, nbhd · conv(ν) = ν. As

a result, one obtains that nbhd · conv = 1Set(X,TX), i.e., the fixpoints of nbhd · conv are the maps X
ν−→ TX.

The statement on unitary relations relies on a sequence of technical calculations. □

Moreover, the above adjoint maps nbhd and conv are monoid homomorphisms between SetT(X,X) and

(T, 2)-URelop(X,X) (the set of unitary relations TX �r // X), namely, they satisfy

nbhd(s ◦ r) = nbhd(r) ◦ nbhd(s) conv(µ) ◦ conv(ν) = conv(ν ◦ µ)
nbhd(1♮X) = eX conv(eX) = 1♮X

for all unitary relations TX
�r //�
s
// X, and all mapsX

µ
//

ν
// TX, where s◦r = s·Ť r·m◦

X (Kleisli convolution)

and 1♮X = e◦X ◦ e◦X (properties of power-enriched monads imply that the Kleisli convolution is associative).

Lemma 44. For a set X, a relation TX �a // X provides a (T, 2)-category (X, a) iff a◦a = a and 1♮X ⩽ a.

Proof.
⇒: First, notice that given a (T, 2)-category (X, a), it follows that a · T̂ a ⩽ a ·mX and 1X ⩽ a ·eX (recall

Lecture 1), which implies a ◦ a = a · T̂ a ·m◦
X ⩽ a ·mX ·m◦

X

mX ·m◦
X⩽1TX

⩽ a and e◦X ⩽ a · eX · e◦X
eX ·e◦X⩽1TX

⩽ a.
Second, observe that the operation ◦ is monotone in both arguments by its very definition. Third, notice
that given a lax extension T̂ = (T̂ ,m, e) to V -Rel of a monad T = (T,m, e) on Set, it follows that
T̂1X = T̂ e◦X ·m◦

X , which implies a ◦ e◦X = a · T̂ e◦X ·m◦
X = a · T̂1X ⩾ a · T1X = a · 1TX = a, since T̂ is a lax

extension of T . Thus, a ⩽ a ◦ e◦X ⩽ a ◦ a ⩽ a (i.e., a ◦ a = a) and 1♮X = e◦X ◦ e◦X ⩽ a ◦ a ⩽ a (i.e., 1♮X ⩽ a).

⇐: Observe that, first, a◦a = a implies a·T̂ a·m◦
X = a◦a ⩽ a implies a·T̂ a

1TTX⩽m◦
X ·mX

⩽ a·T̂ a·m◦
X ·mX ⩽

a ·mX (i.e., a · T̂ a ⩽ a ·mX), and, second, 1
♮
X ⩽ a implies e◦X = e◦X · 1TX = e◦X · T1X

T̂ is a lax extension of T
⩽

e◦X · T̂1X = e◦X · T̂ e◦X ·m◦
X = e◦X ◦ e◦X ⩽ a implies 1X ⩽ e◦X · eX ⩽ a · eX (i.e., 1X ⩽ a · eX). □

13

Given a (T, 2)-algebra (X, r), it follows that (X, nbhd(r)) is a T-monoid, and conversely if (X, ν) is a
T-monoid, then (X, conv(ν)) is a (T, 2)-algebra. Moreover, this one-to-one correspondence is functorial. □

Corollary 45. The category Top is concretely isomorphic to the category (F, 2)-Cat, whose objects are

pairs (X, a), where FX �a // X is a relation, which represents convergence and which satisfies (denoting
“a” and “F̂ a” by “−→”) X −→ y and y −→ z imply X −→ z, and ẋ −→ x for every X ∈ FFX, y ∈ FX,

x, z ∈ X (notice that X −→ y iff X ⊇ a◦[y] as in Example 34 (3)); and whose morphisms (X, a)
f−→ (Y, b) are

convergence-preserving maps X
f−→ Y , namely, x −→ z implies Ff(x) −→ f(z) for every x ∈ FX, z ∈ X.

Proof. The statement follows from Theorems 17, 41. □

Corollary 46. Given the up-set monad U (for a set X, UX = {a ⊆ PX | ↑PX a = a}) equipped with the
Kleisli extension associated with the principal filter natural transformation, there is a concrete isomorphism
Cls ∼= (U, 2)-Cat, where Cls is the category of closure spaces and continuous maps (cf. Lecture 1).

References

[1] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories: the Joy of Cats, Repr. Theory Appl. Categ.
17 (2006), 1–507.

[2] D. Hofmann and G. J. Seal, A cottage industry of lax extensions, Categ. Gen. Algebr. Struct. Appl. 3 (2015), no. 1, 113–151.
[3] D. Hofmann, G. J. Seal, and W. Tholen (eds.), Monoidal Topology: A Categorical Approach to Order, Metric and Topology,
Cambridge University Press, 2014.

[4] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag, 1998.
[5] J. MacDonald and M. Sobral, Aspects of Monads, Categorical Foundations: Special Topics in Order, Topology, Algebra,
and Sheaf Theory (M. C. Pedicchio and W. Tholen, eds.), Cambridge University Press, 2004, pp. 213–268.

[6] G. J. Seal, A Kleisli-based approach to lax algebras, Appl. Categ. Structures 17 (2009), no. 1, 75–89.
[7] G. J. Seal, Tensors, monads and actions, Theory Appl. Categ. 28 (2013), 403–434.

14

